FreeBSD/Linux Kernel Cross Reference
sys/dev/sf/if_sf.c
1 /*-
2 * Copyright (c) 1997, 1998, 1999
3 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD: releng/8.0/sys/dev/sf/if_sf.c 195049 2009-06-26 11:45:06Z rwatson $");
35
36 /*
37 * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
38 * Programming manual is available from:
39 * http://download.adaptec.com/pdfs/user_guides/aic6915_pg.pdf.
40 *
41 * Written by Bill Paul <wpaul@ctr.columbia.edu>
42 * Department of Electical Engineering
43 * Columbia University, New York City
44 */
45 /*
46 * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
47 * controller designed with flexibility and reducing CPU load in mind.
48 * The Starfire offers high and low priority buffer queues, a
49 * producer/consumer index mechanism and several different buffer
50 * queue and completion queue descriptor types. Any one of a number
51 * of different driver designs can be used, depending on system and
52 * OS requirements. This driver makes use of type2 transmit frame
53 * descriptors to take full advantage of fragmented packets buffers
54 * and two RX buffer queues prioritized on size (one queue for small
55 * frames that will fit into a single mbuf, another with full size
56 * mbuf clusters for everything else). The producer/consumer indexes
57 * and completion queues are also used.
58 *
59 * One downside to the Starfire has to do with alignment: buffer
60 * queues must be aligned on 256-byte boundaries, and receive buffers
61 * must be aligned on longword boundaries. The receive buffer alignment
62 * causes problems on the strict alignment architecture, where the
63 * packet payload should be longword aligned. There is no simple way
64 * around this.
65 *
66 * For receive filtering, the Starfire offers 16 perfect filter slots
67 * and a 512-bit hash table.
68 *
69 * The Starfire has no internal transceiver, relying instead on an
70 * external MII-based transceiver. Accessing registers on external
71 * PHYs is done through a special register map rather than with the
72 * usual bitbang MDIO method.
73 *
74 * Acesssing the registers on the Starfire is a little tricky. The
75 * Starfire has a 512K internal register space. When programmed for
76 * PCI memory mapped mode, the entire register space can be accessed
77 * directly. However in I/O space mode, only 256 bytes are directly
78 * mapped into PCI I/O space. The other registers can be accessed
79 * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
80 * registers inside the 256-byte I/O window.
81 */
82
83 #ifdef HAVE_KERNEL_OPTION_HEADERS
84 #include "opt_device_polling.h"
85 #endif
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/bus.h>
90 #include <sys/endian.h>
91 #include <sys/kernel.h>
92 #include <sys/malloc.h>
93 #include <sys/mbuf.h>
94 #include <sys/rman.h>
95 #include <sys/module.h>
96 #include <sys/socket.h>
97 #include <sys/sockio.h>
98 #include <sys/sysctl.h>
99 #include <sys/taskqueue.h>
100
101 #include <net/bpf.h>
102 #include <net/if.h>
103 #include <net/if_arp.h>
104 #include <net/ethernet.h>
105 #include <net/if_dl.h>
106 #include <net/if_media.h>
107 #include <net/if_types.h>
108 #include <net/if_vlan_var.h>
109
110 #include <dev/mii/mii.h>
111 #include <dev/mii/miivar.h>
112
113 #include <dev/pci/pcireg.h>
114 #include <dev/pci/pcivar.h>
115
116 #include <machine/bus.h>
117
118 #include <dev/sf/if_sfreg.h>
119 #include <dev/sf/starfire_rx.h>
120 #include <dev/sf/starfire_tx.h>
121
122 /* "device miibus" required. See GENERIC if you get errors here. */
123 #include "miibus_if.h"
124
125 MODULE_DEPEND(sf, pci, 1, 1, 1);
126 MODULE_DEPEND(sf, ether, 1, 1, 1);
127 MODULE_DEPEND(sf, miibus, 1, 1, 1);
128
129 #undef SF_GFP_DEBUG
130 #define SF_CSUM_FEATURES (CSUM_TCP | CSUM_UDP)
131 /* Define this to activate partial TCP/UDP checksum offload. */
132 #undef SF_PARTIAL_CSUM_SUPPORT
133
134 static struct sf_type sf_devs[] = {
135 { AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
136 AD_SUBSYSID_62011_REV0, "Adaptec ANA-62011 (rev 0) 10/100BaseTX" },
137 { AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
138 AD_SUBSYSID_62011_REV1, "Adaptec ANA-62011 (rev 1) 10/100BaseTX" },
139 { AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
140 AD_SUBSYSID_62022, "Adaptec ANA-62022 10/100BaseTX" },
141 { AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
142 AD_SUBSYSID_62044_REV0, "Adaptec ANA-62044 (rev 0) 10/100BaseTX" },
143 { AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
144 AD_SUBSYSID_62044_REV1, "Adaptec ANA-62044 (rev 1) 10/100BaseTX" },
145 { AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
146 AD_SUBSYSID_62020, "Adaptec ANA-62020 10/100BaseFX" },
147 { AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
148 AD_SUBSYSID_69011, "Adaptec ANA-69011 10/100BaseTX" },
149 };
150
151 static int sf_probe(device_t);
152 static int sf_attach(device_t);
153 static int sf_detach(device_t);
154 static int sf_shutdown(device_t);
155 static int sf_suspend(device_t);
156 static int sf_resume(device_t);
157 static void sf_intr(void *);
158 static void sf_tick(void *);
159 static void sf_stats_update(struct sf_softc *);
160 #ifndef __NO_STRICT_ALIGNMENT
161 static __inline void sf_fixup_rx(struct mbuf *);
162 #endif
163 static int sf_rxeof(struct sf_softc *);
164 static void sf_txeof(struct sf_softc *);
165 static int sf_encap(struct sf_softc *, struct mbuf **);
166 static void sf_start(struct ifnet *);
167 static void sf_start_locked(struct ifnet *);
168 static int sf_ioctl(struct ifnet *, u_long, caddr_t);
169 static void sf_download_fw(struct sf_softc *);
170 static void sf_init(void *);
171 static void sf_init_locked(struct sf_softc *);
172 static void sf_stop(struct sf_softc *);
173 static void sf_watchdog(struct sf_softc *);
174 static int sf_ifmedia_upd(struct ifnet *);
175 static void sf_ifmedia_sts(struct ifnet *, struct ifmediareq *);
176 static void sf_reset(struct sf_softc *);
177 static int sf_dma_alloc(struct sf_softc *);
178 static void sf_dma_free(struct sf_softc *);
179 static int sf_init_rx_ring(struct sf_softc *);
180 static void sf_init_tx_ring(struct sf_softc *);
181 static int sf_newbuf(struct sf_softc *, int);
182 static void sf_rxfilter(struct sf_softc *);
183 static int sf_setperf(struct sf_softc *, int, uint8_t *);
184 static int sf_sethash(struct sf_softc *, caddr_t, int);
185 #ifdef notdef
186 static int sf_setvlan(struct sf_softc *, int, uint32_t);
187 #endif
188
189 static uint8_t sf_read_eeprom(struct sf_softc *, int);
190
191 static int sf_miibus_readreg(device_t, int, int);
192 static int sf_miibus_writereg(device_t, int, int, int);
193 static void sf_miibus_statchg(device_t);
194 static void sf_link_task(void *, int);
195 #ifdef DEVICE_POLLING
196 static int sf_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
197 #endif
198
199 static uint32_t csr_read_4(struct sf_softc *, int);
200 static void csr_write_4(struct sf_softc *, int, uint32_t);
201 static void sf_txthresh_adjust(struct sf_softc *);
202 static int sf_sysctl_stats(SYSCTL_HANDLER_ARGS);
203 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
204 static int sysctl_hw_sf_int_mod(SYSCTL_HANDLER_ARGS);
205
206 static device_method_t sf_methods[] = {
207 /* Device interface */
208 DEVMETHOD(device_probe, sf_probe),
209 DEVMETHOD(device_attach, sf_attach),
210 DEVMETHOD(device_detach, sf_detach),
211 DEVMETHOD(device_shutdown, sf_shutdown),
212 DEVMETHOD(device_suspend, sf_suspend),
213 DEVMETHOD(device_resume, sf_resume),
214
215 /* bus interface */
216 DEVMETHOD(bus_print_child, bus_generic_print_child),
217 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
218
219 /* MII interface */
220 DEVMETHOD(miibus_readreg, sf_miibus_readreg),
221 DEVMETHOD(miibus_writereg, sf_miibus_writereg),
222 DEVMETHOD(miibus_statchg, sf_miibus_statchg),
223
224 { NULL, NULL }
225 };
226
227 static driver_t sf_driver = {
228 "sf",
229 sf_methods,
230 sizeof(struct sf_softc),
231 };
232
233 static devclass_t sf_devclass;
234
235 DRIVER_MODULE(sf, pci, sf_driver, sf_devclass, 0, 0);
236 DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0);
237
238 #define SF_SETBIT(sc, reg, x) \
239 csr_write_4(sc, reg, csr_read_4(sc, reg) | (x))
240
241 #define SF_CLRBIT(sc, reg, x) \
242 csr_write_4(sc, reg, csr_read_4(sc, reg) & ~(x))
243
244 static uint32_t
245 csr_read_4(struct sf_softc *sc, int reg)
246 {
247 uint32_t val;
248
249 if (sc->sf_restype == SYS_RES_MEMORY)
250 val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
251 else {
252 CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
253 val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
254 }
255
256 return (val);
257 }
258
259 static uint8_t
260 sf_read_eeprom(struct sf_softc *sc, int reg)
261 {
262 uint8_t val;
263
264 val = (csr_read_4(sc, SF_EEADDR_BASE +
265 (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
266
267 return (val);
268 }
269
270 static void
271 csr_write_4(struct sf_softc *sc, int reg, uint32_t val)
272 {
273
274 if (sc->sf_restype == SYS_RES_MEMORY)
275 CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
276 else {
277 CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
278 CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
279 }
280 }
281
282 /*
283 * Copy the address 'mac' into the perfect RX filter entry at
284 * offset 'idx.' The perfect filter only has 16 entries so do
285 * some sanity tests.
286 */
287 static int
288 sf_setperf(struct sf_softc *sc, int idx, uint8_t *mac)
289 {
290
291 if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
292 return (EINVAL);
293
294 if (mac == NULL)
295 return (EINVAL);
296
297 csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
298 (idx * SF_RXFILT_PERFECT_SKIP) + 0, mac[5] | (mac[4] << 8));
299 csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
300 (idx * SF_RXFILT_PERFECT_SKIP) + 4, mac[3] | (mac[2] << 8));
301 csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
302 (idx * SF_RXFILT_PERFECT_SKIP) + 8, mac[1] | (mac[0] << 8));
303
304 return (0);
305 }
306
307 /*
308 * Set the bit in the 512-bit hash table that corresponds to the
309 * specified mac address 'mac.' If 'prio' is nonzero, update the
310 * priority hash table instead of the filter hash table.
311 */
312 static int
313 sf_sethash(struct sf_softc *sc, caddr_t mac, int prio)
314 {
315 uint32_t h;
316
317 if (mac == NULL)
318 return (EINVAL);
319
320 h = ether_crc32_be(mac, ETHER_ADDR_LEN) >> 23;
321
322 if (prio) {
323 SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
324 (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
325 } else {
326 SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
327 (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
328 }
329
330 return (0);
331 }
332
333 #ifdef notdef
334 /*
335 * Set a VLAN tag in the receive filter.
336 */
337 static int
338 sf_setvlan(struct sf_softc *sc, int idx, uint32_t vlan)
339 {
340
341 if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
342 return (EINVAL);
343
344 csr_write_4(sc, SF_RXFILT_HASH_BASE +
345 (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
346
347 return (0);
348 }
349 #endif
350
351 static int
352 sf_miibus_readreg(device_t dev, int phy, int reg)
353 {
354 struct sf_softc *sc;
355 int i;
356 uint32_t val = 0;
357
358 sc = device_get_softc(dev);
359
360 for (i = 0; i < SF_TIMEOUT; i++) {
361 val = csr_read_4(sc, SF_PHY_REG(phy, reg));
362 if ((val & SF_MII_DATAVALID) != 0)
363 break;
364 }
365
366 if (i == SF_TIMEOUT)
367 return (0);
368
369 val &= SF_MII_DATAPORT;
370 if (val == 0xffff)
371 return (0);
372
373 return (val);
374 }
375
376 static int
377 sf_miibus_writereg(device_t dev, int phy, int reg, int val)
378 {
379 struct sf_softc *sc;
380 int i;
381 int busy;
382
383 sc = device_get_softc(dev);
384
385 csr_write_4(sc, SF_PHY_REG(phy, reg), val);
386
387 for (i = 0; i < SF_TIMEOUT; i++) {
388 busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
389 if ((busy & SF_MII_BUSY) == 0)
390 break;
391 }
392
393 return (0);
394 }
395
396 static void
397 sf_miibus_statchg(device_t dev)
398 {
399 struct sf_softc *sc;
400
401 sc = device_get_softc(dev);
402 taskqueue_enqueue(taskqueue_swi, &sc->sf_link_task);
403 }
404
405 static void
406 sf_link_task(void *arg, int pending)
407 {
408 struct sf_softc *sc;
409 struct mii_data *mii;
410 struct ifnet *ifp;
411 uint32_t val;
412
413 sc = (struct sf_softc *)arg;
414
415 SF_LOCK(sc);
416
417 mii = device_get_softc(sc->sf_miibus);
418 ifp = sc->sf_ifp;
419 if (mii == NULL || ifp == NULL ||
420 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
421 SF_UNLOCK(sc);
422 return;
423 }
424
425 if (mii->mii_media_status & IFM_ACTIVE) {
426 if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
427 sc->sf_link = 1;
428 } else
429 sc->sf_link = 0;
430
431 val = csr_read_4(sc, SF_MACCFG_1);
432 val &= ~SF_MACCFG1_FULLDUPLEX;
433 val &= ~(SF_MACCFG1_RX_FLOWENB | SF_MACCFG1_TX_FLOWENB);
434 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
435 val |= SF_MACCFG1_FULLDUPLEX;
436 csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
437 #ifdef notyet
438 /* Configure flow-control bits. */
439 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) &
440 IFM_ETH_RXPAUSE) != 0)
441 val |= SF_MACCFG1_RX_FLOWENB;
442 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) &
443 IFM_ETH_TXPAUSE) != 0)
444 val |= SF_MACCFG1_TX_FLOWENB;
445 #endif
446 } else
447 csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
448
449 /* Make sure to reset MAC to take changes effect. */
450 csr_write_4(sc, SF_MACCFG_1, val | SF_MACCFG1_SOFTRESET);
451 DELAY(1000);
452 csr_write_4(sc, SF_MACCFG_1, val);
453
454 val = csr_read_4(sc, SF_TIMER_CTL);
455 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
456 val |= SF_TIMER_TIMES_TEN;
457 else
458 val &= ~SF_TIMER_TIMES_TEN;
459 csr_write_4(sc, SF_TIMER_CTL, val);
460
461 SF_UNLOCK(sc);
462 }
463
464 static void
465 sf_rxfilter(struct sf_softc *sc)
466 {
467 struct ifnet *ifp;
468 int i;
469 struct ifmultiaddr *ifma;
470 uint8_t dummy[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
471 uint32_t rxfilt;
472
473 ifp = sc->sf_ifp;
474
475 /* First zot all the existing filters. */
476 for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
477 sf_setperf(sc, i, dummy);
478 for (i = SF_RXFILT_HASH_BASE; i < (SF_RXFILT_HASH_MAX + 1);
479 i += sizeof(uint32_t))
480 csr_write_4(sc, i, 0);
481
482 rxfilt = csr_read_4(sc, SF_RXFILT);
483 rxfilt &= ~(SF_RXFILT_PROMISC | SF_RXFILT_ALLMULTI | SF_RXFILT_BROAD);
484 if ((ifp->if_flags & IFF_BROADCAST) != 0)
485 rxfilt |= SF_RXFILT_BROAD;
486 if ((ifp->if_flags & IFF_ALLMULTI) != 0 ||
487 (ifp->if_flags & IFF_PROMISC) != 0) {
488 if ((ifp->if_flags & IFF_PROMISC) != 0)
489 rxfilt |= SF_RXFILT_PROMISC;
490 if ((ifp->if_flags & IFF_ALLMULTI) != 0)
491 rxfilt |= SF_RXFILT_ALLMULTI;
492 goto done;
493 }
494
495 /* Now program new ones. */
496 i = 1;
497 if_maddr_rlock(ifp);
498 TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead,
499 ifma_link) {
500 if (ifma->ifma_addr->sa_family != AF_LINK)
501 continue;
502 /*
503 * Program the first 15 multicast groups
504 * into the perfect filter. For all others,
505 * use the hash table.
506 */
507 if (i < SF_RXFILT_PERFECT_CNT) {
508 sf_setperf(sc, i,
509 LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
510 i++;
511 continue;
512 }
513
514 sf_sethash(sc,
515 LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
516 }
517 if_maddr_runlock(ifp);
518
519 done:
520 csr_write_4(sc, SF_RXFILT, rxfilt);
521 }
522
523 /*
524 * Set media options.
525 */
526 static int
527 sf_ifmedia_upd(struct ifnet *ifp)
528 {
529 struct sf_softc *sc;
530 struct mii_data *mii;
531 int error;
532
533 sc = ifp->if_softc;
534 SF_LOCK(sc);
535
536 mii = device_get_softc(sc->sf_miibus);
537 if (mii->mii_instance) {
538 struct mii_softc *miisc;
539 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
540 mii_phy_reset(miisc);
541 }
542 error = mii_mediachg(mii);
543 SF_UNLOCK(sc);
544
545 return (error);
546 }
547
548 /*
549 * Report current media status.
550 */
551 static void
552 sf_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
553 {
554 struct sf_softc *sc;
555 struct mii_data *mii;
556
557 sc = ifp->if_softc;
558 SF_LOCK(sc);
559 mii = device_get_softc(sc->sf_miibus);
560
561 mii_pollstat(mii);
562 ifmr->ifm_active = mii->mii_media_active;
563 ifmr->ifm_status = mii->mii_media_status;
564 SF_UNLOCK(sc);
565 }
566
567 static int
568 sf_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
569 {
570 struct sf_softc *sc;
571 struct ifreq *ifr;
572 struct mii_data *mii;
573 int error, mask;
574
575 sc = ifp->if_softc;
576 ifr = (struct ifreq *)data;
577 error = 0;
578
579 switch (command) {
580 case SIOCSIFFLAGS:
581 SF_LOCK(sc);
582 if (ifp->if_flags & IFF_UP) {
583 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
584 if ((ifp->if_flags ^ sc->sf_if_flags) &
585 (IFF_PROMISC | IFF_ALLMULTI))
586 sf_rxfilter(sc);
587 } else {
588 if (sc->sf_detach == 0)
589 sf_init_locked(sc);
590 }
591 } else {
592 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
593 sf_stop(sc);
594 }
595 sc->sf_if_flags = ifp->if_flags;
596 SF_UNLOCK(sc);
597 break;
598 case SIOCADDMULTI:
599 case SIOCDELMULTI:
600 SF_LOCK(sc);
601 sf_rxfilter(sc);
602 SF_UNLOCK(sc);
603 break;
604 case SIOCGIFMEDIA:
605 case SIOCSIFMEDIA:
606 mii = device_get_softc(sc->sf_miibus);
607 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
608 break;
609 case SIOCSIFCAP:
610 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
611 #ifdef DEVICE_POLLING
612 if ((mask & IFCAP_POLLING) != 0) {
613 if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
614 error = ether_poll_register(sf_poll, ifp);
615 if (error != 0)
616 break;
617 SF_LOCK(sc);
618 /* Disable interrupts. */
619 csr_write_4(sc, SF_IMR, 0);
620 ifp->if_capenable |= IFCAP_POLLING;
621 SF_UNLOCK(sc);
622 } else {
623 error = ether_poll_deregister(ifp);
624 /* Enable interrupts. */
625 SF_LOCK(sc);
626 csr_write_4(sc, SF_IMR, SF_INTRS);
627 ifp->if_capenable &= ~IFCAP_POLLING;
628 SF_UNLOCK(sc);
629 }
630 }
631 #endif /* DEVICE_POLLING */
632 if ((mask & IFCAP_TXCSUM) != 0) {
633 if ((IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
634 SF_LOCK(sc);
635 ifp->if_capenable ^= IFCAP_TXCSUM;
636 if ((IFCAP_TXCSUM & ifp->if_capenable) != 0) {
637 ifp->if_hwassist |= SF_CSUM_FEATURES;
638 SF_SETBIT(sc, SF_GEN_ETH_CTL,
639 SF_ETHCTL_TXGFP_ENB);
640 } else {
641 ifp->if_hwassist &= ~SF_CSUM_FEATURES;
642 SF_CLRBIT(sc, SF_GEN_ETH_CTL,
643 SF_ETHCTL_TXGFP_ENB);
644 }
645 SF_UNLOCK(sc);
646 }
647 }
648 if ((mask & IFCAP_RXCSUM) != 0) {
649 if ((IFCAP_RXCSUM & ifp->if_capabilities) != 0) {
650 SF_LOCK(sc);
651 ifp->if_capenable ^= IFCAP_RXCSUM;
652 if ((IFCAP_RXCSUM & ifp->if_capenable) != 0)
653 SF_SETBIT(sc, SF_GEN_ETH_CTL,
654 SF_ETHCTL_RXGFP_ENB);
655 else
656 SF_CLRBIT(sc, SF_GEN_ETH_CTL,
657 SF_ETHCTL_RXGFP_ENB);
658 SF_UNLOCK(sc);
659 }
660 }
661 break;
662 default:
663 error = ether_ioctl(ifp, command, data);
664 break;
665 }
666
667 return (error);
668 }
669
670 static void
671 sf_reset(struct sf_softc *sc)
672 {
673 int i;
674
675 csr_write_4(sc, SF_GEN_ETH_CTL, 0);
676 SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
677 DELAY(1000);
678 SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
679
680 SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
681
682 for (i = 0; i < SF_TIMEOUT; i++) {
683 DELAY(10);
684 if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
685 break;
686 }
687
688 if (i == SF_TIMEOUT)
689 device_printf(sc->sf_dev, "reset never completed!\n");
690
691 /* Wait a little while for the chip to get its brains in order. */
692 DELAY(1000);
693 }
694
695 /*
696 * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
697 * IDs against our list and return a device name if we find a match.
698 * We also check the subsystem ID so that we can identify exactly which
699 * NIC has been found, if possible.
700 */
701 static int
702 sf_probe(device_t dev)
703 {
704 struct sf_type *t;
705 uint16_t vid;
706 uint16_t did;
707 uint16_t sdid;
708 int i;
709
710 vid = pci_get_vendor(dev);
711 did = pci_get_device(dev);
712 sdid = pci_get_subdevice(dev);
713
714 t = sf_devs;
715 for (i = 0; i < sizeof(sf_devs) / sizeof(sf_devs[0]); i++, t++) {
716 if (vid == t->sf_vid && did == t->sf_did) {
717 if (sdid == t->sf_sdid) {
718 device_set_desc(dev, t->sf_sname);
719 return (BUS_PROBE_DEFAULT);
720 }
721 }
722 }
723
724 if (vid == AD_VENDORID && did == AD_DEVICEID_STARFIRE) {
725 /* unkown subdevice */
726 device_set_desc(dev, sf_devs[0].sf_name);
727 return (BUS_PROBE_DEFAULT);
728 }
729
730 return (ENXIO);
731 }
732
733 /*
734 * Attach the interface. Allocate softc structures, do ifmedia
735 * setup and ethernet/BPF attach.
736 */
737 static int
738 sf_attach(device_t dev)
739 {
740 int i;
741 struct sf_softc *sc;
742 struct ifnet *ifp;
743 uint32_t reg;
744 int rid, error = 0;
745 uint8_t eaddr[ETHER_ADDR_LEN];
746
747 sc = device_get_softc(dev);
748 sc->sf_dev = dev;
749
750 mtx_init(&sc->sf_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
751 MTX_DEF);
752 callout_init_mtx(&sc->sf_co, &sc->sf_mtx, 0);
753 TASK_INIT(&sc->sf_link_task, 0, sf_link_task, sc);
754
755 /*
756 * Map control/status registers.
757 */
758 pci_enable_busmaster(dev);
759
760 /*
761 * Prefer memory space register mapping over I/O space as the
762 * hardware requires lots of register access to get various
763 * producer/consumer index during Tx/Rx operation. However this
764 * requires large memory space(512K) to map the entire register
765 * space.
766 */
767 sc->sf_rid = PCIR_BAR(0);
768 sc->sf_restype = SYS_RES_MEMORY;
769 sc->sf_res = bus_alloc_resource_any(dev, sc->sf_restype, &sc->sf_rid,
770 RF_ACTIVE);
771 if (sc->sf_res == NULL) {
772 reg = pci_read_config(dev, PCIR_BAR(0), 4);
773 if ((reg & PCIM_BAR_MEM_64) == PCIM_BAR_MEM_64)
774 sc->sf_rid = PCIR_BAR(2);
775 else
776 sc->sf_rid = PCIR_BAR(1);
777 sc->sf_restype = SYS_RES_IOPORT;
778 sc->sf_res = bus_alloc_resource_any(dev, sc->sf_restype,
779 &sc->sf_rid, RF_ACTIVE);
780 if (sc->sf_res == NULL) {
781 device_printf(dev, "couldn't allocate resources\n");
782 mtx_destroy(&sc->sf_mtx);
783 return (ENXIO);
784 }
785 }
786 if (bootverbose)
787 device_printf(dev, "using %s space register mapping\n",
788 sc->sf_restype == SYS_RES_MEMORY ? "memory" : "I/O");
789
790 reg = pci_read_config(dev, PCIR_CACHELNSZ, 1);
791 if (reg == 0) {
792 /*
793 * If cache line size is 0, MWI is not used at all, so set
794 * reasonable default. AIC-6915 supports 0, 4, 8, 16, 32
795 * and 64.
796 */
797 reg = 16;
798 device_printf(dev, "setting PCI cache line size to %u\n", reg);
799 pci_write_config(dev, PCIR_CACHELNSZ, reg, 1);
800 } else {
801 if (bootverbose)
802 device_printf(dev, "PCI cache line size : %u\n", reg);
803 }
804 /* Enable MWI. */
805 reg = pci_read_config(dev, PCIR_COMMAND, 2);
806 reg |= PCIM_CMD_MWRICEN;
807 pci_write_config(dev, PCIR_COMMAND, reg, 2);
808
809 /* Allocate interrupt. */
810 rid = 0;
811 sc->sf_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
812 RF_SHAREABLE | RF_ACTIVE);
813
814 if (sc->sf_irq == NULL) {
815 device_printf(dev, "couldn't map interrupt\n");
816 error = ENXIO;
817 goto fail;
818 }
819
820 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
821 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
822 OID_AUTO, "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
823 sf_sysctl_stats, "I", "Statistics");
824
825 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
826 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
827 OID_AUTO, "int_mod", CTLTYPE_INT | CTLFLAG_RW,
828 &sc->sf_int_mod, 0, sysctl_hw_sf_int_mod, "I",
829 "sf interrupt moderation");
830 /* Pull in device tunables. */
831 sc->sf_int_mod = SF_IM_DEFAULT;
832 error = resource_int_value(device_get_name(dev), device_get_unit(dev),
833 "int_mod", &sc->sf_int_mod);
834 if (error == 0) {
835 if (sc->sf_int_mod < SF_IM_MIN ||
836 sc->sf_int_mod > SF_IM_MAX) {
837 device_printf(dev, "int_mod value out of range; "
838 "using default: %d\n", SF_IM_DEFAULT);
839 sc->sf_int_mod = SF_IM_DEFAULT;
840 }
841 }
842
843 /* Reset the adapter. */
844 sf_reset(sc);
845
846 /*
847 * Get station address from the EEPROM.
848 */
849 for (i = 0; i < ETHER_ADDR_LEN; i++)
850 eaddr[i] =
851 sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
852
853 /* Allocate DMA resources. */
854 if (sf_dma_alloc(sc) != 0) {
855 error = ENOSPC;
856 goto fail;
857 }
858
859 sc->sf_txthresh = SF_MIN_TX_THRESHOLD;
860
861 ifp = sc->sf_ifp = if_alloc(IFT_ETHER);
862 if (ifp == NULL) {
863 device_printf(dev, "can not allocate ifnet structure\n");
864 error = ENOSPC;
865 goto fail;
866 }
867
868 /* Do MII setup. */
869 if (mii_phy_probe(dev, &sc->sf_miibus, sf_ifmedia_upd,
870 sf_ifmedia_sts)) {
871 device_printf(dev, "MII without any phy!\n");
872 error = ENXIO;
873 goto fail;
874 }
875
876 ifp->if_softc = sc;
877 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
878 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
879 ifp->if_ioctl = sf_ioctl;
880 ifp->if_start = sf_start;
881 ifp->if_init = sf_init;
882 IFQ_SET_MAXLEN(&ifp->if_snd, SF_TX_DLIST_CNT - 1);
883 ifp->if_snd.ifq_drv_maxlen = SF_TX_DLIST_CNT - 1;
884 IFQ_SET_READY(&ifp->if_snd);
885 /*
886 * With the help of firmware, AIC-6915 supports
887 * Tx/Rx TCP/UDP checksum offload.
888 */
889 ifp->if_hwassist = SF_CSUM_FEATURES;
890 ifp->if_capabilities = IFCAP_HWCSUM;
891
892 /*
893 * Call MI attach routine.
894 */
895 ether_ifattach(ifp, eaddr);
896
897 /* VLAN capability setup. */
898 ifp->if_capabilities |= IFCAP_VLAN_MTU;
899 ifp->if_capenable = ifp->if_capabilities;
900 #ifdef DEVICE_POLLING
901 ifp->if_capabilities |= IFCAP_POLLING;
902 #endif
903 /*
904 * Tell the upper layer(s) we support long frames.
905 * Must appear after the call to ether_ifattach() because
906 * ether_ifattach() sets ifi_hdrlen to the default value.
907 */
908 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
909
910 /* Hook interrupt last to avoid having to lock softc */
911 error = bus_setup_intr(dev, sc->sf_irq, INTR_TYPE_NET | INTR_MPSAFE,
912 NULL, sf_intr, sc, &sc->sf_intrhand);
913
914 if (error) {
915 device_printf(dev, "couldn't set up irq\n");
916 ether_ifdetach(ifp);
917 goto fail;
918 }
919
920 fail:
921 if (error)
922 sf_detach(dev);
923
924 return (error);
925 }
926
927 /*
928 * Shutdown hardware and free up resources. This can be called any
929 * time after the mutex has been initialized. It is called in both
930 * the error case in attach and the normal detach case so it needs
931 * to be careful about only freeing resources that have actually been
932 * allocated.
933 */
934 static int
935 sf_detach(device_t dev)
936 {
937 struct sf_softc *sc;
938 struct ifnet *ifp;
939
940 sc = device_get_softc(dev);
941 ifp = sc->sf_ifp;
942
943 #ifdef DEVICE_POLLING
944 if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
945 ether_poll_deregister(ifp);
946 #endif
947
948 /* These should only be active if attach succeeded */
949 if (device_is_attached(dev)) {
950 SF_LOCK(sc);
951 sc->sf_detach = 1;
952 sf_stop(sc);
953 SF_UNLOCK(sc);
954 callout_drain(&sc->sf_co);
955 taskqueue_drain(taskqueue_swi, &sc->sf_link_task);
956 if (ifp != NULL)
957 ether_ifdetach(ifp);
958 }
959 if (sc->sf_miibus) {
960 device_delete_child(dev, sc->sf_miibus);
961 sc->sf_miibus = NULL;
962 }
963 bus_generic_detach(dev);
964
965 if (sc->sf_intrhand != NULL)
966 bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
967 if (sc->sf_irq != NULL)
968 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
969 if (sc->sf_res != NULL)
970 bus_release_resource(dev, sc->sf_restype, sc->sf_rid,
971 sc->sf_res);
972
973 sf_dma_free(sc);
974 if (ifp != NULL)
975 if_free(ifp);
976
977 mtx_destroy(&sc->sf_mtx);
978
979 return (0);
980 }
981
982 struct sf_dmamap_arg {
983 bus_addr_t sf_busaddr;
984 };
985
986 static void
987 sf_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
988 {
989 struct sf_dmamap_arg *ctx;
990
991 if (error != 0)
992 return;
993 ctx = arg;
994 ctx->sf_busaddr = segs[0].ds_addr;
995 }
996
997 static int
998 sf_dma_alloc(struct sf_softc *sc)
999 {
1000 struct sf_dmamap_arg ctx;
1001 struct sf_txdesc *txd;
1002 struct sf_rxdesc *rxd;
1003 bus_addr_t lowaddr;
1004 bus_addr_t rx_ring_end, rx_cring_end;
1005 bus_addr_t tx_ring_end, tx_cring_end;
1006 int error, i;
1007
1008 lowaddr = BUS_SPACE_MAXADDR;
1009
1010 again:
1011 /* Create parent DMA tag. */
1012 error = bus_dma_tag_create(
1013 bus_get_dma_tag(sc->sf_dev), /* parent */
1014 1, 0, /* alignment, boundary */
1015 lowaddr, /* lowaddr */
1016 BUS_SPACE_MAXADDR, /* highaddr */
1017 NULL, NULL, /* filter, filterarg */
1018 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
1019 0, /* nsegments */
1020 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
1021 0, /* flags */
1022 NULL, NULL, /* lockfunc, lockarg */
1023 &sc->sf_cdata.sf_parent_tag);
1024 if (error != 0) {
1025 device_printf(sc->sf_dev, "failed to create parent DMA tag\n");
1026 goto fail;
1027 }
1028 /* Create tag for Tx ring. */
1029 error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
1030 SF_RING_ALIGN, 0, /* alignment, boundary */
1031 BUS_SPACE_MAXADDR, /* lowaddr */
1032 BUS_SPACE_MAXADDR, /* highaddr */
1033 NULL, NULL, /* filter, filterarg */
1034 SF_TX_DLIST_SIZE, /* maxsize */
1035 1, /* nsegments */
1036 SF_TX_DLIST_SIZE, /* maxsegsize */
1037 0, /* flags */
1038 NULL, NULL, /* lockfunc, lockarg */
1039 &sc->sf_cdata.sf_tx_ring_tag);
1040 if (error != 0) {
1041 device_printf(sc->sf_dev, "failed to create Tx ring DMA tag\n");
1042 goto fail;
1043 }
1044
1045 /* Create tag for Tx completion ring. */
1046 error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
1047 SF_RING_ALIGN, 0, /* alignment, boundary */
1048 BUS_SPACE_MAXADDR, /* lowaddr */
1049 BUS_SPACE_MAXADDR, /* highaddr */
1050 NULL, NULL, /* filter, filterarg */
1051 SF_TX_CLIST_SIZE, /* maxsize */
1052 1, /* nsegments */
1053 SF_TX_CLIST_SIZE, /* maxsegsize */
1054 0, /* flags */
1055 NULL, NULL, /* lockfunc, lockarg */
1056 &sc->sf_cdata.sf_tx_cring_tag);
1057 if (error != 0) {
1058 device_printf(sc->sf_dev,
1059 "failed to create Tx completion ring DMA tag\n");
1060 goto fail;
1061 }
1062
1063 /* Create tag for Rx ring. */
1064 error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
1065 SF_RING_ALIGN, 0, /* alignment, boundary */
1066 BUS_SPACE_MAXADDR, /* lowaddr */
1067 BUS_SPACE_MAXADDR, /* highaddr */
1068 NULL, NULL, /* filter, filterarg */
1069 SF_RX_DLIST_SIZE, /* maxsize */
1070 1, /* nsegments */
1071 SF_RX_DLIST_SIZE, /* maxsegsize */
1072 0, /* flags */
1073 NULL, NULL, /* lockfunc, lockarg */
1074 &sc->sf_cdata.sf_rx_ring_tag);
1075 if (error != 0) {
1076 device_printf(sc->sf_dev,
1077 "failed to create Rx ring DMA tag\n");
1078 goto fail;
1079 }
1080
1081 /* Create tag for Rx completion ring. */
1082 error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
1083 SF_RING_ALIGN, 0, /* alignment, boundary */
1084 BUS_SPACE_MAXADDR, /* lowaddr */
1085 BUS_SPACE_MAXADDR, /* highaddr */
1086 NULL, NULL, /* filter, filterarg */
1087 SF_RX_CLIST_SIZE, /* maxsize */
1088 1, /* nsegments */
1089 SF_RX_CLIST_SIZE, /* maxsegsize */
1090 0, /* flags */
1091 NULL, NULL, /* lockfunc, lockarg */
1092 &sc->sf_cdata.sf_rx_cring_tag);
1093 if (error != 0) {
1094 device_printf(sc->sf_dev,
1095 "failed to create Rx completion ring DMA tag\n");
1096 goto fail;
1097 }
1098
1099 /* Create tag for Tx buffers. */
1100 error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
1101 1, 0, /* alignment, boundary */
1102 BUS_SPACE_MAXADDR, /* lowaddr */
1103 BUS_SPACE_MAXADDR, /* highaddr */
1104 NULL, NULL, /* filter, filterarg */
1105 MCLBYTES * SF_MAXTXSEGS, /* maxsize */
1106 SF_MAXTXSEGS, /* nsegments */
1107 MCLBYTES, /* maxsegsize */
1108 0, /* flags */
1109 NULL, NULL, /* lockfunc, lockarg */
1110 &sc->sf_cdata.sf_tx_tag);
1111 if (error != 0) {
1112 device_printf(sc->sf_dev, "failed to create Tx DMA tag\n");
1113 goto fail;
1114 }
1115
1116 /* Create tag for Rx buffers. */
1117 error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
1118 SF_RX_ALIGN, 0, /* alignment, boundary */
1119 BUS_SPACE_MAXADDR, /* lowaddr */
1120 BUS_SPACE_MAXADDR, /* highaddr */
1121 NULL, NULL, /* filter, filterarg */
1122 MCLBYTES, /* maxsize */
1123 1, /* nsegments */
1124 MCLBYTES, /* maxsegsize */
1125 0, /* flags */
1126 NULL, NULL, /* lockfunc, lockarg */
1127 &sc->sf_cdata.sf_rx_tag);
1128 if (error != 0) {
1129 device_printf(sc->sf_dev, "failed to create Rx DMA tag\n");
1130 goto fail;
1131 }
1132
1133 /* Allocate DMA'able memory and load the DMA map for Tx ring. */
1134 error = bus_dmamem_alloc(sc->sf_cdata.sf_tx_ring_tag,
1135 (void **)&sc->sf_rdata.sf_tx_ring, BUS_DMA_WAITOK |
1136 BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sf_cdata.sf_tx_ring_map);
1137 if (error != 0) {
1138 device_printf(sc->sf_dev,
1139 "failed to allocate DMA'able memory for Tx ring\n");
1140 goto fail;
1141 }
1142
1143 ctx.sf_busaddr = 0;
1144 error = bus_dmamap_load(sc->sf_cdata.sf_tx_ring_tag,
1145 sc->sf_cdata.sf_tx_ring_map, sc->sf_rdata.sf_tx_ring,
1146 SF_TX_DLIST_SIZE, sf_dmamap_cb, &ctx, 0);
1147 if (error != 0 || ctx.sf_busaddr == 0) {
1148 device_printf(sc->sf_dev,
1149 "failed to load DMA'able memory for Tx ring\n");
1150 goto fail;
1151 }
1152 sc->sf_rdata.sf_tx_ring_paddr = ctx.sf_busaddr;
1153
1154 /*
1155 * Allocate DMA'able memory and load the DMA map for Tx completion ring.
1156 */
1157 error = bus_dmamem_alloc(sc->sf_cdata.sf_tx_cring_tag,
1158 (void **)&sc->sf_rdata.sf_tx_cring, BUS_DMA_WAITOK |
1159 BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sf_cdata.sf_tx_cring_map);
1160 if (error != 0) {
1161 device_printf(sc->sf_dev,
1162 "failed to allocate DMA'able memory for "
1163 "Tx completion ring\n");
1164 goto fail;
1165 }
1166
1167 ctx.sf_busaddr = 0;
1168 error = bus_dmamap_load(sc->sf_cdata.sf_tx_cring_tag,
1169 sc->sf_cdata.sf_tx_cring_map, sc->sf_rdata.sf_tx_cring,
1170 SF_TX_CLIST_SIZE, sf_dmamap_cb, &ctx, 0);
1171 if (error != 0 || ctx.sf_busaddr == 0) {
1172 device_printf(sc->sf_dev,
1173 "failed to load DMA'able memory for Tx completion ring\n");
1174 goto fail;
1175 }
1176 sc->sf_rdata.sf_tx_cring_paddr = ctx.sf_busaddr;
1177
1178 /* Allocate DMA'able memory and load the DMA map for Rx ring. */
1179 error = bus_dmamem_alloc(sc->sf_cdata.sf_rx_ring_tag,
1180 (void **)&sc->sf_rdata.sf_rx_ring, BUS_DMA_WAITOK |
1181 BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sf_cdata.sf_rx_ring_map);
1182 if (error != 0) {
1183 device_printf(sc->sf_dev,
1184 "failed to allocate DMA'able memory for Rx ring\n");
1185 goto fail;
1186 }
1187
1188 ctx.sf_busaddr = 0;
1189 error = bus_dmamap_load(sc->sf_cdata.sf_rx_ring_tag,
1190 sc->sf_cdata.sf_rx_ring_map, sc->sf_rdata.sf_rx_ring,
1191 SF_RX_DLIST_SIZE, sf_dmamap_cb, &ctx, 0);
1192 if (error != 0 || ctx.sf_busaddr == 0) {
1193 device_printf(sc->sf_dev,
1194 "failed to load DMA'able memory for Rx ring\n");
1195 goto fail;
1196 }
1197 sc->sf_rdata.sf_rx_ring_paddr = ctx.sf_busaddr;
1198
1199 /*
1200 * Allocate DMA'able memory and load the DMA map for Rx completion ring.
1201 */
1202 error = bus_dmamem_alloc(sc->sf_cdata.sf_rx_cring_tag,
1203 (void **)&sc->sf_rdata.sf_rx_cring, BUS_DMA_WAITOK |
1204 BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sf_cdata.sf_rx_cring_map);
1205 if (error != 0) {
1206 device_printf(sc->sf_dev,
1207 "failed to allocate DMA'able memory for "
1208 "Rx completion ring\n");
1209 goto fail;
1210 }
1211
1212 ctx.sf_busaddr = 0;
1213 error = bus_dmamap_load(sc->sf_cdata.sf_rx_cring_tag,
1214 sc->sf_cdata.sf_rx_cring_map, sc->sf_rdata.sf_rx_cring,
1215 SF_RX_CLIST_SIZE, sf_dmamap_cb, &ctx, 0);
1216 if (error != 0 || ctx.sf_busaddr == 0) {
1217 device_printf(sc->sf_dev,
1218 "failed to load DMA'able memory for Rx completion ring\n");
1219 goto fail;
1220 }
1221 sc->sf_rdata.sf_rx_cring_paddr = ctx.sf_busaddr;
1222
1223 /*
1224 * Tx desciptor ring and Tx completion ring should be addressed in
1225 * the same 4GB space. The same rule applys to Rx ring and Rx
1226 * completion ring. Unfortunately there is no way to specify this
1227 * boundary restriction with bus_dma(9). So just try to allocate
1228 * without the restriction and check the restriction was satisfied.
1229 * If not, fall back to 32bit dma addressing mode which always
1230 * guarantees the restriction.
1231 */
1232 tx_ring_end = sc->sf_rdata.sf_tx_ring_paddr + SF_TX_DLIST_SIZE;
1233 tx_cring_end = sc->sf_rdata.sf_tx_cring_paddr + SF_TX_CLIST_SIZE;
1234 rx_ring_end = sc->sf_rdata.sf_rx_ring_paddr + SF_RX_DLIST_SIZE;
1235 rx_cring_end = sc->sf_rdata.sf_rx_cring_paddr + SF_RX_CLIST_SIZE;
1236 if ((SF_ADDR_HI(sc->sf_rdata.sf_tx_ring_paddr) !=
1237 SF_ADDR_HI(tx_cring_end)) ||
1238 (SF_ADDR_HI(sc->sf_rdata.sf_tx_cring_paddr) !=
1239 SF_ADDR_HI(tx_ring_end)) ||
1240 (SF_ADDR_HI(sc->sf_rdata.sf_rx_ring_paddr) !=
1241 SF_ADDR_HI(rx_cring_end)) ||
1242 (SF_ADDR_HI(sc->sf_rdata.sf_rx_cring_paddr) !=
1243 SF_ADDR_HI(rx_ring_end))) {
1244 device_printf(sc->sf_dev,
1245 "switching to 32bit DMA mode\n");
1246 sf_dma_free(sc);
1247 /* Limit DMA address space to 32bit and try again. */
1248 lowaddr = BUS_SPACE_MAXADDR_32BIT;
1249 goto again;
1250 }
1251
1252 /* Create DMA maps for Tx buffers. */
1253 for (i = 0; i < SF_TX_DLIST_CNT; i++) {
1254 txd = &sc->sf_cdata.sf_txdesc[i];
1255 txd->tx_m = NULL;
1256 txd->ndesc = 0;
1257 txd->tx_dmamap = NULL;
1258 error = bus_dmamap_create(sc->sf_cdata.sf_tx_tag, 0,
1259 &txd->tx_dmamap);
1260 if (error != 0) {
1261 device_printf(sc->sf_dev,
1262 "failed to create Tx dmamap\n");
1263 goto fail;
1264 }
1265 }
1266 /* Create DMA maps for Rx buffers. */
1267 if ((error = bus_dmamap_create(sc->sf_cdata.sf_rx_tag, 0,
1268 &sc->sf_cdata.sf_rx_sparemap)) != 0) {
1269 device_printf(sc->sf_dev,
1270 "failed to create spare Rx dmamap\n");
1271 goto fail;
1272 }
1273 for (i = 0; i < SF_RX_DLIST_CNT; i++) {
1274 rxd = &sc->sf_cdata.sf_rxdesc[i];
1275 rxd->rx_m = NULL;
1276 rxd->rx_dmamap = NULL;
1277 error = bus_dmamap_create(sc->sf_cdata.sf_rx_tag, 0,
1278 &rxd->rx_dmamap);
1279 if (error != 0) {
1280 device_printf(sc->sf_dev,
1281 "failed to create Rx dmamap\n");
1282 goto fail;
1283 }
1284 }
1285
1286 fail:
1287 return (error);
1288 }
1289
1290 static void
1291 sf_dma_free(struct sf_softc *sc)
1292 {
1293 struct sf_txdesc *txd;
1294 struct sf_rxdesc *rxd;
1295 int i;
1296
1297 /* Tx ring. */
1298 if (sc->sf_cdata.sf_tx_ring_tag) {
1299 if (sc->sf_cdata.sf_tx_ring_map)
1300 bus_dmamap_unload(sc->sf_cdata.sf_tx_ring_tag,
1301 sc->sf_cdata.sf_tx_ring_map);
1302 if (sc->sf_cdata.sf_tx_ring_map &&
1303 sc->sf_rdata.sf_tx_ring)
1304 bus_dmamem_free(sc->sf_cdata.sf_tx_ring_tag,
1305 sc->sf_rdata.sf_tx_ring,
1306 sc->sf_cdata.sf_tx_ring_map);
1307 sc->sf_rdata.sf_tx_ring = NULL;
1308 sc->sf_cdata.sf_tx_ring_map = NULL;
1309 bus_dma_tag_destroy(sc->sf_cdata.sf_tx_ring_tag);
1310 sc->sf_cdata.sf_tx_ring_tag = NULL;
1311 }
1312 /* Tx completion ring. */
1313 if (sc->sf_cdata.sf_tx_cring_tag) {
1314 if (sc->sf_cdata.sf_tx_cring_map)
1315 bus_dmamap_unload(sc->sf_cdata.sf_tx_cring_tag,
1316 sc->sf_cdata.sf_tx_cring_map);
1317 if (sc->sf_cdata.sf_tx_cring_map &&
1318 sc->sf_rdata.sf_tx_cring)
1319 bus_dmamem_free(sc->sf_cdata.sf_tx_cring_tag,
1320 sc->sf_rdata.sf_tx_cring,
1321 sc->sf_cdata.sf_tx_cring_map);
1322 sc->sf_rdata.sf_tx_cring = NULL;
1323 sc->sf_cdata.sf_tx_cring_map = NULL;
1324 bus_dma_tag_destroy(sc->sf_cdata.sf_tx_cring_tag);
1325 sc->sf_cdata.sf_tx_cring_tag = NULL;
1326 }
1327 /* Rx ring. */
1328 if (sc->sf_cdata.sf_rx_ring_tag) {
1329 if (sc->sf_cdata.sf_rx_ring_map)
1330 bus_dmamap_unload(sc->sf_cdata.sf_rx_ring_tag,
1331 sc->sf_cdata.sf_rx_ring_map);
1332 if (sc->sf_cdata.sf_rx_ring_map &&
1333 sc->sf_rdata.sf_rx_ring)
1334 bus_dmamem_free(sc->sf_cdata.sf_rx_ring_tag,
1335 sc->sf_rdata.sf_rx_ring,
1336 sc->sf_cdata.sf_rx_ring_map);
1337 sc->sf_rdata.sf_rx_ring = NULL;
1338 sc->sf_cdata.sf_rx_ring_map = NULL;
1339 bus_dma_tag_destroy(sc->sf_cdata.sf_rx_ring_tag);
1340 sc->sf_cdata.sf_rx_ring_tag = NULL;
1341 }
1342 /* Rx completion ring. */
1343 if (sc->sf_cdata.sf_rx_cring_tag) {
1344 if (sc->sf_cdata.sf_rx_cring_map)
1345 bus_dmamap_unload(sc->sf_cdata.sf_rx_cring_tag,
1346 sc->sf_cdata.sf_rx_cring_map);
1347 if (sc->sf_cdata.sf_rx_cring_map &&
1348 sc->sf_rdata.sf_rx_cring)
1349 bus_dmamem_free(sc->sf_cdata.sf_rx_cring_tag,
1350 sc->sf_rdata.sf_rx_cring,
1351 sc->sf_cdata.sf_rx_cring_map);
1352 sc->sf_rdata.sf_rx_cring = NULL;
1353 sc->sf_cdata.sf_rx_cring_map = NULL;
1354 bus_dma_tag_destroy(sc->sf_cdata.sf_rx_cring_tag);
1355 sc->sf_cdata.sf_rx_cring_tag = NULL;
1356 }
1357 /* Tx buffers. */
1358 if (sc->sf_cdata.sf_tx_tag) {
1359 for (i = 0; i < SF_TX_DLIST_CNT; i++) {
1360 txd = &sc->sf_cdata.sf_txdesc[i];
1361 if (txd->tx_dmamap) {
1362 bus_dmamap_destroy(sc->sf_cdata.sf_tx_tag,
1363 txd->tx_dmamap);
1364 txd->tx_dmamap = NULL;
1365 }
1366 }
1367 bus_dma_tag_destroy(sc->sf_cdata.sf_tx_tag);
1368 sc->sf_cdata.sf_tx_tag = NULL;
1369 }
1370 /* Rx buffers. */
1371 if (sc->sf_cdata.sf_rx_tag) {
1372 for (i = 0; i < SF_RX_DLIST_CNT; i++) {
1373 rxd = &sc->sf_cdata.sf_rxdesc[i];
1374 if (rxd->rx_dmamap) {
1375 bus_dmamap_destroy(sc->sf_cdata.sf_rx_tag,
1376 rxd->rx_dmamap);
1377 rxd->rx_dmamap = NULL;
1378 }
1379 }
1380 if (sc->sf_cdata.sf_rx_sparemap) {
1381 bus_dmamap_destroy(sc->sf_cdata.sf_rx_tag,
1382 sc->sf_cdata.sf_rx_sparemap);
1383 sc->sf_cdata.sf_rx_sparemap = 0;
1384 }
1385 bus_dma_tag_destroy(sc->sf_cdata.sf_rx_tag);
1386 sc->sf_cdata.sf_rx_tag = NULL;
1387 }
1388
1389 if (sc->sf_cdata.sf_parent_tag) {
1390 bus_dma_tag_destroy(sc->sf_cdata.sf_parent_tag);
1391 sc->sf_cdata.sf_parent_tag = NULL;
1392 }
1393 }
1394
1395 static int
1396 sf_init_rx_ring(struct sf_softc *sc)
1397 {
1398 struct sf_ring_data *rd;
1399 int i;
1400
1401 sc->sf_cdata.sf_rxc_cons = 0;
1402
1403 rd = &sc->sf_rdata;
1404 bzero(rd->sf_rx_ring, SF_RX_DLIST_SIZE);
1405 bzero(rd->sf_rx_cring, SF_RX_CLIST_SIZE);
1406
1407 for (i = 0; i < SF_RX_DLIST_CNT; i++) {
1408 if (sf_newbuf(sc, i) != 0)
1409 return (ENOBUFS);
1410 }
1411
1412 bus_dmamap_sync(sc->sf_cdata.sf_rx_cring_tag,
1413 sc->sf_cdata.sf_rx_cring_map,
1414 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1415 bus_dmamap_sync(sc->sf_cdata.sf_rx_ring_tag,
1416 sc->sf_cdata.sf_rx_ring_map,
1417 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1418
1419 return (0);
1420 }
1421
1422 static void
1423 sf_init_tx_ring(struct sf_softc *sc)
1424 {
1425 struct sf_ring_data *rd;
1426 int i;
1427
1428 sc->sf_cdata.sf_tx_prod = 0;
1429 sc->sf_cdata.sf_tx_cnt = 0;
1430 sc->sf_cdata.sf_txc_cons = 0;
1431
1432 rd = &sc->sf_rdata;
1433 bzero(rd->sf_tx_ring, SF_TX_DLIST_SIZE);
1434 bzero(rd->sf_tx_cring, SF_TX_CLIST_SIZE);
1435 for (i = 0; i < SF_TX_DLIST_CNT; i++) {
1436 rd->sf_tx_ring[i].sf_tx_ctrl = htole32(SF_TX_DESC_ID);
1437 sc->sf_cdata.sf_txdesc[i].tx_m = NULL;
1438 sc->sf_cdata.sf_txdesc[i].ndesc = 0;
1439 }
1440 rd->sf_tx_ring[i].sf_tx_ctrl |= htole32(SF_TX_DESC_END);
1441
1442 bus_dmamap_sync(sc->sf_cdata.sf_tx_ring_tag,
1443 sc->sf_cdata.sf_tx_ring_map,
1444 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1445 bus_dmamap_sync(sc->sf_cdata.sf_tx_cring_tag,
1446 sc->sf_cdata.sf_tx_cring_map,
1447 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1448 }
1449
1450 /*
1451 * Initialize an RX descriptor and attach an MBUF cluster.
1452 */
1453 static int
1454 sf_newbuf(struct sf_softc *sc, int idx)
1455 {
1456 struct sf_rx_rdesc *desc;
1457 struct sf_rxdesc *rxd;
1458 struct mbuf *m;
1459 bus_dma_segment_t segs[1];
1460 bus_dmamap_t map;
1461 int nsegs;
1462
1463 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1464 if (m == NULL)
1465 return (ENOBUFS);
1466 m->m_len = m->m_pkthdr.len = MCLBYTES;
1467 m_adj(m, sizeof(uint32_t));
1468
1469 if (bus_dmamap_load_mbuf_sg(sc->sf_cdata.sf_rx_tag,
1470 sc->sf_cdata.sf_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1471 m_freem(m);
1472 return (ENOBUFS);
1473 }
1474 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1475
1476 rxd = &sc->sf_cdata.sf_rxdesc[idx];
1477 if (rxd->rx_m != NULL) {
1478 bus_dmamap_sync(sc->sf_cdata.sf_rx_tag, rxd->rx_dmamap,
1479 BUS_DMASYNC_POSTREAD);
1480 bus_dmamap_unload(sc->sf_cdata.sf_rx_tag, rxd->rx_dmamap);
1481 }
1482 map = rxd->rx_dmamap;
1483 rxd->rx_dmamap = sc->sf_cdata.sf_rx_sparemap;
1484 sc->sf_cdata.sf_rx_sparemap = map;
1485 bus_dmamap_sync(sc->sf_cdata.sf_rx_tag, rxd->rx_dmamap,
1486 BUS_DMASYNC_PREREAD);
1487 rxd->rx_m = m;
1488 desc = &sc->sf_rdata.sf_rx_ring[idx];
1489 desc->sf_addr = htole64(segs[0].ds_addr);
1490
1491 return (0);
1492 }
1493
1494 #ifndef __NO_STRICT_ALIGNMENT
1495 static __inline void
1496 sf_fixup_rx(struct mbuf *m)
1497 {
1498 int i;
1499 uint16_t *src, *dst;
1500
1501 src = mtod(m, uint16_t *);
1502 dst = src - 1;
1503
1504 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1505 *dst++ = *src++;
1506
1507 m->m_data -= ETHER_ALIGN;
1508 }
1509 #endif
1510
1511 /*
1512 * The starfire is programmed to use 'normal' mode for packet reception,
1513 * which means we use the consumer/producer model for both the buffer
1514 * descriptor queue and the completion descriptor queue. The only problem
1515 * with this is that it involves a lot of register accesses: we have to
1516 * read the RX completion consumer and producer indexes and the RX buffer
1517 * producer index, plus the RX completion consumer and RX buffer producer
1518 * indexes have to be updated. It would have been easier if Adaptec had
1519 * put each index in a separate register, especially given that the damn
1520 * NIC has a 512K register space.
1521 *
1522 * In spite of all the lovely features that Adaptec crammed into the 6915,
1523 * it is marred by one truly stupid design flaw, which is that receive
1524 * buffer addresses must be aligned on a longword boundary. This forces
1525 * the packet payload to be unaligned, which is suboptimal on the x86 and
1526 * completely unuseable on the Alpha. Our only recourse is to copy received
1527 * packets into properly aligned buffers before handing them off.
1528 */
1529 static int
1530 sf_rxeof(struct sf_softc *sc)
1531 {
1532 struct mbuf *m;
1533 struct ifnet *ifp;
1534 struct sf_rxdesc *rxd;
1535 struct sf_rx_rcdesc *cur_cmp;
1536 int cons, eidx, prog, rx_npkts;
1537 uint32_t status, status2;
1538
1539 SF_LOCK_ASSERT(sc);
1540
1541 ifp = sc->sf_ifp;
1542 rx_npkts = 0;
1543
1544 bus_dmamap_sync(sc->sf_cdata.sf_rx_ring_tag,
1545 sc->sf_cdata.sf_rx_ring_map,
1546 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1547 bus_dmamap_sync(sc->sf_cdata.sf_rx_cring_tag,
1548 sc->sf_cdata.sf_rx_cring_map,
1549 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1550
1551 /*
1552 * To reduce register access, directly read Receive completion
1553 * queue entry.
1554 */
1555 eidx = 0;
1556 prog = 0;
1557 for (cons = sc->sf_cdata.sf_rxc_cons; ; SF_INC(cons, SF_RX_CLIST_CNT)) {
1558 cur_cmp = &sc->sf_rdata.sf_rx_cring[cons];
1559 status = le32toh(cur_cmp->sf_rx_status1);
1560 if (status == 0)
1561 break;
1562 #ifdef DEVICE_POLLING
1563 if ((ifp->if_capenable & IFCAP_POLLING) != 0) {
1564 if (sc->rxcycles <= 0)
1565 break;
1566 sc->rxcycles--;
1567 }
1568 #endif
1569 prog++;
1570 eidx = (status & SF_RX_CMPDESC_EIDX) >> 16;
1571 rxd = &sc->sf_cdata.sf_rxdesc[eidx];
1572 m = rxd->rx_m;
1573
1574 /*
1575 * Note, if_ipackets and if_ierrors counters
1576 * are handled in sf_stats_update().
1577 */
1578 if ((status & SF_RXSTAT1_OK) == 0) {
1579 cur_cmp->sf_rx_status1 = 0;
1580 continue;
1581 }
1582
1583 if (sf_newbuf(sc, eidx) != 0) {
1584 ifp->if_iqdrops++;
1585 cur_cmp->sf_rx_status1 = 0;
1586 continue;
1587 }
1588
1589 /* AIC-6915 supports TCP/UDP checksum offload. */
1590 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1591 status2 = le32toh(cur_cmp->sf_rx_status2);
1592 /*
1593 * Sometimes AIC-6915 generates an interrupt to
1594 * warn RxGFP stall with bad checksum bit set
1595 * in status word. I'm not sure what conditioan
1596 * triggers it but recevied packet's checksum
1597 * was correct even though AIC-6915 does not
1598 * agree on this. This may be an indication of
1599 * firmware bug. To fix the issue, do not rely
1600 * on bad checksum bit in status word and let
1601 * upper layer verify integrity of received
1602 * frame.
1603 * Another nice feature of AIC-6915 is hardware
1604 * assistance of checksum calculation by
1605 * providing partial checksum value for received
1606 * frame. The partial checksum value can be used
1607 * to accelerate checksum computation for
1608 * fragmented TCP/UDP packets. Upper network
1609 * stack already takes advantage of the partial
1610 * checksum value in IP reassembly stage. But
1611 * I'm not sure the correctness of the partial
1612 * hardware checksum assistance as frequent
1613 * RxGFP stalls are seen on non-fragmented
1614 * frames. Due to the nature of the complexity
1615 * of checksum computation code in firmware it's
1616 * possible to see another bug in RxGFP so
1617 * ignore checksum assistance for fragmented
1618 * frames. This can be changed in future.
1619 */
1620 if ((status2 & SF_RXSTAT2_FRAG) == 0) {
1621 if ((status2 & (SF_RXSTAT2_TCP |
1622 SF_RXSTAT2_UDP)) != 0) {
1623 if ((status2 & SF_RXSTAT2_CSUM_OK)) {
1624 m->m_pkthdr.csum_flags =
1625 CSUM_DATA_VALID |
1626 CSUM_PSEUDO_HDR;
1627 m->m_pkthdr.csum_data = 0xffff;
1628 }
1629 }
1630 }
1631 #ifdef SF_PARTIAL_CSUM_SUPPORT
1632 else if ((status2 & SF_RXSTAT2_FRAG) != 0) {
1633 if ((status2 & (SF_RXSTAT2_TCP |
1634 SF_RXSTAT2_UDP)) != 0) {
1635 if ((status2 & SF_RXSTAT2_PCSUM_OK)) {
1636 m->m_pkthdr.csum_flags =
1637 CSUM_DATA_VALID;
1638 m->m_pkthdr.csum_data =
1639 (status &
1640 SF_RX_CMPDESC_CSUM2);
1641 }
1642 }
1643 }
1644 #endif
1645 }
1646
1647 m->m_pkthdr.len = m->m_len = status & SF_RX_CMPDESC_LEN;
1648 #ifndef __NO_STRICT_ALIGNMENT
1649 sf_fixup_rx(m);
1650 #endif
1651 m->m_pkthdr.rcvif = ifp;
1652
1653 SF_UNLOCK(sc);
1654 (*ifp->if_input)(ifp, m);
1655 SF_LOCK(sc);
1656 rx_npkts++;
1657
1658 /* Clear completion status. */
1659 cur_cmp->sf_rx_status1 = 0;
1660 }
1661
1662 if (prog > 0) {
1663 sc->sf_cdata.sf_rxc_cons = cons;
1664 bus_dmamap_sync(sc->sf_cdata.sf_rx_ring_tag,
1665 sc->sf_cdata.sf_rx_ring_map,
1666 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1667 bus_dmamap_sync(sc->sf_cdata.sf_rx_cring_tag,
1668 sc->sf_cdata.sf_rx_cring_map,
1669 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1670
1671 /* Update Rx completion Q1 consumer index. */
1672 csr_write_4(sc, SF_CQ_CONSIDX,
1673 (csr_read_4(sc, SF_CQ_CONSIDX) & ~SF_CQ_CONSIDX_RXQ1) |
1674 (cons & SF_CQ_CONSIDX_RXQ1));
1675 /* Update Rx descriptor Q1 ptr. */
1676 csr_write_4(sc, SF_RXDQ_PTR_Q1,
1677 (csr_read_4(sc, SF_RXDQ_PTR_Q1) & ~SF_RXDQ_PRODIDX) |
1678 (eidx & SF_RXDQ_PRODIDX));
1679 }
1680 return (rx_npkts);
1681 }
1682
1683 /*
1684 * Read the transmit status from the completion queue and release
1685 * mbufs. Note that the buffer descriptor index in the completion
1686 * descriptor is an offset from the start of the transmit buffer
1687 * descriptor list in bytes. This is important because the manual
1688 * gives the impression that it should match the producer/consumer
1689 * index, which is the offset in 8 byte blocks.
1690 */
1691 static void
1692 sf_txeof(struct sf_softc *sc)
1693 {
1694 struct sf_txdesc *txd;
1695 struct sf_tx_rcdesc *cur_cmp;
1696 struct ifnet *ifp;
1697 uint32_t status;
1698 int cons, idx, prod;
1699
1700 SF_LOCK_ASSERT(sc);
1701
1702 ifp = sc->sf_ifp;
1703
1704 bus_dmamap_sync(sc->sf_cdata.sf_tx_cring_tag,
1705 sc->sf_cdata.sf_tx_cring_map,
1706 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1707
1708 cons = sc->sf_cdata.sf_txc_cons;
1709 prod = (csr_read_4(sc, SF_CQ_PRODIDX) & SF_TXDQ_PRODIDX_HIPRIO) >> 16;
1710 if (prod == cons)
1711 return;
1712
1713 for (; cons != prod; SF_INC(cons, SF_TX_CLIST_CNT)) {
1714 cur_cmp = &sc->sf_rdata.sf_tx_cring[cons];
1715 status = le32toh(cur_cmp->sf_tx_status1);
1716 if (status == 0)
1717 break;
1718 switch (status & SF_TX_CMPDESC_TYPE) {
1719 case SF_TXCMPTYPE_TX:
1720 /* Tx complete entry. */
1721 break;
1722 case SF_TXCMPTYPE_DMA:
1723 /* DMA complete entry. */
1724 idx = status & SF_TX_CMPDESC_IDX;
1725 idx = idx / sizeof(struct sf_tx_rdesc);
1726 /*
1727 * We don't need to check Tx status here.
1728 * SF_ISR_TX_LOFIFO intr would handle this.
1729 * Note, if_opackets, if_collisions and if_oerrors
1730 * counters are handled in sf_stats_update().
1731 */
1732 txd = &sc->sf_cdata.sf_txdesc[idx];
1733 if (txd->tx_m != NULL) {
1734 bus_dmamap_sync(sc->sf_cdata.sf_tx_tag,
1735 txd->tx_dmamap,
1736 BUS_DMASYNC_POSTWRITE);
1737 bus_dmamap_unload(sc->sf_cdata.sf_tx_tag,
1738 txd->tx_dmamap);
1739 m_freem(txd->tx_m);
1740 txd->tx_m = NULL;
1741 }
1742 sc->sf_cdata.sf_tx_cnt -= txd->ndesc;
1743 KASSERT(sc->sf_cdata.sf_tx_cnt >= 0,
1744 ("%s: Active Tx desc counter was garbled\n",
1745 __func__));
1746 txd->ndesc = 0;
1747 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1748 break;
1749 default:
1750 /* It should not happen. */
1751 device_printf(sc->sf_dev,
1752 "unknown Tx completion type : 0x%08x : %d : %d\n",
1753 status, cons, prod);
1754 break;
1755 }
1756 cur_cmp->sf_tx_status1 = 0;
1757 }
1758
1759 sc->sf_cdata.sf_txc_cons = cons;
1760 bus_dmamap_sync(sc->sf_cdata.sf_tx_cring_tag,
1761 sc->sf_cdata.sf_tx_cring_map,
1762 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1763
1764 if (sc->sf_cdata.sf_tx_cnt == 0)
1765 sc->sf_watchdog_timer = 0;
1766
1767 /* Update Tx completion consumer index. */
1768 csr_write_4(sc, SF_CQ_CONSIDX,
1769 (csr_read_4(sc, SF_CQ_CONSIDX) & 0xffff) |
1770 ((cons << 16) & 0xffff0000));
1771 }
1772
1773 static void
1774 sf_txthresh_adjust(struct sf_softc *sc)
1775 {
1776 uint32_t txfctl;
1777
1778 device_printf(sc->sf_dev, "Tx underrun -- ");
1779 if (sc->sf_txthresh < SF_MAX_TX_THRESHOLD) {
1780 txfctl = csr_read_4(sc, SF_TX_FRAMCTL);
1781 /* Increase Tx threshold 256 bytes. */
1782 sc->sf_txthresh += 16;
1783 if (sc->sf_txthresh > SF_MAX_TX_THRESHOLD)
1784 sc->sf_txthresh = SF_MAX_TX_THRESHOLD;
1785 txfctl &= ~SF_TXFRMCTL_TXTHRESH;
1786 txfctl |= sc->sf_txthresh;
1787 printf("increasing Tx threshold to %d bytes\n",
1788 sc->sf_txthresh * SF_TX_THRESHOLD_UNIT);
1789 csr_write_4(sc, SF_TX_FRAMCTL, txfctl);
1790 } else
1791 printf("\n");
1792 }
1793
1794 #ifdef DEVICE_POLLING
1795 static int
1796 sf_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1797 {
1798 struct sf_softc *sc;
1799 uint32_t status;
1800 int rx_npkts;
1801
1802 sc = ifp->if_softc;
1803 rx_npkts = 0;
1804 SF_LOCK(sc);
1805
1806 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1807 SF_UNLOCK(sc);
1808 return (rx_npkts);
1809 }
1810
1811 sc->rxcycles = count;
1812 rx_npkts = sf_rxeof(sc);
1813 sf_txeof(sc);
1814 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1815 sf_start_locked(ifp);
1816
1817 if (cmd == POLL_AND_CHECK_STATUS) {
1818 /* Reading the ISR register clears all interrrupts. */
1819 status = csr_read_4(sc, SF_ISR);
1820
1821 if ((status & SF_ISR_ABNORMALINTR) != 0) {
1822 if ((status & SF_ISR_STATSOFLOW) != 0)
1823 sf_stats_update(sc);
1824 else if ((status & SF_ISR_TX_LOFIFO) != 0)
1825 sf_txthresh_adjust(sc);
1826 else if ((status & SF_ISR_DMAERR) != 0) {
1827 device_printf(sc->sf_dev,
1828 "DMA error, resetting\n");
1829 sf_init_locked(sc);
1830 } else if ((status & SF_ISR_NO_TX_CSUM) != 0) {
1831 sc->sf_statistics.sf_tx_gfp_stall++;
1832 #ifdef SF_GFP_DEBUG
1833 device_printf(sc->sf_dev,
1834 "TxGFP is not responding!\n");
1835 #endif
1836 } else if ((status & SF_ISR_RXGFP_NORESP) != 0) {
1837 sc->sf_statistics.sf_rx_gfp_stall++;
1838 #ifdef SF_GFP_DEBUG
1839 device_printf(sc->sf_dev,
1840 "RxGFP is not responding!\n");
1841 #endif
1842 }
1843 }
1844 }
1845
1846 SF_UNLOCK(sc);
1847 return (rx_npkts);
1848 }
1849 #endif /* DEVICE_POLLING */
1850
1851 static void
1852 sf_intr(void *arg)
1853 {
1854 struct sf_softc *sc;
1855 struct ifnet *ifp;
1856 uint32_t status;
1857
1858 sc = (struct sf_softc *)arg;
1859 SF_LOCK(sc);
1860
1861 if (sc->sf_suspended != 0)
1862 goto done_locked;
1863
1864 /* Reading the ISR register clears all interrrupts. */
1865 status = csr_read_4(sc, SF_ISR);
1866 if (status == 0 || status == 0xffffffff ||
1867 (status & SF_ISR_PCIINT_ASSERTED) == 0)
1868 goto done_locked;
1869
1870 ifp = sc->sf_ifp;
1871 #ifdef DEVICE_POLLING
1872 if ((ifp->if_capenable & IFCAP_POLLING) != 0)
1873 goto done_locked;
1874 #endif
1875 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1876 goto done_locked;
1877
1878 /* Disable interrupts. */
1879 csr_write_4(sc, SF_IMR, 0x00000000);
1880
1881 for (; (status & SF_INTRS) != 0;) {
1882 if ((status & SF_ISR_RXDQ1_DMADONE) != 0)
1883 sf_rxeof(sc);
1884
1885 if ((status & (SF_ISR_TX_TXDONE | SF_ISR_TX_DMADONE |
1886 SF_ISR_TX_QUEUEDONE)) != 0)
1887 sf_txeof(sc);
1888
1889 if ((status & SF_ISR_ABNORMALINTR) != 0) {
1890 if ((status & SF_ISR_STATSOFLOW) != 0)
1891 sf_stats_update(sc);
1892 else if ((status & SF_ISR_TX_LOFIFO) != 0)
1893 sf_txthresh_adjust(sc);
1894 else if ((status & SF_ISR_DMAERR) != 0) {
1895 device_printf(sc->sf_dev,
1896 "DMA error, resetting\n");
1897 sf_init_locked(sc);
1898 break;
1899 } else if ((status & SF_ISR_NO_TX_CSUM) != 0) {
1900 sc->sf_statistics.sf_tx_gfp_stall++;
1901 #ifdef SF_GFP_DEBUG
1902 device_printf(sc->sf_dev,
1903 "TxGFP is not responding!\n");
1904 #endif
1905 }
1906 else if ((status & SF_ISR_RXGFP_NORESP) != 0) {
1907 sc->sf_statistics.sf_rx_gfp_stall++;
1908 #ifdef SF_GFP_DEBUG
1909 device_printf(sc->sf_dev,
1910 "RxGFP is not responding!\n");
1911 #endif
1912 }
1913 }
1914 /* Reading the ISR register clears all interrrupts. */
1915 status = csr_read_4(sc, SF_ISR);
1916 }
1917
1918 /* Re-enable interrupts. */
1919 csr_write_4(sc, SF_IMR, SF_INTRS);
1920
1921 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1922 sf_start_locked(ifp);
1923 done_locked:
1924 SF_UNLOCK(sc);
1925 }
1926
1927 static void
1928 sf_download_fw(struct sf_softc *sc)
1929 {
1930 uint32_t gfpinst;
1931 int i, ndx;
1932 uint8_t *p;
1933
1934 /*
1935 * A FP instruction is composed of 48bits so we have to
1936 * write it with two parts.
1937 */
1938 p = txfwdata;
1939 ndx = 0;
1940 for (i = 0; i < sizeof(txfwdata) / SF_GFP_INST_BYTES; i++) {
1941 gfpinst = p[2] << 24 | p[3] << 16 | p[4] << 8 | p[5];
1942 csr_write_4(sc, SF_TXGFP_MEM_BASE + ndx * 4, gfpinst);
1943 gfpinst = p[0] << 8 | p[1];
1944 csr_write_4(sc, SF_TXGFP_MEM_BASE + (ndx + 1) * 4, gfpinst);
1945 p += SF_GFP_INST_BYTES;
1946 ndx += 2;
1947 }
1948 if (bootverbose)
1949 device_printf(sc->sf_dev, "%d Tx instructions downloaded\n", i);
1950
1951 p = rxfwdata;
1952 ndx = 0;
1953 for (i = 0; i < sizeof(rxfwdata) / SF_GFP_INST_BYTES; i++) {
1954 gfpinst = p[2] << 24 | p[3] << 16 | p[4] << 8 | p[5];
1955 csr_write_4(sc, SF_RXGFP_MEM_BASE + (ndx * 4), gfpinst);
1956 gfpinst = p[0] << 8 | p[1];
1957 csr_write_4(sc, SF_RXGFP_MEM_BASE + (ndx + 1) * 4, gfpinst);
1958 p += SF_GFP_INST_BYTES;
1959 ndx += 2;
1960 }
1961 if (bootverbose)
1962 device_printf(sc->sf_dev, "%d Rx instructions downloaded\n", i);
1963 }
1964
1965 static void
1966 sf_init(void *xsc)
1967 {
1968 struct sf_softc *sc;
1969
1970 sc = (struct sf_softc *)xsc;
1971 SF_LOCK(sc);
1972 sf_init_locked(sc);
1973 SF_UNLOCK(sc);
1974 }
1975
1976 static void
1977 sf_init_locked(struct sf_softc *sc)
1978 {
1979 struct ifnet *ifp;
1980 struct mii_data *mii;
1981 uint8_t eaddr[ETHER_ADDR_LEN];
1982 bus_addr_t addr;
1983 int i;
1984
1985 SF_LOCK_ASSERT(sc);
1986 ifp = sc->sf_ifp;
1987 mii = device_get_softc(sc->sf_miibus);
1988
1989 sf_stop(sc);
1990 /* Reset the hardware to a known state. */
1991 sf_reset(sc);
1992
1993 /* Init all the receive filter registers */
1994 for (i = SF_RXFILT_PERFECT_BASE;
1995 i < (SF_RXFILT_HASH_MAX + 1); i += sizeof(uint32_t))
1996 csr_write_4(sc, i, 0);
1997
1998 /* Empty stats counter registers. */
1999 for (i = SF_STATS_BASE; i < (SF_STATS_END + 1); i += sizeof(uint32_t))
2000 csr_write_4(sc, i, 0);
2001
2002 /* Init our MAC address. */
2003 bcopy(IF_LLADDR(sc->sf_ifp), eaddr, sizeof(eaddr));
2004 csr_write_4(sc, SF_PAR0,
2005 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2006 csr_write_4(sc, SF_PAR1, eaddr[0] << 8 | eaddr[1]);
2007 sf_setperf(sc, 0, eaddr);
2008
2009 if (sf_init_rx_ring(sc) == ENOBUFS) {
2010 device_printf(sc->sf_dev,
2011 "initialization failed: no memory for rx buffers\n");
2012 return;
2013 }
2014
2015 sf_init_tx_ring(sc);
2016
2017 /*
2018 * 16 perfect address filtering.
2019 * Hash only multicast destination address, Accept matching
2020 * frames regardless of VLAN ID.
2021 */
2022 csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL | SF_HASHMODE_ANYVLAN);
2023
2024 /*
2025 * Set Rx filter.
2026 */
2027 sf_rxfilter(sc);
2028
2029 /* Init the completion queue indexes. */
2030 csr_write_4(sc, SF_CQ_CONSIDX, 0);
2031 csr_write_4(sc, SF_CQ_PRODIDX, 0);
2032
2033 /* Init the RX completion queue. */
2034 addr = sc->sf_rdata.sf_rx_cring_paddr;
2035 csr_write_4(sc, SF_CQ_ADDR_HI, SF_ADDR_HI(addr));
2036 csr_write_4(sc, SF_RXCQ_CTL_1, SF_ADDR_LO(addr) & SF_RXCQ_ADDR);
2037 if (SF_ADDR_HI(addr) != 0)
2038 SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQ_USE_64BIT);
2039 /* Set RX completion queue type 2. */
2040 SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_2);
2041 csr_write_4(sc, SF_RXCQ_CTL_2, 0);
2042
2043 /*
2044 * Init RX DMA control.
2045 * default RxHighPriority Threshold,
2046 * default RxBurstSize, 128bytes.
2047 */
2048 SF_SETBIT(sc, SF_RXDMA_CTL,
2049 SF_RXDMA_REPORTBADPKTS |
2050 (SF_RXDMA_HIGHPRIO_THRESH << 8) |
2051 SF_RXDMA_BURST);
2052
2053 /* Init the RX buffer descriptor queue. */
2054 addr = sc->sf_rdata.sf_rx_ring_paddr;
2055 csr_write_4(sc, SF_RXDQ_ADDR_HI, SF_ADDR_HI(addr));
2056 csr_write_4(sc, SF_RXDQ_ADDR_Q1, SF_ADDR_LO(addr));
2057
2058 /* Set RX queue buffer length. */
2059 csr_write_4(sc, SF_RXDQ_CTL_1,
2060 ((MCLBYTES - sizeof(uint32_t)) << 16) |
2061 SF_RXDQCTL_64BITBADDR | SF_RXDQCTL_VARIABLE);
2062
2063 if (SF_ADDR_HI(addr) != 0)
2064 SF_SETBIT(sc, SF_RXDQ_CTL_1, SF_RXDQCTL_64BITDADDR);
2065 csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
2066 csr_write_4(sc, SF_RXDQ_CTL_2, 0);
2067
2068 /* Init the TX completion queue */
2069 addr = sc->sf_rdata.sf_tx_cring_paddr;
2070 csr_write_4(sc, SF_TXCQ_CTL, SF_ADDR_LO(addr) & SF_TXCQ_ADDR);
2071 if (SF_ADDR_HI(addr) != 0)
2072 SF_SETBIT(sc, SF_TXCQ_CTL, SF_TXCQ_USE_64BIT);
2073
2074 /* Init the TX buffer descriptor queue. */
2075 addr = sc->sf_rdata.sf_tx_ring_paddr;
2076 csr_write_4(sc, SF_TXDQ_ADDR_HI, SF_ADDR_HI(addr));
2077 csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
2078 csr_write_4(sc, SF_TXDQ_ADDR_LOPRIO, SF_ADDR_LO(addr));
2079 csr_write_4(sc, SF_TX_FRAMCTL,
2080 SF_TXFRMCTL_CPLAFTERTX | sc->sf_txthresh);
2081 csr_write_4(sc, SF_TXDQ_CTL,
2082 SF_TXDMA_HIPRIO_THRESH << 24 |
2083 SF_TXSKIPLEN_0BYTES << 16 |
2084 SF_TXDDMA_BURST << 8 |
2085 SF_TXBUFDESC_TYPE2 | SF_TXMINSPACE_UNLIMIT);
2086 if (SF_ADDR_HI(addr) != 0)
2087 SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_64BITADDR);
2088
2089 /* Set VLAN Type register. */
2090 csr_write_4(sc, SF_VLANTYPE, ETHERTYPE_VLAN);
2091
2092 /* Set TxPause Timer. */
2093 csr_write_4(sc, SF_TXPAUSETIMER, 0xffff);
2094
2095 /* Enable autopadding of short TX frames. */
2096 SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
2097 SF_SETBIT(sc, SF_MACCFG_2, SF_MACCFG2_AUTOVLANPAD);
2098 /* Make sure to reset MAC to take changes effect. */
2099 SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
2100 DELAY(1000);
2101 SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
2102
2103 /* Enable PCI bus master. */
2104 SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_PCIMEN);
2105
2106 /* Load StarFire firmware. */
2107 sf_download_fw(sc);
2108
2109 /* Intialize interrupt moderation. */
2110 csr_write_4(sc, SF_TIMER_CTL, SF_TIMER_IMASK_MODE | SF_TIMER_TIMES_TEN |
2111 (sc->sf_int_mod & SF_TIMER_IMASK_INTERVAL));
2112
2113 #ifdef DEVICE_POLLING
2114 /* Disable interrupts if we are polling. */
2115 if ((ifp->if_capenable & IFCAP_POLLING) != 0)
2116 csr_write_4(sc, SF_IMR, 0x00000000);
2117 else
2118 #endif
2119 /* Enable interrupts. */
2120 csr_write_4(sc, SF_IMR, SF_INTRS);
2121 SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
2122
2123 /* Enable the RX and TX engines. */
2124 csr_write_4(sc, SF_GEN_ETH_CTL,
2125 SF_ETHCTL_RX_ENB | SF_ETHCTL_RXDMA_ENB |
2126 SF_ETHCTL_TX_ENB | SF_ETHCTL_TXDMA_ENB);
2127
2128 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2129 SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TXGFP_ENB);
2130 else
2131 SF_CLRBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TXGFP_ENB);
2132 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2133 SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RXGFP_ENB);
2134 else
2135 SF_CLRBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RXGFP_ENB);
2136
2137 sc->sf_link = 0;
2138 mii_mediachg(mii);
2139
2140 ifp->if_drv_flags |= IFF_DRV_RUNNING;
2141 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2142
2143 callout_reset(&sc->sf_co, hz, sf_tick, sc);
2144 }
2145
2146 static int
2147 sf_encap(struct sf_softc *sc, struct mbuf **m_head)
2148 {
2149 struct sf_txdesc *txd;
2150 struct sf_tx_rdesc *desc;
2151 struct mbuf *m;
2152 bus_dmamap_t map;
2153 bus_dma_segment_t txsegs[SF_MAXTXSEGS];
2154 int error, i, nsegs, prod, si;
2155 int avail, nskip;
2156
2157 SF_LOCK_ASSERT(sc);
2158
2159 m = *m_head;
2160 prod = sc->sf_cdata.sf_tx_prod;
2161 txd = &sc->sf_cdata.sf_txdesc[prod];
2162 map = txd->tx_dmamap;
2163 error = bus_dmamap_load_mbuf_sg(sc->sf_cdata.sf_tx_tag, map,
2164 *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
2165 if (error == EFBIG) {
2166 m = m_collapse(*m_head, M_DONTWAIT, SF_MAXTXSEGS);
2167 if (m == NULL) {
2168 m_freem(*m_head);
2169 *m_head = NULL;
2170 return (ENOBUFS);
2171 }
2172 *m_head = m;
2173 error = bus_dmamap_load_mbuf_sg(sc->sf_cdata.sf_tx_tag,
2174 map, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
2175 if (error != 0) {
2176 m_freem(*m_head);
2177 *m_head = NULL;
2178 return (error);
2179 }
2180 } else if (error != 0)
2181 return (error);
2182 if (nsegs == 0) {
2183 m_freem(*m_head);
2184 *m_head = NULL;
2185 return (EIO);
2186 }
2187
2188 /* Check number of available descriptors. */
2189 avail = (SF_TX_DLIST_CNT - 1) - sc->sf_cdata.sf_tx_cnt;
2190 if (avail < nsegs) {
2191 bus_dmamap_unload(sc->sf_cdata.sf_tx_tag, map);
2192 return (ENOBUFS);
2193 }
2194 nskip = 0;
2195 if (prod + nsegs >= SF_TX_DLIST_CNT) {
2196 nskip = SF_TX_DLIST_CNT - prod - 1;
2197 if (avail < nsegs + nskip) {
2198 bus_dmamap_unload(sc->sf_cdata.sf_tx_tag, map);
2199 return (ENOBUFS);
2200 }
2201 }
2202
2203 bus_dmamap_sync(sc->sf_cdata.sf_tx_tag, map, BUS_DMASYNC_PREWRITE);
2204
2205 si = prod;
2206 for (i = 0; i < nsegs; i++) {
2207 desc = &sc->sf_rdata.sf_tx_ring[prod];
2208 desc->sf_tx_ctrl = htole32(SF_TX_DESC_ID |
2209 (txsegs[i].ds_len & SF_TX_DESC_FRAGLEN));
2210 desc->sf_tx_reserved = 0;
2211 desc->sf_addr = htole64(txsegs[i].ds_addr);
2212 if (i == 0 && prod + nsegs >= SF_TX_DLIST_CNT) {
2213 /* Queue wraps! */
2214 desc->sf_tx_ctrl |= htole32(SF_TX_DESC_END);
2215 prod = 0;
2216 } else
2217 SF_INC(prod, SF_TX_DLIST_CNT);
2218 }
2219 /* Update producer index. */
2220 sc->sf_cdata.sf_tx_prod = prod;
2221 sc->sf_cdata.sf_tx_cnt += nsegs + nskip;
2222
2223 desc = &sc->sf_rdata.sf_tx_ring[si];
2224 /* Check TDP/UDP checksum offload request. */
2225 if ((m->m_pkthdr.csum_flags & SF_CSUM_FEATURES) != 0)
2226 desc->sf_tx_ctrl |= htole32(SF_TX_DESC_CALTCP);
2227 desc->sf_tx_ctrl |=
2228 htole32(SF_TX_DESC_CRCEN | SF_TX_DESC_INTR | (nsegs << 16));
2229
2230 txd->tx_dmamap = map;
2231 txd->tx_m = m;
2232 txd->ndesc = nsegs + nskip;
2233
2234 return (0);
2235 }
2236
2237 static void
2238 sf_start(struct ifnet *ifp)
2239 {
2240 struct sf_softc *sc;
2241
2242 sc = ifp->if_softc;
2243 SF_LOCK(sc);
2244 sf_start_locked(ifp);
2245 SF_UNLOCK(sc);
2246 }
2247
2248 static void
2249 sf_start_locked(struct ifnet *ifp)
2250 {
2251 struct sf_softc *sc;
2252 struct mbuf *m_head;
2253 int enq;
2254
2255 sc = ifp->if_softc;
2256 SF_LOCK_ASSERT(sc);
2257
2258 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2259 IFF_DRV_RUNNING || sc->sf_link == 0)
2260 return;
2261
2262 /*
2263 * Since we don't know when descriptor wrap occurrs in advance
2264 * limit available number of active Tx descriptor counter to be
2265 * higher than maximum number of DMA segments allowed in driver.
2266 */
2267 for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2268 sc->sf_cdata.sf_tx_cnt < SF_TX_DLIST_CNT - SF_MAXTXSEGS; ) {
2269 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2270 if (m_head == NULL)
2271 break;
2272 /*
2273 * Pack the data into the transmit ring. If we
2274 * don't have room, set the OACTIVE flag and wait
2275 * for the NIC to drain the ring.
2276 */
2277 if (sf_encap(sc, &m_head)) {
2278 if (m_head == NULL)
2279 break;
2280 IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2281 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2282 break;
2283 }
2284
2285 enq++;
2286 /*
2287 * If there's a BPF listener, bounce a copy of this frame
2288 * to him.
2289 */
2290 ETHER_BPF_MTAP(ifp, m_head);
2291 }
2292
2293 if (enq > 0) {
2294 bus_dmamap_sync(sc->sf_cdata.sf_tx_ring_tag,
2295 sc->sf_cdata.sf_tx_ring_map,
2296 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2297 /* Kick transmit. */
2298 csr_write_4(sc, SF_TXDQ_PRODIDX,
2299 sc->sf_cdata.sf_tx_prod * (sizeof(struct sf_tx_rdesc) / 8));
2300
2301 /* Set a timeout in case the chip goes out to lunch. */
2302 sc->sf_watchdog_timer = 5;
2303 }
2304 }
2305
2306 static void
2307 sf_stop(struct sf_softc *sc)
2308 {
2309 struct sf_txdesc *txd;
2310 struct sf_rxdesc *rxd;
2311 struct ifnet *ifp;
2312 int i;
2313
2314 SF_LOCK_ASSERT(sc);
2315
2316 ifp = sc->sf_ifp;
2317
2318 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2319 sc->sf_link = 0;
2320 callout_stop(&sc->sf_co);
2321 sc->sf_watchdog_timer = 0;
2322
2323 /* Reading the ISR register clears all interrrupts. */
2324 csr_read_4(sc, SF_ISR);
2325 /* Disable further interrupts. */
2326 csr_write_4(sc, SF_IMR, 0);
2327
2328 /* Disable Tx/Rx egine. */
2329 csr_write_4(sc, SF_GEN_ETH_CTL, 0);
2330
2331 csr_write_4(sc, SF_CQ_CONSIDX, 0);
2332 csr_write_4(sc, SF_CQ_PRODIDX, 0);
2333 csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
2334 csr_write_4(sc, SF_RXDQ_CTL_1, 0);
2335 csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
2336 csr_write_4(sc, SF_TXCQ_CTL, 0);
2337 csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
2338 csr_write_4(sc, SF_TXDQ_CTL, 0);
2339
2340 /*
2341 * Free RX and TX mbufs still in the queues.
2342 */
2343 for (i = 0; i < SF_RX_DLIST_CNT; i++) {
2344 rxd = &sc->sf_cdata.sf_rxdesc[i];
2345 if (rxd->rx_m != NULL) {
2346 bus_dmamap_sync(sc->sf_cdata.sf_rx_tag,
2347 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2348 bus_dmamap_unload(sc->sf_cdata.sf_rx_tag,
2349 rxd->rx_dmamap);
2350 m_freem(rxd->rx_m);
2351 rxd->rx_m = NULL;
2352 }
2353 }
2354 for (i = 0; i < SF_TX_DLIST_CNT; i++) {
2355 txd = &sc->sf_cdata.sf_txdesc[i];
2356 if (txd->tx_m != NULL) {
2357 bus_dmamap_sync(sc->sf_cdata.sf_tx_tag,
2358 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2359 bus_dmamap_unload(sc->sf_cdata.sf_tx_tag,
2360 txd->tx_dmamap);
2361 m_freem(txd->tx_m);
2362 txd->tx_m = NULL;
2363 txd->ndesc = 0;
2364 }
2365 }
2366 }
2367
2368 static void
2369 sf_tick(void *xsc)
2370 {
2371 struct sf_softc *sc;
2372 struct mii_data *mii;
2373
2374 sc = xsc;
2375 SF_LOCK_ASSERT(sc);
2376 mii = device_get_softc(sc->sf_miibus);
2377 mii_tick(mii);
2378 sf_stats_update(sc);
2379 sf_watchdog(sc);
2380 callout_reset(&sc->sf_co, hz, sf_tick, sc);
2381 }
2382
2383 /*
2384 * Note: it is important that this function not be interrupted. We
2385 * use a two-stage register access scheme: if we are interrupted in
2386 * between setting the indirect address register and reading from the
2387 * indirect data register, the contents of the address register could
2388 * be changed out from under us.
2389 */
2390 static void
2391 sf_stats_update(struct sf_softc *sc)
2392 {
2393 struct ifnet *ifp;
2394 struct sf_stats now, *stats, *nstats;
2395 int i;
2396
2397 SF_LOCK_ASSERT(sc);
2398
2399 ifp = sc->sf_ifp;
2400 stats = &now;
2401
2402 stats->sf_tx_frames =
2403 csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_FRAMES);
2404 stats->sf_tx_single_colls =
2405 csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_SINGLE_COL);
2406 stats->sf_tx_multi_colls =
2407 csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_MULTI_COL);
2408 stats->sf_tx_crcerrs =
2409 csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_CRC_ERRS);
2410 stats->sf_tx_bytes =
2411 csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_BYTES);
2412 stats->sf_tx_deferred =
2413 csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_DEFERRED);
2414 stats->sf_tx_late_colls =
2415 csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_LATE_COL);
2416 stats->sf_tx_pause_frames =
2417 csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_PAUSE);
2418 stats->sf_tx_control_frames =
2419 csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_CTL_FRAME);
2420 stats->sf_tx_excess_colls =
2421 csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_EXCESS_COL);
2422 stats->sf_tx_excess_defer =
2423 csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_EXCESS_DEF);
2424 stats->sf_tx_mcast_frames =
2425 csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_MULTI);
2426 stats->sf_tx_bcast_frames =
2427 csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_BCAST);
2428 stats->sf_tx_frames_lost =
2429 csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_FRAME_LOST);
2430 stats->sf_rx_frames =
2431 csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_FRAMES);
2432 stats->sf_rx_crcerrs =
2433 csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_CRC_ERRS);
2434 stats->sf_rx_alignerrs =
2435 csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_ALIGN_ERRS);
2436 stats->sf_rx_bytes =
2437 csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_BYTES);
2438 stats->sf_rx_pause_frames =
2439 csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_PAUSE);
2440 stats->sf_rx_control_frames =
2441 csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_CTL_FRAME);
2442 stats->sf_rx_unsup_control_frames =
2443 csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_UNSUP_FRAME);
2444 stats->sf_rx_giants =
2445 csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_GIANTS);
2446 stats->sf_rx_runts =
2447 csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_RUNTS);
2448 stats->sf_rx_jabbererrs =
2449 csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_JABBER);
2450 stats->sf_rx_fragments =
2451 csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_FRAGMENTS);
2452 stats->sf_rx_pkts_64 =
2453 csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_64);
2454 stats->sf_rx_pkts_65_127 =
2455 csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_65_127);
2456 stats->sf_rx_pkts_128_255 =
2457 csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_128_255);
2458 stats->sf_rx_pkts_256_511 =
2459 csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_256_511);
2460 stats->sf_rx_pkts_512_1023 =
2461 csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_512_1023);
2462 stats->sf_rx_pkts_1024_1518 =
2463 csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_1024_1518);
2464 stats->sf_rx_frames_lost =
2465 csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_FRAME_LOST);
2466 /* Lower 16bits are valid. */
2467 stats->sf_tx_underruns =
2468 (csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_UNDERRUN) & 0xffff);
2469
2470 /* Empty stats counter registers. */
2471 for (i = SF_STATS_BASE; i < (SF_STATS_END + 1); i += sizeof(uint32_t))
2472 csr_write_4(sc, i, 0);
2473
2474 ifp->if_opackets += (u_long)stats->sf_tx_frames;
2475
2476 ifp->if_collisions += (u_long)stats->sf_tx_single_colls +
2477 (u_long)stats->sf_tx_multi_colls;
2478
2479 ifp->if_oerrors += (u_long)stats->sf_tx_excess_colls +
2480 (u_long)stats->sf_tx_excess_defer +
2481 (u_long)stats->sf_tx_frames_lost;
2482
2483 ifp->if_ipackets += (u_long)stats->sf_rx_frames;
2484
2485 ifp->if_ierrors += (u_long)stats->sf_rx_crcerrs +
2486 (u_long)stats->sf_rx_alignerrs +
2487 (u_long)stats->sf_rx_giants +
2488 (u_long)stats->sf_rx_runts +
2489 (u_long)stats->sf_rx_jabbererrs +
2490 (u_long)stats->sf_rx_frames_lost;
2491
2492 nstats = &sc->sf_statistics;
2493
2494 nstats->sf_tx_frames += stats->sf_tx_frames;
2495 nstats->sf_tx_single_colls += stats->sf_tx_single_colls;
2496 nstats->sf_tx_multi_colls += stats->sf_tx_multi_colls;
2497 nstats->sf_tx_crcerrs += stats->sf_tx_crcerrs;
2498 nstats->sf_tx_bytes += stats->sf_tx_bytes;
2499 nstats->sf_tx_deferred += stats->sf_tx_deferred;
2500 nstats->sf_tx_late_colls += stats->sf_tx_late_colls;
2501 nstats->sf_tx_pause_frames += stats->sf_tx_pause_frames;
2502 nstats->sf_tx_control_frames += stats->sf_tx_control_frames;
2503 nstats->sf_tx_excess_colls += stats->sf_tx_excess_colls;
2504 nstats->sf_tx_excess_defer += stats->sf_tx_excess_defer;
2505 nstats->sf_tx_mcast_frames += stats->sf_tx_mcast_frames;
2506 nstats->sf_tx_bcast_frames += stats->sf_tx_bcast_frames;
2507 nstats->sf_tx_frames_lost += stats->sf_tx_frames_lost;
2508 nstats->sf_rx_frames += stats->sf_rx_frames;
2509 nstats->sf_rx_crcerrs += stats->sf_rx_crcerrs;
2510 nstats->sf_rx_alignerrs += stats->sf_rx_alignerrs;
2511 nstats->sf_rx_bytes += stats->sf_rx_bytes;
2512 nstats->sf_rx_pause_frames += stats->sf_rx_pause_frames;
2513 nstats->sf_rx_control_frames += stats->sf_rx_control_frames;
2514 nstats->sf_rx_unsup_control_frames += stats->sf_rx_unsup_control_frames;
2515 nstats->sf_rx_giants += stats->sf_rx_giants;
2516 nstats->sf_rx_runts += stats->sf_rx_runts;
2517 nstats->sf_rx_jabbererrs += stats->sf_rx_jabbererrs;
2518 nstats->sf_rx_fragments += stats->sf_rx_fragments;
2519 nstats->sf_rx_pkts_64 += stats->sf_rx_pkts_64;
2520 nstats->sf_rx_pkts_65_127 += stats->sf_rx_pkts_65_127;
2521 nstats->sf_rx_pkts_128_255 += stats->sf_rx_pkts_128_255;
2522 nstats->sf_rx_pkts_256_511 += stats->sf_rx_pkts_256_511;
2523 nstats->sf_rx_pkts_512_1023 += stats->sf_rx_pkts_512_1023;
2524 nstats->sf_rx_pkts_1024_1518 += stats->sf_rx_pkts_1024_1518;
2525 nstats->sf_rx_frames_lost += stats->sf_rx_frames_lost;
2526 nstats->sf_tx_underruns += stats->sf_tx_underruns;
2527 }
2528
2529 static void
2530 sf_watchdog(struct sf_softc *sc)
2531 {
2532 struct ifnet *ifp;
2533
2534 SF_LOCK_ASSERT(sc);
2535
2536 if (sc->sf_watchdog_timer == 0 || --sc->sf_watchdog_timer)
2537 return;
2538
2539 ifp = sc->sf_ifp;
2540
2541 ifp->if_oerrors++;
2542 if (sc->sf_link == 0) {
2543 if (bootverbose)
2544 if_printf(sc->sf_ifp, "watchdog timeout "
2545 "(missed link)\n");
2546 } else
2547 if_printf(ifp, "watchdog timeout, %d Tx descs are active\n",
2548 sc->sf_cdata.sf_tx_cnt);
2549
2550 sf_init_locked(sc);
2551
2552 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2553 sf_start_locked(ifp);
2554 }
2555
2556 static int
2557 sf_shutdown(device_t dev)
2558 {
2559 struct sf_softc *sc;
2560
2561 sc = device_get_softc(dev);
2562
2563 SF_LOCK(sc);
2564 sf_stop(sc);
2565 SF_UNLOCK(sc);
2566
2567 return (0);
2568 }
2569
2570 static int
2571 sf_suspend(device_t dev)
2572 {
2573 struct sf_softc *sc;
2574
2575 sc = device_get_softc(dev);
2576
2577 SF_LOCK(sc);
2578 sf_stop(sc);
2579 sc->sf_suspended = 1;
2580 bus_generic_suspend(dev);
2581 SF_UNLOCK(sc);
2582
2583 return (0);
2584 }
2585
2586 static int
2587 sf_resume(device_t dev)
2588 {
2589 struct sf_softc *sc;
2590 struct ifnet *ifp;
2591
2592 sc = device_get_softc(dev);
2593
2594 SF_LOCK(sc);
2595 bus_generic_resume(dev);
2596 ifp = sc->sf_ifp;
2597 if ((ifp->if_flags & IFF_UP) != 0)
2598 sf_init_locked(sc);
2599
2600 sc->sf_suspended = 0;
2601 SF_UNLOCK(sc);
2602
2603 return (0);
2604 }
2605
2606 static int
2607 sf_sysctl_stats(SYSCTL_HANDLER_ARGS)
2608 {
2609 struct sf_softc *sc;
2610 struct sf_stats *stats;
2611 int error;
2612 int result;
2613
2614 result = -1;
2615 error = sysctl_handle_int(oidp, &result, 0, req);
2616
2617 if (error != 0 || req->newptr == NULL)
2618 return (error);
2619
2620 if (result != 1)
2621 return (error);
2622
2623 sc = (struct sf_softc *)arg1;
2624 stats = &sc->sf_statistics;
2625
2626 printf("%s statistics:\n", device_get_nameunit(sc->sf_dev));
2627 printf("Transmit good frames : %ju\n",
2628 (uintmax_t)stats->sf_tx_frames);
2629 printf("Transmit good octets : %ju\n",
2630 (uintmax_t)stats->sf_tx_bytes);
2631 printf("Transmit single collisions : %u\n",
2632 stats->sf_tx_single_colls);
2633 printf("Transmit multiple collisions : %u\n",
2634 stats->sf_tx_multi_colls);
2635 printf("Transmit late collisions : %u\n",
2636 stats->sf_tx_late_colls);
2637 printf("Transmit abort due to excessive collisions : %u\n",
2638 stats->sf_tx_excess_colls);
2639 printf("Transmit CRC errors : %u\n",
2640 stats->sf_tx_crcerrs);
2641 printf("Transmit deferrals : %u\n",
2642 stats->sf_tx_deferred);
2643 printf("Transmit abort due to excessive deferrals : %u\n",
2644 stats->sf_tx_excess_defer);
2645 printf("Transmit pause control frames : %u\n",
2646 stats->sf_tx_pause_frames);
2647 printf("Transmit control frames : %u\n",
2648 stats->sf_tx_control_frames);
2649 printf("Transmit good multicast frames : %u\n",
2650 stats->sf_tx_mcast_frames);
2651 printf("Transmit good broadcast frames : %u\n",
2652 stats->sf_tx_bcast_frames);
2653 printf("Transmit frames lost due to internal transmit errors : %u\n",
2654 stats->sf_tx_frames_lost);
2655 printf("Transmit FIFO underflows : %u\n",
2656 stats->sf_tx_underruns);
2657 printf("Transmit GFP stalls : %u\n", stats->sf_tx_gfp_stall);
2658 printf("Receive good frames : %ju\n",
2659 (uint64_t)stats->sf_rx_frames);
2660 printf("Receive good octets : %ju\n",
2661 (uint64_t)stats->sf_rx_bytes);
2662 printf("Receive CRC errors : %u\n",
2663 stats->sf_rx_crcerrs);
2664 printf("Receive alignment errors : %u\n",
2665 stats->sf_rx_alignerrs);
2666 printf("Receive pause frames : %u\n",
2667 stats->sf_rx_pause_frames);
2668 printf("Receive control frames : %u\n",
2669 stats->sf_rx_control_frames);
2670 printf("Receive control frames with unsupported opcode : %u\n",
2671 stats->sf_rx_unsup_control_frames);
2672 printf("Receive frames too long : %u\n",
2673 stats->sf_rx_giants);
2674 printf("Receive frames too short : %u\n",
2675 stats->sf_rx_runts);
2676 printf("Receive frames jabber errors : %u\n",
2677 stats->sf_rx_jabbererrs);
2678 printf("Receive frames fragments : %u\n",
2679 stats->sf_rx_fragments);
2680 printf("Receive packets 64 bytes : %ju\n",
2681 (uint64_t)stats->sf_rx_pkts_64);
2682 printf("Receive packets 65 to 127 bytes : %ju\n",
2683 (uint64_t)stats->sf_rx_pkts_65_127);
2684 printf("Receive packets 128 to 255 bytes : %ju\n",
2685 (uint64_t)stats->sf_rx_pkts_128_255);
2686 printf("Receive packets 256 to 511 bytes : %ju\n",
2687 (uint64_t)stats->sf_rx_pkts_256_511);
2688 printf("Receive packets 512 to 1023 bytes : %ju\n",
2689 (uint64_t)stats->sf_rx_pkts_512_1023);
2690 printf("Receive packets 1024 to 1518 bytes : %ju\n",
2691 (uint64_t)stats->sf_rx_pkts_1024_1518);
2692 printf("Receive frames lost due to internal receive errors : %u\n",
2693 stats->sf_rx_frames_lost);
2694 printf("Receive GFP stalls : %u\n", stats->sf_rx_gfp_stall);
2695
2696 return (error);
2697 }
2698
2699 static int
2700 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2701 {
2702 int error, value;
2703
2704 if (!arg1)
2705 return (EINVAL);
2706 value = *(int *)arg1;
2707 error = sysctl_handle_int(oidp, &value, 0, req);
2708 if (error || !req->newptr)
2709 return (error);
2710 if (value < low || value > high)
2711 return (EINVAL);
2712 *(int *)arg1 = value;
2713
2714 return (0);
2715 }
2716
2717 static int
2718 sysctl_hw_sf_int_mod(SYSCTL_HANDLER_ARGS)
2719 {
2720
2721 return (sysctl_int_range(oidp, arg1, arg2, req, SF_IM_MIN, SF_IM_MAX));
2722 }
Cache object: 85fed07afa89e59bf2243287a97ce9c0
|