The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/sis/if_sis.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-4-Clause
    3  *
    4  * Copyright (c) 2005 Poul-Henning Kamp <phk@FreeBSD.org>
    5  * Copyright (c) 1997, 1998, 1999
    6  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 3. All advertising materials mentioning features or use of this software
   17  *    must display the following acknowledgement:
   18  *      This product includes software developed by Bill Paul.
   19  * 4. Neither the name of the author nor the names of any co-contributors
   20  *    may be used to endorse or promote products derived from this software
   21  *    without specific prior written permission.
   22  *
   23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   33  * THE POSSIBILITY OF SUCH DAMAGE.
   34  */
   35 
   36 #include <sys/cdefs.h>
   37 __FBSDID("$FreeBSD$");
   38 
   39 /*
   40  * SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are
   41  * available from http://www.sis.com.tw.
   42  *
   43  * This driver also supports the NatSemi DP83815. Datasheets are
   44  * available from http://www.national.com.
   45  *
   46  * Written by Bill Paul <wpaul@ee.columbia.edu>
   47  * Electrical Engineering Department
   48  * Columbia University, New York City
   49  */
   50 /*
   51  * The SiS 900 is a fairly simple chip. It uses bus master DMA with
   52  * simple TX and RX descriptors of 3 longwords in size. The receiver
   53  * has a single perfect filter entry for the station address and a
   54  * 128-bit multicast hash table. The SiS 900 has a built-in MII-based
   55  * transceiver while the 7016 requires an external transceiver chip.
   56  * Both chips offer the standard bit-bang MII interface as well as
   57  * an enchanced PHY interface which simplifies accessing MII registers.
   58  *
   59  * The only downside to this chipset is that RX descriptors must be
   60  * longword aligned.
   61  */
   62 
   63 #ifdef HAVE_KERNEL_OPTION_HEADERS
   64 #include "opt_device_polling.h"
   65 #endif
   66 
   67 #include <sys/param.h>
   68 #include <sys/systm.h>
   69 #include <sys/bus.h>
   70 #include <sys/endian.h>
   71 #include <sys/kernel.h>
   72 #include <sys/lock.h>
   73 #include <sys/malloc.h>
   74 #include <sys/mbuf.h>
   75 #include <sys/module.h>
   76 #include <sys/socket.h>
   77 #include <sys/sockio.h>
   78 #include <sys/sysctl.h>
   79 
   80 #include <net/if.h>
   81 #include <net/if_var.h>
   82 #include <net/if_arp.h>
   83 #include <net/ethernet.h>
   84 #include <net/if_dl.h>
   85 #include <net/if_media.h>
   86 #include <net/if_types.h>
   87 #include <net/if_vlan_var.h>
   88 
   89 #include <net/bpf.h>
   90 
   91 #include <machine/bus.h>
   92 #include <machine/resource.h>
   93 #include <sys/rman.h>
   94 
   95 #include <dev/mii/mii.h>
   96 #include <dev/mii/mii_bitbang.h>
   97 #include <dev/mii/miivar.h>
   98 
   99 #include <dev/pci/pcireg.h>
  100 #include <dev/pci/pcivar.h>
  101 
  102 #define SIS_USEIOSPACE
  103 
  104 #include <dev/sis/if_sisreg.h>
  105 
  106 MODULE_DEPEND(sis, pci, 1, 1, 1);
  107 MODULE_DEPEND(sis, ether, 1, 1, 1);
  108 MODULE_DEPEND(sis, miibus, 1, 1, 1);
  109 
  110 /* "device miibus" required.  See GENERIC if you get errors here. */
  111 #include "miibus_if.h"
  112 
  113 #define SIS_LOCK(_sc)           mtx_lock(&(_sc)->sis_mtx)
  114 #define SIS_UNLOCK(_sc)         mtx_unlock(&(_sc)->sis_mtx)
  115 #define SIS_LOCK_ASSERT(_sc)    mtx_assert(&(_sc)->sis_mtx, MA_OWNED)
  116 
  117 /*
  118  * register space access macros
  119  */
  120 #define CSR_WRITE_4(sc, reg, val)       bus_write_4(sc->sis_res[0], reg, val)
  121 
  122 #define CSR_READ_4(sc, reg)             bus_read_4(sc->sis_res[0], reg)
  123 
  124 #define CSR_READ_2(sc, reg)             bus_read_2(sc->sis_res[0], reg)
  125 
  126 #define CSR_BARRIER(sc, reg, length, flags)                             \
  127         bus_barrier(sc->sis_res[0], reg, length, flags)
  128 
  129 /*
  130  * Various supported device vendors/types and their names.
  131  */
  132 static const struct sis_type sis_devs[] = {
  133         { SIS_VENDORID, SIS_DEVICEID_900, "SiS 900 10/100BaseTX" },
  134         { SIS_VENDORID, SIS_DEVICEID_7016, "SiS 7016 10/100BaseTX" },
  135         { NS_VENDORID, NS_DEVICEID_DP83815, "NatSemi DP8381[56] 10/100BaseTX" },
  136         { 0, 0, NULL }
  137 };
  138 
  139 static int sis_detach(device_t);
  140 static __inline void sis_discard_rxbuf(struct sis_rxdesc *);
  141 static int sis_dma_alloc(struct sis_softc *);
  142 static void sis_dma_free(struct sis_softc *);
  143 static int sis_dma_ring_alloc(struct sis_softc *, bus_size_t, bus_size_t,
  144     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
  145 static void sis_dmamap_cb(void *, bus_dma_segment_t *, int, int);
  146 #ifndef __NO_STRICT_ALIGNMENT
  147 static __inline void sis_fixup_rx(struct mbuf *);
  148 #endif
  149 static void sis_ifmedia_sts(struct ifnet *, struct ifmediareq *);
  150 static int sis_ifmedia_upd(struct ifnet *);
  151 static void sis_init(void *);
  152 static void sis_initl(struct sis_softc *);
  153 static void sis_intr(void *);
  154 static int sis_ioctl(struct ifnet *, u_long, caddr_t);
  155 static uint32_t sis_mii_bitbang_read(device_t);
  156 static void sis_mii_bitbang_write(device_t, uint32_t);
  157 static int sis_newbuf(struct sis_softc *, struct sis_rxdesc *);
  158 static int sis_resume(device_t);
  159 static int sis_rxeof(struct sis_softc *);
  160 static void sis_rxfilter(struct sis_softc *);
  161 static void sis_rxfilter_ns(struct sis_softc *);
  162 static void sis_rxfilter_sis(struct sis_softc *);
  163 static void sis_start(struct ifnet *);
  164 static void sis_startl(struct ifnet *);
  165 static void sis_stop(struct sis_softc *);
  166 static int sis_suspend(device_t);
  167 static void sis_add_sysctls(struct sis_softc *);
  168 static void sis_watchdog(struct sis_softc *);
  169 static void sis_wol(struct sis_softc *);
  170 
  171 /*
  172  * MII bit-bang glue
  173  */
  174 static const struct mii_bitbang_ops sis_mii_bitbang_ops = {
  175         sis_mii_bitbang_read,
  176         sis_mii_bitbang_write,
  177         {
  178                 SIS_MII_DATA,           /* MII_BIT_MDO */
  179                 SIS_MII_DATA,           /* MII_BIT_MDI */
  180                 SIS_MII_CLK,            /* MII_BIT_MDC */
  181                 SIS_MII_DIR,            /* MII_BIT_DIR_HOST_PHY */
  182                 0,                      /* MII_BIT_DIR_PHY_HOST */
  183         }
  184 };
  185 
  186 static struct resource_spec sis_res_spec[] = {
  187 #ifdef SIS_USEIOSPACE
  188         { SYS_RES_IOPORT,       SIS_PCI_LOIO,   RF_ACTIVE},
  189 #else
  190         { SYS_RES_MEMORY,       SIS_PCI_LOMEM,  RF_ACTIVE},
  191 #endif
  192         { SYS_RES_IRQ,          0,              RF_ACTIVE | RF_SHAREABLE},
  193         { -1, 0 }
  194 };
  195 
  196 #define SIS_SETBIT(sc, reg, x)                          \
  197         CSR_WRITE_4(sc, reg,                            \
  198                 CSR_READ_4(sc, reg) | (x))
  199 
  200 #define SIS_CLRBIT(sc, reg, x)                          \
  201         CSR_WRITE_4(sc, reg,                            \
  202                 CSR_READ_4(sc, reg) & ~(x))
  203 
  204 #define SIO_SET(x)                                      \
  205         CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x)
  206 
  207 #define SIO_CLR(x)                                      \
  208         CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x)
  209 
  210 /*
  211  * Routine to reverse the bits in a word. Stolen almost
  212  * verbatim from /usr/games/fortune.
  213  */
  214 static uint16_t
  215 sis_reverse(uint16_t n)
  216 {
  217         n = ((n >>  1) & 0x5555) | ((n <<  1) & 0xaaaa);
  218         n = ((n >>  2) & 0x3333) | ((n <<  2) & 0xcccc);
  219         n = ((n >>  4) & 0x0f0f) | ((n <<  4) & 0xf0f0);
  220         n = ((n >>  8) & 0x00ff) | ((n <<  8) & 0xff00);
  221 
  222         return (n);
  223 }
  224 
  225 static void
  226 sis_delay(struct sis_softc *sc)
  227 {
  228         int                     idx;
  229 
  230         for (idx = (300 / 33) + 1; idx > 0; idx--)
  231                 CSR_READ_4(sc, SIS_CSR);
  232 }
  233 
  234 static void
  235 sis_eeprom_idle(struct sis_softc *sc)
  236 {
  237         int             i;
  238 
  239         SIO_SET(SIS_EECTL_CSEL);
  240         sis_delay(sc);
  241         SIO_SET(SIS_EECTL_CLK);
  242         sis_delay(sc);
  243 
  244         for (i = 0; i < 25; i++) {
  245                 SIO_CLR(SIS_EECTL_CLK);
  246                 sis_delay(sc);
  247                 SIO_SET(SIS_EECTL_CLK);
  248                 sis_delay(sc);
  249         }
  250 
  251         SIO_CLR(SIS_EECTL_CLK);
  252         sis_delay(sc);
  253         SIO_CLR(SIS_EECTL_CSEL);
  254         sis_delay(sc);
  255         CSR_WRITE_4(sc, SIS_EECTL, 0x00000000);
  256 }
  257 
  258 /*
  259  * Send a read command and address to the EEPROM, check for ACK.
  260  */
  261 static void
  262 sis_eeprom_putbyte(struct sis_softc *sc, int addr)
  263 {
  264         int             d, i;
  265 
  266         d = addr | SIS_EECMD_READ;
  267 
  268         /*
  269          * Feed in each bit and stobe the clock.
  270          */
  271         for (i = 0x400; i; i >>= 1) {
  272                 if (d & i) {
  273                         SIO_SET(SIS_EECTL_DIN);
  274                 } else {
  275                         SIO_CLR(SIS_EECTL_DIN);
  276                 }
  277                 sis_delay(sc);
  278                 SIO_SET(SIS_EECTL_CLK);
  279                 sis_delay(sc);
  280                 SIO_CLR(SIS_EECTL_CLK);
  281                 sis_delay(sc);
  282         }
  283 }
  284 
  285 /*
  286  * Read a word of data stored in the EEPROM at address 'addr.'
  287  */
  288 static void
  289 sis_eeprom_getword(struct sis_softc *sc, int addr, uint16_t *dest)
  290 {
  291         int             i;
  292         uint16_t        word = 0;
  293 
  294         /* Force EEPROM to idle state. */
  295         sis_eeprom_idle(sc);
  296 
  297         /* Enter EEPROM access mode. */
  298         sis_delay(sc);
  299         SIO_CLR(SIS_EECTL_CLK);
  300         sis_delay(sc);
  301         SIO_SET(SIS_EECTL_CSEL);
  302         sis_delay(sc);
  303 
  304         /*
  305          * Send address of word we want to read.
  306          */
  307         sis_eeprom_putbyte(sc, addr);
  308 
  309         /*
  310          * Start reading bits from EEPROM.
  311          */
  312         for (i = 0x8000; i; i >>= 1) {
  313                 SIO_SET(SIS_EECTL_CLK);
  314                 sis_delay(sc);
  315                 if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT)
  316                         word |= i;
  317                 sis_delay(sc);
  318                 SIO_CLR(SIS_EECTL_CLK);
  319                 sis_delay(sc);
  320         }
  321 
  322         /* Turn off EEPROM access mode. */
  323         sis_eeprom_idle(sc);
  324 
  325         *dest = word;
  326 }
  327 
  328 /*
  329  * Read a sequence of words from the EEPROM.
  330  */
  331 static void
  332 sis_read_eeprom(struct sis_softc *sc, caddr_t dest, int off, int cnt, int swap)
  333 {
  334         int                     i;
  335         uint16_t                word = 0, *ptr;
  336 
  337         for (i = 0; i < cnt; i++) {
  338                 sis_eeprom_getword(sc, off + i, &word);
  339                 ptr = (uint16_t *)(dest + (i * 2));
  340                 if (swap)
  341                         *ptr = ntohs(word);
  342                 else
  343                         *ptr = word;
  344         }
  345 }
  346 
  347 #if defined(__i386__) || defined(__amd64__)
  348 static device_t
  349 sis_find_bridge(device_t dev)
  350 {
  351         devclass_t              pci_devclass;
  352         device_t                *pci_devices;
  353         int                     pci_count = 0;
  354         device_t                *pci_children;
  355         int                     pci_childcount = 0;
  356         device_t                *busp, *childp;
  357         device_t                child = NULL;
  358         int                     i, j;
  359 
  360         if ((pci_devclass = devclass_find("pci")) == NULL)
  361                 return (NULL);
  362 
  363         devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
  364 
  365         for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
  366                 if (device_get_children(*busp, &pci_children, &pci_childcount))
  367                         continue;
  368                 for (j = 0, childp = pci_children;
  369                     j < pci_childcount; j++, childp++) {
  370                         if (pci_get_vendor(*childp) == SIS_VENDORID &&
  371                             pci_get_device(*childp) == 0x0008) {
  372                                 child = *childp;
  373                                 free(pci_children, M_TEMP);
  374                                 goto done;
  375                         }
  376                 }
  377                 free(pci_children, M_TEMP);
  378         }
  379 
  380 done:
  381         free(pci_devices, M_TEMP);
  382         return (child);
  383 }
  384 
  385 static void
  386 sis_read_cmos(struct sis_softc *sc, device_t dev, caddr_t dest, int off, int cnt)
  387 {
  388         device_t                bridge;
  389         uint8_t                 reg;
  390         int                     i;
  391         bus_space_tag_t         btag;
  392 
  393         bridge = sis_find_bridge(dev);
  394         if (bridge == NULL)
  395                 return;
  396         reg = pci_read_config(bridge, 0x48, 1);
  397         pci_write_config(bridge, 0x48, reg|0x40, 1);
  398 
  399         /* XXX */
  400 #if defined(__amd64__) || defined(__i386__)
  401         btag = X86_BUS_SPACE_IO;
  402 #endif
  403 
  404         for (i = 0; i < cnt; i++) {
  405                 bus_space_write_1(btag, 0x0, 0x70, i + off);
  406                 *(dest + i) = bus_space_read_1(btag, 0x0, 0x71);
  407         }
  408 
  409         pci_write_config(bridge, 0x48, reg & ~0x40, 1);
  410 }
  411 
  412 static void
  413 sis_read_mac(struct sis_softc *sc, device_t dev, caddr_t dest)
  414 {
  415         uint32_t                filtsave, csrsave;
  416 
  417         filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
  418         csrsave = CSR_READ_4(sc, SIS_CSR);
  419 
  420         CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | filtsave);
  421         CSR_WRITE_4(sc, SIS_CSR, 0);
  422 
  423         CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave & ~SIS_RXFILTCTL_ENABLE);
  424 
  425         CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
  426         ((uint16_t *)dest)[0] = CSR_READ_2(sc, SIS_RXFILT_DATA);
  427         CSR_WRITE_4(sc, SIS_RXFILT_CTL,SIS_FILTADDR_PAR1);
  428         ((uint16_t *)dest)[1] = CSR_READ_2(sc, SIS_RXFILT_DATA);
  429         CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
  430         ((uint16_t *)dest)[2] = CSR_READ_2(sc, SIS_RXFILT_DATA);
  431 
  432         CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
  433         CSR_WRITE_4(sc, SIS_CSR, csrsave);
  434 }
  435 #endif
  436 
  437 /*
  438  * Read the MII serial port for the MII bit-bang module.
  439  */
  440 static uint32_t
  441 sis_mii_bitbang_read(device_t dev)
  442 {
  443         struct sis_softc        *sc;
  444         uint32_t                val;
  445 
  446         sc = device_get_softc(dev);
  447 
  448         val = CSR_READ_4(sc, SIS_EECTL);
  449         CSR_BARRIER(sc, SIS_EECTL, 4,
  450             BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
  451         return (val);
  452 }
  453 
  454 /*
  455  * Write the MII serial port for the MII bit-bang module.
  456  */
  457 static void
  458 sis_mii_bitbang_write(device_t dev, uint32_t val)
  459 {
  460         struct sis_softc        *sc;
  461 
  462         sc = device_get_softc(dev);
  463 
  464         CSR_WRITE_4(sc, SIS_EECTL, val);
  465         CSR_BARRIER(sc, SIS_EECTL, 4,
  466             BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
  467 }
  468 
  469 static int
  470 sis_miibus_readreg(device_t dev, int phy, int reg)
  471 {
  472         struct sis_softc        *sc;
  473 
  474         sc = device_get_softc(dev);
  475 
  476         if (sc->sis_type == SIS_TYPE_83815) {
  477                 if (phy != 0)
  478                         return (0);
  479                 /*
  480                  * The NatSemi chip can take a while after
  481                  * a reset to come ready, during which the BMSR
  482                  * returns a value of 0. This is *never* supposed
  483                  * to happen: some of the BMSR bits are meant to
  484                  * be hardwired in the on position, and this can
  485                  * confuse the miibus code a bit during the probe
  486                  * and attach phase. So we make an effort to check
  487                  * for this condition and wait for it to clear.
  488                  */
  489                 if (!CSR_READ_4(sc, NS_BMSR))
  490                         DELAY(1000);
  491                 return CSR_READ_4(sc, NS_BMCR + (reg * 4));
  492         }
  493 
  494         /*
  495          * Chipsets < SIS_635 seem not to be able to read/write
  496          * through mdio. Use the enhanced PHY access register
  497          * again for them.
  498          */
  499         if (sc->sis_type == SIS_TYPE_900 &&
  500             sc->sis_rev < SIS_REV_635) {
  501                 int i, val = 0;
  502 
  503                 if (phy != 0)
  504                         return (0);
  505 
  506                 CSR_WRITE_4(sc, SIS_PHYCTL,
  507                     (phy << 11) | (reg << 6) | SIS_PHYOP_READ);
  508                 SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
  509 
  510                 for (i = 0; i < SIS_TIMEOUT; i++) {
  511                         if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
  512                                 break;
  513                 }
  514 
  515                 if (i == SIS_TIMEOUT) {
  516                         device_printf(sc->sis_dev,
  517                             "PHY failed to come ready\n");
  518                         return (0);
  519                 }
  520 
  521                 val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF;
  522 
  523                 if (val == 0xFFFF)
  524                         return (0);
  525 
  526                 return (val);
  527         } else
  528                 return (mii_bitbang_readreg(dev, &sis_mii_bitbang_ops, phy,
  529                     reg));
  530 }
  531 
  532 static int
  533 sis_miibus_writereg(device_t dev, int phy, int reg, int data)
  534 {
  535         struct sis_softc        *sc;
  536 
  537         sc = device_get_softc(dev);
  538 
  539         if (sc->sis_type == SIS_TYPE_83815) {
  540                 if (phy != 0)
  541                         return (0);
  542                 CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data);
  543                 return (0);
  544         }
  545 
  546         /*
  547          * Chipsets < SIS_635 seem not to be able to read/write
  548          * through mdio. Use the enhanced PHY access register
  549          * again for them.
  550          */
  551         if (sc->sis_type == SIS_TYPE_900 &&
  552             sc->sis_rev < SIS_REV_635) {
  553                 int i;
  554 
  555                 if (phy != 0)
  556                         return (0);
  557 
  558                 CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) |
  559                     (reg << 6) | SIS_PHYOP_WRITE);
  560                 SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
  561 
  562                 for (i = 0; i < SIS_TIMEOUT; i++) {
  563                         if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
  564                                 break;
  565                 }
  566 
  567                 if (i == SIS_TIMEOUT)
  568                         device_printf(sc->sis_dev,
  569                             "PHY failed to come ready\n");
  570         } else
  571                 mii_bitbang_writereg(dev, &sis_mii_bitbang_ops, phy, reg,
  572                     data);
  573         return (0);
  574 }
  575 
  576 static void
  577 sis_miibus_statchg(device_t dev)
  578 {
  579         struct sis_softc        *sc;
  580         struct mii_data         *mii;
  581         struct ifnet            *ifp;
  582         uint32_t                reg;
  583 
  584         sc = device_get_softc(dev);
  585         SIS_LOCK_ASSERT(sc);
  586 
  587         mii = device_get_softc(sc->sis_miibus);
  588         ifp = sc->sis_ifp;
  589         if (mii == NULL || ifp == NULL ||
  590             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
  591                 return;
  592 
  593         sc->sis_flags &= ~SIS_FLAG_LINK;
  594         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
  595             (IFM_ACTIVE | IFM_AVALID)) {
  596                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
  597                 case IFM_10_T:
  598                         CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10);
  599                         sc->sis_flags |= SIS_FLAG_LINK;
  600                         break;
  601                 case IFM_100_TX:
  602                         CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
  603                         sc->sis_flags |= SIS_FLAG_LINK;
  604                         break;
  605                 default:
  606                         break;
  607                 }
  608         }
  609 
  610         if ((sc->sis_flags & SIS_FLAG_LINK) == 0) {
  611                 /*
  612                  * Stopping MACs seem to reset SIS_TX_LISTPTR and
  613                  * SIS_RX_LISTPTR which in turn requires resetting
  614                  * TX/RX buffers.  So just don't do anything for
  615                  * lost link.
  616                  */
  617                 return;
  618         }
  619 
  620         /* Set full/half duplex mode. */
  621         if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
  622                 SIS_SETBIT(sc, SIS_TX_CFG,
  623                     (SIS_TXCFG_IGN_HBEAT | SIS_TXCFG_IGN_CARR));
  624                 SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
  625         } else {
  626                 SIS_CLRBIT(sc, SIS_TX_CFG,
  627                     (SIS_TXCFG_IGN_HBEAT | SIS_TXCFG_IGN_CARR));
  628                 SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
  629         }
  630 
  631         if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) {
  632                 /*
  633                  * MPII03.D: Half Duplex Excessive Collisions.
  634                  * Also page 49 in 83816 manual
  635                  */
  636                 SIS_SETBIT(sc, SIS_TX_CFG, SIS_TXCFG_MPII03D);
  637         }
  638 
  639         if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr < NS_SRR_16A &&
  640             IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
  641                 /*
  642                  * Short Cable Receive Errors (MP21.E)
  643                  */
  644                 CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
  645                 reg = CSR_READ_4(sc, NS_PHY_DSPCFG) & 0xfff;
  646                 CSR_WRITE_4(sc, NS_PHY_DSPCFG, reg | 0x1000);
  647                 DELAY(100);
  648                 reg = CSR_READ_4(sc, NS_PHY_TDATA) & 0xff;
  649                 if ((reg & 0x0080) == 0 || (reg > 0xd8 && reg <= 0xff)) {
  650                         device_printf(sc->sis_dev,
  651                             "Applying short cable fix (reg=%x)\n", reg);
  652                         CSR_WRITE_4(sc, NS_PHY_TDATA, 0x00e8);
  653                         SIS_SETBIT(sc, NS_PHY_DSPCFG, 0x20);
  654                 }
  655                 CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
  656         }
  657         /* Enable TX/RX MACs. */
  658         SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE | SIS_CSR_RX_DISABLE);
  659         SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE | SIS_CSR_RX_ENABLE);
  660 }
  661 
  662 static uint32_t
  663 sis_mchash(struct sis_softc *sc, const uint8_t *addr)
  664 {
  665         uint32_t                crc;
  666 
  667         /* Compute CRC for the address value. */
  668         crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
  669 
  670         /*
  671          * return the filter bit position
  672          *
  673          * The NatSemi chip has a 512-bit filter, which is
  674          * different than the SiS, so we special-case it.
  675          */
  676         if (sc->sis_type == SIS_TYPE_83815)
  677                 return (crc >> 23);
  678         else if (sc->sis_rev >= SIS_REV_635 ||
  679             sc->sis_rev == SIS_REV_900B)
  680                 return (crc >> 24);
  681         else
  682                 return (crc >> 25);
  683 }
  684 
  685 static void
  686 sis_rxfilter(struct sis_softc *sc)
  687 {
  688 
  689         SIS_LOCK_ASSERT(sc);
  690 
  691         if (sc->sis_type == SIS_TYPE_83815)
  692                 sis_rxfilter_ns(sc);
  693         else
  694                 sis_rxfilter_sis(sc);
  695 }
  696 
  697 static u_int
  698 sis_write_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
  699 {
  700         struct sis_softc *sc = arg;
  701         uint32_t h;
  702         int bit, index;
  703 
  704         h = sis_mchash(sc, LLADDR(sdl));
  705         index = h >> 3;
  706         bit = h & 0x1F;
  707         CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + index);
  708         if (bit > 0xF)
  709                 bit -= 0x10;
  710         SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit));
  711 
  712         return (1);
  713 }
  714 
  715 static void
  716 sis_rxfilter_ns(struct sis_softc *sc)
  717 {
  718         struct ifnet            *ifp;
  719         uint32_t                i, filter;
  720 
  721         ifp = sc->sis_ifp;
  722         filter = CSR_READ_4(sc, SIS_RXFILT_CTL);
  723         if (filter & SIS_RXFILTCTL_ENABLE) {
  724                 /*
  725                  * Filter should be disabled to program other bits.
  726                  */
  727                 CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter & ~SIS_RXFILTCTL_ENABLE);
  728                 CSR_READ_4(sc, SIS_RXFILT_CTL);
  729         }
  730         filter &= ~(NS_RXFILTCTL_ARP | NS_RXFILTCTL_PERFECT |
  731             NS_RXFILTCTL_MCHASH | SIS_RXFILTCTL_ALLPHYS | SIS_RXFILTCTL_BROAD |
  732             SIS_RXFILTCTL_ALLMULTI);
  733 
  734         if (ifp->if_flags & IFF_BROADCAST)
  735                 filter |= SIS_RXFILTCTL_BROAD;
  736         /*
  737          * For the NatSemi chip, we have to explicitly enable the
  738          * reception of ARP frames, as well as turn on the 'perfect
  739          * match' filter where we store the station address, otherwise
  740          * we won't receive unicasts meant for this host.
  741          */
  742         filter |= NS_RXFILTCTL_ARP | NS_RXFILTCTL_PERFECT;
  743 
  744         if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
  745                 filter |= SIS_RXFILTCTL_ALLMULTI;
  746                 if (ifp->if_flags & IFF_PROMISC)
  747                         filter |= SIS_RXFILTCTL_ALLPHYS;
  748         } else {
  749                 /*
  750                  * We have to explicitly enable the multicast hash table
  751                  * on the NatSemi chip if we want to use it, which we do.
  752                  */
  753                 filter |= NS_RXFILTCTL_MCHASH;
  754 
  755                 /* first, zot all the existing hash bits */
  756                 for (i = 0; i < 32; i++) {
  757                         CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO +
  758                             (i * 2));
  759                         CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0);
  760                 }
  761 
  762                 if_foreach_llmaddr(ifp, sis_write_maddr, sc);
  763         }
  764 
  765         /* Turn the receive filter on */
  766         CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter | SIS_RXFILTCTL_ENABLE);
  767         CSR_READ_4(sc, SIS_RXFILT_CTL);
  768 }
  769 
  770 struct sis_hash_maddr_ctx {
  771         struct sis_softc *sc;
  772         uint16_t hashes[16];
  773 };
  774 
  775 static u_int
  776 sis_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
  777 {
  778         struct sis_hash_maddr_ctx *ctx = arg;
  779         uint32_t h;
  780 
  781         h = sis_mchash(ctx->sc, LLADDR(sdl));
  782         ctx->hashes[h >> 4] |= 1 << (h & 0xf);
  783 
  784         return (1);
  785 }
  786 
  787 static void
  788 sis_rxfilter_sis(struct sis_softc *sc)
  789 {
  790         struct ifnet            *ifp;
  791         struct sis_hash_maddr_ctx ctx;
  792         uint32_t                filter, i, n;
  793 
  794         ifp = sc->sis_ifp;
  795 
  796         /* hash table size */
  797         if (sc->sis_rev >= SIS_REV_635 || sc->sis_rev == SIS_REV_900B)
  798                 n = 16;
  799         else
  800                 n = 8;
  801 
  802         filter = CSR_READ_4(sc, SIS_RXFILT_CTL);
  803         if (filter & SIS_RXFILTCTL_ENABLE) {
  804                 CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter & ~SIS_RXFILTCTL_ENABLE);
  805                 CSR_READ_4(sc, SIS_RXFILT_CTL);
  806         }
  807         filter &= ~(SIS_RXFILTCTL_ALLPHYS | SIS_RXFILTCTL_BROAD |
  808             SIS_RXFILTCTL_ALLMULTI);
  809         if (ifp->if_flags & IFF_BROADCAST)
  810                 filter |= SIS_RXFILTCTL_BROAD;
  811 
  812         if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
  813                 filter |= SIS_RXFILTCTL_ALLMULTI;
  814                 if (ifp->if_flags & IFF_PROMISC)
  815                         filter |= SIS_RXFILTCTL_ALLPHYS;
  816                 for (i = 0; i < n; i++)
  817                         ctx.hashes[i] = ~0;
  818         } else {
  819                 for (i = 0; i < n; i++)
  820                         ctx.hashes[i] = 0;
  821                 ctx.sc = sc;
  822                 if (if_foreach_llmaddr(ifp, sis_hash_maddr, &ctx) > n) {
  823                         filter |= SIS_RXFILTCTL_ALLMULTI;
  824                         for (i = 0; i < n; i++)
  825                                 ctx.hashes[i] = ~0;
  826                 }
  827         }
  828 
  829         for (i = 0; i < n; i++) {
  830                 CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16);
  831                 CSR_WRITE_4(sc, SIS_RXFILT_DATA, ctx.hashes[i]);
  832         }
  833 
  834         /* Turn the receive filter on */
  835         CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter | SIS_RXFILTCTL_ENABLE);
  836         CSR_READ_4(sc, SIS_RXFILT_CTL);
  837 }
  838 
  839 static void
  840 sis_reset(struct sis_softc *sc)
  841 {
  842         int             i;
  843 
  844         SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET);
  845 
  846         for (i = 0; i < SIS_TIMEOUT; i++) {
  847                 if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET))
  848                         break;
  849         }
  850 
  851         if (i == SIS_TIMEOUT)
  852                 device_printf(sc->sis_dev, "reset never completed\n");
  853 
  854         /* Wait a little while for the chip to get its brains in order. */
  855         DELAY(1000);
  856 
  857         /*
  858          * If this is a NetSemi chip, make sure to clear
  859          * PME mode.
  860          */
  861         if (sc->sis_type == SIS_TYPE_83815) {
  862                 CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS);
  863                 CSR_WRITE_4(sc, NS_CLKRUN, 0);
  864         } else {
  865                 /* Disable WOL functions. */
  866                 CSR_WRITE_4(sc, SIS_PWRMAN_CTL, 0);
  867         }
  868 }
  869 
  870 /*
  871  * Probe for an SiS chip. Check the PCI vendor and device
  872  * IDs against our list and return a device name if we find a match.
  873  */
  874 static int
  875 sis_probe(device_t dev)
  876 {
  877         const struct sis_type   *t;
  878 
  879         t = sis_devs;
  880 
  881         while (t->sis_name != NULL) {
  882                 if ((pci_get_vendor(dev) == t->sis_vid) &&
  883                     (pci_get_device(dev) == t->sis_did)) {
  884                         device_set_desc(dev, t->sis_name);
  885                         return (BUS_PROBE_DEFAULT);
  886                 }
  887                 t++;
  888         }
  889 
  890         return (ENXIO);
  891 }
  892 
  893 /*
  894  * Attach the interface. Allocate softc structures, do ifmedia
  895  * setup and ethernet/BPF attach.
  896  */
  897 static int
  898 sis_attach(device_t dev)
  899 {
  900         u_char                  eaddr[ETHER_ADDR_LEN];
  901         struct sis_softc        *sc;
  902         struct ifnet            *ifp;
  903         int                     error = 0, pmc, waittime = 0;
  904 
  905         waittime = 0;
  906         sc = device_get_softc(dev);
  907 
  908         sc->sis_dev = dev;
  909 
  910         mtx_init(&sc->sis_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
  911             MTX_DEF);
  912         callout_init_mtx(&sc->sis_stat_ch, &sc->sis_mtx, 0);
  913 
  914         if (pci_get_device(dev) == SIS_DEVICEID_900)
  915                 sc->sis_type = SIS_TYPE_900;
  916         if (pci_get_device(dev) == SIS_DEVICEID_7016)
  917                 sc->sis_type = SIS_TYPE_7016;
  918         if (pci_get_vendor(dev) == NS_VENDORID)
  919                 sc->sis_type = SIS_TYPE_83815;
  920 
  921         sc->sis_rev = pci_read_config(dev, PCIR_REVID, 1);
  922         /*
  923          * Map control/status registers.
  924          */
  925         pci_enable_busmaster(dev);
  926 
  927         error = bus_alloc_resources(dev, sis_res_spec, sc->sis_res);
  928         if (error) {
  929                 device_printf(dev, "couldn't allocate resources\n");
  930                 goto fail;
  931         }
  932 
  933         /* Reset the adapter. */
  934         sis_reset(sc);
  935 
  936         if (sc->sis_type == SIS_TYPE_900 &&
  937             (sc->sis_rev == SIS_REV_635 ||
  938             sc->sis_rev == SIS_REV_900B)) {
  939                 SIO_SET(SIS_CFG_RND_CNT);
  940                 SIO_SET(SIS_CFG_PERR_DETECT);
  941         }
  942 
  943         /*
  944          * Get station address from the EEPROM.
  945          */
  946         switch (pci_get_vendor(dev)) {
  947         case NS_VENDORID:
  948                 sc->sis_srr = CSR_READ_4(sc, NS_SRR);
  949 
  950                 /* We can't update the device description, so spew */
  951                 if (sc->sis_srr == NS_SRR_15C)
  952                         device_printf(dev, "Silicon Revision: DP83815C\n");
  953                 else if (sc->sis_srr == NS_SRR_15D)
  954                         device_printf(dev, "Silicon Revision: DP83815D\n");
  955                 else if (sc->sis_srr == NS_SRR_16A)
  956                         device_printf(dev, "Silicon Revision: DP83816A\n");
  957                 else
  958                         device_printf(dev, "Silicon Revision %x\n", sc->sis_srr);
  959 
  960                 /*
  961                  * Reading the MAC address out of the EEPROM on
  962                  * the NatSemi chip takes a bit more work than
  963                  * you'd expect. The address spans 4 16-bit words,
  964                  * with the first word containing only a single bit.
  965                  * You have to shift everything over one bit to
  966                  * get it aligned properly. Also, the bits are
  967                  * stored backwards (the LSB is really the MSB,
  968                  * and so on) so you have to reverse them in order
  969                  * to get the MAC address into the form we want.
  970                  * Why? Who the hell knows.
  971                  */
  972                 {
  973                         uint16_t                tmp[4];
  974 
  975                         sis_read_eeprom(sc, (caddr_t)&tmp,
  976                             NS_EE_NODEADDR, 4, 0);
  977 
  978                         /* Shift everything over one bit. */
  979                         tmp[3] = tmp[3] >> 1;
  980                         tmp[3] |= tmp[2] << 15;
  981                         tmp[2] = tmp[2] >> 1;
  982                         tmp[2] |= tmp[1] << 15;
  983                         tmp[1] = tmp[1] >> 1;
  984                         tmp[1] |= tmp[0] << 15;
  985 
  986                         /* Now reverse all the bits. */
  987                         tmp[3] = sis_reverse(tmp[3]);
  988                         tmp[2] = sis_reverse(tmp[2]);
  989                         tmp[1] = sis_reverse(tmp[1]);
  990 
  991                         eaddr[0] = (tmp[1] >> 0) & 0xFF;
  992                         eaddr[1] = (tmp[1] >> 8) & 0xFF;
  993                         eaddr[2] = (tmp[2] >> 0) & 0xFF;
  994                         eaddr[3] = (tmp[2] >> 8) & 0xFF;
  995                         eaddr[4] = (tmp[3] >> 0) & 0xFF;
  996                         eaddr[5] = (tmp[3] >> 8) & 0xFF;
  997                 }
  998                 break;
  999         case SIS_VENDORID:
 1000         default:
 1001 #if defined(__i386__) || defined(__amd64__)
 1002                 /*
 1003                  * If this is a SiS 630E chipset with an embedded
 1004                  * SiS 900 controller, we have to read the MAC address
 1005                  * from the APC CMOS RAM. Our method for doing this
 1006                  * is very ugly since we have to reach out and grab
 1007                  * ahold of hardware for which we cannot properly
 1008                  * allocate resources. This code is only compiled on
 1009                  * the i386 architecture since the SiS 630E chipset
 1010                  * is for x86 motherboards only. Note that there are
 1011                  * a lot of magic numbers in this hack. These are
 1012                  * taken from SiS's Linux driver. I'd like to replace
 1013                  * them with proper symbolic definitions, but that
 1014                  * requires some datasheets that I don't have access
 1015                  * to at the moment.
 1016                  */
 1017                 if (sc->sis_rev == SIS_REV_630S ||
 1018                     sc->sis_rev == SIS_REV_630E ||
 1019                     sc->sis_rev == SIS_REV_630EA1)
 1020                         sis_read_cmos(sc, dev, (caddr_t)&eaddr, 0x9, 6);
 1021 
 1022                 else if (sc->sis_rev == SIS_REV_635 ||
 1023                          sc->sis_rev == SIS_REV_630ET)
 1024                         sis_read_mac(sc, dev, (caddr_t)&eaddr);
 1025                 else if (sc->sis_rev == SIS_REV_96x) {
 1026                         /* Allow to read EEPROM from LAN. It is shared
 1027                          * between a 1394 controller and the NIC and each
 1028                          * time we access it, we need to set SIS_EECMD_REQ.
 1029                          */
 1030                         SIO_SET(SIS_EECMD_REQ);
 1031                         for (waittime = 0; waittime < SIS_TIMEOUT;
 1032                             waittime++) {
 1033                                 /* Force EEPROM to idle state. */
 1034                                 sis_eeprom_idle(sc);
 1035                                 if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECMD_GNT) {
 1036                                         sis_read_eeprom(sc, (caddr_t)&eaddr,
 1037                                             SIS_EE_NODEADDR, 3, 0);
 1038                                         break;
 1039                                 }
 1040                                 DELAY(1);
 1041                         }
 1042                         /*
 1043                          * Set SIS_EECTL_CLK to high, so a other master
 1044                          * can operate on the i2c bus.
 1045                          */
 1046                         SIO_SET(SIS_EECTL_CLK);
 1047                         /* Refuse EEPROM access by LAN */
 1048                         SIO_SET(SIS_EECMD_DONE);
 1049                 } else
 1050 #endif
 1051                         sis_read_eeprom(sc, (caddr_t)&eaddr,
 1052                             SIS_EE_NODEADDR, 3, 0);
 1053                 break;
 1054         }
 1055 
 1056         sis_add_sysctls(sc);
 1057 
 1058         /* Allocate DMA'able memory. */
 1059         if ((error = sis_dma_alloc(sc)) != 0)
 1060                 goto fail;
 1061 
 1062         ifp = sc->sis_ifp = if_alloc(IFT_ETHER);
 1063         if (ifp == NULL) {
 1064                 device_printf(dev, "can not if_alloc()\n");
 1065                 error = ENOSPC;
 1066                 goto fail;
 1067         }
 1068         ifp->if_softc = sc;
 1069         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
 1070         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
 1071         ifp->if_ioctl = sis_ioctl;
 1072         ifp->if_start = sis_start;
 1073         ifp->if_init = sis_init;
 1074         IFQ_SET_MAXLEN(&ifp->if_snd, SIS_TX_LIST_CNT - 1);
 1075         ifp->if_snd.ifq_drv_maxlen = SIS_TX_LIST_CNT - 1;
 1076         IFQ_SET_READY(&ifp->if_snd);
 1077 
 1078         if (pci_find_cap(sc->sis_dev, PCIY_PMG, &pmc) == 0) {
 1079                 if (sc->sis_type == SIS_TYPE_83815)
 1080                         ifp->if_capabilities |= IFCAP_WOL;
 1081                 else
 1082                         ifp->if_capabilities |= IFCAP_WOL_MAGIC;
 1083                 ifp->if_capenable = ifp->if_capabilities;
 1084         }
 1085 
 1086         /*
 1087          * Do MII setup.
 1088          */
 1089         error = mii_attach(dev, &sc->sis_miibus, ifp, sis_ifmedia_upd,
 1090             sis_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
 1091         if (error != 0) {
 1092                 device_printf(dev, "attaching PHYs failed\n");
 1093                 goto fail;
 1094         }
 1095 
 1096         /*
 1097          * Call MI attach routine.
 1098          */
 1099         ether_ifattach(ifp, eaddr);
 1100 
 1101         /*
 1102          * Tell the upper layer(s) we support long frames.
 1103          */
 1104         ifp->if_hdrlen = sizeof(struct ether_vlan_header);
 1105         ifp->if_capabilities |= IFCAP_VLAN_MTU;
 1106         ifp->if_capenable = ifp->if_capabilities;
 1107 #ifdef DEVICE_POLLING
 1108         ifp->if_capabilities |= IFCAP_POLLING;
 1109 #endif
 1110 
 1111         /* Hook interrupt last to avoid having to lock softc */
 1112         error = bus_setup_intr(dev, sc->sis_res[1], INTR_TYPE_NET | INTR_MPSAFE,
 1113             NULL, sis_intr, sc, &sc->sis_intrhand);
 1114 
 1115         if (error) {
 1116                 device_printf(dev, "couldn't set up irq\n");
 1117                 ether_ifdetach(ifp);
 1118                 goto fail;
 1119         }
 1120 
 1121 fail:
 1122         if (error)
 1123                 sis_detach(dev);
 1124 
 1125         return (error);
 1126 }
 1127 
 1128 /*
 1129  * Shutdown hardware and free up resources. This can be called any
 1130  * time after the mutex has been initialized. It is called in both
 1131  * the error case in attach and the normal detach case so it needs
 1132  * to be careful about only freeing resources that have actually been
 1133  * allocated.
 1134  */
 1135 static int
 1136 sis_detach(device_t dev)
 1137 {
 1138         struct sis_softc        *sc;
 1139         struct ifnet            *ifp;
 1140 
 1141         sc = device_get_softc(dev);
 1142         KASSERT(mtx_initialized(&sc->sis_mtx), ("sis mutex not initialized"));
 1143         ifp = sc->sis_ifp;
 1144 
 1145 #ifdef DEVICE_POLLING
 1146         if (ifp->if_capenable & IFCAP_POLLING)
 1147                 ether_poll_deregister(ifp);
 1148 #endif
 1149 
 1150         /* These should only be active if attach succeeded. */
 1151         if (device_is_attached(dev)) {
 1152                 SIS_LOCK(sc);
 1153                 sis_stop(sc);
 1154                 SIS_UNLOCK(sc);
 1155                 callout_drain(&sc->sis_stat_ch);
 1156                 ether_ifdetach(ifp);
 1157         }
 1158         if (sc->sis_miibus)
 1159                 device_delete_child(dev, sc->sis_miibus);
 1160         bus_generic_detach(dev);
 1161 
 1162         if (sc->sis_intrhand)
 1163                 bus_teardown_intr(dev, sc->sis_res[1], sc->sis_intrhand);
 1164         bus_release_resources(dev, sis_res_spec, sc->sis_res);
 1165 
 1166         if (ifp)
 1167                 if_free(ifp);
 1168 
 1169         sis_dma_free(sc);
 1170 
 1171         mtx_destroy(&sc->sis_mtx);
 1172 
 1173         return (0);
 1174 }
 1175 
 1176 struct sis_dmamap_arg {
 1177         bus_addr_t      sis_busaddr;
 1178 };
 1179 
 1180 static void
 1181 sis_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
 1182 {
 1183         struct sis_dmamap_arg   *ctx;
 1184 
 1185         if (error != 0)
 1186                 return;
 1187 
 1188         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
 1189 
 1190         ctx = (struct sis_dmamap_arg *)arg;
 1191         ctx->sis_busaddr = segs[0].ds_addr;
 1192 }
 1193 
 1194 static int
 1195 sis_dma_ring_alloc(struct sis_softc *sc, bus_size_t alignment,
 1196     bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
 1197     bus_addr_t *paddr, const char *msg)
 1198 {
 1199         struct sis_dmamap_arg   ctx;
 1200         int                     error;
 1201 
 1202         error = bus_dma_tag_create(sc->sis_parent_tag, alignment, 0,
 1203             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, maxsize, 1,
 1204             maxsize, 0, NULL, NULL, tag);
 1205         if (error != 0) {
 1206                 device_printf(sc->sis_dev,
 1207                     "could not create %s dma tag\n", msg);
 1208                 return (ENOMEM);
 1209         }
 1210         /* Allocate DMA'able memory for ring. */
 1211         error = bus_dmamem_alloc(*tag, (void **)ring,
 1212             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
 1213         if (error != 0) {
 1214                 device_printf(sc->sis_dev,
 1215                     "could not allocate DMA'able memory for %s\n", msg);
 1216                 return (ENOMEM);
 1217         }
 1218         /* Load the address of the ring. */
 1219         ctx.sis_busaddr = 0;
 1220         error = bus_dmamap_load(*tag, *map, *ring, maxsize, sis_dmamap_cb,
 1221             &ctx, BUS_DMA_NOWAIT);
 1222         if (error != 0) {
 1223                 device_printf(sc->sis_dev,
 1224                     "could not load DMA'able memory for %s\n", msg);
 1225                 return (ENOMEM);
 1226         }
 1227         *paddr = ctx.sis_busaddr;
 1228         return (0);
 1229 }
 1230 
 1231 static int
 1232 sis_dma_alloc(struct sis_softc *sc)
 1233 {
 1234         struct sis_rxdesc       *rxd;
 1235         struct sis_txdesc       *txd;
 1236         int                     error, i;
 1237 
 1238         /* Allocate the parent bus DMA tag appropriate for PCI. */
 1239         error = bus_dma_tag_create(bus_get_dma_tag(sc->sis_dev),
 1240             1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
 1241             NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
 1242             0, NULL, NULL, &sc->sis_parent_tag);
 1243         if (error != 0) {
 1244                 device_printf(sc->sis_dev,
 1245                     "could not allocate parent dma tag\n");
 1246                 return (ENOMEM);
 1247         }
 1248 
 1249         /* Create RX ring. */
 1250         error = sis_dma_ring_alloc(sc, SIS_DESC_ALIGN, SIS_RX_LIST_SZ,
 1251             &sc->sis_rx_list_tag, (uint8_t **)&sc->sis_rx_list,
 1252             &sc->sis_rx_list_map, &sc->sis_rx_paddr, "RX ring");
 1253         if (error)
 1254                 return (error);
 1255 
 1256         /* Create TX ring. */
 1257         error = sis_dma_ring_alloc(sc, SIS_DESC_ALIGN, SIS_TX_LIST_SZ,
 1258             &sc->sis_tx_list_tag, (uint8_t **)&sc->sis_tx_list,
 1259             &sc->sis_tx_list_map, &sc->sis_tx_paddr, "TX ring");
 1260         if (error)
 1261                 return (error);
 1262 
 1263         /* Create tag for RX mbufs. */
 1264         error = bus_dma_tag_create(sc->sis_parent_tag, SIS_RX_BUF_ALIGN, 0,
 1265             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
 1266             MCLBYTES, 0, NULL, NULL, &sc->sis_rx_tag);
 1267         if (error) {
 1268                 device_printf(sc->sis_dev, "could not allocate RX dma tag\n");
 1269                 return (error);
 1270         }
 1271 
 1272         /* Create tag for TX mbufs. */
 1273         error = bus_dma_tag_create(sc->sis_parent_tag, 1, 0,
 1274             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
 1275             MCLBYTES * SIS_MAXTXSEGS, SIS_MAXTXSEGS, MCLBYTES, 0, NULL, NULL,
 1276             &sc->sis_tx_tag);
 1277         if (error) {
 1278                 device_printf(sc->sis_dev, "could not allocate TX dma tag\n");
 1279                 return (error);
 1280         }
 1281 
 1282         /* Create DMA maps for RX buffers. */
 1283         error = bus_dmamap_create(sc->sis_rx_tag, 0, &sc->sis_rx_sparemap);
 1284         if (error) {
 1285                 device_printf(sc->sis_dev,
 1286                     "can't create spare DMA map for RX\n");
 1287                 return (error);
 1288         }
 1289         for (i = 0; i < SIS_RX_LIST_CNT; i++) {
 1290                 rxd = &sc->sis_rxdesc[i];
 1291                 rxd->rx_m = NULL;
 1292                 error = bus_dmamap_create(sc->sis_rx_tag, 0, &rxd->rx_dmamap);
 1293                 if (error) {
 1294                         device_printf(sc->sis_dev,
 1295                             "can't create DMA map for RX\n");
 1296                         return (error);
 1297                 }
 1298         }
 1299 
 1300         /* Create DMA maps for TX buffers. */
 1301         for (i = 0; i < SIS_TX_LIST_CNT; i++) {
 1302                 txd = &sc->sis_txdesc[i];
 1303                 txd->tx_m = NULL;
 1304                 error = bus_dmamap_create(sc->sis_tx_tag, 0, &txd->tx_dmamap);
 1305                 if (error) {
 1306                         device_printf(sc->sis_dev,
 1307                             "can't create DMA map for TX\n");
 1308                         return (error);
 1309                 }
 1310         }
 1311 
 1312         return (0);
 1313 }
 1314 
 1315 static void
 1316 sis_dma_free(struct sis_softc *sc)
 1317 {
 1318         struct sis_rxdesc       *rxd;
 1319         struct sis_txdesc       *txd;
 1320         int                     i;
 1321 
 1322         /* Destroy DMA maps for RX buffers. */
 1323         for (i = 0; i < SIS_RX_LIST_CNT; i++) {
 1324                 rxd = &sc->sis_rxdesc[i];
 1325                 if (rxd->rx_dmamap)
 1326                         bus_dmamap_destroy(sc->sis_rx_tag, rxd->rx_dmamap);
 1327         }
 1328         if (sc->sis_rx_sparemap)
 1329                 bus_dmamap_destroy(sc->sis_rx_tag, sc->sis_rx_sparemap);
 1330 
 1331         /* Destroy DMA maps for TX buffers. */
 1332         for (i = 0; i < SIS_TX_LIST_CNT; i++) {
 1333                 txd = &sc->sis_txdesc[i];
 1334                 if (txd->tx_dmamap)
 1335                         bus_dmamap_destroy(sc->sis_tx_tag, txd->tx_dmamap);
 1336         }
 1337 
 1338         if (sc->sis_rx_tag)
 1339                 bus_dma_tag_destroy(sc->sis_rx_tag);
 1340         if (sc->sis_tx_tag)
 1341                 bus_dma_tag_destroy(sc->sis_tx_tag);
 1342 
 1343         /* Destroy RX ring. */
 1344         if (sc->sis_rx_paddr)
 1345                 bus_dmamap_unload(sc->sis_rx_list_tag, sc->sis_rx_list_map);
 1346         if (sc->sis_rx_list)
 1347                 bus_dmamem_free(sc->sis_rx_list_tag, sc->sis_rx_list,
 1348                     sc->sis_rx_list_map);
 1349 
 1350         if (sc->sis_rx_list_tag)
 1351                 bus_dma_tag_destroy(sc->sis_rx_list_tag);
 1352 
 1353         /* Destroy TX ring. */
 1354         if (sc->sis_tx_paddr)
 1355                 bus_dmamap_unload(sc->sis_tx_list_tag, sc->sis_tx_list_map);
 1356 
 1357         if (sc->sis_tx_list)
 1358                 bus_dmamem_free(sc->sis_tx_list_tag, sc->sis_tx_list,
 1359                     sc->sis_tx_list_map);
 1360 
 1361         if (sc->sis_tx_list_tag)
 1362                 bus_dma_tag_destroy(sc->sis_tx_list_tag);
 1363 
 1364         /* Destroy the parent tag. */
 1365         if (sc->sis_parent_tag)
 1366                 bus_dma_tag_destroy(sc->sis_parent_tag);
 1367 }
 1368 
 1369 /*
 1370  * Initialize the TX and RX descriptors and allocate mbufs for them. Note that
 1371  * we arrange the descriptors in a closed ring, so that the last descriptor
 1372  * points back to the first.
 1373  */
 1374 static int
 1375 sis_ring_init(struct sis_softc *sc)
 1376 {
 1377         struct sis_rxdesc       *rxd;
 1378         struct sis_txdesc       *txd;
 1379         bus_addr_t              next;
 1380         int                     error, i;
 1381 
 1382         bzero(&sc->sis_tx_list[0], SIS_TX_LIST_SZ);
 1383         for (i = 0; i < SIS_TX_LIST_CNT; i++) {
 1384                 txd = &sc->sis_txdesc[i];
 1385                 txd->tx_m = NULL;
 1386                 if (i == SIS_TX_LIST_CNT - 1)
 1387                         next = SIS_TX_RING_ADDR(sc, 0);
 1388                 else
 1389                         next = SIS_TX_RING_ADDR(sc, i + 1);
 1390                 sc->sis_tx_list[i].sis_next = htole32(SIS_ADDR_LO(next));
 1391         }
 1392         sc->sis_tx_prod = sc->sis_tx_cons = sc->sis_tx_cnt = 0;
 1393         bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map,
 1394             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1395 
 1396         sc->sis_rx_cons = 0;
 1397         bzero(&sc->sis_rx_list[0], SIS_RX_LIST_SZ);
 1398         for (i = 0; i < SIS_RX_LIST_CNT; i++) {
 1399                 rxd = &sc->sis_rxdesc[i];
 1400                 rxd->rx_desc = &sc->sis_rx_list[i];
 1401                 if (i == SIS_RX_LIST_CNT - 1)
 1402                         next = SIS_RX_RING_ADDR(sc, 0);
 1403                 else
 1404                         next = SIS_RX_RING_ADDR(sc, i + 1);
 1405                 rxd->rx_desc->sis_next = htole32(SIS_ADDR_LO(next));
 1406                 error = sis_newbuf(sc, rxd);
 1407                 if (error)
 1408                         return (error);
 1409         }
 1410         bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map,
 1411             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1412 
 1413         return (0);
 1414 }
 1415 
 1416 /*
 1417  * Initialize an RX descriptor and attach an MBUF cluster.
 1418  */
 1419 static int
 1420 sis_newbuf(struct sis_softc *sc, struct sis_rxdesc *rxd)
 1421 {
 1422         struct mbuf             *m;
 1423         bus_dma_segment_t       segs[1];
 1424         bus_dmamap_t            map;
 1425         int nsegs;
 1426 
 1427         m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
 1428         if (m == NULL)
 1429                 return (ENOBUFS);
 1430         m->m_len = m->m_pkthdr.len = SIS_RXLEN;
 1431 #ifndef __NO_STRICT_ALIGNMENT
 1432         m_adj(m, SIS_RX_BUF_ALIGN);
 1433 #endif
 1434 
 1435         if (bus_dmamap_load_mbuf_sg(sc->sis_rx_tag, sc->sis_rx_sparemap, m,
 1436             segs, &nsegs, 0) != 0) {
 1437                 m_freem(m);
 1438                 return (ENOBUFS);
 1439         }
 1440         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
 1441 
 1442         if (rxd->rx_m != NULL) {
 1443                 bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap,
 1444                     BUS_DMASYNC_POSTREAD);
 1445                 bus_dmamap_unload(sc->sis_rx_tag, rxd->rx_dmamap);
 1446         }
 1447         map = rxd->rx_dmamap;
 1448         rxd->rx_dmamap = sc->sis_rx_sparemap;
 1449         sc->sis_rx_sparemap = map;
 1450         bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_PREREAD);
 1451         rxd->rx_m = m;
 1452         rxd->rx_desc->sis_ptr = htole32(SIS_ADDR_LO(segs[0].ds_addr));
 1453         rxd->rx_desc->sis_cmdsts = htole32(SIS_RXLEN);
 1454         return (0);
 1455 }
 1456 
 1457 static __inline void
 1458 sis_discard_rxbuf(struct sis_rxdesc *rxd)
 1459 {
 1460 
 1461         rxd->rx_desc->sis_cmdsts = htole32(SIS_RXLEN);
 1462 }
 1463 
 1464 #ifndef __NO_STRICT_ALIGNMENT
 1465 static __inline void
 1466 sis_fixup_rx(struct mbuf *m)
 1467 {
 1468         uint16_t                *src, *dst;
 1469         int                     i;
 1470 
 1471         src = mtod(m, uint16_t *);
 1472         dst = src - (SIS_RX_BUF_ALIGN - ETHER_ALIGN) / sizeof(*src);
 1473 
 1474         for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
 1475                 *dst++ = *src++;
 1476 
 1477         m->m_data -= SIS_RX_BUF_ALIGN - ETHER_ALIGN;
 1478 }
 1479 #endif
 1480 
 1481 /*
 1482  * A frame has been uploaded: pass the resulting mbuf chain up to
 1483  * the higher level protocols.
 1484  */
 1485 static int
 1486 sis_rxeof(struct sis_softc *sc)
 1487 {
 1488         struct mbuf             *m;
 1489         struct ifnet            *ifp;
 1490         struct sis_rxdesc       *rxd;
 1491         struct sis_desc         *cur_rx;
 1492         int                     prog, rx_cons, rx_npkts = 0, total_len;
 1493         uint32_t                rxstat;
 1494 
 1495         SIS_LOCK_ASSERT(sc);
 1496 
 1497         bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map,
 1498             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 1499 
 1500         rx_cons = sc->sis_rx_cons;
 1501         ifp = sc->sis_ifp;
 1502 
 1503         for (prog = 0; (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
 1504             SIS_INC(rx_cons, SIS_RX_LIST_CNT), prog++) {
 1505 #ifdef DEVICE_POLLING
 1506                 if (ifp->if_capenable & IFCAP_POLLING) {
 1507                         if (sc->rxcycles <= 0)
 1508                                 break;
 1509                         sc->rxcycles--;
 1510                 }
 1511 #endif
 1512                 cur_rx = &sc->sis_rx_list[rx_cons];
 1513                 rxstat = le32toh(cur_rx->sis_cmdsts);
 1514                 if ((rxstat & SIS_CMDSTS_OWN) == 0)
 1515                         break;
 1516                 rxd = &sc->sis_rxdesc[rx_cons];
 1517 
 1518                 total_len = (rxstat & SIS_CMDSTS_BUFLEN) - ETHER_CRC_LEN;
 1519                 if ((ifp->if_capenable & IFCAP_VLAN_MTU) != 0 &&
 1520                     total_len <= (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN -
 1521                     ETHER_CRC_LEN))
 1522                         rxstat &= ~SIS_RXSTAT_GIANT;
 1523                 if (SIS_RXSTAT_ERROR(rxstat) != 0) {
 1524                         if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
 1525                         if (rxstat & SIS_RXSTAT_COLL)
 1526                                 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
 1527                         sis_discard_rxbuf(rxd);
 1528                         continue;
 1529                 }
 1530 
 1531                 /* Add a new receive buffer to the ring. */
 1532                 m = rxd->rx_m;
 1533                 if (sis_newbuf(sc, rxd) != 0) {
 1534                         if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
 1535                         sis_discard_rxbuf(rxd);
 1536                         continue;
 1537                 }
 1538 
 1539                 /* No errors; receive the packet. */
 1540                 m->m_pkthdr.len = m->m_len = total_len;
 1541 #ifndef __NO_STRICT_ALIGNMENT
 1542                 /*
 1543                  * On architectures without alignment problems we try to
 1544                  * allocate a new buffer for the receive ring, and pass up
 1545                  * the one where the packet is already, saving the expensive
 1546                  * copy operation.
 1547                  */
 1548                 sis_fixup_rx(m);
 1549 #endif
 1550                 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
 1551                 m->m_pkthdr.rcvif = ifp;
 1552 
 1553                 SIS_UNLOCK(sc);
 1554                 (*ifp->if_input)(ifp, m);
 1555                 SIS_LOCK(sc);
 1556                 rx_npkts++;
 1557         }
 1558 
 1559         if (prog > 0) {
 1560                 sc->sis_rx_cons = rx_cons;
 1561                 bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map,
 1562                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1563         }
 1564 
 1565         return (rx_npkts);
 1566 }
 1567 
 1568 /*
 1569  * A frame was downloaded to the chip. It's safe for us to clean up
 1570  * the list buffers.
 1571  */
 1572 
 1573 static void
 1574 sis_txeof(struct sis_softc *sc)
 1575 {
 1576         struct ifnet            *ifp;
 1577         struct sis_desc         *cur_tx;
 1578         struct sis_txdesc       *txd;
 1579         uint32_t                cons, txstat;
 1580 
 1581         SIS_LOCK_ASSERT(sc);
 1582 
 1583         cons = sc->sis_tx_cons;
 1584         if (cons == sc->sis_tx_prod)
 1585                 return;
 1586 
 1587         ifp = sc->sis_ifp;
 1588         bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map,
 1589             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 1590 
 1591         /*
 1592          * Go through our tx list and free mbufs for those
 1593          * frames that have been transmitted.
 1594          */
 1595         for (; cons != sc->sis_tx_prod; SIS_INC(cons, SIS_TX_LIST_CNT)) {
 1596                 cur_tx = &sc->sis_tx_list[cons];
 1597                 txstat = le32toh(cur_tx->sis_cmdsts);
 1598                 if ((txstat & SIS_CMDSTS_OWN) != 0)
 1599                         break;
 1600                 txd = &sc->sis_txdesc[cons];
 1601                 if (txd->tx_m != NULL) {
 1602                         bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap,
 1603                             BUS_DMASYNC_POSTWRITE);
 1604                         bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap);
 1605                         m_freem(txd->tx_m);
 1606                         txd->tx_m = NULL;
 1607                         if ((txstat & SIS_CMDSTS_PKT_OK) != 0) {
 1608                                 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
 1609                                 if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
 1610                                     (txstat & SIS_TXSTAT_COLLCNT) >> 16);
 1611                         } else {
 1612                                 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
 1613                                 if (txstat & SIS_TXSTAT_EXCESSCOLLS)
 1614                                         if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
 1615                                 if (txstat & SIS_TXSTAT_OUTOFWINCOLL)
 1616                                         if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
 1617                         }
 1618                 }
 1619                 sc->sis_tx_cnt--;
 1620                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 1621         }
 1622         sc->sis_tx_cons = cons;
 1623         if (sc->sis_tx_cnt == 0)
 1624                 sc->sis_watchdog_timer = 0;
 1625 }
 1626 
 1627 static void
 1628 sis_tick(void *xsc)
 1629 {
 1630         struct sis_softc        *sc;
 1631         struct mii_data         *mii;
 1632 
 1633         sc = xsc;
 1634         SIS_LOCK_ASSERT(sc);
 1635 
 1636         mii = device_get_softc(sc->sis_miibus);
 1637         mii_tick(mii);
 1638         sis_watchdog(sc);
 1639         if ((sc->sis_flags & SIS_FLAG_LINK) == 0)
 1640                 sis_miibus_statchg(sc->sis_dev);
 1641         callout_reset(&sc->sis_stat_ch, hz,  sis_tick, sc);
 1642 }
 1643 
 1644 #ifdef DEVICE_POLLING
 1645 static poll_handler_t sis_poll;
 1646 
 1647 static int
 1648 sis_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
 1649 {
 1650         struct  sis_softc *sc = ifp->if_softc;
 1651         int rx_npkts = 0;
 1652 
 1653         SIS_LOCK(sc);
 1654         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
 1655                 SIS_UNLOCK(sc);
 1656                 return (rx_npkts);
 1657         }
 1658 
 1659         /*
 1660          * On the sis, reading the status register also clears it.
 1661          * So before returning to intr mode we must make sure that all
 1662          * possible pending sources of interrupts have been served.
 1663          * In practice this means run to completion the *eof routines,
 1664          * and then call the interrupt routine
 1665          */
 1666         sc->rxcycles = count;
 1667         rx_npkts = sis_rxeof(sc);
 1668         sis_txeof(sc);
 1669         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 1670                 sis_startl(ifp);
 1671 
 1672         if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
 1673                 uint32_t        status;
 1674 
 1675                 /* Reading the ISR register clears all interrupts. */
 1676                 status = CSR_READ_4(sc, SIS_ISR);
 1677 
 1678                 if (status & (SIS_ISR_RX_ERR|SIS_ISR_RX_OFLOW))
 1679                         if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
 1680 
 1681                 if (status & (SIS_ISR_RX_IDLE))
 1682                         SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
 1683 
 1684                 if (status & SIS_ISR_SYSERR) {
 1685                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1686                         sis_initl(sc);
 1687                 }
 1688         }
 1689 
 1690         SIS_UNLOCK(sc);
 1691         return (rx_npkts);
 1692 }
 1693 #endif /* DEVICE_POLLING */
 1694 
 1695 static void
 1696 sis_intr(void *arg)
 1697 {
 1698         struct sis_softc        *sc;
 1699         struct ifnet            *ifp;
 1700         uint32_t                status;
 1701 
 1702         sc = arg;
 1703         ifp = sc->sis_ifp;
 1704 
 1705         SIS_LOCK(sc);
 1706 #ifdef DEVICE_POLLING
 1707         if (ifp->if_capenable & IFCAP_POLLING) {
 1708                 SIS_UNLOCK(sc);
 1709                 return;
 1710         }
 1711 #endif
 1712 
 1713         /* Reading the ISR register clears all interrupts. */
 1714         status = CSR_READ_4(sc, SIS_ISR);
 1715         if ((status & SIS_INTRS) == 0) {
 1716                 /* Not ours. */
 1717                 SIS_UNLOCK(sc);
 1718                 return;
 1719         }
 1720 
 1721         /* Disable interrupts. */
 1722         CSR_WRITE_4(sc, SIS_IER, 0);
 1723 
 1724         for (;(status & SIS_INTRS) != 0;) {
 1725                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
 1726                         break;
 1727                 if (status &
 1728                     (SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR |
 1729                     SIS_ISR_TX_OK | SIS_ISR_TX_IDLE) )
 1730                         sis_txeof(sc);
 1731 
 1732                 if (status & (SIS_ISR_RX_DESC_OK | SIS_ISR_RX_OK |
 1733                     SIS_ISR_RX_ERR | SIS_ISR_RX_IDLE))
 1734                         sis_rxeof(sc);
 1735 
 1736                 if (status & SIS_ISR_RX_OFLOW)
 1737                         if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
 1738 
 1739                 if (status & (SIS_ISR_RX_IDLE))
 1740                         SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
 1741 
 1742                 if (status & SIS_ISR_SYSERR) {
 1743                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1744                         sis_initl(sc);
 1745                         SIS_UNLOCK(sc);
 1746                         return;
 1747                 }
 1748                 status = CSR_READ_4(sc, SIS_ISR);
 1749         }
 1750 
 1751         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 1752                 /* Re-enable interrupts. */
 1753                 CSR_WRITE_4(sc, SIS_IER, 1);
 1754 
 1755                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 1756                         sis_startl(ifp);
 1757         }
 1758 
 1759         SIS_UNLOCK(sc);
 1760 }
 1761 
 1762 /*
 1763  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
 1764  * pointers to the fragment pointers.
 1765  */
 1766 static int
 1767 sis_encap(struct sis_softc *sc, struct mbuf **m_head)
 1768 {
 1769         struct mbuf             *m;
 1770         struct sis_txdesc       *txd;
 1771         struct sis_desc         *f;
 1772         bus_dma_segment_t       segs[SIS_MAXTXSEGS];
 1773         bus_dmamap_t            map;
 1774         int                     error, i, frag, nsegs, prod;
 1775         int                     padlen;
 1776 
 1777         prod = sc->sis_tx_prod;
 1778         txd = &sc->sis_txdesc[prod];
 1779         if ((sc->sis_flags & SIS_FLAG_MANUAL_PAD) != 0 &&
 1780             (*m_head)->m_pkthdr.len < SIS_MIN_FRAMELEN) {
 1781                 m = *m_head;
 1782                 padlen = SIS_MIN_FRAMELEN - m->m_pkthdr.len;
 1783                 if (M_WRITABLE(m) == 0) {
 1784                         /* Get a writable copy. */
 1785                         m = m_dup(*m_head, M_NOWAIT);
 1786                         m_freem(*m_head);
 1787                         if (m == NULL) {
 1788                                 *m_head = NULL;
 1789                                 return (ENOBUFS);
 1790                         }
 1791                         *m_head = m;
 1792                 }
 1793                 if (m->m_next != NULL || M_TRAILINGSPACE(m) < padlen) {
 1794                         m = m_defrag(m, M_NOWAIT);
 1795                         if (m == NULL) {
 1796                                 m_freem(*m_head);
 1797                                 *m_head = NULL;
 1798                                 return (ENOBUFS);
 1799                         }
 1800                 }
 1801                 /*
 1802                  * Manually pad short frames, and zero the pad space
 1803                  * to avoid leaking data.
 1804                  */
 1805                 bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
 1806                 m->m_pkthdr.len += padlen;
 1807                 m->m_len = m->m_pkthdr.len;
 1808                 *m_head = m;
 1809         }
 1810         error = bus_dmamap_load_mbuf_sg(sc->sis_tx_tag, txd->tx_dmamap,
 1811             *m_head, segs, &nsegs, 0);
 1812         if (error == EFBIG) {
 1813                 m = m_collapse(*m_head, M_NOWAIT, SIS_MAXTXSEGS);
 1814                 if (m == NULL) {
 1815                         m_freem(*m_head);
 1816                         *m_head = NULL;
 1817                         return (ENOBUFS);
 1818                 }
 1819                 *m_head = m;
 1820                 error = bus_dmamap_load_mbuf_sg(sc->sis_tx_tag, txd->tx_dmamap,
 1821                     *m_head, segs, &nsegs, 0);
 1822                 if (error != 0) {
 1823                         m_freem(*m_head);
 1824                         *m_head = NULL;
 1825                         return (error);
 1826                 }
 1827         } else if (error != 0)
 1828                 return (error);
 1829 
 1830         /* Check for descriptor overruns. */
 1831         if (sc->sis_tx_cnt + nsegs > SIS_TX_LIST_CNT - 1) {
 1832                 bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap);
 1833                 return (ENOBUFS);
 1834         }
 1835 
 1836         bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap, BUS_DMASYNC_PREWRITE);
 1837 
 1838         frag = prod;
 1839         for (i = 0; i < nsegs; i++) {
 1840                 f = &sc->sis_tx_list[prod];
 1841                 if (i == 0)
 1842                         f->sis_cmdsts = htole32(segs[i].ds_len |
 1843                             SIS_CMDSTS_MORE);
 1844                 else
 1845                         f->sis_cmdsts = htole32(segs[i].ds_len |
 1846                             SIS_CMDSTS_OWN | SIS_CMDSTS_MORE);
 1847                 f->sis_ptr = htole32(SIS_ADDR_LO(segs[i].ds_addr));
 1848                 SIS_INC(prod, SIS_TX_LIST_CNT);
 1849                 sc->sis_tx_cnt++;
 1850         }
 1851 
 1852         /* Update producer index. */
 1853         sc->sis_tx_prod = prod;
 1854 
 1855         /* Remove MORE flag on the last descriptor. */
 1856         prod = (prod - 1) & (SIS_TX_LIST_CNT - 1);
 1857         f = &sc->sis_tx_list[prod];
 1858         f->sis_cmdsts &= ~htole32(SIS_CMDSTS_MORE);
 1859 
 1860         /* Lastly transfer ownership of packet to the controller. */
 1861         f = &sc->sis_tx_list[frag];
 1862         f->sis_cmdsts |= htole32(SIS_CMDSTS_OWN);
 1863 
 1864         /* Swap the last and the first dmamaps. */
 1865         map = txd->tx_dmamap;
 1866         txd->tx_dmamap = sc->sis_txdesc[prod].tx_dmamap;
 1867         sc->sis_txdesc[prod].tx_dmamap = map;
 1868         sc->sis_txdesc[prod].tx_m = *m_head;
 1869 
 1870         return (0);
 1871 }
 1872 
 1873 static void
 1874 sis_start(struct ifnet *ifp)
 1875 {
 1876         struct sis_softc        *sc;
 1877 
 1878         sc = ifp->if_softc;
 1879         SIS_LOCK(sc);
 1880         sis_startl(ifp);
 1881         SIS_UNLOCK(sc);
 1882 }
 1883 
 1884 static void
 1885 sis_startl(struct ifnet *ifp)
 1886 {
 1887         struct sis_softc        *sc;
 1888         struct mbuf             *m_head;
 1889         int                     queued;
 1890 
 1891         sc = ifp->if_softc;
 1892 
 1893         SIS_LOCK_ASSERT(sc);
 1894 
 1895         if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
 1896             IFF_DRV_RUNNING || (sc->sis_flags & SIS_FLAG_LINK) == 0)
 1897                 return;
 1898 
 1899         for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
 1900             sc->sis_tx_cnt < SIS_TX_LIST_CNT - 4;) {
 1901                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
 1902                 if (m_head == NULL)
 1903                         break;
 1904 
 1905                 if (sis_encap(sc, &m_head) != 0) {
 1906                         if (m_head == NULL)
 1907                                 break;
 1908                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
 1909                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 1910                         break;
 1911                 }
 1912 
 1913                 queued++;
 1914 
 1915                 /*
 1916                  * If there's a BPF listener, bounce a copy of this frame
 1917                  * to him.
 1918                  */
 1919                 BPF_MTAP(ifp, m_head);
 1920         }
 1921 
 1922         if (queued) {
 1923                 /* Transmit */
 1924                 bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map,
 1925                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1926                 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE);
 1927 
 1928                 /*
 1929                  * Set a timeout in case the chip goes out to lunch.
 1930                  */
 1931                 sc->sis_watchdog_timer = 5;
 1932         }
 1933 }
 1934 
 1935 static void
 1936 sis_init(void *xsc)
 1937 {
 1938         struct sis_softc        *sc = xsc;
 1939 
 1940         SIS_LOCK(sc);
 1941         sis_initl(sc);
 1942         SIS_UNLOCK(sc);
 1943 }
 1944 
 1945 static void
 1946 sis_initl(struct sis_softc *sc)
 1947 {
 1948         struct ifnet            *ifp = sc->sis_ifp;
 1949         struct mii_data         *mii;
 1950         uint8_t                 *eaddr;
 1951 
 1952         SIS_LOCK_ASSERT(sc);
 1953 
 1954         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 1955                 return;
 1956 
 1957         /*
 1958          * Cancel pending I/O and free all RX/TX buffers.
 1959          */
 1960         sis_stop(sc);
 1961         /*
 1962          * Reset the chip to a known state.
 1963          */
 1964         sis_reset(sc);
 1965 #ifdef notyet
 1966         if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) {
 1967                 /*
 1968                  * Configure 400usec of interrupt holdoff.  This is based
 1969                  * on emperical tests on a Soekris 4801.
 1970                  */
 1971                 CSR_WRITE_4(sc, NS_IHR, 0x100 | 4);
 1972         }
 1973 #endif
 1974 
 1975         mii = device_get_softc(sc->sis_miibus);
 1976 
 1977         /* Set MAC address */
 1978         eaddr = IF_LLADDR(sc->sis_ifp);
 1979         if (sc->sis_type == SIS_TYPE_83815) {
 1980                 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0);
 1981                 CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[0] | eaddr[1] << 8);
 1982                 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1);
 1983                 CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[2] | eaddr[3] << 8);
 1984                 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2);
 1985                 CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[4] | eaddr[5] << 8);
 1986         } else {
 1987                 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
 1988                 CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[0] | eaddr[1] << 8);
 1989                 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1);
 1990                 CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[2] | eaddr[3] << 8);
 1991                 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
 1992                 CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[4] | eaddr[5] << 8);
 1993         }
 1994 
 1995         /* Init circular TX/RX lists. */
 1996         if (sis_ring_init(sc) != 0) {
 1997                 device_printf(sc->sis_dev,
 1998                     "initialization failed: no memory for rx buffers\n");
 1999                 sis_stop(sc);
 2000                 return;
 2001         }
 2002 
 2003         if (sc->sis_type == SIS_TYPE_83815) {
 2004                 if (sc->sis_manual_pad != 0)
 2005                         sc->sis_flags |= SIS_FLAG_MANUAL_PAD;
 2006                 else
 2007                         sc->sis_flags &= ~SIS_FLAG_MANUAL_PAD;
 2008         }
 2009 
 2010         /*
 2011          * Short Cable Receive Errors (MP21.E)
 2012          * also: Page 78 of the DP83815 data sheet (september 2002 version)
 2013          * recommends the following register settings "for optimum
 2014          * performance." for rev 15C.  Set this also for 15D parts as
 2015          * they require it in practice.
 2016          */
 2017         if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr <= NS_SRR_15D) {
 2018                 CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
 2019                 CSR_WRITE_4(sc, NS_PHY_CR, 0x189C);
 2020                 /* set val for c2 */
 2021                 CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000);
 2022                 /* load/kill c2 */
 2023                 CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040);
 2024                 /* rais SD off, from 4 to c */
 2025                 CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C);
 2026                 CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
 2027         }
 2028 
 2029         sis_rxfilter(sc);
 2030 
 2031         /*
 2032          * Load the address of the RX and TX lists.
 2033          */
 2034         CSR_WRITE_4(sc, SIS_RX_LISTPTR, SIS_ADDR_LO(sc->sis_rx_paddr));
 2035         CSR_WRITE_4(sc, SIS_TX_LISTPTR, SIS_ADDR_LO(sc->sis_tx_paddr));
 2036 
 2037         /* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of
 2038          * the PCI bus. When this bit is set, the Max DMA Burst Size
 2039          * for TX/RX DMA should be no larger than 16 double words.
 2040          */
 2041         if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN) {
 2042                 CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64);
 2043         } else {
 2044                 CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256);
 2045         }
 2046 
 2047         /* Accept Long Packets for VLAN support */
 2048         SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER);
 2049 
 2050         /*
 2051          * Assume 100Mbps link, actual MAC configuration is done
 2052          * after getting a valid link.
 2053          */
 2054         CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
 2055 
 2056         /*
 2057          * Enable interrupts.
 2058          */
 2059         CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS);
 2060 #ifdef DEVICE_POLLING
 2061         /*
 2062          * ... only enable interrupts if we are not polling, make sure
 2063          * they are off otherwise.
 2064          */
 2065         if (ifp->if_capenable & IFCAP_POLLING)
 2066                 CSR_WRITE_4(sc, SIS_IER, 0);
 2067         else
 2068 #endif
 2069         CSR_WRITE_4(sc, SIS_IER, 1);
 2070 
 2071         /* Clear MAC disable. */
 2072         SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE | SIS_CSR_RX_DISABLE);
 2073 
 2074         sc->sis_flags &= ~SIS_FLAG_LINK;
 2075         mii_mediachg(mii);
 2076 
 2077         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 2078         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 2079 
 2080         callout_reset(&sc->sis_stat_ch, hz,  sis_tick, sc);
 2081 }
 2082 
 2083 /*
 2084  * Set media options.
 2085  */
 2086 static int
 2087 sis_ifmedia_upd(struct ifnet *ifp)
 2088 {
 2089         struct sis_softc        *sc;
 2090         struct mii_data         *mii;
 2091         struct mii_softc        *miisc;
 2092         int                     error;
 2093 
 2094         sc = ifp->if_softc;
 2095 
 2096         SIS_LOCK(sc);
 2097         mii = device_get_softc(sc->sis_miibus);
 2098         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
 2099                 PHY_RESET(miisc);
 2100         error = mii_mediachg(mii);
 2101         SIS_UNLOCK(sc);
 2102 
 2103         return (error);
 2104 }
 2105 
 2106 /*
 2107  * Report current media status.
 2108  */
 2109 static void
 2110 sis_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
 2111 {
 2112         struct sis_softc        *sc;
 2113         struct mii_data         *mii;
 2114 
 2115         sc = ifp->if_softc;
 2116 
 2117         SIS_LOCK(sc);
 2118         mii = device_get_softc(sc->sis_miibus);
 2119         mii_pollstat(mii);
 2120         ifmr->ifm_active = mii->mii_media_active;
 2121         ifmr->ifm_status = mii->mii_media_status;
 2122         SIS_UNLOCK(sc);
 2123 }
 2124 
 2125 static int
 2126 sis_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
 2127 {
 2128         struct sis_softc        *sc = ifp->if_softc;
 2129         struct ifreq            *ifr = (struct ifreq *) data;
 2130         struct mii_data         *mii;
 2131         int                     error = 0, mask;
 2132 
 2133         switch (command) {
 2134         case SIOCSIFFLAGS:
 2135                 SIS_LOCK(sc);
 2136                 if (ifp->if_flags & IFF_UP) {
 2137                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
 2138                             ((ifp->if_flags ^ sc->sis_if_flags) &
 2139                             (IFF_PROMISC | IFF_ALLMULTI)) != 0)
 2140                                 sis_rxfilter(sc);
 2141                         else
 2142                                 sis_initl(sc);
 2143                 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 2144                         sis_stop(sc);
 2145                 sc->sis_if_flags = ifp->if_flags;
 2146                 SIS_UNLOCK(sc);
 2147                 break;
 2148         case SIOCADDMULTI:
 2149         case SIOCDELMULTI:
 2150                 SIS_LOCK(sc);
 2151                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 2152                         sis_rxfilter(sc);
 2153                 SIS_UNLOCK(sc);
 2154                 break;
 2155         case SIOCGIFMEDIA:
 2156         case SIOCSIFMEDIA:
 2157                 mii = device_get_softc(sc->sis_miibus);
 2158                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
 2159                 break;
 2160         case SIOCSIFCAP:
 2161                 SIS_LOCK(sc);
 2162                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
 2163 #ifdef DEVICE_POLLING
 2164                 if ((mask & IFCAP_POLLING) != 0 &&
 2165                     (IFCAP_POLLING & ifp->if_capabilities) != 0) {
 2166                         ifp->if_capenable ^= IFCAP_POLLING;
 2167                         if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
 2168                                 error = ether_poll_register(sis_poll, ifp);
 2169                                 if (error != 0) {
 2170                                         SIS_UNLOCK(sc);
 2171                                         break;
 2172                                 }
 2173                                 /* Disable interrupts. */
 2174                                 CSR_WRITE_4(sc, SIS_IER, 0);
 2175                         } else {
 2176                                 error = ether_poll_deregister(ifp);
 2177                                 /* Enable interrupts. */
 2178                                 CSR_WRITE_4(sc, SIS_IER, 1);
 2179                         }
 2180                 }
 2181 #endif /* DEVICE_POLLING */
 2182                 if ((mask & IFCAP_WOL) != 0 &&
 2183                     (ifp->if_capabilities & IFCAP_WOL) != 0) {
 2184                         if ((mask & IFCAP_WOL_UCAST) != 0)
 2185                                 ifp->if_capenable ^= IFCAP_WOL_UCAST;
 2186                         if ((mask & IFCAP_WOL_MCAST) != 0)
 2187                                 ifp->if_capenable ^= IFCAP_WOL_MCAST;
 2188                         if ((mask & IFCAP_WOL_MAGIC) != 0)
 2189                                 ifp->if_capenable ^= IFCAP_WOL_MAGIC;
 2190                 }
 2191                 SIS_UNLOCK(sc);
 2192                 break;
 2193         default:
 2194                 error = ether_ioctl(ifp, command, data);
 2195                 break;
 2196         }
 2197 
 2198         return (error);
 2199 }
 2200 
 2201 static void
 2202 sis_watchdog(struct sis_softc *sc)
 2203 {
 2204 
 2205         SIS_LOCK_ASSERT(sc);
 2206 
 2207         if (sc->sis_watchdog_timer == 0 || --sc->sis_watchdog_timer >0)
 2208                 return;
 2209 
 2210         device_printf(sc->sis_dev, "watchdog timeout\n");
 2211         if_inc_counter(sc->sis_ifp, IFCOUNTER_OERRORS, 1);
 2212 
 2213         sc->sis_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 2214         sis_initl(sc);
 2215 
 2216         if (!IFQ_DRV_IS_EMPTY(&sc->sis_ifp->if_snd))
 2217                 sis_startl(sc->sis_ifp);
 2218 }
 2219 
 2220 /*
 2221  * Stop the adapter and free any mbufs allocated to the
 2222  * RX and TX lists.
 2223  */
 2224 static void
 2225 sis_stop(struct sis_softc *sc)
 2226 {
 2227         struct ifnet *ifp;
 2228         struct sis_rxdesc *rxd;
 2229         struct sis_txdesc *txd;
 2230         int i;
 2231 
 2232         SIS_LOCK_ASSERT(sc);
 2233 
 2234         ifp = sc->sis_ifp;
 2235         sc->sis_watchdog_timer = 0;
 2236 
 2237         callout_stop(&sc->sis_stat_ch);
 2238 
 2239         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 2240         CSR_WRITE_4(sc, SIS_IER, 0);
 2241         CSR_WRITE_4(sc, SIS_IMR, 0);
 2242         CSR_READ_4(sc, SIS_ISR); /* clear any interrupts already pending */
 2243         SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
 2244         DELAY(1000);
 2245         CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0);
 2246         CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
 2247 
 2248         sc->sis_flags &= ~SIS_FLAG_LINK;
 2249 
 2250         /*
 2251          * Free data in the RX lists.
 2252          */
 2253         for (i = 0; i < SIS_RX_LIST_CNT; i++) {
 2254                 rxd = &sc->sis_rxdesc[i];
 2255                 if (rxd->rx_m != NULL) {
 2256                         bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap,
 2257                             BUS_DMASYNC_POSTREAD);
 2258                         bus_dmamap_unload(sc->sis_rx_tag, rxd->rx_dmamap);
 2259                         m_freem(rxd->rx_m);
 2260                         rxd->rx_m = NULL;
 2261                 }
 2262         }
 2263 
 2264         /*
 2265          * Free the TX list buffers.
 2266          */
 2267         for (i = 0; i < SIS_TX_LIST_CNT; i++) {
 2268                 txd = &sc->sis_txdesc[i];
 2269                 if (txd->tx_m != NULL) {
 2270                         bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap,
 2271                             BUS_DMASYNC_POSTWRITE);
 2272                         bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap);
 2273                         m_freem(txd->tx_m);
 2274                         txd->tx_m = NULL;
 2275                 }
 2276         }
 2277 }
 2278 
 2279 /*
 2280  * Stop all chip I/O so that the kernel's probe routines don't
 2281  * get confused by errant DMAs when rebooting.
 2282  */
 2283 static int
 2284 sis_shutdown(device_t dev)
 2285 {
 2286 
 2287         return (sis_suspend(dev));
 2288 }
 2289 
 2290 static int
 2291 sis_suspend(device_t dev)
 2292 {
 2293         struct sis_softc        *sc;
 2294 
 2295         sc = device_get_softc(dev);
 2296         SIS_LOCK(sc);
 2297         sis_stop(sc);
 2298         sis_wol(sc);
 2299         SIS_UNLOCK(sc);
 2300         return (0);
 2301 }
 2302 
 2303 static int
 2304 sis_resume(device_t dev)
 2305 {
 2306         struct sis_softc        *sc;
 2307         struct ifnet            *ifp;
 2308 
 2309         sc = device_get_softc(dev);
 2310         SIS_LOCK(sc);
 2311         ifp = sc->sis_ifp;
 2312         if ((ifp->if_flags & IFF_UP) != 0) {
 2313                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 2314                 sis_initl(sc);
 2315         }
 2316         SIS_UNLOCK(sc);
 2317         return (0);
 2318 }
 2319 
 2320 static void
 2321 sis_wol(struct sis_softc *sc)
 2322 {
 2323         struct ifnet            *ifp;
 2324         uint32_t                val;
 2325         uint16_t                pmstat;
 2326         int                     pmc;
 2327 
 2328         ifp = sc->sis_ifp;
 2329         if ((ifp->if_capenable & IFCAP_WOL) == 0)
 2330                 return;
 2331 
 2332         if (sc->sis_type == SIS_TYPE_83815) {
 2333                 /* Reset RXDP. */
 2334                 CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
 2335 
 2336                 /* Configure WOL events. */
 2337                 CSR_READ_4(sc, NS_WCSR);
 2338                 val = 0;
 2339                 if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
 2340                         val |= NS_WCSR_WAKE_UCAST;
 2341                 if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
 2342                         val |= NS_WCSR_WAKE_MCAST;
 2343                 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
 2344                         val |= NS_WCSR_WAKE_MAGIC;
 2345                 CSR_WRITE_4(sc, NS_WCSR, val);
 2346                 /* Enable PME and clear PMESTS. */
 2347                 val = CSR_READ_4(sc, NS_CLKRUN);
 2348                 val |= NS_CLKRUN_PMEENB | NS_CLKRUN_PMESTS;
 2349                 CSR_WRITE_4(sc, NS_CLKRUN, val);
 2350                 /* Enable silent RX mode. */
 2351                 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
 2352         } else {
 2353                 if (pci_find_cap(sc->sis_dev, PCIY_PMG, &pmc) != 0)
 2354                         return;
 2355                 val = 0;
 2356                 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
 2357                         val |= SIS_PWRMAN_WOL_MAGIC;
 2358                 CSR_WRITE_4(sc, SIS_PWRMAN_CTL, val);
 2359                 /* Request PME. */
 2360                 pmstat = pci_read_config(sc->sis_dev,
 2361                     pmc + PCIR_POWER_STATUS, 2);
 2362                 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
 2363                 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
 2364                         pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
 2365                 pci_write_config(sc->sis_dev,
 2366                     pmc + PCIR_POWER_STATUS, pmstat, 2);
 2367         }
 2368 }
 2369 
 2370 static void
 2371 sis_add_sysctls(struct sis_softc *sc)
 2372 {
 2373         struct sysctl_ctx_list *ctx;
 2374         struct sysctl_oid_list *children;
 2375         int unit;
 2376 
 2377         ctx = device_get_sysctl_ctx(sc->sis_dev);
 2378         children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sis_dev));
 2379 
 2380         unit = device_get_unit(sc->sis_dev);
 2381         /*
 2382          * Unlike most other controllers, NS DP83815/DP83816 controllers
 2383          * seem to pad with 0xFF when it encounter short frames.  According
 2384          * to RFC 1042 the pad bytes should be 0x00.  Turning this tunable
 2385          * on will have driver pad manully but it's disabled by default
 2386          * because it will consume extra CPU cycles for short frames.
 2387          */
 2388         sc->sis_manual_pad = 0;
 2389         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "manual_pad",
 2390             CTLFLAG_RWTUN, &sc->sis_manual_pad, 0, "Manually pad short frames");
 2391 }
 2392 
 2393 static device_method_t sis_methods[] = {
 2394         /* Device interface */
 2395         DEVMETHOD(device_probe,         sis_probe),
 2396         DEVMETHOD(device_attach,        sis_attach),
 2397         DEVMETHOD(device_detach,        sis_detach),
 2398         DEVMETHOD(device_shutdown,      sis_shutdown),
 2399         DEVMETHOD(device_suspend,       sis_suspend),
 2400         DEVMETHOD(device_resume,        sis_resume),
 2401 
 2402         /* MII interface */
 2403         DEVMETHOD(miibus_readreg,       sis_miibus_readreg),
 2404         DEVMETHOD(miibus_writereg,      sis_miibus_writereg),
 2405         DEVMETHOD(miibus_statchg,       sis_miibus_statchg),
 2406 
 2407         DEVMETHOD_END
 2408 };
 2409 
 2410 static driver_t sis_driver = {
 2411         "sis",
 2412         sis_methods,
 2413         sizeof(struct sis_softc)
 2414 };
 2415 
 2416 static devclass_t sis_devclass;
 2417 
 2418 DRIVER_MODULE(sis, pci, sis_driver, sis_devclass, 0, 0);
 2419 DRIVER_MODULE(miibus, sis, miibus_driver, miibus_devclass, 0, 0);

Cache object: c8e0a5a099e672bf69de59b39f0f1adf


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.