1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2010-2016 Solarflare Communications Inc.
5 * All rights reserved.
6 *
7 * This software was developed in part by Philip Paeps under contract for
8 * Solarflare Communications, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright notice,
14 * this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright notice,
16 * this list of conditions and the following disclaimer in the documentation
17 * and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
28 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
29 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * The views and conclusions contained in the software and documentation are
32 * those of the authors and should not be interpreted as representing official
33 * policies, either expressed or implied, of the FreeBSD Project.
34 */
35
36 /* Theory of operation:
37 *
38 * Tx queues allocation and mapping on Siena
39 *
40 * One Tx queue with enabled checksum offload is allocated per Rx channel
41 * (event queue). Also 2 Tx queues (one without checksum offload and one
42 * with IP checksum offload only) are allocated and bound to event queue 0.
43 * sfxge_txq_type is used as Tx queue label.
44 *
45 * So, event queue plus label mapping to Tx queue index is:
46 * if event queue index is 0, TxQ-index = TxQ-label * [0..SFXGE_TXQ_NTYPES)
47 * else TxQ-index = SFXGE_TXQ_NTYPES + EvQ-index - 1
48 * See sfxge_get_txq_by_label() sfxge_ev.c
49 *
50 * Tx queue allocation and mapping on EF10
51 *
52 * One Tx queue with enabled checksum offload is allocated per Rx
53 * channel (event queue). Checksum offload on all Tx queues is enabled or
54 * disabled dynamically by inserting option descriptors, so the additional
55 * queues used on Siena are not required.
56 *
57 * TxQ label is always set to zero on EF10 hardware.
58 * So, event queue to Tx queue mapping is simple:
59 * TxQ-index = EvQ-index
60 */
61
62 #include <sys/cdefs.h>
63 __FBSDID("$FreeBSD$");
64
65 #include "opt_rss.h"
66
67 #include <sys/param.h>
68 #include <sys/malloc.h>
69 #include <sys/mbuf.h>
70 #include <sys/smp.h>
71 #include <sys/socket.h>
72 #include <sys/sysctl.h>
73 #include <sys/syslog.h>
74 #include <sys/limits.h>
75
76 #include <net/bpf.h>
77 #include <net/ethernet.h>
78 #include <net/if.h>
79 #include <net/if_vlan_var.h>
80
81 #include <netinet/in.h>
82 #include <netinet/ip.h>
83 #include <netinet/ip6.h>
84 #include <netinet/tcp.h>
85
86 #ifdef RSS
87 #include <net/rss_config.h>
88 #endif
89
90 #include "common/efx.h"
91
92 #include "sfxge.h"
93 #include "sfxge_tx.h"
94
95 #define SFXGE_PARAM_TX_DPL_GET_MAX SFXGE_PARAM(tx_dpl_get_max)
96 static int sfxge_tx_dpl_get_max = SFXGE_TX_DPL_GET_PKT_LIMIT_DEFAULT;
97 TUNABLE_INT(SFXGE_PARAM_TX_DPL_GET_MAX, &sfxge_tx_dpl_get_max);
98 SYSCTL_INT(_hw_sfxge, OID_AUTO, tx_dpl_get_max, CTLFLAG_RDTUN,
99 &sfxge_tx_dpl_get_max, 0,
100 "Maximum number of any packets in deferred packet get-list");
101
102 #define SFXGE_PARAM_TX_DPL_GET_NON_TCP_MAX \
103 SFXGE_PARAM(tx_dpl_get_non_tcp_max)
104 static int sfxge_tx_dpl_get_non_tcp_max =
105 SFXGE_TX_DPL_GET_NON_TCP_PKT_LIMIT_DEFAULT;
106 TUNABLE_INT(SFXGE_PARAM_TX_DPL_GET_NON_TCP_MAX, &sfxge_tx_dpl_get_non_tcp_max);
107 SYSCTL_INT(_hw_sfxge, OID_AUTO, tx_dpl_get_non_tcp_max, CTLFLAG_RDTUN,
108 &sfxge_tx_dpl_get_non_tcp_max, 0,
109 "Maximum number of non-TCP packets in deferred packet get-list");
110
111 #define SFXGE_PARAM_TX_DPL_PUT_MAX SFXGE_PARAM(tx_dpl_put_max)
112 static int sfxge_tx_dpl_put_max = SFXGE_TX_DPL_PUT_PKT_LIMIT_DEFAULT;
113 TUNABLE_INT(SFXGE_PARAM_TX_DPL_PUT_MAX, &sfxge_tx_dpl_put_max);
114 SYSCTL_INT(_hw_sfxge, OID_AUTO, tx_dpl_put_max, CTLFLAG_RDTUN,
115 &sfxge_tx_dpl_put_max, 0,
116 "Maximum number of any packets in deferred packet put-list");
117
118 #define SFXGE_PARAM_TSO_FW_ASSISTED SFXGE_PARAM(tso_fw_assisted)
119 static int sfxge_tso_fw_assisted = (SFXGE_FATSOV1 | SFXGE_FATSOV2);
120 TUNABLE_INT(SFXGE_PARAM_TSO_FW_ASSISTED, &sfxge_tso_fw_assisted);
121 SYSCTL_INT(_hw_sfxge, OID_AUTO, tso_fw_assisted, CTLFLAG_RDTUN,
122 &sfxge_tso_fw_assisted, 0,
123 "Bitmask of FW-assisted TSO allowed to use if supported by NIC firmware");
124
125 static const struct {
126 const char *name;
127 size_t offset;
128 } sfxge_tx_stats[] = {
129 #define SFXGE_TX_STAT(name, member) \
130 { #name, offsetof(struct sfxge_txq, member) }
131 SFXGE_TX_STAT(tso_bursts, tso_bursts),
132 SFXGE_TX_STAT(tso_packets, tso_packets),
133 SFXGE_TX_STAT(tso_long_headers, tso_long_headers),
134 SFXGE_TX_STAT(tso_pdrop_too_many, tso_pdrop_too_many),
135 SFXGE_TX_STAT(tso_pdrop_no_rsrc, tso_pdrop_no_rsrc),
136 SFXGE_TX_STAT(tx_collapses, collapses),
137 SFXGE_TX_STAT(tx_drops, drops),
138 SFXGE_TX_STAT(tx_get_overflow, get_overflow),
139 SFXGE_TX_STAT(tx_get_non_tcp_overflow, get_non_tcp_overflow),
140 SFXGE_TX_STAT(tx_put_overflow, put_overflow),
141 SFXGE_TX_STAT(tx_netdown_drops, netdown_drops),
142 };
143
144 /* Forward declarations. */
145 static void sfxge_tx_qdpl_service(struct sfxge_txq *txq);
146 static void sfxge_tx_qlist_post(struct sfxge_txq *txq);
147 static void sfxge_tx_qunblock(struct sfxge_txq *txq);
148 static int sfxge_tx_queue_tso(struct sfxge_txq *txq, struct mbuf *mbuf,
149 const bus_dma_segment_t *dma_seg, int n_dma_seg,
150 int n_extra_descs);
151
152 static inline void
153 sfxge_next_stmp(struct sfxge_txq *txq, struct sfxge_tx_mapping **pstmp)
154 {
155 KASSERT((*pstmp)->flags == 0, ("stmp flags are not 0"));
156 if (__predict_false(*pstmp ==
157 &txq->stmp[txq->ptr_mask]))
158 *pstmp = &txq->stmp[0];
159 else
160 (*pstmp)++;
161 }
162
163 static int
164 sfxge_tx_maybe_toggle_cksum_offload(struct sfxge_txq *txq, struct mbuf *mbuf,
165 struct sfxge_tx_mapping **pstmp)
166 {
167 uint16_t new_hw_cksum_flags;
168 efx_desc_t *desc;
169
170 if (mbuf->m_pkthdr.csum_flags &
171 (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6 | CSUM_TSO)) {
172 /*
173 * We always set EFX_TXQ_CKSUM_IPV4 here because this
174 * configuration is the most useful, and this won't
175 * cause any trouble in case of IPv6 traffic anyway.
176 */
177 new_hw_cksum_flags = EFX_TXQ_CKSUM_IPV4 | EFX_TXQ_CKSUM_TCPUDP;
178 } else if (mbuf->m_pkthdr.csum_flags & CSUM_DELAY_IP) {
179 new_hw_cksum_flags = EFX_TXQ_CKSUM_IPV4;
180 } else {
181 new_hw_cksum_flags = 0;
182 }
183
184 if (new_hw_cksum_flags == txq->hw_cksum_flags)
185 return (0);
186
187 desc = &txq->pend_desc[txq->n_pend_desc];
188 efx_tx_qdesc_checksum_create(txq->common, new_hw_cksum_flags, desc);
189 txq->hw_cksum_flags = new_hw_cksum_flags;
190 txq->n_pend_desc++;
191
192 sfxge_next_stmp(txq, pstmp);
193
194 return (1);
195 }
196
197 static int
198 sfxge_tx_maybe_insert_tag(struct sfxge_txq *txq, struct mbuf *mbuf,
199 struct sfxge_tx_mapping **pstmp)
200 {
201 uint16_t this_tag = ((mbuf->m_flags & M_VLANTAG) ?
202 mbuf->m_pkthdr.ether_vtag :
203 0);
204 efx_desc_t *desc;
205
206 if (this_tag == txq->hw_vlan_tci)
207 return (0);
208
209 desc = &txq->pend_desc[txq->n_pend_desc];
210 efx_tx_qdesc_vlantci_create(txq->common, bswap16(this_tag), desc);
211 txq->hw_vlan_tci = this_tag;
212 txq->n_pend_desc++;
213
214 sfxge_next_stmp(txq, pstmp);
215
216 return (1);
217 }
218
219 void
220 sfxge_tx_qcomplete(struct sfxge_txq *txq, struct sfxge_evq *evq)
221 {
222 unsigned int completed;
223
224 SFXGE_EVQ_LOCK_ASSERT_OWNED(evq);
225
226 completed = txq->completed;
227 while (completed != txq->pending) {
228 struct sfxge_tx_mapping *stmp;
229 unsigned int id;
230
231 id = completed++ & txq->ptr_mask;
232
233 stmp = &txq->stmp[id];
234 if (stmp->flags & TX_BUF_UNMAP) {
235 bus_dmamap_unload(txq->packet_dma_tag, stmp->map);
236 if (stmp->flags & TX_BUF_MBUF) {
237 struct mbuf *m = stmp->u.mbuf;
238 do
239 m = m_free(m);
240 while (m != NULL);
241 } else {
242 free(stmp->u.heap_buf, M_SFXGE);
243 }
244 stmp->flags = 0;
245 }
246 }
247 txq->completed = completed;
248
249 /* Check whether we need to unblock the queue. */
250 mb();
251 if (txq->blocked) {
252 unsigned int level;
253
254 level = txq->added - txq->completed;
255 if (level <= SFXGE_TXQ_UNBLOCK_LEVEL(txq->entries))
256 sfxge_tx_qunblock(txq);
257 }
258 }
259
260 static unsigned int
261 sfxge_is_mbuf_non_tcp(struct mbuf *mbuf)
262 {
263 /* Absence of TCP checksum flags does not mean that it is non-TCP
264 * but it should be true if user wants to achieve high throughput.
265 */
266 return (!(mbuf->m_pkthdr.csum_flags & (CSUM_IP_TCP | CSUM_IP6_TCP)));
267 }
268
269 /*
270 * Reorder the put list and append it to the get list.
271 */
272 static void
273 sfxge_tx_qdpl_swizzle(struct sfxge_txq *txq)
274 {
275 struct sfxge_tx_dpl *stdp;
276 struct mbuf *mbuf, *get_next, **get_tailp;
277 volatile uintptr_t *putp;
278 uintptr_t put;
279 unsigned int count;
280 unsigned int non_tcp_count;
281
282 SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
283
284 stdp = &txq->dpl;
285
286 /* Acquire the put list. */
287 putp = &stdp->std_put;
288 put = atomic_readandclear_ptr(putp);
289 mbuf = (void *)put;
290
291 if (mbuf == NULL)
292 return;
293
294 /* Reverse the put list. */
295 get_tailp = &mbuf->m_nextpkt;
296 get_next = NULL;
297
298 count = 0;
299 non_tcp_count = 0;
300 do {
301 struct mbuf *put_next;
302
303 non_tcp_count += sfxge_is_mbuf_non_tcp(mbuf);
304 put_next = mbuf->m_nextpkt;
305 mbuf->m_nextpkt = get_next;
306 get_next = mbuf;
307 mbuf = put_next;
308
309 count++;
310 } while (mbuf != NULL);
311
312 if (count > stdp->std_put_hiwat)
313 stdp->std_put_hiwat = count;
314
315 /* Append the reversed put list to the get list. */
316 KASSERT(*get_tailp == NULL, ("*get_tailp != NULL"));
317 *stdp->std_getp = get_next;
318 stdp->std_getp = get_tailp;
319 stdp->std_get_count += count;
320 stdp->std_get_non_tcp_count += non_tcp_count;
321 }
322
323 static void
324 sfxge_tx_qreap(struct sfxge_txq *txq)
325 {
326 SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
327
328 txq->reaped = txq->completed;
329 }
330
331 static void
332 sfxge_tx_qlist_post(struct sfxge_txq *txq)
333 {
334 unsigned int old_added __diagused;
335 unsigned int block_level;
336 unsigned int level;
337 int rc __diagused;
338
339 SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
340
341 KASSERT(txq->n_pend_desc != 0, ("txq->n_pend_desc == 0"));
342 KASSERT(txq->n_pend_desc <= txq->max_pkt_desc,
343 ("txq->n_pend_desc too large"));
344 KASSERT(!txq->blocked, ("txq->blocked"));
345
346 old_added = txq->added;
347
348 /* Post the fragment list. */
349 rc = efx_tx_qdesc_post(txq->common, txq->pend_desc, txq->n_pend_desc,
350 txq->reaped, &txq->added);
351 KASSERT(rc == 0, ("efx_tx_qdesc_post() failed"));
352
353 /* If efx_tx_qdesc_post() had to refragment, our information about
354 * buffers to free may be associated with the wrong
355 * descriptors.
356 */
357 KASSERT(txq->added - old_added == txq->n_pend_desc,
358 ("efx_tx_qdesc_post() refragmented descriptors"));
359
360 level = txq->added - txq->reaped;
361 KASSERT(level <= txq->entries, ("overfilled TX queue"));
362
363 /* Clear the fragment list. */
364 txq->n_pend_desc = 0;
365
366 /*
367 * Set the block level to ensure there is space to generate a
368 * large number of descriptors for TSO.
369 */
370 block_level = EFX_TXQ_LIMIT(txq->entries) - txq->max_pkt_desc;
371
372 /* Have we reached the block level? */
373 if (level < block_level)
374 return;
375
376 /* Reap, and check again */
377 sfxge_tx_qreap(txq);
378 level = txq->added - txq->reaped;
379 if (level < block_level)
380 return;
381
382 txq->blocked = 1;
383
384 /*
385 * Avoid a race with completion interrupt handling that could leave
386 * the queue blocked.
387 */
388 mb();
389 sfxge_tx_qreap(txq);
390 level = txq->added - txq->reaped;
391 if (level < block_level) {
392 mb();
393 txq->blocked = 0;
394 }
395 }
396
397 static int sfxge_tx_queue_mbuf(struct sfxge_txq *txq, struct mbuf *mbuf)
398 {
399 bus_dmamap_t *used_map;
400 bus_dmamap_t map;
401 bus_dma_segment_t dma_seg[SFXGE_TX_MAPPING_MAX_SEG];
402 unsigned int id;
403 struct sfxge_tx_mapping *stmp;
404 efx_desc_t *desc;
405 int n_dma_seg;
406 int rc;
407 int i;
408 int eop;
409 uint16_t hw_cksum_flags_prev;
410 uint16_t hw_vlan_tci_prev;
411 int n_extra_descs;
412
413 KASSERT(!txq->blocked, ("txq->blocked"));
414
415 #if SFXGE_TX_PARSE_EARLY
416 /*
417 * If software TSO is used, we still need to copy packet header,
418 * even if we have already parsed it early before enqueue.
419 */
420 if ((mbuf->m_pkthdr.csum_flags & CSUM_TSO) &&
421 (txq->tso_fw_assisted == 0))
422 prefetch_read_many(mbuf->m_data);
423 #else
424 /*
425 * Prefetch packet header since we need to parse it and extract
426 * IP ID, TCP sequence number and flags.
427 */
428 if (mbuf->m_pkthdr.csum_flags & CSUM_TSO)
429 prefetch_read_many(mbuf->m_data);
430 #endif
431
432 if (__predict_false(txq->init_state != SFXGE_TXQ_STARTED)) {
433 rc = EINTR;
434 goto reject;
435 }
436
437 /* Load the packet for DMA. */
438 id = txq->added & txq->ptr_mask;
439 stmp = &txq->stmp[id];
440 rc = bus_dmamap_load_mbuf_sg(txq->packet_dma_tag, stmp->map,
441 mbuf, dma_seg, &n_dma_seg, 0);
442 if (rc == EFBIG) {
443 /* Try again. */
444 struct mbuf *new_mbuf = m_collapse(mbuf, M_NOWAIT,
445 SFXGE_TX_MAPPING_MAX_SEG);
446 if (new_mbuf == NULL)
447 goto reject;
448 ++txq->collapses;
449 mbuf = new_mbuf;
450 rc = bus_dmamap_load_mbuf_sg(txq->packet_dma_tag,
451 stmp->map, mbuf,
452 dma_seg, &n_dma_seg, 0);
453 }
454 if (rc != 0)
455 goto reject;
456
457 /* Make the packet visible to the hardware. */
458 bus_dmamap_sync(txq->packet_dma_tag, stmp->map, BUS_DMASYNC_PREWRITE);
459
460 used_map = &stmp->map;
461
462 hw_cksum_flags_prev = txq->hw_cksum_flags;
463 hw_vlan_tci_prev = txq->hw_vlan_tci;
464
465 /*
466 * The order of option descriptors, which are used to leverage VLAN tag
467 * and checksum offloads, might be important. Changing checksum offload
468 * between VLAN option and packet descriptors probably does not work.
469 */
470 n_extra_descs = sfxge_tx_maybe_toggle_cksum_offload(txq, mbuf, &stmp);
471 n_extra_descs += sfxge_tx_maybe_insert_tag(txq, mbuf, &stmp);
472
473 if (mbuf->m_pkthdr.csum_flags & CSUM_TSO) {
474 rc = sfxge_tx_queue_tso(txq, mbuf, dma_seg, n_dma_seg,
475 n_extra_descs);
476 if (rc < 0)
477 goto reject_mapped;
478 stmp = &txq->stmp[(rc - 1) & txq->ptr_mask];
479 } else {
480 /* Add the mapping to the fragment list, and set flags
481 * for the buffer.
482 */
483
484 i = 0;
485 for (;;) {
486 desc = &txq->pend_desc[i + n_extra_descs];
487 eop = (i == n_dma_seg - 1);
488 efx_tx_qdesc_dma_create(txq->common,
489 dma_seg[i].ds_addr,
490 dma_seg[i].ds_len,
491 eop,
492 desc);
493 if (eop)
494 break;
495 i++;
496 sfxge_next_stmp(txq, &stmp);
497 }
498 txq->n_pend_desc = n_dma_seg + n_extra_descs;
499 }
500
501 /*
502 * If the mapping required more than one descriptor
503 * then we need to associate the DMA map with the last
504 * descriptor, not the first.
505 */
506 if (used_map != &stmp->map) {
507 map = stmp->map;
508 stmp->map = *used_map;
509 *used_map = map;
510 }
511
512 stmp->u.mbuf = mbuf;
513 stmp->flags = TX_BUF_UNMAP | TX_BUF_MBUF;
514
515 /* Post the fragment list. */
516 sfxge_tx_qlist_post(txq);
517
518 return (0);
519
520 reject_mapped:
521 txq->hw_vlan_tci = hw_vlan_tci_prev;
522 txq->hw_cksum_flags = hw_cksum_flags_prev;
523 bus_dmamap_unload(txq->packet_dma_tag, *used_map);
524 reject:
525 /* Drop the packet on the floor. */
526 m_freem(mbuf);
527 ++txq->drops;
528
529 return (rc);
530 }
531
532 /*
533 * Drain the deferred packet list into the transmit queue.
534 */
535 static void
536 sfxge_tx_qdpl_drain(struct sfxge_txq *txq)
537 {
538 struct sfxge_softc *sc;
539 struct sfxge_tx_dpl *stdp;
540 struct mbuf *mbuf, *next;
541 unsigned int count;
542 unsigned int non_tcp_count;
543 unsigned int pushed;
544 int rc;
545
546 SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
547
548 sc = txq->sc;
549 stdp = &txq->dpl;
550 pushed = txq->added;
551
552 if (__predict_true(txq->init_state == SFXGE_TXQ_STARTED)) {
553 prefetch_read_many(sc->enp);
554 prefetch_read_many(txq->common);
555 }
556
557 mbuf = stdp->std_get;
558 count = stdp->std_get_count;
559 non_tcp_count = stdp->std_get_non_tcp_count;
560
561 if (count > stdp->std_get_hiwat)
562 stdp->std_get_hiwat = count;
563
564 while (count != 0) {
565 KASSERT(mbuf != NULL, ("mbuf == NULL"));
566
567 next = mbuf->m_nextpkt;
568 mbuf->m_nextpkt = NULL;
569
570 ETHER_BPF_MTAP(sc->ifnet, mbuf); /* packet capture */
571
572 if (next != NULL)
573 prefetch_read_many(next);
574
575 rc = sfxge_tx_queue_mbuf(txq, mbuf);
576 --count;
577 non_tcp_count -= sfxge_is_mbuf_non_tcp(mbuf);
578 mbuf = next;
579 if (rc != 0)
580 continue;
581
582 if (txq->blocked)
583 break;
584
585 /* Push the fragments to the hardware in batches. */
586 if (txq->added - pushed >= SFXGE_TX_BATCH) {
587 efx_tx_qpush(txq->common, txq->added, pushed);
588 pushed = txq->added;
589 }
590 }
591
592 if (count == 0) {
593 KASSERT(mbuf == NULL, ("mbuf != NULL"));
594 KASSERT(non_tcp_count == 0,
595 ("inconsistent TCP/non-TCP detection"));
596 stdp->std_get = NULL;
597 stdp->std_get_count = 0;
598 stdp->std_get_non_tcp_count = 0;
599 stdp->std_getp = &stdp->std_get;
600 } else {
601 stdp->std_get = mbuf;
602 stdp->std_get_count = count;
603 stdp->std_get_non_tcp_count = non_tcp_count;
604 }
605
606 if (txq->added != pushed)
607 efx_tx_qpush(txq->common, txq->added, pushed);
608
609 KASSERT(txq->blocked || stdp->std_get_count == 0,
610 ("queue unblocked but count is non-zero"));
611 }
612
613 #define SFXGE_TX_QDPL_PENDING(_txq) ((_txq)->dpl.std_put != 0)
614
615 /*
616 * Service the deferred packet list.
617 *
618 * NOTE: drops the txq mutex!
619 */
620 static void
621 sfxge_tx_qdpl_service(struct sfxge_txq *txq)
622 {
623 SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
624
625 do {
626 if (SFXGE_TX_QDPL_PENDING(txq))
627 sfxge_tx_qdpl_swizzle(txq);
628
629 if (!txq->blocked)
630 sfxge_tx_qdpl_drain(txq);
631
632 SFXGE_TXQ_UNLOCK(txq);
633 } while (SFXGE_TX_QDPL_PENDING(txq) &&
634 SFXGE_TXQ_TRYLOCK(txq));
635 }
636
637 /*
638 * Put a packet on the deferred packet get-list.
639 */
640 static int
641 sfxge_tx_qdpl_put_locked(struct sfxge_txq *txq, struct mbuf *mbuf)
642 {
643 struct sfxge_tx_dpl *stdp;
644
645 stdp = &txq->dpl;
646
647 KASSERT(mbuf->m_nextpkt == NULL, ("mbuf->m_nextpkt != NULL"));
648
649 SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
650
651 if (stdp->std_get_count >= stdp->std_get_max) {
652 txq->get_overflow++;
653 return (ENOBUFS);
654 }
655 if (sfxge_is_mbuf_non_tcp(mbuf)) {
656 if (stdp->std_get_non_tcp_count >=
657 stdp->std_get_non_tcp_max) {
658 txq->get_non_tcp_overflow++;
659 return (ENOBUFS);
660 }
661 stdp->std_get_non_tcp_count++;
662 }
663
664 *(stdp->std_getp) = mbuf;
665 stdp->std_getp = &mbuf->m_nextpkt;
666 stdp->std_get_count++;
667
668 return (0);
669 }
670
671 /*
672 * Put a packet on the deferred packet put-list.
673 *
674 * We overload the csum_data field in the mbuf to keep track of this length
675 * because there is no cheap alternative to avoid races.
676 */
677 static int
678 sfxge_tx_qdpl_put_unlocked(struct sfxge_txq *txq, struct mbuf *mbuf)
679 {
680 struct sfxge_tx_dpl *stdp;
681 volatile uintptr_t *putp;
682 uintptr_t old;
683 uintptr_t new;
684 unsigned int put_count;
685
686 KASSERT(mbuf->m_nextpkt == NULL, ("mbuf->m_nextpkt != NULL"));
687
688 SFXGE_TXQ_LOCK_ASSERT_NOTOWNED(txq);
689
690 stdp = &txq->dpl;
691 putp = &stdp->std_put;
692 new = (uintptr_t)mbuf;
693
694 do {
695 old = *putp;
696 if (old != 0) {
697 struct mbuf *mp = (struct mbuf *)old;
698 put_count = mp->m_pkthdr.csum_data;
699 } else
700 put_count = 0;
701 if (put_count >= stdp->std_put_max) {
702 atomic_add_long(&txq->put_overflow, 1);
703 return (ENOBUFS);
704 }
705 mbuf->m_pkthdr.csum_data = put_count + 1;
706 mbuf->m_nextpkt = (void *)old;
707 } while (atomic_cmpset_ptr(putp, old, new) == 0);
708
709 return (0);
710 }
711
712 /*
713 * Called from if_transmit - will try to grab the txq lock and enqueue to the
714 * put list if it succeeds, otherwise try to push onto the defer list if space.
715 */
716 static int
717 sfxge_tx_packet_add(struct sfxge_txq *txq, struct mbuf *m)
718 {
719 int rc;
720
721 if (!SFXGE_LINK_UP(txq->sc)) {
722 atomic_add_long(&txq->netdown_drops, 1);
723 return (ENETDOWN);
724 }
725
726 /*
727 * Try to grab the txq lock. If we are able to get the lock,
728 * the packet will be appended to the "get list" of the deferred
729 * packet list. Otherwise, it will be pushed on the "put list".
730 */
731 if (SFXGE_TXQ_TRYLOCK(txq)) {
732 /* First swizzle put-list to get-list to keep order */
733 sfxge_tx_qdpl_swizzle(txq);
734
735 rc = sfxge_tx_qdpl_put_locked(txq, m);
736
737 /* Try to service the list. */
738 sfxge_tx_qdpl_service(txq);
739 /* Lock has been dropped. */
740 } else {
741 rc = sfxge_tx_qdpl_put_unlocked(txq, m);
742
743 /*
744 * Try to grab the lock again.
745 *
746 * If we are able to get the lock, we need to process
747 * the deferred packet list. If we are not able to get
748 * the lock, another thread is processing the list.
749 */
750 if ((rc == 0) && SFXGE_TXQ_TRYLOCK(txq)) {
751 sfxge_tx_qdpl_service(txq);
752 /* Lock has been dropped. */
753 }
754 }
755
756 SFXGE_TXQ_LOCK_ASSERT_NOTOWNED(txq);
757
758 return (rc);
759 }
760
761 static void
762 sfxge_tx_qdpl_flush(struct sfxge_txq *txq)
763 {
764 struct sfxge_tx_dpl *stdp = &txq->dpl;
765 struct mbuf *mbuf, *next;
766
767 SFXGE_TXQ_LOCK(txq);
768
769 sfxge_tx_qdpl_swizzle(txq);
770 for (mbuf = stdp->std_get; mbuf != NULL; mbuf = next) {
771 next = mbuf->m_nextpkt;
772 m_freem(mbuf);
773 }
774 stdp->std_get = NULL;
775 stdp->std_get_count = 0;
776 stdp->std_get_non_tcp_count = 0;
777 stdp->std_getp = &stdp->std_get;
778
779 SFXGE_TXQ_UNLOCK(txq);
780 }
781
782 void
783 sfxge_if_qflush(struct ifnet *ifp)
784 {
785 struct sfxge_softc *sc;
786 unsigned int i;
787
788 sc = ifp->if_softc;
789
790 for (i = 0; i < sc->txq_count; i++)
791 sfxge_tx_qdpl_flush(sc->txq[i]);
792 }
793
794 #if SFXGE_TX_PARSE_EARLY
795
796 /* There is little space for user data in mbuf pkthdr, so we
797 * use l*hlen fields which are not used by the driver otherwise
798 * to store header offsets.
799 * The fields are 8-bit, but it's ok, no header may be longer than 255 bytes.
800 */
801
802 #define TSO_MBUF_PROTO(_mbuf) ((_mbuf)->m_pkthdr.PH_loc.sixteen[0])
803 /* We abuse l5hlen here because PH_loc can hold only 64 bits of data */
804 #define TSO_MBUF_FLAGS(_mbuf) ((_mbuf)->m_pkthdr.l5hlen)
805 #define TSO_MBUF_PACKETID(_mbuf) ((_mbuf)->m_pkthdr.PH_loc.sixteen[1])
806 #define TSO_MBUF_SEQNUM(_mbuf) ((_mbuf)->m_pkthdr.PH_loc.thirtytwo[1])
807
808 static void sfxge_parse_tx_packet(struct mbuf *mbuf)
809 {
810 struct ether_header *eh = mtod(mbuf, struct ether_header *);
811 const struct tcphdr *th;
812 struct tcphdr th_copy;
813
814 /* Find network protocol and header */
815 TSO_MBUF_PROTO(mbuf) = eh->ether_type;
816 if (TSO_MBUF_PROTO(mbuf) == htons(ETHERTYPE_VLAN)) {
817 struct ether_vlan_header *veh =
818 mtod(mbuf, struct ether_vlan_header *);
819 TSO_MBUF_PROTO(mbuf) = veh->evl_proto;
820 mbuf->m_pkthdr.l2hlen = sizeof(*veh);
821 } else {
822 mbuf->m_pkthdr.l2hlen = sizeof(*eh);
823 }
824
825 /* Find TCP header */
826 if (TSO_MBUF_PROTO(mbuf) == htons(ETHERTYPE_IP)) {
827 const struct ip *iph = (const struct ip *)mtodo(mbuf, mbuf->m_pkthdr.l2hlen);
828
829 KASSERT(iph->ip_p == IPPROTO_TCP,
830 ("TSO required on non-TCP packet"));
831 mbuf->m_pkthdr.l3hlen = mbuf->m_pkthdr.l2hlen + 4 * iph->ip_hl;
832 TSO_MBUF_PACKETID(mbuf) = iph->ip_id;
833 } else {
834 KASSERT(TSO_MBUF_PROTO(mbuf) == htons(ETHERTYPE_IPV6),
835 ("TSO required on non-IP packet"));
836 KASSERT(((const struct ip6_hdr *)mtodo(mbuf, mbuf->m_pkthdr.l2hlen))->ip6_nxt ==
837 IPPROTO_TCP,
838 ("TSO required on non-TCP packet"));
839 mbuf->m_pkthdr.l3hlen = mbuf->m_pkthdr.l2hlen + sizeof(struct ip6_hdr);
840 TSO_MBUF_PACKETID(mbuf) = 0;
841 }
842
843 KASSERT(mbuf->m_len >= mbuf->m_pkthdr.l3hlen,
844 ("network header is fragmented in mbuf"));
845
846 /* We need TCP header including flags (window is the next) */
847 if (mbuf->m_len < mbuf->m_pkthdr.l3hlen + offsetof(struct tcphdr, th_win)) {
848 m_copydata(mbuf, mbuf->m_pkthdr.l3hlen, sizeof(th_copy),
849 (caddr_t)&th_copy);
850 th = &th_copy;
851 } else {
852 th = (const struct tcphdr *)mtodo(mbuf, mbuf->m_pkthdr.l3hlen);
853 }
854
855 mbuf->m_pkthdr.l4hlen = mbuf->m_pkthdr.l3hlen + 4 * th->th_off;
856 TSO_MBUF_SEQNUM(mbuf) = ntohl(th->th_seq);
857
858 /* These flags must not be duplicated */
859 /*
860 * RST should not be duplicated as well, but FreeBSD kernel
861 * generates TSO packets with RST flag. So, do not assert
862 * its absence.
863 */
864 KASSERT(!(th->th_flags & (TH_URG | TH_SYN)),
865 ("incompatible TCP flag 0x%x on TSO packet",
866 th->th_flags & (TH_URG | TH_SYN)));
867 TSO_MBUF_FLAGS(mbuf) = th->th_flags;
868 }
869 #endif
870
871 /*
872 * TX start -- called by the stack.
873 */
874 int
875 sfxge_if_transmit(struct ifnet *ifp, struct mbuf *m)
876 {
877 struct sfxge_softc *sc;
878 struct sfxge_txq *txq;
879 int rc;
880
881 sc = (struct sfxge_softc *)ifp->if_softc;
882
883 /*
884 * Transmit may be called when interface is up from the kernel
885 * point of view, but not yet up (in progress) from the driver
886 * point of view. I.e. link aggregation bring up.
887 * Transmit may be called when interface is up from the driver
888 * point of view, but already down from the kernel point of
889 * view. I.e. Rx when interface shutdown is in progress.
890 */
891 KASSERT((ifp->if_flags & IFF_UP) || (sc->if_flags & IFF_UP),
892 ("interface not up"));
893
894 /* Pick the desired transmit queue. */
895 if (sc->txq_dynamic_cksum_toggle_supported |
896 (m->m_pkthdr.csum_flags &
897 (CSUM_DELAY_DATA | CSUM_TCP_IPV6 | CSUM_UDP_IPV6 | CSUM_TSO))) {
898 int index = 0;
899
900 #ifdef RSS
901 uint32_t bucket_id;
902
903 /*
904 * Select a TX queue which matches the corresponding
905 * RX queue for the hash in order to assign both
906 * TX and RX parts of the flow to the same CPU
907 */
908 if (rss_m2bucket(m, &bucket_id) == 0)
909 index = bucket_id % (sc->txq_count - (SFXGE_TXQ_NTYPES - 1));
910 #else
911 /* check if flowid is set */
912 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
913 uint32_t hash = m->m_pkthdr.flowid;
914 uint32_t idx = hash % nitems(sc->rx_indir_table);
915
916 index = sc->rx_indir_table[idx];
917 }
918 #endif
919 #if SFXGE_TX_PARSE_EARLY
920 if (m->m_pkthdr.csum_flags & CSUM_TSO)
921 sfxge_parse_tx_packet(m);
922 #endif
923 index += (sc->txq_dynamic_cksum_toggle_supported == B_FALSE) ?
924 SFXGE_TXQ_IP_TCP_UDP_CKSUM : 0;
925 txq = sc->txq[index];
926 } else if (m->m_pkthdr.csum_flags & CSUM_DELAY_IP) {
927 txq = sc->txq[SFXGE_TXQ_IP_CKSUM];
928 } else {
929 txq = sc->txq[SFXGE_TXQ_NON_CKSUM];
930 }
931
932 rc = sfxge_tx_packet_add(txq, m);
933 if (rc != 0)
934 m_freem(m);
935
936 return (rc);
937 }
938
939 /*
940 * Software "TSO". Not quite as good as doing it in hardware, but
941 * still faster than segmenting in the stack.
942 */
943
944 struct sfxge_tso_state {
945 /* Output position */
946 unsigned out_len; /* Remaining length in current segment */
947 unsigned seqnum; /* Current sequence number */
948 unsigned packet_space; /* Remaining space in current packet */
949 unsigned segs_space; /* Remaining number of DMA segments
950 for the packet (FATSOv2 only) */
951
952 /* Input position */
953 uint64_t dma_addr; /* DMA address of current position */
954 unsigned in_len; /* Remaining length in current mbuf */
955
956 const struct mbuf *mbuf; /* Input mbuf (head of chain) */
957 u_short protocol; /* Network protocol (after VLAN decap) */
958 ssize_t nh_off; /* Offset of network header */
959 ssize_t tcph_off; /* Offset of TCP header */
960 unsigned header_len; /* Number of bytes of header */
961 unsigned seg_size; /* TCP segment size */
962 int fw_assisted; /* Use FW-assisted TSO */
963 u_short packet_id; /* IPv4 packet ID from the original packet */
964 uint8_t tcp_flags; /* TCP flags */
965 efx_desc_t header_desc; /* Precomputed header descriptor for
966 * FW-assisted TSO */
967 };
968
969 #if !SFXGE_TX_PARSE_EARLY
970 static const struct ip *tso_iph(const struct sfxge_tso_state *tso)
971 {
972 KASSERT(tso->protocol == htons(ETHERTYPE_IP),
973 ("tso_iph() in non-IPv4 state"));
974 return (const struct ip *)(tso->mbuf->m_data + tso->nh_off);
975 }
976
977 static __unused const struct ip6_hdr *tso_ip6h(const struct sfxge_tso_state *tso)
978 {
979 KASSERT(tso->protocol == htons(ETHERTYPE_IPV6),
980 ("tso_ip6h() in non-IPv6 state"));
981 return (const struct ip6_hdr *)(tso->mbuf->m_data + tso->nh_off);
982 }
983
984 static const struct tcphdr *tso_tcph(const struct sfxge_tso_state *tso)
985 {
986 return (const struct tcphdr *)(tso->mbuf->m_data + tso->tcph_off);
987 }
988 #endif
989
990 /* Size of preallocated TSO header buffers. Larger blocks must be
991 * allocated from the heap.
992 */
993 #define TSOH_STD_SIZE 128
994
995 /* At most half the descriptors in the queue at any time will refer to
996 * a TSO header buffer, since they must always be followed by a
997 * payload descriptor referring to an mbuf.
998 */
999 #define TSOH_COUNT(_txq_entries) ((_txq_entries) / 2u)
1000 #define TSOH_PER_PAGE (PAGE_SIZE / TSOH_STD_SIZE)
1001 #define TSOH_PAGE_COUNT(_txq_entries) \
1002 howmany(TSOH_COUNT(_txq_entries), TSOH_PER_PAGE)
1003
1004 static int tso_init(struct sfxge_txq *txq)
1005 {
1006 struct sfxge_softc *sc = txq->sc;
1007 unsigned int tsoh_page_count = TSOH_PAGE_COUNT(sc->txq_entries);
1008 int i, rc;
1009
1010 /* Allocate TSO header buffers */
1011 txq->tsoh_buffer = malloc(tsoh_page_count * sizeof(txq->tsoh_buffer[0]),
1012 M_SFXGE, M_WAITOK);
1013
1014 for (i = 0; i < tsoh_page_count; i++) {
1015 rc = sfxge_dma_alloc(sc, PAGE_SIZE, &txq->tsoh_buffer[i]);
1016 if (rc != 0)
1017 goto fail;
1018 }
1019
1020 return (0);
1021
1022 fail:
1023 while (i-- > 0)
1024 sfxge_dma_free(&txq->tsoh_buffer[i]);
1025 free(txq->tsoh_buffer, M_SFXGE);
1026 txq->tsoh_buffer = NULL;
1027 return (rc);
1028 }
1029
1030 static void tso_fini(struct sfxge_txq *txq)
1031 {
1032 int i;
1033
1034 if (txq->tsoh_buffer != NULL) {
1035 for (i = 0; i < TSOH_PAGE_COUNT(txq->sc->txq_entries); i++)
1036 sfxge_dma_free(&txq->tsoh_buffer[i]);
1037 free(txq->tsoh_buffer, M_SFXGE);
1038 }
1039 }
1040
1041 static void tso_start(struct sfxge_txq *txq, struct sfxge_tso_state *tso,
1042 const bus_dma_segment_t *hdr_dma_seg,
1043 struct mbuf *mbuf)
1044 {
1045 const efx_nic_cfg_t *encp = efx_nic_cfg_get(txq->sc->enp);
1046 #if !SFXGE_TX_PARSE_EARLY
1047 struct ether_header *eh = mtod(mbuf, struct ether_header *);
1048 const struct tcphdr *th;
1049 struct tcphdr th_copy;
1050 #endif
1051
1052 tso->fw_assisted = txq->tso_fw_assisted;
1053 tso->mbuf = mbuf;
1054
1055 /* Find network protocol and header */
1056 #if !SFXGE_TX_PARSE_EARLY
1057 tso->protocol = eh->ether_type;
1058 if (tso->protocol == htons(ETHERTYPE_VLAN)) {
1059 struct ether_vlan_header *veh =
1060 mtod(mbuf, struct ether_vlan_header *);
1061 tso->protocol = veh->evl_proto;
1062 tso->nh_off = sizeof(*veh);
1063 } else {
1064 tso->nh_off = sizeof(*eh);
1065 }
1066 #else
1067 tso->protocol = TSO_MBUF_PROTO(mbuf);
1068 tso->nh_off = mbuf->m_pkthdr.l2hlen;
1069 tso->tcph_off = mbuf->m_pkthdr.l3hlen;
1070 tso->packet_id = ntohs(TSO_MBUF_PACKETID(mbuf));
1071 #endif
1072
1073 #if !SFXGE_TX_PARSE_EARLY
1074 /* Find TCP header */
1075 if (tso->protocol == htons(ETHERTYPE_IP)) {
1076 KASSERT(tso_iph(tso)->ip_p == IPPROTO_TCP,
1077 ("TSO required on non-TCP packet"));
1078 tso->tcph_off = tso->nh_off + 4 * tso_iph(tso)->ip_hl;
1079 tso->packet_id = ntohs(tso_iph(tso)->ip_id);
1080 } else {
1081 KASSERT(tso->protocol == htons(ETHERTYPE_IPV6),
1082 ("TSO required on non-IP packet"));
1083 KASSERT(tso_ip6h(tso)->ip6_nxt == IPPROTO_TCP,
1084 ("TSO required on non-TCP packet"));
1085 tso->tcph_off = tso->nh_off + sizeof(struct ip6_hdr);
1086 tso->packet_id = 0;
1087 }
1088 #endif
1089
1090 if (tso->fw_assisted &&
1091 __predict_false(tso->tcph_off >
1092 encp->enc_tx_tso_tcp_header_offset_limit)) {
1093 tso->fw_assisted = 0;
1094 }
1095
1096 #if !SFXGE_TX_PARSE_EARLY
1097 KASSERT(mbuf->m_len >= tso->tcph_off,
1098 ("network header is fragmented in mbuf"));
1099 /* We need TCP header including flags (window is the next) */
1100 if (mbuf->m_len < tso->tcph_off + offsetof(struct tcphdr, th_win)) {
1101 m_copydata(tso->mbuf, tso->tcph_off, sizeof(th_copy),
1102 (caddr_t)&th_copy);
1103 th = &th_copy;
1104 } else {
1105 th = tso_tcph(tso);
1106 }
1107 tso->header_len = tso->tcph_off + 4 * th->th_off;
1108 #else
1109 tso->header_len = mbuf->m_pkthdr.l4hlen;
1110 #endif
1111 tso->seg_size = mbuf->m_pkthdr.tso_segsz;
1112
1113 #if !SFXGE_TX_PARSE_EARLY
1114 tso->seqnum = ntohl(th->th_seq);
1115
1116 /* These flags must not be duplicated */
1117 /*
1118 * RST should not be duplicated as well, but FreeBSD kernel
1119 * generates TSO packets with RST flag. So, do not assert
1120 * its absence.
1121 */
1122 KASSERT(!(th->th_flags & (TH_URG | TH_SYN)),
1123 ("incompatible TCP flag 0x%x on TSO packet",
1124 th->th_flags & (TH_URG | TH_SYN)));
1125 tso->tcp_flags = th->th_flags;
1126 #else
1127 tso->seqnum = TSO_MBUF_SEQNUM(mbuf);
1128 tso->tcp_flags = TSO_MBUF_FLAGS(mbuf);
1129 #endif
1130
1131 tso->out_len = mbuf->m_pkthdr.len - tso->header_len;
1132
1133 if (tso->fw_assisted) {
1134 if (hdr_dma_seg->ds_len >= tso->header_len)
1135 efx_tx_qdesc_dma_create(txq->common,
1136 hdr_dma_seg->ds_addr,
1137 tso->header_len,
1138 B_FALSE,
1139 &tso->header_desc);
1140 else
1141 tso->fw_assisted = 0;
1142 }
1143 }
1144
1145 /*
1146 * tso_fill_packet_with_fragment - form descriptors for the current fragment
1147 *
1148 * Form descriptors for the current fragment, until we reach the end
1149 * of fragment or end-of-packet. Return 0 on success, 1 if not enough
1150 * space.
1151 */
1152 static void tso_fill_packet_with_fragment(struct sfxge_txq *txq,
1153 struct sfxge_tso_state *tso)
1154 {
1155 efx_desc_t *desc;
1156 int n;
1157 uint64_t dma_addr = tso->dma_addr;
1158 boolean_t eop;
1159
1160 if (tso->in_len == 0 || tso->packet_space == 0)
1161 return;
1162
1163 KASSERT(tso->in_len > 0, ("TSO input length went negative"));
1164 KASSERT(tso->packet_space > 0, ("TSO packet space went negative"));
1165
1166 if (tso->fw_assisted & SFXGE_FATSOV2) {
1167 n = tso->in_len;
1168 tso->out_len -= n;
1169 tso->seqnum += n;
1170 tso->in_len = 0;
1171 if (n < tso->packet_space) {
1172 tso->packet_space -= n;
1173 tso->segs_space--;
1174 } else {
1175 tso->packet_space = tso->seg_size -
1176 (n - tso->packet_space) % tso->seg_size;
1177 tso->segs_space =
1178 EFX_TX_FATSOV2_DMA_SEGS_PER_PKT_MAX - 1 -
1179 (tso->packet_space != tso->seg_size);
1180 }
1181 } else {
1182 n = min(tso->in_len, tso->packet_space);
1183 tso->packet_space -= n;
1184 tso->out_len -= n;
1185 tso->dma_addr += n;
1186 tso->in_len -= n;
1187 }
1188
1189 /*
1190 * It is OK to use binary OR below to avoid extra branching
1191 * since all conditions may always be checked.
1192 */
1193 eop = (tso->out_len == 0) | (tso->packet_space == 0) |
1194 (tso->segs_space == 0);
1195
1196 desc = &txq->pend_desc[txq->n_pend_desc++];
1197 efx_tx_qdesc_dma_create(txq->common, dma_addr, n, eop, desc);
1198 }
1199
1200 /* Callback from bus_dmamap_load() for long TSO headers. */
1201 static void tso_map_long_header(void *dma_addr_ret,
1202 bus_dma_segment_t *segs, int nseg,
1203 int error)
1204 {
1205 *(uint64_t *)dma_addr_ret = ((__predict_true(error == 0) &&
1206 __predict_true(nseg == 1)) ?
1207 segs->ds_addr : 0);
1208 }
1209
1210 /*
1211 * tso_start_new_packet - generate a new header and prepare for the new packet
1212 *
1213 * Generate a new header and prepare for the new packet. Return 0 on
1214 * success, or an error code if failed to alloc header.
1215 */
1216 static int tso_start_new_packet(struct sfxge_txq *txq,
1217 struct sfxge_tso_state *tso,
1218 unsigned int *idp)
1219 {
1220 unsigned int id = *idp;
1221 struct tcphdr *tsoh_th;
1222 unsigned ip_length;
1223 caddr_t header;
1224 uint64_t dma_addr;
1225 bus_dmamap_t map;
1226 efx_desc_t *desc;
1227 int rc;
1228
1229 if (tso->fw_assisted) {
1230 if (tso->fw_assisted & SFXGE_FATSOV2) {
1231 /* Add 2 FATSOv2 option descriptors */
1232 desc = &txq->pend_desc[txq->n_pend_desc];
1233 efx_tx_qdesc_tso2_create(txq->common,
1234 tso->packet_id,
1235 0,
1236 tso->seqnum,
1237 tso->seg_size,
1238 desc,
1239 EFX_TX_FATSOV2_OPT_NDESCS);
1240 desc += EFX_TX_FATSOV2_OPT_NDESCS;
1241 txq->n_pend_desc += EFX_TX_FATSOV2_OPT_NDESCS;
1242 KASSERT(txq->stmp[id].flags == 0, ("stmp flags are not 0"));
1243 id = (id + EFX_TX_FATSOV2_OPT_NDESCS) & txq->ptr_mask;
1244
1245 tso->segs_space =
1246 EFX_TX_FATSOV2_DMA_SEGS_PER_PKT_MAX - 1;
1247 } else {
1248 uint8_t tcp_flags = tso->tcp_flags;
1249
1250 if (tso->out_len > tso->seg_size)
1251 tcp_flags &= ~(TH_FIN | TH_PUSH);
1252
1253 /* Add FATSOv1 option descriptor */
1254 desc = &txq->pend_desc[txq->n_pend_desc++];
1255 efx_tx_qdesc_tso_create(txq->common,
1256 tso->packet_id,
1257 tso->seqnum,
1258 tcp_flags,
1259 desc++);
1260 KASSERT(txq->stmp[id].flags == 0, ("stmp flags are not 0"));
1261 id = (id + 1) & txq->ptr_mask;
1262
1263 tso->seqnum += tso->seg_size;
1264 tso->segs_space = UINT_MAX;
1265 }
1266
1267 /* Header DMA descriptor */
1268 *desc = tso->header_desc;
1269 txq->n_pend_desc++;
1270 KASSERT(txq->stmp[id].flags == 0, ("stmp flags are not 0"));
1271 id = (id + 1) & txq->ptr_mask;
1272 } else {
1273 /* Allocate a DMA-mapped header buffer. */
1274 if (__predict_true(tso->header_len <= TSOH_STD_SIZE)) {
1275 unsigned int page_index = (id / 2) / TSOH_PER_PAGE;
1276 unsigned int buf_index = (id / 2) % TSOH_PER_PAGE;
1277
1278 header = (txq->tsoh_buffer[page_index].esm_base +
1279 buf_index * TSOH_STD_SIZE);
1280 dma_addr = (txq->tsoh_buffer[page_index].esm_addr +
1281 buf_index * TSOH_STD_SIZE);
1282 map = txq->tsoh_buffer[page_index].esm_map;
1283
1284 KASSERT(txq->stmp[id].flags == 0,
1285 ("stmp flags are not 0"));
1286 } else {
1287 struct sfxge_tx_mapping *stmp = &txq->stmp[id];
1288
1289 /* We cannot use bus_dmamem_alloc() as that may sleep */
1290 header = malloc(tso->header_len, M_SFXGE, M_NOWAIT);
1291 if (__predict_false(!header))
1292 return (ENOMEM);
1293 rc = bus_dmamap_load(txq->packet_dma_tag, stmp->map,
1294 header, tso->header_len,
1295 tso_map_long_header, &dma_addr,
1296 BUS_DMA_NOWAIT);
1297 if (__predict_false(dma_addr == 0)) {
1298 if (rc == 0) {
1299 /* Succeeded but got >1 segment */
1300 bus_dmamap_unload(txq->packet_dma_tag,
1301 stmp->map);
1302 rc = EINVAL;
1303 }
1304 free(header, M_SFXGE);
1305 return (rc);
1306 }
1307 map = stmp->map;
1308
1309 txq->tso_long_headers++;
1310 stmp->u.heap_buf = header;
1311 stmp->flags = TX_BUF_UNMAP;
1312 }
1313
1314 tsoh_th = (struct tcphdr *)(header + tso->tcph_off);
1315
1316 /* Copy and update the headers. */
1317 m_copydata(tso->mbuf, 0, tso->header_len, header);
1318
1319 tsoh_th->th_seq = htonl(tso->seqnum);
1320 tso->seqnum += tso->seg_size;
1321 if (tso->out_len > tso->seg_size) {
1322 /* This packet will not finish the TSO burst. */
1323 ip_length = tso->header_len - tso->nh_off + tso->seg_size;
1324 tsoh_th->th_flags &= ~(TH_FIN | TH_PUSH);
1325 } else {
1326 /* This packet will be the last in the TSO burst. */
1327 ip_length = tso->header_len - tso->nh_off + tso->out_len;
1328 }
1329
1330 if (tso->protocol == htons(ETHERTYPE_IP)) {
1331 struct ip *tsoh_iph = (struct ip *)(header + tso->nh_off);
1332 tsoh_iph->ip_len = htons(ip_length);
1333 /* XXX We should increment ip_id, but FreeBSD doesn't
1334 * currently allocate extra IDs for multiple segments.
1335 */
1336 } else {
1337 struct ip6_hdr *tsoh_iph =
1338 (struct ip6_hdr *)(header + tso->nh_off);
1339 tsoh_iph->ip6_plen = htons(ip_length - sizeof(*tsoh_iph));
1340 }
1341
1342 /* Make the header visible to the hardware. */
1343 bus_dmamap_sync(txq->packet_dma_tag, map, BUS_DMASYNC_PREWRITE);
1344
1345 /* Form a descriptor for this header. */
1346 desc = &txq->pend_desc[txq->n_pend_desc++];
1347 efx_tx_qdesc_dma_create(txq->common,
1348 dma_addr,
1349 tso->header_len,
1350 0,
1351 desc);
1352 id = (id + 1) & txq->ptr_mask;
1353
1354 tso->segs_space = UINT_MAX;
1355 }
1356 tso->packet_space = tso->seg_size;
1357 txq->tso_packets++;
1358 *idp = id;
1359
1360 return (0);
1361 }
1362
1363 static int
1364 sfxge_tx_queue_tso(struct sfxge_txq *txq, struct mbuf *mbuf,
1365 const bus_dma_segment_t *dma_seg, int n_dma_seg,
1366 int n_extra_descs)
1367 {
1368 struct sfxge_tso_state tso;
1369 unsigned int id;
1370 unsigned skipped = 0;
1371
1372 tso_start(txq, &tso, dma_seg, mbuf);
1373
1374 while (dma_seg->ds_len + skipped <= tso.header_len) {
1375 skipped += dma_seg->ds_len;
1376 --n_dma_seg;
1377 KASSERT(n_dma_seg, ("no payload found in TSO packet"));
1378 ++dma_seg;
1379 }
1380 tso.in_len = dma_seg->ds_len - (tso.header_len - skipped);
1381 tso.dma_addr = dma_seg->ds_addr + (tso.header_len - skipped);
1382
1383 id = (txq->added + n_extra_descs) & txq->ptr_mask;
1384 if (__predict_false(tso_start_new_packet(txq, &tso, &id)))
1385 return (-1);
1386
1387 while (1) {
1388 tso_fill_packet_with_fragment(txq, &tso);
1389 /* Exactly one DMA descriptor is added */
1390 KASSERT(txq->stmp[id].flags == 0, ("stmp flags are not 0"));
1391 id = (id + 1) & txq->ptr_mask;
1392
1393 /* Move onto the next fragment? */
1394 if (tso.in_len == 0) {
1395 --n_dma_seg;
1396 if (n_dma_seg == 0)
1397 break;
1398 ++dma_seg;
1399 tso.in_len = dma_seg->ds_len;
1400 tso.dma_addr = dma_seg->ds_addr;
1401 }
1402
1403 /* End of packet? */
1404 if ((tso.packet_space == 0) | (tso.segs_space == 0)) {
1405 unsigned int n_fatso_opt_desc =
1406 (tso.fw_assisted & SFXGE_FATSOV2) ?
1407 EFX_TX_FATSOV2_OPT_NDESCS :
1408 (tso.fw_assisted & SFXGE_FATSOV1) ? 1 : 0;
1409
1410 /* If the queue is now full due to tiny MSS,
1411 * or we can't create another header, discard
1412 * the remainder of the input mbuf but do not
1413 * roll back the work we have done.
1414 */
1415 if (txq->n_pend_desc + n_fatso_opt_desc +
1416 1 /* header */ + n_dma_seg > txq->max_pkt_desc) {
1417 txq->tso_pdrop_too_many++;
1418 break;
1419 }
1420 if (__predict_false(tso_start_new_packet(txq, &tso,
1421 &id))) {
1422 txq->tso_pdrop_no_rsrc++;
1423 break;
1424 }
1425 }
1426 }
1427
1428 txq->tso_bursts++;
1429 return (id);
1430 }
1431
1432 static void
1433 sfxge_tx_qunblock(struct sfxge_txq *txq)
1434 {
1435 struct sfxge_softc *sc;
1436 struct sfxge_evq *evq __diagused;
1437
1438 sc = txq->sc;
1439 evq = sc->evq[txq->evq_index];
1440
1441 SFXGE_EVQ_LOCK_ASSERT_OWNED(evq);
1442
1443 if (__predict_false(txq->init_state != SFXGE_TXQ_STARTED))
1444 return;
1445
1446 SFXGE_TXQ_LOCK(txq);
1447
1448 if (txq->blocked) {
1449 unsigned int level;
1450
1451 level = txq->added - txq->completed;
1452 if (level <= SFXGE_TXQ_UNBLOCK_LEVEL(txq->entries)) {
1453 /* reaped must be in sync with blocked */
1454 sfxge_tx_qreap(txq);
1455 txq->blocked = 0;
1456 }
1457 }
1458
1459 sfxge_tx_qdpl_service(txq);
1460 /* note: lock has been dropped */
1461 }
1462
1463 void
1464 sfxge_tx_qflush_done(struct sfxge_txq *txq)
1465 {
1466
1467 txq->flush_state = SFXGE_FLUSH_DONE;
1468 }
1469
1470 static void
1471 sfxge_tx_qstop(struct sfxge_softc *sc, unsigned int index)
1472 {
1473 struct sfxge_txq *txq;
1474 struct sfxge_evq *evq;
1475 unsigned int count;
1476
1477 SFXGE_ADAPTER_LOCK_ASSERT_OWNED(sc);
1478
1479 txq = sc->txq[index];
1480 evq = sc->evq[txq->evq_index];
1481
1482 SFXGE_EVQ_LOCK(evq);
1483 SFXGE_TXQ_LOCK(txq);
1484
1485 KASSERT(txq->init_state == SFXGE_TXQ_STARTED,
1486 ("txq->init_state != SFXGE_TXQ_STARTED"));
1487
1488 txq->init_state = SFXGE_TXQ_INITIALIZED;
1489
1490 if (txq->flush_state != SFXGE_FLUSH_DONE) {
1491 txq->flush_state = SFXGE_FLUSH_PENDING;
1492
1493 SFXGE_EVQ_UNLOCK(evq);
1494 SFXGE_TXQ_UNLOCK(txq);
1495
1496 /* Flush the transmit queue. */
1497 if (efx_tx_qflush(txq->common) != 0) {
1498 log(LOG_ERR, "%s: Flushing Tx queue %u failed\n",
1499 device_get_nameunit(sc->dev), index);
1500 txq->flush_state = SFXGE_FLUSH_DONE;
1501 } else {
1502 count = 0;
1503 do {
1504 /* Spin for 100ms. */
1505 DELAY(100000);
1506 if (txq->flush_state != SFXGE_FLUSH_PENDING)
1507 break;
1508 } while (++count < 20);
1509 }
1510 SFXGE_EVQ_LOCK(evq);
1511 SFXGE_TXQ_LOCK(txq);
1512
1513 KASSERT(txq->flush_state != SFXGE_FLUSH_FAILED,
1514 ("txq->flush_state == SFXGE_FLUSH_FAILED"));
1515
1516 if (txq->flush_state != SFXGE_FLUSH_DONE) {
1517 /* Flush timeout */
1518 log(LOG_ERR, "%s: Cannot flush Tx queue %u\n",
1519 device_get_nameunit(sc->dev), index);
1520 txq->flush_state = SFXGE_FLUSH_DONE;
1521 }
1522 }
1523
1524 txq->blocked = 0;
1525 txq->pending = txq->added;
1526
1527 sfxge_tx_qcomplete(txq, evq);
1528 KASSERT(txq->completed == txq->added,
1529 ("txq->completed != txq->added"));
1530
1531 sfxge_tx_qreap(txq);
1532 KASSERT(txq->reaped == txq->completed,
1533 ("txq->reaped != txq->completed"));
1534
1535 txq->added = 0;
1536 txq->pending = 0;
1537 txq->completed = 0;
1538 txq->reaped = 0;
1539
1540 /* Destroy the common code transmit queue. */
1541 efx_tx_qdestroy(txq->common);
1542 txq->common = NULL;
1543
1544 efx_sram_buf_tbl_clear(sc->enp, txq->buf_base_id,
1545 EFX_TXQ_NBUFS(sc->txq_entries));
1546
1547 txq->hw_cksum_flags = 0;
1548
1549 SFXGE_EVQ_UNLOCK(evq);
1550 SFXGE_TXQ_UNLOCK(txq);
1551 }
1552
1553 /*
1554 * Estimate maximum number of Tx descriptors required for TSO packet.
1555 * With minimum MSS and maximum mbuf length we might need more (even
1556 * than a ring-ful of descriptors), but this should not happen in
1557 * practice except due to deliberate attack. In that case we will
1558 * truncate the output at a packet boundary.
1559 */
1560 static unsigned int
1561 sfxge_tx_max_pkt_desc(const struct sfxge_softc *sc, enum sfxge_txq_type type,
1562 unsigned int tso_fw_assisted)
1563 {
1564 /* One descriptor for every input fragment */
1565 unsigned int max_descs = SFXGE_TX_MAPPING_MAX_SEG;
1566 unsigned int sw_tso_max_descs;
1567 unsigned int fa_tso_v1_max_descs = 0;
1568 unsigned int fa_tso_v2_max_descs = 0;
1569
1570 /* Checksum offload Tx option descriptor may be required */
1571 if (sc->txq_dynamic_cksum_toggle_supported)
1572 max_descs++;
1573
1574 /* VLAN tagging Tx option descriptor may be required */
1575 if (efx_nic_cfg_get(sc->enp)->enc_hw_tx_insert_vlan_enabled)
1576 max_descs++;
1577
1578 if (type == SFXGE_TXQ_IP_TCP_UDP_CKSUM) {
1579 /*
1580 * Plus header and payload descriptor for each output segment.
1581 * Minus one since header fragment is already counted.
1582 * Even if FATSO is used, we should be ready to fallback
1583 * to do it in the driver.
1584 */
1585 sw_tso_max_descs = SFXGE_TSO_MAX_SEGS * 2 - 1;
1586
1587 /* FW assisted TSOv1 requires one more descriptor per segment
1588 * in comparison to SW TSO */
1589 if (tso_fw_assisted & SFXGE_FATSOV1)
1590 fa_tso_v1_max_descs =
1591 sw_tso_max_descs + SFXGE_TSO_MAX_SEGS;
1592
1593 /* FW assisted TSOv2 requires 3 (2 FATSO plus header) extra
1594 * descriptors per superframe limited by number of DMA fetches
1595 * per packet. The first packet header is already counted.
1596 */
1597 if (tso_fw_assisted & SFXGE_FATSOV2) {
1598 fa_tso_v2_max_descs =
1599 howmany(SFXGE_TX_MAPPING_MAX_SEG,
1600 EFX_TX_FATSOV2_DMA_SEGS_PER_PKT_MAX - 1) *
1601 (EFX_TX_FATSOV2_OPT_NDESCS + 1) - 1;
1602 }
1603
1604 max_descs += MAX(sw_tso_max_descs,
1605 MAX(fa_tso_v1_max_descs, fa_tso_v2_max_descs));
1606 }
1607
1608 return (max_descs);
1609 }
1610
1611 static int
1612 sfxge_tx_qstart(struct sfxge_softc *sc, unsigned int index)
1613 {
1614 struct sfxge_txq *txq;
1615 efsys_mem_t *esmp;
1616 uint16_t flags;
1617 unsigned int tso_fw_assisted;
1618 unsigned int label;
1619 struct sfxge_evq *evq;
1620 unsigned int desc_index;
1621 int rc;
1622
1623 SFXGE_ADAPTER_LOCK_ASSERT_OWNED(sc);
1624
1625 txq = sc->txq[index];
1626 esmp = &txq->mem;
1627 evq = sc->evq[txq->evq_index];
1628
1629 KASSERT(txq->init_state == SFXGE_TXQ_INITIALIZED,
1630 ("txq->init_state != SFXGE_TXQ_INITIALIZED"));
1631 KASSERT(evq->init_state == SFXGE_EVQ_STARTED,
1632 ("evq->init_state != SFXGE_EVQ_STARTED"));
1633
1634 /* Program the buffer table. */
1635 if ((rc = efx_sram_buf_tbl_set(sc->enp, txq->buf_base_id, esmp,
1636 EFX_TXQ_NBUFS(sc->txq_entries))) != 0)
1637 return (rc);
1638
1639 /* Determine the kind of queue we are creating. */
1640 tso_fw_assisted = 0;
1641 switch (txq->type) {
1642 case SFXGE_TXQ_NON_CKSUM:
1643 flags = 0;
1644 break;
1645 case SFXGE_TXQ_IP_CKSUM:
1646 flags = EFX_TXQ_CKSUM_IPV4;
1647 break;
1648 case SFXGE_TXQ_IP_TCP_UDP_CKSUM:
1649 flags = EFX_TXQ_CKSUM_IPV4 | EFX_TXQ_CKSUM_TCPUDP;
1650 tso_fw_assisted = sc->tso_fw_assisted;
1651 if (tso_fw_assisted & SFXGE_FATSOV2)
1652 flags |= EFX_TXQ_FATSOV2;
1653 break;
1654 default:
1655 KASSERT(0, ("Impossible TX queue"));
1656 flags = 0;
1657 break;
1658 }
1659
1660 label = (sc->txq_dynamic_cksum_toggle_supported) ? 0 : txq->type;
1661
1662 /* Create the common code transmit queue. */
1663 if ((rc = efx_tx_qcreate(sc->enp, index, label, esmp,
1664 sc->txq_entries, txq->buf_base_id, flags, evq->common,
1665 &txq->common, &desc_index)) != 0) {
1666 /* Retry if no FATSOv2 resources, otherwise fail */
1667 if ((rc != ENOSPC) || (~flags & EFX_TXQ_FATSOV2))
1668 goto fail;
1669
1670 /* Looks like all FATSOv2 contexts are used */
1671 flags &= ~EFX_TXQ_FATSOV2;
1672 tso_fw_assisted &= ~SFXGE_FATSOV2;
1673 if ((rc = efx_tx_qcreate(sc->enp, index, label, esmp,
1674 sc->txq_entries, txq->buf_base_id, flags, evq->common,
1675 &txq->common, &desc_index)) != 0)
1676 goto fail;
1677 }
1678
1679 /* Initialise queue descriptor indexes */
1680 txq->added = txq->pending = txq->completed = txq->reaped = desc_index;
1681
1682 SFXGE_TXQ_LOCK(txq);
1683
1684 /* Enable the transmit queue. */
1685 efx_tx_qenable(txq->common);
1686
1687 txq->init_state = SFXGE_TXQ_STARTED;
1688 txq->flush_state = SFXGE_FLUSH_REQUIRED;
1689 txq->tso_fw_assisted = tso_fw_assisted;
1690
1691 txq->max_pkt_desc = sfxge_tx_max_pkt_desc(sc, txq->type,
1692 tso_fw_assisted);
1693
1694 txq->hw_vlan_tci = 0;
1695
1696 txq->hw_cksum_flags = flags &
1697 (EFX_TXQ_CKSUM_IPV4 | EFX_TXQ_CKSUM_TCPUDP);
1698
1699 SFXGE_TXQ_UNLOCK(txq);
1700
1701 return (0);
1702
1703 fail:
1704 efx_sram_buf_tbl_clear(sc->enp, txq->buf_base_id,
1705 EFX_TXQ_NBUFS(sc->txq_entries));
1706 return (rc);
1707 }
1708
1709 void
1710 sfxge_tx_stop(struct sfxge_softc *sc)
1711 {
1712 int index;
1713
1714 index = sc->txq_count;
1715 while (--index >= 0)
1716 sfxge_tx_qstop(sc, index);
1717
1718 /* Tear down the transmit module */
1719 efx_tx_fini(sc->enp);
1720 }
1721
1722 int
1723 sfxge_tx_start(struct sfxge_softc *sc)
1724 {
1725 int index;
1726 int rc;
1727
1728 /* Initialize the common code transmit module. */
1729 if ((rc = efx_tx_init(sc->enp)) != 0)
1730 return (rc);
1731
1732 for (index = 0; index < sc->txq_count; index++) {
1733 if ((rc = sfxge_tx_qstart(sc, index)) != 0)
1734 goto fail;
1735 }
1736
1737 return (0);
1738
1739 fail:
1740 while (--index >= 0)
1741 sfxge_tx_qstop(sc, index);
1742
1743 efx_tx_fini(sc->enp);
1744
1745 return (rc);
1746 }
1747
1748 static int
1749 sfxge_txq_stat_init(struct sfxge_txq *txq, struct sysctl_oid *txq_node)
1750 {
1751 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(txq->sc->dev);
1752 struct sysctl_oid *stat_node;
1753 unsigned int id;
1754
1755 stat_node = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(txq_node), OID_AUTO,
1756 "stats", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx queue statistics");
1757 if (stat_node == NULL)
1758 return (ENOMEM);
1759
1760 for (id = 0; id < nitems(sfxge_tx_stats); id++) {
1761 SYSCTL_ADD_ULONG(
1762 ctx, SYSCTL_CHILDREN(stat_node), OID_AUTO,
1763 sfxge_tx_stats[id].name, CTLFLAG_RD | CTLFLAG_STATS,
1764 (unsigned long *)((caddr_t)txq + sfxge_tx_stats[id].offset),
1765 "");
1766 }
1767
1768 return (0);
1769 }
1770
1771 /**
1772 * Destroy a transmit queue.
1773 */
1774 static void
1775 sfxge_tx_qfini(struct sfxge_softc *sc, unsigned int index)
1776 {
1777 struct sfxge_txq *txq;
1778 unsigned int nmaps;
1779
1780 txq = sc->txq[index];
1781
1782 KASSERT(txq->init_state == SFXGE_TXQ_INITIALIZED,
1783 ("txq->init_state != SFXGE_TXQ_INITIALIZED"));
1784
1785 if (txq->type == SFXGE_TXQ_IP_TCP_UDP_CKSUM)
1786 tso_fini(txq);
1787
1788 /* Free the context arrays. */
1789 free(txq->pend_desc, M_SFXGE);
1790 nmaps = sc->txq_entries;
1791 while (nmaps-- != 0)
1792 bus_dmamap_destroy(txq->packet_dma_tag, txq->stmp[nmaps].map);
1793 free(txq->stmp, M_SFXGE);
1794
1795 /* Release DMA memory mapping. */
1796 sfxge_dma_free(&txq->mem);
1797
1798 sc->txq[index] = NULL;
1799
1800 SFXGE_TXQ_LOCK_DESTROY(txq);
1801
1802 free(txq, M_SFXGE);
1803 }
1804
1805 static int
1806 sfxge_tx_qinit(struct sfxge_softc *sc, unsigned int txq_index,
1807 enum sfxge_txq_type type, unsigned int evq_index)
1808 {
1809 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sc->enp);
1810 char name[16];
1811 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->dev);
1812 struct sysctl_oid *txq_node;
1813 struct sfxge_txq *txq;
1814 struct sfxge_tx_dpl *stdp;
1815 struct sysctl_oid *dpl_node;
1816 efsys_mem_t *esmp;
1817 unsigned int nmaps;
1818 int rc;
1819
1820 txq = malloc(sizeof(struct sfxge_txq), M_SFXGE, M_ZERO | M_WAITOK);
1821 txq->sc = sc;
1822 txq->entries = sc->txq_entries;
1823 txq->ptr_mask = txq->entries - 1;
1824
1825 sc->txq[txq_index] = txq;
1826 esmp = &txq->mem;
1827
1828 /* Allocate and zero DMA space for the descriptor ring. */
1829 if ((rc = sfxge_dma_alloc(sc, EFX_TXQ_SIZE(sc->txq_entries), esmp)) != 0)
1830 return (rc);
1831
1832 /* Allocate buffer table entries. */
1833 sfxge_sram_buf_tbl_alloc(sc, EFX_TXQ_NBUFS(sc->txq_entries),
1834 &txq->buf_base_id);
1835
1836 /* Create a DMA tag for packet mappings. */
1837 if (bus_dma_tag_create(sc->parent_dma_tag, 1,
1838 encp->enc_tx_dma_desc_boundary,
1839 MIN(0x3FFFFFFFFFFFUL, BUS_SPACE_MAXADDR), BUS_SPACE_MAXADDR, NULL,
1840 NULL, 0x11000, SFXGE_TX_MAPPING_MAX_SEG,
1841 encp->enc_tx_dma_desc_size_max, 0, NULL, NULL,
1842 &txq->packet_dma_tag) != 0) {
1843 device_printf(sc->dev, "Couldn't allocate txq DMA tag\n");
1844 rc = ENOMEM;
1845 goto fail;
1846 }
1847
1848 /* Allocate pending descriptor array for batching writes. */
1849 txq->pend_desc = malloc(sizeof(efx_desc_t) * sc->txq_entries,
1850 M_SFXGE, M_ZERO | M_WAITOK);
1851
1852 /* Allocate and initialise mbuf DMA mapping array. */
1853 txq->stmp = malloc(sizeof(struct sfxge_tx_mapping) * sc->txq_entries,
1854 M_SFXGE, M_ZERO | M_WAITOK);
1855 for (nmaps = 0; nmaps < sc->txq_entries; nmaps++) {
1856 rc = bus_dmamap_create(txq->packet_dma_tag, 0,
1857 &txq->stmp[nmaps].map);
1858 if (rc != 0)
1859 goto fail2;
1860 }
1861
1862 snprintf(name, sizeof(name), "%u", txq_index);
1863 txq_node = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(sc->txqs_node),
1864 OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
1865 if (txq_node == NULL) {
1866 rc = ENOMEM;
1867 goto fail_txq_node;
1868 }
1869
1870 if (type == SFXGE_TXQ_IP_TCP_UDP_CKSUM &&
1871 (rc = tso_init(txq)) != 0)
1872 goto fail3;
1873
1874 /* Initialize the deferred packet list. */
1875 stdp = &txq->dpl;
1876 stdp->std_put_max = sfxge_tx_dpl_put_max;
1877 stdp->std_get_max = sfxge_tx_dpl_get_max;
1878 stdp->std_get_non_tcp_max = sfxge_tx_dpl_get_non_tcp_max;
1879 stdp->std_getp = &stdp->std_get;
1880
1881 SFXGE_TXQ_LOCK_INIT(txq, device_get_nameunit(sc->dev), txq_index);
1882
1883 dpl_node = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(txq_node), OID_AUTO,
1884 "dpl", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
1885 "Deferred packet list statistics");
1886 if (dpl_node == NULL) {
1887 rc = ENOMEM;
1888 goto fail_dpl_node;
1889 }
1890
1891 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO,
1892 "get_count", CTLFLAG_RD | CTLFLAG_STATS,
1893 &stdp->std_get_count, 0, "");
1894 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO,
1895 "get_non_tcp_count", CTLFLAG_RD | CTLFLAG_STATS,
1896 &stdp->std_get_non_tcp_count, 0, "");
1897 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO,
1898 "get_hiwat", CTLFLAG_RD | CTLFLAG_STATS,
1899 &stdp->std_get_hiwat, 0, "");
1900 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO,
1901 "put_hiwat", CTLFLAG_RD | CTLFLAG_STATS,
1902 &stdp->std_put_hiwat, 0, "");
1903
1904 rc = sfxge_txq_stat_init(txq, txq_node);
1905 if (rc != 0)
1906 goto fail_txq_stat_init;
1907
1908 txq->type = type;
1909 txq->evq_index = evq_index;
1910 txq->init_state = SFXGE_TXQ_INITIALIZED;
1911
1912 return (0);
1913
1914 fail_txq_stat_init:
1915 fail_dpl_node:
1916 fail3:
1917 fail_txq_node:
1918 free(txq->pend_desc, M_SFXGE);
1919 fail2:
1920 while (nmaps-- != 0)
1921 bus_dmamap_destroy(txq->packet_dma_tag, txq->stmp[nmaps].map);
1922 free(txq->stmp, M_SFXGE);
1923 bus_dma_tag_destroy(txq->packet_dma_tag);
1924
1925 fail:
1926 sfxge_dma_free(esmp);
1927
1928 return (rc);
1929 }
1930
1931 static int
1932 sfxge_tx_stat_handler(SYSCTL_HANDLER_ARGS)
1933 {
1934 struct sfxge_softc *sc = arg1;
1935 unsigned int id = arg2;
1936 unsigned long sum;
1937 unsigned int index;
1938
1939 /* Sum across all TX queues */
1940 sum = 0;
1941 for (index = 0; index < sc->txq_count; index++)
1942 sum += *(unsigned long *)((caddr_t)sc->txq[index] +
1943 sfxge_tx_stats[id].offset);
1944
1945 return (SYSCTL_OUT(req, &sum, sizeof(sum)));
1946 }
1947
1948 static void
1949 sfxge_tx_stat_init(struct sfxge_softc *sc)
1950 {
1951 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->dev);
1952 struct sysctl_oid_list *stat_list;
1953 unsigned int id;
1954
1955 stat_list = SYSCTL_CHILDREN(sc->stats_node);
1956
1957 for (id = 0; id < nitems(sfxge_tx_stats); id++) {
1958 SYSCTL_ADD_PROC(ctx, stat_list, OID_AUTO,
1959 sfxge_tx_stats[id].name,
1960 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
1961 sc, id, sfxge_tx_stat_handler, "LU", "");
1962 }
1963 }
1964
1965 uint64_t
1966 sfxge_tx_get_drops(struct sfxge_softc *sc)
1967 {
1968 unsigned int index;
1969 uint64_t drops = 0;
1970 struct sfxge_txq *txq;
1971
1972 /* Sum across all TX queues */
1973 for (index = 0; index < sc->txq_count; index++) {
1974 txq = sc->txq[index];
1975 /*
1976 * In theory, txq->put_overflow and txq->netdown_drops
1977 * should use atomic operation and other should be
1978 * obtained under txq lock, but it is just statistics.
1979 */
1980 drops += txq->drops + txq->get_overflow +
1981 txq->get_non_tcp_overflow +
1982 txq->put_overflow + txq->netdown_drops +
1983 txq->tso_pdrop_too_many + txq->tso_pdrop_no_rsrc;
1984 }
1985 return (drops);
1986 }
1987
1988 void
1989 sfxge_tx_fini(struct sfxge_softc *sc)
1990 {
1991 int index;
1992
1993 index = sc->txq_count;
1994 while (--index >= 0)
1995 sfxge_tx_qfini(sc, index);
1996
1997 sc->txq_count = 0;
1998 }
1999
2000 int
2001 sfxge_tx_init(struct sfxge_softc *sc)
2002 {
2003 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sc->enp);
2004 struct sfxge_intr *intr __diagused;
2005 int index;
2006 int rc;
2007
2008 intr = &sc->intr;
2009
2010 KASSERT(intr->state == SFXGE_INTR_INITIALIZED,
2011 ("intr->state != SFXGE_INTR_INITIALIZED"));
2012
2013 if (sfxge_tx_dpl_get_max <= 0) {
2014 log(LOG_ERR, "%s=%d must be greater than 0",
2015 SFXGE_PARAM_TX_DPL_GET_MAX, sfxge_tx_dpl_get_max);
2016 rc = EINVAL;
2017 goto fail_tx_dpl_get_max;
2018 }
2019 if (sfxge_tx_dpl_get_non_tcp_max <= 0) {
2020 log(LOG_ERR, "%s=%d must be greater than 0",
2021 SFXGE_PARAM_TX_DPL_GET_NON_TCP_MAX,
2022 sfxge_tx_dpl_get_non_tcp_max);
2023 rc = EINVAL;
2024 goto fail_tx_dpl_get_non_tcp_max;
2025 }
2026 if (sfxge_tx_dpl_put_max < 0) {
2027 log(LOG_ERR, "%s=%d must be greater or equal to 0",
2028 SFXGE_PARAM_TX_DPL_PUT_MAX, sfxge_tx_dpl_put_max);
2029 rc = EINVAL;
2030 goto fail_tx_dpl_put_max;
2031 }
2032
2033 sc->txq_count = SFXGE_EVQ0_N_TXQ(sc) - 1 + sc->intr.n_alloc;
2034
2035 sc->tso_fw_assisted = sfxge_tso_fw_assisted;
2036 if ((~encp->enc_features & EFX_FEATURE_FW_ASSISTED_TSO) ||
2037 (!encp->enc_fw_assisted_tso_enabled))
2038 sc->tso_fw_assisted &= ~SFXGE_FATSOV1;
2039 if ((~encp->enc_features & EFX_FEATURE_FW_ASSISTED_TSO_V2) ||
2040 (!encp->enc_fw_assisted_tso_v2_enabled))
2041 sc->tso_fw_assisted &= ~SFXGE_FATSOV2;
2042
2043 sc->txqs_node = SYSCTL_ADD_NODE(device_get_sysctl_ctx(sc->dev),
2044 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO,
2045 "txq", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx queues");
2046 if (sc->txqs_node == NULL) {
2047 rc = ENOMEM;
2048 goto fail_txq_node;
2049 }
2050
2051 /* Initialize the transmit queues */
2052 if (sc->txq_dynamic_cksum_toggle_supported == B_FALSE) {
2053 if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_NON_CKSUM,
2054 SFXGE_TXQ_NON_CKSUM, 0)) != 0)
2055 goto fail;
2056
2057 if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_IP_CKSUM,
2058 SFXGE_TXQ_IP_CKSUM, 0)) != 0)
2059 goto fail2;
2060 }
2061
2062 for (index = 0;
2063 index < sc->txq_count - SFXGE_EVQ0_N_TXQ(sc) + 1;
2064 index++) {
2065 if ((rc = sfxge_tx_qinit(sc, SFXGE_EVQ0_N_TXQ(sc) - 1 + index,
2066 SFXGE_TXQ_IP_TCP_UDP_CKSUM, index)) != 0)
2067 goto fail3;
2068 }
2069
2070 sfxge_tx_stat_init(sc);
2071
2072 return (0);
2073
2074 fail3:
2075 while (--index >= 0)
2076 sfxge_tx_qfini(sc, SFXGE_TXQ_IP_TCP_UDP_CKSUM + index);
2077
2078 sfxge_tx_qfini(sc, SFXGE_TXQ_IP_CKSUM);
2079
2080 fail2:
2081 sfxge_tx_qfini(sc, SFXGE_TXQ_NON_CKSUM);
2082
2083 fail:
2084 fail_txq_node:
2085 sc->txq_count = 0;
2086 fail_tx_dpl_put_max:
2087 fail_tx_dpl_get_non_tcp_max:
2088 fail_tx_dpl_get_max:
2089 return (rc);
2090 }
Cache object: 871424f87c655d4c2c16002b15679f15
|