The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/sge/if_sge.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2008-2010 Nikolay Denev <ndenev@gmail.com>
    3  * Copyright (c) 2007-2008 Alexander Pohoyda <alexander.pohoyda@gmx.net>
    4  * Copyright (c) 1997, 1998, 1999
    5  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 3. All advertising materials mentioning features or use of this software
   16  *    must display the following acknowledgement:
   17  *      This product includes software developed by Bill Paul.
   18  * 4. Neither the name of the author nor the names of any co-contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS''
   23  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
   24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
   25  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL AUTHORS OR
   26  * THE VOICES IN THEIR HEADS BE LIABLE FOR ANY DIRECT, INDIRECT,
   27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
   28  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
   29  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
   31  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
   33  * OF THE POSSIBILITY OF SUCH DAMAGE.
   34  */
   35 
   36 #include <sys/cdefs.h>
   37 __FBSDID("$FreeBSD: releng/9.2/sys/dev/sge/if_sge.c 248078 2013-03-09 00:39:54Z marius $");
   38 
   39 /*
   40  * SiS 190/191 PCI Ethernet NIC driver.
   41  *
   42  * Adapted to SiS 190 NIC by Alexander Pohoyda based on the original
   43  * SiS 900 driver by Bill Paul, using SiS 190/191 Solaris driver by
   44  * Masayuki Murayama and SiS 190/191 GNU/Linux driver by K.M. Liu
   45  * <kmliu@sis.com>.  Thanks to Pyun YongHyeon <pyunyh@gmail.com> for
   46  * review and very useful comments.
   47  *
   48  * Adapted to SiS 191 NIC by Nikolay Denev with further ideas from the
   49  * Linux and Solaris drivers.
   50  */
   51 
   52 #include <sys/param.h>
   53 #include <sys/systm.h>
   54 #include <sys/bus.h>
   55 #include <sys/endian.h>
   56 #include <sys/kernel.h>
   57 #include <sys/lock.h>
   58 #include <sys/malloc.h>
   59 #include <sys/mbuf.h>
   60 #include <sys/module.h>
   61 #include <sys/mutex.h>
   62 #include <sys/rman.h>
   63 #include <sys/socket.h>
   64 #include <sys/sockio.h>
   65 
   66 #include <net/bpf.h>
   67 #include <net/if.h>
   68 #include <net/if_arp.h>
   69 #include <net/ethernet.h>
   70 #include <net/if_dl.h>
   71 #include <net/if_media.h>
   72 #include <net/if_types.h>
   73 #include <net/if_vlan_var.h>
   74 
   75 #include <netinet/in.h>
   76 #include <netinet/in_systm.h>
   77 #include <netinet/ip.h>
   78 #include <netinet/tcp.h>
   79 
   80 #include <machine/bus.h>
   81 #include <machine/in_cksum.h>
   82 
   83 #include <dev/mii/mii.h>
   84 #include <dev/mii/miivar.h>
   85 
   86 #include <dev/pci/pcireg.h>
   87 #include <dev/pci/pcivar.h>
   88 
   89 #include <dev/sge/if_sgereg.h>
   90 
   91 MODULE_DEPEND(sge, pci, 1, 1, 1);
   92 MODULE_DEPEND(sge, ether, 1, 1, 1);
   93 MODULE_DEPEND(sge, miibus, 1, 1, 1);
   94 
   95 /* "device miibus0" required.  See GENERIC if you get errors here. */
   96 #include "miibus_if.h"
   97 
   98 /*
   99  * Various supported device vendors/types and their names.
  100  */
  101 static struct sge_type sge_devs[] = {
  102         { SIS_VENDORID, SIS_DEVICEID_190, "SiS190 Fast Ethernet" },
  103         { SIS_VENDORID, SIS_DEVICEID_191, "SiS191 Fast/Gigabit Ethernet" },
  104         { 0, 0, NULL }
  105 };
  106 
  107 static int      sge_probe(device_t);
  108 static int      sge_attach(device_t);
  109 static int      sge_detach(device_t);
  110 static int      sge_shutdown(device_t);
  111 static int      sge_suspend(device_t);
  112 static int      sge_resume(device_t);
  113 
  114 static int      sge_miibus_readreg(device_t, int, int);
  115 static int      sge_miibus_writereg(device_t, int, int, int);
  116 static void     sge_miibus_statchg(device_t);
  117 
  118 static int      sge_newbuf(struct sge_softc *, int);
  119 static int      sge_encap(struct sge_softc *, struct mbuf **);
  120 static __inline void
  121                 sge_discard_rxbuf(struct sge_softc *, int);
  122 static void     sge_rxeof(struct sge_softc *);
  123 static void     sge_txeof(struct sge_softc *);
  124 static void     sge_intr(void *);
  125 static void     sge_tick(void *);
  126 static void     sge_start(struct ifnet *);
  127 static void     sge_start_locked(struct ifnet *);
  128 static int      sge_ioctl(struct ifnet *, u_long, caddr_t);
  129 static void     sge_init(void *);
  130 static void     sge_init_locked(struct sge_softc *);
  131 static void     sge_stop(struct sge_softc *);
  132 static void     sge_watchdog(struct sge_softc *);
  133 static int      sge_ifmedia_upd(struct ifnet *);
  134 static void     sge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
  135 
  136 static int      sge_get_mac_addr_apc(struct sge_softc *, uint8_t *);
  137 static int      sge_get_mac_addr_eeprom(struct sge_softc *, uint8_t *);
  138 static uint16_t sge_read_eeprom(struct sge_softc *, int);
  139 
  140 static void     sge_rxfilter(struct sge_softc *);
  141 static void     sge_setvlan(struct sge_softc *);
  142 static void     sge_reset(struct sge_softc *);
  143 static int      sge_list_rx_init(struct sge_softc *);
  144 static int      sge_list_rx_free(struct sge_softc *);
  145 static int      sge_list_tx_init(struct sge_softc *);
  146 static int      sge_list_tx_free(struct sge_softc *);
  147 
  148 static int      sge_dma_alloc(struct sge_softc *);
  149 static void     sge_dma_free(struct sge_softc *);
  150 static void     sge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
  151 
  152 static device_method_t sge_methods[] = {
  153         /* Device interface */
  154         DEVMETHOD(device_probe,         sge_probe),
  155         DEVMETHOD(device_attach,        sge_attach),
  156         DEVMETHOD(device_detach,        sge_detach),
  157         DEVMETHOD(device_suspend,       sge_suspend),
  158         DEVMETHOD(device_resume,        sge_resume),
  159         DEVMETHOD(device_shutdown,      sge_shutdown),
  160 
  161         /* MII interface */
  162         DEVMETHOD(miibus_readreg,       sge_miibus_readreg),
  163         DEVMETHOD(miibus_writereg,      sge_miibus_writereg),
  164         DEVMETHOD(miibus_statchg,       sge_miibus_statchg),
  165 
  166         DEVMETHOD_END
  167 };
  168 
  169 static driver_t sge_driver = {
  170         "sge", sge_methods, sizeof(struct sge_softc)
  171 };
  172 
  173 static devclass_t sge_devclass;
  174 
  175 DRIVER_MODULE(sge, pci, sge_driver, sge_devclass, 0, 0);
  176 DRIVER_MODULE(miibus, sge, miibus_driver, miibus_devclass, 0, 0);
  177 
  178 /*
  179  * Register space access macros.
  180  */
  181 #define CSR_WRITE_4(sc, reg, val)       bus_write_4(sc->sge_res, reg, val)
  182 #define CSR_WRITE_2(sc, reg, val)       bus_write_2(sc->sge_res, reg, val)
  183 #define CSR_WRITE_1(cs, reg, val)       bus_write_1(sc->sge_res, reg, val)
  184 
  185 #define CSR_READ_4(sc, reg)             bus_read_4(sc->sge_res, reg)
  186 #define CSR_READ_2(sc, reg)             bus_read_2(sc->sge_res, reg)
  187 #define CSR_READ_1(sc, reg)             bus_read_1(sc->sge_res, reg)
  188 
  189 /* Define to show Tx/Rx error status. */
  190 #undef SGE_SHOW_ERRORS
  191 
  192 #define SGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP | CSUM_UDP)
  193 
  194 static void
  195 sge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
  196 {
  197         bus_addr_t *p;
  198 
  199         if (error != 0)
  200                 return;
  201         KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
  202         p  = arg;
  203         *p = segs->ds_addr;
  204 }
  205 
  206 /*
  207  * Read a sequence of words from the EEPROM.
  208  */
  209 static uint16_t
  210 sge_read_eeprom(struct sge_softc *sc, int offset)
  211 {
  212         uint32_t val;
  213         int i;
  214 
  215         KASSERT(offset <= EI_OFFSET, ("EEPROM offset too big"));
  216         CSR_WRITE_4(sc, ROMInterface,
  217             EI_REQ | EI_OP_RD | (offset << EI_OFFSET_SHIFT));
  218         DELAY(500);
  219         for (i = 0; i < SGE_TIMEOUT; i++) {
  220                 val = CSR_READ_4(sc, ROMInterface);
  221                 if ((val & EI_REQ) == 0)
  222                         break;
  223                 DELAY(100);
  224         }
  225         if (i == SGE_TIMEOUT) {
  226                 device_printf(sc->sge_dev,
  227                     "EEPROM read timeout : 0x%08x\n", val);
  228                 return (0xffff);
  229         }
  230 
  231         return ((val & EI_DATA) >> EI_DATA_SHIFT);
  232 }
  233 
  234 static int
  235 sge_get_mac_addr_eeprom(struct sge_softc *sc, uint8_t *dest)
  236 {
  237         uint16_t val;
  238         int i;
  239 
  240         val = sge_read_eeprom(sc, EEPROMSignature);
  241         if (val == 0xffff || val == 0) {
  242                 device_printf(sc->sge_dev,
  243                     "invalid EEPROM signature : 0x%04x\n", val);
  244                 return (EINVAL);
  245         }
  246 
  247         for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
  248                 val = sge_read_eeprom(sc, EEPROMMACAddr + i / 2);
  249                 dest[i + 0] = (uint8_t)val;
  250                 dest[i + 1] = (uint8_t)(val >> 8);
  251         }
  252 
  253         if ((sge_read_eeprom(sc, EEPROMInfo) & 0x80) != 0)
  254                 sc->sge_flags |= SGE_FLAG_RGMII;
  255         return (0);
  256 }
  257 
  258 /*
  259  * For SiS96x, APC CMOS RAM is used to store ethernet address.
  260  * APC CMOS RAM is accessed through ISA bridge.
  261  */
  262 static int
  263 sge_get_mac_addr_apc(struct sge_softc *sc, uint8_t *dest)
  264 {
  265 #if defined(__amd64__) || defined(__i386__)
  266         devclass_t pci;
  267         device_t bus, dev = NULL;
  268         device_t *kids;
  269         struct apc_tbl {
  270                 uint16_t vid;
  271                 uint16_t did;
  272         } *tp, apc_tbls[] = {
  273                 { SIS_VENDORID, 0x0965 },
  274                 { SIS_VENDORID, 0x0966 },
  275                 { SIS_VENDORID, 0x0968 }
  276         };
  277         uint8_t reg;
  278         int busnum, cnt, i, j, numkids;
  279 
  280         cnt = sizeof(apc_tbls) / sizeof(apc_tbls[0]);
  281         pci = devclass_find("pci");
  282         for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
  283                 bus = devclass_get_device(pci, busnum);
  284                 if (!bus)
  285                         continue;
  286                 if (device_get_children(bus, &kids, &numkids) != 0)
  287                         continue;
  288                 for (i = 0; i < numkids; i++) {
  289                         dev = kids[i];
  290                         if (pci_get_class(dev) == PCIC_BRIDGE &&
  291                             pci_get_subclass(dev) == PCIS_BRIDGE_ISA) {
  292                                 tp = apc_tbls;
  293                                 for (j = 0; j < cnt; j++) {
  294                                         if (pci_get_vendor(dev) == tp->vid &&
  295                                             pci_get_device(dev) == tp->did) {
  296                                                 free(kids, M_TEMP);
  297                                                 goto apc_found;
  298                                         }
  299                                         tp++;
  300                                 }
  301                         }
  302                 }
  303                 free(kids, M_TEMP);
  304         }
  305         device_printf(sc->sge_dev, "couldn't find PCI-ISA bridge\n");
  306         return (EINVAL);
  307 apc_found:
  308         /* Enable port 0x78 and 0x79 to access APC registers. */
  309         reg = pci_read_config(dev, 0x48, 1);
  310         pci_write_config(dev, 0x48, reg & ~0x02, 1);
  311         DELAY(50);
  312         pci_read_config(dev, 0x48, 1);
  313         /* Read stored ethernet address. */
  314         for (i = 0; i < ETHER_ADDR_LEN; i++) {
  315                 outb(0x78, 0x09 + i);
  316                 dest[i] = inb(0x79);
  317         }
  318         outb(0x78, 0x12);
  319         if ((inb(0x79) & 0x80) != 0)
  320                 sc->sge_flags |= SGE_FLAG_RGMII;
  321         /* Restore access to APC registers. */
  322         pci_write_config(dev, 0x48, reg, 1);
  323 
  324         return (0);
  325 #else
  326         return (EINVAL);
  327 #endif
  328 }
  329 
  330 static int
  331 sge_miibus_readreg(device_t dev, int phy, int reg)
  332 {
  333         struct sge_softc *sc;
  334         uint32_t val;
  335         int i;
  336 
  337         sc = device_get_softc(dev);
  338         CSR_WRITE_4(sc, GMIIControl, (phy << GMI_PHY_SHIFT) |
  339             (reg << GMI_REG_SHIFT) | GMI_OP_RD | GMI_REQ);
  340         DELAY(10);
  341         for (i = 0; i < SGE_TIMEOUT; i++) {
  342                 val = CSR_READ_4(sc, GMIIControl);
  343                 if ((val & GMI_REQ) == 0)
  344                         break;
  345                 DELAY(10);
  346         }
  347         if (i == SGE_TIMEOUT) {
  348                 device_printf(sc->sge_dev, "PHY read timeout : %d\n", reg);
  349                 return (0);
  350         }
  351         return ((val & GMI_DATA) >> GMI_DATA_SHIFT);
  352 }
  353 
  354 static int
  355 sge_miibus_writereg(device_t dev, int phy, int reg, int data)
  356 {
  357         struct sge_softc *sc;
  358         uint32_t val;
  359         int i;
  360 
  361         sc = device_get_softc(dev);
  362         CSR_WRITE_4(sc, GMIIControl, (phy << GMI_PHY_SHIFT) |
  363             (reg << GMI_REG_SHIFT) | (data << GMI_DATA_SHIFT) |
  364             GMI_OP_WR | GMI_REQ);
  365         DELAY(10);
  366         for (i = 0; i < SGE_TIMEOUT; i++) {
  367                 val = CSR_READ_4(sc, GMIIControl);
  368                 if ((val & GMI_REQ) == 0)
  369                         break;
  370                 DELAY(10);
  371         }
  372         if (i == SGE_TIMEOUT)
  373                 device_printf(sc->sge_dev, "PHY write timeout : %d\n", reg);
  374         return (0);
  375 }
  376 
  377 static void
  378 sge_miibus_statchg(device_t dev)
  379 {
  380         struct sge_softc *sc;
  381         struct mii_data *mii;
  382         struct ifnet *ifp;
  383         uint32_t ctl, speed;
  384 
  385         sc = device_get_softc(dev);
  386         mii = device_get_softc(sc->sge_miibus);
  387         ifp = sc->sge_ifp;
  388         if (mii == NULL || ifp == NULL ||
  389             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
  390                 return;
  391         speed = 0;
  392         sc->sge_flags &= ~SGE_FLAG_LINK;
  393         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
  394             (IFM_ACTIVE | IFM_AVALID)) {
  395                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
  396                 case IFM_10_T:
  397                         sc->sge_flags |= SGE_FLAG_LINK;
  398                         speed = SC_SPEED_10;
  399                         break;
  400                 case IFM_100_TX:
  401                         sc->sge_flags |= SGE_FLAG_LINK;
  402                         speed = SC_SPEED_100;
  403                         break;
  404                 case IFM_1000_T:
  405                         if ((sc->sge_flags & SGE_FLAG_FASTETHER) == 0) {
  406                                 sc->sge_flags |= SGE_FLAG_LINK;
  407                                 speed = SC_SPEED_1000;
  408                         }
  409                         break;
  410                 default:
  411                         break;
  412                 }
  413         }
  414         if ((sc->sge_flags & SGE_FLAG_LINK) == 0)
  415                 return;
  416         /* Reprogram MAC to resolved speed/duplex/flow-control parameters. */
  417         ctl = CSR_READ_4(sc, StationControl);
  418         ctl &= ~(0x0f000000 | SC_FDX | SC_SPEED_MASK);
  419         if (speed == SC_SPEED_1000) {
  420                 ctl |= 0x07000000;
  421                 sc->sge_flags |= SGE_FLAG_SPEED_1000;
  422         } else {
  423                 ctl |= 0x04000000;
  424                 sc->sge_flags &= ~SGE_FLAG_SPEED_1000;
  425         }
  426 #ifdef notyet
  427         if ((sc->sge_flags & SGE_FLAG_GMII) != 0)
  428                 ctl |= 0x03000000;
  429 #endif
  430         ctl |= speed;
  431         if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
  432                 ctl |= SC_FDX;
  433                 sc->sge_flags |= SGE_FLAG_FDX;
  434         } else
  435                 sc->sge_flags &= ~SGE_FLAG_FDX;
  436         CSR_WRITE_4(sc, StationControl, ctl);
  437         if ((sc->sge_flags & SGE_FLAG_RGMII) != 0) {
  438                 CSR_WRITE_4(sc, RGMIIDelay, 0x0441);
  439                 CSR_WRITE_4(sc, RGMIIDelay, 0x0440);
  440         }
  441 }
  442 
  443 static void
  444 sge_rxfilter(struct sge_softc *sc)
  445 {
  446         struct ifnet *ifp;
  447         struct ifmultiaddr *ifma;
  448         uint32_t crc, hashes[2];
  449         uint16_t rxfilt;
  450 
  451         SGE_LOCK_ASSERT(sc);
  452 
  453         ifp = sc->sge_ifp;
  454         rxfilt = CSR_READ_2(sc, RxMacControl);
  455         rxfilt &= ~(AcceptBroadcast | AcceptAllPhys | AcceptMulticast);
  456         rxfilt |= AcceptMyPhys;
  457         if ((ifp->if_flags & IFF_BROADCAST) != 0)
  458                 rxfilt |= AcceptBroadcast;
  459         if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
  460                 if ((ifp->if_flags & IFF_PROMISC) != 0)
  461                         rxfilt |= AcceptAllPhys;
  462                 rxfilt |= AcceptMulticast;
  463                 hashes[0] = 0xFFFFFFFF;
  464                 hashes[1] = 0xFFFFFFFF;
  465         } else {
  466                 rxfilt |= AcceptMulticast;
  467                 hashes[0] = hashes[1] = 0;
  468                 /* Now program new ones. */
  469                 if_maddr_rlock(ifp);
  470                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
  471                         if (ifma->ifma_addr->sa_family != AF_LINK)
  472                                 continue;
  473                         crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
  474                             ifma->ifma_addr), ETHER_ADDR_LEN);
  475                         hashes[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
  476                 }
  477                 if_maddr_runlock(ifp);
  478         }
  479         CSR_WRITE_2(sc, RxMacControl, rxfilt);
  480         CSR_WRITE_4(sc, RxHashTable, hashes[0]);
  481         CSR_WRITE_4(sc, RxHashTable2, hashes[1]);
  482 }
  483 
  484 static void
  485 sge_setvlan(struct sge_softc *sc)
  486 {
  487         struct ifnet *ifp;
  488         uint16_t rxfilt;
  489 
  490         SGE_LOCK_ASSERT(sc);
  491 
  492         ifp = sc->sge_ifp;
  493         if ((ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) == 0)
  494                 return;
  495         rxfilt = CSR_READ_2(sc, RxMacControl);
  496         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
  497                 rxfilt |= RXMAC_STRIP_VLAN;
  498         else
  499                 rxfilt &= ~RXMAC_STRIP_VLAN;
  500         CSR_WRITE_2(sc, RxMacControl, rxfilt);
  501 }
  502 
  503 static void
  504 sge_reset(struct sge_softc *sc)
  505 {
  506 
  507         CSR_WRITE_4(sc, IntrMask, 0);
  508         CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
  509 
  510         /* Soft reset. */
  511         CSR_WRITE_4(sc, IntrControl, 0x8000);
  512         CSR_READ_4(sc, IntrControl);
  513         DELAY(100);
  514         CSR_WRITE_4(sc, IntrControl, 0);
  515         /* Stop MAC. */
  516         CSR_WRITE_4(sc, TX_CTL, 0x1a00);
  517         CSR_WRITE_4(sc, RX_CTL, 0x1a00);
  518 
  519         CSR_WRITE_4(sc, IntrMask, 0);
  520         CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
  521 
  522         CSR_WRITE_4(sc, GMIIControl, 0);
  523 }
  524 
  525 /*
  526  * Probe for an SiS chip. Check the PCI vendor and device
  527  * IDs against our list and return a device name if we find a match.
  528  */
  529 static int
  530 sge_probe(device_t dev)
  531 {
  532         struct sge_type *t;
  533 
  534         t = sge_devs;
  535         while (t->sge_name != NULL) {
  536                 if ((pci_get_vendor(dev) == t->sge_vid) &&
  537                     (pci_get_device(dev) == t->sge_did)) {
  538                         device_set_desc(dev, t->sge_name);
  539                         return (BUS_PROBE_DEFAULT);
  540                 }
  541                 t++;
  542         }
  543 
  544         return (ENXIO);
  545 }
  546 
  547 /*
  548  * Attach the interface.  Allocate softc structures, do ifmedia
  549  * setup and ethernet/BPF attach.
  550  */
  551 static int
  552 sge_attach(device_t dev)
  553 {
  554         struct sge_softc *sc;
  555         struct ifnet *ifp;
  556         uint8_t eaddr[ETHER_ADDR_LEN];
  557         int error = 0, rid;
  558 
  559         sc = device_get_softc(dev);
  560         sc->sge_dev = dev;
  561 
  562         mtx_init(&sc->sge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
  563             MTX_DEF);
  564         callout_init_mtx(&sc->sge_stat_ch, &sc->sge_mtx, 0);
  565 
  566         /*
  567          * Map control/status registers.
  568          */
  569         pci_enable_busmaster(dev);
  570 
  571         /* Allocate resources. */
  572         sc->sge_res_id = PCIR_BAR(0);
  573         sc->sge_res_type = SYS_RES_MEMORY;
  574         sc->sge_res = bus_alloc_resource_any(dev, sc->sge_res_type,
  575             &sc->sge_res_id, RF_ACTIVE);
  576         if (sc->sge_res == NULL) {
  577                 device_printf(dev, "couldn't allocate resource\n");
  578                 error = ENXIO;
  579                 goto fail;
  580         }
  581 
  582         rid = 0;
  583         sc->sge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
  584             RF_SHAREABLE | RF_ACTIVE);
  585         if (sc->sge_irq == NULL) {
  586                 device_printf(dev, "couldn't allocate IRQ resources\n");
  587                 error = ENXIO;
  588                 goto fail;
  589         }
  590         sc->sge_rev = pci_get_revid(dev);
  591         if (pci_get_device(dev) == SIS_DEVICEID_190)
  592                 sc->sge_flags |= SGE_FLAG_FASTETHER | SGE_FLAG_SIS190;
  593         /* Reset the adapter. */
  594         sge_reset(sc);
  595 
  596         /* Get MAC address from the EEPROM. */
  597         if ((pci_read_config(dev, 0x73, 1) & 0x01) != 0)
  598                 sge_get_mac_addr_apc(sc, eaddr);
  599         else
  600                 sge_get_mac_addr_eeprom(sc, eaddr);
  601 
  602         if ((error = sge_dma_alloc(sc)) != 0)
  603                 goto fail;
  604 
  605         ifp = sc->sge_ifp = if_alloc(IFT_ETHER);
  606         if (ifp == NULL) {
  607                 device_printf(dev, "cannot allocate ifnet structure.\n");
  608                 error = ENOSPC;
  609                 goto fail;
  610         }
  611         ifp->if_softc = sc;
  612         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
  613         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
  614         ifp->if_ioctl = sge_ioctl;
  615         ifp->if_start = sge_start;
  616         ifp->if_init = sge_init;
  617         ifp->if_snd.ifq_drv_maxlen = SGE_TX_RING_CNT - 1;
  618         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
  619         IFQ_SET_READY(&ifp->if_snd);
  620         ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM | IFCAP_TSO4;
  621         ifp->if_hwassist = SGE_CSUM_FEATURES | CSUM_TSO;
  622         ifp->if_capenable = ifp->if_capabilities;
  623         /*
  624          * Do MII setup.
  625          */
  626         error = mii_attach(dev, &sc->sge_miibus, ifp, sge_ifmedia_upd,
  627             sge_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
  628         if (error != 0) {
  629                 device_printf(dev, "attaching PHYs failed\n");
  630                 goto fail;
  631         }
  632 
  633         /*
  634          * Call MI attach routine.
  635          */
  636         ether_ifattach(ifp, eaddr);
  637 
  638         /* VLAN setup. */
  639         ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM |
  640             IFCAP_VLAN_HWTSO | IFCAP_VLAN_MTU;
  641         ifp->if_capenable = ifp->if_capabilities;
  642         /* Tell the upper layer(s) we support long frames. */
  643         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
  644 
  645         /* Hook interrupt last to avoid having to lock softc */
  646         error = bus_setup_intr(dev, sc->sge_irq, INTR_TYPE_NET | INTR_MPSAFE,
  647             NULL, sge_intr, sc, &sc->sge_intrhand);
  648         if (error) {
  649                 device_printf(dev, "couldn't set up irq\n");
  650                 ether_ifdetach(ifp);
  651                 goto fail;
  652         }
  653 
  654 fail:
  655         if (error)
  656                 sge_detach(dev);
  657 
  658         return (error);
  659 }
  660 
  661 /*
  662  * Shutdown hardware and free up resources.  This can be called any
  663  * time after the mutex has been initialized.  It is called in both
  664  * the error case in attach and the normal detach case so it needs
  665  * to be careful about only freeing resources that have actually been
  666  * allocated.
  667  */
  668 static int
  669 sge_detach(device_t dev)
  670 {
  671         struct sge_softc *sc;
  672         struct ifnet *ifp;
  673 
  674         sc = device_get_softc(dev);
  675         ifp = sc->sge_ifp;
  676         /* These should only be active if attach succeeded. */
  677         if (device_is_attached(dev)) {
  678                 ether_ifdetach(ifp);
  679                 SGE_LOCK(sc);
  680                 sge_stop(sc);
  681                 SGE_UNLOCK(sc);
  682                 callout_drain(&sc->sge_stat_ch);
  683         }
  684         if (sc->sge_miibus)
  685                 device_delete_child(dev, sc->sge_miibus);
  686         bus_generic_detach(dev);
  687 
  688         if (sc->sge_intrhand)
  689                 bus_teardown_intr(dev, sc->sge_irq, sc->sge_intrhand);
  690         if (sc->sge_irq)
  691                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sge_irq);
  692         if (sc->sge_res)
  693                 bus_release_resource(dev, sc->sge_res_type, sc->sge_res_id,
  694                     sc->sge_res);
  695         if (ifp)
  696                 if_free(ifp);
  697         sge_dma_free(sc);
  698         mtx_destroy(&sc->sge_mtx);
  699 
  700         return (0);
  701 }
  702 
  703 /*
  704  * Stop all chip I/O so that the kernel's probe routines don't
  705  * get confused by errant DMAs when rebooting.
  706  */
  707 static int
  708 sge_shutdown(device_t dev)
  709 {
  710         struct sge_softc *sc;
  711 
  712         sc = device_get_softc(dev);
  713         SGE_LOCK(sc);
  714         sge_stop(sc);
  715         SGE_UNLOCK(sc);
  716         return (0);
  717 }
  718 
  719 static int
  720 sge_suspend(device_t dev)
  721 {
  722         struct sge_softc *sc;
  723         struct ifnet *ifp;
  724 
  725         sc = device_get_softc(dev);
  726         SGE_LOCK(sc);
  727         ifp = sc->sge_ifp;
  728         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
  729                 sge_stop(sc);
  730         SGE_UNLOCK(sc);
  731         return (0);
  732 }
  733 
  734 static int
  735 sge_resume(device_t dev)
  736 {
  737         struct sge_softc *sc;
  738         struct ifnet *ifp;
  739 
  740         sc = device_get_softc(dev);
  741         SGE_LOCK(sc);
  742         ifp = sc->sge_ifp;
  743         if ((ifp->if_flags & IFF_UP) != 0)
  744                 sge_init_locked(sc);
  745         SGE_UNLOCK(sc);
  746         return (0);
  747 }
  748 
  749 static int
  750 sge_dma_alloc(struct sge_softc *sc)
  751 {
  752         struct sge_chain_data *cd;
  753         struct sge_list_data *ld;
  754         struct sge_rxdesc *rxd;
  755         struct sge_txdesc *txd;
  756         int error, i;
  757 
  758         cd = &sc->sge_cdata;
  759         ld = &sc->sge_ldata;
  760         error = bus_dma_tag_create(bus_get_dma_tag(sc->sge_dev),
  761             1, 0,                       /* alignment, boundary */
  762             BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
  763             BUS_SPACE_MAXADDR,          /* highaddr */
  764             NULL, NULL,                 /* filter, filterarg */
  765             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
  766             1,                          /* nsegments */
  767             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
  768             0,                          /* flags */
  769             NULL,                       /* lockfunc */
  770             NULL,                       /* lockarg */
  771             &cd->sge_tag);
  772         if (error != 0) {
  773                 device_printf(sc->sge_dev,
  774                     "could not create parent DMA tag.\n");
  775                 goto fail;
  776         }
  777 
  778         /* RX descriptor ring */
  779         error = bus_dma_tag_create(cd->sge_tag,
  780             SGE_DESC_ALIGN, 0,          /* alignment, boundary */
  781             BUS_SPACE_MAXADDR,          /* lowaddr */
  782             BUS_SPACE_MAXADDR,          /* highaddr */
  783             NULL, NULL,                 /* filter, filterarg */
  784             SGE_RX_RING_SZ, 1,          /* maxsize,nsegments */
  785             SGE_RX_RING_SZ,             /* maxsegsize */
  786             0,                          /* flags */
  787             NULL,                       /* lockfunc */
  788             NULL,                       /* lockarg */
  789             &cd->sge_rx_tag);
  790         if (error != 0) {
  791                 device_printf(sc->sge_dev,
  792                     "could not create Rx ring DMA tag.\n");
  793                 goto fail;
  794         }
  795         /* Allocate DMA'able memory and load DMA map for RX ring. */
  796         error = bus_dmamem_alloc(cd->sge_rx_tag, (void **)&ld->sge_rx_ring,
  797             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
  798             &cd->sge_rx_dmamap);
  799         if (error != 0) {
  800                 device_printf(sc->sge_dev,
  801                     "could not allocate DMA'able memory for Rx ring.\n");
  802                 goto fail;
  803         }
  804         error = bus_dmamap_load(cd->sge_rx_tag, cd->sge_rx_dmamap,
  805             ld->sge_rx_ring, SGE_RX_RING_SZ, sge_dma_map_addr,
  806             &ld->sge_rx_paddr, BUS_DMA_NOWAIT);
  807         if (error != 0) {
  808                 device_printf(sc->sge_dev,
  809                     "could not load DMA'able memory for Rx ring.\n");
  810         }
  811 
  812         /* TX descriptor ring */
  813         error = bus_dma_tag_create(cd->sge_tag,
  814             SGE_DESC_ALIGN, 0,          /* alignment, boundary */
  815             BUS_SPACE_MAXADDR,          /* lowaddr */
  816             BUS_SPACE_MAXADDR,          /* highaddr */
  817             NULL, NULL,                 /* filter, filterarg */
  818             SGE_TX_RING_SZ, 1,          /* maxsize,nsegments */
  819             SGE_TX_RING_SZ,             /* maxsegsize */
  820             0,                          /* flags */
  821             NULL,                       /* lockfunc */
  822             NULL,                       /* lockarg */
  823             &cd->sge_tx_tag);
  824         if (error != 0) {
  825                 device_printf(sc->sge_dev,
  826                     "could not create Rx ring DMA tag.\n");
  827                 goto fail;
  828         }
  829         /* Allocate DMA'able memory and load DMA map for TX ring. */
  830         error = bus_dmamem_alloc(cd->sge_tx_tag, (void **)&ld->sge_tx_ring,
  831             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
  832             &cd->sge_tx_dmamap);
  833         if (error != 0) {
  834                 device_printf(sc->sge_dev,
  835                     "could not allocate DMA'able memory for Tx ring.\n");
  836                 goto fail;
  837         }
  838         error = bus_dmamap_load(cd->sge_tx_tag, cd->sge_tx_dmamap,
  839             ld->sge_tx_ring, SGE_TX_RING_SZ, sge_dma_map_addr,
  840             &ld->sge_tx_paddr, BUS_DMA_NOWAIT);
  841         if (error != 0) {
  842                 device_printf(sc->sge_dev,
  843                     "could not load DMA'able memory for Rx ring.\n");
  844                 goto fail;
  845         }
  846 
  847         /* Create DMA tag for Tx buffers. */
  848         error = bus_dma_tag_create(cd->sge_tag, 1, 0, BUS_SPACE_MAXADDR,
  849             BUS_SPACE_MAXADDR, NULL, NULL, SGE_TSO_MAXSIZE, SGE_MAXTXSEGS,
  850             SGE_TSO_MAXSEGSIZE, 0, NULL, NULL, &cd->sge_txmbuf_tag);
  851         if (error != 0) {
  852                 device_printf(sc->sge_dev,
  853                     "could not create Tx mbuf DMA tag.\n");
  854                 goto fail;
  855         }
  856 
  857         /* Create DMA tag for Rx buffers. */
  858         error = bus_dma_tag_create(cd->sge_tag, SGE_RX_BUF_ALIGN, 0,
  859             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
  860             MCLBYTES, 0, NULL, NULL, &cd->sge_rxmbuf_tag);
  861         if (error != 0) {
  862                 device_printf(sc->sge_dev,
  863                     "could not create Rx mbuf DMA tag.\n");
  864                 goto fail;
  865         }
  866 
  867         /* Create DMA maps for Tx buffers. */
  868         for (i = 0; i < SGE_TX_RING_CNT; i++) {
  869                 txd = &cd->sge_txdesc[i];
  870                 txd->tx_m = NULL;
  871                 txd->tx_dmamap = NULL;
  872                 txd->tx_ndesc = 0;
  873                 error = bus_dmamap_create(cd->sge_txmbuf_tag, 0,
  874                     &txd->tx_dmamap);
  875                 if (error != 0) {
  876                         device_printf(sc->sge_dev,
  877                             "could not create Tx DMA map.\n");
  878                         goto fail;
  879                 }
  880         }
  881         /* Create spare DMA map for Rx buffer. */
  882         error = bus_dmamap_create(cd->sge_rxmbuf_tag, 0, &cd->sge_rx_spare_map);
  883         if (error != 0) {
  884                 device_printf(sc->sge_dev,
  885                     "could not create spare Rx DMA map.\n");
  886                 goto fail;
  887         }
  888         /* Create DMA maps for Rx buffers. */
  889         for (i = 0; i < SGE_RX_RING_CNT; i++) {
  890                 rxd = &cd->sge_rxdesc[i];
  891                 rxd->rx_m = NULL;
  892                 rxd->rx_dmamap = NULL;
  893                 error = bus_dmamap_create(cd->sge_rxmbuf_tag, 0,
  894                     &rxd->rx_dmamap);
  895                 if (error) {
  896                         device_printf(sc->sge_dev,
  897                             "could not create Rx DMA map.\n");
  898                         goto fail;
  899                 }
  900         }
  901 fail:
  902         return (error);
  903 }
  904 
  905 static void
  906 sge_dma_free(struct sge_softc *sc)
  907 {
  908         struct sge_chain_data *cd;
  909         struct sge_list_data *ld;
  910         struct sge_rxdesc *rxd;
  911         struct sge_txdesc *txd;
  912         int i;
  913 
  914         cd = &sc->sge_cdata;
  915         ld = &sc->sge_ldata;
  916         /* Rx ring. */
  917         if (cd->sge_rx_tag != NULL) {
  918                 if (cd->sge_rx_dmamap != NULL)
  919                         bus_dmamap_unload(cd->sge_rx_tag, cd->sge_rx_dmamap);
  920                 if (cd->sge_rx_dmamap != NULL && ld->sge_rx_ring != NULL)
  921                         bus_dmamem_free(cd->sge_rx_tag, ld->sge_rx_ring,
  922                             cd->sge_rx_dmamap);
  923                 ld->sge_rx_ring = NULL;
  924                 cd->sge_rx_dmamap = NULL;
  925                 bus_dma_tag_destroy(cd->sge_rx_tag);
  926                 cd->sge_rx_tag = NULL;
  927         }
  928         /* Tx ring. */
  929         if (cd->sge_tx_tag != NULL) {
  930                 if (cd->sge_tx_dmamap != NULL)
  931                         bus_dmamap_unload(cd->sge_tx_tag, cd->sge_tx_dmamap);
  932                 if (cd->sge_tx_dmamap != NULL && ld->sge_tx_ring != NULL)
  933                         bus_dmamem_free(cd->sge_tx_tag, ld->sge_tx_ring,
  934                             cd->sge_tx_dmamap);
  935                 ld->sge_tx_ring = NULL;
  936                 cd->sge_tx_dmamap = NULL;
  937                 bus_dma_tag_destroy(cd->sge_tx_tag);
  938                 cd->sge_tx_tag = NULL;
  939         }
  940         /* Rx buffers. */
  941         if (cd->sge_rxmbuf_tag != NULL) {
  942                 for (i = 0; i < SGE_RX_RING_CNT; i++) {
  943                         rxd = &cd->sge_rxdesc[i];
  944                         if (rxd->rx_dmamap != NULL) {
  945                                 bus_dmamap_destroy(cd->sge_rxmbuf_tag,
  946                                     rxd->rx_dmamap);
  947                                 rxd->rx_dmamap = NULL;
  948                         }
  949                 }
  950                 if (cd->sge_rx_spare_map != NULL) {
  951                         bus_dmamap_destroy(cd->sge_rxmbuf_tag,
  952                             cd->sge_rx_spare_map);
  953                         cd->sge_rx_spare_map = NULL;
  954                 }
  955                 bus_dma_tag_destroy(cd->sge_rxmbuf_tag);
  956                 cd->sge_rxmbuf_tag = NULL;
  957         }
  958         /* Tx buffers. */
  959         if (cd->sge_txmbuf_tag != NULL) {
  960                 for (i = 0; i < SGE_TX_RING_CNT; i++) {
  961                         txd = &cd->sge_txdesc[i];
  962                         if (txd->tx_dmamap != NULL) {
  963                                 bus_dmamap_destroy(cd->sge_txmbuf_tag,
  964                                     txd->tx_dmamap);
  965                                 txd->tx_dmamap = NULL;
  966                         }
  967                 }
  968                 bus_dma_tag_destroy(cd->sge_txmbuf_tag);
  969                 cd->sge_txmbuf_tag = NULL;
  970         }
  971         if (cd->sge_tag != NULL)
  972                 bus_dma_tag_destroy(cd->sge_tag);
  973         cd->sge_tag = NULL;
  974 }
  975 
  976 /*
  977  * Initialize the TX descriptors.
  978  */
  979 static int
  980 sge_list_tx_init(struct sge_softc *sc)
  981 {
  982         struct sge_list_data *ld;
  983         struct sge_chain_data *cd;
  984 
  985         SGE_LOCK_ASSERT(sc);
  986         ld = &sc->sge_ldata;
  987         cd = &sc->sge_cdata;
  988         bzero(ld->sge_tx_ring, SGE_TX_RING_SZ);
  989         ld->sge_tx_ring[SGE_TX_RING_CNT - 1].sge_flags = htole32(RING_END);
  990         bus_dmamap_sync(cd->sge_tx_tag, cd->sge_tx_dmamap,
  991             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
  992         cd->sge_tx_prod = 0;
  993         cd->sge_tx_cons = 0;
  994         cd->sge_tx_cnt = 0;
  995         return (0);
  996 }
  997 
  998 static int
  999 sge_list_tx_free(struct sge_softc *sc)
 1000 {
 1001         struct sge_chain_data *cd;
 1002         struct sge_txdesc *txd;
 1003         int i;
 1004 
 1005         SGE_LOCK_ASSERT(sc);
 1006         cd = &sc->sge_cdata;
 1007         for (i = 0; i < SGE_TX_RING_CNT; i++) {
 1008                 txd = &cd->sge_txdesc[i];
 1009                 if (txd->tx_m != NULL) {
 1010                         bus_dmamap_sync(cd->sge_txmbuf_tag, txd->tx_dmamap,
 1011                             BUS_DMASYNC_POSTWRITE);
 1012                         bus_dmamap_unload(cd->sge_txmbuf_tag, txd->tx_dmamap);
 1013                         m_freem(txd->tx_m);
 1014                         txd->tx_m = NULL;
 1015                         txd->tx_ndesc = 0;
 1016                 }
 1017         }
 1018 
 1019         return (0);
 1020 }
 1021 
 1022 /*
 1023  * Initialize the RX descriptors and allocate mbufs for them.  Note that
 1024  * we arrange the descriptors in a closed ring, so that the last descriptor
 1025  * has RING_END flag set.
 1026  */
 1027 static int
 1028 sge_list_rx_init(struct sge_softc *sc)
 1029 {
 1030         struct sge_chain_data *cd;
 1031         int i;
 1032 
 1033         SGE_LOCK_ASSERT(sc);
 1034         cd = &sc->sge_cdata;
 1035         cd->sge_rx_cons = 0;
 1036         bzero(sc->sge_ldata.sge_rx_ring, SGE_RX_RING_SZ);
 1037         for (i = 0; i < SGE_RX_RING_CNT; i++) {
 1038                 if (sge_newbuf(sc, i) != 0)
 1039                         return (ENOBUFS);
 1040         }
 1041         bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
 1042             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1043         return (0);
 1044 }
 1045 
 1046 static int
 1047 sge_list_rx_free(struct sge_softc *sc)
 1048 {
 1049         struct sge_chain_data *cd;
 1050         struct sge_rxdesc *rxd;
 1051         int i;
 1052 
 1053         SGE_LOCK_ASSERT(sc);
 1054         cd = &sc->sge_cdata;
 1055         for (i = 0; i < SGE_RX_RING_CNT; i++) {
 1056                 rxd = &cd->sge_rxdesc[i];
 1057                 if (rxd->rx_m != NULL) {
 1058                         bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
 1059                             BUS_DMASYNC_POSTREAD);
 1060                         bus_dmamap_unload(cd->sge_rxmbuf_tag,
 1061                             rxd->rx_dmamap);
 1062                         m_freem(rxd->rx_m);
 1063                         rxd->rx_m = NULL;
 1064                 }
 1065         }
 1066         return (0);
 1067 }
 1068 
 1069 /*
 1070  * Initialize an RX descriptor and attach an MBUF cluster.
 1071  */
 1072 static int
 1073 sge_newbuf(struct sge_softc *sc, int prod)
 1074 {
 1075         struct mbuf *m;
 1076         struct sge_desc *desc;
 1077         struct sge_chain_data *cd;
 1078         struct sge_rxdesc *rxd;
 1079         bus_dma_segment_t segs[1];
 1080         bus_dmamap_t map;
 1081         int error, nsegs;
 1082 
 1083         SGE_LOCK_ASSERT(sc);
 1084 
 1085         cd = &sc->sge_cdata;
 1086         m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
 1087         if (m == NULL)
 1088                 return (ENOBUFS);
 1089         m->m_len = m->m_pkthdr.len = MCLBYTES;
 1090         m_adj(m, SGE_RX_BUF_ALIGN);
 1091         error = bus_dmamap_load_mbuf_sg(cd->sge_rxmbuf_tag,
 1092             cd->sge_rx_spare_map, m, segs, &nsegs, 0);
 1093         if (error != 0) {
 1094                 m_freem(m);
 1095                 return (error);
 1096         }
 1097         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
 1098         rxd = &cd->sge_rxdesc[prod];
 1099         if (rxd->rx_m != NULL) {
 1100                 bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
 1101                     BUS_DMASYNC_POSTREAD);
 1102                 bus_dmamap_unload(cd->sge_rxmbuf_tag, rxd->rx_dmamap);
 1103         }
 1104         map = rxd->rx_dmamap;
 1105         rxd->rx_dmamap = cd->sge_rx_spare_map;
 1106         cd->sge_rx_spare_map = map;
 1107         bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
 1108             BUS_DMASYNC_PREREAD);
 1109         rxd->rx_m = m;
 1110 
 1111         desc = &sc->sge_ldata.sge_rx_ring[prod];
 1112         desc->sge_sts_size = 0;
 1113         desc->sge_ptr = htole32(SGE_ADDR_LO(segs[0].ds_addr));
 1114         desc->sge_flags = htole32(segs[0].ds_len);
 1115         if (prod == SGE_RX_RING_CNT - 1)
 1116                 desc->sge_flags |= htole32(RING_END);
 1117         desc->sge_cmdsts = htole32(RDC_OWN | RDC_INTR);
 1118         return (0);
 1119 }
 1120 
 1121 static __inline void
 1122 sge_discard_rxbuf(struct sge_softc *sc, int index)
 1123 {
 1124         struct sge_desc *desc;
 1125 
 1126         desc = &sc->sge_ldata.sge_rx_ring[index];
 1127         desc->sge_sts_size = 0;
 1128         desc->sge_flags = htole32(MCLBYTES - SGE_RX_BUF_ALIGN);
 1129         if (index == SGE_RX_RING_CNT - 1)
 1130                 desc->sge_flags |= htole32(RING_END);
 1131         desc->sge_cmdsts = htole32(RDC_OWN | RDC_INTR);
 1132 }
 1133 
 1134 /*
 1135  * A frame has been uploaded: pass the resulting mbuf chain up to
 1136  * the higher level protocols.
 1137  */
 1138 static void
 1139 sge_rxeof(struct sge_softc *sc)
 1140 {
 1141         struct ifnet *ifp;
 1142         struct mbuf *m;
 1143         struct sge_chain_data *cd;
 1144         struct sge_desc *cur_rx;
 1145         uint32_t rxinfo, rxstat;
 1146         int cons, prog;
 1147 
 1148         SGE_LOCK_ASSERT(sc);
 1149 
 1150         ifp = sc->sge_ifp;
 1151         cd = &sc->sge_cdata;
 1152 
 1153         bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
 1154             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 1155         cons = cd->sge_rx_cons;
 1156         for (prog = 0; prog < SGE_RX_RING_CNT; prog++,
 1157             SGE_INC(cons, SGE_RX_RING_CNT)) {
 1158                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
 1159                         break;
 1160                 cur_rx = &sc->sge_ldata.sge_rx_ring[cons];
 1161                 rxinfo = le32toh(cur_rx->sge_cmdsts);
 1162                 if ((rxinfo & RDC_OWN) != 0)
 1163                         break;
 1164                 rxstat = le32toh(cur_rx->sge_sts_size);
 1165                 if ((rxstat & RDS_CRCOK) == 0 || SGE_RX_ERROR(rxstat) != 0 ||
 1166                     SGE_RX_NSEGS(rxstat) != 1) {
 1167                         /* XXX We don't support multi-segment frames yet. */
 1168 #ifdef SGE_SHOW_ERRORS
 1169                         device_printf(sc->sge_dev, "Rx error : 0x%b\n", rxstat,
 1170                             RX_ERR_BITS);
 1171 #endif
 1172                         sge_discard_rxbuf(sc, cons);
 1173                         ifp->if_ierrors++;
 1174                         continue;
 1175                 }
 1176                 m = cd->sge_rxdesc[cons].rx_m;
 1177                 if (sge_newbuf(sc, cons) != 0) {
 1178                         sge_discard_rxbuf(sc, cons);
 1179                         ifp->if_iqdrops++;
 1180                         continue;
 1181                 }
 1182                 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
 1183                         if ((rxinfo & RDC_IP_CSUM) != 0 &&
 1184                             (rxinfo & RDC_IP_CSUM_OK) != 0)
 1185                                 m->m_pkthdr.csum_flags |=
 1186                                     CSUM_IP_CHECKED | CSUM_IP_VALID;
 1187                         if (((rxinfo & RDC_TCP_CSUM) != 0 &&
 1188                             (rxinfo & RDC_TCP_CSUM_OK) != 0) ||
 1189                             ((rxinfo & RDC_UDP_CSUM) != 0 &&
 1190                             (rxinfo & RDC_UDP_CSUM_OK) != 0)) {
 1191                                 m->m_pkthdr.csum_flags |=
 1192                                     CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
 1193                                 m->m_pkthdr.csum_data = 0xffff;
 1194                         }
 1195                 }
 1196                 /* Check for VLAN tagged frame. */
 1197                 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
 1198                     (rxstat & RDS_VLAN) != 0) {
 1199                         m->m_pkthdr.ether_vtag = rxinfo & RDC_VLAN_MASK;
 1200                         m->m_flags |= M_VLANTAG;
 1201                 }
 1202                 /*
 1203                  * Account for 10bytes auto padding which is used
 1204                  * to align IP header on 32bit boundary.  Also note,
 1205                  * CRC bytes is automatically removed by the
 1206                  * hardware.
 1207                  */
 1208                 m->m_data += SGE_RX_PAD_BYTES;
 1209                 m->m_pkthdr.len = m->m_len = SGE_RX_BYTES(rxstat) -
 1210                     SGE_RX_PAD_BYTES;
 1211                 m->m_pkthdr.rcvif = ifp;
 1212                 ifp->if_ipackets++;
 1213                 SGE_UNLOCK(sc);
 1214                 (*ifp->if_input)(ifp, m);
 1215                 SGE_LOCK(sc);
 1216         }
 1217 
 1218         if (prog > 0) {
 1219                 bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
 1220                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1221                 cd->sge_rx_cons = cons;
 1222         }
 1223 }
 1224 
 1225 /*
 1226  * A frame was downloaded to the chip.  It's safe for us to clean up
 1227  * the list buffers.
 1228  */
 1229 static void
 1230 sge_txeof(struct sge_softc *sc)
 1231 {
 1232         struct ifnet *ifp;
 1233         struct sge_list_data *ld;
 1234         struct sge_chain_data *cd;
 1235         struct sge_txdesc *txd;
 1236         uint32_t txstat;
 1237         int cons, nsegs, prod;
 1238 
 1239         SGE_LOCK_ASSERT(sc);
 1240 
 1241         ifp = sc->sge_ifp;
 1242         ld = &sc->sge_ldata;
 1243         cd = &sc->sge_cdata;
 1244 
 1245         if (cd->sge_tx_cnt == 0)
 1246                 return;
 1247         bus_dmamap_sync(cd->sge_tx_tag, cd->sge_tx_dmamap,
 1248             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 1249         cons = cd->sge_tx_cons;
 1250         prod = cd->sge_tx_prod;
 1251         for (; cons != prod;) {
 1252                 txstat = le32toh(ld->sge_tx_ring[cons].sge_cmdsts);
 1253                 if ((txstat & TDC_OWN) != 0)
 1254                         break;
 1255                 /*
 1256                  * Only the first descriptor of multi-descriptor transmission
 1257                  * is updated by controller.  Driver should skip entire
 1258                  * chained buffers for the transmitted frame. In other words
 1259                  * TDC_OWN bit is valid only at the first descriptor of a
 1260                  * multi-descriptor transmission.
 1261                  */
 1262                 if (SGE_TX_ERROR(txstat) != 0) {
 1263 #ifdef SGE_SHOW_ERRORS
 1264                         device_printf(sc->sge_dev, "Tx error : 0x%b\n",
 1265                             txstat, TX_ERR_BITS);
 1266 #endif
 1267                         ifp->if_oerrors++;
 1268                 } else {
 1269 #ifdef notyet
 1270                         ifp->if_collisions += (txstat & 0xFFFF) - 1;
 1271 #endif
 1272                         ifp->if_opackets++;
 1273                 }
 1274                 txd = &cd->sge_txdesc[cons];
 1275                 for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
 1276                         ld->sge_tx_ring[cons].sge_cmdsts = 0;
 1277                         SGE_INC(cons, SGE_TX_RING_CNT);
 1278                 }
 1279                 /* Reclaim transmitted mbuf. */
 1280                 KASSERT(txd->tx_m != NULL,
 1281                     ("%s: freeing NULL mbuf\n", __func__));
 1282                 bus_dmamap_sync(cd->sge_txmbuf_tag, txd->tx_dmamap,
 1283                     BUS_DMASYNC_POSTWRITE);
 1284                 bus_dmamap_unload(cd->sge_txmbuf_tag, txd->tx_dmamap);
 1285                 m_freem(txd->tx_m);
 1286                 txd->tx_m = NULL;
 1287                 cd->sge_tx_cnt -= txd->tx_ndesc;
 1288                 KASSERT(cd->sge_tx_cnt >= 0,
 1289                     ("%s: Active Tx desc counter was garbled\n", __func__));
 1290                 txd->tx_ndesc = 0;
 1291                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 1292         }
 1293         cd->sge_tx_cons = cons;
 1294         if (cd->sge_tx_cnt == 0)
 1295                 sc->sge_timer = 0;
 1296 }
 1297 
 1298 static void
 1299 sge_tick(void *arg)
 1300 {
 1301         struct sge_softc *sc;
 1302         struct mii_data *mii;
 1303         struct ifnet *ifp;
 1304 
 1305         sc = arg;
 1306         SGE_LOCK_ASSERT(sc);
 1307 
 1308         ifp = sc->sge_ifp;
 1309         mii = device_get_softc(sc->sge_miibus);
 1310         mii_tick(mii);
 1311         if ((sc->sge_flags & SGE_FLAG_LINK) == 0) {
 1312                 sge_miibus_statchg(sc->sge_dev);
 1313                 if ((sc->sge_flags & SGE_FLAG_LINK) != 0 &&
 1314                     !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 1315                         sge_start_locked(ifp);
 1316         }
 1317         /*
 1318          * Reclaim transmitted frames here as we do not request
 1319          * Tx completion interrupt for every queued frames to
 1320          * reduce excessive interrupts.
 1321          */
 1322         sge_txeof(sc);
 1323         sge_watchdog(sc);
 1324         callout_reset(&sc->sge_stat_ch, hz, sge_tick, sc);
 1325 }
 1326 
 1327 static void
 1328 sge_intr(void *arg)
 1329 {
 1330         struct sge_softc *sc;
 1331         struct ifnet *ifp;
 1332         uint32_t status;
 1333 
 1334         sc = arg;
 1335         SGE_LOCK(sc);
 1336         ifp = sc->sge_ifp;
 1337 
 1338         status = CSR_READ_4(sc, IntrStatus);
 1339         if (status == 0xFFFFFFFF || (status & SGE_INTRS) == 0) {
 1340                 /* Not ours. */
 1341                 SGE_UNLOCK(sc);
 1342                 return;
 1343         }
 1344         /* Acknowledge interrupts. */
 1345         CSR_WRITE_4(sc, IntrStatus, status);
 1346         /* Disable further interrupts. */
 1347         CSR_WRITE_4(sc, IntrMask, 0);
 1348         /*
 1349          * It seems the controller supports some kind of interrupt
 1350          * moderation mechanism but we still don't know how to
 1351          * enable that.  To reduce number of generated interrupts
 1352          * under load we check pending interrupts in a loop.  This
 1353          * will increase number of register access and is not correct
 1354          * way to handle interrupt moderation but there seems to be
 1355          * no other way at this time.
 1356          */
 1357         for (;;) {
 1358                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
 1359                         break;
 1360                 if ((status & (INTR_RX_DONE | INTR_RX_IDLE)) != 0) {
 1361                         sge_rxeof(sc);
 1362                         /* Wakeup Rx MAC. */
 1363                         if ((status & INTR_RX_IDLE) != 0)
 1364                                 CSR_WRITE_4(sc, RX_CTL,
 1365                                     0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
 1366                 }
 1367                 if ((status & (INTR_TX_DONE | INTR_TX_IDLE)) != 0)
 1368                         sge_txeof(sc);
 1369                 status = CSR_READ_4(sc, IntrStatus);
 1370                 if ((status & SGE_INTRS) == 0)
 1371                         break;
 1372                 /* Acknowledge interrupts. */
 1373                 CSR_WRITE_4(sc, IntrStatus, status);
 1374         }
 1375         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
 1376                 /* Re-enable interrupts */
 1377                 CSR_WRITE_4(sc, IntrMask, SGE_INTRS);
 1378                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 1379                         sge_start_locked(ifp);
 1380         }
 1381         SGE_UNLOCK(sc);
 1382 }
 1383 
 1384 /*
 1385  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
 1386  * pointers to the fragment pointers.
 1387  */
 1388 static int
 1389 sge_encap(struct sge_softc *sc, struct mbuf **m_head)
 1390 {
 1391         struct mbuf *m;
 1392         struct sge_desc *desc;
 1393         struct sge_txdesc *txd;
 1394         bus_dma_segment_t txsegs[SGE_MAXTXSEGS];
 1395         uint32_t cflags, mss;
 1396         int error, i, nsegs, prod, si;
 1397 
 1398         SGE_LOCK_ASSERT(sc);
 1399 
 1400         si = prod = sc->sge_cdata.sge_tx_prod;
 1401         txd = &sc->sge_cdata.sge_txdesc[prod];
 1402         if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
 1403                 struct ether_header *eh;
 1404                 struct ip *ip;
 1405                 struct tcphdr *tcp;
 1406                 uint32_t ip_off, poff;
 1407 
 1408                 if (M_WRITABLE(*m_head) == 0) {
 1409                         /* Get a writable copy. */
 1410                         m = m_dup(*m_head, M_NOWAIT);
 1411                         m_freem(*m_head);
 1412                         if (m == NULL) {
 1413                                 *m_head = NULL;
 1414                                 return (ENOBUFS);
 1415                         }
 1416                         *m_head = m;
 1417                 }
 1418                 ip_off = sizeof(struct ether_header);
 1419                 m = m_pullup(*m_head, ip_off);
 1420                 if (m == NULL) {
 1421                         *m_head = NULL;
 1422                         return (ENOBUFS);
 1423                 }
 1424                 eh = mtod(m, struct ether_header *);
 1425                 /* Check the existence of VLAN tag. */
 1426                 if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
 1427                         ip_off = sizeof(struct ether_vlan_header);
 1428                         m = m_pullup(m, ip_off);
 1429                         if (m == NULL) {
 1430                                 *m_head = NULL;
 1431                                 return (ENOBUFS);
 1432                         }
 1433                 }
 1434                 m = m_pullup(m, ip_off + sizeof(struct ip));
 1435                 if (m == NULL) {
 1436                         *m_head = NULL;
 1437                         return (ENOBUFS);
 1438                 }
 1439                 ip = (struct ip *)(mtod(m, char *) + ip_off);
 1440                 poff = ip_off + (ip->ip_hl << 2);
 1441                 m = m_pullup(m, poff + sizeof(struct tcphdr));
 1442                 if (m == NULL) {
 1443                         *m_head = NULL;
 1444                         return (ENOBUFS);
 1445                 }
 1446                 tcp = (struct tcphdr *)(mtod(m, char *) + poff);
 1447                 m = m_pullup(m, poff + (tcp->th_off << 2));
 1448                 if (m == NULL) {
 1449                         *m_head = NULL;
 1450                         return (ENOBUFS);
 1451                 }
 1452                 /*
 1453                  * Reset IP checksum and recompute TCP pseudo
 1454                  * checksum that NDIS specification requires.
 1455                  */
 1456                 ip = (struct ip *)(mtod(m, char *) + ip_off);
 1457                 ip->ip_sum = 0;
 1458                 tcp = (struct tcphdr *)(mtod(m, char *) + poff);
 1459                 tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
 1460                     htons(IPPROTO_TCP));
 1461                 *m_head = m;
 1462         }
 1463 
 1464         error = bus_dmamap_load_mbuf_sg(sc->sge_cdata.sge_txmbuf_tag,
 1465             txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
 1466         if (error == EFBIG) {
 1467                 m = m_collapse(*m_head, M_NOWAIT, SGE_MAXTXSEGS);
 1468                 if (m == NULL) {
 1469                         m_freem(*m_head);
 1470                         *m_head = NULL;
 1471                         return (ENOBUFS);
 1472                 }
 1473                 *m_head = m;
 1474                 error = bus_dmamap_load_mbuf_sg(sc->sge_cdata.sge_txmbuf_tag,
 1475                     txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
 1476                 if (error != 0) {
 1477                         m_freem(*m_head);
 1478                         *m_head = NULL;
 1479                         return (error);
 1480                 }
 1481         } else if (error != 0)
 1482                 return (error);
 1483 
 1484         KASSERT(nsegs != 0, ("zero segment returned"));
 1485         /* Check descriptor overrun. */
 1486         if (sc->sge_cdata.sge_tx_cnt + nsegs >= SGE_TX_RING_CNT) {
 1487                 bus_dmamap_unload(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap);
 1488                 return (ENOBUFS);
 1489         }
 1490         bus_dmamap_sync(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap,
 1491             BUS_DMASYNC_PREWRITE);
 1492 
 1493         m = *m_head;
 1494         cflags = 0;
 1495         mss = 0;
 1496         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
 1497                 cflags |= TDC_LS;
 1498                 mss = (uint32_t)m->m_pkthdr.tso_segsz;
 1499                 mss <<= 16;
 1500         } else {
 1501                 if (m->m_pkthdr.csum_flags & CSUM_IP)
 1502                         cflags |= TDC_IP_CSUM;
 1503                 if (m->m_pkthdr.csum_flags & CSUM_TCP)
 1504                         cflags |= TDC_TCP_CSUM;
 1505                 if (m->m_pkthdr.csum_flags & CSUM_UDP)
 1506                         cflags |= TDC_UDP_CSUM;
 1507         }
 1508         for (i = 0; i < nsegs; i++) {
 1509                 desc = &sc->sge_ldata.sge_tx_ring[prod];
 1510                 if (i == 0) {
 1511                         desc->sge_sts_size = htole32(m->m_pkthdr.len | mss);
 1512                         desc->sge_cmdsts = 0;
 1513                 } else {
 1514                         desc->sge_sts_size = 0;
 1515                         desc->sge_cmdsts = htole32(TDC_OWN);
 1516                 }
 1517                 desc->sge_ptr = htole32(SGE_ADDR_LO(txsegs[i].ds_addr));
 1518                 desc->sge_flags = htole32(txsegs[i].ds_len);
 1519                 if (prod == SGE_TX_RING_CNT - 1)
 1520                         desc->sge_flags |= htole32(RING_END);
 1521                 sc->sge_cdata.sge_tx_cnt++;
 1522                 SGE_INC(prod, SGE_TX_RING_CNT);
 1523         }
 1524         /* Update producer index. */
 1525         sc->sge_cdata.sge_tx_prod = prod;
 1526 
 1527         desc = &sc->sge_ldata.sge_tx_ring[si];
 1528         /* Configure VLAN. */
 1529         if((m->m_flags & M_VLANTAG) != 0) {
 1530                 cflags |= m->m_pkthdr.ether_vtag;
 1531                 desc->sge_sts_size |= htole32(TDS_INS_VLAN);
 1532         }
 1533         desc->sge_cmdsts |= htole32(TDC_DEF | TDC_CRC | TDC_PAD | cflags);
 1534 #if 1
 1535         if ((sc->sge_flags & SGE_FLAG_SPEED_1000) != 0)
 1536                 desc->sge_cmdsts |= htole32(TDC_BST);
 1537 #else
 1538         if ((sc->sge_flags & SGE_FLAG_FDX) == 0) {
 1539                 desc->sge_cmdsts |= htole32(TDC_COL | TDC_CRS | TDC_BKF);
 1540                 if ((sc->sge_flags & SGE_FLAG_SPEED_1000) != 0)
 1541                         desc->sge_cmdsts |= htole32(TDC_EXT | TDC_BST);
 1542         }
 1543 #endif
 1544         /* Request interrupt and give ownership to controller. */
 1545         desc->sge_cmdsts |= htole32(TDC_OWN | TDC_INTR);
 1546         txd->tx_m = m;
 1547         txd->tx_ndesc = nsegs;
 1548         return (0);
 1549 }
 1550 
 1551 static void
 1552 sge_start(struct ifnet *ifp)
 1553 {
 1554         struct sge_softc *sc;
 1555 
 1556         sc = ifp->if_softc;
 1557         SGE_LOCK(sc);
 1558         sge_start_locked(ifp);
 1559         SGE_UNLOCK(sc);
 1560 }
 1561 
 1562 static void
 1563 sge_start_locked(struct ifnet *ifp)
 1564 {
 1565         struct sge_softc *sc;
 1566         struct mbuf *m_head;
 1567         int queued = 0;
 1568 
 1569         sc = ifp->if_softc;
 1570         SGE_LOCK_ASSERT(sc);
 1571 
 1572         if ((sc->sge_flags & SGE_FLAG_LINK) == 0 ||
 1573             (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
 1574             IFF_DRV_RUNNING)
 1575                 return;
 1576 
 1577         for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
 1578                 if (sc->sge_cdata.sge_tx_cnt > (SGE_TX_RING_CNT -
 1579                     SGE_MAXTXSEGS)) {
 1580                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 1581                         break;
 1582                 }
 1583                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
 1584                 if (m_head == NULL)
 1585                         break;
 1586                 if (sge_encap(sc, &m_head)) {
 1587                         if (m_head == NULL)
 1588                                 break;
 1589                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
 1590                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 1591                         break;
 1592                 }
 1593                 queued++;
 1594                 /*
 1595                  * If there's a BPF listener, bounce a copy of this frame
 1596                  * to him.
 1597                  */
 1598                 BPF_MTAP(ifp, m_head);
 1599         }
 1600 
 1601         if (queued > 0) {
 1602                 bus_dmamap_sync(sc->sge_cdata.sge_tx_tag,
 1603                     sc->sge_cdata.sge_tx_dmamap,
 1604                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1605                 CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB | TX_CTL_POLL);
 1606                 sc->sge_timer = 5;
 1607         }
 1608 }
 1609 
 1610 static void
 1611 sge_init(void *arg)
 1612 {
 1613         struct sge_softc *sc;
 1614 
 1615         sc = arg;
 1616         SGE_LOCK(sc);
 1617         sge_init_locked(sc);
 1618         SGE_UNLOCK(sc);
 1619 }
 1620 
 1621 static void
 1622 sge_init_locked(struct sge_softc *sc)
 1623 {
 1624         struct ifnet *ifp;
 1625         struct mii_data *mii;
 1626         uint16_t rxfilt;
 1627         int i;
 1628 
 1629         SGE_LOCK_ASSERT(sc);
 1630         ifp = sc->sge_ifp;
 1631         mii = device_get_softc(sc->sge_miibus);
 1632         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 1633                 return;
 1634         /*
 1635          * Cancel pending I/O and free all RX/TX buffers.
 1636          */
 1637         sge_stop(sc);
 1638         sge_reset(sc);
 1639 
 1640         /* Init circular RX list. */
 1641         if (sge_list_rx_init(sc) == ENOBUFS) {
 1642                 device_printf(sc->sge_dev, "no memory for Rx buffers\n");
 1643                 sge_stop(sc);
 1644                 return;
 1645         }
 1646         /* Init TX descriptors. */
 1647         sge_list_tx_init(sc);
 1648         /*
 1649          * Load the address of the RX and TX lists.
 1650          */
 1651         CSR_WRITE_4(sc, TX_DESC, SGE_ADDR_LO(sc->sge_ldata.sge_tx_paddr));
 1652         CSR_WRITE_4(sc, RX_DESC, SGE_ADDR_LO(sc->sge_ldata.sge_rx_paddr));
 1653 
 1654         CSR_WRITE_4(sc, TxMacControl, 0x60);
 1655         CSR_WRITE_4(sc, RxWakeOnLan, 0);
 1656         CSR_WRITE_4(sc, RxWakeOnLanData, 0);
 1657         /* Allow receiving VLAN frames. */
 1658         CSR_WRITE_2(sc, RxMPSControl, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN +
 1659             SGE_RX_PAD_BYTES);
 1660 
 1661         for (i = 0; i < ETHER_ADDR_LEN; i++)
 1662                 CSR_WRITE_1(sc, RxMacAddr + i, IF_LLADDR(ifp)[i]);
 1663         /* Configure RX MAC. */
 1664         rxfilt = RXMAC_STRIP_FCS | RXMAC_PAD_ENB | RXMAC_CSUM_ENB;
 1665         CSR_WRITE_2(sc, RxMacControl, rxfilt);
 1666         sge_rxfilter(sc);
 1667         sge_setvlan(sc);
 1668 
 1669         /* Initialize default speed/duplex information. */
 1670         if ((sc->sge_flags & SGE_FLAG_FASTETHER) == 0)
 1671                 sc->sge_flags |= SGE_FLAG_SPEED_1000;
 1672         sc->sge_flags |= SGE_FLAG_FDX;
 1673         if ((sc->sge_flags & SGE_FLAG_RGMII) != 0)
 1674                 CSR_WRITE_4(sc, StationControl, 0x04008001);
 1675         else
 1676                 CSR_WRITE_4(sc, StationControl, 0x04000001);
 1677         /*
 1678          * XXX Try to mitigate interrupts.
 1679          */
 1680         CSR_WRITE_4(sc, IntrControl, 0x08880000);
 1681 #ifdef notyet
 1682         if (sc->sge_intrcontrol != 0)
 1683                 CSR_WRITE_4(sc, IntrControl, sc->sge_intrcontrol);
 1684         if (sc->sge_intrtimer != 0)
 1685                 CSR_WRITE_4(sc, IntrTimer, sc->sge_intrtimer);
 1686 #endif
 1687 
 1688         /*
 1689          * Clear and enable interrupts.
 1690          */
 1691         CSR_WRITE_4(sc, IntrStatus, 0xFFFFFFFF);
 1692         CSR_WRITE_4(sc, IntrMask, SGE_INTRS);
 1693 
 1694         /* Enable receiver and transmitter. */
 1695         CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB);
 1696         CSR_WRITE_4(sc, RX_CTL, 0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
 1697 
 1698         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 1699         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 1700 
 1701         sc->sge_flags &= ~SGE_FLAG_LINK;
 1702         mii_mediachg(mii);
 1703         callout_reset(&sc->sge_stat_ch, hz, sge_tick, sc);
 1704 }
 1705 
 1706 /*
 1707  * Set media options.
 1708  */
 1709 static int
 1710 sge_ifmedia_upd(struct ifnet *ifp)
 1711 {
 1712         struct sge_softc *sc;
 1713         struct mii_data *mii;
 1714                 struct mii_softc *miisc;
 1715         int error;
 1716 
 1717         sc = ifp->if_softc;
 1718         SGE_LOCK(sc);
 1719         mii = device_get_softc(sc->sge_miibus);
 1720         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
 1721                 PHY_RESET(miisc);
 1722         error = mii_mediachg(mii);
 1723         SGE_UNLOCK(sc);
 1724 
 1725         return (error);
 1726 }
 1727 
 1728 /*
 1729  * Report current media status.
 1730  */
 1731 static void
 1732 sge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
 1733 {
 1734         struct sge_softc *sc;
 1735         struct mii_data *mii;
 1736 
 1737         sc = ifp->if_softc;
 1738         SGE_LOCK(sc);
 1739         mii = device_get_softc(sc->sge_miibus);
 1740         if ((ifp->if_flags & IFF_UP) == 0) {
 1741                 SGE_UNLOCK(sc);
 1742                 return;
 1743         }
 1744         mii_pollstat(mii);
 1745         ifmr->ifm_active = mii->mii_media_active;
 1746         ifmr->ifm_status = mii->mii_media_status;
 1747         SGE_UNLOCK(sc);
 1748 }
 1749 
 1750 static int
 1751 sge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
 1752 {
 1753         struct sge_softc *sc;
 1754         struct ifreq *ifr;
 1755         struct mii_data *mii;
 1756         int error = 0, mask, reinit;
 1757 
 1758         sc = ifp->if_softc;
 1759         ifr = (struct ifreq *)data;
 1760 
 1761         switch(command) {
 1762         case SIOCSIFFLAGS:
 1763                 SGE_LOCK(sc);
 1764                 if ((ifp->if_flags & IFF_UP) != 0) {
 1765                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
 1766                             ((ifp->if_flags ^ sc->sge_if_flags) &
 1767                             (IFF_PROMISC | IFF_ALLMULTI)) != 0)
 1768                                 sge_rxfilter(sc);
 1769                         else
 1770                                 sge_init_locked(sc);
 1771                 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 1772                         sge_stop(sc);
 1773                 sc->sge_if_flags = ifp->if_flags;
 1774                 SGE_UNLOCK(sc);
 1775                 break;
 1776         case SIOCSIFCAP:
 1777                 SGE_LOCK(sc);
 1778                 reinit = 0;
 1779                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
 1780                 if ((mask & IFCAP_TXCSUM) != 0 &&
 1781                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
 1782                         ifp->if_capenable ^= IFCAP_TXCSUM;
 1783                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
 1784                                 ifp->if_hwassist |= SGE_CSUM_FEATURES;
 1785                         else
 1786                                 ifp->if_hwassist &= ~SGE_CSUM_FEATURES;
 1787                 }
 1788                 if ((mask & IFCAP_RXCSUM) != 0 &&
 1789                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
 1790                         ifp->if_capenable ^= IFCAP_RXCSUM;
 1791                 if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
 1792                     (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
 1793                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
 1794                 if ((mask & IFCAP_TSO4) != 0 &&
 1795                     (ifp->if_capabilities & IFCAP_TSO4) != 0) {
 1796                         ifp->if_capenable ^= IFCAP_TSO4;
 1797                         if ((ifp->if_capenable & IFCAP_TSO4) != 0)
 1798                                 ifp->if_hwassist |= CSUM_TSO;
 1799                         else
 1800                                 ifp->if_hwassist &= ~CSUM_TSO;
 1801                 }
 1802                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
 1803                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
 1804                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
 1805                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
 1806                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
 1807                         /*
 1808                          * Due to unknown reason, toggling VLAN hardware
 1809                          * tagging require interface reinitialization.
 1810                          */
 1811                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
 1812                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
 1813                                 ifp->if_capenable &=
 1814                                     ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
 1815                         reinit = 1;
 1816                 }
 1817                 if (reinit > 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
 1818                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1819                         sge_init_locked(sc);
 1820                 }
 1821                 SGE_UNLOCK(sc);
 1822                 VLAN_CAPABILITIES(ifp);
 1823                 break;
 1824         case SIOCADDMULTI:
 1825         case SIOCDELMULTI:
 1826                 SGE_LOCK(sc);
 1827                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 1828                         sge_rxfilter(sc);
 1829                 SGE_UNLOCK(sc);
 1830                 break;
 1831         case SIOCGIFMEDIA:
 1832         case SIOCSIFMEDIA:
 1833                 mii = device_get_softc(sc->sge_miibus);
 1834                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
 1835                 break;
 1836         default:
 1837                 error = ether_ioctl(ifp, command, data);
 1838                 break;
 1839         }
 1840 
 1841         return (error);
 1842 }
 1843 
 1844 static void
 1845 sge_watchdog(struct sge_softc *sc)
 1846 {
 1847         struct ifnet *ifp;
 1848 
 1849         SGE_LOCK_ASSERT(sc);
 1850         if (sc->sge_timer == 0 || --sc->sge_timer > 0)
 1851                 return;
 1852 
 1853         ifp = sc->sge_ifp;
 1854         if ((sc->sge_flags & SGE_FLAG_LINK) == 0) {
 1855                 if (1 || bootverbose)
 1856                         device_printf(sc->sge_dev,
 1857                             "watchdog timeout (lost link)\n");
 1858                 ifp->if_oerrors++;
 1859                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1860                 sge_init_locked(sc);
 1861                 return;
 1862         }
 1863         device_printf(sc->sge_dev, "watchdog timeout\n");
 1864         ifp->if_oerrors++;
 1865 
 1866         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1867         sge_init_locked(sc);
 1868         if (!IFQ_DRV_IS_EMPTY(&sc->sge_ifp->if_snd))
 1869                 sge_start_locked(ifp);
 1870 }
 1871 
 1872 /*
 1873  * Stop the adapter and free any mbufs allocated to the
 1874  * RX and TX lists.
 1875  */
 1876 static void
 1877 sge_stop(struct sge_softc *sc)
 1878 {
 1879         struct ifnet *ifp;
 1880 
 1881         ifp = sc->sge_ifp;
 1882 
 1883         SGE_LOCK_ASSERT(sc);
 1884 
 1885         sc->sge_timer = 0;
 1886         callout_stop(&sc->sge_stat_ch);
 1887         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 1888 
 1889         CSR_WRITE_4(sc, IntrMask, 0);
 1890         CSR_READ_4(sc, IntrMask);
 1891         CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
 1892         /* Stop TX/RX MAC. */
 1893         CSR_WRITE_4(sc, TX_CTL, 0x1a00);
 1894         CSR_WRITE_4(sc, RX_CTL, 0x1a00);
 1895         /* XXX Can we assume active DMA cycles gone? */
 1896         DELAY(2000);
 1897         CSR_WRITE_4(sc, IntrMask, 0);
 1898         CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
 1899 
 1900         sc->sge_flags &= ~SGE_FLAG_LINK;
 1901         sge_list_rx_free(sc);
 1902         sge_list_tx_free(sc);
 1903 }

Cache object: e3c9dd6c08a4af3a17f18225ca36c651


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.