FreeBSD/Linux Kernel Cross Reference
sys/dev/sis/if_sis.c
1 /*-
2 * Copyright (c) 2005 Poul-Henning Kamp <phk@FreeBSD.org>
3 * Copyright (c) 1997, 1998, 1999
4 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by Bill Paul.
17 * 4. Neither the name of the author nor the names of any co-contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36
37 /*
38 * SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are
39 * available from http://www.sis.com.tw.
40 *
41 * This driver also supports the NatSemi DP83815. Datasheets are
42 * available from http://www.national.com.
43 *
44 * Written by Bill Paul <wpaul@ee.columbia.edu>
45 * Electrical Engineering Department
46 * Columbia University, New York City
47 */
48 /*
49 * The SiS 900 is a fairly simple chip. It uses bus master DMA with
50 * simple TX and RX descriptors of 3 longwords in size. The receiver
51 * has a single perfect filter entry for the station address and a
52 * 128-bit multicast hash table. The SiS 900 has a built-in MII-based
53 * transceiver while the 7016 requires an external transceiver chip.
54 * Both chips offer the standard bit-bang MII interface as well as
55 * an enchanced PHY interface which simplifies accessing MII registers.
56 *
57 * The only downside to this chipset is that RX descriptors must be
58 * longword aligned.
59 */
60
61 #ifdef HAVE_KERNEL_OPTION_HEADERS
62 #include "opt_device_polling.h"
63 #endif
64
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/bus.h>
68 #include <sys/endian.h>
69 #include <sys/kernel.h>
70 #include <sys/lock.h>
71 #include <sys/malloc.h>
72 #include <sys/mbuf.h>
73 #include <sys/module.h>
74 #include <sys/socket.h>
75 #include <sys/sockio.h>
76 #include <sys/sysctl.h>
77
78 #include <net/if.h>
79 #include <net/if_arp.h>
80 #include <net/ethernet.h>
81 #include <net/if_dl.h>
82 #include <net/if_media.h>
83 #include <net/if_types.h>
84 #include <net/if_vlan_var.h>
85
86 #include <net/bpf.h>
87
88 #include <machine/bus.h>
89 #include <machine/resource.h>
90 #include <sys/bus.h>
91 #include <sys/rman.h>
92
93 #include <dev/mii/mii.h>
94 #include <dev/mii/mii_bitbang.h>
95 #include <dev/mii/miivar.h>
96
97 #include <dev/pci/pcireg.h>
98 #include <dev/pci/pcivar.h>
99
100 #define SIS_USEIOSPACE
101
102 #include <dev/sis/if_sisreg.h>
103
104 MODULE_DEPEND(sis, pci, 1, 1, 1);
105 MODULE_DEPEND(sis, ether, 1, 1, 1);
106 MODULE_DEPEND(sis, miibus, 1, 1, 1);
107
108 /* "device miibus" required. See GENERIC if you get errors here. */
109 #include "miibus_if.h"
110
111 #define SIS_LOCK(_sc) mtx_lock(&(_sc)->sis_mtx)
112 #define SIS_UNLOCK(_sc) mtx_unlock(&(_sc)->sis_mtx)
113 #define SIS_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->sis_mtx, MA_OWNED)
114
115 /*
116 * register space access macros
117 */
118 #define CSR_WRITE_4(sc, reg, val) bus_write_4(sc->sis_res[0], reg, val)
119
120 #define CSR_READ_4(sc, reg) bus_read_4(sc->sis_res[0], reg)
121
122 #define CSR_READ_2(sc, reg) bus_read_2(sc->sis_res[0], reg)
123
124 #define CSR_BARRIER(sc, reg, length, flags) \
125 bus_barrier(sc->sis_res[0], reg, length, flags)
126
127 /*
128 * Various supported device vendors/types and their names.
129 */
130 static const struct sis_type const sis_devs[] = {
131 { SIS_VENDORID, SIS_DEVICEID_900, "SiS 900 10/100BaseTX" },
132 { SIS_VENDORID, SIS_DEVICEID_7016, "SiS 7016 10/100BaseTX" },
133 { NS_VENDORID, NS_DEVICEID_DP83815, "NatSemi DP8381[56] 10/100BaseTX" },
134 { 0, 0, NULL }
135 };
136
137 static int sis_detach(device_t);
138 static __inline void sis_discard_rxbuf(struct sis_rxdesc *);
139 static int sis_dma_alloc(struct sis_softc *);
140 static void sis_dma_free(struct sis_softc *);
141 static int sis_dma_ring_alloc(struct sis_softc *, bus_size_t, bus_size_t,
142 bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
143 static void sis_dmamap_cb(void *, bus_dma_segment_t *, int, int);
144 #ifndef __NO_STRICT_ALIGNMENT
145 static __inline void sis_fixup_rx(struct mbuf *);
146 #endif
147 static void sis_ifmedia_sts(struct ifnet *, struct ifmediareq *);
148 static int sis_ifmedia_upd(struct ifnet *);
149 static void sis_init(void *);
150 static void sis_initl(struct sis_softc *);
151 static void sis_intr(void *);
152 static int sis_ioctl(struct ifnet *, u_long, caddr_t);
153 static uint32_t sis_mii_bitbang_read(device_t);
154 static void sis_mii_bitbang_write(device_t, uint32_t);
155 static int sis_newbuf(struct sis_softc *, struct sis_rxdesc *);
156 static int sis_resume(device_t);
157 static void sis_rxeof(struct sis_softc *);
158 static void sis_rxfilter(struct sis_softc *);
159 static void sis_rxfilter_ns(struct sis_softc *);
160 static void sis_rxfilter_sis(struct sis_softc *);
161 static void sis_start(struct ifnet *);
162 static void sis_startl(struct ifnet *);
163 static void sis_stop(struct sis_softc *);
164 static int sis_suspend(device_t);
165 static void sis_add_sysctls(struct sis_softc *);
166 static void sis_watchdog(struct sis_softc *);
167 static void sis_wol(struct sis_softc *);
168
169 /*
170 * MII bit-bang glue
171 */
172 static const struct mii_bitbang_ops sis_mii_bitbang_ops = {
173 sis_mii_bitbang_read,
174 sis_mii_bitbang_write,
175 {
176 SIS_MII_DATA, /* MII_BIT_MDO */
177 SIS_MII_DATA, /* MII_BIT_MDI */
178 SIS_MII_CLK, /* MII_BIT_MDC */
179 SIS_MII_DIR, /* MII_BIT_DIR_HOST_PHY */
180 0, /* MII_BIT_DIR_PHY_HOST */
181 }
182 };
183
184 static struct resource_spec sis_res_spec[] = {
185 #ifdef SIS_USEIOSPACE
186 { SYS_RES_IOPORT, SIS_PCI_LOIO, RF_ACTIVE},
187 #else
188 { SYS_RES_MEMORY, SIS_PCI_LOMEM, RF_ACTIVE},
189 #endif
190 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE},
191 { -1, 0 }
192 };
193
194 #define SIS_SETBIT(sc, reg, x) \
195 CSR_WRITE_4(sc, reg, \
196 CSR_READ_4(sc, reg) | (x))
197
198 #define SIS_CLRBIT(sc, reg, x) \
199 CSR_WRITE_4(sc, reg, \
200 CSR_READ_4(sc, reg) & ~(x))
201
202 #define SIO_SET(x) \
203 CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x)
204
205 #define SIO_CLR(x) \
206 CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x)
207
208 /*
209 * Routine to reverse the bits in a word. Stolen almost
210 * verbatim from /usr/games/fortune.
211 */
212 static uint16_t
213 sis_reverse(uint16_t n)
214 {
215 n = ((n >> 1) & 0x5555) | ((n << 1) & 0xaaaa);
216 n = ((n >> 2) & 0x3333) | ((n << 2) & 0xcccc);
217 n = ((n >> 4) & 0x0f0f) | ((n << 4) & 0xf0f0);
218 n = ((n >> 8) & 0x00ff) | ((n << 8) & 0xff00);
219
220 return (n);
221 }
222
223 static void
224 sis_delay(struct sis_softc *sc)
225 {
226 int idx;
227
228 for (idx = (300 / 33) + 1; idx > 0; idx--)
229 CSR_READ_4(sc, SIS_CSR);
230 }
231
232 static void
233 sis_eeprom_idle(struct sis_softc *sc)
234 {
235 int i;
236
237 SIO_SET(SIS_EECTL_CSEL);
238 sis_delay(sc);
239 SIO_SET(SIS_EECTL_CLK);
240 sis_delay(sc);
241
242 for (i = 0; i < 25; i++) {
243 SIO_CLR(SIS_EECTL_CLK);
244 sis_delay(sc);
245 SIO_SET(SIS_EECTL_CLK);
246 sis_delay(sc);
247 }
248
249 SIO_CLR(SIS_EECTL_CLK);
250 sis_delay(sc);
251 SIO_CLR(SIS_EECTL_CSEL);
252 sis_delay(sc);
253 CSR_WRITE_4(sc, SIS_EECTL, 0x00000000);
254 }
255
256 /*
257 * Send a read command and address to the EEPROM, check for ACK.
258 */
259 static void
260 sis_eeprom_putbyte(struct sis_softc *sc, int addr)
261 {
262 int d, i;
263
264 d = addr | SIS_EECMD_READ;
265
266 /*
267 * Feed in each bit and stobe the clock.
268 */
269 for (i = 0x400; i; i >>= 1) {
270 if (d & i) {
271 SIO_SET(SIS_EECTL_DIN);
272 } else {
273 SIO_CLR(SIS_EECTL_DIN);
274 }
275 sis_delay(sc);
276 SIO_SET(SIS_EECTL_CLK);
277 sis_delay(sc);
278 SIO_CLR(SIS_EECTL_CLK);
279 sis_delay(sc);
280 }
281 }
282
283 /*
284 * Read a word of data stored in the EEPROM at address 'addr.'
285 */
286 static void
287 sis_eeprom_getword(struct sis_softc *sc, int addr, uint16_t *dest)
288 {
289 int i;
290 uint16_t word = 0;
291
292 /* Force EEPROM to idle state. */
293 sis_eeprom_idle(sc);
294
295 /* Enter EEPROM access mode. */
296 sis_delay(sc);
297 SIO_CLR(SIS_EECTL_CLK);
298 sis_delay(sc);
299 SIO_SET(SIS_EECTL_CSEL);
300 sis_delay(sc);
301
302 /*
303 * Send address of word we want to read.
304 */
305 sis_eeprom_putbyte(sc, addr);
306
307 /*
308 * Start reading bits from EEPROM.
309 */
310 for (i = 0x8000; i; i >>= 1) {
311 SIO_SET(SIS_EECTL_CLK);
312 sis_delay(sc);
313 if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT)
314 word |= i;
315 sis_delay(sc);
316 SIO_CLR(SIS_EECTL_CLK);
317 sis_delay(sc);
318 }
319
320 /* Turn off EEPROM access mode. */
321 sis_eeprom_idle(sc);
322
323 *dest = word;
324 }
325
326 /*
327 * Read a sequence of words from the EEPROM.
328 */
329 static void
330 sis_read_eeprom(struct sis_softc *sc, caddr_t dest, int off, int cnt, int swap)
331 {
332 int i;
333 uint16_t word = 0, *ptr;
334
335 for (i = 0; i < cnt; i++) {
336 sis_eeprom_getword(sc, off + i, &word);
337 ptr = (uint16_t *)(dest + (i * 2));
338 if (swap)
339 *ptr = ntohs(word);
340 else
341 *ptr = word;
342 }
343 }
344
345 #if defined(__i386__) || defined(__amd64__)
346 static device_t
347 sis_find_bridge(device_t dev)
348 {
349 devclass_t pci_devclass;
350 device_t *pci_devices;
351 int pci_count = 0;
352 device_t *pci_children;
353 int pci_childcount = 0;
354 device_t *busp, *childp;
355 device_t child = NULL;
356 int i, j;
357
358 if ((pci_devclass = devclass_find("pci")) == NULL)
359 return (NULL);
360
361 devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
362
363 for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
364 if (device_get_children(*busp, &pci_children, &pci_childcount))
365 continue;
366 for (j = 0, childp = pci_children;
367 j < pci_childcount; j++, childp++) {
368 if (pci_get_vendor(*childp) == SIS_VENDORID &&
369 pci_get_device(*childp) == 0x0008) {
370 child = *childp;
371 free(pci_children, M_TEMP);
372 goto done;
373 }
374 }
375 free(pci_children, M_TEMP);
376 }
377
378 done:
379 free(pci_devices, M_TEMP);
380 return (child);
381 }
382
383 static void
384 sis_read_cmos(struct sis_softc *sc, device_t dev, caddr_t dest, int off, int cnt)
385 {
386 device_t bridge;
387 uint8_t reg;
388 int i;
389 bus_space_tag_t btag;
390
391 bridge = sis_find_bridge(dev);
392 if (bridge == NULL)
393 return;
394 reg = pci_read_config(bridge, 0x48, 1);
395 pci_write_config(bridge, 0x48, reg|0x40, 1);
396
397 /* XXX */
398 #if defined(__i386__)
399 btag = I386_BUS_SPACE_IO;
400 #elif defined(__amd64__)
401 btag = AMD64_BUS_SPACE_IO;
402 #endif
403
404 for (i = 0; i < cnt; i++) {
405 bus_space_write_1(btag, 0x0, 0x70, i + off);
406 *(dest + i) = bus_space_read_1(btag, 0x0, 0x71);
407 }
408
409 pci_write_config(bridge, 0x48, reg & ~0x40, 1);
410 }
411
412 static void
413 sis_read_mac(struct sis_softc *sc, device_t dev, caddr_t dest)
414 {
415 uint32_t filtsave, csrsave;
416
417 filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
418 csrsave = CSR_READ_4(sc, SIS_CSR);
419
420 CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | filtsave);
421 CSR_WRITE_4(sc, SIS_CSR, 0);
422
423 CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave & ~SIS_RXFILTCTL_ENABLE);
424
425 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
426 ((uint16_t *)dest)[0] = CSR_READ_2(sc, SIS_RXFILT_DATA);
427 CSR_WRITE_4(sc, SIS_RXFILT_CTL,SIS_FILTADDR_PAR1);
428 ((uint16_t *)dest)[1] = CSR_READ_2(sc, SIS_RXFILT_DATA);
429 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
430 ((uint16_t *)dest)[2] = CSR_READ_2(sc, SIS_RXFILT_DATA);
431
432 CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
433 CSR_WRITE_4(sc, SIS_CSR, csrsave);
434 }
435 #endif
436
437 /*
438 * Read the MII serial port for the MII bit-bang module.
439 */
440 static uint32_t
441 sis_mii_bitbang_read(device_t dev)
442 {
443 struct sis_softc *sc;
444 uint32_t val;
445
446 sc = device_get_softc(dev);
447
448 val = CSR_READ_4(sc, SIS_EECTL);
449 CSR_BARRIER(sc, SIS_EECTL, 4,
450 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
451 return (val);
452 }
453
454 /*
455 * Write the MII serial port for the MII bit-bang module.
456 */
457 static void
458 sis_mii_bitbang_write(device_t dev, uint32_t val)
459 {
460 struct sis_softc *sc;
461
462 sc = device_get_softc(dev);
463
464 CSR_WRITE_4(sc, SIS_EECTL, val);
465 CSR_BARRIER(sc, SIS_EECTL, 4,
466 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
467 }
468
469 static int
470 sis_miibus_readreg(device_t dev, int phy, int reg)
471 {
472 struct sis_softc *sc;
473
474 sc = device_get_softc(dev);
475
476 if (sc->sis_type == SIS_TYPE_83815) {
477 if (phy != 0)
478 return (0);
479 /*
480 * The NatSemi chip can take a while after
481 * a reset to come ready, during which the BMSR
482 * returns a value of 0. This is *never* supposed
483 * to happen: some of the BMSR bits are meant to
484 * be hardwired in the on position, and this can
485 * confuse the miibus code a bit during the probe
486 * and attach phase. So we make an effort to check
487 * for this condition and wait for it to clear.
488 */
489 if (!CSR_READ_4(sc, NS_BMSR))
490 DELAY(1000);
491 return CSR_READ_4(sc, NS_BMCR + (reg * 4));
492 }
493
494 /*
495 * Chipsets < SIS_635 seem not to be able to read/write
496 * through mdio. Use the enhanced PHY access register
497 * again for them.
498 */
499 if (sc->sis_type == SIS_TYPE_900 &&
500 sc->sis_rev < SIS_REV_635) {
501 int i, val = 0;
502
503 if (phy != 0)
504 return (0);
505
506 CSR_WRITE_4(sc, SIS_PHYCTL,
507 (phy << 11) | (reg << 6) | SIS_PHYOP_READ);
508 SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
509
510 for (i = 0; i < SIS_TIMEOUT; i++) {
511 if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
512 break;
513 }
514
515 if (i == SIS_TIMEOUT) {
516 device_printf(sc->sis_dev,
517 "PHY failed to come ready\n");
518 return (0);
519 }
520
521 val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF;
522
523 if (val == 0xFFFF)
524 return (0);
525
526 return (val);
527 } else
528 return (mii_bitbang_readreg(dev, &sis_mii_bitbang_ops, phy,
529 reg));
530 }
531
532 static int
533 sis_miibus_writereg(device_t dev, int phy, int reg, int data)
534 {
535 struct sis_softc *sc;
536
537 sc = device_get_softc(dev);
538
539 if (sc->sis_type == SIS_TYPE_83815) {
540 if (phy != 0)
541 return (0);
542 CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data);
543 return (0);
544 }
545
546 /*
547 * Chipsets < SIS_635 seem not to be able to read/write
548 * through mdio. Use the enhanced PHY access register
549 * again for them.
550 */
551 if (sc->sis_type == SIS_TYPE_900 &&
552 sc->sis_rev < SIS_REV_635) {
553 int i;
554
555 if (phy != 0)
556 return (0);
557
558 CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) |
559 (reg << 6) | SIS_PHYOP_WRITE);
560 SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
561
562 for (i = 0; i < SIS_TIMEOUT; i++) {
563 if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
564 break;
565 }
566
567 if (i == SIS_TIMEOUT)
568 device_printf(sc->sis_dev,
569 "PHY failed to come ready\n");
570 } else
571 mii_bitbang_writereg(dev, &sis_mii_bitbang_ops, phy, reg,
572 data);
573 return (0);
574 }
575
576 static void
577 sis_miibus_statchg(device_t dev)
578 {
579 struct sis_softc *sc;
580 struct mii_data *mii;
581 struct ifnet *ifp;
582 uint32_t reg;
583
584 sc = device_get_softc(dev);
585 SIS_LOCK_ASSERT(sc);
586
587 mii = device_get_softc(sc->sis_miibus);
588 ifp = sc->sis_ifp;
589 if (mii == NULL || ifp == NULL ||
590 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
591 return;
592
593 sc->sis_flags &= ~SIS_FLAG_LINK;
594 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
595 (IFM_ACTIVE | IFM_AVALID)) {
596 switch (IFM_SUBTYPE(mii->mii_media_active)) {
597 case IFM_10_T:
598 CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10);
599 sc->sis_flags |= SIS_FLAG_LINK;
600 break;
601 case IFM_100_TX:
602 CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
603 sc->sis_flags |= SIS_FLAG_LINK;
604 break;
605 default:
606 break;
607 }
608 }
609
610 if ((sc->sis_flags & SIS_FLAG_LINK) == 0) {
611 /*
612 * Stopping MACs seem to reset SIS_TX_LISTPTR and
613 * SIS_RX_LISTPTR which in turn requires resetting
614 * TX/RX buffers. So just don't do anything for
615 * lost link.
616 */
617 return;
618 }
619
620 /* Set full/half duplex mode. */
621 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
622 SIS_SETBIT(sc, SIS_TX_CFG,
623 (SIS_TXCFG_IGN_HBEAT | SIS_TXCFG_IGN_CARR));
624 SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
625 } else {
626 SIS_CLRBIT(sc, SIS_TX_CFG,
627 (SIS_TXCFG_IGN_HBEAT | SIS_TXCFG_IGN_CARR));
628 SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
629 }
630
631 if (sc->sis_type == SIS_TYPE_83816) {
632 /*
633 * MPII03.D: Half Duplex Excessive Collisions.
634 * Also page 49 in 83816 manual
635 */
636 SIS_SETBIT(sc, SIS_TX_CFG, SIS_TXCFG_MPII03D);
637 }
638
639 if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr < NS_SRR_16A &&
640 IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
641 /*
642 * Short Cable Receive Errors (MP21.E)
643 */
644 CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
645 reg = CSR_READ_4(sc, NS_PHY_DSPCFG) & 0xfff;
646 CSR_WRITE_4(sc, NS_PHY_DSPCFG, reg | 0x1000);
647 DELAY(100);
648 reg = CSR_READ_4(sc, NS_PHY_TDATA) & 0xff;
649 if ((reg & 0x0080) == 0 || (reg > 0xd8 && reg <= 0xff)) {
650 device_printf(sc->sis_dev,
651 "Applying short cable fix (reg=%x)\n", reg);
652 CSR_WRITE_4(sc, NS_PHY_TDATA, 0x00e8);
653 SIS_SETBIT(sc, NS_PHY_DSPCFG, 0x20);
654 }
655 CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
656 }
657 /* Enable TX/RX MACs. */
658 SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE | SIS_CSR_RX_DISABLE);
659 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE | SIS_CSR_RX_ENABLE);
660 }
661
662 static uint32_t
663 sis_mchash(struct sis_softc *sc, const uint8_t *addr)
664 {
665 uint32_t crc;
666
667 /* Compute CRC for the address value. */
668 crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
669
670 /*
671 * return the filter bit position
672 *
673 * The NatSemi chip has a 512-bit filter, which is
674 * different than the SiS, so we special-case it.
675 */
676 if (sc->sis_type == SIS_TYPE_83815)
677 return (crc >> 23);
678 else if (sc->sis_rev >= SIS_REV_635 ||
679 sc->sis_rev == SIS_REV_900B)
680 return (crc >> 24);
681 else
682 return (crc >> 25);
683 }
684
685 static void
686 sis_rxfilter(struct sis_softc *sc)
687 {
688
689 SIS_LOCK_ASSERT(sc);
690
691 if (sc->sis_type == SIS_TYPE_83815)
692 sis_rxfilter_ns(sc);
693 else
694 sis_rxfilter_sis(sc);
695 }
696
697 static void
698 sis_rxfilter_ns(struct sis_softc *sc)
699 {
700 struct ifnet *ifp;
701 struct ifmultiaddr *ifma;
702 uint32_t h, i, filter;
703 int bit, index;
704
705 ifp = sc->sis_ifp;
706 filter = CSR_READ_4(sc, SIS_RXFILT_CTL);
707 if (filter & SIS_RXFILTCTL_ENABLE) {
708 /*
709 * Filter should be disabled to program other bits.
710 */
711 CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter & ~SIS_RXFILTCTL_ENABLE);
712 CSR_READ_4(sc, SIS_RXFILT_CTL);
713 }
714 filter &= ~(NS_RXFILTCTL_ARP | NS_RXFILTCTL_PERFECT |
715 NS_RXFILTCTL_MCHASH | SIS_RXFILTCTL_ALLPHYS | SIS_RXFILTCTL_BROAD |
716 SIS_RXFILTCTL_ALLMULTI);
717
718 if (ifp->if_flags & IFF_BROADCAST)
719 filter |= SIS_RXFILTCTL_BROAD;
720 /*
721 * For the NatSemi chip, we have to explicitly enable the
722 * reception of ARP frames, as well as turn on the 'perfect
723 * match' filter where we store the station address, otherwise
724 * we won't receive unicasts meant for this host.
725 */
726 filter |= NS_RXFILTCTL_ARP | NS_RXFILTCTL_PERFECT;
727
728 if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
729 filter |= SIS_RXFILTCTL_ALLMULTI;
730 if (ifp->if_flags & IFF_PROMISC)
731 filter |= SIS_RXFILTCTL_ALLPHYS;
732 } else {
733 /*
734 * We have to explicitly enable the multicast hash table
735 * on the NatSemi chip if we want to use it, which we do.
736 */
737 filter |= NS_RXFILTCTL_MCHASH;
738
739 /* first, zot all the existing hash bits */
740 for (i = 0; i < 32; i++) {
741 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO +
742 (i * 2));
743 CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0);
744 }
745
746 IF_ADDR_LOCK(ifp);
747 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
748 if (ifma->ifma_addr->sa_family != AF_LINK)
749 continue;
750 h = sis_mchash(sc,
751 LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
752 index = h >> 3;
753 bit = h & 0x1F;
754 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO +
755 index);
756 if (bit > 0xF)
757 bit -= 0x10;
758 SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit));
759 }
760 IF_ADDR_UNLOCK(ifp);
761 }
762
763 CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter);
764 CSR_READ_4(sc, SIS_RXFILT_CTL);
765 }
766
767 static void
768 sis_rxfilter_sis(struct sis_softc *sc)
769 {
770 struct ifnet *ifp;
771 struct ifmultiaddr *ifma;
772 uint32_t filter, h, i, n;
773 uint16_t hashes[16];
774
775 ifp = sc->sis_ifp;
776
777 /* hash table size */
778 if (sc->sis_rev >= SIS_REV_635 || sc->sis_rev == SIS_REV_900B)
779 n = 16;
780 else
781 n = 8;
782
783 filter = CSR_READ_4(sc, SIS_RXFILT_CTL);
784 if (filter & SIS_RXFILTCTL_ENABLE) {
785 CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter & ~SIS_RXFILT_CTL);
786 CSR_READ_4(sc, SIS_RXFILT_CTL);
787 }
788 filter &= ~(SIS_RXFILTCTL_ALLPHYS | SIS_RXFILTCTL_BROAD |
789 SIS_RXFILTCTL_ALLMULTI);
790 if (ifp->if_flags & IFF_BROADCAST)
791 filter |= SIS_RXFILTCTL_BROAD;
792
793 if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
794 filter |= SIS_RXFILTCTL_ALLMULTI;
795 if (ifp->if_flags & IFF_PROMISC)
796 filter |= SIS_RXFILTCTL_ALLPHYS;
797 for (i = 0; i < n; i++)
798 hashes[i] = ~0;
799 } else {
800 for (i = 0; i < n; i++)
801 hashes[i] = 0;
802 i = 0;
803 IF_ADDR_LOCK(ifp);
804 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
805 if (ifma->ifma_addr->sa_family != AF_LINK)
806 continue;
807 h = sis_mchash(sc,
808 LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
809 hashes[h >> 4] |= 1 << (h & 0xf);
810 i++;
811 }
812 IF_ADDR_UNLOCK(ifp);
813 if (i > n) {
814 filter |= SIS_RXFILTCTL_ALLMULTI;
815 for (i = 0; i < n; i++)
816 hashes[i] = ~0;
817 }
818 }
819
820 for (i = 0; i < n; i++) {
821 CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16);
822 CSR_WRITE_4(sc, SIS_RXFILT_DATA, hashes[i]);
823 }
824
825 CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter);
826 CSR_READ_4(sc, SIS_RXFILT_CTL);
827 }
828
829 static void
830 sis_reset(struct sis_softc *sc)
831 {
832 int i;
833
834 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET);
835
836 for (i = 0; i < SIS_TIMEOUT; i++) {
837 if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET))
838 break;
839 }
840
841 if (i == SIS_TIMEOUT)
842 device_printf(sc->sis_dev, "reset never completed\n");
843
844 /* Wait a little while for the chip to get its brains in order. */
845 DELAY(1000);
846
847 /*
848 * If this is a NetSemi chip, make sure to clear
849 * PME mode.
850 */
851 if (sc->sis_type == SIS_TYPE_83815) {
852 CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS);
853 CSR_WRITE_4(sc, NS_CLKRUN, 0);
854 } else {
855 /* Disable WOL functions. */
856 CSR_WRITE_4(sc, SIS_PWRMAN_CTL, 0);
857 }
858 }
859
860 /*
861 * Probe for an SiS chip. Check the PCI vendor and device
862 * IDs against our list and return a device name if we find a match.
863 */
864 static int
865 sis_probe(device_t dev)
866 {
867 const struct sis_type *t;
868
869 t = sis_devs;
870
871 while (t->sis_name != NULL) {
872 if ((pci_get_vendor(dev) == t->sis_vid) &&
873 (pci_get_device(dev) == t->sis_did)) {
874 device_set_desc(dev, t->sis_name);
875 return (BUS_PROBE_DEFAULT);
876 }
877 t++;
878 }
879
880 return (ENXIO);
881 }
882
883 /*
884 * Attach the interface. Allocate softc structures, do ifmedia
885 * setup and ethernet/BPF attach.
886 */
887 static int
888 sis_attach(device_t dev)
889 {
890 u_char eaddr[ETHER_ADDR_LEN];
891 struct sis_softc *sc;
892 struct ifnet *ifp;
893 int error = 0, pmc, waittime = 0;
894
895 waittime = 0;
896 sc = device_get_softc(dev);
897
898 sc->sis_dev = dev;
899
900 mtx_init(&sc->sis_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
901 MTX_DEF);
902 callout_init_mtx(&sc->sis_stat_ch, &sc->sis_mtx, 0);
903
904 if (pci_get_device(dev) == SIS_DEVICEID_900)
905 sc->sis_type = SIS_TYPE_900;
906 if (pci_get_device(dev) == SIS_DEVICEID_7016)
907 sc->sis_type = SIS_TYPE_7016;
908 if (pci_get_vendor(dev) == NS_VENDORID)
909 sc->sis_type = SIS_TYPE_83815;
910
911 sc->sis_rev = pci_read_config(dev, PCIR_REVID, 1);
912 /*
913 * Map control/status registers.
914 */
915 pci_enable_busmaster(dev);
916
917 error = bus_alloc_resources(dev, sis_res_spec, sc->sis_res);
918 if (error) {
919 device_printf(dev, "couldn't allocate resources\n");
920 goto fail;
921 }
922
923 /* Reset the adapter. */
924 sis_reset(sc);
925
926 if (sc->sis_type == SIS_TYPE_900 &&
927 (sc->sis_rev == SIS_REV_635 ||
928 sc->sis_rev == SIS_REV_900B)) {
929 SIO_SET(SIS_CFG_RND_CNT);
930 SIO_SET(SIS_CFG_PERR_DETECT);
931 }
932
933 /*
934 * Get station address from the EEPROM.
935 */
936 switch (pci_get_vendor(dev)) {
937 case NS_VENDORID:
938 sc->sis_srr = CSR_READ_4(sc, NS_SRR);
939
940 /* We can't update the device description, so spew */
941 if (sc->sis_srr == NS_SRR_15C)
942 device_printf(dev, "Silicon Revision: DP83815C\n");
943 else if (sc->sis_srr == NS_SRR_15D)
944 device_printf(dev, "Silicon Revision: DP83815D\n");
945 else if (sc->sis_srr == NS_SRR_16A)
946 device_printf(dev, "Silicon Revision: DP83816A\n");
947 else
948 device_printf(dev, "Silicon Revision %x\n", sc->sis_srr);
949
950 /*
951 * Reading the MAC address out of the EEPROM on
952 * the NatSemi chip takes a bit more work than
953 * you'd expect. The address spans 4 16-bit words,
954 * with the first word containing only a single bit.
955 * You have to shift everything over one bit to
956 * get it aligned properly. Also, the bits are
957 * stored backwards (the LSB is really the MSB,
958 * and so on) so you have to reverse them in order
959 * to get the MAC address into the form we want.
960 * Why? Who the hell knows.
961 */
962 {
963 uint16_t tmp[4];
964
965 sis_read_eeprom(sc, (caddr_t)&tmp,
966 NS_EE_NODEADDR, 4, 0);
967
968 /* Shift everything over one bit. */
969 tmp[3] = tmp[3] >> 1;
970 tmp[3] |= tmp[2] << 15;
971 tmp[2] = tmp[2] >> 1;
972 tmp[2] |= tmp[1] << 15;
973 tmp[1] = tmp[1] >> 1;
974 tmp[1] |= tmp[0] << 15;
975
976 /* Now reverse all the bits. */
977 tmp[3] = sis_reverse(tmp[3]);
978 tmp[2] = sis_reverse(tmp[2]);
979 tmp[1] = sis_reverse(tmp[1]);
980
981 eaddr[0] = (tmp[1] >> 0) & 0xFF;
982 eaddr[1] = (tmp[1] >> 8) & 0xFF;
983 eaddr[2] = (tmp[2] >> 0) & 0xFF;
984 eaddr[3] = (tmp[2] >> 8) & 0xFF;
985 eaddr[4] = (tmp[3] >> 0) & 0xFF;
986 eaddr[5] = (tmp[3] >> 8) & 0xFF;
987 }
988 break;
989 case SIS_VENDORID:
990 default:
991 #if defined(__i386__) || defined(__amd64__)
992 /*
993 * If this is a SiS 630E chipset with an embedded
994 * SiS 900 controller, we have to read the MAC address
995 * from the APC CMOS RAM. Our method for doing this
996 * is very ugly since we have to reach out and grab
997 * ahold of hardware for which we cannot properly
998 * allocate resources. This code is only compiled on
999 * the i386 architecture since the SiS 630E chipset
1000 * is for x86 motherboards only. Note that there are
1001 * a lot of magic numbers in this hack. These are
1002 * taken from SiS's Linux driver. I'd like to replace
1003 * them with proper symbolic definitions, but that
1004 * requires some datasheets that I don't have access
1005 * to at the moment.
1006 */
1007 if (sc->sis_rev == SIS_REV_630S ||
1008 sc->sis_rev == SIS_REV_630E ||
1009 sc->sis_rev == SIS_REV_630EA1)
1010 sis_read_cmos(sc, dev, (caddr_t)&eaddr, 0x9, 6);
1011
1012 else if (sc->sis_rev == SIS_REV_635 ||
1013 sc->sis_rev == SIS_REV_630ET)
1014 sis_read_mac(sc, dev, (caddr_t)&eaddr);
1015 else if (sc->sis_rev == SIS_REV_96x) {
1016 /* Allow to read EEPROM from LAN. It is shared
1017 * between a 1394 controller and the NIC and each
1018 * time we access it, we need to set SIS_EECMD_REQ.
1019 */
1020 SIO_SET(SIS_EECMD_REQ);
1021 for (waittime = 0; waittime < SIS_TIMEOUT;
1022 waittime++) {
1023 /* Force EEPROM to idle state. */
1024 sis_eeprom_idle(sc);
1025 if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECMD_GNT) {
1026 sis_read_eeprom(sc, (caddr_t)&eaddr,
1027 SIS_EE_NODEADDR, 3, 0);
1028 break;
1029 }
1030 DELAY(1);
1031 }
1032 /*
1033 * Set SIS_EECTL_CLK to high, so a other master
1034 * can operate on the i2c bus.
1035 */
1036 SIO_SET(SIS_EECTL_CLK);
1037 /* Refuse EEPROM access by LAN */
1038 SIO_SET(SIS_EECMD_DONE);
1039 } else
1040 #endif
1041 sis_read_eeprom(sc, (caddr_t)&eaddr,
1042 SIS_EE_NODEADDR, 3, 0);
1043 break;
1044 }
1045
1046 sis_add_sysctls(sc);
1047
1048 /* Allocate DMA'able memory. */
1049 if ((error = sis_dma_alloc(sc)) != 0)
1050 goto fail;
1051
1052 ifp = sc->sis_ifp = if_alloc(IFT_ETHER);
1053 if (ifp == NULL) {
1054 device_printf(dev, "can not if_alloc()\n");
1055 error = ENOSPC;
1056 goto fail;
1057 }
1058 ifp->if_softc = sc;
1059 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1060 ifp->if_mtu = ETHERMTU;
1061 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1062 ifp->if_ioctl = sis_ioctl;
1063 ifp->if_start = sis_start;
1064 ifp->if_init = sis_init;
1065 IFQ_SET_MAXLEN(&ifp->if_snd, SIS_TX_LIST_CNT - 1);
1066 ifp->if_snd.ifq_drv_maxlen = SIS_TX_LIST_CNT - 1;
1067 IFQ_SET_READY(&ifp->if_snd);
1068
1069 if (pci_find_extcap(sc->sis_dev, PCIY_PMG, &pmc) == 0) {
1070 if (sc->sis_type == SIS_TYPE_83815)
1071 ifp->if_capabilities |= IFCAP_WOL;
1072 else
1073 ifp->if_capabilities |= IFCAP_WOL_MAGIC;
1074 ifp->if_capenable = ifp->if_capabilities;
1075 }
1076
1077 /*
1078 * Do MII setup.
1079 */
1080 error = mii_attach(dev, &sc->sis_miibus, ifp, sis_ifmedia_upd,
1081 sis_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
1082 if (error != 0) {
1083 device_printf(dev, "attaching PHYs failed\n");
1084 goto fail;
1085 }
1086
1087 /*
1088 * Call MI attach routine.
1089 */
1090 ether_ifattach(ifp, eaddr);
1091
1092 /*
1093 * Tell the upper layer(s) we support long frames.
1094 */
1095 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1096 ifp->if_capabilities |= IFCAP_VLAN_MTU;
1097 ifp->if_capenable = ifp->if_capabilities;
1098 #ifdef DEVICE_POLLING
1099 ifp->if_capabilities |= IFCAP_POLLING;
1100 #endif
1101
1102 /* Hook interrupt last to avoid having to lock softc */
1103 error = bus_setup_intr(dev, sc->sis_res[1], INTR_TYPE_NET | INTR_MPSAFE,
1104 NULL, sis_intr, sc, &sc->sis_intrhand);
1105
1106 if (error) {
1107 device_printf(dev, "couldn't set up irq\n");
1108 ether_ifdetach(ifp);
1109 goto fail;
1110 }
1111
1112 fail:
1113 if (error)
1114 sis_detach(dev);
1115
1116 return (error);
1117 }
1118
1119 /*
1120 * Shutdown hardware and free up resources. This can be called any
1121 * time after the mutex has been initialized. It is called in both
1122 * the error case in attach and the normal detach case so it needs
1123 * to be careful about only freeing resources that have actually been
1124 * allocated.
1125 */
1126 static int
1127 sis_detach(device_t dev)
1128 {
1129 struct sis_softc *sc;
1130 struct ifnet *ifp;
1131
1132 sc = device_get_softc(dev);
1133 KASSERT(mtx_initialized(&sc->sis_mtx), ("sis mutex not initialized"));
1134 ifp = sc->sis_ifp;
1135
1136 #ifdef DEVICE_POLLING
1137 if (ifp->if_capenable & IFCAP_POLLING)
1138 ether_poll_deregister(ifp);
1139 #endif
1140
1141 /* These should only be active if attach succeeded. */
1142 if (device_is_attached(dev)) {
1143 SIS_LOCK(sc);
1144 sis_stop(sc);
1145 SIS_UNLOCK(sc);
1146 callout_drain(&sc->sis_stat_ch);
1147 ether_ifdetach(ifp);
1148 }
1149 if (sc->sis_miibus)
1150 device_delete_child(dev, sc->sis_miibus);
1151 bus_generic_detach(dev);
1152
1153 if (sc->sis_intrhand)
1154 bus_teardown_intr(dev, sc->sis_res[1], sc->sis_intrhand);
1155 bus_release_resources(dev, sis_res_spec, sc->sis_res);
1156
1157 if (ifp)
1158 if_free(ifp);
1159
1160 sis_dma_free(sc);
1161
1162 mtx_destroy(&sc->sis_mtx);
1163
1164 return (0);
1165 }
1166
1167 struct sis_dmamap_arg {
1168 bus_addr_t sis_busaddr;
1169 };
1170
1171 static void
1172 sis_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1173 {
1174 struct sis_dmamap_arg *ctx;
1175
1176 if (error != 0)
1177 return;
1178
1179 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1180
1181 ctx = (struct sis_dmamap_arg *)arg;
1182 ctx->sis_busaddr = segs[0].ds_addr;
1183 }
1184
1185 static int
1186 sis_dma_ring_alloc(struct sis_softc *sc, bus_size_t alignment,
1187 bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
1188 bus_addr_t *paddr, const char *msg)
1189 {
1190 struct sis_dmamap_arg ctx;
1191 int error;
1192
1193 error = bus_dma_tag_create(sc->sis_parent_tag, alignment, 0,
1194 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, maxsize, 1,
1195 maxsize, 0, NULL, NULL, tag);
1196 if (error != 0) {
1197 device_printf(sc->sis_dev,
1198 "could not create %s dma tag\n", msg);
1199 return (ENOMEM);
1200 }
1201 /* Allocate DMA'able memory for ring. */
1202 error = bus_dmamem_alloc(*tag, (void **)ring,
1203 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
1204 if (error != 0) {
1205 device_printf(sc->sis_dev,
1206 "could not allocate DMA'able memory for %s\n", msg);
1207 return (ENOMEM);
1208 }
1209 /* Load the address of the ring. */
1210 ctx.sis_busaddr = 0;
1211 error = bus_dmamap_load(*tag, *map, *ring, maxsize, sis_dmamap_cb,
1212 &ctx, BUS_DMA_NOWAIT);
1213 if (error != 0) {
1214 device_printf(sc->sis_dev,
1215 "could not load DMA'able memory for %s\n", msg);
1216 return (ENOMEM);
1217 }
1218 *paddr = ctx.sis_busaddr;
1219 return (0);
1220 }
1221
1222 static int
1223 sis_dma_alloc(struct sis_softc *sc)
1224 {
1225 struct sis_rxdesc *rxd;
1226 struct sis_txdesc *txd;
1227 int error, i;
1228
1229 /* Allocate the parent bus DMA tag appropriate for PCI. */
1230 error = bus_dma_tag_create(bus_get_dma_tag(sc->sis_dev),
1231 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1232 NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
1233 0, NULL, NULL, &sc->sis_parent_tag);
1234 if (error != 0) {
1235 device_printf(sc->sis_dev,
1236 "could not allocate parent dma tag\n");
1237 return (ENOMEM);
1238 }
1239
1240 /* Create RX ring. */
1241 error = sis_dma_ring_alloc(sc, SIS_DESC_ALIGN, SIS_RX_LIST_SZ,
1242 &sc->sis_rx_list_tag, (uint8_t **)&sc->sis_rx_list,
1243 &sc->sis_rx_list_map, &sc->sis_rx_paddr, "RX ring");
1244 if (error)
1245 return (error);
1246
1247 /* Create TX ring. */
1248 error = sis_dma_ring_alloc(sc, SIS_DESC_ALIGN, SIS_TX_LIST_SZ,
1249 &sc->sis_tx_list_tag, (uint8_t **)&sc->sis_tx_list,
1250 &sc->sis_tx_list_map, &sc->sis_tx_paddr, "TX ring");
1251 if (error)
1252 return (error);
1253
1254 /* Create tag for RX mbufs. */
1255 error = bus_dma_tag_create(sc->sis_parent_tag, SIS_RX_BUF_ALIGN, 0,
1256 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
1257 MCLBYTES, 0, NULL, NULL, &sc->sis_rx_tag);
1258 if (error) {
1259 device_printf(sc->sis_dev, "could not allocate RX dma tag\n");
1260 return (error);
1261 }
1262
1263 /* Create tag for TX mbufs. */
1264 error = bus_dma_tag_create(sc->sis_parent_tag, 1, 0,
1265 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1266 MCLBYTES * SIS_MAXTXSEGS, SIS_MAXTXSEGS, MCLBYTES, 0, NULL, NULL,
1267 &sc->sis_tx_tag);
1268 if (error) {
1269 device_printf(sc->sis_dev, "could not allocate TX dma tag\n");
1270 return (error);
1271 }
1272
1273 /* Create DMA maps for RX buffers. */
1274 error = bus_dmamap_create(sc->sis_rx_tag, 0, &sc->sis_rx_sparemap);
1275 if (error) {
1276 device_printf(sc->sis_dev,
1277 "can't create spare DMA map for RX\n");
1278 return (error);
1279 }
1280 for (i = 0; i < SIS_RX_LIST_CNT; i++) {
1281 rxd = &sc->sis_rxdesc[i];
1282 rxd->rx_m = NULL;
1283 error = bus_dmamap_create(sc->sis_rx_tag, 0, &rxd->rx_dmamap);
1284 if (error) {
1285 device_printf(sc->sis_dev,
1286 "can't create DMA map for RX\n");
1287 return (error);
1288 }
1289 }
1290
1291 /* Create DMA maps for TX buffers. */
1292 for (i = 0; i < SIS_TX_LIST_CNT; i++) {
1293 txd = &sc->sis_txdesc[i];
1294 txd->tx_m = NULL;
1295 error = bus_dmamap_create(sc->sis_tx_tag, 0, &txd->tx_dmamap);
1296 if (error) {
1297 device_printf(sc->sis_dev,
1298 "can't create DMA map for TX\n");
1299 return (error);
1300 }
1301 }
1302
1303 return (0);
1304 }
1305
1306 static void
1307 sis_dma_free(struct sis_softc *sc)
1308 {
1309 struct sis_rxdesc *rxd;
1310 struct sis_txdesc *txd;
1311 int i;
1312
1313 /* Destroy DMA maps for RX buffers. */
1314 for (i = 0; i < SIS_RX_LIST_CNT; i++) {
1315 rxd = &sc->sis_rxdesc[i];
1316 if (rxd->rx_dmamap)
1317 bus_dmamap_destroy(sc->sis_rx_tag, rxd->rx_dmamap);
1318 }
1319 if (sc->sis_rx_sparemap)
1320 bus_dmamap_destroy(sc->sis_rx_tag, sc->sis_rx_sparemap);
1321
1322 /* Destroy DMA maps for TX buffers. */
1323 for (i = 0; i < SIS_TX_LIST_CNT; i++) {
1324 txd = &sc->sis_txdesc[i];
1325 if (txd->tx_dmamap)
1326 bus_dmamap_destroy(sc->sis_tx_tag, txd->tx_dmamap);
1327 }
1328
1329 if (sc->sis_rx_tag)
1330 bus_dma_tag_destroy(sc->sis_rx_tag);
1331 if (sc->sis_tx_tag)
1332 bus_dma_tag_destroy(sc->sis_tx_tag);
1333
1334 /* Destroy RX ring. */
1335 if (sc->sis_rx_list_map)
1336 bus_dmamap_unload(sc->sis_rx_list_tag, sc->sis_rx_list_map);
1337 if (sc->sis_rx_list_map && sc->sis_rx_list)
1338 bus_dmamem_free(sc->sis_rx_list_tag, sc->sis_rx_list,
1339 sc->sis_rx_list_map);
1340
1341 if (sc->sis_rx_list_tag)
1342 bus_dma_tag_destroy(sc->sis_rx_list_tag);
1343
1344 /* Destroy TX ring. */
1345 if (sc->sis_tx_list_map)
1346 bus_dmamap_unload(sc->sis_tx_list_tag, sc->sis_tx_list_map);
1347
1348 if (sc->sis_tx_list_map && sc->sis_tx_list)
1349 bus_dmamem_free(sc->sis_tx_list_tag, sc->sis_tx_list,
1350 sc->sis_tx_list_map);
1351
1352 if (sc->sis_tx_list_tag)
1353 bus_dma_tag_destroy(sc->sis_tx_list_tag);
1354
1355 /* Destroy the parent tag. */
1356 if (sc->sis_parent_tag)
1357 bus_dma_tag_destroy(sc->sis_parent_tag);
1358 }
1359
1360 /*
1361 * Initialize the TX and RX descriptors and allocate mbufs for them. Note that
1362 * we arrange the descriptors in a closed ring, so that the last descriptor
1363 * points back to the first.
1364 */
1365 static int
1366 sis_ring_init(struct sis_softc *sc)
1367 {
1368 struct sis_rxdesc *rxd;
1369 struct sis_txdesc *txd;
1370 bus_addr_t next;
1371 int error, i;
1372
1373 bzero(&sc->sis_tx_list[0], SIS_TX_LIST_SZ);
1374 for (i = 0; i < SIS_TX_LIST_CNT; i++) {
1375 txd = &sc->sis_txdesc[i];
1376 txd->tx_m = NULL;
1377 if (i == SIS_TX_LIST_CNT - 1)
1378 next = SIS_TX_RING_ADDR(sc, 0);
1379 else
1380 next = SIS_TX_RING_ADDR(sc, i + 1);
1381 sc->sis_tx_list[i].sis_next = htole32(SIS_ADDR_LO(next));
1382 }
1383 sc->sis_tx_prod = sc->sis_tx_cons = sc->sis_tx_cnt = 0;
1384 bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map,
1385 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1386
1387 sc->sis_rx_cons = 0;
1388 bzero(&sc->sis_rx_list[0], SIS_RX_LIST_SZ);
1389 for (i = 0; i < SIS_RX_LIST_CNT; i++) {
1390 rxd = &sc->sis_rxdesc[i];
1391 rxd->rx_desc = &sc->sis_rx_list[i];
1392 if (i == SIS_RX_LIST_CNT - 1)
1393 next = SIS_RX_RING_ADDR(sc, 0);
1394 else
1395 next = SIS_RX_RING_ADDR(sc, i + 1);
1396 rxd->rx_desc->sis_next = htole32(SIS_ADDR_LO(next));
1397 error = sis_newbuf(sc, rxd);
1398 if (error)
1399 return (error);
1400 }
1401 bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map,
1402 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1403
1404 return (0);
1405 }
1406
1407 /*
1408 * Initialize an RX descriptor and attach an MBUF cluster.
1409 */
1410 static int
1411 sis_newbuf(struct sis_softc *sc, struct sis_rxdesc *rxd)
1412 {
1413 struct mbuf *m;
1414 bus_dma_segment_t segs[1];
1415 bus_dmamap_t map;
1416 int nsegs;
1417
1418 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1419 if (m == NULL)
1420 return (ENOBUFS);
1421 m->m_len = m->m_pkthdr.len = SIS_RXLEN;
1422 #ifndef __NO_STRICT_ALIGNMENT
1423 m_adj(m, SIS_RX_BUF_ALIGN);
1424 #endif
1425
1426 if (bus_dmamap_load_mbuf_sg(sc->sis_rx_tag, sc->sis_rx_sparemap, m,
1427 segs, &nsegs, 0) != 0) {
1428 m_freem(m);
1429 return (ENOBUFS);
1430 }
1431 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1432
1433 if (rxd->rx_m != NULL) {
1434 bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap,
1435 BUS_DMASYNC_POSTREAD);
1436 bus_dmamap_unload(sc->sis_rx_tag, rxd->rx_dmamap);
1437 }
1438 map = rxd->rx_dmamap;
1439 rxd->rx_dmamap = sc->sis_rx_sparemap;
1440 sc->sis_rx_sparemap = map;
1441 bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_PREREAD);
1442 rxd->rx_m = m;
1443 rxd->rx_desc->sis_ptr = htole32(SIS_ADDR_LO(segs[0].ds_addr));
1444 rxd->rx_desc->sis_cmdsts = htole32(SIS_RXLEN);
1445 return (0);
1446 }
1447
1448 static __inline void
1449 sis_discard_rxbuf(struct sis_rxdesc *rxd)
1450 {
1451
1452 rxd->rx_desc->sis_cmdsts = htole32(SIS_RXLEN);
1453 }
1454
1455 #ifndef __NO_STRICT_ALIGNMENT
1456 static __inline void
1457 sis_fixup_rx(struct mbuf *m)
1458 {
1459 uint16_t *src, *dst;
1460 int i;
1461
1462 src = mtod(m, uint16_t *);
1463 dst = src - (SIS_RX_BUF_ALIGN - ETHER_ALIGN) / sizeof(*src);
1464
1465 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1466 *dst++ = *src++;
1467
1468 m->m_data -= SIS_RX_BUF_ALIGN - ETHER_ALIGN;
1469 }
1470 #endif
1471
1472 /*
1473 * A frame has been uploaded: pass the resulting mbuf chain up to
1474 * the higher level protocols.
1475 */
1476 static void
1477 sis_rxeof(struct sis_softc *sc)
1478 {
1479 struct mbuf *m;
1480 struct ifnet *ifp;
1481 struct sis_rxdesc *rxd;
1482 struct sis_desc *cur_rx;
1483 int prog, rx_cons, total_len;
1484 uint32_t rxstat;
1485
1486 SIS_LOCK_ASSERT(sc);
1487
1488 bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map,
1489 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1490
1491 rx_cons = sc->sis_rx_cons;
1492 ifp = sc->sis_ifp;
1493
1494 for (prog = 0; (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1495 SIS_INC(rx_cons, SIS_RX_LIST_CNT), prog++) {
1496 #ifdef DEVICE_POLLING
1497 if (ifp->if_capenable & IFCAP_POLLING) {
1498 if (sc->rxcycles <= 0)
1499 break;
1500 sc->rxcycles--;
1501 }
1502 #endif
1503 cur_rx = &sc->sis_rx_list[rx_cons];
1504 rxstat = le32toh(cur_rx->sis_cmdsts);
1505 if ((rxstat & SIS_CMDSTS_OWN) == 0)
1506 break;
1507 rxd = &sc->sis_rxdesc[rx_cons];
1508
1509 total_len = (rxstat & SIS_CMDSTS_BUFLEN) - ETHER_CRC_LEN;
1510 if ((ifp->if_capenable & IFCAP_VLAN_MTU) != 0 &&
1511 total_len <= (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN -
1512 ETHER_CRC_LEN))
1513 rxstat &= ~SIS_RXSTAT_GIANT;
1514 if (SIS_RXSTAT_ERROR(rxstat) != 0) {
1515 ifp->if_ierrors++;
1516 if (rxstat & SIS_RXSTAT_COLL)
1517 ifp->if_collisions++;
1518 sis_discard_rxbuf(rxd);
1519 continue;
1520 }
1521
1522 /* Add a new receive buffer to the ring. */
1523 m = rxd->rx_m;
1524 if (sis_newbuf(sc, rxd) != 0) {
1525 ifp->if_iqdrops++;
1526 sis_discard_rxbuf(rxd);
1527 continue;
1528 }
1529
1530 /* No errors; receive the packet. */
1531 m->m_pkthdr.len = m->m_len = total_len;
1532 #ifndef __NO_STRICT_ALIGNMENT
1533 /*
1534 * On architectures without alignment problems we try to
1535 * allocate a new buffer for the receive ring, and pass up
1536 * the one where the packet is already, saving the expensive
1537 * copy operation.
1538 */
1539 sis_fixup_rx(m);
1540 #endif
1541 ifp->if_ipackets++;
1542 m->m_pkthdr.rcvif = ifp;
1543
1544 SIS_UNLOCK(sc);
1545 (*ifp->if_input)(ifp, m);
1546 SIS_LOCK(sc);
1547 }
1548
1549 if (prog > 0) {
1550 sc->sis_rx_cons = rx_cons;
1551 bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map,
1552 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1553 }
1554
1555 }
1556
1557 /*
1558 * A frame was downloaded to the chip. It's safe for us to clean up
1559 * the list buffers.
1560 */
1561
1562 static void
1563 sis_txeof(struct sis_softc *sc)
1564 {
1565 struct ifnet *ifp;
1566 struct sis_desc *cur_tx;
1567 struct sis_txdesc *txd;
1568 uint32_t cons, txstat;
1569
1570 SIS_LOCK_ASSERT(sc);
1571
1572 cons = sc->sis_tx_cons;
1573 if (cons == sc->sis_tx_prod)
1574 return;
1575
1576 ifp = sc->sis_ifp;
1577 bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map,
1578 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1579
1580 /*
1581 * Go through our tx list and free mbufs for those
1582 * frames that have been transmitted.
1583 */
1584 for (; cons != sc->sis_tx_prod; SIS_INC(cons, SIS_TX_LIST_CNT)) {
1585 cur_tx = &sc->sis_tx_list[cons];
1586 txstat = le32toh(cur_tx->sis_cmdsts);
1587 if ((txstat & SIS_CMDSTS_OWN) != 0)
1588 break;
1589 txd = &sc->sis_txdesc[cons];
1590 if (txd->tx_m != NULL) {
1591 bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap,
1592 BUS_DMASYNC_POSTWRITE);
1593 bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap);
1594 m_freem(txd->tx_m);
1595 txd->tx_m = NULL;
1596 if ((txstat & SIS_CMDSTS_PKT_OK) != 0) {
1597 ifp->if_opackets++;
1598 ifp->if_collisions +=
1599 (txstat & SIS_TXSTAT_COLLCNT) >> 16;
1600 } else {
1601 ifp->if_oerrors++;
1602 if (txstat & SIS_TXSTAT_EXCESSCOLLS)
1603 ifp->if_collisions++;
1604 if (txstat & SIS_TXSTAT_OUTOFWINCOLL)
1605 ifp->if_collisions++;
1606 }
1607 }
1608 sc->sis_tx_cnt--;
1609 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1610 }
1611 sc->sis_tx_cons = cons;
1612 if (sc->sis_tx_cnt == 0)
1613 sc->sis_watchdog_timer = 0;
1614 }
1615
1616 static void
1617 sis_tick(void *xsc)
1618 {
1619 struct sis_softc *sc;
1620 struct mii_data *mii;
1621 struct ifnet *ifp;
1622
1623 sc = xsc;
1624 SIS_LOCK_ASSERT(sc);
1625 ifp = sc->sis_ifp;
1626
1627 mii = device_get_softc(sc->sis_miibus);
1628 mii_tick(mii);
1629 sis_watchdog(sc);
1630 if ((sc->sis_flags & SIS_FLAG_LINK) == 0)
1631 sis_miibus_statchg(sc->sis_dev);
1632 callout_reset(&sc->sis_stat_ch, hz, sis_tick, sc);
1633 }
1634
1635 #ifdef DEVICE_POLLING
1636 static poll_handler_t sis_poll;
1637
1638 static void
1639 sis_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1640 {
1641 struct sis_softc *sc = ifp->if_softc;
1642
1643 SIS_LOCK(sc);
1644 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1645 SIS_UNLOCK(sc);
1646 return;
1647 }
1648
1649 /*
1650 * On the sis, reading the status register also clears it.
1651 * So before returning to intr mode we must make sure that all
1652 * possible pending sources of interrupts have been served.
1653 * In practice this means run to completion the *eof routines,
1654 * and then call the interrupt routine
1655 */
1656 sc->rxcycles = count;
1657 sis_rxeof(sc);
1658 sis_txeof(sc);
1659 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1660 sis_startl(ifp);
1661
1662 if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1663 uint32_t status;
1664
1665 /* Reading the ISR register clears all interrupts. */
1666 status = CSR_READ_4(sc, SIS_ISR);
1667
1668 if (status & (SIS_ISR_RX_ERR|SIS_ISR_RX_OFLOW))
1669 ifp->if_ierrors++;
1670
1671 if (status & (SIS_ISR_RX_IDLE))
1672 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1673
1674 if (status & SIS_ISR_SYSERR) {
1675 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1676 sis_initl(sc);
1677 }
1678 }
1679
1680 SIS_UNLOCK(sc);
1681 }
1682 #endif /* DEVICE_POLLING */
1683
1684 static void
1685 sis_intr(void *arg)
1686 {
1687 struct sis_softc *sc;
1688 struct ifnet *ifp;
1689 uint32_t status;
1690
1691 sc = arg;
1692 ifp = sc->sis_ifp;
1693
1694 SIS_LOCK(sc);
1695 #ifdef DEVICE_POLLING
1696 if (ifp->if_capenable & IFCAP_POLLING) {
1697 SIS_UNLOCK(sc);
1698 return;
1699 }
1700 #endif
1701
1702 /* Reading the ISR register clears all interrupts. */
1703 status = CSR_READ_4(sc, SIS_ISR);
1704 if ((status & SIS_INTRS) == 0) {
1705 /* Not ours. */
1706 SIS_UNLOCK(sc);
1707 return;
1708 }
1709
1710 /* Disable interrupts. */
1711 CSR_WRITE_4(sc, SIS_IER, 0);
1712
1713 for (;(status & SIS_INTRS) != 0;) {
1714 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1715 break;
1716 if (status &
1717 (SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR |
1718 SIS_ISR_TX_OK | SIS_ISR_TX_IDLE) )
1719 sis_txeof(sc);
1720
1721 if (status & (SIS_ISR_RX_DESC_OK | SIS_ISR_RX_OK |
1722 SIS_ISR_RX_ERR | SIS_ISR_RX_IDLE))
1723 sis_rxeof(sc);
1724
1725 if (status & SIS_ISR_RX_OFLOW)
1726 ifp->if_ierrors++;
1727
1728 if (status & (SIS_ISR_RX_IDLE))
1729 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1730
1731 if (status & SIS_ISR_SYSERR) {
1732 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1733 sis_initl(sc);
1734 SIS_UNLOCK(sc);
1735 return;
1736 }
1737 status = CSR_READ_4(sc, SIS_ISR);
1738 }
1739
1740 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1741 /* Re-enable interrupts. */
1742 CSR_WRITE_4(sc, SIS_IER, 1);
1743
1744 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1745 sis_startl(ifp);
1746 }
1747
1748 SIS_UNLOCK(sc);
1749 }
1750
1751 /*
1752 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1753 * pointers to the fragment pointers.
1754 */
1755 static int
1756 sis_encap(struct sis_softc *sc, struct mbuf **m_head)
1757 {
1758 struct mbuf *m;
1759 struct sis_txdesc *txd;
1760 struct sis_desc *f;
1761 bus_dma_segment_t segs[SIS_MAXTXSEGS];
1762 bus_dmamap_t map;
1763 int error, i, frag, nsegs, prod;
1764 int padlen;
1765
1766 prod = sc->sis_tx_prod;
1767 txd = &sc->sis_txdesc[prod];
1768 if ((sc->sis_flags & SIS_FLAG_MANUAL_PAD) != 0 &&
1769 (*m_head)->m_pkthdr.len < SIS_MIN_FRAMELEN) {
1770 m = *m_head;
1771 padlen = SIS_MIN_FRAMELEN - m->m_pkthdr.len;
1772 if (M_WRITABLE(m) == 0) {
1773 /* Get a writable copy. */
1774 m = m_dup(*m_head, M_DONTWAIT);
1775 m_freem(*m_head);
1776 if (m == NULL) {
1777 *m_head = NULL;
1778 return (ENOBUFS);
1779 }
1780 *m_head = m;
1781 }
1782 if (m->m_next != NULL || M_TRAILINGSPACE(m) < padlen) {
1783 m = m_defrag(m, M_DONTWAIT);
1784 if (m == NULL) {
1785 m_freem(*m_head);
1786 *m_head = NULL;
1787 return (ENOBUFS);
1788 }
1789 }
1790 /*
1791 * Manually pad short frames, and zero the pad space
1792 * to avoid leaking data.
1793 */
1794 bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1795 m->m_pkthdr.len += padlen;
1796 m->m_len = m->m_pkthdr.len;
1797 *m_head = m;
1798 }
1799 error = bus_dmamap_load_mbuf_sg(sc->sis_tx_tag, txd->tx_dmamap,
1800 *m_head, segs, &nsegs, 0);
1801 if (error == EFBIG) {
1802 m = m_collapse(*m_head, M_DONTWAIT, SIS_MAXTXSEGS);
1803 if (m == NULL) {
1804 m_freem(*m_head);
1805 *m_head = NULL;
1806 return (ENOBUFS);
1807 }
1808 *m_head = m;
1809 error = bus_dmamap_load_mbuf_sg(sc->sis_tx_tag, txd->tx_dmamap,
1810 *m_head, segs, &nsegs, 0);
1811 if (error != 0) {
1812 m_freem(*m_head);
1813 *m_head = NULL;
1814 return (error);
1815 }
1816 } else if (error != 0)
1817 return (error);
1818
1819 /* Check for descriptor overruns. */
1820 if (sc->sis_tx_cnt + nsegs > SIS_TX_LIST_CNT - 1) {
1821 bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap);
1822 return (ENOBUFS);
1823 }
1824
1825 bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap, BUS_DMASYNC_PREWRITE);
1826
1827 frag = prod;
1828 for (i = 0; i < nsegs; i++) {
1829 f = &sc->sis_tx_list[prod];
1830 if (i == 0)
1831 f->sis_cmdsts = htole32(segs[i].ds_len |
1832 SIS_CMDSTS_MORE);
1833 else
1834 f->sis_cmdsts = htole32(segs[i].ds_len |
1835 SIS_CMDSTS_OWN | SIS_CMDSTS_MORE);
1836 f->sis_ptr = htole32(SIS_ADDR_LO(segs[i].ds_addr));
1837 SIS_INC(prod, SIS_TX_LIST_CNT);
1838 sc->sis_tx_cnt++;
1839 }
1840
1841 /* Update producer index. */
1842 sc->sis_tx_prod = prod;
1843
1844 /* Remove MORE flag on the last descriptor. */
1845 prod = (prod - 1) & (SIS_TX_LIST_CNT - 1);
1846 f = &sc->sis_tx_list[prod];
1847 f->sis_cmdsts &= ~htole32(SIS_CMDSTS_MORE);
1848
1849 /* Lastly transfer ownership of packet to the controller. */
1850 f = &sc->sis_tx_list[frag];
1851 f->sis_cmdsts |= htole32(SIS_CMDSTS_OWN);
1852
1853 /* Swap the last and the first dmamaps. */
1854 map = txd->tx_dmamap;
1855 txd->tx_dmamap = sc->sis_txdesc[prod].tx_dmamap;
1856 sc->sis_txdesc[prod].tx_dmamap = map;
1857 sc->sis_txdesc[prod].tx_m = *m_head;
1858
1859 return (0);
1860 }
1861
1862 static void
1863 sis_start(struct ifnet *ifp)
1864 {
1865 struct sis_softc *sc;
1866
1867 sc = ifp->if_softc;
1868 SIS_LOCK(sc);
1869 sis_startl(ifp);
1870 SIS_UNLOCK(sc);
1871 }
1872
1873 static void
1874 sis_startl(struct ifnet *ifp)
1875 {
1876 struct sis_softc *sc;
1877 struct mbuf *m_head;
1878 int queued;
1879
1880 sc = ifp->if_softc;
1881
1882 SIS_LOCK_ASSERT(sc);
1883
1884 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1885 IFF_DRV_RUNNING || (sc->sis_flags & SIS_FLAG_LINK) == 0)
1886 return;
1887
1888 for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1889 sc->sis_tx_cnt < SIS_TX_LIST_CNT - 4;) {
1890 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1891 if (m_head == NULL)
1892 break;
1893
1894 if (sis_encap(sc, &m_head) != 0) {
1895 if (m_head == NULL)
1896 break;
1897 IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1898 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1899 break;
1900 }
1901
1902 queued++;
1903
1904 /*
1905 * If there's a BPF listener, bounce a copy of this frame
1906 * to him.
1907 */
1908 BPF_MTAP(ifp, m_head);
1909 }
1910
1911 if (queued) {
1912 /* Transmit */
1913 bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map,
1914 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1915 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE);
1916
1917 /*
1918 * Set a timeout in case the chip goes out to lunch.
1919 */
1920 sc->sis_watchdog_timer = 5;
1921 }
1922 }
1923
1924 static void
1925 sis_init(void *xsc)
1926 {
1927 struct sis_softc *sc = xsc;
1928
1929 SIS_LOCK(sc);
1930 sis_initl(sc);
1931 SIS_UNLOCK(sc);
1932 }
1933
1934 static void
1935 sis_initl(struct sis_softc *sc)
1936 {
1937 struct ifnet *ifp = sc->sis_ifp;
1938 struct mii_data *mii;
1939 uint8_t *eaddr;
1940
1941 SIS_LOCK_ASSERT(sc);
1942
1943 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1944 return;
1945
1946 /*
1947 * Cancel pending I/O and free all RX/TX buffers.
1948 */
1949 sis_stop(sc);
1950 /*
1951 * Reset the chip to a known state.
1952 */
1953 sis_reset(sc);
1954 #ifdef notyet
1955 if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) {
1956 /*
1957 * Configure 400usec of interrupt holdoff. This is based
1958 * on emperical tests on a Soekris 4801.
1959 */
1960 CSR_WRITE_4(sc, NS_IHR, 0x100 | 4);
1961 }
1962 #endif
1963
1964 mii = device_get_softc(sc->sis_miibus);
1965
1966 /* Set MAC address */
1967 eaddr = IF_LLADDR(sc->sis_ifp);
1968 if (sc->sis_type == SIS_TYPE_83815) {
1969 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0);
1970 CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[0] | eaddr[1] << 8);
1971 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1);
1972 CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[2] | eaddr[3] << 8);
1973 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2);
1974 CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[4] | eaddr[5] << 8);
1975 } else {
1976 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
1977 CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[0] | eaddr[1] << 8);
1978 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1);
1979 CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[2] | eaddr[3] << 8);
1980 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
1981 CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[4] | eaddr[5] << 8);
1982 }
1983
1984 /* Init circular TX/RX lists. */
1985 if (sis_ring_init(sc) != 0) {
1986 device_printf(sc->sis_dev,
1987 "initialization failed: no memory for rx buffers\n");
1988 sis_stop(sc);
1989 return;
1990 }
1991
1992 if (sc->sis_type == SIS_TYPE_83815 || sc->sis_type == SIS_TYPE_83816) {
1993 if (sc->sis_manual_pad != 0)
1994 sc->sis_flags |= SIS_FLAG_MANUAL_PAD;
1995 else
1996 sc->sis_flags &= ~SIS_FLAG_MANUAL_PAD;
1997 }
1998
1999 /*
2000 * Short Cable Receive Errors (MP21.E)
2001 * also: Page 78 of the DP83815 data sheet (september 2002 version)
2002 * recommends the following register settings "for optimum
2003 * performance." for rev 15C. Set this also for 15D parts as
2004 * they require it in practice.
2005 */
2006 if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr <= NS_SRR_15D) {
2007 CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
2008 CSR_WRITE_4(sc, NS_PHY_CR, 0x189C);
2009 /* set val for c2 */
2010 CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000);
2011 /* load/kill c2 */
2012 CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040);
2013 /* rais SD off, from 4 to c */
2014 CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C);
2015 CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
2016 }
2017
2018 sis_rxfilter(sc);
2019 /* Turn the receive filter on */
2020 SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ENABLE);
2021
2022 /*
2023 * Load the address of the RX and TX lists.
2024 */
2025 CSR_WRITE_4(sc, SIS_RX_LISTPTR, SIS_ADDR_LO(sc->sis_rx_paddr));
2026 CSR_WRITE_4(sc, SIS_TX_LISTPTR, SIS_ADDR_LO(sc->sis_tx_paddr));
2027
2028 /* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of
2029 * the PCI bus. When this bit is set, the Max DMA Burst Size
2030 * for TX/RX DMA should be no larger than 16 double words.
2031 */
2032 if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN) {
2033 CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64);
2034 } else {
2035 CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256);
2036 }
2037
2038 /* Accept Long Packets for VLAN support */
2039 SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER);
2040
2041 /*
2042 * Assume 100Mbps link, actual MAC configuration is done
2043 * after getting a valid link.
2044 */
2045 CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
2046
2047 /*
2048 * Enable interrupts.
2049 */
2050 CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS);
2051 #ifdef DEVICE_POLLING
2052 /*
2053 * ... only enable interrupts if we are not polling, make sure
2054 * they are off otherwise.
2055 */
2056 if (ifp->if_capenable & IFCAP_POLLING)
2057 CSR_WRITE_4(sc, SIS_IER, 0);
2058 else
2059 #endif
2060 CSR_WRITE_4(sc, SIS_IER, 1);
2061
2062 /* Clear MAC disable. */
2063 SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE | SIS_CSR_RX_DISABLE);
2064
2065 sc->sis_flags &= ~SIS_FLAG_LINK;
2066 mii_mediachg(mii);
2067
2068 ifp->if_drv_flags |= IFF_DRV_RUNNING;
2069 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2070
2071 callout_reset(&sc->sis_stat_ch, hz, sis_tick, sc);
2072 }
2073
2074 /*
2075 * Set media options.
2076 */
2077 static int
2078 sis_ifmedia_upd(struct ifnet *ifp)
2079 {
2080 struct sis_softc *sc;
2081 struct mii_data *mii;
2082 struct mii_softc *miisc;
2083 int error;
2084
2085 sc = ifp->if_softc;
2086
2087 SIS_LOCK(sc);
2088 mii = device_get_softc(sc->sis_miibus);
2089 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2090 mii_phy_reset(miisc);
2091 error = mii_mediachg(mii);
2092 SIS_UNLOCK(sc);
2093
2094 return (error);
2095 }
2096
2097 /*
2098 * Report current media status.
2099 */
2100 static void
2101 sis_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2102 {
2103 struct sis_softc *sc;
2104 struct mii_data *mii;
2105
2106 sc = ifp->if_softc;
2107
2108 SIS_LOCK(sc);
2109 mii = device_get_softc(sc->sis_miibus);
2110 mii_pollstat(mii);
2111 ifmr->ifm_active = mii->mii_media_active;
2112 ifmr->ifm_status = mii->mii_media_status;
2113 SIS_UNLOCK(sc);
2114 }
2115
2116 static int
2117 sis_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2118 {
2119 struct sis_softc *sc = ifp->if_softc;
2120 struct ifreq *ifr = (struct ifreq *) data;
2121 struct mii_data *mii;
2122 int error = 0, mask;
2123
2124 switch (command) {
2125 case SIOCSIFFLAGS:
2126 SIS_LOCK(sc);
2127 if (ifp->if_flags & IFF_UP) {
2128 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2129 ((ifp->if_flags ^ sc->sis_if_flags) &
2130 (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2131 sis_rxfilter(sc);
2132 else
2133 sis_initl(sc);
2134 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2135 sis_stop(sc);
2136 sc->sis_if_flags = ifp->if_flags;
2137 SIS_UNLOCK(sc);
2138 break;
2139 case SIOCADDMULTI:
2140 case SIOCDELMULTI:
2141 SIS_LOCK(sc);
2142 sis_rxfilter(sc);
2143 SIS_UNLOCK(sc);
2144 break;
2145 case SIOCGIFMEDIA:
2146 case SIOCSIFMEDIA:
2147 mii = device_get_softc(sc->sis_miibus);
2148 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2149 break;
2150 case SIOCSIFCAP:
2151 SIS_LOCK(sc);
2152 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2153 #ifdef DEVICE_POLLING
2154 if ((mask & IFCAP_POLLING) != 0 &&
2155 (IFCAP_POLLING & ifp->if_capabilities) != 0) {
2156 ifp->if_capenable ^= IFCAP_POLLING;
2157 if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
2158 error = ether_poll_register(sis_poll, ifp);
2159 if (error != 0) {
2160 SIS_UNLOCK(sc);
2161 break;
2162 }
2163 /* Disable interrupts. */
2164 CSR_WRITE_4(sc, SIS_IER, 0);
2165 } else {
2166 error = ether_poll_deregister(ifp);
2167 /* Enable interrupts. */
2168 CSR_WRITE_4(sc, SIS_IER, 1);
2169 }
2170 }
2171 #endif /* DEVICE_POLLING */
2172 if ((mask & IFCAP_WOL) != 0 &&
2173 (ifp->if_capabilities & IFCAP_WOL) != 0) {
2174 if ((mask & IFCAP_WOL_UCAST) != 0)
2175 ifp->if_capenable ^= IFCAP_WOL_UCAST;
2176 if ((mask & IFCAP_WOL_MCAST) != 0)
2177 ifp->if_capenable ^= IFCAP_WOL_MCAST;
2178 if ((mask & IFCAP_WOL_MAGIC) != 0)
2179 ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2180 }
2181 SIS_UNLOCK(sc);
2182 break;
2183 default:
2184 error = ether_ioctl(ifp, command, data);
2185 break;
2186 }
2187
2188 return (error);
2189 }
2190
2191 static void
2192 sis_watchdog(struct sis_softc *sc)
2193 {
2194
2195 SIS_LOCK_ASSERT(sc);
2196
2197 if (sc->sis_watchdog_timer == 0 || --sc->sis_watchdog_timer >0)
2198 return;
2199
2200 device_printf(sc->sis_dev, "watchdog timeout\n");
2201 sc->sis_ifp->if_oerrors++;
2202
2203 sc->sis_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2204 sis_initl(sc);
2205
2206 if (!IFQ_DRV_IS_EMPTY(&sc->sis_ifp->if_snd))
2207 sis_startl(sc->sis_ifp);
2208 }
2209
2210 /*
2211 * Stop the adapter and free any mbufs allocated to the
2212 * RX and TX lists.
2213 */
2214 static void
2215 sis_stop(struct sis_softc *sc)
2216 {
2217 struct ifnet *ifp;
2218 struct sis_rxdesc *rxd;
2219 struct sis_txdesc *txd;
2220 int i;
2221
2222 SIS_LOCK_ASSERT(sc);
2223
2224 ifp = sc->sis_ifp;
2225 sc->sis_watchdog_timer = 0;
2226
2227 callout_stop(&sc->sis_stat_ch);
2228
2229 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2230 CSR_WRITE_4(sc, SIS_IER, 0);
2231 CSR_WRITE_4(sc, SIS_IMR, 0);
2232 CSR_READ_4(sc, SIS_ISR); /* clear any interrupts already pending */
2233 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2234 DELAY(1000);
2235 CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0);
2236 CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
2237
2238 sc->sis_flags &= ~SIS_FLAG_LINK;
2239
2240 /*
2241 * Free data in the RX lists.
2242 */
2243 for (i = 0; i < SIS_RX_LIST_CNT; i++) {
2244 rxd = &sc->sis_rxdesc[i];
2245 if (rxd->rx_m != NULL) {
2246 bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap,
2247 BUS_DMASYNC_POSTREAD);
2248 bus_dmamap_unload(sc->sis_rx_tag, rxd->rx_dmamap);
2249 m_freem(rxd->rx_m);
2250 rxd->rx_m = NULL;
2251 }
2252 }
2253
2254 /*
2255 * Free the TX list buffers.
2256 */
2257 for (i = 0; i < SIS_TX_LIST_CNT; i++) {
2258 txd = &sc->sis_txdesc[i];
2259 if (txd->tx_m != NULL) {
2260 bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap,
2261 BUS_DMASYNC_POSTWRITE);
2262 bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap);
2263 m_freem(txd->tx_m);
2264 txd->tx_m = NULL;
2265 }
2266 }
2267 }
2268
2269 /*
2270 * Stop all chip I/O so that the kernel's probe routines don't
2271 * get confused by errant DMAs when rebooting.
2272 */
2273 static int
2274 sis_shutdown(device_t dev)
2275 {
2276
2277 return (sis_suspend(dev));
2278 }
2279
2280 static int
2281 sis_suspend(device_t dev)
2282 {
2283 struct sis_softc *sc;
2284
2285 sc = device_get_softc(dev);
2286 SIS_LOCK(sc);
2287 sis_stop(sc);
2288 sis_wol(sc);
2289 SIS_UNLOCK(sc);
2290 return (0);
2291 }
2292
2293 static int
2294 sis_resume(device_t dev)
2295 {
2296 struct sis_softc *sc;
2297 struct ifnet *ifp;
2298
2299 sc = device_get_softc(dev);
2300 SIS_LOCK(sc);
2301 ifp = sc->sis_ifp;
2302 if ((ifp->if_flags & IFF_UP) != 0) {
2303 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2304 sis_initl(sc);
2305 }
2306 SIS_UNLOCK(sc);
2307 return (0);
2308 }
2309
2310 static void
2311 sis_wol(struct sis_softc *sc)
2312 {
2313 struct ifnet *ifp;
2314 uint32_t val;
2315 uint16_t pmstat;
2316 int pmc;
2317
2318 ifp = sc->sis_ifp;
2319 if ((ifp->if_capenable & IFCAP_WOL) == 0)
2320 return;
2321
2322 if (sc->sis_type == SIS_TYPE_83815) {
2323 /* Reset RXDP. */
2324 CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
2325
2326 /* Configure WOL events. */
2327 CSR_READ_4(sc, NS_WCSR);
2328 val = 0;
2329 if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2330 val |= NS_WCSR_WAKE_UCAST;
2331 if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2332 val |= NS_WCSR_WAKE_MCAST;
2333 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2334 val |= NS_WCSR_WAKE_MAGIC;
2335 CSR_WRITE_4(sc, NS_WCSR, val);
2336 /* Enable PME and clear PMESTS. */
2337 val = CSR_READ_4(sc, NS_CLKRUN);
2338 val |= NS_CLKRUN_PMEENB | NS_CLKRUN_PMESTS;
2339 CSR_WRITE_4(sc, NS_CLKRUN, val);
2340 /* Enable silent RX mode. */
2341 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
2342 } else {
2343 if (pci_find_extcap(sc->sis_dev, PCIY_PMG, &pmc) != 0)
2344 return;
2345 val = 0;
2346 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2347 val |= SIS_PWRMAN_WOL_MAGIC;
2348 CSR_WRITE_4(sc, SIS_PWRMAN_CTL, val);
2349 /* Request PME. */
2350 pmstat = pci_read_config(sc->sis_dev,
2351 pmc + PCIR_POWER_STATUS, 2);
2352 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2353 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2354 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2355 pci_write_config(sc->sis_dev,
2356 pmc + PCIR_POWER_STATUS, pmstat, 2);
2357 }
2358 }
2359
2360 static void
2361 sis_add_sysctls(struct sis_softc *sc)
2362 {
2363 struct sysctl_ctx_list *ctx;
2364 struct sysctl_oid_list *children;
2365 char tn[32];
2366 int unit;
2367
2368 ctx = device_get_sysctl_ctx(sc->sis_dev);
2369 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sis_dev));
2370
2371 unit = device_get_unit(sc->sis_dev);
2372 /*
2373 * Unlike most other controllers, NS DP83815/DP83816 controllers
2374 * seem to pad with 0xFF when it encounter short frames. According
2375 * to RFC 1042 the pad bytes should be 0x00. Turning this tunable
2376 * on will have driver pad manully but it's disabled by default
2377 * because it will consume extra CPU cycles for short frames.
2378 */
2379 sc->sis_manual_pad = 0;
2380 snprintf(tn, sizeof(tn), "dev.sis.%d.manual_pad", unit);
2381 TUNABLE_INT_FETCH(tn, &sc->sis_manual_pad);
2382 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "manual_pad",
2383 CTLFLAG_RW, &sc->sis_manual_pad, 0, "Manually pad short frames");
2384 }
2385
2386 static device_method_t sis_methods[] = {
2387 /* Device interface */
2388 DEVMETHOD(device_probe, sis_probe),
2389 DEVMETHOD(device_attach, sis_attach),
2390 DEVMETHOD(device_detach, sis_detach),
2391 DEVMETHOD(device_shutdown, sis_shutdown),
2392 DEVMETHOD(device_suspend, sis_suspend),
2393 DEVMETHOD(device_resume, sis_resume),
2394
2395 /* bus interface */
2396 DEVMETHOD(bus_print_child, bus_generic_print_child),
2397 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
2398
2399 /* MII interface */
2400 DEVMETHOD(miibus_readreg, sis_miibus_readreg),
2401 DEVMETHOD(miibus_writereg, sis_miibus_writereg),
2402 DEVMETHOD(miibus_statchg, sis_miibus_statchg),
2403
2404 { 0, 0 }
2405 };
2406
2407 static driver_t sis_driver = {
2408 "sis",
2409 sis_methods,
2410 sizeof(struct sis_softc)
2411 };
2412
2413 static devclass_t sis_devclass;
2414
2415 DRIVER_MODULE(sis, pci, sis_driver, sis_devclass, 0, 0);
2416 DRIVER_MODULE(miibus, sis, miibus_driver, miibus_devclass, 0, 0);
Cache object: 950656e6ef21979fafb201c726780146
|