The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/sf/if_sf.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1997, 1998, 1999
    3  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. All advertising materials mentioning features or use of this software
   14  *    must display the following acknowledgement:
   15  *      This product includes software developed by Bill Paul.
   16  * 4. Neither the name of the author nor the names of any co-contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   30  * THE POSSIBILITY OF SUCH DAMAGE.
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD: releng/9.0/sys/dev/sf/if_sf.c 221407 2011-05-03 19:51:29Z marius $");
   35 
   36 /*
   37  * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
   38  * Programming manual is available from:
   39  * http://download.adaptec.com/pdfs/user_guides/aic6915_pg.pdf.
   40  *
   41  * Written by Bill Paul <wpaul@ctr.columbia.edu>
   42  * Department of Electical Engineering
   43  * Columbia University, New York City
   44  */
   45 /*
   46  * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
   47  * controller designed with flexibility and reducing CPU load in mind.
   48  * The Starfire offers high and low priority buffer queues, a
   49  * producer/consumer index mechanism and several different buffer
   50  * queue and completion queue descriptor types. Any one of a number
   51  * of different driver designs can be used, depending on system and
   52  * OS requirements. This driver makes use of type2 transmit frame
   53  * descriptors to take full advantage of fragmented packets buffers
   54  * and two RX buffer queues prioritized on size (one queue for small
   55  * frames that will fit into a single mbuf, another with full size
   56  * mbuf clusters for everything else). The producer/consumer indexes
   57  * and completion queues are also used.
   58  *
   59  * One downside to the Starfire has to do with alignment: buffer
   60  * queues must be aligned on 256-byte boundaries, and receive buffers
   61  * must be aligned on longword boundaries. The receive buffer alignment
   62  * causes problems on the strict alignment architecture, where the
   63  * packet payload should be longword aligned. There is no simple way
   64  * around this.
   65  *
   66  * For receive filtering, the Starfire offers 16 perfect filter slots
   67  * and a 512-bit hash table.
   68  *
   69  * The Starfire has no internal transceiver, relying instead on an
   70  * external MII-based transceiver. Accessing registers on external
   71  * PHYs is done through a special register map rather than with the
   72  * usual bitbang MDIO method.
   73  *
   74  * Acesssing the registers on the Starfire is a little tricky. The
   75  * Starfire has a 512K internal register space. When programmed for
   76  * PCI memory mapped mode, the entire register space can be accessed
   77  * directly. However in I/O space mode, only 256 bytes are directly
   78  * mapped into PCI I/O space. The other registers can be accessed
   79  * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
   80  * registers inside the 256-byte I/O window.
   81  */
   82 
   83 #ifdef HAVE_KERNEL_OPTION_HEADERS
   84 #include "opt_device_polling.h"
   85 #endif
   86 
   87 #include <sys/param.h>
   88 #include <sys/systm.h>
   89 #include <sys/bus.h>
   90 #include <sys/endian.h>
   91 #include <sys/kernel.h>
   92 #include <sys/malloc.h>
   93 #include <sys/mbuf.h>
   94 #include <sys/rman.h>
   95 #include <sys/module.h>
   96 #include <sys/socket.h>
   97 #include <sys/sockio.h>
   98 #include <sys/sysctl.h>
   99 #include <sys/taskqueue.h>
  100 
  101 #include <net/bpf.h>
  102 #include <net/if.h>
  103 #include <net/if_arp.h>
  104 #include <net/ethernet.h>
  105 #include <net/if_dl.h>
  106 #include <net/if_media.h>
  107 #include <net/if_types.h>
  108 #include <net/if_vlan_var.h>
  109 
  110 #include <dev/mii/mii.h>
  111 #include <dev/mii/miivar.h>
  112 
  113 #include <dev/pci/pcireg.h>
  114 #include <dev/pci/pcivar.h>
  115 
  116 #include <machine/bus.h>
  117 
  118 #include <dev/sf/if_sfreg.h>
  119 #include <dev/sf/starfire_rx.h>
  120 #include <dev/sf/starfire_tx.h>
  121 
  122 /* "device miibus" required.  See GENERIC if you get errors here. */
  123 #include "miibus_if.h"
  124 
  125 MODULE_DEPEND(sf, pci, 1, 1, 1);
  126 MODULE_DEPEND(sf, ether, 1, 1, 1);
  127 MODULE_DEPEND(sf, miibus, 1, 1, 1);
  128 
  129 #undef  SF_GFP_DEBUG
  130 #define SF_CSUM_FEATURES        (CSUM_TCP | CSUM_UDP)
  131 /* Define this to activate partial TCP/UDP checksum offload. */
  132 #undef  SF_PARTIAL_CSUM_SUPPORT
  133 
  134 static struct sf_type sf_devs[] = {
  135         { AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
  136             AD_SUBSYSID_62011_REV0, "Adaptec ANA-62011 (rev 0) 10/100BaseTX" },
  137         { AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
  138             AD_SUBSYSID_62011_REV1, "Adaptec ANA-62011 (rev 1) 10/100BaseTX" },
  139         { AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
  140             AD_SUBSYSID_62022, "Adaptec ANA-62022 10/100BaseTX" },
  141         { AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
  142             AD_SUBSYSID_62044_REV0, "Adaptec ANA-62044 (rev 0) 10/100BaseTX" },
  143         { AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
  144             AD_SUBSYSID_62044_REV1, "Adaptec ANA-62044 (rev 1) 10/100BaseTX" },
  145         { AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
  146             AD_SUBSYSID_62020, "Adaptec ANA-62020 10/100BaseFX" },
  147         { AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
  148             AD_SUBSYSID_69011, "Adaptec ANA-69011 10/100BaseTX" },
  149 };
  150 
  151 static int sf_probe(device_t);
  152 static int sf_attach(device_t);
  153 static int sf_detach(device_t);
  154 static int sf_shutdown(device_t);
  155 static int sf_suspend(device_t);
  156 static int sf_resume(device_t);
  157 static void sf_intr(void *);
  158 static void sf_tick(void *);
  159 static void sf_stats_update(struct sf_softc *);
  160 #ifndef __NO_STRICT_ALIGNMENT
  161 static __inline void sf_fixup_rx(struct mbuf *);
  162 #endif
  163 static int sf_rxeof(struct sf_softc *);
  164 static void sf_txeof(struct sf_softc *);
  165 static int sf_encap(struct sf_softc *, struct mbuf **);
  166 static void sf_start(struct ifnet *);
  167 static void sf_start_locked(struct ifnet *);
  168 static int sf_ioctl(struct ifnet *, u_long, caddr_t);
  169 static void sf_download_fw(struct sf_softc *);
  170 static void sf_init(void *);
  171 static void sf_init_locked(struct sf_softc *);
  172 static void sf_stop(struct sf_softc *);
  173 static void sf_watchdog(struct sf_softc *);
  174 static int sf_ifmedia_upd(struct ifnet *);
  175 static void sf_ifmedia_sts(struct ifnet *, struct ifmediareq *);
  176 static void sf_reset(struct sf_softc *);
  177 static int sf_dma_alloc(struct sf_softc *);
  178 static void sf_dma_free(struct sf_softc *);
  179 static int sf_init_rx_ring(struct sf_softc *);
  180 static void sf_init_tx_ring(struct sf_softc *);
  181 static int sf_newbuf(struct sf_softc *, int);
  182 static void sf_rxfilter(struct sf_softc *);
  183 static int sf_setperf(struct sf_softc *, int, uint8_t *);
  184 static int sf_sethash(struct sf_softc *, caddr_t, int);
  185 #ifdef notdef
  186 static int sf_setvlan(struct sf_softc *, int, uint32_t);
  187 #endif
  188 
  189 static uint8_t sf_read_eeprom(struct sf_softc *, int);
  190 
  191 static int sf_miibus_readreg(device_t, int, int);
  192 static int sf_miibus_writereg(device_t, int, int, int);
  193 static void sf_miibus_statchg(device_t);
  194 static void sf_link_task(void *, int);
  195 #ifdef DEVICE_POLLING
  196 static int sf_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
  197 #endif
  198 
  199 static uint32_t csr_read_4(struct sf_softc *, int);
  200 static void csr_write_4(struct sf_softc *, int, uint32_t);
  201 static void sf_txthresh_adjust(struct sf_softc *);
  202 static int sf_sysctl_stats(SYSCTL_HANDLER_ARGS);
  203 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
  204 static int sysctl_hw_sf_int_mod(SYSCTL_HANDLER_ARGS);
  205 
  206 static device_method_t sf_methods[] = {
  207         /* Device interface */
  208         DEVMETHOD(device_probe,         sf_probe),
  209         DEVMETHOD(device_attach,        sf_attach),
  210         DEVMETHOD(device_detach,        sf_detach),
  211         DEVMETHOD(device_shutdown,      sf_shutdown),
  212         DEVMETHOD(device_suspend,       sf_suspend),
  213         DEVMETHOD(device_resume,        sf_resume),
  214 
  215         /* bus interface */
  216         DEVMETHOD(bus_print_child,      bus_generic_print_child),
  217         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
  218 
  219         /* MII interface */
  220         DEVMETHOD(miibus_readreg,       sf_miibus_readreg),
  221         DEVMETHOD(miibus_writereg,      sf_miibus_writereg),
  222         DEVMETHOD(miibus_statchg,       sf_miibus_statchg),
  223 
  224         { NULL, NULL }
  225 };
  226 
  227 static driver_t sf_driver = {
  228         "sf",
  229         sf_methods,
  230         sizeof(struct sf_softc),
  231 };
  232 
  233 static devclass_t sf_devclass;
  234 
  235 DRIVER_MODULE(sf, pci, sf_driver, sf_devclass, 0, 0);
  236 DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0);
  237 
  238 #define SF_SETBIT(sc, reg, x)   \
  239         csr_write_4(sc, reg, csr_read_4(sc, reg) | (x))
  240 
  241 #define SF_CLRBIT(sc, reg, x)                           \
  242         csr_write_4(sc, reg, csr_read_4(sc, reg) & ~(x))
  243 
  244 static uint32_t
  245 csr_read_4(struct sf_softc *sc, int reg)
  246 {
  247         uint32_t                val;
  248 
  249         if (sc->sf_restype == SYS_RES_MEMORY)
  250                 val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
  251         else {
  252                 CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
  253                 val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
  254         }
  255 
  256         return (val);
  257 }
  258 
  259 static uint8_t
  260 sf_read_eeprom(struct sf_softc *sc, int reg)
  261 {
  262         uint8_t         val;
  263 
  264         val = (csr_read_4(sc, SF_EEADDR_BASE +
  265             (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
  266 
  267         return (val);
  268 }
  269 
  270 static void
  271 csr_write_4(struct sf_softc *sc, int reg, uint32_t val)
  272 {
  273 
  274         if (sc->sf_restype == SYS_RES_MEMORY)
  275                 CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
  276         else {
  277                 CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
  278                 CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
  279         }
  280 }
  281 
  282 /*
  283  * Copy the address 'mac' into the perfect RX filter entry at
  284  * offset 'idx.' The perfect filter only has 16 entries so do
  285  * some sanity tests.
  286  */
  287 static int
  288 sf_setperf(struct sf_softc *sc, int idx, uint8_t *mac)
  289 {
  290 
  291         if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
  292                 return (EINVAL);
  293 
  294         if (mac == NULL)
  295                 return (EINVAL);
  296 
  297         csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
  298             (idx * SF_RXFILT_PERFECT_SKIP) + 0, mac[5] | (mac[4] << 8));
  299         csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
  300             (idx * SF_RXFILT_PERFECT_SKIP) + 4, mac[3] | (mac[2] << 8));
  301         csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
  302             (idx * SF_RXFILT_PERFECT_SKIP) + 8, mac[1] | (mac[0] << 8));
  303 
  304         return (0);
  305 }
  306 
  307 /*
  308  * Set the bit in the 512-bit hash table that corresponds to the
  309  * specified mac address 'mac.' If 'prio' is nonzero, update the
  310  * priority hash table instead of the filter hash table.
  311  */
  312 static int
  313 sf_sethash(struct sf_softc *sc, caddr_t mac, int prio)
  314 {
  315         uint32_t                h;
  316 
  317         if (mac == NULL)
  318                 return (EINVAL);
  319 
  320         h = ether_crc32_be(mac, ETHER_ADDR_LEN) >> 23;
  321 
  322         if (prio) {
  323                 SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
  324                     (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
  325         } else {
  326                 SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
  327                     (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
  328         }
  329 
  330         return (0);
  331 }
  332 
  333 #ifdef notdef
  334 /*
  335  * Set a VLAN tag in the receive filter.
  336  */
  337 static int
  338 sf_setvlan(struct sf_softc *sc, int idx, uint32_t vlan)
  339 {
  340 
  341         if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
  342                 return (EINVAL);
  343 
  344         csr_write_4(sc, SF_RXFILT_HASH_BASE +
  345             (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
  346 
  347         return (0);
  348 }
  349 #endif
  350 
  351 static int
  352 sf_miibus_readreg(device_t dev, int phy, int reg)
  353 {
  354         struct sf_softc         *sc;
  355         int                     i;
  356         uint32_t                val = 0;
  357 
  358         sc = device_get_softc(dev);
  359 
  360         for (i = 0; i < SF_TIMEOUT; i++) {
  361                 val = csr_read_4(sc, SF_PHY_REG(phy, reg));
  362                 if ((val & SF_MII_DATAVALID) != 0)
  363                         break;
  364         }
  365 
  366         if (i == SF_TIMEOUT)
  367                 return (0);
  368 
  369         val &= SF_MII_DATAPORT;
  370         if (val == 0xffff)
  371                 return (0);
  372 
  373         return (val);
  374 }
  375 
  376 static int
  377 sf_miibus_writereg(device_t dev, int phy, int reg, int val)
  378 {
  379         struct sf_softc         *sc;
  380         int                     i;
  381         int                     busy;
  382 
  383         sc = device_get_softc(dev);
  384 
  385         csr_write_4(sc, SF_PHY_REG(phy, reg), val);
  386 
  387         for (i = 0; i < SF_TIMEOUT; i++) {
  388                 busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
  389                 if ((busy & SF_MII_BUSY) == 0)
  390                         break;
  391         }
  392 
  393         return (0);
  394 }
  395 
  396 static void
  397 sf_miibus_statchg(device_t dev)
  398 {
  399         struct sf_softc         *sc;
  400 
  401         sc = device_get_softc(dev);
  402         taskqueue_enqueue(taskqueue_swi, &sc->sf_link_task);
  403 }
  404 
  405 static void
  406 sf_link_task(void *arg, int pending)
  407 {
  408         struct sf_softc         *sc;
  409         struct mii_data         *mii;
  410         struct ifnet            *ifp;
  411         uint32_t                val;
  412 
  413         sc = (struct sf_softc *)arg;
  414 
  415         SF_LOCK(sc);
  416 
  417         mii = device_get_softc(sc->sf_miibus);
  418         ifp = sc->sf_ifp;
  419         if (mii == NULL || ifp == NULL ||
  420             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
  421                 SF_UNLOCK(sc);
  422                 return;
  423         }
  424 
  425         if (mii->mii_media_status & IFM_ACTIVE) {
  426                 if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
  427                         sc->sf_link = 1;
  428         } else
  429                 sc->sf_link = 0;
  430 
  431         val = csr_read_4(sc, SF_MACCFG_1);
  432         val &= ~SF_MACCFG1_FULLDUPLEX;
  433         val &= ~(SF_MACCFG1_RX_FLOWENB | SF_MACCFG1_TX_FLOWENB);
  434         if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
  435                 val |= SF_MACCFG1_FULLDUPLEX;
  436                 csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
  437 #ifdef notyet
  438                 /* Configure flow-control bits. */
  439                 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) &
  440                     IFM_ETH_RXPAUSE) != 0)
  441                         val |= SF_MACCFG1_RX_FLOWENB;
  442                 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) &
  443                     IFM_ETH_TXPAUSE) != 0)
  444                         val |= SF_MACCFG1_TX_FLOWENB;
  445 #endif
  446         } else
  447                 csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
  448 
  449         /* Make sure to reset MAC to take changes effect. */
  450         csr_write_4(sc, SF_MACCFG_1, val | SF_MACCFG1_SOFTRESET);
  451         DELAY(1000);
  452         csr_write_4(sc, SF_MACCFG_1, val);
  453 
  454         val = csr_read_4(sc, SF_TIMER_CTL);
  455         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
  456                 val |= SF_TIMER_TIMES_TEN;
  457         else
  458                 val &= ~SF_TIMER_TIMES_TEN;
  459         csr_write_4(sc, SF_TIMER_CTL, val);
  460 
  461         SF_UNLOCK(sc);
  462 }
  463 
  464 static void
  465 sf_rxfilter(struct sf_softc *sc)
  466 {
  467         struct ifnet            *ifp;
  468         int                     i;
  469         struct ifmultiaddr      *ifma;
  470         uint8_t                 dummy[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
  471         uint32_t                rxfilt;
  472 
  473         ifp = sc->sf_ifp;
  474 
  475         /* First zot all the existing filters. */
  476         for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
  477                 sf_setperf(sc, i, dummy);
  478         for (i = SF_RXFILT_HASH_BASE; i < (SF_RXFILT_HASH_MAX + 1);
  479             i += sizeof(uint32_t))
  480                 csr_write_4(sc, i, 0);
  481 
  482         rxfilt = csr_read_4(sc, SF_RXFILT);
  483         rxfilt &= ~(SF_RXFILT_PROMISC | SF_RXFILT_ALLMULTI | SF_RXFILT_BROAD);
  484         if ((ifp->if_flags & IFF_BROADCAST) != 0)
  485                 rxfilt |= SF_RXFILT_BROAD;
  486         if ((ifp->if_flags & IFF_ALLMULTI) != 0 ||
  487             (ifp->if_flags & IFF_PROMISC) != 0) {
  488                 if ((ifp->if_flags & IFF_PROMISC) != 0)
  489                         rxfilt |= SF_RXFILT_PROMISC;
  490                 if ((ifp->if_flags & IFF_ALLMULTI) != 0)
  491                         rxfilt |= SF_RXFILT_ALLMULTI;
  492                 goto done;
  493         }
  494 
  495         /* Now program new ones. */
  496         i = 1;
  497         if_maddr_rlock(ifp);
  498         TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead,
  499             ifma_link) {
  500                 if (ifma->ifma_addr->sa_family != AF_LINK)
  501                         continue;
  502                 /*
  503                  * Program the first 15 multicast groups
  504                  * into the perfect filter. For all others,
  505                  * use the hash table.
  506                  */
  507                 if (i < SF_RXFILT_PERFECT_CNT) {
  508                         sf_setperf(sc, i,
  509                             LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
  510                         i++;
  511                         continue;
  512                 }
  513 
  514                 sf_sethash(sc,
  515                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
  516         }
  517         if_maddr_runlock(ifp);
  518 
  519 done:
  520         csr_write_4(sc, SF_RXFILT, rxfilt);
  521 }
  522 
  523 /*
  524  * Set media options.
  525  */
  526 static int
  527 sf_ifmedia_upd(struct ifnet *ifp)
  528 {
  529         struct sf_softc         *sc;
  530         struct mii_data         *mii;
  531         struct mii_softc        *miisc;
  532         int                     error;
  533 
  534         sc = ifp->if_softc;
  535         SF_LOCK(sc);
  536 
  537         mii = device_get_softc(sc->sf_miibus);
  538         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
  539                 PHY_RESET(miisc);
  540         error = mii_mediachg(mii);
  541         SF_UNLOCK(sc);
  542 
  543         return (error);
  544 }
  545 
  546 /*
  547  * Report current media status.
  548  */
  549 static void
  550 sf_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
  551 {
  552         struct sf_softc         *sc;
  553         struct mii_data         *mii;
  554 
  555         sc = ifp->if_softc;
  556         SF_LOCK(sc);
  557         mii = device_get_softc(sc->sf_miibus);
  558 
  559         mii_pollstat(mii);
  560         ifmr->ifm_active = mii->mii_media_active;
  561         ifmr->ifm_status = mii->mii_media_status;
  562         SF_UNLOCK(sc);
  563 }
  564 
  565 static int
  566 sf_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
  567 {
  568         struct sf_softc         *sc;
  569         struct ifreq            *ifr;
  570         struct mii_data         *mii;
  571         int                     error, mask;
  572 
  573         sc = ifp->if_softc;
  574         ifr = (struct ifreq *)data;
  575         error = 0;
  576 
  577         switch (command) {
  578         case SIOCSIFFLAGS:
  579                 SF_LOCK(sc);
  580                 if (ifp->if_flags & IFF_UP) {
  581                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
  582                                 if ((ifp->if_flags ^ sc->sf_if_flags) &
  583                                     (IFF_PROMISC | IFF_ALLMULTI))
  584                                         sf_rxfilter(sc);
  585                         } else {
  586                                 if (sc->sf_detach == 0)
  587                                         sf_init_locked(sc);
  588                         }
  589                 } else {
  590                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
  591                                 sf_stop(sc);
  592                 }
  593                 sc->sf_if_flags = ifp->if_flags;
  594                 SF_UNLOCK(sc);
  595                 break;
  596         case SIOCADDMULTI:
  597         case SIOCDELMULTI:
  598                 SF_LOCK(sc);
  599                 sf_rxfilter(sc);
  600                 SF_UNLOCK(sc);
  601                 break;
  602         case SIOCGIFMEDIA:
  603         case SIOCSIFMEDIA:
  604                 mii = device_get_softc(sc->sf_miibus);
  605                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
  606                 break;
  607         case SIOCSIFCAP:
  608                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
  609 #ifdef DEVICE_POLLING
  610                 if ((mask & IFCAP_POLLING) != 0) {
  611                         if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
  612                                 error = ether_poll_register(sf_poll, ifp);
  613                                 if (error != 0)
  614                                         break;
  615                                 SF_LOCK(sc);
  616                                 /* Disable interrupts. */
  617                                 csr_write_4(sc, SF_IMR, 0);
  618                                 ifp->if_capenable |= IFCAP_POLLING;
  619                                 SF_UNLOCK(sc);
  620                         } else {
  621                                 error = ether_poll_deregister(ifp);
  622                                 /* Enable interrupts. */
  623                                 SF_LOCK(sc);
  624                                 csr_write_4(sc, SF_IMR, SF_INTRS);
  625                                 ifp->if_capenable &= ~IFCAP_POLLING;
  626                                 SF_UNLOCK(sc);
  627                         }
  628                 }
  629 #endif /* DEVICE_POLLING */
  630                 if ((mask & IFCAP_TXCSUM) != 0) {
  631                         if ((IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
  632                                 SF_LOCK(sc);
  633                                 ifp->if_capenable ^= IFCAP_TXCSUM;
  634                                 if ((IFCAP_TXCSUM & ifp->if_capenable) != 0) {
  635                                         ifp->if_hwassist |= SF_CSUM_FEATURES;
  636                                         SF_SETBIT(sc, SF_GEN_ETH_CTL,
  637                                             SF_ETHCTL_TXGFP_ENB);
  638                                 } else {
  639                                         ifp->if_hwassist &= ~SF_CSUM_FEATURES;
  640                                         SF_CLRBIT(sc, SF_GEN_ETH_CTL,
  641                                             SF_ETHCTL_TXGFP_ENB);
  642                                 }
  643                                 SF_UNLOCK(sc);
  644                         }
  645                 }
  646                 if ((mask & IFCAP_RXCSUM) != 0) {
  647                         if ((IFCAP_RXCSUM & ifp->if_capabilities) != 0) {
  648                                 SF_LOCK(sc);
  649                                 ifp->if_capenable ^= IFCAP_RXCSUM;
  650                                 if ((IFCAP_RXCSUM & ifp->if_capenable) != 0)
  651                                         SF_SETBIT(sc, SF_GEN_ETH_CTL,
  652                                             SF_ETHCTL_RXGFP_ENB);
  653                                 else
  654                                         SF_CLRBIT(sc, SF_GEN_ETH_CTL,
  655                                             SF_ETHCTL_RXGFP_ENB);
  656                                 SF_UNLOCK(sc);
  657                         }
  658                 }
  659                 break;
  660         default:
  661                 error = ether_ioctl(ifp, command, data);
  662                 break;
  663         }
  664 
  665         return (error);
  666 }
  667 
  668 static void
  669 sf_reset(struct sf_softc *sc)
  670 {
  671         int             i;
  672 
  673         csr_write_4(sc, SF_GEN_ETH_CTL, 0);
  674         SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
  675         DELAY(1000);
  676         SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
  677 
  678         SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
  679 
  680         for (i = 0; i < SF_TIMEOUT; i++) {
  681                 DELAY(10);
  682                 if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
  683                         break;
  684         }
  685 
  686         if (i == SF_TIMEOUT)
  687                 device_printf(sc->sf_dev, "reset never completed!\n");
  688 
  689         /* Wait a little while for the chip to get its brains in order. */
  690         DELAY(1000);
  691 }
  692 
  693 /*
  694  * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
  695  * IDs against our list and return a device name if we find a match.
  696  * We also check the subsystem ID so that we can identify exactly which
  697  * NIC has been found, if possible.
  698  */
  699 static int
  700 sf_probe(device_t dev)
  701 {
  702         struct sf_type          *t;
  703         uint16_t                vid;
  704         uint16_t                did;
  705         uint16_t                sdid;
  706         int                     i;
  707 
  708         vid = pci_get_vendor(dev);
  709         did = pci_get_device(dev);
  710         sdid = pci_get_subdevice(dev);
  711 
  712         t = sf_devs;
  713         for (i = 0; i < sizeof(sf_devs) / sizeof(sf_devs[0]); i++, t++) {
  714                 if (vid == t->sf_vid && did == t->sf_did) {
  715                         if (sdid == t->sf_sdid) {
  716                                 device_set_desc(dev, t->sf_sname);
  717                                 return (BUS_PROBE_DEFAULT);
  718                         }
  719                 }
  720         }
  721 
  722         if (vid == AD_VENDORID && did == AD_DEVICEID_STARFIRE) {
  723                 /* unkown subdevice */
  724                 device_set_desc(dev, sf_devs[0].sf_name);
  725                 return (BUS_PROBE_DEFAULT);
  726         }
  727 
  728         return (ENXIO);
  729 }
  730 
  731 /*
  732  * Attach the interface. Allocate softc structures, do ifmedia
  733  * setup and ethernet/BPF attach.
  734  */
  735 static int
  736 sf_attach(device_t dev)
  737 {
  738         int                     i;
  739         struct sf_softc         *sc;
  740         struct ifnet            *ifp;
  741         uint32_t                reg;
  742         int                     rid, error = 0;
  743         uint8_t                 eaddr[ETHER_ADDR_LEN];
  744 
  745         sc = device_get_softc(dev);
  746         sc->sf_dev = dev;
  747 
  748         mtx_init(&sc->sf_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
  749             MTX_DEF);
  750         callout_init_mtx(&sc->sf_co, &sc->sf_mtx, 0);
  751         TASK_INIT(&sc->sf_link_task, 0, sf_link_task, sc);
  752 
  753         /*
  754          * Map control/status registers.
  755          */
  756         pci_enable_busmaster(dev);
  757 
  758         /*
  759          * Prefer memory space register mapping over I/O space as the
  760          * hardware requires lots of register access to get various
  761          * producer/consumer index during Tx/Rx operation. However this
  762          * requires large memory space(512K) to map the entire register
  763          * space.
  764          */
  765         sc->sf_rid = PCIR_BAR(0);
  766         sc->sf_restype = SYS_RES_MEMORY;
  767         sc->sf_res = bus_alloc_resource_any(dev, sc->sf_restype, &sc->sf_rid,
  768             RF_ACTIVE);
  769         if (sc->sf_res == NULL) {
  770                 reg = pci_read_config(dev, PCIR_BAR(0), 4);
  771                 if ((reg & PCIM_BAR_MEM_64) == PCIM_BAR_MEM_64)
  772                         sc->sf_rid = PCIR_BAR(2);
  773                 else
  774                         sc->sf_rid = PCIR_BAR(1);
  775                 sc->sf_restype = SYS_RES_IOPORT;
  776                 sc->sf_res = bus_alloc_resource_any(dev, sc->sf_restype,
  777                     &sc->sf_rid, RF_ACTIVE);
  778                 if (sc->sf_res == NULL) {
  779                         device_printf(dev, "couldn't allocate resources\n");
  780                         mtx_destroy(&sc->sf_mtx);
  781                         return (ENXIO);
  782                 }
  783         }
  784         if (bootverbose)
  785                 device_printf(dev, "using %s space register mapping\n",
  786                     sc->sf_restype == SYS_RES_MEMORY ? "memory" : "I/O");
  787 
  788         reg = pci_read_config(dev, PCIR_CACHELNSZ, 1);
  789         if (reg == 0) {
  790                 /*
  791                  * If cache line size is 0, MWI is not used at all, so set
  792                  * reasonable default. AIC-6915 supports 0, 4, 8, 16, 32
  793                  * and 64.
  794                  */
  795                 reg = 16;
  796                 device_printf(dev, "setting PCI cache line size to %u\n", reg);
  797                 pci_write_config(dev, PCIR_CACHELNSZ, reg, 1);
  798         } else {
  799                 if (bootverbose)
  800                         device_printf(dev, "PCI cache line size : %u\n", reg);
  801         }
  802         /* Enable MWI. */
  803         reg = pci_read_config(dev, PCIR_COMMAND, 2);
  804         reg |= PCIM_CMD_MWRICEN;
  805         pci_write_config(dev, PCIR_COMMAND, reg, 2);
  806 
  807         /* Allocate interrupt. */
  808         rid = 0;
  809         sc->sf_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
  810             RF_SHAREABLE | RF_ACTIVE);
  811 
  812         if (sc->sf_irq == NULL) {
  813                 device_printf(dev, "couldn't map interrupt\n");
  814                 error = ENXIO;
  815                 goto fail;
  816         }
  817 
  818         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
  819             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
  820             OID_AUTO, "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
  821             sf_sysctl_stats, "I", "Statistics");
  822 
  823         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
  824                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
  825                 OID_AUTO, "int_mod", CTLTYPE_INT | CTLFLAG_RW,
  826                 &sc->sf_int_mod, 0, sysctl_hw_sf_int_mod, "I",
  827                 "sf interrupt moderation");
  828         /* Pull in device tunables. */
  829         sc->sf_int_mod = SF_IM_DEFAULT;
  830         error = resource_int_value(device_get_name(dev), device_get_unit(dev),
  831             "int_mod", &sc->sf_int_mod);
  832         if (error == 0) {
  833                 if (sc->sf_int_mod < SF_IM_MIN ||
  834                     sc->sf_int_mod > SF_IM_MAX) {
  835                         device_printf(dev, "int_mod value out of range; "
  836                             "using default: %d\n", SF_IM_DEFAULT);
  837                         sc->sf_int_mod = SF_IM_DEFAULT;
  838                 }
  839         }
  840 
  841         /* Reset the adapter. */
  842         sf_reset(sc);
  843 
  844         /*
  845          * Get station address from the EEPROM.
  846          */
  847         for (i = 0; i < ETHER_ADDR_LEN; i++)
  848                 eaddr[i] =
  849                     sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
  850 
  851         /* Allocate DMA resources. */
  852         if (sf_dma_alloc(sc) != 0) {
  853                 error = ENOSPC;
  854                 goto fail;
  855         }
  856 
  857         sc->sf_txthresh = SF_MIN_TX_THRESHOLD;
  858 
  859         ifp = sc->sf_ifp = if_alloc(IFT_ETHER);
  860         if (ifp == NULL) {
  861                 device_printf(dev, "can not allocate ifnet structure\n");
  862                 error = ENOSPC;
  863                 goto fail;
  864         }
  865 
  866         /* Do MII setup. */
  867         error = mii_attach(dev, &sc->sf_miibus, ifp, sf_ifmedia_upd,
  868             sf_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
  869         if (error != 0) {
  870                 device_printf(dev, "attaching PHYs failed\n");
  871                 goto fail;
  872         }
  873 
  874         ifp->if_softc = sc;
  875         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
  876         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
  877         ifp->if_ioctl = sf_ioctl;
  878         ifp->if_start = sf_start;
  879         ifp->if_init = sf_init;
  880         IFQ_SET_MAXLEN(&ifp->if_snd, SF_TX_DLIST_CNT - 1);
  881         ifp->if_snd.ifq_drv_maxlen = SF_TX_DLIST_CNT - 1;
  882         IFQ_SET_READY(&ifp->if_snd);
  883         /*
  884          * With the help of firmware, AIC-6915 supports
  885          * Tx/Rx TCP/UDP checksum offload.
  886          */
  887         ifp->if_hwassist = SF_CSUM_FEATURES;
  888         ifp->if_capabilities = IFCAP_HWCSUM;
  889 
  890         /*
  891          * Call MI attach routine.
  892          */
  893         ether_ifattach(ifp, eaddr);
  894 
  895         /* VLAN capability setup. */
  896         ifp->if_capabilities |= IFCAP_VLAN_MTU;
  897         ifp->if_capenable = ifp->if_capabilities;
  898 #ifdef DEVICE_POLLING
  899         ifp->if_capabilities |= IFCAP_POLLING;
  900 #endif
  901         /*
  902          * Tell the upper layer(s) we support long frames.
  903          * Must appear after the call to ether_ifattach() because
  904          * ether_ifattach() sets ifi_hdrlen to the default value.
  905          */
  906         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
  907 
  908         /* Hook interrupt last to avoid having to lock softc */
  909         error = bus_setup_intr(dev, sc->sf_irq, INTR_TYPE_NET | INTR_MPSAFE,
  910             NULL, sf_intr, sc, &sc->sf_intrhand);
  911 
  912         if (error) {
  913                 device_printf(dev, "couldn't set up irq\n");
  914                 ether_ifdetach(ifp);
  915                 goto fail;
  916         }
  917 
  918 fail:
  919         if (error)
  920                 sf_detach(dev);
  921 
  922         return (error);
  923 }
  924 
  925 /*
  926  * Shutdown hardware and free up resources. This can be called any
  927  * time after the mutex has been initialized. It is called in both
  928  * the error case in attach and the normal detach case so it needs
  929  * to be careful about only freeing resources that have actually been
  930  * allocated.
  931  */
  932 static int
  933 sf_detach(device_t dev)
  934 {
  935         struct sf_softc         *sc;
  936         struct ifnet            *ifp;
  937 
  938         sc = device_get_softc(dev);
  939         ifp = sc->sf_ifp;
  940 
  941 #ifdef DEVICE_POLLING
  942         if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
  943                 ether_poll_deregister(ifp);
  944 #endif
  945 
  946         /* These should only be active if attach succeeded */
  947         if (device_is_attached(dev)) {
  948                 SF_LOCK(sc);
  949                 sc->sf_detach = 1;
  950                 sf_stop(sc);
  951                 SF_UNLOCK(sc);
  952                 callout_drain(&sc->sf_co);
  953                 taskqueue_drain(taskqueue_swi, &sc->sf_link_task);
  954                 if (ifp != NULL)
  955                         ether_ifdetach(ifp);
  956         }
  957         if (sc->sf_miibus) {
  958                 device_delete_child(dev, sc->sf_miibus);
  959                 sc->sf_miibus = NULL;
  960         }
  961         bus_generic_detach(dev);
  962 
  963         if (sc->sf_intrhand != NULL)
  964                 bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
  965         if (sc->sf_irq != NULL)
  966                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
  967         if (sc->sf_res != NULL)
  968                 bus_release_resource(dev, sc->sf_restype, sc->sf_rid,
  969                     sc->sf_res);
  970 
  971         sf_dma_free(sc);
  972         if (ifp != NULL)
  973                 if_free(ifp);
  974 
  975         mtx_destroy(&sc->sf_mtx);
  976 
  977         return (0);
  978 }
  979 
  980 struct sf_dmamap_arg {
  981         bus_addr_t              sf_busaddr;
  982 };
  983 
  984 static void
  985 sf_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
  986 {
  987         struct sf_dmamap_arg    *ctx;
  988 
  989         if (error != 0)
  990                 return;
  991         ctx = arg;
  992         ctx->sf_busaddr = segs[0].ds_addr;
  993 }
  994 
  995 static int
  996 sf_dma_alloc(struct sf_softc *sc)
  997 {
  998         struct sf_dmamap_arg    ctx;
  999         struct sf_txdesc        *txd;
 1000         struct sf_rxdesc        *rxd;
 1001         bus_addr_t              lowaddr;
 1002         bus_addr_t              rx_ring_end, rx_cring_end;
 1003         bus_addr_t              tx_ring_end, tx_cring_end;
 1004         int                     error, i;
 1005 
 1006         lowaddr = BUS_SPACE_MAXADDR;
 1007 
 1008 again:
 1009         /* Create parent DMA tag. */
 1010         error = bus_dma_tag_create(
 1011             bus_get_dma_tag(sc->sf_dev),        /* parent */
 1012             1, 0,                       /* alignment, boundary */
 1013             lowaddr,                    /* lowaddr */
 1014             BUS_SPACE_MAXADDR,          /* highaddr */
 1015             NULL, NULL,                 /* filter, filterarg */
 1016             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
 1017             0,                          /* nsegments */
 1018             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
 1019             0,                          /* flags */
 1020             NULL, NULL,                 /* lockfunc, lockarg */
 1021             &sc->sf_cdata.sf_parent_tag);
 1022         if (error != 0) {
 1023                 device_printf(sc->sf_dev, "failed to create parent DMA tag\n");
 1024                 goto fail;
 1025         }
 1026         /* Create tag for Tx ring. */
 1027         error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
 1028             SF_RING_ALIGN, 0,           /* alignment, boundary */
 1029             BUS_SPACE_MAXADDR,          /* lowaddr */
 1030             BUS_SPACE_MAXADDR,          /* highaddr */
 1031             NULL, NULL,                 /* filter, filterarg */
 1032             SF_TX_DLIST_SIZE,           /* maxsize */
 1033             1,                          /* nsegments */
 1034             SF_TX_DLIST_SIZE,           /* maxsegsize */
 1035             0,                          /* flags */
 1036             NULL, NULL,                 /* lockfunc, lockarg */
 1037             &sc->sf_cdata.sf_tx_ring_tag);
 1038         if (error != 0) {
 1039                 device_printf(sc->sf_dev, "failed to create Tx ring DMA tag\n");
 1040                 goto fail;
 1041         }
 1042 
 1043         /* Create tag for Tx completion ring. */
 1044         error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
 1045             SF_RING_ALIGN, 0,           /* alignment, boundary */
 1046             BUS_SPACE_MAXADDR,          /* lowaddr */
 1047             BUS_SPACE_MAXADDR,          /* highaddr */
 1048             NULL, NULL,                 /* filter, filterarg */
 1049             SF_TX_CLIST_SIZE,           /* maxsize */
 1050             1,                          /* nsegments */
 1051             SF_TX_CLIST_SIZE,           /* maxsegsize */
 1052             0,                          /* flags */
 1053             NULL, NULL,                 /* lockfunc, lockarg */
 1054             &sc->sf_cdata.sf_tx_cring_tag);
 1055         if (error != 0) {
 1056                 device_printf(sc->sf_dev,
 1057                     "failed to create Tx completion ring DMA tag\n");
 1058                 goto fail;
 1059         }
 1060 
 1061         /* Create tag for Rx ring. */
 1062         error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
 1063             SF_RING_ALIGN, 0,           /* alignment, boundary */
 1064             BUS_SPACE_MAXADDR,          /* lowaddr */
 1065             BUS_SPACE_MAXADDR,          /* highaddr */
 1066             NULL, NULL,                 /* filter, filterarg */
 1067             SF_RX_DLIST_SIZE,           /* maxsize */
 1068             1,                          /* nsegments */
 1069             SF_RX_DLIST_SIZE,           /* maxsegsize */
 1070             0,                          /* flags */
 1071             NULL, NULL,                 /* lockfunc, lockarg */
 1072             &sc->sf_cdata.sf_rx_ring_tag);
 1073         if (error != 0) {
 1074                 device_printf(sc->sf_dev,
 1075                     "failed to create Rx ring DMA tag\n");
 1076                 goto fail;
 1077         }
 1078 
 1079         /* Create tag for Rx completion ring. */
 1080         error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
 1081             SF_RING_ALIGN, 0,           /* alignment, boundary */
 1082             BUS_SPACE_MAXADDR,          /* lowaddr */
 1083             BUS_SPACE_MAXADDR,          /* highaddr */
 1084             NULL, NULL,                 /* filter, filterarg */
 1085             SF_RX_CLIST_SIZE,           /* maxsize */
 1086             1,                          /* nsegments */
 1087             SF_RX_CLIST_SIZE,           /* maxsegsize */
 1088             0,                          /* flags */
 1089             NULL, NULL,                 /* lockfunc, lockarg */
 1090             &sc->sf_cdata.sf_rx_cring_tag);
 1091         if (error != 0) {
 1092                 device_printf(sc->sf_dev,
 1093                     "failed to create Rx completion ring DMA tag\n");
 1094                 goto fail;
 1095         }
 1096 
 1097         /* Create tag for Tx buffers. */
 1098         error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
 1099             1, 0,                       /* alignment, boundary */
 1100             BUS_SPACE_MAXADDR,          /* lowaddr */
 1101             BUS_SPACE_MAXADDR,          /* highaddr */
 1102             NULL, NULL,                 /* filter, filterarg */
 1103             MCLBYTES * SF_MAXTXSEGS,    /* maxsize */
 1104             SF_MAXTXSEGS,               /* nsegments */
 1105             MCLBYTES,                   /* maxsegsize */
 1106             0,                          /* flags */
 1107             NULL, NULL,                 /* lockfunc, lockarg */
 1108             &sc->sf_cdata.sf_tx_tag);
 1109         if (error != 0) {
 1110                 device_printf(sc->sf_dev, "failed to create Tx DMA tag\n");
 1111                 goto fail;
 1112         }
 1113 
 1114         /* Create tag for Rx buffers. */
 1115         error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
 1116             SF_RX_ALIGN, 0,             /* alignment, boundary */
 1117             BUS_SPACE_MAXADDR,          /* lowaddr */
 1118             BUS_SPACE_MAXADDR,          /* highaddr */
 1119             NULL, NULL,                 /* filter, filterarg */
 1120             MCLBYTES,                   /* maxsize */
 1121             1,                          /* nsegments */
 1122             MCLBYTES,                   /* maxsegsize */
 1123             0,                          /* flags */
 1124             NULL, NULL,                 /* lockfunc, lockarg */
 1125             &sc->sf_cdata.sf_rx_tag);
 1126         if (error != 0) {
 1127                 device_printf(sc->sf_dev, "failed to create Rx DMA tag\n");
 1128                 goto fail;
 1129         }
 1130 
 1131         /* Allocate DMA'able memory and load the DMA map for Tx ring. */
 1132         error = bus_dmamem_alloc(sc->sf_cdata.sf_tx_ring_tag,
 1133             (void **)&sc->sf_rdata.sf_tx_ring, BUS_DMA_WAITOK |
 1134             BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sf_cdata.sf_tx_ring_map);
 1135         if (error != 0) {
 1136                 device_printf(sc->sf_dev,
 1137                     "failed to allocate DMA'able memory for Tx ring\n");
 1138                 goto fail;
 1139         }
 1140 
 1141         ctx.sf_busaddr = 0;
 1142         error = bus_dmamap_load(sc->sf_cdata.sf_tx_ring_tag,
 1143             sc->sf_cdata.sf_tx_ring_map, sc->sf_rdata.sf_tx_ring,
 1144             SF_TX_DLIST_SIZE, sf_dmamap_cb, &ctx, 0);
 1145         if (error != 0 || ctx.sf_busaddr == 0) {
 1146                 device_printf(sc->sf_dev,
 1147                     "failed to load DMA'able memory for Tx ring\n");
 1148                 goto fail;
 1149         }
 1150         sc->sf_rdata.sf_tx_ring_paddr = ctx.sf_busaddr;
 1151 
 1152         /*
 1153          * Allocate DMA'able memory and load the DMA map for Tx completion ring.
 1154          */
 1155         error = bus_dmamem_alloc(sc->sf_cdata.sf_tx_cring_tag,
 1156             (void **)&sc->sf_rdata.sf_tx_cring, BUS_DMA_WAITOK |
 1157             BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sf_cdata.sf_tx_cring_map);
 1158         if (error != 0) {
 1159                 device_printf(sc->sf_dev,
 1160                     "failed to allocate DMA'able memory for "
 1161                     "Tx completion ring\n");
 1162                 goto fail;
 1163         }
 1164 
 1165         ctx.sf_busaddr = 0;
 1166         error = bus_dmamap_load(sc->sf_cdata.sf_tx_cring_tag,
 1167             sc->sf_cdata.sf_tx_cring_map, sc->sf_rdata.sf_tx_cring,
 1168             SF_TX_CLIST_SIZE, sf_dmamap_cb, &ctx, 0);
 1169         if (error != 0 || ctx.sf_busaddr == 0) {
 1170                 device_printf(sc->sf_dev,
 1171                     "failed to load DMA'able memory for Tx completion ring\n");
 1172                 goto fail;
 1173         }
 1174         sc->sf_rdata.sf_tx_cring_paddr = ctx.sf_busaddr;
 1175 
 1176         /* Allocate DMA'able memory and load the DMA map for Rx ring. */
 1177         error = bus_dmamem_alloc(sc->sf_cdata.sf_rx_ring_tag,
 1178             (void **)&sc->sf_rdata.sf_rx_ring, BUS_DMA_WAITOK |
 1179             BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sf_cdata.sf_rx_ring_map);
 1180         if (error != 0) {
 1181                 device_printf(sc->sf_dev,
 1182                     "failed to allocate DMA'able memory for Rx ring\n");
 1183                 goto fail;
 1184         }
 1185 
 1186         ctx.sf_busaddr = 0;
 1187         error = bus_dmamap_load(sc->sf_cdata.sf_rx_ring_tag,
 1188             sc->sf_cdata.sf_rx_ring_map, sc->sf_rdata.sf_rx_ring,
 1189             SF_RX_DLIST_SIZE, sf_dmamap_cb, &ctx, 0);
 1190         if (error != 0 || ctx.sf_busaddr == 0) {
 1191                 device_printf(sc->sf_dev,
 1192                     "failed to load DMA'able memory for Rx ring\n");
 1193                 goto fail;
 1194         }
 1195         sc->sf_rdata.sf_rx_ring_paddr = ctx.sf_busaddr;
 1196 
 1197         /*
 1198          * Allocate DMA'able memory and load the DMA map for Rx completion ring.
 1199          */
 1200         error = bus_dmamem_alloc(sc->sf_cdata.sf_rx_cring_tag,
 1201             (void **)&sc->sf_rdata.sf_rx_cring, BUS_DMA_WAITOK |
 1202             BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sf_cdata.sf_rx_cring_map);
 1203         if (error != 0) {
 1204                 device_printf(sc->sf_dev,
 1205                     "failed to allocate DMA'able memory for "
 1206                     "Rx completion ring\n");
 1207                 goto fail;
 1208         }
 1209 
 1210         ctx.sf_busaddr = 0;
 1211         error = bus_dmamap_load(sc->sf_cdata.sf_rx_cring_tag,
 1212             sc->sf_cdata.sf_rx_cring_map, sc->sf_rdata.sf_rx_cring,
 1213             SF_RX_CLIST_SIZE, sf_dmamap_cb, &ctx, 0);
 1214         if (error != 0 || ctx.sf_busaddr == 0) {
 1215                 device_printf(sc->sf_dev,
 1216                     "failed to load DMA'able memory for Rx completion ring\n");
 1217                 goto fail;
 1218         }
 1219         sc->sf_rdata.sf_rx_cring_paddr = ctx.sf_busaddr;
 1220 
 1221         /*
 1222          * Tx desciptor ring and Tx completion ring should be addressed in
 1223          * the same 4GB space. The same rule applys to Rx ring and Rx
 1224          * completion ring. Unfortunately there is no way to specify this
 1225          * boundary restriction with bus_dma(9). So just try to allocate
 1226          * without the restriction and check the restriction was satisfied.
 1227          * If not, fall back to 32bit dma addressing mode which always
 1228          * guarantees the restriction.
 1229          */
 1230         tx_ring_end = sc->sf_rdata.sf_tx_ring_paddr + SF_TX_DLIST_SIZE;
 1231         tx_cring_end = sc->sf_rdata.sf_tx_cring_paddr + SF_TX_CLIST_SIZE;
 1232         rx_ring_end = sc->sf_rdata.sf_rx_ring_paddr + SF_RX_DLIST_SIZE;
 1233         rx_cring_end = sc->sf_rdata.sf_rx_cring_paddr + SF_RX_CLIST_SIZE;
 1234         if ((SF_ADDR_HI(sc->sf_rdata.sf_tx_ring_paddr) !=
 1235             SF_ADDR_HI(tx_cring_end)) ||
 1236             (SF_ADDR_HI(sc->sf_rdata.sf_tx_cring_paddr) !=
 1237             SF_ADDR_HI(tx_ring_end)) ||
 1238             (SF_ADDR_HI(sc->sf_rdata.sf_rx_ring_paddr) !=
 1239             SF_ADDR_HI(rx_cring_end)) ||
 1240             (SF_ADDR_HI(sc->sf_rdata.sf_rx_cring_paddr) !=
 1241             SF_ADDR_HI(rx_ring_end))) {
 1242                 device_printf(sc->sf_dev,
 1243                     "switching to 32bit DMA mode\n");
 1244                 sf_dma_free(sc);
 1245                 /* Limit DMA address space to 32bit and try again. */
 1246                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
 1247                 goto again;
 1248         }
 1249 
 1250         /* Create DMA maps for Tx buffers. */
 1251         for (i = 0; i < SF_TX_DLIST_CNT; i++) {
 1252                 txd = &sc->sf_cdata.sf_txdesc[i];
 1253                 txd->tx_m = NULL;
 1254                 txd->ndesc = 0;
 1255                 txd->tx_dmamap = NULL;
 1256                 error = bus_dmamap_create(sc->sf_cdata.sf_tx_tag, 0,
 1257                     &txd->tx_dmamap);
 1258                 if (error != 0) {
 1259                         device_printf(sc->sf_dev,
 1260                             "failed to create Tx dmamap\n");
 1261                         goto fail;
 1262                 }
 1263         }
 1264         /* Create DMA maps for Rx buffers. */
 1265         if ((error = bus_dmamap_create(sc->sf_cdata.sf_rx_tag, 0,
 1266             &sc->sf_cdata.sf_rx_sparemap)) != 0) {
 1267                 device_printf(sc->sf_dev,
 1268                     "failed to create spare Rx dmamap\n");
 1269                 goto fail;
 1270         }
 1271         for (i = 0; i < SF_RX_DLIST_CNT; i++) {
 1272                 rxd = &sc->sf_cdata.sf_rxdesc[i];
 1273                 rxd->rx_m = NULL;
 1274                 rxd->rx_dmamap = NULL;
 1275                 error = bus_dmamap_create(sc->sf_cdata.sf_rx_tag, 0,
 1276                     &rxd->rx_dmamap);
 1277                 if (error != 0) {
 1278                         device_printf(sc->sf_dev,
 1279                             "failed to create Rx dmamap\n");
 1280                         goto fail;
 1281                 }
 1282         }
 1283 
 1284 fail:
 1285         return (error);
 1286 }
 1287 
 1288 static void
 1289 sf_dma_free(struct sf_softc *sc)
 1290 {
 1291         struct sf_txdesc        *txd;
 1292         struct sf_rxdesc        *rxd;
 1293         int                     i;
 1294 
 1295         /* Tx ring. */
 1296         if (sc->sf_cdata.sf_tx_ring_tag) {
 1297                 if (sc->sf_cdata.sf_tx_ring_map)
 1298                         bus_dmamap_unload(sc->sf_cdata.sf_tx_ring_tag,
 1299                             sc->sf_cdata.sf_tx_ring_map);
 1300                 if (sc->sf_cdata.sf_tx_ring_map &&
 1301                     sc->sf_rdata.sf_tx_ring)
 1302                         bus_dmamem_free(sc->sf_cdata.sf_tx_ring_tag,
 1303                             sc->sf_rdata.sf_tx_ring,
 1304                             sc->sf_cdata.sf_tx_ring_map);
 1305                 sc->sf_rdata.sf_tx_ring = NULL;
 1306                 sc->sf_cdata.sf_tx_ring_map = NULL;
 1307                 bus_dma_tag_destroy(sc->sf_cdata.sf_tx_ring_tag);
 1308                 sc->sf_cdata.sf_tx_ring_tag = NULL;
 1309         }
 1310         /* Tx completion ring. */
 1311         if (sc->sf_cdata.sf_tx_cring_tag) {
 1312                 if (sc->sf_cdata.sf_tx_cring_map)
 1313                         bus_dmamap_unload(sc->sf_cdata.sf_tx_cring_tag,
 1314                             sc->sf_cdata.sf_tx_cring_map);
 1315                 if (sc->sf_cdata.sf_tx_cring_map &&
 1316                     sc->sf_rdata.sf_tx_cring)
 1317                         bus_dmamem_free(sc->sf_cdata.sf_tx_cring_tag,
 1318                             sc->sf_rdata.sf_tx_cring,
 1319                             sc->sf_cdata.sf_tx_cring_map);
 1320                 sc->sf_rdata.sf_tx_cring = NULL;
 1321                 sc->sf_cdata.sf_tx_cring_map = NULL;
 1322                 bus_dma_tag_destroy(sc->sf_cdata.sf_tx_cring_tag);
 1323                 sc->sf_cdata.sf_tx_cring_tag = NULL;
 1324         }
 1325         /* Rx ring. */
 1326         if (sc->sf_cdata.sf_rx_ring_tag) {
 1327                 if (sc->sf_cdata.sf_rx_ring_map)
 1328                         bus_dmamap_unload(sc->sf_cdata.sf_rx_ring_tag,
 1329                             sc->sf_cdata.sf_rx_ring_map);
 1330                 if (sc->sf_cdata.sf_rx_ring_map &&
 1331                     sc->sf_rdata.sf_rx_ring)
 1332                         bus_dmamem_free(sc->sf_cdata.sf_rx_ring_tag,
 1333                             sc->sf_rdata.sf_rx_ring,
 1334                             sc->sf_cdata.sf_rx_ring_map);
 1335                 sc->sf_rdata.sf_rx_ring = NULL;
 1336                 sc->sf_cdata.sf_rx_ring_map = NULL;
 1337                 bus_dma_tag_destroy(sc->sf_cdata.sf_rx_ring_tag);
 1338                 sc->sf_cdata.sf_rx_ring_tag = NULL;
 1339         }
 1340         /* Rx completion ring. */
 1341         if (sc->sf_cdata.sf_rx_cring_tag) {
 1342                 if (sc->sf_cdata.sf_rx_cring_map)
 1343                         bus_dmamap_unload(sc->sf_cdata.sf_rx_cring_tag,
 1344                             sc->sf_cdata.sf_rx_cring_map);
 1345                 if (sc->sf_cdata.sf_rx_cring_map &&
 1346                     sc->sf_rdata.sf_rx_cring)
 1347                         bus_dmamem_free(sc->sf_cdata.sf_rx_cring_tag,
 1348                             sc->sf_rdata.sf_rx_cring,
 1349                             sc->sf_cdata.sf_rx_cring_map);
 1350                 sc->sf_rdata.sf_rx_cring = NULL;
 1351                 sc->sf_cdata.sf_rx_cring_map = NULL;
 1352                 bus_dma_tag_destroy(sc->sf_cdata.sf_rx_cring_tag);
 1353                 sc->sf_cdata.sf_rx_cring_tag = NULL;
 1354         }
 1355         /* Tx buffers. */
 1356         if (sc->sf_cdata.sf_tx_tag) {
 1357                 for (i = 0; i < SF_TX_DLIST_CNT; i++) {
 1358                         txd = &sc->sf_cdata.sf_txdesc[i];
 1359                         if (txd->tx_dmamap) {
 1360                                 bus_dmamap_destroy(sc->sf_cdata.sf_tx_tag,
 1361                                     txd->tx_dmamap);
 1362                                 txd->tx_dmamap = NULL;
 1363                         }
 1364                 }
 1365                 bus_dma_tag_destroy(sc->sf_cdata.sf_tx_tag);
 1366                 sc->sf_cdata.sf_tx_tag = NULL;
 1367         }
 1368         /* Rx buffers. */
 1369         if (sc->sf_cdata.sf_rx_tag) {
 1370                 for (i = 0; i < SF_RX_DLIST_CNT; i++) {
 1371                         rxd = &sc->sf_cdata.sf_rxdesc[i];
 1372                         if (rxd->rx_dmamap) {
 1373                                 bus_dmamap_destroy(sc->sf_cdata.sf_rx_tag,
 1374                                     rxd->rx_dmamap);
 1375                                 rxd->rx_dmamap = NULL;
 1376                         }
 1377                 }
 1378                 if (sc->sf_cdata.sf_rx_sparemap) {
 1379                         bus_dmamap_destroy(sc->sf_cdata.sf_rx_tag,
 1380                             sc->sf_cdata.sf_rx_sparemap);
 1381                         sc->sf_cdata.sf_rx_sparemap = 0;
 1382                 }
 1383                 bus_dma_tag_destroy(sc->sf_cdata.sf_rx_tag);
 1384                 sc->sf_cdata.sf_rx_tag = NULL;
 1385         }
 1386 
 1387         if (sc->sf_cdata.sf_parent_tag) {
 1388                 bus_dma_tag_destroy(sc->sf_cdata.sf_parent_tag);
 1389                 sc->sf_cdata.sf_parent_tag = NULL;
 1390         }
 1391 }
 1392 
 1393 static int
 1394 sf_init_rx_ring(struct sf_softc *sc)
 1395 {
 1396         struct sf_ring_data     *rd;
 1397         int                     i;
 1398 
 1399         sc->sf_cdata.sf_rxc_cons = 0;
 1400 
 1401         rd = &sc->sf_rdata;
 1402         bzero(rd->sf_rx_ring, SF_RX_DLIST_SIZE);
 1403         bzero(rd->sf_rx_cring, SF_RX_CLIST_SIZE);
 1404 
 1405         for (i = 0; i < SF_RX_DLIST_CNT; i++) {
 1406                 if (sf_newbuf(sc, i) != 0)
 1407                         return (ENOBUFS);
 1408         }
 1409 
 1410         bus_dmamap_sync(sc->sf_cdata.sf_rx_cring_tag,
 1411             sc->sf_cdata.sf_rx_cring_map,
 1412             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1413         bus_dmamap_sync(sc->sf_cdata.sf_rx_ring_tag,
 1414             sc->sf_cdata.sf_rx_ring_map,
 1415             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1416 
 1417         return (0);
 1418 }
 1419 
 1420 static void
 1421 sf_init_tx_ring(struct sf_softc *sc)
 1422 {
 1423         struct sf_ring_data     *rd;
 1424         int                     i;
 1425 
 1426         sc->sf_cdata.sf_tx_prod = 0;
 1427         sc->sf_cdata.sf_tx_cnt = 0;
 1428         sc->sf_cdata.sf_txc_cons = 0;
 1429 
 1430         rd = &sc->sf_rdata;
 1431         bzero(rd->sf_tx_ring, SF_TX_DLIST_SIZE);
 1432         bzero(rd->sf_tx_cring, SF_TX_CLIST_SIZE);
 1433         for (i = 0; i < SF_TX_DLIST_CNT; i++) {
 1434                 rd->sf_tx_ring[i].sf_tx_ctrl = htole32(SF_TX_DESC_ID);
 1435                 sc->sf_cdata.sf_txdesc[i].tx_m = NULL;
 1436                 sc->sf_cdata.sf_txdesc[i].ndesc = 0;
 1437         }
 1438         rd->sf_tx_ring[i].sf_tx_ctrl |= htole32(SF_TX_DESC_END);
 1439 
 1440         bus_dmamap_sync(sc->sf_cdata.sf_tx_ring_tag,
 1441             sc->sf_cdata.sf_tx_ring_map,
 1442             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1443         bus_dmamap_sync(sc->sf_cdata.sf_tx_cring_tag,
 1444             sc->sf_cdata.sf_tx_cring_map,
 1445             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1446 }
 1447 
 1448 /*
 1449  * Initialize an RX descriptor and attach an MBUF cluster.
 1450  */
 1451 static int
 1452 sf_newbuf(struct sf_softc *sc, int idx)
 1453 {
 1454         struct sf_rx_rdesc      *desc;
 1455         struct sf_rxdesc        *rxd;
 1456         struct mbuf             *m;
 1457         bus_dma_segment_t       segs[1];
 1458         bus_dmamap_t            map;
 1459         int                     nsegs;
 1460 
 1461         m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
 1462         if (m == NULL)
 1463                 return (ENOBUFS);
 1464         m->m_len = m->m_pkthdr.len = MCLBYTES;
 1465         m_adj(m, sizeof(uint32_t));
 1466 
 1467         if (bus_dmamap_load_mbuf_sg(sc->sf_cdata.sf_rx_tag,
 1468             sc->sf_cdata.sf_rx_sparemap, m, segs, &nsegs, 0) != 0) {
 1469                 m_freem(m);
 1470                 return (ENOBUFS);
 1471         }
 1472         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
 1473 
 1474         rxd = &sc->sf_cdata.sf_rxdesc[idx];
 1475         if (rxd->rx_m != NULL) {
 1476                 bus_dmamap_sync(sc->sf_cdata.sf_rx_tag, rxd->rx_dmamap,
 1477                     BUS_DMASYNC_POSTREAD);
 1478                 bus_dmamap_unload(sc->sf_cdata.sf_rx_tag, rxd->rx_dmamap);
 1479         }
 1480         map = rxd->rx_dmamap;
 1481         rxd->rx_dmamap = sc->sf_cdata.sf_rx_sparemap;
 1482         sc->sf_cdata.sf_rx_sparemap = map;
 1483         bus_dmamap_sync(sc->sf_cdata.sf_rx_tag, rxd->rx_dmamap,
 1484             BUS_DMASYNC_PREREAD);
 1485         rxd->rx_m = m;
 1486         desc = &sc->sf_rdata.sf_rx_ring[idx];
 1487         desc->sf_addr = htole64(segs[0].ds_addr);
 1488 
 1489         return (0);
 1490 }
 1491 
 1492 #ifndef __NO_STRICT_ALIGNMENT
 1493 static __inline void
 1494 sf_fixup_rx(struct mbuf *m)
 1495 {
 1496         int                     i;
 1497         uint16_t                *src, *dst;
 1498 
 1499         src = mtod(m, uint16_t *);
 1500         dst = src - 1;
 1501 
 1502         for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
 1503                 *dst++ = *src++;
 1504 
 1505         m->m_data -= ETHER_ALIGN;
 1506 }
 1507 #endif
 1508 
 1509 /*
 1510  * The starfire is programmed to use 'normal' mode for packet reception,
 1511  * which means we use the consumer/producer model for both the buffer
 1512  * descriptor queue and the completion descriptor queue. The only problem
 1513  * with this is that it involves a lot of register accesses: we have to
 1514  * read the RX completion consumer and producer indexes and the RX buffer
 1515  * producer index, plus the RX completion consumer and RX buffer producer
 1516  * indexes have to be updated. It would have been easier if Adaptec had
 1517  * put each index in a separate register, especially given that the damn
 1518  * NIC has a 512K register space.
 1519  *
 1520  * In spite of all the lovely features that Adaptec crammed into the 6915,
 1521  * it is marred by one truly stupid design flaw, which is that receive
 1522  * buffer addresses must be aligned on a longword boundary. This forces
 1523  * the packet payload to be unaligned, which is suboptimal on the x86 and
 1524  * completely unuseable on the Alpha. Our only recourse is to copy received
 1525  * packets into properly aligned buffers before handing them off.
 1526  */
 1527 static int
 1528 sf_rxeof(struct sf_softc *sc)
 1529 {
 1530         struct mbuf             *m;
 1531         struct ifnet            *ifp;
 1532         struct sf_rxdesc        *rxd;
 1533         struct sf_rx_rcdesc     *cur_cmp;
 1534         int                     cons, eidx, prog, rx_npkts;
 1535         uint32_t                status, status2;
 1536 
 1537         SF_LOCK_ASSERT(sc);
 1538 
 1539         ifp = sc->sf_ifp;
 1540         rx_npkts = 0;
 1541 
 1542         bus_dmamap_sync(sc->sf_cdata.sf_rx_ring_tag,
 1543             sc->sf_cdata.sf_rx_ring_map,
 1544             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 1545         bus_dmamap_sync(sc->sf_cdata.sf_rx_cring_tag,
 1546             sc->sf_cdata.sf_rx_cring_map,
 1547             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 1548 
 1549         /*
 1550          * To reduce register access, directly read Receive completion
 1551          * queue entry.
 1552          */
 1553         eidx = 0;
 1554         prog = 0;
 1555         for (cons = sc->sf_cdata.sf_rxc_cons; ; SF_INC(cons, SF_RX_CLIST_CNT)) {
 1556                 cur_cmp = &sc->sf_rdata.sf_rx_cring[cons];
 1557                 status = le32toh(cur_cmp->sf_rx_status1);
 1558                 if (status == 0)
 1559                         break;
 1560 #ifdef DEVICE_POLLING
 1561                 if ((ifp->if_capenable & IFCAP_POLLING) != 0) {
 1562                         if (sc->rxcycles <= 0)
 1563                                 break;
 1564                         sc->rxcycles--;
 1565                 }
 1566 #endif
 1567                 prog++;
 1568                 eidx = (status & SF_RX_CMPDESC_EIDX) >> 16;
 1569                 rxd = &sc->sf_cdata.sf_rxdesc[eidx];
 1570                 m = rxd->rx_m;
 1571 
 1572                 /*
 1573                  * Note, if_ipackets and if_ierrors counters
 1574                  * are handled in sf_stats_update().
 1575                  */
 1576                 if ((status & SF_RXSTAT1_OK) == 0) {
 1577                         cur_cmp->sf_rx_status1 = 0;
 1578                         continue;
 1579                 }
 1580 
 1581                 if (sf_newbuf(sc, eidx) != 0) {
 1582                         ifp->if_iqdrops++;
 1583                         cur_cmp->sf_rx_status1 = 0;
 1584                         continue;
 1585                 }
 1586 
 1587                 /* AIC-6915 supports TCP/UDP checksum offload. */
 1588                 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
 1589                         status2 = le32toh(cur_cmp->sf_rx_status2);
 1590                         /*
 1591                          * Sometimes AIC-6915 generates an interrupt to
 1592                          * warn RxGFP stall with bad checksum bit set
 1593                          * in status word. I'm not sure what conditioan
 1594                          * triggers it but recevied packet's checksum
 1595                          * was correct even though AIC-6915 does not
 1596                          * agree on this. This may be an indication of
 1597                          * firmware bug. To fix the issue, do not rely
 1598                          * on bad checksum bit in status word and let
 1599                          * upper layer verify integrity of received
 1600                          * frame.
 1601                          * Another nice feature of AIC-6915 is hardware
 1602                          * assistance of checksum calculation by
 1603                          * providing partial checksum value for received
 1604                          * frame. The partial checksum value can be used
 1605                          * to accelerate checksum computation for
 1606                          * fragmented TCP/UDP packets. Upper network
 1607                          * stack already takes advantage of the partial
 1608                          * checksum value in IP reassembly stage. But
 1609                          * I'm not sure the correctness of the partial
 1610                          * hardware checksum assistance as frequent
 1611                          * RxGFP stalls are seen on non-fragmented
 1612                          * frames. Due to the nature of the complexity
 1613                          * of checksum computation code in firmware it's
 1614                          * possible to see another bug in RxGFP so
 1615                          * ignore checksum assistance for fragmented
 1616                          * frames. This can be changed in future.
 1617                          */
 1618                         if ((status2 & SF_RXSTAT2_FRAG) == 0) {
 1619                                 if ((status2 & (SF_RXSTAT2_TCP |
 1620                                     SF_RXSTAT2_UDP)) != 0) {
 1621                                         if ((status2 & SF_RXSTAT2_CSUM_OK)) {
 1622                                                 m->m_pkthdr.csum_flags =
 1623                                                     CSUM_DATA_VALID |
 1624                                                     CSUM_PSEUDO_HDR;
 1625                                                 m->m_pkthdr.csum_data = 0xffff;
 1626                                         }
 1627                                 }
 1628                         }
 1629 #ifdef SF_PARTIAL_CSUM_SUPPORT
 1630                         else if ((status2 & SF_RXSTAT2_FRAG) != 0) {
 1631                                 if ((status2 & (SF_RXSTAT2_TCP |
 1632                                     SF_RXSTAT2_UDP)) != 0) {
 1633                                         if ((status2 & SF_RXSTAT2_PCSUM_OK)) {
 1634                                                 m->m_pkthdr.csum_flags =
 1635                                                     CSUM_DATA_VALID;
 1636                                                 m->m_pkthdr.csum_data =
 1637                                                     (status &
 1638                                                     SF_RX_CMPDESC_CSUM2);
 1639                                         }
 1640                                 }
 1641                         }
 1642 #endif
 1643                 }
 1644 
 1645                 m->m_pkthdr.len = m->m_len = status & SF_RX_CMPDESC_LEN;
 1646 #ifndef __NO_STRICT_ALIGNMENT
 1647                 sf_fixup_rx(m);
 1648 #endif
 1649                 m->m_pkthdr.rcvif = ifp;
 1650 
 1651                 SF_UNLOCK(sc);
 1652                 (*ifp->if_input)(ifp, m);
 1653                 SF_LOCK(sc);
 1654                 rx_npkts++;
 1655 
 1656                 /* Clear completion status. */
 1657                 cur_cmp->sf_rx_status1 = 0;
 1658         }
 1659 
 1660         if (prog > 0) {
 1661                 sc->sf_cdata.sf_rxc_cons = cons;
 1662                 bus_dmamap_sync(sc->sf_cdata.sf_rx_ring_tag,
 1663                     sc->sf_cdata.sf_rx_ring_map,
 1664                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1665                 bus_dmamap_sync(sc->sf_cdata.sf_rx_cring_tag,
 1666                     sc->sf_cdata.sf_rx_cring_map,
 1667                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1668 
 1669                 /* Update Rx completion Q1 consumer index. */
 1670                 csr_write_4(sc, SF_CQ_CONSIDX,
 1671                     (csr_read_4(sc, SF_CQ_CONSIDX) & ~SF_CQ_CONSIDX_RXQ1) |
 1672                     (cons & SF_CQ_CONSIDX_RXQ1));
 1673                 /* Update Rx descriptor Q1 ptr. */
 1674                 csr_write_4(sc, SF_RXDQ_PTR_Q1,
 1675                     (csr_read_4(sc, SF_RXDQ_PTR_Q1) & ~SF_RXDQ_PRODIDX) |
 1676                     (eidx & SF_RXDQ_PRODIDX));
 1677         }
 1678         return (rx_npkts);
 1679 }
 1680 
 1681 /*
 1682  * Read the transmit status from the completion queue and release
 1683  * mbufs. Note that the buffer descriptor index in the completion
 1684  * descriptor is an offset from the start of the transmit buffer
 1685  * descriptor list in bytes. This is important because the manual
 1686  * gives the impression that it should match the producer/consumer
 1687  * index, which is the offset in 8 byte blocks.
 1688  */
 1689 static void
 1690 sf_txeof(struct sf_softc *sc)
 1691 {
 1692         struct sf_txdesc        *txd;
 1693         struct sf_tx_rcdesc     *cur_cmp;
 1694         struct ifnet            *ifp;
 1695         uint32_t                status;
 1696         int                     cons, idx, prod;
 1697 
 1698         SF_LOCK_ASSERT(sc);
 1699 
 1700         ifp = sc->sf_ifp;
 1701 
 1702         bus_dmamap_sync(sc->sf_cdata.sf_tx_cring_tag,
 1703             sc->sf_cdata.sf_tx_cring_map,
 1704             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 1705 
 1706         cons = sc->sf_cdata.sf_txc_cons;
 1707         prod = (csr_read_4(sc, SF_CQ_PRODIDX) & SF_TXDQ_PRODIDX_HIPRIO) >> 16;
 1708         if (prod == cons)
 1709                 return;
 1710 
 1711         for (; cons != prod; SF_INC(cons, SF_TX_CLIST_CNT)) {
 1712                 cur_cmp = &sc->sf_rdata.sf_tx_cring[cons];
 1713                 status = le32toh(cur_cmp->sf_tx_status1);
 1714                 if (status == 0)
 1715                         break;
 1716                 switch (status & SF_TX_CMPDESC_TYPE) {
 1717                 case SF_TXCMPTYPE_TX:
 1718                         /* Tx complete entry. */
 1719                         break;
 1720                 case SF_TXCMPTYPE_DMA:
 1721                         /* DMA complete entry. */
 1722                         idx = status & SF_TX_CMPDESC_IDX;
 1723                         idx = idx / sizeof(struct sf_tx_rdesc);
 1724                         /*
 1725                          * We don't need to check Tx status here.
 1726                          * SF_ISR_TX_LOFIFO intr would handle this.
 1727                          * Note, if_opackets, if_collisions and if_oerrors
 1728                          * counters are handled in sf_stats_update().
 1729                          */
 1730                         txd = &sc->sf_cdata.sf_txdesc[idx];
 1731                         if (txd->tx_m != NULL) {
 1732                                 bus_dmamap_sync(sc->sf_cdata.sf_tx_tag,
 1733                                     txd->tx_dmamap,
 1734                                     BUS_DMASYNC_POSTWRITE);
 1735                                 bus_dmamap_unload(sc->sf_cdata.sf_tx_tag,
 1736                                     txd->tx_dmamap);
 1737                                 m_freem(txd->tx_m);
 1738                                 txd->tx_m = NULL;
 1739                         }
 1740                         sc->sf_cdata.sf_tx_cnt -= txd->ndesc;
 1741                         KASSERT(sc->sf_cdata.sf_tx_cnt >= 0,
 1742                             ("%s: Active Tx desc counter was garbled\n",
 1743                             __func__));
 1744                         txd->ndesc = 0;
 1745                         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 1746                         break;
 1747                 default:
 1748                         /* It should not happen. */
 1749                         device_printf(sc->sf_dev,
 1750                             "unknown Tx completion type : 0x%08x : %d : %d\n",
 1751                             status, cons, prod);
 1752                         break;
 1753                 }
 1754                 cur_cmp->sf_tx_status1 = 0;
 1755         }
 1756 
 1757         sc->sf_cdata.sf_txc_cons = cons;
 1758         bus_dmamap_sync(sc->sf_cdata.sf_tx_cring_tag,
 1759             sc->sf_cdata.sf_tx_cring_map,
 1760             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1761 
 1762         if (sc->sf_cdata.sf_tx_cnt == 0)
 1763                 sc->sf_watchdog_timer = 0;
 1764 
 1765         /* Update Tx completion consumer index. */
 1766         csr_write_4(sc, SF_CQ_CONSIDX,
 1767             (csr_read_4(sc, SF_CQ_CONSIDX) & 0xffff) |
 1768             ((cons << 16) & 0xffff0000));
 1769 }
 1770 
 1771 static void
 1772 sf_txthresh_adjust(struct sf_softc *sc)
 1773 {
 1774         uint32_t                txfctl;
 1775 
 1776         device_printf(sc->sf_dev, "Tx underrun -- ");
 1777         if (sc->sf_txthresh < SF_MAX_TX_THRESHOLD) {
 1778                 txfctl = csr_read_4(sc, SF_TX_FRAMCTL);
 1779                 /* Increase Tx threshold 256 bytes. */
 1780                 sc->sf_txthresh += 16;
 1781                 if (sc->sf_txthresh > SF_MAX_TX_THRESHOLD)
 1782                         sc->sf_txthresh = SF_MAX_TX_THRESHOLD;
 1783                 txfctl &= ~SF_TXFRMCTL_TXTHRESH;
 1784                 txfctl |= sc->sf_txthresh;
 1785                 printf("increasing Tx threshold to %d bytes\n",
 1786                     sc->sf_txthresh * SF_TX_THRESHOLD_UNIT);
 1787                 csr_write_4(sc, SF_TX_FRAMCTL, txfctl);
 1788         } else
 1789                 printf("\n");
 1790 }
 1791 
 1792 #ifdef DEVICE_POLLING
 1793 static int
 1794 sf_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
 1795 {
 1796         struct sf_softc         *sc;
 1797         uint32_t                status;
 1798         int                     rx_npkts;
 1799 
 1800         sc = ifp->if_softc;
 1801         rx_npkts = 0;
 1802         SF_LOCK(sc);
 1803 
 1804         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
 1805                 SF_UNLOCK(sc);
 1806                 return (rx_npkts);
 1807         }
 1808 
 1809         sc->rxcycles = count;
 1810         rx_npkts = sf_rxeof(sc);
 1811         sf_txeof(sc);
 1812         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 1813                 sf_start_locked(ifp);
 1814 
 1815         if (cmd == POLL_AND_CHECK_STATUS) {
 1816                 /* Reading the ISR register clears all interrrupts. */
 1817                 status = csr_read_4(sc, SF_ISR);
 1818 
 1819                 if ((status & SF_ISR_ABNORMALINTR) != 0) {
 1820                         if ((status & SF_ISR_STATSOFLOW) != 0)
 1821                                 sf_stats_update(sc);
 1822                         else if ((status & SF_ISR_TX_LOFIFO) != 0)
 1823                                 sf_txthresh_adjust(sc);
 1824                         else if ((status & SF_ISR_DMAERR) != 0) {
 1825                                 device_printf(sc->sf_dev,
 1826                                     "DMA error, resetting\n");
 1827                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1828                                 sf_init_locked(sc);
 1829                                 SF_UNLOCK(sc);
 1830                                 return (rx_npkts);
 1831                         } else if ((status & SF_ISR_NO_TX_CSUM) != 0) {
 1832                                 sc->sf_statistics.sf_tx_gfp_stall++;
 1833 #ifdef  SF_GFP_DEBUG
 1834                                 device_printf(sc->sf_dev,
 1835                                     "TxGFP is not responding!\n");
 1836 #endif
 1837                         } else if ((status & SF_ISR_RXGFP_NORESP) != 0) {
 1838                                 sc->sf_statistics.sf_rx_gfp_stall++;
 1839 #ifdef  SF_GFP_DEBUG
 1840                                 device_printf(sc->sf_dev,
 1841                                     "RxGFP is not responding!\n");
 1842 #endif
 1843                         }
 1844                 }
 1845         }
 1846 
 1847         SF_UNLOCK(sc);
 1848         return (rx_npkts);
 1849 }
 1850 #endif /* DEVICE_POLLING */
 1851 
 1852 static void
 1853 sf_intr(void *arg)
 1854 {
 1855         struct sf_softc         *sc;
 1856         struct ifnet            *ifp;
 1857         uint32_t                status;
 1858 
 1859         sc = (struct sf_softc *)arg;
 1860         SF_LOCK(sc);
 1861 
 1862         if (sc->sf_suspended != 0)
 1863                 goto done_locked;
 1864 
 1865         /* Reading the ISR register clears all interrrupts. */
 1866         status = csr_read_4(sc, SF_ISR);
 1867         if (status == 0 || status == 0xffffffff ||
 1868             (status & SF_ISR_PCIINT_ASSERTED) == 0)
 1869                 goto done_locked;
 1870 
 1871         ifp = sc->sf_ifp;
 1872 #ifdef DEVICE_POLLING
 1873         if ((ifp->if_capenable & IFCAP_POLLING) != 0)
 1874                 goto done_locked;
 1875 #endif
 1876         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
 1877                 goto done_locked;
 1878 
 1879         /* Disable interrupts. */
 1880         csr_write_4(sc, SF_IMR, 0x00000000);
 1881 
 1882         for (; (status & SF_INTRS) != 0;) {
 1883                 if ((status & SF_ISR_RXDQ1_DMADONE) != 0)
 1884                         sf_rxeof(sc);
 1885 
 1886                 if ((status & (SF_ISR_TX_TXDONE | SF_ISR_TX_DMADONE |
 1887                     SF_ISR_TX_QUEUEDONE)) != 0)
 1888                         sf_txeof(sc);
 1889 
 1890                 if ((status & SF_ISR_ABNORMALINTR) != 0) {
 1891                         if ((status & SF_ISR_STATSOFLOW) != 0)
 1892                                 sf_stats_update(sc);
 1893                         else if ((status & SF_ISR_TX_LOFIFO) != 0)
 1894                                 sf_txthresh_adjust(sc);
 1895                         else if ((status & SF_ISR_DMAERR) != 0) {
 1896                                 device_printf(sc->sf_dev,
 1897                                     "DMA error, resetting\n");
 1898                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1899                                 sf_init_locked(sc);
 1900                                 SF_UNLOCK(sc);
 1901                                 return;
 1902                         } else if ((status & SF_ISR_NO_TX_CSUM) != 0) {
 1903                                 sc->sf_statistics.sf_tx_gfp_stall++;
 1904 #ifdef  SF_GFP_DEBUG
 1905                                 device_printf(sc->sf_dev,
 1906                                     "TxGFP is not responding!\n");
 1907 #endif
 1908                         }
 1909                         else if ((status & SF_ISR_RXGFP_NORESP) != 0) {
 1910                                 sc->sf_statistics.sf_rx_gfp_stall++;
 1911 #ifdef  SF_GFP_DEBUG
 1912                                 device_printf(sc->sf_dev,
 1913                                     "RxGFP is not responding!\n");
 1914 #endif
 1915                         }
 1916                 }
 1917                 /* Reading the ISR register clears all interrrupts. */
 1918                 status = csr_read_4(sc, SF_ISR);
 1919         }
 1920 
 1921         /* Re-enable interrupts. */
 1922         csr_write_4(sc, SF_IMR, SF_INTRS);
 1923 
 1924         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 1925                 sf_start_locked(ifp);
 1926 done_locked:
 1927         SF_UNLOCK(sc);
 1928 }
 1929 
 1930 static void
 1931 sf_download_fw(struct sf_softc *sc)
 1932 {
 1933         uint32_t gfpinst;
 1934         int i, ndx;
 1935         uint8_t *p;
 1936 
 1937         /*
 1938          * A FP instruction is composed of 48bits so we have to
 1939          * write it with two parts.
 1940          */
 1941         p = txfwdata;
 1942         ndx = 0;
 1943         for (i = 0; i < sizeof(txfwdata) / SF_GFP_INST_BYTES; i++) {
 1944                 gfpinst = p[2] << 24 | p[3] << 16 | p[4] << 8 | p[5];
 1945                 csr_write_4(sc, SF_TXGFP_MEM_BASE + ndx * 4, gfpinst);
 1946                 gfpinst = p[0] << 8 | p[1];
 1947                 csr_write_4(sc, SF_TXGFP_MEM_BASE + (ndx + 1) * 4, gfpinst);
 1948                 p += SF_GFP_INST_BYTES;
 1949                 ndx += 2;
 1950         }
 1951         if (bootverbose)
 1952                 device_printf(sc->sf_dev, "%d Tx instructions downloaded\n", i);
 1953 
 1954         p = rxfwdata;
 1955         ndx = 0;
 1956         for (i = 0; i < sizeof(rxfwdata) / SF_GFP_INST_BYTES; i++) {
 1957                 gfpinst = p[2] << 24 | p[3] << 16 | p[4] << 8 | p[5];
 1958                 csr_write_4(sc, SF_RXGFP_MEM_BASE + (ndx * 4), gfpinst);
 1959                 gfpinst = p[0] << 8 | p[1];
 1960                 csr_write_4(sc, SF_RXGFP_MEM_BASE + (ndx + 1) * 4, gfpinst);
 1961                 p += SF_GFP_INST_BYTES;
 1962                 ndx += 2;
 1963         }
 1964         if (bootverbose)
 1965                 device_printf(sc->sf_dev, "%d Rx instructions downloaded\n", i);
 1966 }
 1967 
 1968 static void
 1969 sf_init(void *xsc)
 1970 {
 1971         struct sf_softc         *sc;
 1972 
 1973         sc = (struct sf_softc *)xsc;
 1974         SF_LOCK(sc);
 1975         sf_init_locked(sc);
 1976         SF_UNLOCK(sc);
 1977 }
 1978 
 1979 static void
 1980 sf_init_locked(struct sf_softc *sc)
 1981 {
 1982         struct ifnet            *ifp;
 1983         struct mii_data         *mii;
 1984         uint8_t                 eaddr[ETHER_ADDR_LEN];
 1985         bus_addr_t              addr;
 1986         int                     i;
 1987 
 1988         SF_LOCK_ASSERT(sc);
 1989         ifp = sc->sf_ifp;
 1990         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 1991                 return;
 1992         mii = device_get_softc(sc->sf_miibus);
 1993 
 1994         sf_stop(sc);
 1995         /* Reset the hardware to a known state. */
 1996         sf_reset(sc);
 1997 
 1998         /* Init all the receive filter registers */
 1999         for (i = SF_RXFILT_PERFECT_BASE;
 2000             i < (SF_RXFILT_HASH_MAX + 1); i += sizeof(uint32_t))
 2001                 csr_write_4(sc, i, 0);
 2002 
 2003         /* Empty stats counter registers. */
 2004         for (i = SF_STATS_BASE; i < (SF_STATS_END + 1); i += sizeof(uint32_t))
 2005                 csr_write_4(sc, i, 0);
 2006 
 2007         /* Init our MAC address. */
 2008         bcopy(IF_LLADDR(sc->sf_ifp), eaddr, sizeof(eaddr));
 2009         csr_write_4(sc, SF_PAR0,
 2010             eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
 2011         csr_write_4(sc, SF_PAR1, eaddr[0] << 8 | eaddr[1]);
 2012         sf_setperf(sc, 0, eaddr);
 2013 
 2014         if (sf_init_rx_ring(sc) == ENOBUFS) {
 2015                 device_printf(sc->sf_dev,
 2016                     "initialization failed: no memory for rx buffers\n");
 2017                 return;
 2018         }
 2019 
 2020         sf_init_tx_ring(sc);
 2021 
 2022         /*
 2023          * 16 perfect address filtering.
 2024          * Hash only multicast destination address, Accept matching
 2025          * frames regardless of VLAN ID.
 2026          */
 2027         csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL | SF_HASHMODE_ANYVLAN);
 2028 
 2029         /*
 2030          * Set Rx filter.
 2031          */
 2032         sf_rxfilter(sc);
 2033 
 2034         /* Init the completion queue indexes. */
 2035         csr_write_4(sc, SF_CQ_CONSIDX, 0);
 2036         csr_write_4(sc, SF_CQ_PRODIDX, 0);
 2037 
 2038         /* Init the RX completion queue. */
 2039         addr = sc->sf_rdata.sf_rx_cring_paddr;
 2040         csr_write_4(sc, SF_CQ_ADDR_HI, SF_ADDR_HI(addr));
 2041         csr_write_4(sc, SF_RXCQ_CTL_1, SF_ADDR_LO(addr) & SF_RXCQ_ADDR);
 2042         if (SF_ADDR_HI(addr) != 0)
 2043                 SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQ_USE_64BIT);
 2044         /* Set RX completion queue type 2. */
 2045         SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_2);
 2046         csr_write_4(sc, SF_RXCQ_CTL_2, 0);
 2047 
 2048         /*
 2049          * Init RX DMA control.
 2050          * default RxHighPriority Threshold,
 2051          * default RxBurstSize, 128bytes.
 2052          */
 2053         SF_SETBIT(sc, SF_RXDMA_CTL,
 2054             SF_RXDMA_REPORTBADPKTS |
 2055             (SF_RXDMA_HIGHPRIO_THRESH << 8) |
 2056             SF_RXDMA_BURST);
 2057 
 2058         /* Init the RX buffer descriptor queue. */
 2059         addr = sc->sf_rdata.sf_rx_ring_paddr;
 2060         csr_write_4(sc, SF_RXDQ_ADDR_HI, SF_ADDR_HI(addr));
 2061         csr_write_4(sc, SF_RXDQ_ADDR_Q1, SF_ADDR_LO(addr));
 2062 
 2063         /* Set RX queue buffer length. */
 2064         csr_write_4(sc, SF_RXDQ_CTL_1,
 2065             ((MCLBYTES  - sizeof(uint32_t)) << 16) |
 2066             SF_RXDQCTL_64BITBADDR | SF_RXDQCTL_VARIABLE);
 2067 
 2068         if (SF_ADDR_HI(addr) != 0)
 2069                 SF_SETBIT(sc, SF_RXDQ_CTL_1, SF_RXDQCTL_64BITDADDR);
 2070         csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
 2071         csr_write_4(sc, SF_RXDQ_CTL_2, 0);
 2072 
 2073         /* Init the TX completion queue */
 2074         addr = sc->sf_rdata.sf_tx_cring_paddr;
 2075         csr_write_4(sc, SF_TXCQ_CTL, SF_ADDR_LO(addr) & SF_TXCQ_ADDR);
 2076         if (SF_ADDR_HI(addr) != 0)
 2077                 SF_SETBIT(sc, SF_TXCQ_CTL, SF_TXCQ_USE_64BIT);
 2078 
 2079         /* Init the TX buffer descriptor queue. */
 2080         addr = sc->sf_rdata.sf_tx_ring_paddr;
 2081         csr_write_4(sc, SF_TXDQ_ADDR_HI, SF_ADDR_HI(addr));
 2082         csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
 2083         csr_write_4(sc, SF_TXDQ_ADDR_LOPRIO, SF_ADDR_LO(addr));
 2084         csr_write_4(sc, SF_TX_FRAMCTL,
 2085             SF_TXFRMCTL_CPLAFTERTX | sc->sf_txthresh);
 2086         csr_write_4(sc, SF_TXDQ_CTL,
 2087             SF_TXDMA_HIPRIO_THRESH << 24 |
 2088             SF_TXSKIPLEN_0BYTES << 16 |
 2089             SF_TXDDMA_BURST << 8 |
 2090             SF_TXBUFDESC_TYPE2 | SF_TXMINSPACE_UNLIMIT);
 2091         if (SF_ADDR_HI(addr) != 0)
 2092                 SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_64BITADDR);
 2093 
 2094         /* Set VLAN Type register. */
 2095         csr_write_4(sc, SF_VLANTYPE, ETHERTYPE_VLAN);
 2096 
 2097         /* Set TxPause Timer. */
 2098         csr_write_4(sc, SF_TXPAUSETIMER, 0xffff);
 2099 
 2100         /* Enable autopadding of short TX frames. */
 2101         SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
 2102         SF_SETBIT(sc, SF_MACCFG_2, SF_MACCFG2_AUTOVLANPAD);
 2103         /* Make sure to reset MAC to take changes effect. */
 2104         SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
 2105         DELAY(1000);
 2106         SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
 2107 
 2108         /* Enable PCI bus master. */
 2109         SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_PCIMEN);
 2110 
 2111         /* Load StarFire firmware. */
 2112         sf_download_fw(sc);
 2113 
 2114         /* Intialize interrupt moderation. */
 2115         csr_write_4(sc, SF_TIMER_CTL, SF_TIMER_IMASK_MODE | SF_TIMER_TIMES_TEN |
 2116             (sc->sf_int_mod & SF_TIMER_IMASK_INTERVAL));
 2117 
 2118 #ifdef DEVICE_POLLING
 2119         /* Disable interrupts if we are polling. */
 2120         if ((ifp->if_capenable & IFCAP_POLLING) != 0)
 2121                 csr_write_4(sc, SF_IMR, 0x00000000);
 2122         else
 2123 #endif
 2124         /* Enable interrupts. */
 2125         csr_write_4(sc, SF_IMR, SF_INTRS);
 2126         SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
 2127 
 2128         /* Enable the RX and TX engines. */
 2129         csr_write_4(sc, SF_GEN_ETH_CTL,
 2130             SF_ETHCTL_RX_ENB | SF_ETHCTL_RXDMA_ENB |
 2131             SF_ETHCTL_TX_ENB | SF_ETHCTL_TXDMA_ENB);
 2132 
 2133         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
 2134                 SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TXGFP_ENB);
 2135         else
 2136                 SF_CLRBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TXGFP_ENB);
 2137         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
 2138                 SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RXGFP_ENB);
 2139         else
 2140                 SF_CLRBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RXGFP_ENB);
 2141 
 2142         sc->sf_link = 0;
 2143         mii_mediachg(mii);
 2144 
 2145         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 2146         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 2147 
 2148         callout_reset(&sc->sf_co, hz, sf_tick, sc);
 2149 }
 2150 
 2151 static int
 2152 sf_encap(struct sf_softc *sc, struct mbuf **m_head)
 2153 {
 2154         struct sf_txdesc        *txd;
 2155         struct sf_tx_rdesc      *desc;
 2156         struct mbuf             *m;
 2157         bus_dmamap_t            map;
 2158         bus_dma_segment_t       txsegs[SF_MAXTXSEGS];
 2159         int                     error, i, nsegs, prod, si;
 2160         int                     avail, nskip;
 2161 
 2162         SF_LOCK_ASSERT(sc);
 2163 
 2164         m = *m_head;
 2165         prod = sc->sf_cdata.sf_tx_prod;
 2166         txd = &sc->sf_cdata.sf_txdesc[prod];
 2167         map = txd->tx_dmamap;
 2168         error = bus_dmamap_load_mbuf_sg(sc->sf_cdata.sf_tx_tag, map,
 2169             *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
 2170         if (error == EFBIG) {
 2171                 m = m_collapse(*m_head, M_DONTWAIT, SF_MAXTXSEGS);
 2172                 if (m == NULL) {
 2173                         m_freem(*m_head);
 2174                         *m_head = NULL;
 2175                         return (ENOBUFS);
 2176                 }
 2177                 *m_head = m;
 2178                 error = bus_dmamap_load_mbuf_sg(sc->sf_cdata.sf_tx_tag,
 2179                     map, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
 2180                 if (error != 0) {
 2181                         m_freem(*m_head);
 2182                         *m_head = NULL;
 2183                         return (error);
 2184                 }
 2185         } else if (error != 0)
 2186                 return (error);
 2187         if (nsegs == 0) {
 2188                 m_freem(*m_head);
 2189                 *m_head = NULL;
 2190                 return (EIO);
 2191         }
 2192 
 2193         /* Check number of available descriptors. */
 2194         avail = (SF_TX_DLIST_CNT - 1) - sc->sf_cdata.sf_tx_cnt;
 2195         if (avail < nsegs) {
 2196                 bus_dmamap_unload(sc->sf_cdata.sf_tx_tag, map);
 2197                 return (ENOBUFS);
 2198         }
 2199         nskip = 0;
 2200         if (prod + nsegs >= SF_TX_DLIST_CNT) {
 2201                 nskip = SF_TX_DLIST_CNT - prod - 1;
 2202                 if (avail < nsegs + nskip) {
 2203                         bus_dmamap_unload(sc->sf_cdata.sf_tx_tag, map);
 2204                         return (ENOBUFS);
 2205                 }
 2206         }
 2207 
 2208         bus_dmamap_sync(sc->sf_cdata.sf_tx_tag, map, BUS_DMASYNC_PREWRITE);
 2209 
 2210         si = prod;
 2211         for (i = 0; i < nsegs; i++) {
 2212                 desc = &sc->sf_rdata.sf_tx_ring[prod];
 2213                 desc->sf_tx_ctrl = htole32(SF_TX_DESC_ID |
 2214                     (txsegs[i].ds_len & SF_TX_DESC_FRAGLEN));
 2215                 desc->sf_tx_reserved = 0;
 2216                 desc->sf_addr = htole64(txsegs[i].ds_addr);
 2217                 if (i == 0 && prod + nsegs >= SF_TX_DLIST_CNT) {
 2218                         /* Queue wraps! */
 2219                         desc->sf_tx_ctrl |= htole32(SF_TX_DESC_END);
 2220                         prod = 0;
 2221                 } else
 2222                         SF_INC(prod, SF_TX_DLIST_CNT);
 2223         }
 2224         /* Update producer index. */
 2225         sc->sf_cdata.sf_tx_prod = prod;
 2226         sc->sf_cdata.sf_tx_cnt += nsegs + nskip;
 2227 
 2228         desc = &sc->sf_rdata.sf_tx_ring[si];
 2229         /* Check TDP/UDP checksum offload request. */
 2230         if ((m->m_pkthdr.csum_flags & SF_CSUM_FEATURES) != 0)
 2231                 desc->sf_tx_ctrl |= htole32(SF_TX_DESC_CALTCP);
 2232         desc->sf_tx_ctrl |=
 2233             htole32(SF_TX_DESC_CRCEN | SF_TX_DESC_INTR | (nsegs << 16));
 2234 
 2235         txd->tx_dmamap = map;
 2236         txd->tx_m = m;
 2237         txd->ndesc = nsegs + nskip;
 2238 
 2239         return (0);
 2240 }
 2241 
 2242 static void
 2243 sf_start(struct ifnet *ifp)
 2244 {
 2245         struct sf_softc         *sc;
 2246 
 2247         sc = ifp->if_softc;
 2248         SF_LOCK(sc);
 2249         sf_start_locked(ifp);
 2250         SF_UNLOCK(sc);
 2251 }
 2252 
 2253 static void
 2254 sf_start_locked(struct ifnet *ifp)
 2255 {
 2256         struct sf_softc         *sc;
 2257         struct mbuf             *m_head;
 2258         int                     enq;
 2259 
 2260         sc = ifp->if_softc;
 2261         SF_LOCK_ASSERT(sc);
 2262 
 2263         if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
 2264             IFF_DRV_RUNNING || sc->sf_link == 0)
 2265                 return;
 2266 
 2267         /*
 2268          * Since we don't know when descriptor wrap occurrs in advance
 2269          * limit available number of active Tx descriptor counter to be
 2270          * higher than maximum number of DMA segments allowed in driver.
 2271          */
 2272         for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
 2273             sc->sf_cdata.sf_tx_cnt < SF_TX_DLIST_CNT - SF_MAXTXSEGS; ) {
 2274                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
 2275                 if (m_head == NULL)
 2276                         break;
 2277                 /*
 2278                  * Pack the data into the transmit ring. If we
 2279                  * don't have room, set the OACTIVE flag and wait
 2280                  * for the NIC to drain the ring.
 2281                  */
 2282                 if (sf_encap(sc, &m_head)) {
 2283                         if (m_head == NULL)
 2284                                 break;
 2285                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
 2286                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 2287                         break;
 2288                 }
 2289 
 2290                 enq++;
 2291                 /*
 2292                  * If there's a BPF listener, bounce a copy of this frame
 2293                  * to him.
 2294                  */
 2295                 ETHER_BPF_MTAP(ifp, m_head);
 2296         }
 2297 
 2298         if (enq > 0) {
 2299                 bus_dmamap_sync(sc->sf_cdata.sf_tx_ring_tag,
 2300                     sc->sf_cdata.sf_tx_ring_map,
 2301                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 2302                 /* Kick transmit. */
 2303                 csr_write_4(sc, SF_TXDQ_PRODIDX,
 2304                     sc->sf_cdata.sf_tx_prod * (sizeof(struct sf_tx_rdesc) / 8));
 2305 
 2306                 /* Set a timeout in case the chip goes out to lunch. */
 2307                 sc->sf_watchdog_timer = 5;
 2308         }
 2309 }
 2310 
 2311 static void
 2312 sf_stop(struct sf_softc *sc)
 2313 {
 2314         struct sf_txdesc        *txd;
 2315         struct sf_rxdesc        *rxd;
 2316         struct ifnet            *ifp;
 2317         int                     i;
 2318 
 2319         SF_LOCK_ASSERT(sc);
 2320 
 2321         ifp = sc->sf_ifp;
 2322 
 2323         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 2324         sc->sf_link = 0;
 2325         callout_stop(&sc->sf_co);
 2326         sc->sf_watchdog_timer = 0;
 2327 
 2328         /* Reading the ISR register clears all interrrupts. */
 2329         csr_read_4(sc, SF_ISR);
 2330         /* Disable further interrupts. */
 2331         csr_write_4(sc, SF_IMR, 0);
 2332 
 2333         /* Disable Tx/Rx egine. */
 2334         csr_write_4(sc, SF_GEN_ETH_CTL, 0);
 2335 
 2336         csr_write_4(sc, SF_CQ_CONSIDX, 0);
 2337         csr_write_4(sc, SF_CQ_PRODIDX, 0);
 2338         csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
 2339         csr_write_4(sc, SF_RXDQ_CTL_1, 0);
 2340         csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
 2341         csr_write_4(sc, SF_TXCQ_CTL, 0);
 2342         csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
 2343         csr_write_4(sc, SF_TXDQ_CTL, 0);
 2344 
 2345         /*
 2346          * Free RX and TX mbufs still in the queues.
 2347          */
 2348         for (i = 0; i < SF_RX_DLIST_CNT; i++) {
 2349                 rxd = &sc->sf_cdata.sf_rxdesc[i];
 2350                 if (rxd->rx_m != NULL) {
 2351                         bus_dmamap_sync(sc->sf_cdata.sf_rx_tag,
 2352                             rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
 2353                         bus_dmamap_unload(sc->sf_cdata.sf_rx_tag,
 2354                             rxd->rx_dmamap);
 2355                         m_freem(rxd->rx_m);
 2356                         rxd->rx_m = NULL;
 2357                 }
 2358         }
 2359         for (i = 0; i < SF_TX_DLIST_CNT; i++) {
 2360                 txd = &sc->sf_cdata.sf_txdesc[i];
 2361                 if (txd->tx_m != NULL) {
 2362                         bus_dmamap_sync(sc->sf_cdata.sf_tx_tag,
 2363                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
 2364                         bus_dmamap_unload(sc->sf_cdata.sf_tx_tag,
 2365                             txd->tx_dmamap);
 2366                         m_freem(txd->tx_m);
 2367                         txd->tx_m = NULL;
 2368                         txd->ndesc = 0;
 2369                 }
 2370         }
 2371 }
 2372 
 2373 static void
 2374 sf_tick(void *xsc)
 2375 {
 2376         struct sf_softc         *sc;
 2377         struct mii_data         *mii;
 2378 
 2379         sc = xsc;
 2380         SF_LOCK_ASSERT(sc);
 2381         mii = device_get_softc(sc->sf_miibus);
 2382         mii_tick(mii);
 2383         sf_stats_update(sc);
 2384         sf_watchdog(sc);
 2385         callout_reset(&sc->sf_co, hz, sf_tick, sc);
 2386 }
 2387 
 2388 /*
 2389  * Note: it is important that this function not be interrupted. We
 2390  * use a two-stage register access scheme: if we are interrupted in
 2391  * between setting the indirect address register and reading from the
 2392  * indirect data register, the contents of the address register could
 2393  * be changed out from under us.
 2394  */
 2395 static void
 2396 sf_stats_update(struct sf_softc *sc)
 2397 {
 2398         struct ifnet            *ifp;
 2399         struct sf_stats         now, *stats, *nstats;
 2400         int                     i;
 2401 
 2402         SF_LOCK_ASSERT(sc);
 2403 
 2404         ifp = sc->sf_ifp;
 2405         stats = &now;
 2406 
 2407         stats->sf_tx_frames =
 2408             csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_FRAMES);
 2409         stats->sf_tx_single_colls =
 2410             csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_SINGLE_COL);
 2411         stats->sf_tx_multi_colls =
 2412             csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_MULTI_COL);
 2413         stats->sf_tx_crcerrs =
 2414             csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_CRC_ERRS);
 2415         stats->sf_tx_bytes =
 2416             csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_BYTES);
 2417         stats->sf_tx_deferred =
 2418             csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_DEFERRED);
 2419         stats->sf_tx_late_colls =
 2420             csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_LATE_COL);
 2421         stats->sf_tx_pause_frames =
 2422             csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_PAUSE);
 2423         stats->sf_tx_control_frames =
 2424             csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_CTL_FRAME);
 2425         stats->sf_tx_excess_colls =
 2426             csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_EXCESS_COL);
 2427         stats->sf_tx_excess_defer =
 2428             csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_EXCESS_DEF);
 2429         stats->sf_tx_mcast_frames =
 2430             csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_MULTI);
 2431         stats->sf_tx_bcast_frames =
 2432             csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_BCAST);
 2433         stats->sf_tx_frames_lost =
 2434             csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_FRAME_LOST);
 2435         stats->sf_rx_frames =
 2436             csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_FRAMES);
 2437         stats->sf_rx_crcerrs =
 2438             csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_CRC_ERRS);
 2439         stats->sf_rx_alignerrs =
 2440             csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_ALIGN_ERRS);
 2441         stats->sf_rx_bytes =
 2442             csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_BYTES);
 2443         stats->sf_rx_pause_frames =
 2444             csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_PAUSE);
 2445         stats->sf_rx_control_frames =
 2446             csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_CTL_FRAME);
 2447         stats->sf_rx_unsup_control_frames =
 2448             csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_UNSUP_FRAME);
 2449         stats->sf_rx_giants =
 2450             csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_GIANTS);
 2451         stats->sf_rx_runts =
 2452             csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_RUNTS);
 2453         stats->sf_rx_jabbererrs =
 2454             csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_JABBER);
 2455         stats->sf_rx_fragments =
 2456             csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_FRAGMENTS);
 2457         stats->sf_rx_pkts_64 =
 2458             csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_64);
 2459         stats->sf_rx_pkts_65_127 =
 2460             csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_65_127);
 2461         stats->sf_rx_pkts_128_255 =
 2462             csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_128_255);
 2463         stats->sf_rx_pkts_256_511 =
 2464             csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_256_511);
 2465         stats->sf_rx_pkts_512_1023 =
 2466             csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_512_1023);
 2467         stats->sf_rx_pkts_1024_1518 =
 2468             csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_1024_1518);
 2469         stats->sf_rx_frames_lost =
 2470             csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_FRAME_LOST);
 2471         /* Lower 16bits are valid. */
 2472         stats->sf_tx_underruns =
 2473             (csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_UNDERRUN) & 0xffff);
 2474 
 2475         /* Empty stats counter registers. */
 2476         for (i = SF_STATS_BASE; i < (SF_STATS_END + 1); i += sizeof(uint32_t))
 2477                 csr_write_4(sc, i, 0);
 2478 
 2479         ifp->if_opackets += (u_long)stats->sf_tx_frames;
 2480 
 2481         ifp->if_collisions += (u_long)stats->sf_tx_single_colls +
 2482             (u_long)stats->sf_tx_multi_colls;
 2483 
 2484         ifp->if_oerrors += (u_long)stats->sf_tx_excess_colls +
 2485             (u_long)stats->sf_tx_excess_defer +
 2486             (u_long)stats->sf_tx_frames_lost;
 2487 
 2488         ifp->if_ipackets += (u_long)stats->sf_rx_frames;
 2489 
 2490         ifp->if_ierrors += (u_long)stats->sf_rx_crcerrs +
 2491             (u_long)stats->sf_rx_alignerrs +
 2492             (u_long)stats->sf_rx_giants +
 2493             (u_long)stats->sf_rx_runts +
 2494             (u_long)stats->sf_rx_jabbererrs +
 2495             (u_long)stats->sf_rx_frames_lost;
 2496 
 2497         nstats = &sc->sf_statistics;
 2498 
 2499         nstats->sf_tx_frames += stats->sf_tx_frames;
 2500         nstats->sf_tx_single_colls += stats->sf_tx_single_colls;
 2501         nstats->sf_tx_multi_colls += stats->sf_tx_multi_colls;
 2502         nstats->sf_tx_crcerrs += stats->sf_tx_crcerrs;
 2503         nstats->sf_tx_bytes += stats->sf_tx_bytes;
 2504         nstats->sf_tx_deferred += stats->sf_tx_deferred;
 2505         nstats->sf_tx_late_colls += stats->sf_tx_late_colls;
 2506         nstats->sf_tx_pause_frames += stats->sf_tx_pause_frames;
 2507         nstats->sf_tx_control_frames += stats->sf_tx_control_frames;
 2508         nstats->sf_tx_excess_colls += stats->sf_tx_excess_colls;
 2509         nstats->sf_tx_excess_defer += stats->sf_tx_excess_defer;
 2510         nstats->sf_tx_mcast_frames += stats->sf_tx_mcast_frames;
 2511         nstats->sf_tx_bcast_frames += stats->sf_tx_bcast_frames;
 2512         nstats->sf_tx_frames_lost += stats->sf_tx_frames_lost;
 2513         nstats->sf_rx_frames += stats->sf_rx_frames;
 2514         nstats->sf_rx_crcerrs += stats->sf_rx_crcerrs;
 2515         nstats->sf_rx_alignerrs += stats->sf_rx_alignerrs;
 2516         nstats->sf_rx_bytes += stats->sf_rx_bytes;
 2517         nstats->sf_rx_pause_frames += stats->sf_rx_pause_frames;
 2518         nstats->sf_rx_control_frames += stats->sf_rx_control_frames;
 2519         nstats->sf_rx_unsup_control_frames += stats->sf_rx_unsup_control_frames;
 2520         nstats->sf_rx_giants += stats->sf_rx_giants;
 2521         nstats->sf_rx_runts += stats->sf_rx_runts;
 2522         nstats->sf_rx_jabbererrs += stats->sf_rx_jabbererrs;
 2523         nstats->sf_rx_fragments += stats->sf_rx_fragments;
 2524         nstats->sf_rx_pkts_64 += stats->sf_rx_pkts_64;
 2525         nstats->sf_rx_pkts_65_127 += stats->sf_rx_pkts_65_127;
 2526         nstats->sf_rx_pkts_128_255 += stats->sf_rx_pkts_128_255;
 2527         nstats->sf_rx_pkts_256_511 += stats->sf_rx_pkts_256_511;
 2528         nstats->sf_rx_pkts_512_1023 += stats->sf_rx_pkts_512_1023;
 2529         nstats->sf_rx_pkts_1024_1518 += stats->sf_rx_pkts_1024_1518;
 2530         nstats->sf_rx_frames_lost += stats->sf_rx_frames_lost;
 2531         nstats->sf_tx_underruns += stats->sf_tx_underruns;
 2532 }
 2533 
 2534 static void
 2535 sf_watchdog(struct sf_softc *sc)
 2536 {
 2537         struct ifnet            *ifp;
 2538 
 2539         SF_LOCK_ASSERT(sc);
 2540 
 2541         if (sc->sf_watchdog_timer == 0 || --sc->sf_watchdog_timer)
 2542                 return;
 2543 
 2544         ifp = sc->sf_ifp;
 2545 
 2546         ifp->if_oerrors++;
 2547         if (sc->sf_link == 0) {
 2548                 if (bootverbose)
 2549                         if_printf(sc->sf_ifp, "watchdog timeout "
 2550                            "(missed link)\n");
 2551         } else
 2552                 if_printf(ifp, "watchdog timeout, %d Tx descs are active\n",
 2553                     sc->sf_cdata.sf_tx_cnt);
 2554 
 2555         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 2556         sf_init_locked(sc);
 2557 
 2558         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 2559                 sf_start_locked(ifp);
 2560 }
 2561 
 2562 static int
 2563 sf_shutdown(device_t dev)
 2564 {
 2565         struct sf_softc         *sc;
 2566 
 2567         sc = device_get_softc(dev);
 2568 
 2569         SF_LOCK(sc);
 2570         sf_stop(sc);
 2571         SF_UNLOCK(sc);
 2572 
 2573         return (0);
 2574 }
 2575 
 2576 static int
 2577 sf_suspend(device_t dev)
 2578 {
 2579         struct sf_softc         *sc;
 2580 
 2581         sc = device_get_softc(dev);
 2582 
 2583         SF_LOCK(sc);
 2584         sf_stop(sc);
 2585         sc->sf_suspended = 1;
 2586         bus_generic_suspend(dev);
 2587         SF_UNLOCK(sc);
 2588 
 2589         return (0);
 2590 }
 2591 
 2592 static int
 2593 sf_resume(device_t dev)
 2594 {
 2595         struct sf_softc         *sc;
 2596         struct ifnet            *ifp;
 2597 
 2598         sc = device_get_softc(dev);
 2599 
 2600         SF_LOCK(sc);
 2601         bus_generic_resume(dev);
 2602         ifp = sc->sf_ifp;
 2603         if ((ifp->if_flags & IFF_UP) != 0)
 2604                 sf_init_locked(sc);
 2605 
 2606         sc->sf_suspended = 0;
 2607         SF_UNLOCK(sc);
 2608 
 2609         return (0);
 2610 }
 2611 
 2612 static int
 2613 sf_sysctl_stats(SYSCTL_HANDLER_ARGS)
 2614 {
 2615         struct sf_softc         *sc;
 2616         struct sf_stats         *stats;
 2617         int                     error;
 2618         int                     result;
 2619 
 2620         result = -1;
 2621         error = sysctl_handle_int(oidp, &result, 0, req);
 2622 
 2623         if (error != 0 || req->newptr == NULL)
 2624                 return (error);
 2625 
 2626         if (result != 1)
 2627                 return (error);
 2628 
 2629         sc = (struct sf_softc *)arg1;
 2630         stats = &sc->sf_statistics;
 2631 
 2632         printf("%s statistics:\n", device_get_nameunit(sc->sf_dev));
 2633         printf("Transmit good frames : %ju\n",
 2634             (uintmax_t)stats->sf_tx_frames);
 2635         printf("Transmit good octets : %ju\n",
 2636             (uintmax_t)stats->sf_tx_bytes);
 2637         printf("Transmit single collisions : %u\n",
 2638             stats->sf_tx_single_colls);
 2639         printf("Transmit multiple collisions : %u\n",
 2640             stats->sf_tx_multi_colls);
 2641         printf("Transmit late collisions : %u\n",
 2642             stats->sf_tx_late_colls);
 2643         printf("Transmit abort due to excessive collisions : %u\n",
 2644             stats->sf_tx_excess_colls);
 2645         printf("Transmit CRC errors : %u\n",
 2646             stats->sf_tx_crcerrs);
 2647         printf("Transmit deferrals : %u\n",
 2648             stats->sf_tx_deferred);
 2649         printf("Transmit abort due to excessive deferrals : %u\n",
 2650             stats->sf_tx_excess_defer);
 2651         printf("Transmit pause control frames : %u\n",
 2652             stats->sf_tx_pause_frames);
 2653         printf("Transmit control frames : %u\n",
 2654             stats->sf_tx_control_frames);
 2655         printf("Transmit good multicast frames : %u\n",
 2656             stats->sf_tx_mcast_frames);
 2657         printf("Transmit good broadcast frames : %u\n",
 2658             stats->sf_tx_bcast_frames);
 2659         printf("Transmit frames lost due to internal transmit errors : %u\n",
 2660             stats->sf_tx_frames_lost);
 2661         printf("Transmit FIFO underflows : %u\n",
 2662             stats->sf_tx_underruns);
 2663         printf("Transmit GFP stalls : %u\n", stats->sf_tx_gfp_stall);
 2664         printf("Receive good frames : %ju\n",
 2665             (uint64_t)stats->sf_rx_frames);
 2666         printf("Receive good octets : %ju\n",
 2667             (uint64_t)stats->sf_rx_bytes);
 2668         printf("Receive CRC errors : %u\n",
 2669             stats->sf_rx_crcerrs);
 2670         printf("Receive alignment errors : %u\n",
 2671             stats->sf_rx_alignerrs);
 2672         printf("Receive pause frames : %u\n",
 2673             stats->sf_rx_pause_frames);
 2674         printf("Receive control frames : %u\n",
 2675             stats->sf_rx_control_frames);
 2676         printf("Receive control frames with unsupported opcode : %u\n",
 2677             stats->sf_rx_unsup_control_frames);
 2678         printf("Receive frames too long : %u\n",
 2679             stats->sf_rx_giants);
 2680         printf("Receive frames too short : %u\n",
 2681             stats->sf_rx_runts);
 2682         printf("Receive frames jabber errors : %u\n",
 2683             stats->sf_rx_jabbererrs);
 2684         printf("Receive frames fragments : %u\n",
 2685             stats->sf_rx_fragments);
 2686         printf("Receive packets 64 bytes : %ju\n",
 2687             (uint64_t)stats->sf_rx_pkts_64);
 2688         printf("Receive packets 65 to 127 bytes : %ju\n",
 2689             (uint64_t)stats->sf_rx_pkts_65_127);
 2690         printf("Receive packets 128 to 255 bytes : %ju\n",
 2691             (uint64_t)stats->sf_rx_pkts_128_255);
 2692         printf("Receive packets 256 to 511 bytes : %ju\n",
 2693             (uint64_t)stats->sf_rx_pkts_256_511);
 2694         printf("Receive packets 512 to 1023 bytes : %ju\n",
 2695             (uint64_t)stats->sf_rx_pkts_512_1023);
 2696         printf("Receive packets 1024 to 1518 bytes : %ju\n",
 2697             (uint64_t)stats->sf_rx_pkts_1024_1518);
 2698         printf("Receive frames lost due to internal receive errors : %u\n",
 2699             stats->sf_rx_frames_lost);
 2700         printf("Receive GFP stalls : %u\n", stats->sf_rx_gfp_stall);
 2701 
 2702         return (error);
 2703 }
 2704 
 2705 static int
 2706 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
 2707 {
 2708         int error, value;
 2709 
 2710         if (!arg1)
 2711                 return (EINVAL);
 2712         value = *(int *)arg1;
 2713         error = sysctl_handle_int(oidp, &value, 0, req);
 2714         if (error || !req->newptr)
 2715                 return (error);
 2716         if (value < low || value > high)
 2717                 return (EINVAL);
 2718         *(int *)arg1 = value;
 2719 
 2720         return (0);
 2721 }
 2722 
 2723 static int
 2724 sysctl_hw_sf_int_mod(SYSCTL_HANDLER_ARGS)
 2725 {
 2726 
 2727         return (sysctl_int_range(oidp, arg1, arg2, req, SF_IM_MIN, SF_IM_MAX));
 2728 }

Cache object: 6e636ebd0163a1f7f2c1569825adab1c


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.