The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/sge/if_sge.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-4-Clause
    3  *
    4  * Copyright (c) 2008-2010 Nikolay Denev <ndenev@gmail.com>
    5  * Copyright (c) 2007-2008 Alexander Pohoyda <alexander.pohoyda@gmx.net>
    6  * Copyright (c) 1997, 1998, 1999
    7  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  * 3. All advertising materials mentioning features or use of this software
   18  *    must display the following acknowledgement:
   19  *      This product includes software developed by Bill Paul.
   20  * 4. Neither the name of the author nor the names of any co-contributors
   21  *    may be used to endorse or promote products derived from this software
   22  *    without specific prior written permission.
   23  *
   24  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS''
   25  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
   26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
   27  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL AUTHORS OR
   28  * THE VOICES IN THEIR HEADS BE LIABLE FOR ANY DIRECT, INDIRECT,
   29  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
   30  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
   31  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
   33  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
   35  * OF THE POSSIBILITY OF SUCH DAMAGE.
   36  */
   37 
   38 #include <sys/cdefs.h>
   39 __FBSDID("$FreeBSD$");
   40 
   41 /*
   42  * SiS 190/191 PCI Ethernet NIC driver.
   43  *
   44  * Adapted to SiS 190 NIC by Alexander Pohoyda based on the original
   45  * SiS 900 driver by Bill Paul, using SiS 190/191 Solaris driver by
   46  * Masayuki Murayama and SiS 190/191 GNU/Linux driver by K.M. Liu
   47  * <kmliu@sis.com>.  Thanks to Pyun YongHyeon <pyunyh@gmail.com> for
   48  * review and very useful comments.
   49  *
   50  * Adapted to SiS 191 NIC by Nikolay Denev with further ideas from the
   51  * Linux and Solaris drivers.
   52  */
   53 
   54 #include <sys/param.h>
   55 #include <sys/systm.h>
   56 #include <sys/bus.h>
   57 #include <sys/endian.h>
   58 #include <sys/kernel.h>
   59 #include <sys/lock.h>
   60 #include <sys/malloc.h>
   61 #include <sys/mbuf.h>
   62 #include <sys/module.h>
   63 #include <sys/mutex.h>
   64 #include <sys/rman.h>
   65 #include <sys/socket.h>
   66 #include <sys/sockio.h>
   67 
   68 #include <net/bpf.h>
   69 #include <net/if.h>
   70 #include <net/if_var.h>
   71 #include <net/if_arp.h>
   72 #include <net/ethernet.h>
   73 #include <net/if_dl.h>
   74 #include <net/if_media.h>
   75 #include <net/if_types.h>
   76 #include <net/if_vlan_var.h>
   77 
   78 #include <netinet/in.h>
   79 #include <netinet/in_systm.h>
   80 #include <netinet/ip.h>
   81 #include <netinet/tcp.h>
   82 
   83 #include <machine/bus.h>
   84 #include <machine/in_cksum.h>
   85 
   86 #include <dev/mii/mii.h>
   87 #include <dev/mii/miivar.h>
   88 
   89 #include <dev/pci/pcireg.h>
   90 #include <dev/pci/pcivar.h>
   91 
   92 #include <dev/sge/if_sgereg.h>
   93 
   94 MODULE_DEPEND(sge, pci, 1, 1, 1);
   95 MODULE_DEPEND(sge, ether, 1, 1, 1);
   96 MODULE_DEPEND(sge, miibus, 1, 1, 1);
   97 
   98 /* "device miibus0" required.  See GENERIC if you get errors here. */
   99 #include "miibus_if.h"
  100 
  101 /*
  102  * Various supported device vendors/types and their names.
  103  */
  104 static struct sge_type sge_devs[] = {
  105         { SIS_VENDORID, SIS_DEVICEID_190, "SiS190 Fast Ethernet" },
  106         { SIS_VENDORID, SIS_DEVICEID_191, "SiS191 Fast/Gigabit Ethernet" },
  107         { 0, 0, NULL }
  108 };
  109 
  110 static int      sge_probe(device_t);
  111 static int      sge_attach(device_t);
  112 static int      sge_detach(device_t);
  113 static int      sge_shutdown(device_t);
  114 static int      sge_suspend(device_t);
  115 static int      sge_resume(device_t);
  116 
  117 static int      sge_miibus_readreg(device_t, int, int);
  118 static int      sge_miibus_writereg(device_t, int, int, int);
  119 static void     sge_miibus_statchg(device_t);
  120 
  121 static int      sge_newbuf(struct sge_softc *, int);
  122 static int      sge_encap(struct sge_softc *, struct mbuf **);
  123 static __inline void
  124                 sge_discard_rxbuf(struct sge_softc *, int);
  125 static void     sge_rxeof(struct sge_softc *);
  126 static void     sge_txeof(struct sge_softc *);
  127 static void     sge_intr(void *);
  128 static void     sge_tick(void *);
  129 static void     sge_start(struct ifnet *);
  130 static void     sge_start_locked(struct ifnet *);
  131 static int      sge_ioctl(struct ifnet *, u_long, caddr_t);
  132 static void     sge_init(void *);
  133 static void     sge_init_locked(struct sge_softc *);
  134 static void     sge_stop(struct sge_softc *);
  135 static void     sge_watchdog(struct sge_softc *);
  136 static int      sge_ifmedia_upd(struct ifnet *);
  137 static void     sge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
  138 
  139 static int      sge_get_mac_addr_apc(struct sge_softc *, uint8_t *);
  140 static int      sge_get_mac_addr_eeprom(struct sge_softc *, uint8_t *);
  141 static uint16_t sge_read_eeprom(struct sge_softc *, int);
  142 
  143 static void     sge_rxfilter(struct sge_softc *);
  144 static void     sge_setvlan(struct sge_softc *);
  145 static void     sge_reset(struct sge_softc *);
  146 static int      sge_list_rx_init(struct sge_softc *);
  147 static int      sge_list_rx_free(struct sge_softc *);
  148 static int      sge_list_tx_init(struct sge_softc *);
  149 static int      sge_list_tx_free(struct sge_softc *);
  150 
  151 static int      sge_dma_alloc(struct sge_softc *);
  152 static void     sge_dma_free(struct sge_softc *);
  153 static void     sge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
  154 
  155 static device_method_t sge_methods[] = {
  156         /* Device interface */
  157         DEVMETHOD(device_probe,         sge_probe),
  158         DEVMETHOD(device_attach,        sge_attach),
  159         DEVMETHOD(device_detach,        sge_detach),
  160         DEVMETHOD(device_suspend,       sge_suspend),
  161         DEVMETHOD(device_resume,        sge_resume),
  162         DEVMETHOD(device_shutdown,      sge_shutdown),
  163 
  164         /* MII interface */
  165         DEVMETHOD(miibus_readreg,       sge_miibus_readreg),
  166         DEVMETHOD(miibus_writereg,      sge_miibus_writereg),
  167         DEVMETHOD(miibus_statchg,       sge_miibus_statchg),
  168 
  169         DEVMETHOD_END
  170 };
  171 
  172 static driver_t sge_driver = {
  173         "sge", sge_methods, sizeof(struct sge_softc)
  174 };
  175 
  176 static devclass_t sge_devclass;
  177 
  178 DRIVER_MODULE(sge, pci, sge_driver, sge_devclass, 0, 0);
  179 DRIVER_MODULE(miibus, sge, miibus_driver, miibus_devclass, 0, 0);
  180 
  181 /*
  182  * Register space access macros.
  183  */
  184 #define CSR_WRITE_4(sc, reg, val)       bus_write_4(sc->sge_res, reg, val)
  185 #define CSR_WRITE_2(sc, reg, val)       bus_write_2(sc->sge_res, reg, val)
  186 #define CSR_WRITE_1(cs, reg, val)       bus_write_1(sc->sge_res, reg, val)
  187 
  188 #define CSR_READ_4(sc, reg)             bus_read_4(sc->sge_res, reg)
  189 #define CSR_READ_2(sc, reg)             bus_read_2(sc->sge_res, reg)
  190 #define CSR_READ_1(sc, reg)             bus_read_1(sc->sge_res, reg)
  191 
  192 /* Define to show Tx/Rx error status. */
  193 #undef SGE_SHOW_ERRORS
  194 
  195 #define SGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP | CSUM_UDP)
  196 
  197 static void
  198 sge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
  199 {
  200         bus_addr_t *p;
  201 
  202         if (error != 0)
  203                 return;
  204         KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
  205         p  = arg;
  206         *p = segs->ds_addr;
  207 }
  208 
  209 /*
  210  * Read a sequence of words from the EEPROM.
  211  */
  212 static uint16_t
  213 sge_read_eeprom(struct sge_softc *sc, int offset)
  214 {
  215         uint32_t val;
  216         int i;
  217 
  218         KASSERT(offset <= EI_OFFSET, ("EEPROM offset too big"));
  219         CSR_WRITE_4(sc, ROMInterface,
  220             EI_REQ | EI_OP_RD | (offset << EI_OFFSET_SHIFT));
  221         DELAY(500);
  222         for (i = 0; i < SGE_TIMEOUT; i++) {
  223                 val = CSR_READ_4(sc, ROMInterface);
  224                 if ((val & EI_REQ) == 0)
  225                         break;
  226                 DELAY(100);
  227         }
  228         if (i == SGE_TIMEOUT) {
  229                 device_printf(sc->sge_dev,
  230                     "EEPROM read timeout : 0x%08x\n", val);
  231                 return (0xffff);
  232         }
  233 
  234         return ((val & EI_DATA) >> EI_DATA_SHIFT);
  235 }
  236 
  237 static int
  238 sge_get_mac_addr_eeprom(struct sge_softc *sc, uint8_t *dest)
  239 {
  240         uint16_t val;
  241         int i;
  242 
  243         val = sge_read_eeprom(sc, EEPROMSignature);
  244         if (val == 0xffff || val == 0) {
  245                 device_printf(sc->sge_dev,
  246                     "invalid EEPROM signature : 0x%04x\n", val);
  247                 return (EINVAL);
  248         }
  249 
  250         for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
  251                 val = sge_read_eeprom(sc, EEPROMMACAddr + i / 2);
  252                 dest[i + 0] = (uint8_t)val;
  253                 dest[i + 1] = (uint8_t)(val >> 8);
  254         }
  255 
  256         if ((sge_read_eeprom(sc, EEPROMInfo) & 0x80) != 0)
  257                 sc->sge_flags |= SGE_FLAG_RGMII;
  258         return (0);
  259 }
  260 
  261 /*
  262  * For SiS96x, APC CMOS RAM is used to store ethernet address.
  263  * APC CMOS RAM is accessed through ISA bridge.
  264  */
  265 static int
  266 sge_get_mac_addr_apc(struct sge_softc *sc, uint8_t *dest)
  267 {
  268 #if defined(__amd64__) || defined(__i386__)
  269         devclass_t pci;
  270         device_t bus, dev = NULL;
  271         device_t *kids;
  272         struct apc_tbl {
  273                 uint16_t vid;
  274                 uint16_t did;
  275         } *tp, apc_tbls[] = {
  276                 { SIS_VENDORID, 0x0965 },
  277                 { SIS_VENDORID, 0x0966 },
  278                 { SIS_VENDORID, 0x0968 }
  279         };
  280         uint8_t reg;
  281         int busnum, i, j, numkids;
  282 
  283         pci = devclass_find("pci");
  284         for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
  285                 bus = devclass_get_device(pci, busnum);
  286                 if (!bus)
  287                         continue;
  288                 if (device_get_children(bus, &kids, &numkids) != 0)
  289                         continue;
  290                 for (i = 0; i < numkids; i++) {
  291                         dev = kids[i];
  292                         if (pci_get_class(dev) == PCIC_BRIDGE &&
  293                             pci_get_subclass(dev) == PCIS_BRIDGE_ISA) {
  294                                 tp = apc_tbls;
  295                                 for (j = 0; j < nitems(apc_tbls); j++) {
  296                                         if (pci_get_vendor(dev) == tp->vid &&
  297                                             pci_get_device(dev) == tp->did) {
  298                                                 free(kids, M_TEMP);
  299                                                 goto apc_found;
  300                                         }
  301                                         tp++;
  302                                 }
  303                         }
  304                 }
  305                 free(kids, M_TEMP);
  306         }
  307         device_printf(sc->sge_dev, "couldn't find PCI-ISA bridge\n");
  308         return (EINVAL);
  309 apc_found:
  310         /* Enable port 0x78 and 0x79 to access APC registers. */
  311         reg = pci_read_config(dev, 0x48, 1);
  312         pci_write_config(dev, 0x48, reg & ~0x02, 1);
  313         DELAY(50);
  314         pci_read_config(dev, 0x48, 1);
  315         /* Read stored ethernet address. */
  316         for (i = 0; i < ETHER_ADDR_LEN; i++) {
  317                 outb(0x78, 0x09 + i);
  318                 dest[i] = inb(0x79);
  319         }
  320         outb(0x78, 0x12);
  321         if ((inb(0x79) & 0x80) != 0)
  322                 sc->sge_flags |= SGE_FLAG_RGMII;
  323         /* Restore access to APC registers. */
  324         pci_write_config(dev, 0x48, reg, 1);
  325 
  326         return (0);
  327 #else
  328         return (EINVAL);
  329 #endif
  330 }
  331 
  332 static int
  333 sge_miibus_readreg(device_t dev, int phy, int reg)
  334 {
  335         struct sge_softc *sc;
  336         uint32_t val;
  337         int i;
  338 
  339         sc = device_get_softc(dev);
  340         CSR_WRITE_4(sc, GMIIControl, (phy << GMI_PHY_SHIFT) |
  341             (reg << GMI_REG_SHIFT) | GMI_OP_RD | GMI_REQ);
  342         DELAY(10);
  343         for (i = 0; i < SGE_TIMEOUT; i++) {
  344                 val = CSR_READ_4(sc, GMIIControl);
  345                 if ((val & GMI_REQ) == 0)
  346                         break;
  347                 DELAY(10);
  348         }
  349         if (i == SGE_TIMEOUT) {
  350                 device_printf(sc->sge_dev, "PHY read timeout : %d\n", reg);
  351                 return (0);
  352         }
  353         return ((val & GMI_DATA) >> GMI_DATA_SHIFT);
  354 }
  355 
  356 static int
  357 sge_miibus_writereg(device_t dev, int phy, int reg, int data)
  358 {
  359         struct sge_softc *sc;
  360         uint32_t val;
  361         int i;
  362 
  363         sc = device_get_softc(dev);
  364         CSR_WRITE_4(sc, GMIIControl, (phy << GMI_PHY_SHIFT) |
  365             (reg << GMI_REG_SHIFT) | (data << GMI_DATA_SHIFT) |
  366             GMI_OP_WR | GMI_REQ);
  367         DELAY(10);
  368         for (i = 0; i < SGE_TIMEOUT; i++) {
  369                 val = CSR_READ_4(sc, GMIIControl);
  370                 if ((val & GMI_REQ) == 0)
  371                         break;
  372                 DELAY(10);
  373         }
  374         if (i == SGE_TIMEOUT)
  375                 device_printf(sc->sge_dev, "PHY write timeout : %d\n", reg);
  376         return (0);
  377 }
  378 
  379 static void
  380 sge_miibus_statchg(device_t dev)
  381 {
  382         struct sge_softc *sc;
  383         struct mii_data *mii;
  384         struct ifnet *ifp;
  385         uint32_t ctl, speed;
  386 
  387         sc = device_get_softc(dev);
  388         mii = device_get_softc(sc->sge_miibus);
  389         ifp = sc->sge_ifp;
  390         if (mii == NULL || ifp == NULL ||
  391             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
  392                 return;
  393         speed = 0;
  394         sc->sge_flags &= ~SGE_FLAG_LINK;
  395         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
  396             (IFM_ACTIVE | IFM_AVALID)) {
  397                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
  398                 case IFM_10_T:
  399                         sc->sge_flags |= SGE_FLAG_LINK;
  400                         speed = SC_SPEED_10;
  401                         break;
  402                 case IFM_100_TX:
  403                         sc->sge_flags |= SGE_FLAG_LINK;
  404                         speed = SC_SPEED_100;
  405                         break;
  406                 case IFM_1000_T:
  407                         if ((sc->sge_flags & SGE_FLAG_FASTETHER) == 0) {
  408                                 sc->sge_flags |= SGE_FLAG_LINK;
  409                                 speed = SC_SPEED_1000;
  410                         }
  411                         break;
  412                 default:
  413                         break;
  414                 }
  415         }
  416         if ((sc->sge_flags & SGE_FLAG_LINK) == 0)
  417                 return;
  418         /* Reprogram MAC to resolved speed/duplex/flow-control parameters. */
  419         ctl = CSR_READ_4(sc, StationControl);
  420         ctl &= ~(0x0f000000 | SC_FDX | SC_SPEED_MASK);
  421         if (speed == SC_SPEED_1000) {
  422                 ctl |= 0x07000000;
  423                 sc->sge_flags |= SGE_FLAG_SPEED_1000;
  424         } else {
  425                 ctl |= 0x04000000;
  426                 sc->sge_flags &= ~SGE_FLAG_SPEED_1000;
  427         }
  428 #ifdef notyet
  429         if ((sc->sge_flags & SGE_FLAG_GMII) != 0)
  430                 ctl |= 0x03000000;
  431 #endif
  432         ctl |= speed;
  433         if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
  434                 ctl |= SC_FDX;
  435                 sc->sge_flags |= SGE_FLAG_FDX;
  436         } else
  437                 sc->sge_flags &= ~SGE_FLAG_FDX;
  438         CSR_WRITE_4(sc, StationControl, ctl);
  439         if ((sc->sge_flags & SGE_FLAG_RGMII) != 0) {
  440                 CSR_WRITE_4(sc, RGMIIDelay, 0x0441);
  441                 CSR_WRITE_4(sc, RGMIIDelay, 0x0440);
  442         }
  443 }
  444 
  445 static void
  446 sge_rxfilter(struct sge_softc *sc)
  447 {
  448         struct ifnet *ifp;
  449         struct ifmultiaddr *ifma;
  450         uint32_t crc, hashes[2];
  451         uint16_t rxfilt;
  452 
  453         SGE_LOCK_ASSERT(sc);
  454 
  455         ifp = sc->sge_ifp;
  456         rxfilt = CSR_READ_2(sc, RxMacControl);
  457         rxfilt &= ~(AcceptBroadcast | AcceptAllPhys | AcceptMulticast);
  458         rxfilt |= AcceptMyPhys;
  459         if ((ifp->if_flags & IFF_BROADCAST) != 0)
  460                 rxfilt |= AcceptBroadcast;
  461         if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
  462                 if ((ifp->if_flags & IFF_PROMISC) != 0)
  463                         rxfilt |= AcceptAllPhys;
  464                 rxfilt |= AcceptMulticast;
  465                 hashes[0] = 0xFFFFFFFF;
  466                 hashes[1] = 0xFFFFFFFF;
  467         } else {
  468                 rxfilt |= AcceptMulticast;
  469                 hashes[0] = hashes[1] = 0;
  470                 /* Now program new ones. */
  471                 if_maddr_rlock(ifp);
  472                 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
  473                         if (ifma->ifma_addr->sa_family != AF_LINK)
  474                                 continue;
  475                         crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
  476                             ifma->ifma_addr), ETHER_ADDR_LEN);
  477                         hashes[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
  478                 }
  479                 if_maddr_runlock(ifp);
  480         }
  481         CSR_WRITE_2(sc, RxMacControl, rxfilt);
  482         CSR_WRITE_4(sc, RxHashTable, hashes[0]);
  483         CSR_WRITE_4(sc, RxHashTable2, hashes[1]);
  484 }
  485 
  486 static void
  487 sge_setvlan(struct sge_softc *sc)
  488 {
  489         struct ifnet *ifp;
  490         uint16_t rxfilt;
  491 
  492         SGE_LOCK_ASSERT(sc);
  493 
  494         ifp = sc->sge_ifp;
  495         if ((ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) == 0)
  496                 return;
  497         rxfilt = CSR_READ_2(sc, RxMacControl);
  498         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
  499                 rxfilt |= RXMAC_STRIP_VLAN;
  500         else
  501                 rxfilt &= ~RXMAC_STRIP_VLAN;
  502         CSR_WRITE_2(sc, RxMacControl, rxfilt);
  503 }
  504 
  505 static void
  506 sge_reset(struct sge_softc *sc)
  507 {
  508 
  509         CSR_WRITE_4(sc, IntrMask, 0);
  510         CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
  511 
  512         /* Soft reset. */
  513         CSR_WRITE_4(sc, IntrControl, 0x8000);
  514         CSR_READ_4(sc, IntrControl);
  515         DELAY(100);
  516         CSR_WRITE_4(sc, IntrControl, 0);
  517         /* Stop MAC. */
  518         CSR_WRITE_4(sc, TX_CTL, 0x1a00);
  519         CSR_WRITE_4(sc, RX_CTL, 0x1a00);
  520 
  521         CSR_WRITE_4(sc, IntrMask, 0);
  522         CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
  523 
  524         CSR_WRITE_4(sc, GMIIControl, 0);
  525 }
  526 
  527 /*
  528  * Probe for an SiS chip. Check the PCI vendor and device
  529  * IDs against our list and return a device name if we find a match.
  530  */
  531 static int
  532 sge_probe(device_t dev)
  533 {
  534         struct sge_type *t;
  535 
  536         t = sge_devs;
  537         while (t->sge_name != NULL) {
  538                 if ((pci_get_vendor(dev) == t->sge_vid) &&
  539                     (pci_get_device(dev) == t->sge_did)) {
  540                         device_set_desc(dev, t->sge_name);
  541                         return (BUS_PROBE_DEFAULT);
  542                 }
  543                 t++;
  544         }
  545 
  546         return (ENXIO);
  547 }
  548 
  549 /*
  550  * Attach the interface.  Allocate softc structures, do ifmedia
  551  * setup and ethernet/BPF attach.
  552  */
  553 static int
  554 sge_attach(device_t dev)
  555 {
  556         struct sge_softc *sc;
  557         struct ifnet *ifp;
  558         uint8_t eaddr[ETHER_ADDR_LEN];
  559         int error = 0, rid;
  560 
  561         sc = device_get_softc(dev);
  562         sc->sge_dev = dev;
  563 
  564         mtx_init(&sc->sge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
  565             MTX_DEF);
  566         callout_init_mtx(&sc->sge_stat_ch, &sc->sge_mtx, 0);
  567 
  568         /*
  569          * Map control/status registers.
  570          */
  571         pci_enable_busmaster(dev);
  572 
  573         /* Allocate resources. */
  574         sc->sge_res_id = PCIR_BAR(0);
  575         sc->sge_res_type = SYS_RES_MEMORY;
  576         sc->sge_res = bus_alloc_resource_any(dev, sc->sge_res_type,
  577             &sc->sge_res_id, RF_ACTIVE);
  578         if (sc->sge_res == NULL) {
  579                 device_printf(dev, "couldn't allocate resource\n");
  580                 error = ENXIO;
  581                 goto fail;
  582         }
  583 
  584         rid = 0;
  585         sc->sge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
  586             RF_SHAREABLE | RF_ACTIVE);
  587         if (sc->sge_irq == NULL) {
  588                 device_printf(dev, "couldn't allocate IRQ resources\n");
  589                 error = ENXIO;
  590                 goto fail;
  591         }
  592         sc->sge_rev = pci_get_revid(dev);
  593         if (pci_get_device(dev) == SIS_DEVICEID_190)
  594                 sc->sge_flags |= SGE_FLAG_FASTETHER | SGE_FLAG_SIS190;
  595         /* Reset the adapter. */
  596         sge_reset(sc);
  597 
  598         /* Get MAC address from the EEPROM. */
  599         if ((pci_read_config(dev, 0x73, 1) & 0x01) != 0)
  600                 sge_get_mac_addr_apc(sc, eaddr);
  601         else
  602                 sge_get_mac_addr_eeprom(sc, eaddr);
  603 
  604         if ((error = sge_dma_alloc(sc)) != 0)
  605                 goto fail;
  606 
  607         ifp = sc->sge_ifp = if_alloc(IFT_ETHER);
  608         if (ifp == NULL) {
  609                 device_printf(dev, "cannot allocate ifnet structure.\n");
  610                 error = ENOSPC;
  611                 goto fail;
  612         }
  613         ifp->if_softc = sc;
  614         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
  615         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
  616         ifp->if_ioctl = sge_ioctl;
  617         ifp->if_start = sge_start;
  618         ifp->if_init = sge_init;
  619         ifp->if_snd.ifq_drv_maxlen = SGE_TX_RING_CNT - 1;
  620         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
  621         IFQ_SET_READY(&ifp->if_snd);
  622         ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM | IFCAP_TSO4;
  623         ifp->if_hwassist = SGE_CSUM_FEATURES | CSUM_TSO;
  624         ifp->if_capenable = ifp->if_capabilities;
  625         /*
  626          * Do MII setup.
  627          */
  628         error = mii_attach(dev, &sc->sge_miibus, ifp, sge_ifmedia_upd,
  629             sge_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
  630         if (error != 0) {
  631                 device_printf(dev, "attaching PHYs failed\n");
  632                 goto fail;
  633         }
  634 
  635         /*
  636          * Call MI attach routine.
  637          */
  638         ether_ifattach(ifp, eaddr);
  639 
  640         /* VLAN setup. */
  641         ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM |
  642             IFCAP_VLAN_HWTSO | IFCAP_VLAN_MTU;
  643         ifp->if_capenable = ifp->if_capabilities;
  644         /* Tell the upper layer(s) we support long frames. */
  645         ifp->if_hdrlen = sizeof(struct ether_vlan_header);
  646 
  647         /* Hook interrupt last to avoid having to lock softc */
  648         error = bus_setup_intr(dev, sc->sge_irq, INTR_TYPE_NET | INTR_MPSAFE,
  649             NULL, sge_intr, sc, &sc->sge_intrhand);
  650         if (error) {
  651                 device_printf(dev, "couldn't set up irq\n");
  652                 ether_ifdetach(ifp);
  653                 goto fail;
  654         }
  655 
  656 fail:
  657         if (error)
  658                 sge_detach(dev);
  659 
  660         return (error);
  661 }
  662 
  663 /*
  664  * Shutdown hardware and free up resources.  This can be called any
  665  * time after the mutex has been initialized.  It is called in both
  666  * the error case in attach and the normal detach case so it needs
  667  * to be careful about only freeing resources that have actually been
  668  * allocated.
  669  */
  670 static int
  671 sge_detach(device_t dev)
  672 {
  673         struct sge_softc *sc;
  674         struct ifnet *ifp;
  675 
  676         sc = device_get_softc(dev);
  677         ifp = sc->sge_ifp;
  678         /* These should only be active if attach succeeded. */
  679         if (device_is_attached(dev)) {
  680                 ether_ifdetach(ifp);
  681                 SGE_LOCK(sc);
  682                 sge_stop(sc);
  683                 SGE_UNLOCK(sc);
  684                 callout_drain(&sc->sge_stat_ch);
  685         }
  686         if (sc->sge_miibus)
  687                 device_delete_child(dev, sc->sge_miibus);
  688         bus_generic_detach(dev);
  689 
  690         if (sc->sge_intrhand)
  691                 bus_teardown_intr(dev, sc->sge_irq, sc->sge_intrhand);
  692         if (sc->sge_irq)
  693                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sge_irq);
  694         if (sc->sge_res)
  695                 bus_release_resource(dev, sc->sge_res_type, sc->sge_res_id,
  696                     sc->sge_res);
  697         if (ifp)
  698                 if_free(ifp);
  699         sge_dma_free(sc);
  700         mtx_destroy(&sc->sge_mtx);
  701 
  702         return (0);
  703 }
  704 
  705 /*
  706  * Stop all chip I/O so that the kernel's probe routines don't
  707  * get confused by errant DMAs when rebooting.
  708  */
  709 static int
  710 sge_shutdown(device_t dev)
  711 {
  712         struct sge_softc *sc;
  713 
  714         sc = device_get_softc(dev);
  715         SGE_LOCK(sc);
  716         sge_stop(sc);
  717         SGE_UNLOCK(sc);
  718         return (0);
  719 }
  720 
  721 static int
  722 sge_suspend(device_t dev)
  723 {
  724         struct sge_softc *sc;
  725         struct ifnet *ifp;
  726 
  727         sc = device_get_softc(dev);
  728         SGE_LOCK(sc);
  729         ifp = sc->sge_ifp;
  730         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
  731                 sge_stop(sc);
  732         SGE_UNLOCK(sc);
  733         return (0);
  734 }
  735 
  736 static int
  737 sge_resume(device_t dev)
  738 {
  739         struct sge_softc *sc;
  740         struct ifnet *ifp;
  741 
  742         sc = device_get_softc(dev);
  743         SGE_LOCK(sc);
  744         ifp = sc->sge_ifp;
  745         if ((ifp->if_flags & IFF_UP) != 0)
  746                 sge_init_locked(sc);
  747         SGE_UNLOCK(sc);
  748         return (0);
  749 }
  750 
  751 static int
  752 sge_dma_alloc(struct sge_softc *sc)
  753 {
  754         struct sge_chain_data *cd;
  755         struct sge_list_data *ld;
  756         struct sge_rxdesc *rxd;
  757         struct sge_txdesc *txd;
  758         int error, i;
  759 
  760         cd = &sc->sge_cdata;
  761         ld = &sc->sge_ldata;
  762         error = bus_dma_tag_create(bus_get_dma_tag(sc->sge_dev),
  763             1, 0,                       /* alignment, boundary */
  764             BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
  765             BUS_SPACE_MAXADDR,          /* highaddr */
  766             NULL, NULL,                 /* filter, filterarg */
  767             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
  768             1,                          /* nsegments */
  769             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
  770             0,                          /* flags */
  771             NULL,                       /* lockfunc */
  772             NULL,                       /* lockarg */
  773             &cd->sge_tag);
  774         if (error != 0) {
  775                 device_printf(sc->sge_dev,
  776                     "could not create parent DMA tag.\n");
  777                 goto fail;
  778         }
  779 
  780         /* RX descriptor ring */
  781         error = bus_dma_tag_create(cd->sge_tag,
  782             SGE_DESC_ALIGN, 0,          /* alignment, boundary */
  783             BUS_SPACE_MAXADDR,          /* lowaddr */
  784             BUS_SPACE_MAXADDR,          /* highaddr */
  785             NULL, NULL,                 /* filter, filterarg */
  786             SGE_RX_RING_SZ, 1,          /* maxsize,nsegments */
  787             SGE_RX_RING_SZ,             /* maxsegsize */
  788             0,                          /* flags */
  789             NULL,                       /* lockfunc */
  790             NULL,                       /* lockarg */
  791             &cd->sge_rx_tag);
  792         if (error != 0) {
  793                 device_printf(sc->sge_dev,
  794                     "could not create Rx ring DMA tag.\n");
  795                 goto fail;
  796         }
  797         /* Allocate DMA'able memory and load DMA map for RX ring. */
  798         error = bus_dmamem_alloc(cd->sge_rx_tag, (void **)&ld->sge_rx_ring,
  799             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
  800             &cd->sge_rx_dmamap);
  801         if (error != 0) {
  802                 device_printf(sc->sge_dev,
  803                     "could not allocate DMA'able memory for Rx ring.\n");
  804                 goto fail;
  805         }
  806         error = bus_dmamap_load(cd->sge_rx_tag, cd->sge_rx_dmamap,
  807             ld->sge_rx_ring, SGE_RX_RING_SZ, sge_dma_map_addr,
  808             &ld->sge_rx_paddr, BUS_DMA_NOWAIT);
  809         if (error != 0) {
  810                 device_printf(sc->sge_dev,
  811                     "could not load DMA'able memory for Rx ring.\n");
  812         }
  813 
  814         /* TX descriptor ring */
  815         error = bus_dma_tag_create(cd->sge_tag,
  816             SGE_DESC_ALIGN, 0,          /* alignment, boundary */
  817             BUS_SPACE_MAXADDR,          /* lowaddr */
  818             BUS_SPACE_MAXADDR,          /* highaddr */
  819             NULL, NULL,                 /* filter, filterarg */
  820             SGE_TX_RING_SZ, 1,          /* maxsize,nsegments */
  821             SGE_TX_RING_SZ,             /* maxsegsize */
  822             0,                          /* flags */
  823             NULL,                       /* lockfunc */
  824             NULL,                       /* lockarg */
  825             &cd->sge_tx_tag);
  826         if (error != 0) {
  827                 device_printf(sc->sge_dev,
  828                     "could not create Rx ring DMA tag.\n");
  829                 goto fail;
  830         }
  831         /* Allocate DMA'able memory and load DMA map for TX ring. */
  832         error = bus_dmamem_alloc(cd->sge_tx_tag, (void **)&ld->sge_tx_ring,
  833             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
  834             &cd->sge_tx_dmamap);
  835         if (error != 0) {
  836                 device_printf(sc->sge_dev,
  837                     "could not allocate DMA'able memory for Tx ring.\n");
  838                 goto fail;
  839         }
  840         error = bus_dmamap_load(cd->sge_tx_tag, cd->sge_tx_dmamap,
  841             ld->sge_tx_ring, SGE_TX_RING_SZ, sge_dma_map_addr,
  842             &ld->sge_tx_paddr, BUS_DMA_NOWAIT);
  843         if (error != 0) {
  844                 device_printf(sc->sge_dev,
  845                     "could not load DMA'able memory for Rx ring.\n");
  846                 goto fail;
  847         }
  848 
  849         /* Create DMA tag for Tx buffers. */
  850         error = bus_dma_tag_create(cd->sge_tag, 1, 0, BUS_SPACE_MAXADDR,
  851             BUS_SPACE_MAXADDR, NULL, NULL, SGE_TSO_MAXSIZE, SGE_MAXTXSEGS,
  852             SGE_TSO_MAXSEGSIZE, 0, NULL, NULL, &cd->sge_txmbuf_tag);
  853         if (error != 0) {
  854                 device_printf(sc->sge_dev,
  855                     "could not create Tx mbuf DMA tag.\n");
  856                 goto fail;
  857         }
  858 
  859         /* Create DMA tag for Rx buffers. */
  860         error = bus_dma_tag_create(cd->sge_tag, SGE_RX_BUF_ALIGN, 0,
  861             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
  862             MCLBYTES, 0, NULL, NULL, &cd->sge_rxmbuf_tag);
  863         if (error != 0) {
  864                 device_printf(sc->sge_dev,
  865                     "could not create Rx mbuf DMA tag.\n");
  866                 goto fail;
  867         }
  868 
  869         /* Create DMA maps for Tx buffers. */
  870         for (i = 0; i < SGE_TX_RING_CNT; i++) {
  871                 txd = &cd->sge_txdesc[i];
  872                 txd->tx_m = NULL;
  873                 txd->tx_dmamap = NULL;
  874                 txd->tx_ndesc = 0;
  875                 error = bus_dmamap_create(cd->sge_txmbuf_tag, 0,
  876                     &txd->tx_dmamap);
  877                 if (error != 0) {
  878                         device_printf(sc->sge_dev,
  879                             "could not create Tx DMA map.\n");
  880                         goto fail;
  881                 }
  882         }
  883         /* Create spare DMA map for Rx buffer. */
  884         error = bus_dmamap_create(cd->sge_rxmbuf_tag, 0, &cd->sge_rx_spare_map);
  885         if (error != 0) {
  886                 device_printf(sc->sge_dev,
  887                     "could not create spare Rx DMA map.\n");
  888                 goto fail;
  889         }
  890         /* Create DMA maps for Rx buffers. */
  891         for (i = 0; i < SGE_RX_RING_CNT; i++) {
  892                 rxd = &cd->sge_rxdesc[i];
  893                 rxd->rx_m = NULL;
  894                 rxd->rx_dmamap = NULL;
  895                 error = bus_dmamap_create(cd->sge_rxmbuf_tag, 0,
  896                     &rxd->rx_dmamap);
  897                 if (error) {
  898                         device_printf(sc->sge_dev,
  899                             "could not create Rx DMA map.\n");
  900                         goto fail;
  901                 }
  902         }
  903 fail:
  904         return (error);
  905 }
  906 
  907 static void
  908 sge_dma_free(struct sge_softc *sc)
  909 {
  910         struct sge_chain_data *cd;
  911         struct sge_list_data *ld;
  912         struct sge_rxdesc *rxd;
  913         struct sge_txdesc *txd;
  914         int i;
  915 
  916         cd = &sc->sge_cdata;
  917         ld = &sc->sge_ldata;
  918         /* Rx ring. */
  919         if (cd->sge_rx_tag != NULL) {
  920                 if (ld->sge_rx_paddr != 0)
  921                         bus_dmamap_unload(cd->sge_rx_tag, cd->sge_rx_dmamap);
  922                 if (ld->sge_rx_ring != NULL)
  923                         bus_dmamem_free(cd->sge_rx_tag, ld->sge_rx_ring,
  924                             cd->sge_rx_dmamap);
  925                 ld->sge_rx_ring = NULL;
  926                 ld->sge_rx_paddr = 0;
  927                 bus_dma_tag_destroy(cd->sge_rx_tag);
  928                 cd->sge_rx_tag = NULL;
  929         }
  930         /* Tx ring. */
  931         if (cd->sge_tx_tag != NULL) {
  932                 if (ld->sge_tx_paddr != 0)
  933                         bus_dmamap_unload(cd->sge_tx_tag, cd->sge_tx_dmamap);
  934                 if (ld->sge_tx_ring != NULL)
  935                         bus_dmamem_free(cd->sge_tx_tag, ld->sge_tx_ring,
  936                             cd->sge_tx_dmamap);
  937                 ld->sge_tx_ring = NULL;
  938                 ld->sge_tx_paddr = 0;
  939                 bus_dma_tag_destroy(cd->sge_tx_tag);
  940                 cd->sge_tx_tag = NULL;
  941         }
  942         /* Rx buffers. */
  943         if (cd->sge_rxmbuf_tag != NULL) {
  944                 for (i = 0; i < SGE_RX_RING_CNT; i++) {
  945                         rxd = &cd->sge_rxdesc[i];
  946                         if (rxd->rx_dmamap != NULL) {
  947                                 bus_dmamap_destroy(cd->sge_rxmbuf_tag,
  948                                     rxd->rx_dmamap);
  949                                 rxd->rx_dmamap = NULL;
  950                         }
  951                 }
  952                 if (cd->sge_rx_spare_map != NULL) {
  953                         bus_dmamap_destroy(cd->sge_rxmbuf_tag,
  954                             cd->sge_rx_spare_map);
  955                         cd->sge_rx_spare_map = NULL;
  956                 }
  957                 bus_dma_tag_destroy(cd->sge_rxmbuf_tag);
  958                 cd->sge_rxmbuf_tag = NULL;
  959         }
  960         /* Tx buffers. */
  961         if (cd->sge_txmbuf_tag != NULL) {
  962                 for (i = 0; i < SGE_TX_RING_CNT; i++) {
  963                         txd = &cd->sge_txdesc[i];
  964                         if (txd->tx_dmamap != NULL) {
  965                                 bus_dmamap_destroy(cd->sge_txmbuf_tag,
  966                                     txd->tx_dmamap);
  967                                 txd->tx_dmamap = NULL;
  968                         }
  969                 }
  970                 bus_dma_tag_destroy(cd->sge_txmbuf_tag);
  971                 cd->sge_txmbuf_tag = NULL;
  972         }
  973         if (cd->sge_tag != NULL)
  974                 bus_dma_tag_destroy(cd->sge_tag);
  975         cd->sge_tag = NULL;
  976 }
  977 
  978 /*
  979  * Initialize the TX descriptors.
  980  */
  981 static int
  982 sge_list_tx_init(struct sge_softc *sc)
  983 {
  984         struct sge_list_data *ld;
  985         struct sge_chain_data *cd;
  986 
  987         SGE_LOCK_ASSERT(sc);
  988         ld = &sc->sge_ldata;
  989         cd = &sc->sge_cdata;
  990         bzero(ld->sge_tx_ring, SGE_TX_RING_SZ);
  991         ld->sge_tx_ring[SGE_TX_RING_CNT - 1].sge_flags = htole32(RING_END);
  992         bus_dmamap_sync(cd->sge_tx_tag, cd->sge_tx_dmamap,
  993             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
  994         cd->sge_tx_prod = 0;
  995         cd->sge_tx_cons = 0;
  996         cd->sge_tx_cnt = 0;
  997         return (0);
  998 }
  999 
 1000 static int
 1001 sge_list_tx_free(struct sge_softc *sc)
 1002 {
 1003         struct sge_chain_data *cd;
 1004         struct sge_txdesc *txd;
 1005         int i;
 1006 
 1007         SGE_LOCK_ASSERT(sc);
 1008         cd = &sc->sge_cdata;
 1009         for (i = 0; i < SGE_TX_RING_CNT; i++) {
 1010                 txd = &cd->sge_txdesc[i];
 1011                 if (txd->tx_m != NULL) {
 1012                         bus_dmamap_sync(cd->sge_txmbuf_tag, txd->tx_dmamap,
 1013                             BUS_DMASYNC_POSTWRITE);
 1014                         bus_dmamap_unload(cd->sge_txmbuf_tag, txd->tx_dmamap);
 1015                         m_freem(txd->tx_m);
 1016                         txd->tx_m = NULL;
 1017                         txd->tx_ndesc = 0;
 1018                 }
 1019         }
 1020 
 1021         return (0);
 1022 }
 1023 
 1024 /*
 1025  * Initialize the RX descriptors and allocate mbufs for them.  Note that
 1026  * we arrange the descriptors in a closed ring, so that the last descriptor
 1027  * has RING_END flag set.
 1028  */
 1029 static int
 1030 sge_list_rx_init(struct sge_softc *sc)
 1031 {
 1032         struct sge_chain_data *cd;
 1033         int i;
 1034 
 1035         SGE_LOCK_ASSERT(sc);
 1036         cd = &sc->sge_cdata;
 1037         cd->sge_rx_cons = 0;
 1038         bzero(sc->sge_ldata.sge_rx_ring, SGE_RX_RING_SZ);
 1039         for (i = 0; i < SGE_RX_RING_CNT; i++) {
 1040                 if (sge_newbuf(sc, i) != 0)
 1041                         return (ENOBUFS);
 1042         }
 1043         bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
 1044             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1045         return (0);
 1046 }
 1047 
 1048 static int
 1049 sge_list_rx_free(struct sge_softc *sc)
 1050 {
 1051         struct sge_chain_data *cd;
 1052         struct sge_rxdesc *rxd;
 1053         int i;
 1054 
 1055         SGE_LOCK_ASSERT(sc);
 1056         cd = &sc->sge_cdata;
 1057         for (i = 0; i < SGE_RX_RING_CNT; i++) {
 1058                 rxd = &cd->sge_rxdesc[i];
 1059                 if (rxd->rx_m != NULL) {
 1060                         bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
 1061                             BUS_DMASYNC_POSTREAD);
 1062                         bus_dmamap_unload(cd->sge_rxmbuf_tag,
 1063                             rxd->rx_dmamap);
 1064                         m_freem(rxd->rx_m);
 1065                         rxd->rx_m = NULL;
 1066                 }
 1067         }
 1068         return (0);
 1069 }
 1070 
 1071 /*
 1072  * Initialize an RX descriptor and attach an MBUF cluster.
 1073  */
 1074 static int
 1075 sge_newbuf(struct sge_softc *sc, int prod)
 1076 {
 1077         struct mbuf *m;
 1078         struct sge_desc *desc;
 1079         struct sge_chain_data *cd;
 1080         struct sge_rxdesc *rxd;
 1081         bus_dma_segment_t segs[1];
 1082         bus_dmamap_t map;
 1083         int error, nsegs;
 1084 
 1085         SGE_LOCK_ASSERT(sc);
 1086 
 1087         cd = &sc->sge_cdata;
 1088         m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
 1089         if (m == NULL)
 1090                 return (ENOBUFS);
 1091         m->m_len = m->m_pkthdr.len = MCLBYTES;
 1092         m_adj(m, SGE_RX_BUF_ALIGN);
 1093         error = bus_dmamap_load_mbuf_sg(cd->sge_rxmbuf_tag,
 1094             cd->sge_rx_spare_map, m, segs, &nsegs, 0);
 1095         if (error != 0) {
 1096                 m_freem(m);
 1097                 return (error);
 1098         }
 1099         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
 1100         rxd = &cd->sge_rxdesc[prod];
 1101         if (rxd->rx_m != NULL) {
 1102                 bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
 1103                     BUS_DMASYNC_POSTREAD);
 1104                 bus_dmamap_unload(cd->sge_rxmbuf_tag, rxd->rx_dmamap);
 1105         }
 1106         map = rxd->rx_dmamap;
 1107         rxd->rx_dmamap = cd->sge_rx_spare_map;
 1108         cd->sge_rx_spare_map = map;
 1109         bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
 1110             BUS_DMASYNC_PREREAD);
 1111         rxd->rx_m = m;
 1112 
 1113         desc = &sc->sge_ldata.sge_rx_ring[prod];
 1114         desc->sge_sts_size = 0;
 1115         desc->sge_ptr = htole32(SGE_ADDR_LO(segs[0].ds_addr));
 1116         desc->sge_flags = htole32(segs[0].ds_len);
 1117         if (prod == SGE_RX_RING_CNT - 1)
 1118                 desc->sge_flags |= htole32(RING_END);
 1119         desc->sge_cmdsts = htole32(RDC_OWN | RDC_INTR);
 1120         return (0);
 1121 }
 1122 
 1123 static __inline void
 1124 sge_discard_rxbuf(struct sge_softc *sc, int index)
 1125 {
 1126         struct sge_desc *desc;
 1127 
 1128         desc = &sc->sge_ldata.sge_rx_ring[index];
 1129         desc->sge_sts_size = 0;
 1130         desc->sge_flags = htole32(MCLBYTES - SGE_RX_BUF_ALIGN);
 1131         if (index == SGE_RX_RING_CNT - 1)
 1132                 desc->sge_flags |= htole32(RING_END);
 1133         desc->sge_cmdsts = htole32(RDC_OWN | RDC_INTR);
 1134 }
 1135 
 1136 /*
 1137  * A frame has been uploaded: pass the resulting mbuf chain up to
 1138  * the higher level protocols.
 1139  */
 1140 static void
 1141 sge_rxeof(struct sge_softc *sc)
 1142 {
 1143         struct ifnet *ifp;
 1144         struct mbuf *m;
 1145         struct sge_chain_data *cd;
 1146         struct sge_desc *cur_rx;
 1147         uint32_t rxinfo, rxstat;
 1148         int cons, prog;
 1149 
 1150         SGE_LOCK_ASSERT(sc);
 1151 
 1152         ifp = sc->sge_ifp;
 1153         cd = &sc->sge_cdata;
 1154 
 1155         bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
 1156             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 1157         cons = cd->sge_rx_cons;
 1158         for (prog = 0; prog < SGE_RX_RING_CNT; prog++,
 1159             SGE_INC(cons, SGE_RX_RING_CNT)) {
 1160                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
 1161                         break;
 1162                 cur_rx = &sc->sge_ldata.sge_rx_ring[cons];
 1163                 rxinfo = le32toh(cur_rx->sge_cmdsts);
 1164                 if ((rxinfo & RDC_OWN) != 0)
 1165                         break;
 1166                 rxstat = le32toh(cur_rx->sge_sts_size);
 1167                 if ((rxstat & RDS_CRCOK) == 0 || SGE_RX_ERROR(rxstat) != 0 ||
 1168                     SGE_RX_NSEGS(rxstat) != 1) {
 1169                         /* XXX We don't support multi-segment frames yet. */
 1170 #ifdef SGE_SHOW_ERRORS
 1171                         device_printf(sc->sge_dev, "Rx error : 0x%b\n", rxstat,
 1172                             RX_ERR_BITS);
 1173 #endif
 1174                         sge_discard_rxbuf(sc, cons);
 1175                         if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
 1176                         continue;
 1177                 }
 1178                 m = cd->sge_rxdesc[cons].rx_m;
 1179                 if (sge_newbuf(sc, cons) != 0) {
 1180                         sge_discard_rxbuf(sc, cons);
 1181                         if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
 1182                         continue;
 1183                 }
 1184                 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
 1185                         if ((rxinfo & RDC_IP_CSUM) != 0 &&
 1186                             (rxinfo & RDC_IP_CSUM_OK) != 0)
 1187                                 m->m_pkthdr.csum_flags |=
 1188                                     CSUM_IP_CHECKED | CSUM_IP_VALID;
 1189                         if (((rxinfo & RDC_TCP_CSUM) != 0 &&
 1190                             (rxinfo & RDC_TCP_CSUM_OK) != 0) ||
 1191                             ((rxinfo & RDC_UDP_CSUM) != 0 &&
 1192                             (rxinfo & RDC_UDP_CSUM_OK) != 0)) {
 1193                                 m->m_pkthdr.csum_flags |=
 1194                                     CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
 1195                                 m->m_pkthdr.csum_data = 0xffff;
 1196                         }
 1197                 }
 1198                 /* Check for VLAN tagged frame. */
 1199                 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
 1200                     (rxstat & RDS_VLAN) != 0) {
 1201                         m->m_pkthdr.ether_vtag = rxinfo & RDC_VLAN_MASK;
 1202                         m->m_flags |= M_VLANTAG;
 1203                 }
 1204                 /*
 1205                  * Account for 10bytes auto padding which is used
 1206                  * to align IP header on 32bit boundary.  Also note,
 1207                  * CRC bytes is automatically removed by the
 1208                  * hardware.
 1209                  */
 1210                 m->m_data += SGE_RX_PAD_BYTES;
 1211                 m->m_pkthdr.len = m->m_len = SGE_RX_BYTES(rxstat) -
 1212                     SGE_RX_PAD_BYTES;
 1213                 m->m_pkthdr.rcvif = ifp;
 1214                 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
 1215                 SGE_UNLOCK(sc);
 1216                 (*ifp->if_input)(ifp, m);
 1217                 SGE_LOCK(sc);
 1218         }
 1219 
 1220         if (prog > 0) {
 1221                 bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
 1222                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1223                 cd->sge_rx_cons = cons;
 1224         }
 1225 }
 1226 
 1227 /*
 1228  * A frame was downloaded to the chip.  It's safe for us to clean up
 1229  * the list buffers.
 1230  */
 1231 static void
 1232 sge_txeof(struct sge_softc *sc)
 1233 {
 1234         struct ifnet *ifp;
 1235         struct sge_list_data *ld;
 1236         struct sge_chain_data *cd;
 1237         struct sge_txdesc *txd;
 1238         uint32_t txstat;
 1239         int cons, nsegs, prod;
 1240 
 1241         SGE_LOCK_ASSERT(sc);
 1242 
 1243         ifp = sc->sge_ifp;
 1244         ld = &sc->sge_ldata;
 1245         cd = &sc->sge_cdata;
 1246 
 1247         if (cd->sge_tx_cnt == 0)
 1248                 return;
 1249         bus_dmamap_sync(cd->sge_tx_tag, cd->sge_tx_dmamap,
 1250             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 1251         cons = cd->sge_tx_cons;
 1252         prod = cd->sge_tx_prod;
 1253         for (; cons != prod;) {
 1254                 txstat = le32toh(ld->sge_tx_ring[cons].sge_cmdsts);
 1255                 if ((txstat & TDC_OWN) != 0)
 1256                         break;
 1257                 /*
 1258                  * Only the first descriptor of multi-descriptor transmission
 1259                  * is updated by controller.  Driver should skip entire
 1260                  * chained buffers for the transmitted frame. In other words
 1261                  * TDC_OWN bit is valid only at the first descriptor of a
 1262                  * multi-descriptor transmission.
 1263                  */
 1264                 if (SGE_TX_ERROR(txstat) != 0) {
 1265 #ifdef SGE_SHOW_ERRORS
 1266                         device_printf(sc->sge_dev, "Tx error : 0x%b\n",
 1267                             txstat, TX_ERR_BITS);
 1268 #endif
 1269                         if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
 1270                 } else {
 1271 #ifdef notyet
 1272                         if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (txstat & 0xFFFF) - 1);
 1273 #endif
 1274                         if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
 1275                 }
 1276                 txd = &cd->sge_txdesc[cons];
 1277                 for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
 1278                         ld->sge_tx_ring[cons].sge_cmdsts = 0;
 1279                         SGE_INC(cons, SGE_TX_RING_CNT);
 1280                 }
 1281                 /* Reclaim transmitted mbuf. */
 1282                 KASSERT(txd->tx_m != NULL,
 1283                     ("%s: freeing NULL mbuf\n", __func__));
 1284                 bus_dmamap_sync(cd->sge_txmbuf_tag, txd->tx_dmamap,
 1285                     BUS_DMASYNC_POSTWRITE);
 1286                 bus_dmamap_unload(cd->sge_txmbuf_tag, txd->tx_dmamap);
 1287                 m_freem(txd->tx_m);
 1288                 txd->tx_m = NULL;
 1289                 cd->sge_tx_cnt -= txd->tx_ndesc;
 1290                 KASSERT(cd->sge_tx_cnt >= 0,
 1291                     ("%s: Active Tx desc counter was garbled\n", __func__));
 1292                 txd->tx_ndesc = 0;
 1293                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 1294         }
 1295         cd->sge_tx_cons = cons;
 1296         if (cd->sge_tx_cnt == 0)
 1297                 sc->sge_timer = 0;
 1298 }
 1299 
 1300 static void
 1301 sge_tick(void *arg)
 1302 {
 1303         struct sge_softc *sc;
 1304         struct mii_data *mii;
 1305         struct ifnet *ifp;
 1306 
 1307         sc = arg;
 1308         SGE_LOCK_ASSERT(sc);
 1309 
 1310         ifp = sc->sge_ifp;
 1311         mii = device_get_softc(sc->sge_miibus);
 1312         mii_tick(mii);
 1313         if ((sc->sge_flags & SGE_FLAG_LINK) == 0) {
 1314                 sge_miibus_statchg(sc->sge_dev);
 1315                 if ((sc->sge_flags & SGE_FLAG_LINK) != 0 &&
 1316                     !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 1317                         sge_start_locked(ifp);
 1318         }
 1319         /*
 1320          * Reclaim transmitted frames here as we do not request
 1321          * Tx completion interrupt for every queued frames to
 1322          * reduce excessive interrupts.
 1323          */
 1324         sge_txeof(sc);
 1325         sge_watchdog(sc);
 1326         callout_reset(&sc->sge_stat_ch, hz, sge_tick, sc);
 1327 }
 1328 
 1329 static void
 1330 sge_intr(void *arg)
 1331 {
 1332         struct sge_softc *sc;
 1333         struct ifnet *ifp;
 1334         uint32_t status;
 1335 
 1336         sc = arg;
 1337         SGE_LOCK(sc);
 1338         ifp = sc->sge_ifp;
 1339 
 1340         status = CSR_READ_4(sc, IntrStatus);
 1341         if (status == 0xFFFFFFFF || (status & SGE_INTRS) == 0) {
 1342                 /* Not ours. */
 1343                 SGE_UNLOCK(sc);
 1344                 return;
 1345         }
 1346         /* Acknowledge interrupts. */
 1347         CSR_WRITE_4(sc, IntrStatus, status);
 1348         /* Disable further interrupts. */
 1349         CSR_WRITE_4(sc, IntrMask, 0);
 1350         /*
 1351          * It seems the controller supports some kind of interrupt
 1352          * moderation mechanism but we still don't know how to
 1353          * enable that.  To reduce number of generated interrupts
 1354          * under load we check pending interrupts in a loop.  This
 1355          * will increase number of register access and is not correct
 1356          * way to handle interrupt moderation but there seems to be
 1357          * no other way at this time.
 1358          */
 1359         for (;;) {
 1360                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
 1361                         break;
 1362                 if ((status & (INTR_RX_DONE | INTR_RX_IDLE)) != 0) {
 1363                         sge_rxeof(sc);
 1364                         /* Wakeup Rx MAC. */
 1365                         if ((status & INTR_RX_IDLE) != 0)
 1366                                 CSR_WRITE_4(sc, RX_CTL,
 1367                                     0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
 1368                 }
 1369                 if ((status & (INTR_TX_DONE | INTR_TX_IDLE)) != 0)
 1370                         sge_txeof(sc);
 1371                 status = CSR_READ_4(sc, IntrStatus);
 1372                 if ((status & SGE_INTRS) == 0)
 1373                         break;
 1374                 /* Acknowledge interrupts. */
 1375                 CSR_WRITE_4(sc, IntrStatus, status);
 1376         }
 1377         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
 1378                 /* Re-enable interrupts */
 1379                 CSR_WRITE_4(sc, IntrMask, SGE_INTRS);
 1380                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 1381                         sge_start_locked(ifp);
 1382         }
 1383         SGE_UNLOCK(sc);
 1384 }
 1385 
 1386 /*
 1387  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
 1388  * pointers to the fragment pointers.
 1389  */
 1390 static int
 1391 sge_encap(struct sge_softc *sc, struct mbuf **m_head)
 1392 {
 1393         struct mbuf *m;
 1394         struct sge_desc *desc;
 1395         struct sge_txdesc *txd;
 1396         bus_dma_segment_t txsegs[SGE_MAXTXSEGS];
 1397         uint32_t cflags, mss;
 1398         int error, i, nsegs, prod, si;
 1399 
 1400         SGE_LOCK_ASSERT(sc);
 1401 
 1402         si = prod = sc->sge_cdata.sge_tx_prod;
 1403         txd = &sc->sge_cdata.sge_txdesc[prod];
 1404         if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
 1405                 struct ether_header *eh;
 1406                 struct ip *ip;
 1407                 struct tcphdr *tcp;
 1408                 uint32_t ip_off, poff;
 1409 
 1410                 if (M_WRITABLE(*m_head) == 0) {
 1411                         /* Get a writable copy. */
 1412                         m = m_dup(*m_head, M_NOWAIT);
 1413                         m_freem(*m_head);
 1414                         if (m == NULL) {
 1415                                 *m_head = NULL;
 1416                                 return (ENOBUFS);
 1417                         }
 1418                         *m_head = m;
 1419                 }
 1420                 ip_off = sizeof(struct ether_header);
 1421                 m = m_pullup(*m_head, ip_off);
 1422                 if (m == NULL) {
 1423                         *m_head = NULL;
 1424                         return (ENOBUFS);
 1425                 }
 1426                 eh = mtod(m, struct ether_header *);
 1427                 /* Check the existence of VLAN tag. */
 1428                 if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
 1429                         ip_off = sizeof(struct ether_vlan_header);
 1430                         m = m_pullup(m, ip_off);
 1431                         if (m == NULL) {
 1432                                 *m_head = NULL;
 1433                                 return (ENOBUFS);
 1434                         }
 1435                 }
 1436                 m = m_pullup(m, ip_off + sizeof(struct ip));
 1437                 if (m == NULL) {
 1438                         *m_head = NULL;
 1439                         return (ENOBUFS);
 1440                 }
 1441                 ip = (struct ip *)(mtod(m, char *) + ip_off);
 1442                 poff = ip_off + (ip->ip_hl << 2);
 1443                 m = m_pullup(m, poff + sizeof(struct tcphdr));
 1444                 if (m == NULL) {
 1445                         *m_head = NULL;
 1446                         return (ENOBUFS);
 1447                 }
 1448                 tcp = (struct tcphdr *)(mtod(m, char *) + poff);
 1449                 m = m_pullup(m, poff + (tcp->th_off << 2));
 1450                 if (m == NULL) {
 1451                         *m_head = NULL;
 1452                         return (ENOBUFS);
 1453                 }
 1454                 /*
 1455                  * Reset IP checksum and recompute TCP pseudo
 1456                  * checksum that NDIS specification requires.
 1457                  */
 1458                 ip = (struct ip *)(mtod(m, char *) + ip_off);
 1459                 ip->ip_sum = 0;
 1460                 tcp = (struct tcphdr *)(mtod(m, char *) + poff);
 1461                 tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
 1462                     htons(IPPROTO_TCP));
 1463                 *m_head = m;
 1464         }
 1465 
 1466         error = bus_dmamap_load_mbuf_sg(sc->sge_cdata.sge_txmbuf_tag,
 1467             txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
 1468         if (error == EFBIG) {
 1469                 m = m_collapse(*m_head, M_NOWAIT, SGE_MAXTXSEGS);
 1470                 if (m == NULL) {
 1471                         m_freem(*m_head);
 1472                         *m_head = NULL;
 1473                         return (ENOBUFS);
 1474                 }
 1475                 *m_head = m;
 1476                 error = bus_dmamap_load_mbuf_sg(sc->sge_cdata.sge_txmbuf_tag,
 1477                     txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
 1478                 if (error != 0) {
 1479                         m_freem(*m_head);
 1480                         *m_head = NULL;
 1481                         return (error);
 1482                 }
 1483         } else if (error != 0)
 1484                 return (error);
 1485 
 1486         KASSERT(nsegs != 0, ("zero segment returned"));
 1487         /* Check descriptor overrun. */
 1488         if (sc->sge_cdata.sge_tx_cnt + nsegs >= SGE_TX_RING_CNT) {
 1489                 bus_dmamap_unload(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap);
 1490                 return (ENOBUFS);
 1491         }
 1492         bus_dmamap_sync(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap,
 1493             BUS_DMASYNC_PREWRITE);
 1494 
 1495         m = *m_head;
 1496         cflags = 0;
 1497         mss = 0;
 1498         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
 1499                 cflags |= TDC_LS;
 1500                 mss = (uint32_t)m->m_pkthdr.tso_segsz;
 1501                 mss <<= 16;
 1502         } else {
 1503                 if (m->m_pkthdr.csum_flags & CSUM_IP)
 1504                         cflags |= TDC_IP_CSUM;
 1505                 if (m->m_pkthdr.csum_flags & CSUM_TCP)
 1506                         cflags |= TDC_TCP_CSUM;
 1507                 if (m->m_pkthdr.csum_flags & CSUM_UDP)
 1508                         cflags |= TDC_UDP_CSUM;
 1509         }
 1510         for (i = 0; i < nsegs; i++) {
 1511                 desc = &sc->sge_ldata.sge_tx_ring[prod];
 1512                 if (i == 0) {
 1513                         desc->sge_sts_size = htole32(m->m_pkthdr.len | mss);
 1514                         desc->sge_cmdsts = 0;
 1515                 } else {
 1516                         desc->sge_sts_size = 0;
 1517                         desc->sge_cmdsts = htole32(TDC_OWN);
 1518                 }
 1519                 desc->sge_ptr = htole32(SGE_ADDR_LO(txsegs[i].ds_addr));
 1520                 desc->sge_flags = htole32(txsegs[i].ds_len);
 1521                 if (prod == SGE_TX_RING_CNT - 1)
 1522                         desc->sge_flags |= htole32(RING_END);
 1523                 sc->sge_cdata.sge_tx_cnt++;
 1524                 SGE_INC(prod, SGE_TX_RING_CNT);
 1525         }
 1526         /* Update producer index. */
 1527         sc->sge_cdata.sge_tx_prod = prod;
 1528 
 1529         desc = &sc->sge_ldata.sge_tx_ring[si];
 1530         /* Configure VLAN. */
 1531         if((m->m_flags & M_VLANTAG) != 0) {
 1532                 cflags |= m->m_pkthdr.ether_vtag;
 1533                 desc->sge_sts_size |= htole32(TDS_INS_VLAN);
 1534         }
 1535         desc->sge_cmdsts |= htole32(TDC_DEF | TDC_CRC | TDC_PAD | cflags);
 1536 #if 1
 1537         if ((sc->sge_flags & SGE_FLAG_SPEED_1000) != 0)
 1538                 desc->sge_cmdsts |= htole32(TDC_BST);
 1539 #else
 1540         if ((sc->sge_flags & SGE_FLAG_FDX) == 0) {
 1541                 desc->sge_cmdsts |= htole32(TDC_COL | TDC_CRS | TDC_BKF);
 1542                 if ((sc->sge_flags & SGE_FLAG_SPEED_1000) != 0)
 1543                         desc->sge_cmdsts |= htole32(TDC_EXT | TDC_BST);
 1544         }
 1545 #endif
 1546         /* Request interrupt and give ownership to controller. */
 1547         desc->sge_cmdsts |= htole32(TDC_OWN | TDC_INTR);
 1548         txd->tx_m = m;
 1549         txd->tx_ndesc = nsegs;
 1550         return (0);
 1551 }
 1552 
 1553 static void
 1554 sge_start(struct ifnet *ifp)
 1555 {
 1556         struct sge_softc *sc;
 1557 
 1558         sc = ifp->if_softc;
 1559         SGE_LOCK(sc);
 1560         sge_start_locked(ifp);
 1561         SGE_UNLOCK(sc);
 1562 }
 1563 
 1564 static void
 1565 sge_start_locked(struct ifnet *ifp)
 1566 {
 1567         struct sge_softc *sc;
 1568         struct mbuf *m_head;
 1569         int queued = 0;
 1570 
 1571         sc = ifp->if_softc;
 1572         SGE_LOCK_ASSERT(sc);
 1573 
 1574         if ((sc->sge_flags & SGE_FLAG_LINK) == 0 ||
 1575             (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
 1576             IFF_DRV_RUNNING)
 1577                 return;
 1578 
 1579         for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
 1580                 if (sc->sge_cdata.sge_tx_cnt > (SGE_TX_RING_CNT -
 1581                     SGE_MAXTXSEGS)) {
 1582                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 1583                         break;
 1584                 }
 1585                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
 1586                 if (m_head == NULL)
 1587                         break;
 1588                 if (sge_encap(sc, &m_head)) {
 1589                         if (m_head == NULL)
 1590                                 break;
 1591                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
 1592                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 1593                         break;
 1594                 }
 1595                 queued++;
 1596                 /*
 1597                  * If there's a BPF listener, bounce a copy of this frame
 1598                  * to him.
 1599                  */
 1600                 BPF_MTAP(ifp, m_head);
 1601         }
 1602 
 1603         if (queued > 0) {
 1604                 bus_dmamap_sync(sc->sge_cdata.sge_tx_tag,
 1605                     sc->sge_cdata.sge_tx_dmamap,
 1606                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1607                 CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB | TX_CTL_POLL);
 1608                 sc->sge_timer = 5;
 1609         }
 1610 }
 1611 
 1612 static void
 1613 sge_init(void *arg)
 1614 {
 1615         struct sge_softc *sc;
 1616 
 1617         sc = arg;
 1618         SGE_LOCK(sc);
 1619         sge_init_locked(sc);
 1620         SGE_UNLOCK(sc);
 1621 }
 1622 
 1623 static void
 1624 sge_init_locked(struct sge_softc *sc)
 1625 {
 1626         struct ifnet *ifp;
 1627         struct mii_data *mii;
 1628         uint16_t rxfilt;
 1629         int i;
 1630 
 1631         SGE_LOCK_ASSERT(sc);
 1632         ifp = sc->sge_ifp;
 1633         mii = device_get_softc(sc->sge_miibus);
 1634         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 1635                 return;
 1636         /*
 1637          * Cancel pending I/O and free all RX/TX buffers.
 1638          */
 1639         sge_stop(sc);
 1640         sge_reset(sc);
 1641 
 1642         /* Init circular RX list. */
 1643         if (sge_list_rx_init(sc) == ENOBUFS) {
 1644                 device_printf(sc->sge_dev, "no memory for Rx buffers\n");
 1645                 sge_stop(sc);
 1646                 return;
 1647         }
 1648         /* Init TX descriptors. */
 1649         sge_list_tx_init(sc);
 1650         /*
 1651          * Load the address of the RX and TX lists.
 1652          */
 1653         CSR_WRITE_4(sc, TX_DESC, SGE_ADDR_LO(sc->sge_ldata.sge_tx_paddr));
 1654         CSR_WRITE_4(sc, RX_DESC, SGE_ADDR_LO(sc->sge_ldata.sge_rx_paddr));
 1655 
 1656         CSR_WRITE_4(sc, TxMacControl, 0x60);
 1657         CSR_WRITE_4(sc, RxWakeOnLan, 0);
 1658         CSR_WRITE_4(sc, RxWakeOnLanData, 0);
 1659         /* Allow receiving VLAN frames. */
 1660         CSR_WRITE_2(sc, RxMPSControl, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN +
 1661             SGE_RX_PAD_BYTES);
 1662 
 1663         for (i = 0; i < ETHER_ADDR_LEN; i++)
 1664                 CSR_WRITE_1(sc, RxMacAddr + i, IF_LLADDR(ifp)[i]);
 1665         /* Configure RX MAC. */
 1666         rxfilt = RXMAC_STRIP_FCS | RXMAC_PAD_ENB | RXMAC_CSUM_ENB;
 1667         CSR_WRITE_2(sc, RxMacControl, rxfilt);
 1668         sge_rxfilter(sc);
 1669         sge_setvlan(sc);
 1670 
 1671         /* Initialize default speed/duplex information. */
 1672         if ((sc->sge_flags & SGE_FLAG_FASTETHER) == 0)
 1673                 sc->sge_flags |= SGE_FLAG_SPEED_1000;
 1674         sc->sge_flags |= SGE_FLAG_FDX;
 1675         if ((sc->sge_flags & SGE_FLAG_RGMII) != 0)
 1676                 CSR_WRITE_4(sc, StationControl, 0x04008001);
 1677         else
 1678                 CSR_WRITE_4(sc, StationControl, 0x04000001);
 1679         /*
 1680          * XXX Try to mitigate interrupts.
 1681          */
 1682         CSR_WRITE_4(sc, IntrControl, 0x08880000);
 1683 #ifdef notyet
 1684         if (sc->sge_intrcontrol != 0)
 1685                 CSR_WRITE_4(sc, IntrControl, sc->sge_intrcontrol);
 1686         if (sc->sge_intrtimer != 0)
 1687                 CSR_WRITE_4(sc, IntrTimer, sc->sge_intrtimer);
 1688 #endif
 1689 
 1690         /*
 1691          * Clear and enable interrupts.
 1692          */
 1693         CSR_WRITE_4(sc, IntrStatus, 0xFFFFFFFF);
 1694         CSR_WRITE_4(sc, IntrMask, SGE_INTRS);
 1695 
 1696         /* Enable receiver and transmitter. */
 1697         CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB);
 1698         CSR_WRITE_4(sc, RX_CTL, 0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
 1699 
 1700         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 1701         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 1702 
 1703         sc->sge_flags &= ~SGE_FLAG_LINK;
 1704         mii_mediachg(mii);
 1705         callout_reset(&sc->sge_stat_ch, hz, sge_tick, sc);
 1706 }
 1707 
 1708 /*
 1709  * Set media options.
 1710  */
 1711 static int
 1712 sge_ifmedia_upd(struct ifnet *ifp)
 1713 {
 1714         struct sge_softc *sc;
 1715         struct mii_data *mii;
 1716                 struct mii_softc *miisc;
 1717         int error;
 1718 
 1719         sc = ifp->if_softc;
 1720         SGE_LOCK(sc);
 1721         mii = device_get_softc(sc->sge_miibus);
 1722         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
 1723                 PHY_RESET(miisc);
 1724         error = mii_mediachg(mii);
 1725         SGE_UNLOCK(sc);
 1726 
 1727         return (error);
 1728 }
 1729 
 1730 /*
 1731  * Report current media status.
 1732  */
 1733 static void
 1734 sge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
 1735 {
 1736         struct sge_softc *sc;
 1737         struct mii_data *mii;
 1738 
 1739         sc = ifp->if_softc;
 1740         SGE_LOCK(sc);
 1741         mii = device_get_softc(sc->sge_miibus);
 1742         if ((ifp->if_flags & IFF_UP) == 0) {
 1743                 SGE_UNLOCK(sc);
 1744                 return;
 1745         }
 1746         mii_pollstat(mii);
 1747         ifmr->ifm_active = mii->mii_media_active;
 1748         ifmr->ifm_status = mii->mii_media_status;
 1749         SGE_UNLOCK(sc);
 1750 }
 1751 
 1752 static int
 1753 sge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
 1754 {
 1755         struct sge_softc *sc;
 1756         struct ifreq *ifr;
 1757         struct mii_data *mii;
 1758         int error = 0, mask, reinit;
 1759 
 1760         sc = ifp->if_softc;
 1761         ifr = (struct ifreq *)data;
 1762 
 1763         switch(command) {
 1764         case SIOCSIFFLAGS:
 1765                 SGE_LOCK(sc);
 1766                 if ((ifp->if_flags & IFF_UP) != 0) {
 1767                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
 1768                             ((ifp->if_flags ^ sc->sge_if_flags) &
 1769                             (IFF_PROMISC | IFF_ALLMULTI)) != 0)
 1770                                 sge_rxfilter(sc);
 1771                         else
 1772                                 sge_init_locked(sc);
 1773                 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 1774                         sge_stop(sc);
 1775                 sc->sge_if_flags = ifp->if_flags;
 1776                 SGE_UNLOCK(sc);
 1777                 break;
 1778         case SIOCSIFCAP:
 1779                 SGE_LOCK(sc);
 1780                 reinit = 0;
 1781                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
 1782                 if ((mask & IFCAP_TXCSUM) != 0 &&
 1783                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
 1784                         ifp->if_capenable ^= IFCAP_TXCSUM;
 1785                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
 1786                                 ifp->if_hwassist |= SGE_CSUM_FEATURES;
 1787                         else
 1788                                 ifp->if_hwassist &= ~SGE_CSUM_FEATURES;
 1789                 }
 1790                 if ((mask & IFCAP_RXCSUM) != 0 &&
 1791                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
 1792                         ifp->if_capenable ^= IFCAP_RXCSUM;
 1793                 if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
 1794                     (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
 1795                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
 1796                 if ((mask & IFCAP_TSO4) != 0 &&
 1797                     (ifp->if_capabilities & IFCAP_TSO4) != 0) {
 1798                         ifp->if_capenable ^= IFCAP_TSO4;
 1799                         if ((ifp->if_capenable & IFCAP_TSO4) != 0)
 1800                                 ifp->if_hwassist |= CSUM_TSO;
 1801                         else
 1802                                 ifp->if_hwassist &= ~CSUM_TSO;
 1803                 }
 1804                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
 1805                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
 1806                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
 1807                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
 1808                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
 1809                         /*
 1810                          * Due to unknown reason, toggling VLAN hardware
 1811                          * tagging require interface reinitialization.
 1812                          */
 1813                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
 1814                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
 1815                                 ifp->if_capenable &=
 1816                                     ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
 1817                         reinit = 1;
 1818                 }
 1819                 if (reinit > 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
 1820                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1821                         sge_init_locked(sc);
 1822                 }
 1823                 SGE_UNLOCK(sc);
 1824                 VLAN_CAPABILITIES(ifp);
 1825                 break;
 1826         case SIOCADDMULTI:
 1827         case SIOCDELMULTI:
 1828                 SGE_LOCK(sc);
 1829                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 1830                         sge_rxfilter(sc);
 1831                 SGE_UNLOCK(sc);
 1832                 break;
 1833         case SIOCGIFMEDIA:
 1834         case SIOCSIFMEDIA:
 1835                 mii = device_get_softc(sc->sge_miibus);
 1836                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
 1837                 break;
 1838         default:
 1839                 error = ether_ioctl(ifp, command, data);
 1840                 break;
 1841         }
 1842 
 1843         return (error);
 1844 }
 1845 
 1846 static void
 1847 sge_watchdog(struct sge_softc *sc)
 1848 {
 1849         struct ifnet *ifp;
 1850 
 1851         SGE_LOCK_ASSERT(sc);
 1852         if (sc->sge_timer == 0 || --sc->sge_timer > 0)
 1853                 return;
 1854 
 1855         ifp = sc->sge_ifp;
 1856         if ((sc->sge_flags & SGE_FLAG_LINK) == 0) {
 1857                 if (1 || bootverbose)
 1858                         device_printf(sc->sge_dev,
 1859                             "watchdog timeout (lost link)\n");
 1860                 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
 1861                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1862                 sge_init_locked(sc);
 1863                 return;
 1864         }
 1865         device_printf(sc->sge_dev, "watchdog timeout\n");
 1866         if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
 1867 
 1868         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1869         sge_init_locked(sc);
 1870         if (!IFQ_DRV_IS_EMPTY(&sc->sge_ifp->if_snd))
 1871                 sge_start_locked(ifp);
 1872 }
 1873 
 1874 /*
 1875  * Stop the adapter and free any mbufs allocated to the
 1876  * RX and TX lists.
 1877  */
 1878 static void
 1879 sge_stop(struct sge_softc *sc)
 1880 {
 1881         struct ifnet *ifp;
 1882 
 1883         ifp = sc->sge_ifp;
 1884 
 1885         SGE_LOCK_ASSERT(sc);
 1886 
 1887         sc->sge_timer = 0;
 1888         callout_stop(&sc->sge_stat_ch);
 1889         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 1890 
 1891         CSR_WRITE_4(sc, IntrMask, 0);
 1892         CSR_READ_4(sc, IntrMask);
 1893         CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
 1894         /* Stop TX/RX MAC. */
 1895         CSR_WRITE_4(sc, TX_CTL, 0x1a00);
 1896         CSR_WRITE_4(sc, RX_CTL, 0x1a00);
 1897         /* XXX Can we assume active DMA cycles gone? */
 1898         DELAY(2000);
 1899         CSR_WRITE_4(sc, IntrMask, 0);
 1900         CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
 1901 
 1902         sc->sge_flags &= ~SGE_FLAG_LINK;
 1903         sge_list_rx_free(sc);
 1904         sge_list_tx_free(sc);
 1905 }

Cache object: 2057521a1daf9d98435d5b10323a573e


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.