FreeBSD/Linux Kernel Cross Reference
sys/dev/sis/if_sis.c
1 /*-
2 * Copyright (c) 2005 Poul-Henning Kamp <phk@FreeBSD.org>
3 * Copyright (c) 1997, 1998, 1999
4 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by Bill Paul.
17 * 4. Neither the name of the author nor the names of any co-contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD: releng/8.0/sys/dev/sis/if_sis.c 195049 2009-06-26 11:45:06Z rwatson $");
36
37 /*
38 * SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are
39 * available from http://www.sis.com.tw.
40 *
41 * This driver also supports the NatSemi DP83815. Datasheets are
42 * available from http://www.national.com.
43 *
44 * Written by Bill Paul <wpaul@ee.columbia.edu>
45 * Electrical Engineering Department
46 * Columbia University, New York City
47 */
48 /*
49 * The SiS 900 is a fairly simple chip. It uses bus master DMA with
50 * simple TX and RX descriptors of 3 longwords in size. The receiver
51 * has a single perfect filter entry for the station address and a
52 * 128-bit multicast hash table. The SiS 900 has a built-in MII-based
53 * transceiver while the 7016 requires an external transceiver chip.
54 * Both chips offer the standard bit-bang MII interface as well as
55 * an enchanced PHY interface which simplifies accessing MII registers.
56 *
57 * The only downside to this chipset is that RX descriptors must be
58 * longword aligned.
59 */
60
61 #ifdef HAVE_KERNEL_OPTION_HEADERS
62 #include "opt_device_polling.h"
63 #endif
64
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/sockio.h>
68 #include <sys/mbuf.h>
69 #include <sys/malloc.h>
70 #include <sys/kernel.h>
71 #include <sys/module.h>
72 #include <sys/socket.h>
73
74 #include <net/if.h>
75 #include <net/if_arp.h>
76 #include <net/ethernet.h>
77 #include <net/if_dl.h>
78 #include <net/if_media.h>
79 #include <net/if_types.h>
80 #include <net/if_vlan_var.h>
81
82 #include <net/bpf.h>
83
84 #include <machine/bus.h>
85 #include <machine/resource.h>
86 #include <sys/bus.h>
87 #include <sys/rman.h>
88
89 #include <dev/mii/mii.h>
90 #include <dev/mii/miivar.h>
91
92 #include <dev/pci/pcireg.h>
93 #include <dev/pci/pcivar.h>
94
95 #define SIS_USEIOSPACE
96
97 #include <dev/sis/if_sisreg.h>
98
99 MODULE_DEPEND(sis, pci, 1, 1, 1);
100 MODULE_DEPEND(sis, ether, 1, 1, 1);
101 MODULE_DEPEND(sis, miibus, 1, 1, 1);
102
103 /* "device miibus" required. See GENERIC if you get errors here. */
104 #include "miibus_if.h"
105
106 #define SIS_LOCK(_sc) mtx_lock(&(_sc)->sis_mtx)
107 #define SIS_UNLOCK(_sc) mtx_unlock(&(_sc)->sis_mtx)
108 #define SIS_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->sis_mtx, MA_OWNED)
109
110 /*
111 * register space access macros
112 */
113 #define CSR_WRITE_4(sc, reg, val) bus_write_4(sc->sis_res[0], reg, val)
114
115 #define CSR_READ_4(sc, reg) bus_read_4(sc->sis_res[0], reg)
116
117 #define CSR_READ_2(sc, reg) bus_read_2(sc->sis_res[0], reg)
118
119 /*
120 * Various supported device vendors/types and their names.
121 */
122 static struct sis_type sis_devs[] = {
123 { SIS_VENDORID, SIS_DEVICEID_900, "SiS 900 10/100BaseTX" },
124 { SIS_VENDORID, SIS_DEVICEID_7016, "SiS 7016 10/100BaseTX" },
125 { NS_VENDORID, NS_DEVICEID_DP83815, "NatSemi DP8381[56] 10/100BaseTX" },
126 { 0, 0, NULL }
127 };
128
129 static int sis_detach(device_t);
130 static void sis_ifmedia_sts(struct ifnet *, struct ifmediareq *);
131 static int sis_ifmedia_upd(struct ifnet *);
132 static void sis_init(void *);
133 static void sis_initl(struct sis_softc *);
134 static void sis_intr(void *);
135 static int sis_ioctl(struct ifnet *, u_long, caddr_t);
136 static int sis_newbuf(struct sis_softc *, struct sis_desc *, struct mbuf *);
137 static void sis_start(struct ifnet *);
138 static void sis_startl(struct ifnet *);
139 static void sis_stop(struct sis_softc *);
140 static void sis_watchdog(struct sis_softc *);
141
142
143 static struct resource_spec sis_res_spec[] = {
144 #ifdef SIS_USEIOSPACE
145 { SYS_RES_IOPORT, SIS_PCI_LOIO, RF_ACTIVE},
146 #else
147 { SYS_RES_MEMORY, SIS_PCI_LOMEM, RF_ACTIVE},
148 #endif
149 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE},
150 { -1, 0 }
151 };
152
153 #define SIS_SETBIT(sc, reg, x) \
154 CSR_WRITE_4(sc, reg, \
155 CSR_READ_4(sc, reg) | (x))
156
157 #define SIS_CLRBIT(sc, reg, x) \
158 CSR_WRITE_4(sc, reg, \
159 CSR_READ_4(sc, reg) & ~(x))
160
161 #define SIO_SET(x) \
162 CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x)
163
164 #define SIO_CLR(x) \
165 CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x)
166
167 static void
168 sis_dma_map_desc_next(void *arg, bus_dma_segment_t *segs, int nseg, int error)
169 {
170 struct sis_desc *r;
171
172 r = arg;
173 r->sis_next = segs->ds_addr;
174 }
175
176 static void
177 sis_dma_map_desc_ptr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
178 {
179 struct sis_desc *r;
180
181 r = arg;
182 r->sis_ptr = segs->ds_addr;
183 }
184
185 static void
186 sis_dma_map_ring(void *arg, bus_dma_segment_t *segs, int nseg, int error)
187 {
188 u_int32_t *p;
189
190 p = arg;
191 *p = segs->ds_addr;
192 }
193
194 /*
195 * Routine to reverse the bits in a word. Stolen almost
196 * verbatim from /usr/games/fortune.
197 */
198 static uint16_t
199 sis_reverse(uint16_t n)
200 {
201 n = ((n >> 1) & 0x5555) | ((n << 1) & 0xaaaa);
202 n = ((n >> 2) & 0x3333) | ((n << 2) & 0xcccc);
203 n = ((n >> 4) & 0x0f0f) | ((n << 4) & 0xf0f0);
204 n = ((n >> 8) & 0x00ff) | ((n << 8) & 0xff00);
205
206 return(n);
207 }
208
209 static void
210 sis_delay(struct sis_softc *sc)
211 {
212 int idx;
213
214 for (idx = (300 / 33) + 1; idx > 0; idx--)
215 CSR_READ_4(sc, SIS_CSR);
216 }
217
218 static void
219 sis_eeprom_idle(struct sis_softc *sc)
220 {
221 int i;
222
223 SIO_SET(SIS_EECTL_CSEL);
224 sis_delay(sc);
225 SIO_SET(SIS_EECTL_CLK);
226 sis_delay(sc);
227
228 for (i = 0; i < 25; i++) {
229 SIO_CLR(SIS_EECTL_CLK);
230 sis_delay(sc);
231 SIO_SET(SIS_EECTL_CLK);
232 sis_delay(sc);
233 }
234
235 SIO_CLR(SIS_EECTL_CLK);
236 sis_delay(sc);
237 SIO_CLR(SIS_EECTL_CSEL);
238 sis_delay(sc);
239 CSR_WRITE_4(sc, SIS_EECTL, 0x00000000);
240 }
241
242 /*
243 * Send a read command and address to the EEPROM, check for ACK.
244 */
245 static void
246 sis_eeprom_putbyte(struct sis_softc *sc, int addr)
247 {
248 int d, i;
249
250 d = addr | SIS_EECMD_READ;
251
252 /*
253 * Feed in each bit and stobe the clock.
254 */
255 for (i = 0x400; i; i >>= 1) {
256 if (d & i) {
257 SIO_SET(SIS_EECTL_DIN);
258 } else {
259 SIO_CLR(SIS_EECTL_DIN);
260 }
261 sis_delay(sc);
262 SIO_SET(SIS_EECTL_CLK);
263 sis_delay(sc);
264 SIO_CLR(SIS_EECTL_CLK);
265 sis_delay(sc);
266 }
267 }
268
269 /*
270 * Read a word of data stored in the EEPROM at address 'addr.'
271 */
272 static void
273 sis_eeprom_getword(struct sis_softc *sc, int addr, uint16_t *dest)
274 {
275 int i;
276 u_int16_t word = 0;
277
278 /* Force EEPROM to idle state. */
279 sis_eeprom_idle(sc);
280
281 /* Enter EEPROM access mode. */
282 sis_delay(sc);
283 SIO_CLR(SIS_EECTL_CLK);
284 sis_delay(sc);
285 SIO_SET(SIS_EECTL_CSEL);
286 sis_delay(sc);
287
288 /*
289 * Send address of word we want to read.
290 */
291 sis_eeprom_putbyte(sc, addr);
292
293 /*
294 * Start reading bits from EEPROM.
295 */
296 for (i = 0x8000; i; i >>= 1) {
297 SIO_SET(SIS_EECTL_CLK);
298 sis_delay(sc);
299 if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT)
300 word |= i;
301 sis_delay(sc);
302 SIO_CLR(SIS_EECTL_CLK);
303 sis_delay(sc);
304 }
305
306 /* Turn off EEPROM access mode. */
307 sis_eeprom_idle(sc);
308
309 *dest = word;
310 }
311
312 /*
313 * Read a sequence of words from the EEPROM.
314 */
315 static void
316 sis_read_eeprom(struct sis_softc *sc, caddr_t dest, int off, int cnt, int swap)
317 {
318 int i;
319 u_int16_t word = 0, *ptr;
320
321 for (i = 0; i < cnt; i++) {
322 sis_eeprom_getword(sc, off + i, &word);
323 ptr = (u_int16_t *)(dest + (i * 2));
324 if (swap)
325 *ptr = ntohs(word);
326 else
327 *ptr = word;
328 }
329 }
330
331 #if defined(__i386__) || defined(__amd64__)
332 static device_t
333 sis_find_bridge(device_t dev)
334 {
335 devclass_t pci_devclass;
336 device_t *pci_devices;
337 int pci_count = 0;
338 device_t *pci_children;
339 int pci_childcount = 0;
340 device_t *busp, *childp;
341 device_t child = NULL;
342 int i, j;
343
344 if ((pci_devclass = devclass_find("pci")) == NULL)
345 return(NULL);
346
347 devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
348
349 for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
350 if (device_get_children(*busp, &pci_children, &pci_childcount))
351 continue;
352 for (j = 0, childp = pci_children;
353 j < pci_childcount; j++, childp++) {
354 if (pci_get_vendor(*childp) == SIS_VENDORID &&
355 pci_get_device(*childp) == 0x0008) {
356 child = *childp;
357 free(pci_children, M_TEMP);
358 goto done;
359 }
360 }
361 free(pci_children, M_TEMP);
362 }
363
364 done:
365 free(pci_devices, M_TEMP);
366 return(child);
367 }
368
369 static void
370 sis_read_cmos(struct sis_softc *sc, device_t dev, caddr_t dest, int off, int cnt)
371 {
372 device_t bridge;
373 u_int8_t reg;
374 int i;
375 bus_space_tag_t btag;
376
377 bridge = sis_find_bridge(dev);
378 if (bridge == NULL)
379 return;
380 reg = pci_read_config(bridge, 0x48, 1);
381 pci_write_config(bridge, 0x48, reg|0x40, 1);
382
383 /* XXX */
384 #if defined(__i386__)
385 btag = I386_BUS_SPACE_IO;
386 #elif defined(__amd64__)
387 btag = AMD64_BUS_SPACE_IO;
388 #endif
389
390 for (i = 0; i < cnt; i++) {
391 bus_space_write_1(btag, 0x0, 0x70, i + off);
392 *(dest + i) = bus_space_read_1(btag, 0x0, 0x71);
393 }
394
395 pci_write_config(bridge, 0x48, reg & ~0x40, 1);
396 return;
397 }
398
399 static void
400 sis_read_mac(struct sis_softc *sc, device_t dev, caddr_t dest)
401 {
402 u_int32_t filtsave, csrsave;
403
404 filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
405 csrsave = CSR_READ_4(sc, SIS_CSR);
406
407 CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | filtsave);
408 CSR_WRITE_4(sc, SIS_CSR, 0);
409
410 CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave & ~SIS_RXFILTCTL_ENABLE);
411
412 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
413 ((u_int16_t *)dest)[0] = CSR_READ_2(sc, SIS_RXFILT_DATA);
414 CSR_WRITE_4(sc, SIS_RXFILT_CTL,SIS_FILTADDR_PAR1);
415 ((u_int16_t *)dest)[1] = CSR_READ_2(sc, SIS_RXFILT_DATA);
416 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
417 ((u_int16_t *)dest)[2] = CSR_READ_2(sc, SIS_RXFILT_DATA);
418
419 CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
420 CSR_WRITE_4(sc, SIS_CSR, csrsave);
421 return;
422 }
423 #endif
424
425 /*
426 * Sync the PHYs by setting data bit and strobing the clock 32 times.
427 */
428 static void
429 sis_mii_sync(struct sis_softc *sc)
430 {
431 int i;
432
433 SIO_SET(SIS_MII_DIR|SIS_MII_DATA);
434
435 for (i = 0; i < 32; i++) {
436 SIO_SET(SIS_MII_CLK);
437 DELAY(1);
438 SIO_CLR(SIS_MII_CLK);
439 DELAY(1);
440 }
441 }
442
443 /*
444 * Clock a series of bits through the MII.
445 */
446 static void
447 sis_mii_send(struct sis_softc *sc, uint32_t bits, int cnt)
448 {
449 int i;
450
451 SIO_CLR(SIS_MII_CLK);
452
453 for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
454 if (bits & i) {
455 SIO_SET(SIS_MII_DATA);
456 } else {
457 SIO_CLR(SIS_MII_DATA);
458 }
459 DELAY(1);
460 SIO_CLR(SIS_MII_CLK);
461 DELAY(1);
462 SIO_SET(SIS_MII_CLK);
463 }
464 }
465
466 /*
467 * Read an PHY register through the MII.
468 */
469 static int
470 sis_mii_readreg(struct sis_softc *sc, struct sis_mii_frame *frame)
471 {
472 int i, ack;
473
474 /*
475 * Set up frame for RX.
476 */
477 frame->mii_stdelim = SIS_MII_STARTDELIM;
478 frame->mii_opcode = SIS_MII_READOP;
479 frame->mii_turnaround = 0;
480 frame->mii_data = 0;
481
482 /*
483 * Turn on data xmit.
484 */
485 SIO_SET(SIS_MII_DIR);
486
487 sis_mii_sync(sc);
488
489 /*
490 * Send command/address info.
491 */
492 sis_mii_send(sc, frame->mii_stdelim, 2);
493 sis_mii_send(sc, frame->mii_opcode, 2);
494 sis_mii_send(sc, frame->mii_phyaddr, 5);
495 sis_mii_send(sc, frame->mii_regaddr, 5);
496
497 /* Idle bit */
498 SIO_CLR((SIS_MII_CLK|SIS_MII_DATA));
499 DELAY(1);
500 SIO_SET(SIS_MII_CLK);
501 DELAY(1);
502
503 /* Turn off xmit. */
504 SIO_CLR(SIS_MII_DIR);
505
506 /* Check for ack */
507 SIO_CLR(SIS_MII_CLK);
508 DELAY(1);
509 ack = CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA;
510 SIO_SET(SIS_MII_CLK);
511 DELAY(1);
512
513 /*
514 * Now try reading data bits. If the ack failed, we still
515 * need to clock through 16 cycles to keep the PHY(s) in sync.
516 */
517 if (ack) {
518 for(i = 0; i < 16; i++) {
519 SIO_CLR(SIS_MII_CLK);
520 DELAY(1);
521 SIO_SET(SIS_MII_CLK);
522 DELAY(1);
523 }
524 goto fail;
525 }
526
527 for (i = 0x8000; i; i >>= 1) {
528 SIO_CLR(SIS_MII_CLK);
529 DELAY(1);
530 if (!ack) {
531 if (CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA)
532 frame->mii_data |= i;
533 DELAY(1);
534 }
535 SIO_SET(SIS_MII_CLK);
536 DELAY(1);
537 }
538
539 fail:
540
541 SIO_CLR(SIS_MII_CLK);
542 DELAY(1);
543 SIO_SET(SIS_MII_CLK);
544 DELAY(1);
545
546 if (ack)
547 return(1);
548 return(0);
549 }
550
551 /*
552 * Write to a PHY register through the MII.
553 */
554 static int
555 sis_mii_writereg(struct sis_softc *sc, struct sis_mii_frame *frame)
556 {
557
558 /*
559 * Set up frame for TX.
560 */
561
562 frame->mii_stdelim = SIS_MII_STARTDELIM;
563 frame->mii_opcode = SIS_MII_WRITEOP;
564 frame->mii_turnaround = SIS_MII_TURNAROUND;
565
566 /*
567 * Turn on data output.
568 */
569 SIO_SET(SIS_MII_DIR);
570
571 sis_mii_sync(sc);
572
573 sis_mii_send(sc, frame->mii_stdelim, 2);
574 sis_mii_send(sc, frame->mii_opcode, 2);
575 sis_mii_send(sc, frame->mii_phyaddr, 5);
576 sis_mii_send(sc, frame->mii_regaddr, 5);
577 sis_mii_send(sc, frame->mii_turnaround, 2);
578 sis_mii_send(sc, frame->mii_data, 16);
579
580 /* Idle bit. */
581 SIO_SET(SIS_MII_CLK);
582 DELAY(1);
583 SIO_CLR(SIS_MII_CLK);
584 DELAY(1);
585
586 /*
587 * Turn off xmit.
588 */
589 SIO_CLR(SIS_MII_DIR);
590
591 return(0);
592 }
593
594 static int
595 sis_miibus_readreg(device_t dev, int phy, int reg)
596 {
597 struct sis_softc *sc;
598 struct sis_mii_frame frame;
599
600 sc = device_get_softc(dev);
601
602 if (sc->sis_type == SIS_TYPE_83815) {
603 if (phy != 0)
604 return(0);
605 /*
606 * The NatSemi chip can take a while after
607 * a reset to come ready, during which the BMSR
608 * returns a value of 0. This is *never* supposed
609 * to happen: some of the BMSR bits are meant to
610 * be hardwired in the on position, and this can
611 * confuse the miibus code a bit during the probe
612 * and attach phase. So we make an effort to check
613 * for this condition and wait for it to clear.
614 */
615 if (!CSR_READ_4(sc, NS_BMSR))
616 DELAY(1000);
617 return CSR_READ_4(sc, NS_BMCR + (reg * 4));
618 }
619
620 /*
621 * Chipsets < SIS_635 seem not to be able to read/write
622 * through mdio. Use the enhanced PHY access register
623 * again for them.
624 */
625 if (sc->sis_type == SIS_TYPE_900 &&
626 sc->sis_rev < SIS_REV_635) {
627 int i, val = 0;
628
629 if (phy != 0)
630 return(0);
631
632 CSR_WRITE_4(sc, SIS_PHYCTL,
633 (phy << 11) | (reg << 6) | SIS_PHYOP_READ);
634 SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
635
636 for (i = 0; i < SIS_TIMEOUT; i++) {
637 if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
638 break;
639 }
640
641 if (i == SIS_TIMEOUT) {
642 device_printf(sc->sis_dev, "PHY failed to come ready\n");
643 return(0);
644 }
645
646 val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF;
647
648 if (val == 0xFFFF)
649 return(0);
650
651 return(val);
652 } else {
653 bzero((char *)&frame, sizeof(frame));
654
655 frame.mii_phyaddr = phy;
656 frame.mii_regaddr = reg;
657 sis_mii_readreg(sc, &frame);
658
659 return(frame.mii_data);
660 }
661 }
662
663 static int
664 sis_miibus_writereg(device_t dev, int phy, int reg, int data)
665 {
666 struct sis_softc *sc;
667 struct sis_mii_frame frame;
668
669 sc = device_get_softc(dev);
670
671 if (sc->sis_type == SIS_TYPE_83815) {
672 if (phy != 0)
673 return(0);
674 CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data);
675 return(0);
676 }
677
678 /*
679 * Chipsets < SIS_635 seem not to be able to read/write
680 * through mdio. Use the enhanced PHY access register
681 * again for them.
682 */
683 if (sc->sis_type == SIS_TYPE_900 &&
684 sc->sis_rev < SIS_REV_635) {
685 int i;
686
687 if (phy != 0)
688 return(0);
689
690 CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) |
691 (reg << 6) | SIS_PHYOP_WRITE);
692 SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
693
694 for (i = 0; i < SIS_TIMEOUT; i++) {
695 if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
696 break;
697 }
698
699 if (i == SIS_TIMEOUT)
700 device_printf(sc->sis_dev, "PHY failed to come ready\n");
701 } else {
702 bzero((char *)&frame, sizeof(frame));
703
704 frame.mii_phyaddr = phy;
705 frame.mii_regaddr = reg;
706 frame.mii_data = data;
707 sis_mii_writereg(sc, &frame);
708 }
709 return(0);
710 }
711
712 static void
713 sis_miibus_statchg(device_t dev)
714 {
715 struct sis_softc *sc;
716
717 sc = device_get_softc(dev);
718 SIS_LOCK_ASSERT(sc);
719 sis_initl(sc);
720 }
721
722 static uint32_t
723 sis_mchash(struct sis_softc *sc, const uint8_t *addr)
724 {
725 uint32_t crc;
726
727 /* Compute CRC for the address value. */
728 crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
729
730 /*
731 * return the filter bit position
732 *
733 * The NatSemi chip has a 512-bit filter, which is
734 * different than the SiS, so we special-case it.
735 */
736 if (sc->sis_type == SIS_TYPE_83815)
737 return (crc >> 23);
738 else if (sc->sis_rev >= SIS_REV_635 ||
739 sc->sis_rev == SIS_REV_900B)
740 return (crc >> 24);
741 else
742 return (crc >> 25);
743 }
744
745 static void
746 sis_setmulti_ns(struct sis_softc *sc)
747 {
748 struct ifnet *ifp;
749 struct ifmultiaddr *ifma;
750 u_int32_t h = 0, i, filtsave;
751 int bit, index;
752
753 ifp = sc->sis_ifp;
754
755 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
756 SIS_CLRBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
757 SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
758 return;
759 }
760
761 /*
762 * We have to explicitly enable the multicast hash table
763 * on the NatSemi chip if we want to use it, which we do.
764 */
765 SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
766 SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
767
768 filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
769
770 /* first, zot all the existing hash bits */
771 for (i = 0; i < 32; i++) {
772 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + (i*2));
773 CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0);
774 }
775
776 if_maddr_rlock(ifp);
777 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
778 if (ifma->ifma_addr->sa_family != AF_LINK)
779 continue;
780 h = sis_mchash(sc,
781 LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
782 index = h >> 3;
783 bit = h & 0x1F;
784 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + index);
785 if (bit > 0xF)
786 bit -= 0x10;
787 SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit));
788 }
789 if_maddr_runlock(ifp);
790
791 CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
792
793 return;
794 }
795
796 static void
797 sis_setmulti_sis(struct sis_softc *sc)
798 {
799 struct ifnet *ifp;
800 struct ifmultiaddr *ifma;
801 u_int32_t h, i, n, ctl;
802 u_int16_t hashes[16];
803
804 ifp = sc->sis_ifp;
805
806 /* hash table size */
807 if (sc->sis_rev >= SIS_REV_635 ||
808 sc->sis_rev == SIS_REV_900B)
809 n = 16;
810 else
811 n = 8;
812
813 ctl = CSR_READ_4(sc, SIS_RXFILT_CTL) & SIS_RXFILTCTL_ENABLE;
814
815 if (ifp->if_flags & IFF_BROADCAST)
816 ctl |= SIS_RXFILTCTL_BROAD;
817
818 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
819 ctl |= SIS_RXFILTCTL_ALLMULTI;
820 if (ifp->if_flags & IFF_PROMISC)
821 ctl |= SIS_RXFILTCTL_BROAD|SIS_RXFILTCTL_ALLPHYS;
822 for (i = 0; i < n; i++)
823 hashes[i] = ~0;
824 } else {
825 for (i = 0; i < n; i++)
826 hashes[i] = 0;
827 i = 0;
828 if_maddr_rlock(ifp);
829 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
830 if (ifma->ifma_addr->sa_family != AF_LINK)
831 continue;
832 h = sis_mchash(sc,
833 LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
834 hashes[h >> 4] |= 1 << (h & 0xf);
835 i++;
836 }
837 if_maddr_runlock(ifp);
838 if (i > n) {
839 ctl |= SIS_RXFILTCTL_ALLMULTI;
840 for (i = 0; i < n; i++)
841 hashes[i] = ~0;
842 }
843 }
844
845 for (i = 0; i < n; i++) {
846 CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16);
847 CSR_WRITE_4(sc, SIS_RXFILT_DATA, hashes[i]);
848 }
849
850 CSR_WRITE_4(sc, SIS_RXFILT_CTL, ctl);
851 }
852
853 static void
854 sis_reset(struct sis_softc *sc)
855 {
856 int i;
857
858 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET);
859
860 for (i = 0; i < SIS_TIMEOUT; i++) {
861 if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET))
862 break;
863 }
864
865 if (i == SIS_TIMEOUT)
866 device_printf(sc->sis_dev, "reset never completed\n");
867
868 /* Wait a little while for the chip to get its brains in order. */
869 DELAY(1000);
870
871 /*
872 * If this is a NetSemi chip, make sure to clear
873 * PME mode.
874 */
875 if (sc->sis_type == SIS_TYPE_83815) {
876 CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS);
877 CSR_WRITE_4(sc, NS_CLKRUN, 0);
878 }
879
880 return;
881 }
882
883 /*
884 * Probe for an SiS chip. Check the PCI vendor and device
885 * IDs against our list and return a device name if we find a match.
886 */
887 static int
888 sis_probe(device_t dev)
889 {
890 struct sis_type *t;
891
892 t = sis_devs;
893
894 while(t->sis_name != NULL) {
895 if ((pci_get_vendor(dev) == t->sis_vid) &&
896 (pci_get_device(dev) == t->sis_did)) {
897 device_set_desc(dev, t->sis_name);
898 return (BUS_PROBE_DEFAULT);
899 }
900 t++;
901 }
902
903 return(ENXIO);
904 }
905
906 /*
907 * Attach the interface. Allocate softc structures, do ifmedia
908 * setup and ethernet/BPF attach.
909 */
910 static int
911 sis_attach(device_t dev)
912 {
913 u_char eaddr[ETHER_ADDR_LEN];
914 struct sis_softc *sc;
915 struct ifnet *ifp;
916 int error = 0, waittime = 0;
917
918 waittime = 0;
919 sc = device_get_softc(dev);
920
921 sc->sis_dev = dev;
922
923 mtx_init(&sc->sis_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
924 MTX_DEF);
925 callout_init_mtx(&sc->sis_stat_ch, &sc->sis_mtx, 0);
926
927 if (pci_get_device(dev) == SIS_DEVICEID_900)
928 sc->sis_type = SIS_TYPE_900;
929 if (pci_get_device(dev) == SIS_DEVICEID_7016)
930 sc->sis_type = SIS_TYPE_7016;
931 if (pci_get_vendor(dev) == NS_VENDORID)
932 sc->sis_type = SIS_TYPE_83815;
933
934 sc->sis_rev = pci_read_config(dev, PCIR_REVID, 1);
935 /*
936 * Map control/status registers.
937 */
938 pci_enable_busmaster(dev);
939
940 error = bus_alloc_resources(dev, sis_res_spec, sc->sis_res);
941 if (error) {
942 device_printf(dev, "couldn't allocate resources\n");
943 goto fail;
944 }
945
946 /* Reset the adapter. */
947 sis_reset(sc);
948
949 if (sc->sis_type == SIS_TYPE_900 &&
950 (sc->sis_rev == SIS_REV_635 ||
951 sc->sis_rev == SIS_REV_900B)) {
952 SIO_SET(SIS_CFG_RND_CNT);
953 SIO_SET(SIS_CFG_PERR_DETECT);
954 }
955
956 /*
957 * Get station address from the EEPROM.
958 */
959 switch (pci_get_vendor(dev)) {
960 case NS_VENDORID:
961 sc->sis_srr = CSR_READ_4(sc, NS_SRR);
962
963 /* We can't update the device description, so spew */
964 if (sc->sis_srr == NS_SRR_15C)
965 device_printf(dev, "Silicon Revision: DP83815C\n");
966 else if (sc->sis_srr == NS_SRR_15D)
967 device_printf(dev, "Silicon Revision: DP83815D\n");
968 else if (sc->sis_srr == NS_SRR_16A)
969 device_printf(dev, "Silicon Revision: DP83816A\n");
970 else
971 device_printf(dev, "Silicon Revision %x\n", sc->sis_srr);
972
973 /*
974 * Reading the MAC address out of the EEPROM on
975 * the NatSemi chip takes a bit more work than
976 * you'd expect. The address spans 4 16-bit words,
977 * with the first word containing only a single bit.
978 * You have to shift everything over one bit to
979 * get it aligned properly. Also, the bits are
980 * stored backwards (the LSB is really the MSB,
981 * and so on) so you have to reverse them in order
982 * to get the MAC address into the form we want.
983 * Why? Who the hell knows.
984 */
985 {
986 u_int16_t tmp[4];
987
988 sis_read_eeprom(sc, (caddr_t)&tmp,
989 NS_EE_NODEADDR, 4, 0);
990
991 /* Shift everything over one bit. */
992 tmp[3] = tmp[3] >> 1;
993 tmp[3] |= tmp[2] << 15;
994 tmp[2] = tmp[2] >> 1;
995 tmp[2] |= tmp[1] << 15;
996 tmp[1] = tmp[1] >> 1;
997 tmp[1] |= tmp[0] << 15;
998
999 /* Now reverse all the bits. */
1000 tmp[3] = sis_reverse(tmp[3]);
1001 tmp[2] = sis_reverse(tmp[2]);
1002 tmp[1] = sis_reverse(tmp[1]);
1003
1004 bcopy((char *)&tmp[1], eaddr, ETHER_ADDR_LEN);
1005 }
1006 break;
1007 case SIS_VENDORID:
1008 default:
1009 #if defined(__i386__) || defined(__amd64__)
1010 /*
1011 * If this is a SiS 630E chipset with an embedded
1012 * SiS 900 controller, we have to read the MAC address
1013 * from the APC CMOS RAM. Our method for doing this
1014 * is very ugly since we have to reach out and grab
1015 * ahold of hardware for which we cannot properly
1016 * allocate resources. This code is only compiled on
1017 * the i386 architecture since the SiS 630E chipset
1018 * is for x86 motherboards only. Note that there are
1019 * a lot of magic numbers in this hack. These are
1020 * taken from SiS's Linux driver. I'd like to replace
1021 * them with proper symbolic definitions, but that
1022 * requires some datasheets that I don't have access
1023 * to at the moment.
1024 */
1025 if (sc->sis_rev == SIS_REV_630S ||
1026 sc->sis_rev == SIS_REV_630E ||
1027 sc->sis_rev == SIS_REV_630EA1)
1028 sis_read_cmos(sc, dev, (caddr_t)&eaddr, 0x9, 6);
1029
1030 else if (sc->sis_rev == SIS_REV_635 ||
1031 sc->sis_rev == SIS_REV_630ET)
1032 sis_read_mac(sc, dev, (caddr_t)&eaddr);
1033 else if (sc->sis_rev == SIS_REV_96x) {
1034 /* Allow to read EEPROM from LAN. It is shared
1035 * between a 1394 controller and the NIC and each
1036 * time we access it, we need to set SIS_EECMD_REQ.
1037 */
1038 SIO_SET(SIS_EECMD_REQ);
1039 for (waittime = 0; waittime < SIS_TIMEOUT;
1040 waittime++) {
1041 /* Force EEPROM to idle state. */
1042 sis_eeprom_idle(sc);
1043 if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECMD_GNT) {
1044 sis_read_eeprom(sc, (caddr_t)&eaddr,
1045 SIS_EE_NODEADDR, 3, 0);
1046 break;
1047 }
1048 DELAY(1);
1049 }
1050 /*
1051 * Set SIS_EECTL_CLK to high, so a other master
1052 * can operate on the i2c bus.
1053 */
1054 SIO_SET(SIS_EECTL_CLK);
1055 /* Refuse EEPROM access by LAN */
1056 SIO_SET(SIS_EECMD_DONE);
1057 } else
1058 #endif
1059 sis_read_eeprom(sc, (caddr_t)&eaddr,
1060 SIS_EE_NODEADDR, 3, 0);
1061 break;
1062 }
1063
1064 /*
1065 * Allocate the parent bus DMA tag appropriate for PCI.
1066 */
1067 #define SIS_NSEG_NEW 32
1068 error = bus_dma_tag_create(NULL, /* parent */
1069 1, 0, /* alignment, boundary */
1070 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1071 BUS_SPACE_MAXADDR, /* highaddr */
1072 NULL, NULL, /* filter, filterarg */
1073 MAXBSIZE, SIS_NSEG_NEW, /* maxsize, nsegments */
1074 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1075 BUS_DMA_ALLOCNOW, /* flags */
1076 NULL, NULL, /* lockfunc, lockarg */
1077 &sc->sis_parent_tag);
1078 if (error)
1079 goto fail;
1080
1081 /*
1082 * Now allocate a tag for the DMA descriptor lists and a chunk
1083 * of DMA-able memory based on the tag. Also obtain the physical
1084 * addresses of the RX and TX ring, which we'll need later.
1085 * All of our lists are allocated as a contiguous block
1086 * of memory.
1087 */
1088 error = bus_dma_tag_create(sc->sis_parent_tag, /* parent */
1089 1, 0, /* alignment, boundary */
1090 BUS_SPACE_MAXADDR, /* lowaddr */
1091 BUS_SPACE_MAXADDR, /* highaddr */
1092 NULL, NULL, /* filter, filterarg */
1093 SIS_RX_LIST_SZ, 1, /* maxsize,nsegments */
1094 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1095 0, /* flags */
1096 busdma_lock_mutex, /* lockfunc */
1097 &Giant, /* lockarg */
1098 &sc->sis_rx_tag);
1099 if (error)
1100 goto fail;
1101
1102 error = bus_dmamem_alloc(sc->sis_rx_tag,
1103 (void **)&sc->sis_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1104 &sc->sis_rx_dmamap);
1105
1106 if (error) {
1107 device_printf(dev, "no memory for rx list buffers!\n");
1108 bus_dma_tag_destroy(sc->sis_rx_tag);
1109 sc->sis_rx_tag = NULL;
1110 goto fail;
1111 }
1112
1113 error = bus_dmamap_load(sc->sis_rx_tag,
1114 sc->sis_rx_dmamap, &(sc->sis_rx_list[0]),
1115 sizeof(struct sis_desc), sis_dma_map_ring,
1116 &sc->sis_rx_paddr, 0);
1117
1118 if (error) {
1119 device_printf(dev, "cannot get address of the rx ring!\n");
1120 bus_dmamem_free(sc->sis_rx_tag,
1121 sc->sis_rx_list, sc->sis_rx_dmamap);
1122 bus_dma_tag_destroy(sc->sis_rx_tag);
1123 sc->sis_rx_tag = NULL;
1124 goto fail;
1125 }
1126
1127 error = bus_dma_tag_create(sc->sis_parent_tag, /* parent */
1128 1, 0, /* alignment, boundary */
1129 BUS_SPACE_MAXADDR, /* lowaddr */
1130 BUS_SPACE_MAXADDR, /* highaddr */
1131 NULL, NULL, /* filter, filterarg */
1132 SIS_TX_LIST_SZ, 1, /* maxsize,nsegments */
1133 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1134 0, /* flags */
1135 busdma_lock_mutex, /* lockfunc */
1136 &Giant, /* lockarg */
1137 &sc->sis_tx_tag);
1138 if (error)
1139 goto fail;
1140
1141 error = bus_dmamem_alloc(sc->sis_tx_tag,
1142 (void **)&sc->sis_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1143 &sc->sis_tx_dmamap);
1144
1145 if (error) {
1146 device_printf(dev, "no memory for tx list buffers!\n");
1147 bus_dma_tag_destroy(sc->sis_tx_tag);
1148 sc->sis_tx_tag = NULL;
1149 goto fail;
1150 }
1151
1152 error = bus_dmamap_load(sc->sis_tx_tag,
1153 sc->sis_tx_dmamap, &(sc->sis_tx_list[0]),
1154 sizeof(struct sis_desc), sis_dma_map_ring,
1155 &sc->sis_tx_paddr, 0);
1156
1157 if (error) {
1158 device_printf(dev, "cannot get address of the tx ring!\n");
1159 bus_dmamem_free(sc->sis_tx_tag,
1160 sc->sis_tx_list, sc->sis_tx_dmamap);
1161 bus_dma_tag_destroy(sc->sis_tx_tag);
1162 sc->sis_tx_tag = NULL;
1163 goto fail;
1164 }
1165
1166 error = bus_dma_tag_create(sc->sis_parent_tag, /* parent */
1167 1, 0, /* alignment, boundary */
1168 BUS_SPACE_MAXADDR, /* lowaddr */
1169 BUS_SPACE_MAXADDR, /* highaddr */
1170 NULL, NULL, /* filter, filterarg */
1171 MCLBYTES, 1, /* maxsize,nsegments */
1172 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1173 0, /* flags */
1174 busdma_lock_mutex, /* lockfunc */
1175 &Giant, /* lockarg */
1176 &sc->sis_tag);
1177 if (error)
1178 goto fail;
1179
1180 /*
1181 * Obtain the physical addresses of the RX and TX
1182 * rings which we'll need later in the init routine.
1183 */
1184
1185 ifp = sc->sis_ifp = if_alloc(IFT_ETHER);
1186 if (ifp == NULL) {
1187 device_printf(dev, "can not if_alloc()\n");
1188 error = ENOSPC;
1189 goto fail;
1190 }
1191 ifp->if_softc = sc;
1192 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1193 ifp->if_mtu = ETHERMTU;
1194 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1195 ifp->if_ioctl = sis_ioctl;
1196 ifp->if_start = sis_start;
1197 ifp->if_init = sis_init;
1198 IFQ_SET_MAXLEN(&ifp->if_snd, SIS_TX_LIST_CNT - 1);
1199 ifp->if_snd.ifq_drv_maxlen = SIS_TX_LIST_CNT - 1;
1200 IFQ_SET_READY(&ifp->if_snd);
1201
1202 /*
1203 * Do MII setup.
1204 */
1205 if (mii_phy_probe(dev, &sc->sis_miibus,
1206 sis_ifmedia_upd, sis_ifmedia_sts)) {
1207 device_printf(dev, "MII without any PHY!\n");
1208 error = ENXIO;
1209 goto fail;
1210 }
1211
1212 /*
1213 * Call MI attach routine.
1214 */
1215 ether_ifattach(ifp, eaddr);
1216
1217 /*
1218 * Tell the upper layer(s) we support long frames.
1219 */
1220 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1221 ifp->if_capabilities |= IFCAP_VLAN_MTU;
1222 ifp->if_capenable = ifp->if_capabilities;
1223 #ifdef DEVICE_POLLING
1224 ifp->if_capabilities |= IFCAP_POLLING;
1225 #endif
1226
1227 /* Hook interrupt last to avoid having to lock softc */
1228 error = bus_setup_intr(dev, sc->sis_res[1], INTR_TYPE_NET | INTR_MPSAFE,
1229 NULL, sis_intr, sc, &sc->sis_intrhand);
1230
1231 if (error) {
1232 device_printf(dev, "couldn't set up irq\n");
1233 ether_ifdetach(ifp);
1234 goto fail;
1235 }
1236
1237 fail:
1238 if (error)
1239 sis_detach(dev);
1240
1241 return(error);
1242 }
1243
1244 /*
1245 * Shutdown hardware and free up resources. This can be called any
1246 * time after the mutex has been initialized. It is called in both
1247 * the error case in attach and the normal detach case so it needs
1248 * to be careful about only freeing resources that have actually been
1249 * allocated.
1250 */
1251 static int
1252 sis_detach(device_t dev)
1253 {
1254 struct sis_softc *sc;
1255 struct ifnet *ifp;
1256
1257 sc = device_get_softc(dev);
1258 KASSERT(mtx_initialized(&sc->sis_mtx), ("sis mutex not initialized"));
1259 ifp = sc->sis_ifp;
1260
1261 #ifdef DEVICE_POLLING
1262 if (ifp->if_capenable & IFCAP_POLLING)
1263 ether_poll_deregister(ifp);
1264 #endif
1265
1266 /* These should only be active if attach succeeded. */
1267 if (device_is_attached(dev)) {
1268 SIS_LOCK(sc);
1269 sis_reset(sc);
1270 sis_stop(sc);
1271 SIS_UNLOCK(sc);
1272 callout_drain(&sc->sis_stat_ch);
1273 ether_ifdetach(ifp);
1274 }
1275 if (sc->sis_miibus)
1276 device_delete_child(dev, sc->sis_miibus);
1277 bus_generic_detach(dev);
1278
1279 if (sc->sis_intrhand)
1280 bus_teardown_intr(dev, sc->sis_res[1], sc->sis_intrhand);
1281 bus_release_resources(dev, sis_res_spec, sc->sis_res);
1282
1283 if (ifp)
1284 if_free(ifp);
1285
1286 if (sc->sis_rx_tag) {
1287 bus_dmamap_unload(sc->sis_rx_tag,
1288 sc->sis_rx_dmamap);
1289 bus_dmamem_free(sc->sis_rx_tag,
1290 sc->sis_rx_list, sc->sis_rx_dmamap);
1291 bus_dma_tag_destroy(sc->sis_rx_tag);
1292 }
1293 if (sc->sis_tx_tag) {
1294 bus_dmamap_unload(sc->sis_tx_tag,
1295 sc->sis_tx_dmamap);
1296 bus_dmamem_free(sc->sis_tx_tag,
1297 sc->sis_tx_list, sc->sis_tx_dmamap);
1298 bus_dma_tag_destroy(sc->sis_tx_tag);
1299 }
1300 if (sc->sis_parent_tag)
1301 bus_dma_tag_destroy(sc->sis_parent_tag);
1302 if (sc->sis_tag)
1303 bus_dma_tag_destroy(sc->sis_tag);
1304
1305 mtx_destroy(&sc->sis_mtx);
1306
1307 return(0);
1308 }
1309
1310 /*
1311 * Initialize the TX and RX descriptors and allocate mbufs for them. Note that
1312 * we arrange the descriptors in a closed ring, so that the last descriptor
1313 * points back to the first.
1314 */
1315 static int
1316 sis_ring_init(struct sis_softc *sc)
1317 {
1318 int i, error;
1319 struct sis_desc *dp;
1320
1321 dp = &sc->sis_tx_list[0];
1322 for (i = 0; i < SIS_TX_LIST_CNT; i++, dp++) {
1323 if (i == (SIS_TX_LIST_CNT - 1))
1324 dp->sis_nextdesc = &sc->sis_tx_list[0];
1325 else
1326 dp->sis_nextdesc = dp + 1;
1327 bus_dmamap_load(sc->sis_tx_tag,
1328 sc->sis_tx_dmamap,
1329 dp->sis_nextdesc, sizeof(struct sis_desc),
1330 sis_dma_map_desc_next, dp, 0);
1331 dp->sis_mbuf = NULL;
1332 dp->sis_ptr = 0;
1333 dp->sis_ctl = 0;
1334 }
1335
1336 sc->sis_tx_prod = sc->sis_tx_cons = sc->sis_tx_cnt = 0;
1337
1338 bus_dmamap_sync(sc->sis_tx_tag,
1339 sc->sis_tx_dmamap, BUS_DMASYNC_PREWRITE);
1340
1341 dp = &sc->sis_rx_list[0];
1342 for (i = 0; i < SIS_RX_LIST_CNT; i++, dp++) {
1343 error = sis_newbuf(sc, dp, NULL);
1344 if (error)
1345 return(error);
1346 if (i == (SIS_RX_LIST_CNT - 1))
1347 dp->sis_nextdesc = &sc->sis_rx_list[0];
1348 else
1349 dp->sis_nextdesc = dp + 1;
1350 bus_dmamap_load(sc->sis_rx_tag,
1351 sc->sis_rx_dmamap,
1352 dp->sis_nextdesc, sizeof(struct sis_desc),
1353 sis_dma_map_desc_next, dp, 0);
1354 }
1355
1356 bus_dmamap_sync(sc->sis_rx_tag,
1357 sc->sis_rx_dmamap, BUS_DMASYNC_PREWRITE);
1358
1359 sc->sis_rx_pdsc = &sc->sis_rx_list[0];
1360
1361 return(0);
1362 }
1363
1364 /*
1365 * Initialize an RX descriptor and attach an MBUF cluster.
1366 */
1367 static int
1368 sis_newbuf(struct sis_softc *sc, struct sis_desc *c, struct mbuf *m)
1369 {
1370
1371 if (c == NULL)
1372 return(EINVAL);
1373
1374 if (m == NULL) {
1375 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1376 if (m == NULL)
1377 return(ENOBUFS);
1378 } else
1379 m->m_data = m->m_ext.ext_buf;
1380
1381 c->sis_mbuf = m;
1382 c->sis_ctl = SIS_RXLEN;
1383
1384 bus_dmamap_create(sc->sis_tag, 0, &c->sis_map);
1385 bus_dmamap_load(sc->sis_tag, c->sis_map,
1386 mtod(m, void *), MCLBYTES,
1387 sis_dma_map_desc_ptr, c, 0);
1388 bus_dmamap_sync(sc->sis_tag, c->sis_map, BUS_DMASYNC_PREREAD);
1389
1390 return(0);
1391 }
1392
1393 /*
1394 * A frame has been uploaded: pass the resulting mbuf chain up to
1395 * the higher level protocols.
1396 */
1397 static int
1398 sis_rxeof(struct sis_softc *sc)
1399 {
1400 struct mbuf *m, *m0;
1401 struct ifnet *ifp;
1402 struct sis_desc *cur_rx;
1403 int total_len = 0, rx_npkts = 0;
1404 u_int32_t rxstat;
1405
1406 SIS_LOCK_ASSERT(sc);
1407
1408 ifp = sc->sis_ifp;
1409
1410 for(cur_rx = sc->sis_rx_pdsc; SIS_OWNDESC(cur_rx);
1411 cur_rx = cur_rx->sis_nextdesc) {
1412
1413 #ifdef DEVICE_POLLING
1414 if (ifp->if_capenable & IFCAP_POLLING) {
1415 if (sc->rxcycles <= 0)
1416 break;
1417 sc->rxcycles--;
1418 }
1419 #endif
1420 rxstat = cur_rx->sis_rxstat;
1421 bus_dmamap_sync(sc->sis_tag,
1422 cur_rx->sis_map, BUS_DMASYNC_POSTWRITE);
1423 bus_dmamap_unload(sc->sis_tag, cur_rx->sis_map);
1424 bus_dmamap_destroy(sc->sis_tag, cur_rx->sis_map);
1425 m = cur_rx->sis_mbuf;
1426 cur_rx->sis_mbuf = NULL;
1427 total_len = SIS_RXBYTES(cur_rx);
1428
1429 /*
1430 * If an error occurs, update stats, clear the
1431 * status word and leave the mbuf cluster in place:
1432 * it should simply get re-used next time this descriptor
1433 * comes up in the ring.
1434 */
1435 if ((ifp->if_capenable & IFCAP_VLAN_MTU) != 0 &&
1436 total_len <= (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN -
1437 ETHER_CRC_LEN))
1438 rxstat &= ~SIS_RXSTAT_GIANT;
1439 if (SIS_RXSTAT_ERROR(rxstat) != 0) {
1440 ifp->if_ierrors++;
1441 if (rxstat & SIS_RXSTAT_COLL)
1442 ifp->if_collisions++;
1443 sis_newbuf(sc, cur_rx, m);
1444 continue;
1445 }
1446
1447 /* No errors; receive the packet. */
1448 #ifdef __NO_STRICT_ALIGNMENT
1449 /*
1450 * On architectures without alignment problems we try to
1451 * allocate a new buffer for the receive ring, and pass up
1452 * the one where the packet is already, saving the expensive
1453 * copy done in m_devget().
1454 * If we are on an architecture with alignment problems, or
1455 * if the allocation fails, then use m_devget and leave the
1456 * existing buffer in the receive ring.
1457 */
1458 if (sis_newbuf(sc, cur_rx, NULL) == 0)
1459 m->m_pkthdr.len = m->m_len = total_len;
1460 else
1461 #endif
1462 {
1463 m0 = m_devget(mtod(m, char *), total_len,
1464 ETHER_ALIGN, ifp, NULL);
1465 sis_newbuf(sc, cur_rx, m);
1466 if (m0 == NULL) {
1467 ifp->if_ierrors++;
1468 continue;
1469 }
1470 m = m0;
1471 }
1472
1473 ifp->if_ipackets++;
1474 m->m_pkthdr.rcvif = ifp;
1475
1476 SIS_UNLOCK(sc);
1477 (*ifp->if_input)(ifp, m);
1478 SIS_LOCK(sc);
1479 rx_npkts++;
1480 }
1481
1482 sc->sis_rx_pdsc = cur_rx;
1483 return (rx_npkts);
1484 }
1485
1486 static void
1487 sis_rxeoc(struct sis_softc *sc)
1488 {
1489
1490 SIS_LOCK_ASSERT(sc);
1491 sis_rxeof(sc);
1492 sis_initl(sc);
1493 }
1494
1495 /*
1496 * A frame was downloaded to the chip. It's safe for us to clean up
1497 * the list buffers.
1498 */
1499
1500 static void
1501 sis_txeof(struct sis_softc *sc)
1502 {
1503 struct ifnet *ifp;
1504 u_int32_t idx;
1505
1506 SIS_LOCK_ASSERT(sc);
1507 ifp = sc->sis_ifp;
1508
1509 /*
1510 * Go through our tx list and free mbufs for those
1511 * frames that have been transmitted.
1512 */
1513 for (idx = sc->sis_tx_cons; sc->sis_tx_cnt > 0;
1514 sc->sis_tx_cnt--, SIS_INC(idx, SIS_TX_LIST_CNT) ) {
1515 struct sis_desc *cur_tx = &sc->sis_tx_list[idx];
1516
1517 if (SIS_OWNDESC(cur_tx))
1518 break;
1519
1520 if (cur_tx->sis_ctl & SIS_CMDSTS_MORE)
1521 continue;
1522
1523 if (!(cur_tx->sis_ctl & SIS_CMDSTS_PKT_OK)) {
1524 ifp->if_oerrors++;
1525 if (cur_tx->sis_txstat & SIS_TXSTAT_EXCESSCOLLS)
1526 ifp->if_collisions++;
1527 if (cur_tx->sis_txstat & SIS_TXSTAT_OUTOFWINCOLL)
1528 ifp->if_collisions++;
1529 }
1530
1531 ifp->if_collisions +=
1532 (cur_tx->sis_txstat & SIS_TXSTAT_COLLCNT) >> 16;
1533
1534 ifp->if_opackets++;
1535 if (cur_tx->sis_mbuf != NULL) {
1536 m_freem(cur_tx->sis_mbuf);
1537 cur_tx->sis_mbuf = NULL;
1538 bus_dmamap_unload(sc->sis_tag, cur_tx->sis_map);
1539 bus_dmamap_destroy(sc->sis_tag, cur_tx->sis_map);
1540 }
1541 }
1542
1543 if (idx != sc->sis_tx_cons) {
1544 /* we freed up some buffers */
1545 sc->sis_tx_cons = idx;
1546 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1547 }
1548
1549 sc->sis_watchdog_timer = (sc->sis_tx_cnt == 0) ? 0 : 5;
1550
1551 return;
1552 }
1553
1554 static void
1555 sis_tick(void *xsc)
1556 {
1557 struct sis_softc *sc;
1558 struct mii_data *mii;
1559 struct ifnet *ifp;
1560
1561 sc = xsc;
1562 SIS_LOCK_ASSERT(sc);
1563 sc->in_tick = 1;
1564 ifp = sc->sis_ifp;
1565
1566 mii = device_get_softc(sc->sis_miibus);
1567 mii_tick(mii);
1568
1569 sis_watchdog(sc);
1570
1571 if (!sc->sis_link && mii->mii_media_status & IFM_ACTIVE &&
1572 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1573 sc->sis_link++;
1574 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1575 sis_startl(ifp);
1576 }
1577
1578 callout_reset(&sc->sis_stat_ch, hz, sis_tick, sc);
1579 sc->in_tick = 0;
1580 }
1581
1582 #ifdef DEVICE_POLLING
1583 static poll_handler_t sis_poll;
1584
1585 static int
1586 sis_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1587 {
1588 struct sis_softc *sc = ifp->if_softc;
1589 int rx_npkts = 0;
1590
1591 SIS_LOCK(sc);
1592 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1593 SIS_UNLOCK(sc);
1594 return (rx_npkts);
1595 }
1596
1597 /*
1598 * On the sis, reading the status register also clears it.
1599 * So before returning to intr mode we must make sure that all
1600 * possible pending sources of interrupts have been served.
1601 * In practice this means run to completion the *eof routines,
1602 * and then call the interrupt routine
1603 */
1604 sc->rxcycles = count;
1605 rx_npkts = sis_rxeof(sc);
1606 sis_txeof(sc);
1607 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1608 sis_startl(ifp);
1609
1610 if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1611 u_int32_t status;
1612
1613 /* Reading the ISR register clears all interrupts. */
1614 status = CSR_READ_4(sc, SIS_ISR);
1615
1616 if (status & (SIS_ISR_RX_ERR|SIS_ISR_RX_OFLOW))
1617 sis_rxeoc(sc);
1618
1619 if (status & (SIS_ISR_RX_IDLE))
1620 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1621
1622 if (status & SIS_ISR_SYSERR) {
1623 sis_reset(sc);
1624 sis_initl(sc);
1625 }
1626 }
1627
1628 SIS_UNLOCK(sc);
1629 return (rx_npkts);
1630 }
1631 #endif /* DEVICE_POLLING */
1632
1633 static void
1634 sis_intr(void *arg)
1635 {
1636 struct sis_softc *sc;
1637 struct ifnet *ifp;
1638 u_int32_t status;
1639
1640 sc = arg;
1641 ifp = sc->sis_ifp;
1642
1643 if (sc->sis_stopped) /* Most likely shared interrupt */
1644 return;
1645
1646 SIS_LOCK(sc);
1647 #ifdef DEVICE_POLLING
1648 if (ifp->if_capenable & IFCAP_POLLING) {
1649 SIS_UNLOCK(sc);
1650 return;
1651 }
1652 #endif
1653
1654 /* Disable interrupts. */
1655 CSR_WRITE_4(sc, SIS_IER, 0);
1656
1657 for (;;) {
1658 SIS_LOCK_ASSERT(sc);
1659 /* Reading the ISR register clears all interrupts. */
1660 status = CSR_READ_4(sc, SIS_ISR);
1661
1662 if ((status & SIS_INTRS) == 0)
1663 break;
1664
1665 if (status &
1666 (SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR |
1667 SIS_ISR_TX_OK | SIS_ISR_TX_IDLE) )
1668 sis_txeof(sc);
1669
1670 if (status & (SIS_ISR_RX_DESC_OK | SIS_ISR_RX_OK |
1671 SIS_ISR_RX_ERR | SIS_ISR_RX_IDLE))
1672 sis_rxeof(sc);
1673
1674 if (status & SIS_ISR_RX_OFLOW)
1675 sis_rxeoc(sc);
1676
1677 if (status & (SIS_ISR_RX_IDLE))
1678 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1679
1680 if (status & SIS_ISR_SYSERR) {
1681 sis_reset(sc);
1682 sis_initl(sc);
1683 }
1684 }
1685
1686 /* Re-enable interrupts. */
1687 CSR_WRITE_4(sc, SIS_IER, 1);
1688
1689 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1690 sis_startl(ifp);
1691
1692 SIS_UNLOCK(sc);
1693 }
1694
1695 /*
1696 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1697 * pointers to the fragment pointers.
1698 */
1699 static int
1700 sis_encap(struct sis_softc *sc, struct mbuf **m_head, uint32_t *txidx)
1701 {
1702 struct sis_desc *f = NULL;
1703 struct mbuf *m;
1704 int frag, cur, cnt = 0, chainlen = 0;
1705
1706 /*
1707 * If there's no way we can send any packets, return now.
1708 */
1709 if (SIS_TX_LIST_CNT - sc->sis_tx_cnt < 2)
1710 return (ENOBUFS);
1711
1712 /*
1713 * Count the number of frags in this chain to see if
1714 * we need to m_defrag. Since the descriptor list is shared
1715 * by all packets, we'll m_defrag long chains so that they
1716 * do not use up the entire list, even if they would fit.
1717 */
1718
1719 for (m = *m_head; m != NULL; m = m->m_next)
1720 chainlen++;
1721
1722 if ((chainlen > SIS_TX_LIST_CNT / 4) ||
1723 ((SIS_TX_LIST_CNT - (chainlen + sc->sis_tx_cnt)) < 2)) {
1724 m = m_defrag(*m_head, M_DONTWAIT);
1725 if (m == NULL)
1726 return (ENOBUFS);
1727 *m_head = m;
1728 }
1729
1730 /*
1731 * Start packing the mbufs in this chain into
1732 * the fragment pointers. Stop when we run out
1733 * of fragments or hit the end of the mbuf chain.
1734 */
1735 cur = frag = *txidx;
1736
1737 for (m = *m_head; m != NULL; m = m->m_next) {
1738 if (m->m_len != 0) {
1739 if ((SIS_TX_LIST_CNT -
1740 (sc->sis_tx_cnt + cnt)) < 2)
1741 return(ENOBUFS);
1742 f = &sc->sis_tx_list[frag];
1743 f->sis_ctl = SIS_CMDSTS_MORE | m->m_len;
1744 bus_dmamap_create(sc->sis_tag, 0, &f->sis_map);
1745 bus_dmamap_load(sc->sis_tag, f->sis_map,
1746 mtod(m, void *), m->m_len,
1747 sis_dma_map_desc_ptr, f, 0);
1748 bus_dmamap_sync(sc->sis_tag,
1749 f->sis_map, BUS_DMASYNC_PREREAD);
1750 if (cnt != 0)
1751 f->sis_ctl |= SIS_CMDSTS_OWN;
1752 cur = frag;
1753 SIS_INC(frag, SIS_TX_LIST_CNT);
1754 cnt++;
1755 }
1756 }
1757
1758 if (m != NULL)
1759 return(ENOBUFS);
1760
1761 sc->sis_tx_list[cur].sis_mbuf = *m_head;
1762 sc->sis_tx_list[cur].sis_ctl &= ~SIS_CMDSTS_MORE;
1763 sc->sis_tx_list[*txidx].sis_ctl |= SIS_CMDSTS_OWN;
1764 sc->sis_tx_cnt += cnt;
1765 *txidx = frag;
1766
1767 return(0);
1768 }
1769
1770 /*
1771 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1772 * to the mbuf data regions directly in the transmit lists. We also save a
1773 * copy of the pointers since the transmit list fragment pointers are
1774 * physical addresses.
1775 */
1776
1777 static void
1778 sis_start(struct ifnet *ifp)
1779 {
1780 struct sis_softc *sc;
1781
1782 sc = ifp->if_softc;
1783 SIS_LOCK(sc);
1784 sis_startl(ifp);
1785 SIS_UNLOCK(sc);
1786 }
1787
1788 static void
1789 sis_startl(struct ifnet *ifp)
1790 {
1791 struct sis_softc *sc;
1792 struct mbuf *m_head = NULL;
1793 u_int32_t idx, queued = 0;
1794
1795 sc = ifp->if_softc;
1796
1797 SIS_LOCK_ASSERT(sc);
1798
1799 if (!sc->sis_link)
1800 return;
1801
1802 idx = sc->sis_tx_prod;
1803
1804 if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
1805 return;
1806
1807 while(sc->sis_tx_list[idx].sis_mbuf == NULL) {
1808 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1809 if (m_head == NULL)
1810 break;
1811
1812 if (sis_encap(sc, &m_head, &idx)) {
1813 IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1814 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1815 break;
1816 }
1817
1818 queued++;
1819
1820 /*
1821 * If there's a BPF listener, bounce a copy of this frame
1822 * to him.
1823 */
1824 BPF_MTAP(ifp, m_head);
1825
1826 }
1827
1828 if (queued) {
1829 /* Transmit */
1830 sc->sis_tx_prod = idx;
1831 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE);
1832
1833 /*
1834 * Set a timeout in case the chip goes out to lunch.
1835 */
1836 sc->sis_watchdog_timer = 5;
1837 }
1838 }
1839
1840 static void
1841 sis_init(void *xsc)
1842 {
1843 struct sis_softc *sc = xsc;
1844
1845 SIS_LOCK(sc);
1846 sis_initl(sc);
1847 SIS_UNLOCK(sc);
1848 }
1849
1850 static void
1851 sis_initl(struct sis_softc *sc)
1852 {
1853 struct ifnet *ifp = sc->sis_ifp;
1854 struct mii_data *mii;
1855
1856 SIS_LOCK_ASSERT(sc);
1857
1858 /*
1859 * Cancel pending I/O and free all RX/TX buffers.
1860 */
1861 sis_stop(sc);
1862 sc->sis_stopped = 0;
1863
1864 #ifdef notyet
1865 if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) {
1866 /*
1867 * Configure 400usec of interrupt holdoff. This is based
1868 * on emperical tests on a Soekris 4801.
1869 */
1870 CSR_WRITE_4(sc, NS_IHR, 0x100 | 4);
1871 }
1872 #endif
1873
1874 mii = device_get_softc(sc->sis_miibus);
1875
1876 /* Set MAC address */
1877 if (sc->sis_type == SIS_TYPE_83815) {
1878 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0);
1879 CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1880 ((u_int16_t *)IF_LLADDR(sc->sis_ifp))[0]);
1881 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1);
1882 CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1883 ((u_int16_t *)IF_LLADDR(sc->sis_ifp))[1]);
1884 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2);
1885 CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1886 ((u_int16_t *)IF_LLADDR(sc->sis_ifp))[2]);
1887 } else {
1888 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
1889 CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1890 ((u_int16_t *)IF_LLADDR(sc->sis_ifp))[0]);
1891 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1);
1892 CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1893 ((u_int16_t *)IF_LLADDR(sc->sis_ifp))[1]);
1894 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
1895 CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1896 ((u_int16_t *)IF_LLADDR(sc->sis_ifp))[2]);
1897 }
1898
1899 /* Init circular TX/RX lists. */
1900 if (sis_ring_init(sc) != 0) {
1901 device_printf(sc->sis_dev,
1902 "initialization failed: no memory for rx buffers\n");
1903 sis_stop(sc);
1904 return;
1905 }
1906
1907 /*
1908 * Short Cable Receive Errors (MP21.E)
1909 * also: Page 78 of the DP83815 data sheet (september 2002 version)
1910 * recommends the following register settings "for optimum
1911 * performance." for rev 15C. Set this also for 15D parts as
1912 * they require it in practice.
1913 */
1914 if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr <= NS_SRR_15D) {
1915 CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
1916 CSR_WRITE_4(sc, NS_PHY_CR, 0x189C);
1917 /* set val for c2 */
1918 CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000);
1919 /* load/kill c2 */
1920 CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040);
1921 /* rais SD off, from 4 to c */
1922 CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C);
1923 CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
1924 }
1925
1926
1927 /*
1928 * For the NatSemi chip, we have to explicitly enable the
1929 * reception of ARP frames, as well as turn on the 'perfect
1930 * match' filter where we store the station address, otherwise
1931 * we won't receive unicasts meant for this host.
1932 */
1933 if (sc->sis_type == SIS_TYPE_83815) {
1934 SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_ARP);
1935 SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_PERFECT);
1936 }
1937
1938 /* If we want promiscuous mode, set the allframes bit. */
1939 if (ifp->if_flags & IFF_PROMISC) {
1940 SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
1941 } else {
1942 SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
1943 }
1944
1945 /*
1946 * Set the capture broadcast bit to capture broadcast frames.
1947 */
1948 if (ifp->if_flags & IFF_BROADCAST) {
1949 SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
1950 } else {
1951 SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
1952 }
1953
1954 /*
1955 * Load the multicast filter.
1956 */
1957 if (sc->sis_type == SIS_TYPE_83815)
1958 sis_setmulti_ns(sc);
1959 else
1960 sis_setmulti_sis(sc);
1961
1962 /* Turn the receive filter on */
1963 SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ENABLE);
1964
1965 /*
1966 * Load the address of the RX and TX lists.
1967 */
1968 CSR_WRITE_4(sc, SIS_RX_LISTPTR, sc->sis_rx_paddr);
1969 CSR_WRITE_4(sc, SIS_TX_LISTPTR, sc->sis_tx_paddr);
1970
1971 /* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of
1972 * the PCI bus. When this bit is set, the Max DMA Burst Size
1973 * for TX/RX DMA should be no larger than 16 double words.
1974 */
1975 if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN) {
1976 CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64);
1977 } else {
1978 CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256);
1979 }
1980
1981 /* Accept Long Packets for VLAN support */
1982 SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER);
1983
1984 /* Set TX configuration */
1985 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T) {
1986 CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10);
1987 } else {
1988 CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
1989 }
1990
1991 /* Set full/half duplex mode. */
1992 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1993 SIS_SETBIT(sc, SIS_TX_CFG,
1994 (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
1995 SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
1996 } else {
1997 SIS_CLRBIT(sc, SIS_TX_CFG,
1998 (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
1999 SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
2000 }
2001
2002 if (sc->sis_type == SIS_TYPE_83816) {
2003 /*
2004 * MPII03.D: Half Duplex Excessive Collisions.
2005 * Also page 49 in 83816 manual
2006 */
2007 SIS_SETBIT(sc, SIS_TX_CFG, SIS_TXCFG_MPII03D);
2008 }
2009
2010 if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr < NS_SRR_16A &&
2011 IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
2012 uint32_t reg;
2013
2014 /*
2015 * Short Cable Receive Errors (MP21.E)
2016 */
2017 CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
2018 reg = CSR_READ_4(sc, NS_PHY_DSPCFG) & 0xfff;
2019 CSR_WRITE_4(sc, NS_PHY_DSPCFG, reg | 0x1000);
2020 DELAY(100000);
2021 reg = CSR_READ_4(sc, NS_PHY_TDATA) & 0xff;
2022 if ((reg & 0x0080) == 0 || (reg > 0xd8 && reg <= 0xff)) {
2023 device_printf(sc->sis_dev,
2024 "Applying short cable fix (reg=%x)\n", reg);
2025 CSR_WRITE_4(sc, NS_PHY_TDATA, 0x00e8);
2026 SIS_SETBIT(sc, NS_PHY_DSPCFG, 0x20);
2027 }
2028 CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
2029 }
2030
2031 /*
2032 * Enable interrupts.
2033 */
2034 CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS);
2035 #ifdef DEVICE_POLLING
2036 /*
2037 * ... only enable interrupts if we are not polling, make sure
2038 * they are off otherwise.
2039 */
2040 if (ifp->if_capenable & IFCAP_POLLING)
2041 CSR_WRITE_4(sc, SIS_IER, 0);
2042 else
2043 #endif
2044 CSR_WRITE_4(sc, SIS_IER, 1);
2045
2046 /* Enable receiver and transmitter. */
2047 SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2048 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
2049
2050 #ifdef notdef
2051 mii_mediachg(mii);
2052 #endif
2053
2054 ifp->if_drv_flags |= IFF_DRV_RUNNING;
2055 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2056
2057 if (!sc->in_tick)
2058 callout_reset(&sc->sis_stat_ch, hz, sis_tick, sc);
2059 }
2060
2061 /*
2062 * Set media options.
2063 */
2064 static int
2065 sis_ifmedia_upd(struct ifnet *ifp)
2066 {
2067 struct sis_softc *sc;
2068 struct mii_data *mii;
2069
2070 sc = ifp->if_softc;
2071
2072 SIS_LOCK(sc);
2073 mii = device_get_softc(sc->sis_miibus);
2074 sc->sis_link = 0;
2075 if (mii->mii_instance) {
2076 struct mii_softc *miisc;
2077 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2078 mii_phy_reset(miisc);
2079 }
2080 mii_mediachg(mii);
2081 SIS_UNLOCK(sc);
2082
2083 return(0);
2084 }
2085
2086 /*
2087 * Report current media status.
2088 */
2089 static void
2090 sis_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2091 {
2092 struct sis_softc *sc;
2093 struct mii_data *mii;
2094
2095 sc = ifp->if_softc;
2096
2097 SIS_LOCK(sc);
2098 mii = device_get_softc(sc->sis_miibus);
2099 mii_pollstat(mii);
2100 SIS_UNLOCK(sc);
2101 ifmr->ifm_active = mii->mii_media_active;
2102 ifmr->ifm_status = mii->mii_media_status;
2103 }
2104
2105 static int
2106 sis_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2107 {
2108 struct sis_softc *sc = ifp->if_softc;
2109 struct ifreq *ifr = (struct ifreq *) data;
2110 struct mii_data *mii;
2111 int error = 0;
2112
2113 switch(command) {
2114 case SIOCSIFFLAGS:
2115 SIS_LOCK(sc);
2116 if (ifp->if_flags & IFF_UP) {
2117 sis_initl(sc);
2118 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2119 sis_stop(sc);
2120 }
2121 SIS_UNLOCK(sc);
2122 error = 0;
2123 break;
2124 case SIOCADDMULTI:
2125 case SIOCDELMULTI:
2126 SIS_LOCK(sc);
2127 if (sc->sis_type == SIS_TYPE_83815)
2128 sis_setmulti_ns(sc);
2129 else
2130 sis_setmulti_sis(sc);
2131 SIS_UNLOCK(sc);
2132 error = 0;
2133 break;
2134 case SIOCGIFMEDIA:
2135 case SIOCSIFMEDIA:
2136 mii = device_get_softc(sc->sis_miibus);
2137 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2138 break;
2139 case SIOCSIFCAP:
2140 /* ok, disable interrupts */
2141 #ifdef DEVICE_POLLING
2142 if (ifr->ifr_reqcap & IFCAP_POLLING &&
2143 !(ifp->if_capenable & IFCAP_POLLING)) {
2144 error = ether_poll_register(sis_poll, ifp);
2145 if (error)
2146 return(error);
2147 SIS_LOCK(sc);
2148 /* Disable interrupts */
2149 CSR_WRITE_4(sc, SIS_IER, 0);
2150 ifp->if_capenable |= IFCAP_POLLING;
2151 SIS_UNLOCK(sc);
2152 return (error);
2153
2154 }
2155 if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
2156 ifp->if_capenable & IFCAP_POLLING) {
2157 error = ether_poll_deregister(ifp);
2158 /* Enable interrupts. */
2159 SIS_LOCK(sc);
2160 CSR_WRITE_4(sc, SIS_IER, 1);
2161 ifp->if_capenable &= ~IFCAP_POLLING;
2162 SIS_UNLOCK(sc);
2163 return (error);
2164 }
2165 #endif /* DEVICE_POLLING */
2166 break;
2167 default:
2168 error = ether_ioctl(ifp, command, data);
2169 break;
2170 }
2171
2172 return(error);
2173 }
2174
2175 static void
2176 sis_watchdog(struct sis_softc *sc)
2177 {
2178
2179 SIS_LOCK_ASSERT(sc);
2180 if (sc->sis_stopped) {
2181 SIS_UNLOCK(sc);
2182 return;
2183 }
2184
2185 if (sc->sis_watchdog_timer == 0 || --sc->sis_watchdog_timer >0)
2186 return;
2187
2188 device_printf(sc->sis_dev, "watchdog timeout\n");
2189 sc->sis_ifp->if_oerrors++;
2190
2191 sis_stop(sc);
2192 sis_reset(sc);
2193 sis_initl(sc);
2194
2195 if (!IFQ_DRV_IS_EMPTY(&sc->sis_ifp->if_snd))
2196 sis_startl(sc->sis_ifp);
2197 }
2198
2199 /*
2200 * Stop the adapter and free any mbufs allocated to the
2201 * RX and TX lists.
2202 */
2203 static void
2204 sis_stop(struct sis_softc *sc)
2205 {
2206 int i;
2207 struct ifnet *ifp;
2208 struct sis_desc *dp;
2209
2210 if (sc->sis_stopped)
2211 return;
2212 SIS_LOCK_ASSERT(sc);
2213 ifp = sc->sis_ifp;
2214 sc->sis_watchdog_timer = 0;
2215
2216 callout_stop(&sc->sis_stat_ch);
2217
2218 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2219 CSR_WRITE_4(sc, SIS_IER, 0);
2220 CSR_WRITE_4(sc, SIS_IMR, 0);
2221 CSR_READ_4(sc, SIS_ISR); /* clear any interrupts already pending */
2222 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2223 DELAY(1000);
2224 CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0);
2225 CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
2226
2227 sc->sis_link = 0;
2228
2229 /*
2230 * Free data in the RX lists.
2231 */
2232 dp = &sc->sis_rx_list[0];
2233 for (i = 0; i < SIS_RX_LIST_CNT; i++, dp++) {
2234 if (dp->sis_mbuf == NULL)
2235 continue;
2236 bus_dmamap_unload(sc->sis_tag, dp->sis_map);
2237 bus_dmamap_destroy(sc->sis_tag, dp->sis_map);
2238 m_freem(dp->sis_mbuf);
2239 dp->sis_mbuf = NULL;
2240 }
2241 bzero(sc->sis_rx_list, SIS_RX_LIST_SZ);
2242
2243 /*
2244 * Free the TX list buffers.
2245 */
2246 dp = &sc->sis_tx_list[0];
2247 for (i = 0; i < SIS_TX_LIST_CNT; i++, dp++) {
2248 if (dp->sis_mbuf == NULL)
2249 continue;
2250 bus_dmamap_unload(sc->sis_tag, dp->sis_map);
2251 bus_dmamap_destroy(sc->sis_tag, dp->sis_map);
2252 m_freem(dp->sis_mbuf);
2253 dp->sis_mbuf = NULL;
2254 }
2255
2256 bzero(sc->sis_tx_list, SIS_TX_LIST_SZ);
2257
2258 sc->sis_stopped = 1;
2259 }
2260
2261 /*
2262 * Stop all chip I/O so that the kernel's probe routines don't
2263 * get confused by errant DMAs when rebooting.
2264 */
2265 static int
2266 sis_shutdown(device_t dev)
2267 {
2268 struct sis_softc *sc;
2269
2270 sc = device_get_softc(dev);
2271 SIS_LOCK(sc);
2272 sis_reset(sc);
2273 sis_stop(sc);
2274 SIS_UNLOCK(sc);
2275 return (0);
2276 }
2277
2278 static device_method_t sis_methods[] = {
2279 /* Device interface */
2280 DEVMETHOD(device_probe, sis_probe),
2281 DEVMETHOD(device_attach, sis_attach),
2282 DEVMETHOD(device_detach, sis_detach),
2283 DEVMETHOD(device_shutdown, sis_shutdown),
2284
2285 /* bus interface */
2286 DEVMETHOD(bus_print_child, bus_generic_print_child),
2287 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
2288
2289 /* MII interface */
2290 DEVMETHOD(miibus_readreg, sis_miibus_readreg),
2291 DEVMETHOD(miibus_writereg, sis_miibus_writereg),
2292 DEVMETHOD(miibus_statchg, sis_miibus_statchg),
2293
2294 { 0, 0 }
2295 };
2296
2297 static driver_t sis_driver = {
2298 "sis",
2299 sis_methods,
2300 sizeof(struct sis_softc)
2301 };
2302
2303 static devclass_t sis_devclass;
2304
2305 DRIVER_MODULE(sis, pci, sis_driver, sis_devclass, 0, 0);
2306 DRIVER_MODULE(miibus, sis, miibus_driver, miibus_devclass, 0, 0);
Cache object: 3524ed450d289131e664c0e23810e880
|