FreeBSD/Linux Kernel Cross Reference
sys/dev/sge/if_sge.c
1 /*-
2 * SPDX-License-Identifier: BSD-4-Clause
3 *
4 * Copyright (c) 2008-2010 Nikolay Denev <ndenev@gmail.com>
5 * Copyright (c) 2007-2008 Alexander Pohoyda <alexander.pohoyda@gmx.net>
6 * Copyright (c) 1997, 1998, 1999
7 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by Bill Paul.
20 * 4. Neither the name of the author nor the names of any co-contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS''
25 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
27 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL AUTHORS OR
28 * THE VOICES IN THEIR HEADS BE LIABLE FOR ANY DIRECT, INDIRECT,
29 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
30 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
31 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
33 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
35 * OF THE POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40
41 /*
42 * SiS 190/191 PCI Ethernet NIC driver.
43 *
44 * Adapted to SiS 190 NIC by Alexander Pohoyda based on the original
45 * SiS 900 driver by Bill Paul, using SiS 190/191 Solaris driver by
46 * Masayuki Murayama and SiS 190/191 GNU/Linux driver by K.M. Liu
47 * <kmliu@sis.com>. Thanks to Pyun YongHyeon <pyunyh@gmail.com> for
48 * review and very useful comments.
49 *
50 * Adapted to SiS 191 NIC by Nikolay Denev with further ideas from the
51 * Linux and Solaris drivers.
52 */
53
54 #include <sys/param.h>
55 #include <sys/systm.h>
56 #include <sys/bus.h>
57 #include <sys/endian.h>
58 #include <sys/kernel.h>
59 #include <sys/lock.h>
60 #include <sys/malloc.h>
61 #include <sys/mbuf.h>
62 #include <sys/module.h>
63 #include <sys/mutex.h>
64 #include <sys/rman.h>
65 #include <sys/socket.h>
66 #include <sys/sockio.h>
67
68 #include <net/bpf.h>
69 #include <net/if.h>
70 #include <net/if_var.h>
71 #include <net/if_arp.h>
72 #include <net/ethernet.h>
73 #include <net/if_dl.h>
74 #include <net/if_media.h>
75 #include <net/if_types.h>
76 #include <net/if_vlan_var.h>
77
78 #include <netinet/in.h>
79 #include <netinet/in_systm.h>
80 #include <netinet/ip.h>
81 #include <netinet/tcp.h>
82
83 #include <machine/bus.h>
84 #include <machine/in_cksum.h>
85
86 #include <dev/mii/mii.h>
87 #include <dev/mii/miivar.h>
88
89 #include <dev/pci/pcireg.h>
90 #include <dev/pci/pcivar.h>
91
92 #include <dev/sge/if_sgereg.h>
93
94 MODULE_DEPEND(sge, pci, 1, 1, 1);
95 MODULE_DEPEND(sge, ether, 1, 1, 1);
96 MODULE_DEPEND(sge, miibus, 1, 1, 1);
97
98 /* "device miibus0" required. See GENERIC if you get errors here. */
99 #include "miibus_if.h"
100
101 /*
102 * Various supported device vendors/types and their names.
103 */
104 static struct sge_type sge_devs[] = {
105 { SIS_VENDORID, SIS_DEVICEID_190, "SiS190 Fast Ethernet" },
106 { SIS_VENDORID, SIS_DEVICEID_191, "SiS191 Fast/Gigabit Ethernet" },
107 { 0, 0, NULL }
108 };
109
110 static int sge_probe(device_t);
111 static int sge_attach(device_t);
112 static int sge_detach(device_t);
113 static int sge_shutdown(device_t);
114 static int sge_suspend(device_t);
115 static int sge_resume(device_t);
116
117 static int sge_miibus_readreg(device_t, int, int);
118 static int sge_miibus_writereg(device_t, int, int, int);
119 static void sge_miibus_statchg(device_t);
120
121 static int sge_newbuf(struct sge_softc *, int);
122 static int sge_encap(struct sge_softc *, struct mbuf **);
123 static __inline void
124 sge_discard_rxbuf(struct sge_softc *, int);
125 static void sge_rxeof(struct sge_softc *);
126 static void sge_txeof(struct sge_softc *);
127 static void sge_intr(void *);
128 static void sge_tick(void *);
129 static void sge_start(struct ifnet *);
130 static void sge_start_locked(struct ifnet *);
131 static int sge_ioctl(struct ifnet *, u_long, caddr_t);
132 static void sge_init(void *);
133 static void sge_init_locked(struct sge_softc *);
134 static void sge_stop(struct sge_softc *);
135 static void sge_watchdog(struct sge_softc *);
136 static int sge_ifmedia_upd(struct ifnet *);
137 static void sge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
138
139 static int sge_get_mac_addr_apc(struct sge_softc *, uint8_t *);
140 static int sge_get_mac_addr_eeprom(struct sge_softc *, uint8_t *);
141 static uint16_t sge_read_eeprom(struct sge_softc *, int);
142
143 static void sge_rxfilter(struct sge_softc *);
144 static void sge_setvlan(struct sge_softc *);
145 static void sge_reset(struct sge_softc *);
146 static int sge_list_rx_init(struct sge_softc *);
147 static int sge_list_rx_free(struct sge_softc *);
148 static int sge_list_tx_init(struct sge_softc *);
149 static int sge_list_tx_free(struct sge_softc *);
150
151 static int sge_dma_alloc(struct sge_softc *);
152 static void sge_dma_free(struct sge_softc *);
153 static void sge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
154
155 static device_method_t sge_methods[] = {
156 /* Device interface */
157 DEVMETHOD(device_probe, sge_probe),
158 DEVMETHOD(device_attach, sge_attach),
159 DEVMETHOD(device_detach, sge_detach),
160 DEVMETHOD(device_suspend, sge_suspend),
161 DEVMETHOD(device_resume, sge_resume),
162 DEVMETHOD(device_shutdown, sge_shutdown),
163
164 /* MII interface */
165 DEVMETHOD(miibus_readreg, sge_miibus_readreg),
166 DEVMETHOD(miibus_writereg, sge_miibus_writereg),
167 DEVMETHOD(miibus_statchg, sge_miibus_statchg),
168
169 DEVMETHOD_END
170 };
171
172 static driver_t sge_driver = {
173 "sge", sge_methods, sizeof(struct sge_softc)
174 };
175
176 static devclass_t sge_devclass;
177
178 DRIVER_MODULE(sge, pci, sge_driver, sge_devclass, 0, 0);
179 DRIVER_MODULE(miibus, sge, miibus_driver, miibus_devclass, 0, 0);
180
181 /*
182 * Register space access macros.
183 */
184 #define CSR_WRITE_4(sc, reg, val) bus_write_4(sc->sge_res, reg, val)
185 #define CSR_WRITE_2(sc, reg, val) bus_write_2(sc->sge_res, reg, val)
186 #define CSR_WRITE_1(cs, reg, val) bus_write_1(sc->sge_res, reg, val)
187
188 #define CSR_READ_4(sc, reg) bus_read_4(sc->sge_res, reg)
189 #define CSR_READ_2(sc, reg) bus_read_2(sc->sge_res, reg)
190 #define CSR_READ_1(sc, reg) bus_read_1(sc->sge_res, reg)
191
192 /* Define to show Tx/Rx error status. */
193 #undef SGE_SHOW_ERRORS
194
195 #define SGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
196
197 static void
198 sge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
199 {
200 bus_addr_t *p;
201
202 if (error != 0)
203 return;
204 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
205 p = arg;
206 *p = segs->ds_addr;
207 }
208
209 /*
210 * Read a sequence of words from the EEPROM.
211 */
212 static uint16_t
213 sge_read_eeprom(struct sge_softc *sc, int offset)
214 {
215 uint32_t val;
216 int i;
217
218 KASSERT(offset <= EI_OFFSET, ("EEPROM offset too big"));
219 CSR_WRITE_4(sc, ROMInterface,
220 EI_REQ | EI_OP_RD | (offset << EI_OFFSET_SHIFT));
221 DELAY(500);
222 for (i = 0; i < SGE_TIMEOUT; i++) {
223 val = CSR_READ_4(sc, ROMInterface);
224 if ((val & EI_REQ) == 0)
225 break;
226 DELAY(100);
227 }
228 if (i == SGE_TIMEOUT) {
229 device_printf(sc->sge_dev,
230 "EEPROM read timeout : 0x%08x\n", val);
231 return (0xffff);
232 }
233
234 return ((val & EI_DATA) >> EI_DATA_SHIFT);
235 }
236
237 static int
238 sge_get_mac_addr_eeprom(struct sge_softc *sc, uint8_t *dest)
239 {
240 uint16_t val;
241 int i;
242
243 val = sge_read_eeprom(sc, EEPROMSignature);
244 if (val == 0xffff || val == 0) {
245 device_printf(sc->sge_dev,
246 "invalid EEPROM signature : 0x%04x\n", val);
247 return (EINVAL);
248 }
249
250 for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
251 val = sge_read_eeprom(sc, EEPROMMACAddr + i / 2);
252 dest[i + 0] = (uint8_t)val;
253 dest[i + 1] = (uint8_t)(val >> 8);
254 }
255
256 if ((sge_read_eeprom(sc, EEPROMInfo) & 0x80) != 0)
257 sc->sge_flags |= SGE_FLAG_RGMII;
258 return (0);
259 }
260
261 /*
262 * For SiS96x, APC CMOS RAM is used to store ethernet address.
263 * APC CMOS RAM is accessed through ISA bridge.
264 */
265 static int
266 sge_get_mac_addr_apc(struct sge_softc *sc, uint8_t *dest)
267 {
268 #if defined(__amd64__) || defined(__i386__)
269 devclass_t pci;
270 device_t bus, dev = NULL;
271 device_t *kids;
272 struct apc_tbl {
273 uint16_t vid;
274 uint16_t did;
275 } *tp, apc_tbls[] = {
276 { SIS_VENDORID, 0x0965 },
277 { SIS_VENDORID, 0x0966 },
278 { SIS_VENDORID, 0x0968 }
279 };
280 uint8_t reg;
281 int busnum, i, j, numkids;
282
283 pci = devclass_find("pci");
284 for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
285 bus = devclass_get_device(pci, busnum);
286 if (!bus)
287 continue;
288 if (device_get_children(bus, &kids, &numkids) != 0)
289 continue;
290 for (i = 0; i < numkids; i++) {
291 dev = kids[i];
292 if (pci_get_class(dev) == PCIC_BRIDGE &&
293 pci_get_subclass(dev) == PCIS_BRIDGE_ISA) {
294 tp = apc_tbls;
295 for (j = 0; j < nitems(apc_tbls); j++) {
296 if (pci_get_vendor(dev) == tp->vid &&
297 pci_get_device(dev) == tp->did) {
298 free(kids, M_TEMP);
299 goto apc_found;
300 }
301 tp++;
302 }
303 }
304 }
305 free(kids, M_TEMP);
306 }
307 device_printf(sc->sge_dev, "couldn't find PCI-ISA bridge\n");
308 return (EINVAL);
309 apc_found:
310 /* Enable port 0x78 and 0x79 to access APC registers. */
311 reg = pci_read_config(dev, 0x48, 1);
312 pci_write_config(dev, 0x48, reg & ~0x02, 1);
313 DELAY(50);
314 pci_read_config(dev, 0x48, 1);
315 /* Read stored ethernet address. */
316 for (i = 0; i < ETHER_ADDR_LEN; i++) {
317 outb(0x78, 0x09 + i);
318 dest[i] = inb(0x79);
319 }
320 outb(0x78, 0x12);
321 if ((inb(0x79) & 0x80) != 0)
322 sc->sge_flags |= SGE_FLAG_RGMII;
323 /* Restore access to APC registers. */
324 pci_write_config(dev, 0x48, reg, 1);
325
326 return (0);
327 #else
328 return (EINVAL);
329 #endif
330 }
331
332 static int
333 sge_miibus_readreg(device_t dev, int phy, int reg)
334 {
335 struct sge_softc *sc;
336 uint32_t val;
337 int i;
338
339 sc = device_get_softc(dev);
340 CSR_WRITE_4(sc, GMIIControl, (phy << GMI_PHY_SHIFT) |
341 (reg << GMI_REG_SHIFT) | GMI_OP_RD | GMI_REQ);
342 DELAY(10);
343 for (i = 0; i < SGE_TIMEOUT; i++) {
344 val = CSR_READ_4(sc, GMIIControl);
345 if ((val & GMI_REQ) == 0)
346 break;
347 DELAY(10);
348 }
349 if (i == SGE_TIMEOUT) {
350 device_printf(sc->sge_dev, "PHY read timeout : %d\n", reg);
351 return (0);
352 }
353 return ((val & GMI_DATA) >> GMI_DATA_SHIFT);
354 }
355
356 static int
357 sge_miibus_writereg(device_t dev, int phy, int reg, int data)
358 {
359 struct sge_softc *sc;
360 uint32_t val;
361 int i;
362
363 sc = device_get_softc(dev);
364 CSR_WRITE_4(sc, GMIIControl, (phy << GMI_PHY_SHIFT) |
365 (reg << GMI_REG_SHIFT) | (data << GMI_DATA_SHIFT) |
366 GMI_OP_WR | GMI_REQ);
367 DELAY(10);
368 for (i = 0; i < SGE_TIMEOUT; i++) {
369 val = CSR_READ_4(sc, GMIIControl);
370 if ((val & GMI_REQ) == 0)
371 break;
372 DELAY(10);
373 }
374 if (i == SGE_TIMEOUT)
375 device_printf(sc->sge_dev, "PHY write timeout : %d\n", reg);
376 return (0);
377 }
378
379 static void
380 sge_miibus_statchg(device_t dev)
381 {
382 struct sge_softc *sc;
383 struct mii_data *mii;
384 struct ifnet *ifp;
385 uint32_t ctl, speed;
386
387 sc = device_get_softc(dev);
388 mii = device_get_softc(sc->sge_miibus);
389 ifp = sc->sge_ifp;
390 if (mii == NULL || ifp == NULL ||
391 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
392 return;
393 speed = 0;
394 sc->sge_flags &= ~SGE_FLAG_LINK;
395 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
396 (IFM_ACTIVE | IFM_AVALID)) {
397 switch (IFM_SUBTYPE(mii->mii_media_active)) {
398 case IFM_10_T:
399 sc->sge_flags |= SGE_FLAG_LINK;
400 speed = SC_SPEED_10;
401 break;
402 case IFM_100_TX:
403 sc->sge_flags |= SGE_FLAG_LINK;
404 speed = SC_SPEED_100;
405 break;
406 case IFM_1000_T:
407 if ((sc->sge_flags & SGE_FLAG_FASTETHER) == 0) {
408 sc->sge_flags |= SGE_FLAG_LINK;
409 speed = SC_SPEED_1000;
410 }
411 break;
412 default:
413 break;
414 }
415 }
416 if ((sc->sge_flags & SGE_FLAG_LINK) == 0)
417 return;
418 /* Reprogram MAC to resolved speed/duplex/flow-control parameters. */
419 ctl = CSR_READ_4(sc, StationControl);
420 ctl &= ~(0x0f000000 | SC_FDX | SC_SPEED_MASK);
421 if (speed == SC_SPEED_1000) {
422 ctl |= 0x07000000;
423 sc->sge_flags |= SGE_FLAG_SPEED_1000;
424 } else {
425 ctl |= 0x04000000;
426 sc->sge_flags &= ~SGE_FLAG_SPEED_1000;
427 }
428 #ifdef notyet
429 if ((sc->sge_flags & SGE_FLAG_GMII) != 0)
430 ctl |= 0x03000000;
431 #endif
432 ctl |= speed;
433 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
434 ctl |= SC_FDX;
435 sc->sge_flags |= SGE_FLAG_FDX;
436 } else
437 sc->sge_flags &= ~SGE_FLAG_FDX;
438 CSR_WRITE_4(sc, StationControl, ctl);
439 if ((sc->sge_flags & SGE_FLAG_RGMII) != 0) {
440 CSR_WRITE_4(sc, RGMIIDelay, 0x0441);
441 CSR_WRITE_4(sc, RGMIIDelay, 0x0440);
442 }
443 }
444
445 static void
446 sge_rxfilter(struct sge_softc *sc)
447 {
448 struct ifnet *ifp;
449 struct ifmultiaddr *ifma;
450 uint32_t crc, hashes[2];
451 uint16_t rxfilt;
452
453 SGE_LOCK_ASSERT(sc);
454
455 ifp = sc->sge_ifp;
456 rxfilt = CSR_READ_2(sc, RxMacControl);
457 rxfilt &= ~(AcceptBroadcast | AcceptAllPhys | AcceptMulticast);
458 rxfilt |= AcceptMyPhys;
459 if ((ifp->if_flags & IFF_BROADCAST) != 0)
460 rxfilt |= AcceptBroadcast;
461 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
462 if ((ifp->if_flags & IFF_PROMISC) != 0)
463 rxfilt |= AcceptAllPhys;
464 rxfilt |= AcceptMulticast;
465 hashes[0] = 0xFFFFFFFF;
466 hashes[1] = 0xFFFFFFFF;
467 } else {
468 rxfilt |= AcceptMulticast;
469 hashes[0] = hashes[1] = 0;
470 /* Now program new ones. */
471 if_maddr_rlock(ifp);
472 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
473 if (ifma->ifma_addr->sa_family != AF_LINK)
474 continue;
475 crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
476 ifma->ifma_addr), ETHER_ADDR_LEN);
477 hashes[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
478 }
479 if_maddr_runlock(ifp);
480 }
481 CSR_WRITE_2(sc, RxMacControl, rxfilt);
482 CSR_WRITE_4(sc, RxHashTable, hashes[0]);
483 CSR_WRITE_4(sc, RxHashTable2, hashes[1]);
484 }
485
486 static void
487 sge_setvlan(struct sge_softc *sc)
488 {
489 struct ifnet *ifp;
490 uint16_t rxfilt;
491
492 SGE_LOCK_ASSERT(sc);
493
494 ifp = sc->sge_ifp;
495 if ((ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) == 0)
496 return;
497 rxfilt = CSR_READ_2(sc, RxMacControl);
498 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
499 rxfilt |= RXMAC_STRIP_VLAN;
500 else
501 rxfilt &= ~RXMAC_STRIP_VLAN;
502 CSR_WRITE_2(sc, RxMacControl, rxfilt);
503 }
504
505 static void
506 sge_reset(struct sge_softc *sc)
507 {
508
509 CSR_WRITE_4(sc, IntrMask, 0);
510 CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
511
512 /* Soft reset. */
513 CSR_WRITE_4(sc, IntrControl, 0x8000);
514 CSR_READ_4(sc, IntrControl);
515 DELAY(100);
516 CSR_WRITE_4(sc, IntrControl, 0);
517 /* Stop MAC. */
518 CSR_WRITE_4(sc, TX_CTL, 0x1a00);
519 CSR_WRITE_4(sc, RX_CTL, 0x1a00);
520
521 CSR_WRITE_4(sc, IntrMask, 0);
522 CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
523
524 CSR_WRITE_4(sc, GMIIControl, 0);
525 }
526
527 /*
528 * Probe for an SiS chip. Check the PCI vendor and device
529 * IDs against our list and return a device name if we find a match.
530 */
531 static int
532 sge_probe(device_t dev)
533 {
534 struct sge_type *t;
535
536 t = sge_devs;
537 while (t->sge_name != NULL) {
538 if ((pci_get_vendor(dev) == t->sge_vid) &&
539 (pci_get_device(dev) == t->sge_did)) {
540 device_set_desc(dev, t->sge_name);
541 return (BUS_PROBE_DEFAULT);
542 }
543 t++;
544 }
545
546 return (ENXIO);
547 }
548
549 /*
550 * Attach the interface. Allocate softc structures, do ifmedia
551 * setup and ethernet/BPF attach.
552 */
553 static int
554 sge_attach(device_t dev)
555 {
556 struct sge_softc *sc;
557 struct ifnet *ifp;
558 uint8_t eaddr[ETHER_ADDR_LEN];
559 int error = 0, rid;
560
561 sc = device_get_softc(dev);
562 sc->sge_dev = dev;
563
564 mtx_init(&sc->sge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
565 MTX_DEF);
566 callout_init_mtx(&sc->sge_stat_ch, &sc->sge_mtx, 0);
567
568 /*
569 * Map control/status registers.
570 */
571 pci_enable_busmaster(dev);
572
573 /* Allocate resources. */
574 sc->sge_res_id = PCIR_BAR(0);
575 sc->sge_res_type = SYS_RES_MEMORY;
576 sc->sge_res = bus_alloc_resource_any(dev, sc->sge_res_type,
577 &sc->sge_res_id, RF_ACTIVE);
578 if (sc->sge_res == NULL) {
579 device_printf(dev, "couldn't allocate resource\n");
580 error = ENXIO;
581 goto fail;
582 }
583
584 rid = 0;
585 sc->sge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
586 RF_SHAREABLE | RF_ACTIVE);
587 if (sc->sge_irq == NULL) {
588 device_printf(dev, "couldn't allocate IRQ resources\n");
589 error = ENXIO;
590 goto fail;
591 }
592 sc->sge_rev = pci_get_revid(dev);
593 if (pci_get_device(dev) == SIS_DEVICEID_190)
594 sc->sge_flags |= SGE_FLAG_FASTETHER | SGE_FLAG_SIS190;
595 /* Reset the adapter. */
596 sge_reset(sc);
597
598 /* Get MAC address from the EEPROM. */
599 if ((pci_read_config(dev, 0x73, 1) & 0x01) != 0)
600 sge_get_mac_addr_apc(sc, eaddr);
601 else
602 sge_get_mac_addr_eeprom(sc, eaddr);
603
604 if ((error = sge_dma_alloc(sc)) != 0)
605 goto fail;
606
607 ifp = sc->sge_ifp = if_alloc(IFT_ETHER);
608 if (ifp == NULL) {
609 device_printf(dev, "cannot allocate ifnet structure.\n");
610 error = ENOSPC;
611 goto fail;
612 }
613 ifp->if_softc = sc;
614 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
615 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
616 ifp->if_ioctl = sge_ioctl;
617 ifp->if_start = sge_start;
618 ifp->if_init = sge_init;
619 ifp->if_snd.ifq_drv_maxlen = SGE_TX_RING_CNT - 1;
620 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
621 IFQ_SET_READY(&ifp->if_snd);
622 ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM | IFCAP_TSO4;
623 ifp->if_hwassist = SGE_CSUM_FEATURES | CSUM_TSO;
624 ifp->if_capenable = ifp->if_capabilities;
625 /*
626 * Do MII setup.
627 */
628 error = mii_attach(dev, &sc->sge_miibus, ifp, sge_ifmedia_upd,
629 sge_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
630 if (error != 0) {
631 device_printf(dev, "attaching PHYs failed\n");
632 goto fail;
633 }
634
635 /*
636 * Call MI attach routine.
637 */
638 ether_ifattach(ifp, eaddr);
639
640 /* VLAN setup. */
641 ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM |
642 IFCAP_VLAN_HWTSO | IFCAP_VLAN_MTU;
643 ifp->if_capenable = ifp->if_capabilities;
644 /* Tell the upper layer(s) we support long frames. */
645 ifp->if_hdrlen = sizeof(struct ether_vlan_header);
646
647 /* Hook interrupt last to avoid having to lock softc */
648 error = bus_setup_intr(dev, sc->sge_irq, INTR_TYPE_NET | INTR_MPSAFE,
649 NULL, sge_intr, sc, &sc->sge_intrhand);
650 if (error) {
651 device_printf(dev, "couldn't set up irq\n");
652 ether_ifdetach(ifp);
653 goto fail;
654 }
655
656 fail:
657 if (error)
658 sge_detach(dev);
659
660 return (error);
661 }
662
663 /*
664 * Shutdown hardware and free up resources. This can be called any
665 * time after the mutex has been initialized. It is called in both
666 * the error case in attach and the normal detach case so it needs
667 * to be careful about only freeing resources that have actually been
668 * allocated.
669 */
670 static int
671 sge_detach(device_t dev)
672 {
673 struct sge_softc *sc;
674 struct ifnet *ifp;
675
676 sc = device_get_softc(dev);
677 ifp = sc->sge_ifp;
678 /* These should only be active if attach succeeded. */
679 if (device_is_attached(dev)) {
680 ether_ifdetach(ifp);
681 SGE_LOCK(sc);
682 sge_stop(sc);
683 SGE_UNLOCK(sc);
684 callout_drain(&sc->sge_stat_ch);
685 }
686 if (sc->sge_miibus)
687 device_delete_child(dev, sc->sge_miibus);
688 bus_generic_detach(dev);
689
690 if (sc->sge_intrhand)
691 bus_teardown_intr(dev, sc->sge_irq, sc->sge_intrhand);
692 if (sc->sge_irq)
693 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sge_irq);
694 if (sc->sge_res)
695 bus_release_resource(dev, sc->sge_res_type, sc->sge_res_id,
696 sc->sge_res);
697 if (ifp)
698 if_free(ifp);
699 sge_dma_free(sc);
700 mtx_destroy(&sc->sge_mtx);
701
702 return (0);
703 }
704
705 /*
706 * Stop all chip I/O so that the kernel's probe routines don't
707 * get confused by errant DMAs when rebooting.
708 */
709 static int
710 sge_shutdown(device_t dev)
711 {
712 struct sge_softc *sc;
713
714 sc = device_get_softc(dev);
715 SGE_LOCK(sc);
716 sge_stop(sc);
717 SGE_UNLOCK(sc);
718 return (0);
719 }
720
721 static int
722 sge_suspend(device_t dev)
723 {
724 struct sge_softc *sc;
725 struct ifnet *ifp;
726
727 sc = device_get_softc(dev);
728 SGE_LOCK(sc);
729 ifp = sc->sge_ifp;
730 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
731 sge_stop(sc);
732 SGE_UNLOCK(sc);
733 return (0);
734 }
735
736 static int
737 sge_resume(device_t dev)
738 {
739 struct sge_softc *sc;
740 struct ifnet *ifp;
741
742 sc = device_get_softc(dev);
743 SGE_LOCK(sc);
744 ifp = sc->sge_ifp;
745 if ((ifp->if_flags & IFF_UP) != 0)
746 sge_init_locked(sc);
747 SGE_UNLOCK(sc);
748 return (0);
749 }
750
751 static int
752 sge_dma_alloc(struct sge_softc *sc)
753 {
754 struct sge_chain_data *cd;
755 struct sge_list_data *ld;
756 struct sge_rxdesc *rxd;
757 struct sge_txdesc *txd;
758 int error, i;
759
760 cd = &sc->sge_cdata;
761 ld = &sc->sge_ldata;
762 error = bus_dma_tag_create(bus_get_dma_tag(sc->sge_dev),
763 1, 0, /* alignment, boundary */
764 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
765 BUS_SPACE_MAXADDR, /* highaddr */
766 NULL, NULL, /* filter, filterarg */
767 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
768 1, /* nsegments */
769 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
770 0, /* flags */
771 NULL, /* lockfunc */
772 NULL, /* lockarg */
773 &cd->sge_tag);
774 if (error != 0) {
775 device_printf(sc->sge_dev,
776 "could not create parent DMA tag.\n");
777 goto fail;
778 }
779
780 /* RX descriptor ring */
781 error = bus_dma_tag_create(cd->sge_tag,
782 SGE_DESC_ALIGN, 0, /* alignment, boundary */
783 BUS_SPACE_MAXADDR, /* lowaddr */
784 BUS_SPACE_MAXADDR, /* highaddr */
785 NULL, NULL, /* filter, filterarg */
786 SGE_RX_RING_SZ, 1, /* maxsize,nsegments */
787 SGE_RX_RING_SZ, /* maxsegsize */
788 0, /* flags */
789 NULL, /* lockfunc */
790 NULL, /* lockarg */
791 &cd->sge_rx_tag);
792 if (error != 0) {
793 device_printf(sc->sge_dev,
794 "could not create Rx ring DMA tag.\n");
795 goto fail;
796 }
797 /* Allocate DMA'able memory and load DMA map for RX ring. */
798 error = bus_dmamem_alloc(cd->sge_rx_tag, (void **)&ld->sge_rx_ring,
799 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
800 &cd->sge_rx_dmamap);
801 if (error != 0) {
802 device_printf(sc->sge_dev,
803 "could not allocate DMA'able memory for Rx ring.\n");
804 goto fail;
805 }
806 error = bus_dmamap_load(cd->sge_rx_tag, cd->sge_rx_dmamap,
807 ld->sge_rx_ring, SGE_RX_RING_SZ, sge_dma_map_addr,
808 &ld->sge_rx_paddr, BUS_DMA_NOWAIT);
809 if (error != 0) {
810 device_printf(sc->sge_dev,
811 "could not load DMA'able memory for Rx ring.\n");
812 }
813
814 /* TX descriptor ring */
815 error = bus_dma_tag_create(cd->sge_tag,
816 SGE_DESC_ALIGN, 0, /* alignment, boundary */
817 BUS_SPACE_MAXADDR, /* lowaddr */
818 BUS_SPACE_MAXADDR, /* highaddr */
819 NULL, NULL, /* filter, filterarg */
820 SGE_TX_RING_SZ, 1, /* maxsize,nsegments */
821 SGE_TX_RING_SZ, /* maxsegsize */
822 0, /* flags */
823 NULL, /* lockfunc */
824 NULL, /* lockarg */
825 &cd->sge_tx_tag);
826 if (error != 0) {
827 device_printf(sc->sge_dev,
828 "could not create Rx ring DMA tag.\n");
829 goto fail;
830 }
831 /* Allocate DMA'able memory and load DMA map for TX ring. */
832 error = bus_dmamem_alloc(cd->sge_tx_tag, (void **)&ld->sge_tx_ring,
833 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
834 &cd->sge_tx_dmamap);
835 if (error != 0) {
836 device_printf(sc->sge_dev,
837 "could not allocate DMA'able memory for Tx ring.\n");
838 goto fail;
839 }
840 error = bus_dmamap_load(cd->sge_tx_tag, cd->sge_tx_dmamap,
841 ld->sge_tx_ring, SGE_TX_RING_SZ, sge_dma_map_addr,
842 &ld->sge_tx_paddr, BUS_DMA_NOWAIT);
843 if (error != 0) {
844 device_printf(sc->sge_dev,
845 "could not load DMA'able memory for Rx ring.\n");
846 goto fail;
847 }
848
849 /* Create DMA tag for Tx buffers. */
850 error = bus_dma_tag_create(cd->sge_tag, 1, 0, BUS_SPACE_MAXADDR,
851 BUS_SPACE_MAXADDR, NULL, NULL, SGE_TSO_MAXSIZE, SGE_MAXTXSEGS,
852 SGE_TSO_MAXSEGSIZE, 0, NULL, NULL, &cd->sge_txmbuf_tag);
853 if (error != 0) {
854 device_printf(sc->sge_dev,
855 "could not create Tx mbuf DMA tag.\n");
856 goto fail;
857 }
858
859 /* Create DMA tag for Rx buffers. */
860 error = bus_dma_tag_create(cd->sge_tag, SGE_RX_BUF_ALIGN, 0,
861 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
862 MCLBYTES, 0, NULL, NULL, &cd->sge_rxmbuf_tag);
863 if (error != 0) {
864 device_printf(sc->sge_dev,
865 "could not create Rx mbuf DMA tag.\n");
866 goto fail;
867 }
868
869 /* Create DMA maps for Tx buffers. */
870 for (i = 0; i < SGE_TX_RING_CNT; i++) {
871 txd = &cd->sge_txdesc[i];
872 txd->tx_m = NULL;
873 txd->tx_dmamap = NULL;
874 txd->tx_ndesc = 0;
875 error = bus_dmamap_create(cd->sge_txmbuf_tag, 0,
876 &txd->tx_dmamap);
877 if (error != 0) {
878 device_printf(sc->sge_dev,
879 "could not create Tx DMA map.\n");
880 goto fail;
881 }
882 }
883 /* Create spare DMA map for Rx buffer. */
884 error = bus_dmamap_create(cd->sge_rxmbuf_tag, 0, &cd->sge_rx_spare_map);
885 if (error != 0) {
886 device_printf(sc->sge_dev,
887 "could not create spare Rx DMA map.\n");
888 goto fail;
889 }
890 /* Create DMA maps for Rx buffers. */
891 for (i = 0; i < SGE_RX_RING_CNT; i++) {
892 rxd = &cd->sge_rxdesc[i];
893 rxd->rx_m = NULL;
894 rxd->rx_dmamap = NULL;
895 error = bus_dmamap_create(cd->sge_rxmbuf_tag, 0,
896 &rxd->rx_dmamap);
897 if (error) {
898 device_printf(sc->sge_dev,
899 "could not create Rx DMA map.\n");
900 goto fail;
901 }
902 }
903 fail:
904 return (error);
905 }
906
907 static void
908 sge_dma_free(struct sge_softc *sc)
909 {
910 struct sge_chain_data *cd;
911 struct sge_list_data *ld;
912 struct sge_rxdesc *rxd;
913 struct sge_txdesc *txd;
914 int i;
915
916 cd = &sc->sge_cdata;
917 ld = &sc->sge_ldata;
918 /* Rx ring. */
919 if (cd->sge_rx_tag != NULL) {
920 if (ld->sge_rx_paddr != 0)
921 bus_dmamap_unload(cd->sge_rx_tag, cd->sge_rx_dmamap);
922 if (ld->sge_rx_ring != NULL)
923 bus_dmamem_free(cd->sge_rx_tag, ld->sge_rx_ring,
924 cd->sge_rx_dmamap);
925 ld->sge_rx_ring = NULL;
926 ld->sge_rx_paddr = 0;
927 bus_dma_tag_destroy(cd->sge_rx_tag);
928 cd->sge_rx_tag = NULL;
929 }
930 /* Tx ring. */
931 if (cd->sge_tx_tag != NULL) {
932 if (ld->sge_tx_paddr != 0)
933 bus_dmamap_unload(cd->sge_tx_tag, cd->sge_tx_dmamap);
934 if (ld->sge_tx_ring != NULL)
935 bus_dmamem_free(cd->sge_tx_tag, ld->sge_tx_ring,
936 cd->sge_tx_dmamap);
937 ld->sge_tx_ring = NULL;
938 ld->sge_tx_paddr = 0;
939 bus_dma_tag_destroy(cd->sge_tx_tag);
940 cd->sge_tx_tag = NULL;
941 }
942 /* Rx buffers. */
943 if (cd->sge_rxmbuf_tag != NULL) {
944 for (i = 0; i < SGE_RX_RING_CNT; i++) {
945 rxd = &cd->sge_rxdesc[i];
946 if (rxd->rx_dmamap != NULL) {
947 bus_dmamap_destroy(cd->sge_rxmbuf_tag,
948 rxd->rx_dmamap);
949 rxd->rx_dmamap = NULL;
950 }
951 }
952 if (cd->sge_rx_spare_map != NULL) {
953 bus_dmamap_destroy(cd->sge_rxmbuf_tag,
954 cd->sge_rx_spare_map);
955 cd->sge_rx_spare_map = NULL;
956 }
957 bus_dma_tag_destroy(cd->sge_rxmbuf_tag);
958 cd->sge_rxmbuf_tag = NULL;
959 }
960 /* Tx buffers. */
961 if (cd->sge_txmbuf_tag != NULL) {
962 for (i = 0; i < SGE_TX_RING_CNT; i++) {
963 txd = &cd->sge_txdesc[i];
964 if (txd->tx_dmamap != NULL) {
965 bus_dmamap_destroy(cd->sge_txmbuf_tag,
966 txd->tx_dmamap);
967 txd->tx_dmamap = NULL;
968 }
969 }
970 bus_dma_tag_destroy(cd->sge_txmbuf_tag);
971 cd->sge_txmbuf_tag = NULL;
972 }
973 if (cd->sge_tag != NULL)
974 bus_dma_tag_destroy(cd->sge_tag);
975 cd->sge_tag = NULL;
976 }
977
978 /*
979 * Initialize the TX descriptors.
980 */
981 static int
982 sge_list_tx_init(struct sge_softc *sc)
983 {
984 struct sge_list_data *ld;
985 struct sge_chain_data *cd;
986
987 SGE_LOCK_ASSERT(sc);
988 ld = &sc->sge_ldata;
989 cd = &sc->sge_cdata;
990 bzero(ld->sge_tx_ring, SGE_TX_RING_SZ);
991 ld->sge_tx_ring[SGE_TX_RING_CNT - 1].sge_flags = htole32(RING_END);
992 bus_dmamap_sync(cd->sge_tx_tag, cd->sge_tx_dmamap,
993 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
994 cd->sge_tx_prod = 0;
995 cd->sge_tx_cons = 0;
996 cd->sge_tx_cnt = 0;
997 return (0);
998 }
999
1000 static int
1001 sge_list_tx_free(struct sge_softc *sc)
1002 {
1003 struct sge_chain_data *cd;
1004 struct sge_txdesc *txd;
1005 int i;
1006
1007 SGE_LOCK_ASSERT(sc);
1008 cd = &sc->sge_cdata;
1009 for (i = 0; i < SGE_TX_RING_CNT; i++) {
1010 txd = &cd->sge_txdesc[i];
1011 if (txd->tx_m != NULL) {
1012 bus_dmamap_sync(cd->sge_txmbuf_tag, txd->tx_dmamap,
1013 BUS_DMASYNC_POSTWRITE);
1014 bus_dmamap_unload(cd->sge_txmbuf_tag, txd->tx_dmamap);
1015 m_freem(txd->tx_m);
1016 txd->tx_m = NULL;
1017 txd->tx_ndesc = 0;
1018 }
1019 }
1020
1021 return (0);
1022 }
1023
1024 /*
1025 * Initialize the RX descriptors and allocate mbufs for them. Note that
1026 * we arrange the descriptors in a closed ring, so that the last descriptor
1027 * has RING_END flag set.
1028 */
1029 static int
1030 sge_list_rx_init(struct sge_softc *sc)
1031 {
1032 struct sge_chain_data *cd;
1033 int i;
1034
1035 SGE_LOCK_ASSERT(sc);
1036 cd = &sc->sge_cdata;
1037 cd->sge_rx_cons = 0;
1038 bzero(sc->sge_ldata.sge_rx_ring, SGE_RX_RING_SZ);
1039 for (i = 0; i < SGE_RX_RING_CNT; i++) {
1040 if (sge_newbuf(sc, i) != 0)
1041 return (ENOBUFS);
1042 }
1043 bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1044 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1045 return (0);
1046 }
1047
1048 static int
1049 sge_list_rx_free(struct sge_softc *sc)
1050 {
1051 struct sge_chain_data *cd;
1052 struct sge_rxdesc *rxd;
1053 int i;
1054
1055 SGE_LOCK_ASSERT(sc);
1056 cd = &sc->sge_cdata;
1057 for (i = 0; i < SGE_RX_RING_CNT; i++) {
1058 rxd = &cd->sge_rxdesc[i];
1059 if (rxd->rx_m != NULL) {
1060 bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1061 BUS_DMASYNC_POSTREAD);
1062 bus_dmamap_unload(cd->sge_rxmbuf_tag,
1063 rxd->rx_dmamap);
1064 m_freem(rxd->rx_m);
1065 rxd->rx_m = NULL;
1066 }
1067 }
1068 return (0);
1069 }
1070
1071 /*
1072 * Initialize an RX descriptor and attach an MBUF cluster.
1073 */
1074 static int
1075 sge_newbuf(struct sge_softc *sc, int prod)
1076 {
1077 struct mbuf *m;
1078 struct sge_desc *desc;
1079 struct sge_chain_data *cd;
1080 struct sge_rxdesc *rxd;
1081 bus_dma_segment_t segs[1];
1082 bus_dmamap_t map;
1083 int error, nsegs;
1084
1085 SGE_LOCK_ASSERT(sc);
1086
1087 cd = &sc->sge_cdata;
1088 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1089 if (m == NULL)
1090 return (ENOBUFS);
1091 m->m_len = m->m_pkthdr.len = MCLBYTES;
1092 m_adj(m, SGE_RX_BUF_ALIGN);
1093 error = bus_dmamap_load_mbuf_sg(cd->sge_rxmbuf_tag,
1094 cd->sge_rx_spare_map, m, segs, &nsegs, 0);
1095 if (error != 0) {
1096 m_freem(m);
1097 return (error);
1098 }
1099 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1100 rxd = &cd->sge_rxdesc[prod];
1101 if (rxd->rx_m != NULL) {
1102 bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1103 BUS_DMASYNC_POSTREAD);
1104 bus_dmamap_unload(cd->sge_rxmbuf_tag, rxd->rx_dmamap);
1105 }
1106 map = rxd->rx_dmamap;
1107 rxd->rx_dmamap = cd->sge_rx_spare_map;
1108 cd->sge_rx_spare_map = map;
1109 bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1110 BUS_DMASYNC_PREREAD);
1111 rxd->rx_m = m;
1112
1113 desc = &sc->sge_ldata.sge_rx_ring[prod];
1114 desc->sge_sts_size = 0;
1115 desc->sge_ptr = htole32(SGE_ADDR_LO(segs[0].ds_addr));
1116 desc->sge_flags = htole32(segs[0].ds_len);
1117 if (prod == SGE_RX_RING_CNT - 1)
1118 desc->sge_flags |= htole32(RING_END);
1119 desc->sge_cmdsts = htole32(RDC_OWN | RDC_INTR);
1120 return (0);
1121 }
1122
1123 static __inline void
1124 sge_discard_rxbuf(struct sge_softc *sc, int index)
1125 {
1126 struct sge_desc *desc;
1127
1128 desc = &sc->sge_ldata.sge_rx_ring[index];
1129 desc->sge_sts_size = 0;
1130 desc->sge_flags = htole32(MCLBYTES - SGE_RX_BUF_ALIGN);
1131 if (index == SGE_RX_RING_CNT - 1)
1132 desc->sge_flags |= htole32(RING_END);
1133 desc->sge_cmdsts = htole32(RDC_OWN | RDC_INTR);
1134 }
1135
1136 /*
1137 * A frame has been uploaded: pass the resulting mbuf chain up to
1138 * the higher level protocols.
1139 */
1140 static void
1141 sge_rxeof(struct sge_softc *sc)
1142 {
1143 struct ifnet *ifp;
1144 struct mbuf *m;
1145 struct sge_chain_data *cd;
1146 struct sge_desc *cur_rx;
1147 uint32_t rxinfo, rxstat;
1148 int cons, prog;
1149
1150 SGE_LOCK_ASSERT(sc);
1151
1152 ifp = sc->sge_ifp;
1153 cd = &sc->sge_cdata;
1154
1155 bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1156 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1157 cons = cd->sge_rx_cons;
1158 for (prog = 0; prog < SGE_RX_RING_CNT; prog++,
1159 SGE_INC(cons, SGE_RX_RING_CNT)) {
1160 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1161 break;
1162 cur_rx = &sc->sge_ldata.sge_rx_ring[cons];
1163 rxinfo = le32toh(cur_rx->sge_cmdsts);
1164 if ((rxinfo & RDC_OWN) != 0)
1165 break;
1166 rxstat = le32toh(cur_rx->sge_sts_size);
1167 if ((rxstat & RDS_CRCOK) == 0 || SGE_RX_ERROR(rxstat) != 0 ||
1168 SGE_RX_NSEGS(rxstat) != 1) {
1169 /* XXX We don't support multi-segment frames yet. */
1170 #ifdef SGE_SHOW_ERRORS
1171 device_printf(sc->sge_dev, "Rx error : 0x%b\n", rxstat,
1172 RX_ERR_BITS);
1173 #endif
1174 sge_discard_rxbuf(sc, cons);
1175 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1176 continue;
1177 }
1178 m = cd->sge_rxdesc[cons].rx_m;
1179 if (sge_newbuf(sc, cons) != 0) {
1180 sge_discard_rxbuf(sc, cons);
1181 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1182 continue;
1183 }
1184 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1185 if ((rxinfo & RDC_IP_CSUM) != 0 &&
1186 (rxinfo & RDC_IP_CSUM_OK) != 0)
1187 m->m_pkthdr.csum_flags |=
1188 CSUM_IP_CHECKED | CSUM_IP_VALID;
1189 if (((rxinfo & RDC_TCP_CSUM) != 0 &&
1190 (rxinfo & RDC_TCP_CSUM_OK) != 0) ||
1191 ((rxinfo & RDC_UDP_CSUM) != 0 &&
1192 (rxinfo & RDC_UDP_CSUM_OK) != 0)) {
1193 m->m_pkthdr.csum_flags |=
1194 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1195 m->m_pkthdr.csum_data = 0xffff;
1196 }
1197 }
1198 /* Check for VLAN tagged frame. */
1199 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
1200 (rxstat & RDS_VLAN) != 0) {
1201 m->m_pkthdr.ether_vtag = rxinfo & RDC_VLAN_MASK;
1202 m->m_flags |= M_VLANTAG;
1203 }
1204 /*
1205 * Account for 10bytes auto padding which is used
1206 * to align IP header on 32bit boundary. Also note,
1207 * CRC bytes is automatically removed by the
1208 * hardware.
1209 */
1210 m->m_data += SGE_RX_PAD_BYTES;
1211 m->m_pkthdr.len = m->m_len = SGE_RX_BYTES(rxstat) -
1212 SGE_RX_PAD_BYTES;
1213 m->m_pkthdr.rcvif = ifp;
1214 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1215 SGE_UNLOCK(sc);
1216 (*ifp->if_input)(ifp, m);
1217 SGE_LOCK(sc);
1218 }
1219
1220 if (prog > 0) {
1221 bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1222 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1223 cd->sge_rx_cons = cons;
1224 }
1225 }
1226
1227 /*
1228 * A frame was downloaded to the chip. It's safe for us to clean up
1229 * the list buffers.
1230 */
1231 static void
1232 sge_txeof(struct sge_softc *sc)
1233 {
1234 struct ifnet *ifp;
1235 struct sge_list_data *ld;
1236 struct sge_chain_data *cd;
1237 struct sge_txdesc *txd;
1238 uint32_t txstat;
1239 int cons, nsegs, prod;
1240
1241 SGE_LOCK_ASSERT(sc);
1242
1243 ifp = sc->sge_ifp;
1244 ld = &sc->sge_ldata;
1245 cd = &sc->sge_cdata;
1246
1247 if (cd->sge_tx_cnt == 0)
1248 return;
1249 bus_dmamap_sync(cd->sge_tx_tag, cd->sge_tx_dmamap,
1250 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1251 cons = cd->sge_tx_cons;
1252 prod = cd->sge_tx_prod;
1253 for (; cons != prod;) {
1254 txstat = le32toh(ld->sge_tx_ring[cons].sge_cmdsts);
1255 if ((txstat & TDC_OWN) != 0)
1256 break;
1257 /*
1258 * Only the first descriptor of multi-descriptor transmission
1259 * is updated by controller. Driver should skip entire
1260 * chained buffers for the transmitted frame. In other words
1261 * TDC_OWN bit is valid only at the first descriptor of a
1262 * multi-descriptor transmission.
1263 */
1264 if (SGE_TX_ERROR(txstat) != 0) {
1265 #ifdef SGE_SHOW_ERRORS
1266 device_printf(sc->sge_dev, "Tx error : 0x%b\n",
1267 txstat, TX_ERR_BITS);
1268 #endif
1269 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1270 } else {
1271 #ifdef notyet
1272 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (txstat & 0xFFFF) - 1);
1273 #endif
1274 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1275 }
1276 txd = &cd->sge_txdesc[cons];
1277 for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
1278 ld->sge_tx_ring[cons].sge_cmdsts = 0;
1279 SGE_INC(cons, SGE_TX_RING_CNT);
1280 }
1281 /* Reclaim transmitted mbuf. */
1282 KASSERT(txd->tx_m != NULL,
1283 ("%s: freeing NULL mbuf\n", __func__));
1284 bus_dmamap_sync(cd->sge_txmbuf_tag, txd->tx_dmamap,
1285 BUS_DMASYNC_POSTWRITE);
1286 bus_dmamap_unload(cd->sge_txmbuf_tag, txd->tx_dmamap);
1287 m_freem(txd->tx_m);
1288 txd->tx_m = NULL;
1289 cd->sge_tx_cnt -= txd->tx_ndesc;
1290 KASSERT(cd->sge_tx_cnt >= 0,
1291 ("%s: Active Tx desc counter was garbled\n", __func__));
1292 txd->tx_ndesc = 0;
1293 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1294 }
1295 cd->sge_tx_cons = cons;
1296 if (cd->sge_tx_cnt == 0)
1297 sc->sge_timer = 0;
1298 }
1299
1300 static void
1301 sge_tick(void *arg)
1302 {
1303 struct sge_softc *sc;
1304 struct mii_data *mii;
1305 struct ifnet *ifp;
1306
1307 sc = arg;
1308 SGE_LOCK_ASSERT(sc);
1309
1310 ifp = sc->sge_ifp;
1311 mii = device_get_softc(sc->sge_miibus);
1312 mii_tick(mii);
1313 if ((sc->sge_flags & SGE_FLAG_LINK) == 0) {
1314 sge_miibus_statchg(sc->sge_dev);
1315 if ((sc->sge_flags & SGE_FLAG_LINK) != 0 &&
1316 !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1317 sge_start_locked(ifp);
1318 }
1319 /*
1320 * Reclaim transmitted frames here as we do not request
1321 * Tx completion interrupt for every queued frames to
1322 * reduce excessive interrupts.
1323 */
1324 sge_txeof(sc);
1325 sge_watchdog(sc);
1326 callout_reset(&sc->sge_stat_ch, hz, sge_tick, sc);
1327 }
1328
1329 static void
1330 sge_intr(void *arg)
1331 {
1332 struct sge_softc *sc;
1333 struct ifnet *ifp;
1334 uint32_t status;
1335
1336 sc = arg;
1337 SGE_LOCK(sc);
1338 ifp = sc->sge_ifp;
1339
1340 status = CSR_READ_4(sc, IntrStatus);
1341 if (status == 0xFFFFFFFF || (status & SGE_INTRS) == 0) {
1342 /* Not ours. */
1343 SGE_UNLOCK(sc);
1344 return;
1345 }
1346 /* Acknowledge interrupts. */
1347 CSR_WRITE_4(sc, IntrStatus, status);
1348 /* Disable further interrupts. */
1349 CSR_WRITE_4(sc, IntrMask, 0);
1350 /*
1351 * It seems the controller supports some kind of interrupt
1352 * moderation mechanism but we still don't know how to
1353 * enable that. To reduce number of generated interrupts
1354 * under load we check pending interrupts in a loop. This
1355 * will increase number of register access and is not correct
1356 * way to handle interrupt moderation but there seems to be
1357 * no other way at this time.
1358 */
1359 for (;;) {
1360 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1361 break;
1362 if ((status & (INTR_RX_DONE | INTR_RX_IDLE)) != 0) {
1363 sge_rxeof(sc);
1364 /* Wakeup Rx MAC. */
1365 if ((status & INTR_RX_IDLE) != 0)
1366 CSR_WRITE_4(sc, RX_CTL,
1367 0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
1368 }
1369 if ((status & (INTR_TX_DONE | INTR_TX_IDLE)) != 0)
1370 sge_txeof(sc);
1371 status = CSR_READ_4(sc, IntrStatus);
1372 if ((status & SGE_INTRS) == 0)
1373 break;
1374 /* Acknowledge interrupts. */
1375 CSR_WRITE_4(sc, IntrStatus, status);
1376 }
1377 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1378 /* Re-enable interrupts */
1379 CSR_WRITE_4(sc, IntrMask, SGE_INTRS);
1380 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1381 sge_start_locked(ifp);
1382 }
1383 SGE_UNLOCK(sc);
1384 }
1385
1386 /*
1387 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1388 * pointers to the fragment pointers.
1389 */
1390 static int
1391 sge_encap(struct sge_softc *sc, struct mbuf **m_head)
1392 {
1393 struct mbuf *m;
1394 struct sge_desc *desc;
1395 struct sge_txdesc *txd;
1396 bus_dma_segment_t txsegs[SGE_MAXTXSEGS];
1397 uint32_t cflags, mss;
1398 int error, i, nsegs, prod, si;
1399
1400 SGE_LOCK_ASSERT(sc);
1401
1402 si = prod = sc->sge_cdata.sge_tx_prod;
1403 txd = &sc->sge_cdata.sge_txdesc[prod];
1404 if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1405 struct ether_header *eh;
1406 struct ip *ip;
1407 struct tcphdr *tcp;
1408 uint32_t ip_off, poff;
1409
1410 if (M_WRITABLE(*m_head) == 0) {
1411 /* Get a writable copy. */
1412 m = m_dup(*m_head, M_NOWAIT);
1413 m_freem(*m_head);
1414 if (m == NULL) {
1415 *m_head = NULL;
1416 return (ENOBUFS);
1417 }
1418 *m_head = m;
1419 }
1420 ip_off = sizeof(struct ether_header);
1421 m = m_pullup(*m_head, ip_off);
1422 if (m == NULL) {
1423 *m_head = NULL;
1424 return (ENOBUFS);
1425 }
1426 eh = mtod(m, struct ether_header *);
1427 /* Check the existence of VLAN tag. */
1428 if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1429 ip_off = sizeof(struct ether_vlan_header);
1430 m = m_pullup(m, ip_off);
1431 if (m == NULL) {
1432 *m_head = NULL;
1433 return (ENOBUFS);
1434 }
1435 }
1436 m = m_pullup(m, ip_off + sizeof(struct ip));
1437 if (m == NULL) {
1438 *m_head = NULL;
1439 return (ENOBUFS);
1440 }
1441 ip = (struct ip *)(mtod(m, char *) + ip_off);
1442 poff = ip_off + (ip->ip_hl << 2);
1443 m = m_pullup(m, poff + sizeof(struct tcphdr));
1444 if (m == NULL) {
1445 *m_head = NULL;
1446 return (ENOBUFS);
1447 }
1448 tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1449 m = m_pullup(m, poff + (tcp->th_off << 2));
1450 if (m == NULL) {
1451 *m_head = NULL;
1452 return (ENOBUFS);
1453 }
1454 /*
1455 * Reset IP checksum and recompute TCP pseudo
1456 * checksum that NDIS specification requires.
1457 */
1458 ip = (struct ip *)(mtod(m, char *) + ip_off);
1459 ip->ip_sum = 0;
1460 tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1461 tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1462 htons(IPPROTO_TCP));
1463 *m_head = m;
1464 }
1465
1466 error = bus_dmamap_load_mbuf_sg(sc->sge_cdata.sge_txmbuf_tag,
1467 txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1468 if (error == EFBIG) {
1469 m = m_collapse(*m_head, M_NOWAIT, SGE_MAXTXSEGS);
1470 if (m == NULL) {
1471 m_freem(*m_head);
1472 *m_head = NULL;
1473 return (ENOBUFS);
1474 }
1475 *m_head = m;
1476 error = bus_dmamap_load_mbuf_sg(sc->sge_cdata.sge_txmbuf_tag,
1477 txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1478 if (error != 0) {
1479 m_freem(*m_head);
1480 *m_head = NULL;
1481 return (error);
1482 }
1483 } else if (error != 0)
1484 return (error);
1485
1486 KASSERT(nsegs != 0, ("zero segment returned"));
1487 /* Check descriptor overrun. */
1488 if (sc->sge_cdata.sge_tx_cnt + nsegs >= SGE_TX_RING_CNT) {
1489 bus_dmamap_unload(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap);
1490 return (ENOBUFS);
1491 }
1492 bus_dmamap_sync(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap,
1493 BUS_DMASYNC_PREWRITE);
1494
1495 m = *m_head;
1496 cflags = 0;
1497 mss = 0;
1498 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1499 cflags |= TDC_LS;
1500 mss = (uint32_t)m->m_pkthdr.tso_segsz;
1501 mss <<= 16;
1502 } else {
1503 if (m->m_pkthdr.csum_flags & CSUM_IP)
1504 cflags |= TDC_IP_CSUM;
1505 if (m->m_pkthdr.csum_flags & CSUM_TCP)
1506 cflags |= TDC_TCP_CSUM;
1507 if (m->m_pkthdr.csum_flags & CSUM_UDP)
1508 cflags |= TDC_UDP_CSUM;
1509 }
1510 for (i = 0; i < nsegs; i++) {
1511 desc = &sc->sge_ldata.sge_tx_ring[prod];
1512 if (i == 0) {
1513 desc->sge_sts_size = htole32(m->m_pkthdr.len | mss);
1514 desc->sge_cmdsts = 0;
1515 } else {
1516 desc->sge_sts_size = 0;
1517 desc->sge_cmdsts = htole32(TDC_OWN);
1518 }
1519 desc->sge_ptr = htole32(SGE_ADDR_LO(txsegs[i].ds_addr));
1520 desc->sge_flags = htole32(txsegs[i].ds_len);
1521 if (prod == SGE_TX_RING_CNT - 1)
1522 desc->sge_flags |= htole32(RING_END);
1523 sc->sge_cdata.sge_tx_cnt++;
1524 SGE_INC(prod, SGE_TX_RING_CNT);
1525 }
1526 /* Update producer index. */
1527 sc->sge_cdata.sge_tx_prod = prod;
1528
1529 desc = &sc->sge_ldata.sge_tx_ring[si];
1530 /* Configure VLAN. */
1531 if((m->m_flags & M_VLANTAG) != 0) {
1532 cflags |= m->m_pkthdr.ether_vtag;
1533 desc->sge_sts_size |= htole32(TDS_INS_VLAN);
1534 }
1535 desc->sge_cmdsts |= htole32(TDC_DEF | TDC_CRC | TDC_PAD | cflags);
1536 #if 1
1537 if ((sc->sge_flags & SGE_FLAG_SPEED_1000) != 0)
1538 desc->sge_cmdsts |= htole32(TDC_BST);
1539 #else
1540 if ((sc->sge_flags & SGE_FLAG_FDX) == 0) {
1541 desc->sge_cmdsts |= htole32(TDC_COL | TDC_CRS | TDC_BKF);
1542 if ((sc->sge_flags & SGE_FLAG_SPEED_1000) != 0)
1543 desc->sge_cmdsts |= htole32(TDC_EXT | TDC_BST);
1544 }
1545 #endif
1546 /* Request interrupt and give ownership to controller. */
1547 desc->sge_cmdsts |= htole32(TDC_OWN | TDC_INTR);
1548 txd->tx_m = m;
1549 txd->tx_ndesc = nsegs;
1550 return (0);
1551 }
1552
1553 static void
1554 sge_start(struct ifnet *ifp)
1555 {
1556 struct sge_softc *sc;
1557
1558 sc = ifp->if_softc;
1559 SGE_LOCK(sc);
1560 sge_start_locked(ifp);
1561 SGE_UNLOCK(sc);
1562 }
1563
1564 static void
1565 sge_start_locked(struct ifnet *ifp)
1566 {
1567 struct sge_softc *sc;
1568 struct mbuf *m_head;
1569 int queued = 0;
1570
1571 sc = ifp->if_softc;
1572 SGE_LOCK_ASSERT(sc);
1573
1574 if ((sc->sge_flags & SGE_FLAG_LINK) == 0 ||
1575 (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1576 IFF_DRV_RUNNING)
1577 return;
1578
1579 for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1580 if (sc->sge_cdata.sge_tx_cnt > (SGE_TX_RING_CNT -
1581 SGE_MAXTXSEGS)) {
1582 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1583 break;
1584 }
1585 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1586 if (m_head == NULL)
1587 break;
1588 if (sge_encap(sc, &m_head)) {
1589 if (m_head == NULL)
1590 break;
1591 IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1592 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1593 break;
1594 }
1595 queued++;
1596 /*
1597 * If there's a BPF listener, bounce a copy of this frame
1598 * to him.
1599 */
1600 BPF_MTAP(ifp, m_head);
1601 }
1602
1603 if (queued > 0) {
1604 bus_dmamap_sync(sc->sge_cdata.sge_tx_tag,
1605 sc->sge_cdata.sge_tx_dmamap,
1606 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1607 CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB | TX_CTL_POLL);
1608 sc->sge_timer = 5;
1609 }
1610 }
1611
1612 static void
1613 sge_init(void *arg)
1614 {
1615 struct sge_softc *sc;
1616
1617 sc = arg;
1618 SGE_LOCK(sc);
1619 sge_init_locked(sc);
1620 SGE_UNLOCK(sc);
1621 }
1622
1623 static void
1624 sge_init_locked(struct sge_softc *sc)
1625 {
1626 struct ifnet *ifp;
1627 struct mii_data *mii;
1628 uint16_t rxfilt;
1629 int i;
1630
1631 SGE_LOCK_ASSERT(sc);
1632 ifp = sc->sge_ifp;
1633 mii = device_get_softc(sc->sge_miibus);
1634 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1635 return;
1636 /*
1637 * Cancel pending I/O and free all RX/TX buffers.
1638 */
1639 sge_stop(sc);
1640 sge_reset(sc);
1641
1642 /* Init circular RX list. */
1643 if (sge_list_rx_init(sc) == ENOBUFS) {
1644 device_printf(sc->sge_dev, "no memory for Rx buffers\n");
1645 sge_stop(sc);
1646 return;
1647 }
1648 /* Init TX descriptors. */
1649 sge_list_tx_init(sc);
1650 /*
1651 * Load the address of the RX and TX lists.
1652 */
1653 CSR_WRITE_4(sc, TX_DESC, SGE_ADDR_LO(sc->sge_ldata.sge_tx_paddr));
1654 CSR_WRITE_4(sc, RX_DESC, SGE_ADDR_LO(sc->sge_ldata.sge_rx_paddr));
1655
1656 CSR_WRITE_4(sc, TxMacControl, 0x60);
1657 CSR_WRITE_4(sc, RxWakeOnLan, 0);
1658 CSR_WRITE_4(sc, RxWakeOnLanData, 0);
1659 /* Allow receiving VLAN frames. */
1660 CSR_WRITE_2(sc, RxMPSControl, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN +
1661 SGE_RX_PAD_BYTES);
1662
1663 for (i = 0; i < ETHER_ADDR_LEN; i++)
1664 CSR_WRITE_1(sc, RxMacAddr + i, IF_LLADDR(ifp)[i]);
1665 /* Configure RX MAC. */
1666 rxfilt = RXMAC_STRIP_FCS | RXMAC_PAD_ENB | RXMAC_CSUM_ENB;
1667 CSR_WRITE_2(sc, RxMacControl, rxfilt);
1668 sge_rxfilter(sc);
1669 sge_setvlan(sc);
1670
1671 /* Initialize default speed/duplex information. */
1672 if ((sc->sge_flags & SGE_FLAG_FASTETHER) == 0)
1673 sc->sge_flags |= SGE_FLAG_SPEED_1000;
1674 sc->sge_flags |= SGE_FLAG_FDX;
1675 if ((sc->sge_flags & SGE_FLAG_RGMII) != 0)
1676 CSR_WRITE_4(sc, StationControl, 0x04008001);
1677 else
1678 CSR_WRITE_4(sc, StationControl, 0x04000001);
1679 /*
1680 * XXX Try to mitigate interrupts.
1681 */
1682 CSR_WRITE_4(sc, IntrControl, 0x08880000);
1683 #ifdef notyet
1684 if (sc->sge_intrcontrol != 0)
1685 CSR_WRITE_4(sc, IntrControl, sc->sge_intrcontrol);
1686 if (sc->sge_intrtimer != 0)
1687 CSR_WRITE_4(sc, IntrTimer, sc->sge_intrtimer);
1688 #endif
1689
1690 /*
1691 * Clear and enable interrupts.
1692 */
1693 CSR_WRITE_4(sc, IntrStatus, 0xFFFFFFFF);
1694 CSR_WRITE_4(sc, IntrMask, SGE_INTRS);
1695
1696 /* Enable receiver and transmitter. */
1697 CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB);
1698 CSR_WRITE_4(sc, RX_CTL, 0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
1699
1700 ifp->if_drv_flags |= IFF_DRV_RUNNING;
1701 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1702
1703 sc->sge_flags &= ~SGE_FLAG_LINK;
1704 mii_mediachg(mii);
1705 callout_reset(&sc->sge_stat_ch, hz, sge_tick, sc);
1706 }
1707
1708 /*
1709 * Set media options.
1710 */
1711 static int
1712 sge_ifmedia_upd(struct ifnet *ifp)
1713 {
1714 struct sge_softc *sc;
1715 struct mii_data *mii;
1716 struct mii_softc *miisc;
1717 int error;
1718
1719 sc = ifp->if_softc;
1720 SGE_LOCK(sc);
1721 mii = device_get_softc(sc->sge_miibus);
1722 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1723 PHY_RESET(miisc);
1724 error = mii_mediachg(mii);
1725 SGE_UNLOCK(sc);
1726
1727 return (error);
1728 }
1729
1730 /*
1731 * Report current media status.
1732 */
1733 static void
1734 sge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1735 {
1736 struct sge_softc *sc;
1737 struct mii_data *mii;
1738
1739 sc = ifp->if_softc;
1740 SGE_LOCK(sc);
1741 mii = device_get_softc(sc->sge_miibus);
1742 if ((ifp->if_flags & IFF_UP) == 0) {
1743 SGE_UNLOCK(sc);
1744 return;
1745 }
1746 mii_pollstat(mii);
1747 ifmr->ifm_active = mii->mii_media_active;
1748 ifmr->ifm_status = mii->mii_media_status;
1749 SGE_UNLOCK(sc);
1750 }
1751
1752 static int
1753 sge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1754 {
1755 struct sge_softc *sc;
1756 struct ifreq *ifr;
1757 struct mii_data *mii;
1758 int error = 0, mask, reinit;
1759
1760 sc = ifp->if_softc;
1761 ifr = (struct ifreq *)data;
1762
1763 switch(command) {
1764 case SIOCSIFFLAGS:
1765 SGE_LOCK(sc);
1766 if ((ifp->if_flags & IFF_UP) != 0) {
1767 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
1768 ((ifp->if_flags ^ sc->sge_if_flags) &
1769 (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1770 sge_rxfilter(sc);
1771 else
1772 sge_init_locked(sc);
1773 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1774 sge_stop(sc);
1775 sc->sge_if_flags = ifp->if_flags;
1776 SGE_UNLOCK(sc);
1777 break;
1778 case SIOCSIFCAP:
1779 SGE_LOCK(sc);
1780 reinit = 0;
1781 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1782 if ((mask & IFCAP_TXCSUM) != 0 &&
1783 (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1784 ifp->if_capenable ^= IFCAP_TXCSUM;
1785 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1786 ifp->if_hwassist |= SGE_CSUM_FEATURES;
1787 else
1788 ifp->if_hwassist &= ~SGE_CSUM_FEATURES;
1789 }
1790 if ((mask & IFCAP_RXCSUM) != 0 &&
1791 (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
1792 ifp->if_capenable ^= IFCAP_RXCSUM;
1793 if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1794 (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1795 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1796 if ((mask & IFCAP_TSO4) != 0 &&
1797 (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1798 ifp->if_capenable ^= IFCAP_TSO4;
1799 if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1800 ifp->if_hwassist |= CSUM_TSO;
1801 else
1802 ifp->if_hwassist &= ~CSUM_TSO;
1803 }
1804 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1805 (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1806 ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1807 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1808 (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1809 /*
1810 * Due to unknown reason, toggling VLAN hardware
1811 * tagging require interface reinitialization.
1812 */
1813 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1814 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1815 ifp->if_capenable &=
1816 ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
1817 reinit = 1;
1818 }
1819 if (reinit > 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1820 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1821 sge_init_locked(sc);
1822 }
1823 SGE_UNLOCK(sc);
1824 VLAN_CAPABILITIES(ifp);
1825 break;
1826 case SIOCADDMULTI:
1827 case SIOCDELMULTI:
1828 SGE_LOCK(sc);
1829 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1830 sge_rxfilter(sc);
1831 SGE_UNLOCK(sc);
1832 break;
1833 case SIOCGIFMEDIA:
1834 case SIOCSIFMEDIA:
1835 mii = device_get_softc(sc->sge_miibus);
1836 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1837 break;
1838 default:
1839 error = ether_ioctl(ifp, command, data);
1840 break;
1841 }
1842
1843 return (error);
1844 }
1845
1846 static void
1847 sge_watchdog(struct sge_softc *sc)
1848 {
1849 struct ifnet *ifp;
1850
1851 SGE_LOCK_ASSERT(sc);
1852 if (sc->sge_timer == 0 || --sc->sge_timer > 0)
1853 return;
1854
1855 ifp = sc->sge_ifp;
1856 if ((sc->sge_flags & SGE_FLAG_LINK) == 0) {
1857 if (1 || bootverbose)
1858 device_printf(sc->sge_dev,
1859 "watchdog timeout (lost link)\n");
1860 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1861 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1862 sge_init_locked(sc);
1863 return;
1864 }
1865 device_printf(sc->sge_dev, "watchdog timeout\n");
1866 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1867
1868 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1869 sge_init_locked(sc);
1870 if (!IFQ_DRV_IS_EMPTY(&sc->sge_ifp->if_snd))
1871 sge_start_locked(ifp);
1872 }
1873
1874 /*
1875 * Stop the adapter and free any mbufs allocated to the
1876 * RX and TX lists.
1877 */
1878 static void
1879 sge_stop(struct sge_softc *sc)
1880 {
1881 struct ifnet *ifp;
1882
1883 ifp = sc->sge_ifp;
1884
1885 SGE_LOCK_ASSERT(sc);
1886
1887 sc->sge_timer = 0;
1888 callout_stop(&sc->sge_stat_ch);
1889 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1890
1891 CSR_WRITE_4(sc, IntrMask, 0);
1892 CSR_READ_4(sc, IntrMask);
1893 CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
1894 /* Stop TX/RX MAC. */
1895 CSR_WRITE_4(sc, TX_CTL, 0x1a00);
1896 CSR_WRITE_4(sc, RX_CTL, 0x1a00);
1897 /* XXX Can we assume active DMA cycles gone? */
1898 DELAY(2000);
1899 CSR_WRITE_4(sc, IntrMask, 0);
1900 CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
1901
1902 sc->sge_flags &= ~SGE_FLAG_LINK;
1903 sge_list_rx_free(sc);
1904 sge_list_tx_free(sc);
1905 }
Cache object: 2057521a1daf9d98435d5b10323a573e
|