The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/sound/isa/mss.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2001 George Reid <greid@ukug.uk.freebsd.org>
    3  * Copyright (c) 1999 Cameron Grant <cg@freebsd.org>
    4  * Copyright Luigi Rizzo, 1997,1998
    5  * Copyright by Hannu Savolainen 1994, 1995
    6  * All rights reserved.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  */
   29 
   30 #include <dev/sound/pcm/sound.h>
   31 
   32 SND_DECLARE_FILE("$FreeBSD: releng/6.1/sys/dev/sound/isa/mss.c 157487 2006-04-04 17:30:59Z ariff $");
   33 
   34 /* board-specific include files */
   35 #include <dev/sound/isa/mss.h>
   36 #include <dev/sound/isa/sb.h>
   37 #include <dev/sound/chip.h>
   38 
   39 #include <isa/isavar.h>
   40 
   41 #include "mixer_if.h"
   42 
   43 #define MSS_DEFAULT_BUFSZ (4096)
   44 #define MSS_INDEXED_REGS 0x20
   45 #define OPL_INDEXED_REGS 0x19
   46 
   47 struct mss_info;
   48 
   49 struct mss_chinfo {
   50         struct mss_info *parent;
   51         struct pcm_channel *channel;
   52         struct snd_dbuf *buffer;
   53         int dir;
   54         u_int32_t fmt, blksz;
   55 };
   56 
   57 struct mss_info {
   58     struct resource *io_base;   /* primary I/O address for the board */
   59     int              io_rid;
   60     struct resource *conf_base; /* and the opti931 also has a config space */
   61     int              conf_rid;
   62     struct resource *irq;
   63     int              irq_rid;
   64     struct resource *drq1; /* play */
   65     int              drq1_rid;
   66     struct resource *drq2; /* rec */
   67     int              drq2_rid;
   68     void            *ih;
   69     bus_dma_tag_t    parent_dmat;
   70     struct mtx      *lock;
   71 
   72     char mss_indexed_regs[MSS_INDEXED_REGS];
   73     char opl_indexed_regs[OPL_INDEXED_REGS];
   74     int bd_id;      /* used to hold board-id info, eg. sb version,
   75                      * mss codec type, etc. etc.
   76                      */
   77     int opti_offset;            /* offset from config_base for opti931 */
   78     u_long  bd_flags;       /* board-specific flags */
   79     int optibase;               /* base address for OPTi9xx config */
   80     struct resource *indir;     /* Indirect register index address */
   81     int indir_rid;
   82     int password;               /* password for opti9xx cards */
   83     int passwdreg;              /* password register */
   84     unsigned int bufsize;
   85     struct mss_chinfo pch, rch;
   86 };
   87 
   88 static int              mss_probe(device_t dev);
   89 static int              mss_attach(device_t dev);
   90 
   91 static driver_intr_t    mss_intr;
   92 
   93 /* prototypes for local functions */
   94 static int              mss_detect(device_t dev, struct mss_info *mss);
   95 #ifndef PC98
   96 static int              opti_detect(device_t dev, struct mss_info *mss);
   97 #endif
   98 static char             *ymf_test(device_t dev, struct mss_info *mss);
   99 static void             ad_unmute(struct mss_info *mss);
  100 
  101 /* mixer set funcs */
  102 static int              mss_mixer_set(struct mss_info *mss, int dev, int left, int right);
  103 static int              mss_set_recsrc(struct mss_info *mss, int mask);
  104 
  105 /* io funcs */
  106 static int              ad_wait_init(struct mss_info *mss, int x);
  107 static int              ad_read(struct mss_info *mss, int reg);
  108 static void             ad_write(struct mss_info *mss, int reg, u_char data);
  109 static void             ad_write_cnt(struct mss_info *mss, int reg, u_short data);
  110 static void             ad_enter_MCE(struct mss_info *mss);
  111 static void             ad_leave_MCE(struct mss_info *mss);
  112 
  113 /* OPTi-specific functions */
  114 static void             opti_write(struct mss_info *mss, u_char reg,
  115                                    u_char data);
  116 #ifndef PC98
  117 static u_char           opti_read(struct mss_info *mss, u_char reg);
  118 #endif
  119 static int              opti_init(device_t dev, struct mss_info *mss);
  120 
  121 /* io primitives */
  122 static void             conf_wr(struct mss_info *mss, u_char reg, u_char data);
  123 static u_char           conf_rd(struct mss_info *mss, u_char reg);
  124 
  125 static int              pnpmss_probe(device_t dev);
  126 static int              pnpmss_attach(device_t dev);
  127 
  128 static driver_intr_t    opti931_intr;
  129 
  130 static u_int32_t mss_fmt[] = {
  131         AFMT_U8,
  132         AFMT_STEREO | AFMT_U8,
  133         AFMT_S16_LE,
  134         AFMT_STEREO | AFMT_S16_LE,
  135         AFMT_MU_LAW,
  136         AFMT_STEREO | AFMT_MU_LAW,
  137         AFMT_A_LAW,
  138         AFMT_STEREO | AFMT_A_LAW,
  139         0
  140 };
  141 static struct pcmchan_caps mss_caps = {4000, 48000, mss_fmt, 0};
  142 
  143 static u_int32_t guspnp_fmt[] = {
  144         AFMT_U8,
  145         AFMT_STEREO | AFMT_U8,
  146         AFMT_S16_LE,
  147         AFMT_STEREO | AFMT_S16_LE,
  148         AFMT_A_LAW,
  149         AFMT_STEREO | AFMT_A_LAW,
  150         0
  151 };
  152 static struct pcmchan_caps guspnp_caps = {4000, 48000, guspnp_fmt, 0};
  153 
  154 static u_int32_t opti931_fmt[] = {
  155         AFMT_U8,
  156         AFMT_STEREO | AFMT_U8,
  157         AFMT_S16_LE,
  158         AFMT_STEREO | AFMT_S16_LE,
  159         0
  160 };
  161 static struct pcmchan_caps opti931_caps = {4000, 48000, opti931_fmt, 0};
  162 
  163 #define MD_AD1848       0x91
  164 #define MD_AD1845       0x92
  165 #define MD_CS42XX       0xA1
  166 #define MD_CS423X       0xA2
  167 #define MD_OPTI930      0xB0
  168 #define MD_OPTI931      0xB1
  169 #define MD_OPTI925      0xB2
  170 #define MD_OPTI924      0xB3
  171 #define MD_GUSPNP       0xB8
  172 #define MD_GUSMAX       0xB9
  173 #define MD_YM0020       0xC1
  174 #define MD_VIVO         0xD1
  175 
  176 #define DV_F_TRUE_MSS   0x00010000      /* mss _with_ base regs */
  177 
  178 #define FULL_DUPLEX(x) ((x)->bd_flags & BD_F_DUPLEX)
  179 
  180 static void
  181 mss_lock(struct mss_info *mss)
  182 {
  183         snd_mtxlock(mss->lock);
  184 }
  185 
  186 static void
  187 mss_unlock(struct mss_info *mss)
  188 {
  189         snd_mtxunlock(mss->lock);
  190 }
  191 
  192 static int
  193 port_rd(struct resource *port, int off)
  194 {
  195         if (port)
  196                 return bus_space_read_1(rman_get_bustag(port),
  197                                         rman_get_bushandle(port),
  198                                         off);
  199         else
  200                 return -1;
  201 }
  202 
  203 static void
  204 port_wr(struct resource *port, int off, u_int8_t data)
  205 {
  206         if (port)
  207                 bus_space_write_1(rman_get_bustag(port),
  208                                   rman_get_bushandle(port),
  209                                   off, data);
  210 }
  211 
  212 static int
  213 io_rd(struct mss_info *mss, int reg)
  214 {
  215         if (mss->bd_flags & BD_F_MSS_OFFSET) reg -= 4;
  216         return port_rd(mss->io_base, reg);
  217 }
  218 
  219 static void
  220 io_wr(struct mss_info *mss, int reg, u_int8_t data)
  221 {
  222         if (mss->bd_flags & BD_F_MSS_OFFSET) reg -= 4;
  223         port_wr(mss->io_base, reg, data);
  224 }
  225 
  226 static void
  227 conf_wr(struct mss_info *mss, u_char reg, u_char value)
  228 {
  229         port_wr(mss->conf_base, 0, reg);
  230         port_wr(mss->conf_base, 1, value);
  231 }
  232 
  233 static u_char
  234 conf_rd(struct mss_info *mss, u_char reg)
  235 {
  236         port_wr(mss->conf_base, 0, reg);
  237         return port_rd(mss->conf_base, 1);
  238 }
  239 
  240 static void
  241 opti_wr(struct mss_info *mss, u_char reg, u_char value)
  242 {
  243         port_wr(mss->conf_base, mss->opti_offset + 0, reg);
  244         port_wr(mss->conf_base, mss->opti_offset + 1, value);
  245 }
  246 
  247 static u_char
  248 opti_rd(struct mss_info *mss, u_char reg)
  249 {
  250         port_wr(mss->conf_base, mss->opti_offset + 0, reg);
  251         return port_rd(mss->conf_base, mss->opti_offset + 1);
  252 }
  253 
  254 static void
  255 gus_wr(struct mss_info *mss, u_char reg, u_char value)
  256 {
  257         port_wr(mss->conf_base, 3, reg);
  258         port_wr(mss->conf_base, 5, value);
  259 }
  260 
  261 static u_char
  262 gus_rd(struct mss_info *mss, u_char reg)
  263 {
  264         port_wr(mss->conf_base, 3, reg);
  265         return port_rd(mss->conf_base, 5);
  266 }
  267 
  268 static void
  269 mss_release_resources(struct mss_info *mss, device_t dev)
  270 {
  271         if (mss->irq) {
  272                 if (mss->ih)
  273                         bus_teardown_intr(dev, mss->irq, mss->ih);
  274                 bus_release_resource(dev, SYS_RES_IRQ, mss->irq_rid,
  275                                      mss->irq);
  276                 mss->irq = 0;
  277         }
  278         if (mss->drq2) {
  279                 if (mss->drq2 != mss->drq1) {
  280                         isa_dma_release(rman_get_start(mss->drq2));
  281                         bus_release_resource(dev, SYS_RES_DRQ, mss->drq2_rid,
  282                                         mss->drq2);
  283                 }
  284                 mss->drq2 = 0;
  285         }
  286         if (mss->drq1) {
  287                 isa_dma_release(rman_get_start(mss->drq1));
  288                 bus_release_resource(dev, SYS_RES_DRQ, mss->drq1_rid,
  289                                      mss->drq1);
  290                 mss->drq1 = 0;
  291         }
  292         if (mss->io_base) {
  293                 bus_release_resource(dev, SYS_RES_IOPORT, mss->io_rid,
  294                                      mss->io_base);
  295                 mss->io_base = 0;
  296         }
  297         if (mss->conf_base) {
  298                 bus_release_resource(dev, SYS_RES_IOPORT, mss->conf_rid,
  299                                      mss->conf_base);
  300                 mss->conf_base = 0;
  301         }
  302         if (mss->indir) {
  303                 bus_release_resource(dev, SYS_RES_IOPORT, mss->indir_rid,
  304                                      mss->indir);
  305                 mss->indir = 0;
  306         }
  307         if (mss->parent_dmat) {
  308                 bus_dma_tag_destroy(mss->parent_dmat);
  309                 mss->parent_dmat = 0;
  310         }
  311         if (mss->lock) snd_mtxfree(mss->lock);
  312 
  313         free(mss, M_DEVBUF);
  314 }
  315 
  316 static int
  317 mss_alloc_resources(struct mss_info *mss, device_t dev)
  318 {
  319         int pdma, rdma, ok = 1;
  320         if (!mss->io_base)
  321                 mss->io_base = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
  322                                                       &mss->io_rid, RF_ACTIVE);
  323         if (!mss->irq)
  324                 mss->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
  325                                                   &mss->irq_rid, RF_ACTIVE);
  326         if (!mss->drq1)
  327                 mss->drq1 = bus_alloc_resource_any(dev, SYS_RES_DRQ,
  328                                                    &mss->drq1_rid,
  329                                                    RF_ACTIVE);
  330         if (mss->conf_rid >= 0 && !mss->conf_base)
  331                 mss->conf_base = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
  332                                                         &mss->conf_rid,
  333                                                         RF_ACTIVE);
  334         if (mss->drq2_rid >= 0 && !mss->drq2)
  335                 mss->drq2 = bus_alloc_resource_any(dev, SYS_RES_DRQ,
  336                                                    &mss->drq2_rid,
  337                                                    RF_ACTIVE);
  338 
  339         if (!mss->io_base || !mss->drq1 || !mss->irq) ok = 0;
  340         if (mss->conf_rid >= 0 && !mss->conf_base) ok = 0;
  341         if (mss->drq2_rid >= 0 && !mss->drq2) ok = 0;
  342 
  343         if (ok) {
  344                 pdma = rman_get_start(mss->drq1);
  345                 isa_dma_acquire(pdma);
  346                 isa_dmainit(pdma, mss->bufsize);
  347                 mss->bd_flags &= ~BD_F_DUPLEX;
  348                 if (mss->drq2) {
  349                         rdma = rman_get_start(mss->drq2);
  350                         isa_dma_acquire(rdma);
  351                         isa_dmainit(rdma, mss->bufsize);
  352                         mss->bd_flags |= BD_F_DUPLEX;
  353                 } else mss->drq2 = mss->drq1;
  354         }
  355         return ok;
  356 }
  357 
  358 /*
  359  * The various mixers use a variety of bitmasks etc. The Voxware
  360  * driver had a very nice technique to describe a mixer and interface
  361  * to it. A table defines, for each channel, which register, bits,
  362  * offset, polarity to use. This procedure creates the new value
  363  * using the table and the old value.
  364  */
  365 
  366 static void
  367 change_bits(mixer_tab *t, u_char *regval, int dev, int chn, int newval)
  368 {
  369         u_char mask;
  370         int shift;
  371 
  372         DEB(printf("ch_bits dev %d ch %d val %d old 0x%02x "
  373                 "r %d p %d bit %d off %d\n",
  374                 dev, chn, newval, *regval,
  375                 (*t)[dev][chn].regno, (*t)[dev][chn].polarity,
  376                 (*t)[dev][chn].nbits, (*t)[dev][chn].bitoffs ) );
  377 
  378         if ( (*t)[dev][chn].polarity == 1)      /* reverse */
  379                 newval = 100 - newval ;
  380 
  381         mask = (1 << (*t)[dev][chn].nbits) - 1;
  382         newval = (int) ((newval * mask) + 50) / 100; /* Scale it */
  383         shift = (*t)[dev][chn].bitoffs /*- (*t)[dev][LEFT_CHN].nbits + 1*/;
  384 
  385         *regval &= ~(mask << shift);        /* Filter out the previous value */
  386         *regval |= (newval & mask) << shift;        /* Set the new value */
  387 }
  388 
  389 /* -------------------------------------------------------------------- */
  390 /* only one source can be set... */
  391 static int
  392 mss_set_recsrc(struct mss_info *mss, int mask)
  393 {
  394         u_char   recdev;
  395 
  396         switch (mask) {
  397         case SOUND_MASK_LINE:
  398         case SOUND_MASK_LINE3:
  399                 recdev = 0;
  400                 break;
  401 
  402         case SOUND_MASK_CD:
  403         case SOUND_MASK_LINE1:
  404                 recdev = 0x40;
  405                 break;
  406 
  407         case SOUND_MASK_IMIX:
  408                 recdev = 0xc0;
  409                 break;
  410 
  411         case SOUND_MASK_MIC:
  412         default:
  413                 mask = SOUND_MASK_MIC;
  414                 recdev = 0x80;
  415         }
  416         ad_write(mss, 0, (ad_read(mss, 0) & 0x3f) | recdev);
  417         ad_write(mss, 1, (ad_read(mss, 1) & 0x3f) | recdev);
  418         return mask;
  419 }
  420 
  421 /* there are differences in the mixer depending on the actual sound card. */
  422 static int
  423 mss_mixer_set(struct mss_info *mss, int dev, int left, int right)
  424 {
  425         int        regoffs;
  426         mixer_tab *mix_d;
  427         u_char     old, val;
  428 
  429         switch (mss->bd_id) {
  430                 case MD_OPTI931:
  431                         mix_d = &opti931_devices;
  432                         break;
  433                 case MD_OPTI930:
  434                         mix_d = &opti930_devices;
  435                         break;
  436                 default:
  437                         mix_d = &mix_devices;
  438         }
  439 
  440         if ((*mix_d)[dev][LEFT_CHN].nbits == 0) {
  441                 DEB(printf("nbits = 0 for dev %d\n", dev));
  442                 return -1;
  443         }
  444 
  445         if ((*mix_d)[dev][RIGHT_CHN].nbits == 0) right = left; /* mono */
  446 
  447         /* Set the left channel */
  448 
  449         regoffs = (*mix_d)[dev][LEFT_CHN].regno;
  450         old = val = ad_read(mss, regoffs);
  451         /* if volume is 0, mute chan. Otherwise, unmute. */
  452         if (regoffs != 0) val = (left == 0)? old | 0x80 : old & 0x7f;
  453         change_bits(mix_d, &val, dev, LEFT_CHN, left);
  454         ad_write(mss, regoffs, val);
  455 
  456         DEB(printf("LEFT: dev %d reg %d old 0x%02x new 0x%02x\n",
  457                 dev, regoffs, old, val));
  458 
  459         if ((*mix_d)[dev][RIGHT_CHN].nbits != 0) { /* have stereo */
  460                 /* Set the right channel */
  461                 regoffs = (*mix_d)[dev][RIGHT_CHN].regno;
  462                 old = val = ad_read(mss, regoffs);
  463                 if (regoffs != 1) val = (right == 0)? old | 0x80 : old & 0x7f;
  464                 change_bits(mix_d, &val, dev, RIGHT_CHN, right);
  465                 ad_write(mss, regoffs, val);
  466 
  467                 DEB(printf("RIGHT: dev %d reg %d old 0x%02x new 0x%02x\n",
  468                 dev, regoffs, old, val));
  469         }
  470         return 0; /* success */
  471 }
  472 
  473 /* -------------------------------------------------------------------- */
  474 
  475 static int
  476 mssmix_init(struct snd_mixer *m)
  477 {
  478         struct mss_info *mss = mix_getdevinfo(m);
  479 
  480         mix_setdevs(m, MODE2_MIXER_DEVICES);
  481         mix_setrecdevs(m, MSS_REC_DEVICES);
  482         switch(mss->bd_id) {
  483         case MD_OPTI930:
  484                 mix_setdevs(m, OPTI930_MIXER_DEVICES);
  485                 break;
  486 
  487         case MD_OPTI931:
  488                 mix_setdevs(m, OPTI931_MIXER_DEVICES);
  489                 mss_lock(mss);
  490                 ad_write(mss, 20, 0x88);
  491                 ad_write(mss, 21, 0x88);
  492                 mss_unlock(mss);
  493                 break;
  494 
  495         case MD_AD1848:
  496                 mix_setdevs(m, MODE1_MIXER_DEVICES);
  497                 break;
  498 
  499         case MD_GUSPNP:
  500         case MD_GUSMAX:
  501                 /* this is only necessary in mode 3 ... */
  502                 mss_lock(mss);
  503                 ad_write(mss, 22, 0x88);
  504                 ad_write(mss, 23, 0x88);
  505                 mss_unlock(mss);
  506                 break;
  507         }
  508         return 0;
  509 }
  510 
  511 static int
  512 mssmix_set(struct snd_mixer *m, unsigned dev, unsigned left, unsigned right)
  513 {
  514         struct mss_info *mss = mix_getdevinfo(m);
  515 
  516         mss_lock(mss);
  517         mss_mixer_set(mss, dev, left, right);
  518         mss_unlock(mss);
  519 
  520         return left | (right << 8);
  521 }
  522 
  523 static int
  524 mssmix_setrecsrc(struct snd_mixer *m, u_int32_t src)
  525 {
  526         struct mss_info *mss = mix_getdevinfo(m);
  527 
  528         mss_lock(mss);
  529         src = mss_set_recsrc(mss, src);
  530         mss_unlock(mss);
  531         return src;
  532 }
  533 
  534 static kobj_method_t mssmix_mixer_methods[] = {
  535         KOBJMETHOD(mixer_init,          mssmix_init),
  536         KOBJMETHOD(mixer_set,           mssmix_set),
  537         KOBJMETHOD(mixer_setrecsrc,     mssmix_setrecsrc),
  538         { 0, 0 }
  539 };
  540 MIXER_DECLARE(mssmix_mixer);
  541 
  542 /* -------------------------------------------------------------------- */
  543 
  544 static int
  545 ymmix_init(struct snd_mixer *m)
  546 {
  547         struct mss_info *mss = mix_getdevinfo(m);
  548 
  549         mssmix_init(m);
  550         mix_setdevs(m, mix_getdevs(m) | SOUND_MASK_VOLUME | SOUND_MASK_MIC
  551                                       | SOUND_MASK_BASS | SOUND_MASK_TREBLE);
  552         /* Set master volume */
  553         mss_lock(mss);
  554         conf_wr(mss, OPL3SAx_VOLUMEL, 7);
  555         conf_wr(mss, OPL3SAx_VOLUMER, 7);
  556         mss_unlock(mss);
  557 
  558         return 0;
  559 }
  560 
  561 static int
  562 ymmix_set(struct snd_mixer *m, unsigned dev, unsigned left, unsigned right)
  563 {
  564         struct mss_info *mss = mix_getdevinfo(m);
  565         int t, l, r;
  566 
  567         mss_lock(mss);
  568         switch (dev) {
  569         case SOUND_MIXER_VOLUME:
  570                 if (left) t = 15 - (left * 15) / 100;
  571                 else t = 0x80; /* mute */
  572                 conf_wr(mss, OPL3SAx_VOLUMEL, t);
  573                 if (right) t = 15 - (right * 15) / 100;
  574                 else t = 0x80; /* mute */
  575                 conf_wr(mss, OPL3SAx_VOLUMER, t);
  576                 break;
  577 
  578         case SOUND_MIXER_MIC:
  579                 t = left;
  580                 if (left) t = 31 - (left * 31) / 100;
  581                 else t = 0x80; /* mute */
  582                 conf_wr(mss, OPL3SAx_MIC, t);
  583                 break;
  584 
  585         case SOUND_MIXER_BASS:
  586                 l = (left * 7) / 100;
  587                 r = (right * 7) / 100;
  588                 t = (r << 4) | l;
  589                 conf_wr(mss, OPL3SAx_BASS, t);
  590                 break;
  591 
  592         case SOUND_MIXER_TREBLE:
  593                 l = (left * 7) / 100;
  594                 r = (right * 7) / 100;
  595                 t = (r << 4) | l;
  596                 conf_wr(mss, OPL3SAx_TREBLE, t);
  597                 break;
  598 
  599         default:
  600                 mss_mixer_set(mss, dev, left, right);
  601         }
  602         mss_unlock(mss);
  603 
  604         return left | (right << 8);
  605 }
  606 
  607 static int
  608 ymmix_setrecsrc(struct snd_mixer *m, u_int32_t src)
  609 {
  610         struct mss_info *mss = mix_getdevinfo(m);
  611         mss_lock(mss);
  612         src = mss_set_recsrc(mss, src);
  613         mss_unlock(mss);
  614         return src;
  615 }
  616 
  617 static kobj_method_t ymmix_mixer_methods[] = {
  618         KOBJMETHOD(mixer_init,          ymmix_init),
  619         KOBJMETHOD(mixer_set,           ymmix_set),
  620         KOBJMETHOD(mixer_setrecsrc,     ymmix_setrecsrc),
  621         { 0, 0 }
  622 };
  623 MIXER_DECLARE(ymmix_mixer);
  624 
  625 /* -------------------------------------------------------------------- */
  626 /*
  627  * XXX This might be better off in the gusc driver.
  628  */
  629 static void
  630 gusmax_setup(struct mss_info *mss, device_t dev, struct resource *alt)
  631 {
  632         static const unsigned char irq_bits[16] = {
  633                 0, 0, 0, 3, 0, 2, 0, 4, 0, 1, 0, 5, 6, 0, 0, 7
  634         };
  635         static const unsigned char dma_bits[8] = {
  636                 0, 1, 0, 2, 0, 3, 4, 5
  637         };
  638         device_t parent = device_get_parent(dev);
  639         unsigned char irqctl, dmactl;
  640         int s;
  641 
  642         s = splhigh();
  643 
  644         port_wr(alt, 0x0f, 0x05);
  645         port_wr(alt, 0x00, 0x0c);
  646         port_wr(alt, 0x0b, 0x00);
  647 
  648         port_wr(alt, 0x0f, 0x00);
  649 
  650         irqctl = irq_bits[isa_get_irq(parent)];
  651         /* Share the IRQ with the MIDI driver.  */
  652         irqctl |= 0x40;
  653         dmactl = dma_bits[isa_get_drq(parent)];
  654         if (device_get_flags(parent) & DV_F_DUAL_DMA)
  655                 dmactl |= dma_bits[device_get_flags(parent) & DV_F_DRQ_MASK]
  656                     << 3;
  657 
  658         /*
  659          * Set the DMA and IRQ control latches.
  660          */
  661         port_wr(alt, 0x00, 0x0c);
  662         port_wr(alt, 0x0b, dmactl | 0x80);
  663         port_wr(alt, 0x00, 0x4c);
  664         port_wr(alt, 0x0b, irqctl);
  665 
  666         port_wr(alt, 0x00, 0x0c);
  667         port_wr(alt, 0x0b, dmactl);
  668         port_wr(alt, 0x00, 0x4c);
  669         port_wr(alt, 0x0b, irqctl);
  670 
  671         port_wr(mss->conf_base, 2, 0);
  672         port_wr(alt, 0x00, 0x0c);
  673         port_wr(mss->conf_base, 2, 0);
  674 
  675         splx(s);
  676 }
  677 
  678 static int
  679 mss_init(struct mss_info *mss, device_t dev)
  680 {
  681         u_char r6, r9;
  682         struct resource *alt;
  683         int rid, tmp;
  684 
  685         mss->bd_flags |= BD_F_MCE_BIT;
  686         switch(mss->bd_id) {
  687         case MD_OPTI931:
  688                 /*
  689                  * The MED3931 v.1.0 allocates 3 bytes for the config
  690                  * space, whereas v.2.0 allocates 4 bytes. What I know
  691                  * for sure is that the upper two ports must be used,
  692                  * and they should end on a boundary of 4 bytes. So I
  693                  * need the following trick.
  694                  */
  695                 mss->opti_offset =
  696                         (rman_get_start(mss->conf_base) & ~3) + 2
  697                         - rman_get_start(mss->conf_base);
  698                 BVDDB(printf("mss_init: opti_offset=%d\n", mss->opti_offset));
  699                 opti_wr(mss, 4, 0xd6); /* fifo empty, OPL3, audio enable, SB3.2 */
  700                 ad_write(mss, 10, 2); /* enable interrupts */
  701                 opti_wr(mss, 6, 2);  /* MCIR6: mss enable, sb disable */
  702                 opti_wr(mss, 5, 0x28);  /* MCIR5: codec in exp. mode,fifo */
  703                 break;
  704 
  705         case MD_GUSPNP:
  706         case MD_GUSMAX:
  707                 gus_wr(mss, 0x4c /* _URSTI */, 0);/* Pull reset */
  708                 DELAY(1000 * 30);
  709                 /* release reset  and enable DAC */
  710                 gus_wr(mss, 0x4c /* _URSTI */, 3);
  711                 DELAY(1000 * 30);
  712                 /* end of reset */
  713 
  714                 rid = 0;
  715                 alt = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
  716                                              RF_ACTIVE);
  717                 if (alt == NULL) {
  718                         printf("XXX couldn't init GUS PnP/MAX\n");
  719                         break;
  720                 }
  721                 port_wr(alt, 0, 0xC); /* enable int and dma */
  722                 if (mss->bd_id == MD_GUSMAX)
  723                         gusmax_setup(mss, dev, alt);
  724                 bus_release_resource(dev, SYS_RES_IOPORT, rid, alt);
  725 
  726                 /*
  727                  * unmute left & right line. Need to go in mode3, unmute,
  728                  * and back to mode 2
  729                  */
  730                 tmp = ad_read(mss, 0x0c);
  731                 ad_write(mss, 0x0c, 0x6c); /* special value to enter mode 3 */
  732                 ad_write(mss, 0x19, 0); /* unmute left */
  733                 ad_write(mss, 0x1b, 0); /* unmute right */
  734                 ad_write(mss, 0x0c, tmp); /* restore old mode */
  735 
  736                 /* send codec interrupts on irq1 and only use that one */
  737                 gus_wr(mss, 0x5a, 0x4f);
  738 
  739                 /* enable access to hidden regs */
  740                 tmp = gus_rd(mss, 0x5b /* IVERI */);
  741                 gus_wr(mss, 0x5b, tmp | 1);
  742                 BVDDB(printf("GUS: silicon rev %c\n", 'A' + ((tmp & 0xf) >> 4)));
  743                 break;
  744 
  745         case MD_YM0020:
  746                 conf_wr(mss, OPL3SAx_DMACONF, 0xa9); /* dma-b rec, dma-a play */
  747                 r6 = conf_rd(mss, OPL3SAx_DMACONF);
  748                 r9 = conf_rd(mss, OPL3SAx_MISC); /* version */
  749                 BVDDB(printf("Yamaha: ver 0x%x DMA config 0x%x\n", r6, r9);)
  750                 /* yamaha - set volume to max */
  751                 conf_wr(mss, OPL3SAx_VOLUMEL, 0);
  752                 conf_wr(mss, OPL3SAx_VOLUMER, 0);
  753                 conf_wr(mss, OPL3SAx_DMACONF, FULL_DUPLEX(mss)? 0xa9 : 0x8b);
  754                 break;
  755         }
  756         if (FULL_DUPLEX(mss) && mss->bd_id != MD_OPTI931)
  757                 ad_write(mss, 12, ad_read(mss, 12) | 0x40); /* mode 2 */
  758         ad_enter_MCE(mss);
  759         ad_write(mss, 9, FULL_DUPLEX(mss)? 0 : 4);
  760         ad_leave_MCE(mss);
  761         ad_write(mss, 10, 2); /* int enable */
  762         io_wr(mss, MSS_STATUS, 0); /* Clear interrupt status */
  763         /* the following seem required on the CS4232 */
  764         ad_unmute(mss);
  765         return 0;
  766 }
  767 
  768 
  769 /*
  770  * main irq handler for the CS423x. The OPTi931 code is
  771  * a separate one.
  772  * The correct way to operate for a device with multiple internal
  773  * interrupt sources is to loop on the status register and ack
  774  * interrupts until all interrupts are served and none are reported. At
  775  * this point the IRQ line to the ISA IRQ controller should go low
  776  * and be raised at the next interrupt.
  777  *
  778  * Since the ISA IRQ controller is sent EOI _before_ passing control
  779  * to the isr, it might happen that we serve an interrupt early, in
  780  * which case the status register at the next interrupt should just
  781  * say that there are no more interrupts...
  782  */
  783 
  784 static void
  785 mss_intr(void *arg)
  786 {
  787         struct mss_info *mss = arg;
  788         u_char c = 0, served = 0;
  789         int i;
  790 
  791         DEB(printf("mss_intr\n"));
  792         mss_lock(mss);
  793         ad_read(mss, 11); /* fake read of status bits */
  794 
  795         /* loop until there are interrupts, but no more than 10 times. */
  796         for (i = 10; i > 0 && io_rd(mss, MSS_STATUS) & 1; i--) {
  797                 /* get exact reason for full-duplex boards */
  798                 c = FULL_DUPLEX(mss)? ad_read(mss, 24) : 0x30;
  799                 c &= ~served;
  800                 if (sndbuf_runsz(mss->pch.buffer) && (c & 0x10)) {
  801                         served |= 0x10;
  802                         mss_unlock(mss);
  803                         chn_intr(mss->pch.channel);
  804                         mss_lock(mss);
  805                 }
  806                 if (sndbuf_runsz(mss->rch.buffer) && (c & 0x20)) {
  807                         served |= 0x20;
  808                         mss_unlock(mss);
  809                         chn_intr(mss->rch.channel);
  810                         mss_lock(mss);
  811                 }
  812                 /* now ack the interrupt */
  813                 if (FULL_DUPLEX(mss)) ad_write(mss, 24, ~c); /* ack selectively */
  814                 else io_wr(mss, MSS_STATUS, 0); /* Clear interrupt status */
  815         }
  816         if (i == 10) {
  817                 BVDDB(printf("mss_intr: irq, but not from mss\n"));
  818         } else if (served == 0) {
  819                 BVDDB(printf("mss_intr: unexpected irq with reason %x\n", c));
  820                 /*
  821                 * this should not happen... I have no idea what to do now.
  822                 * maybe should do a sanity check and restart dmas ?
  823                 */
  824                 io_wr(mss, MSS_STATUS, 0);      /* Clear interrupt status */
  825         }
  826         mss_unlock(mss);
  827 }
  828 
  829 /*
  830  * AD_WAIT_INIT waits if we are initializing the board and
  831  * we cannot modify its settings
  832  */
  833 static int
  834 ad_wait_init(struct mss_info *mss, int x)
  835 {
  836         int arg = x, n = 0; /* to shut up the compiler... */
  837         for (; x > 0; x--)
  838                 if ((n = io_rd(mss, MSS_INDEX)) & MSS_IDXBUSY) DELAY(10);
  839                 else return n;
  840         printf("AD_WAIT_INIT FAILED %d 0x%02x\n", arg, n);
  841         return n;
  842 }
  843 
  844 static int
  845 ad_read(struct mss_info *mss, int reg)
  846 {
  847         int             x;
  848 
  849         ad_wait_init(mss, 201000);
  850         x = io_rd(mss, MSS_INDEX) & ~MSS_IDXMASK;
  851         io_wr(mss, MSS_INDEX, (u_char)(reg & MSS_IDXMASK) | x);
  852         x = io_rd(mss, MSS_IDATA);
  853         /* printf("ad_read %d, %x\n", reg, x); */
  854         return x;
  855 }
  856 
  857 static void
  858 ad_write(struct mss_info *mss, int reg, u_char data)
  859 {
  860         int x;
  861 
  862         /* printf("ad_write %d, %x\n", reg, data); */
  863         ad_wait_init(mss, 1002000);
  864         x = io_rd(mss, MSS_INDEX) & ~MSS_IDXMASK;
  865         io_wr(mss, MSS_INDEX, (u_char)(reg & MSS_IDXMASK) | x);
  866         io_wr(mss, MSS_IDATA, data);
  867 }
  868 
  869 static void
  870 ad_write_cnt(struct mss_info *mss, int reg, u_short cnt)
  871 {
  872         ad_write(mss, reg+1, cnt & 0xff);
  873         ad_write(mss, reg, cnt >> 8); /* upper base must be last */
  874 }
  875 
  876 static void
  877 wait_for_calibration(struct mss_info *mss)
  878 {
  879         int t;
  880 
  881         /*
  882          * Wait until the auto calibration process has finished.
  883          *
  884          * 1) Wait until the chip becomes ready (reads don't return 0x80).
  885          * 2) Wait until the ACI bit of I11 gets on
  886          * 3) Wait until the ACI bit of I11 gets off
  887          */
  888 
  889         t = ad_wait_init(mss, 1000000);
  890         if (t & MSS_IDXBUSY) printf("mss: Auto calibration timed out(1).\n");
  891 
  892         /*
  893          * The calibration mode for chips that support it is set so that
  894          * we never see ACI go on.
  895          */
  896         if (mss->bd_id == MD_GUSMAX || mss->bd_id == MD_GUSPNP) {
  897                 for (t = 100; t > 0 && (ad_read(mss, 11) & 0x20) == 0; t--);
  898         } else {
  899                 /*
  900                  * XXX This should only be enabled for cards that *really*
  901                  * need it.  Are there any?
  902                  */
  903                 for (t = 100; t > 0 && (ad_read(mss, 11) & 0x20) == 0; t--) DELAY(100);
  904         }
  905         for (t = 100; t > 0 && ad_read(mss, 11) & 0x20; t--) DELAY(100);
  906 }
  907 
  908 static void
  909 ad_unmute(struct mss_info *mss)
  910 {
  911         ad_write(mss, 6, ad_read(mss, 6) & ~I6_MUTE);
  912         ad_write(mss, 7, ad_read(mss, 7) & ~I6_MUTE);
  913 }
  914 
  915 static void
  916 ad_enter_MCE(struct mss_info *mss)
  917 {
  918         int prev;
  919 
  920         mss->bd_flags |= BD_F_MCE_BIT;
  921         ad_wait_init(mss, 203000);
  922         prev = io_rd(mss, MSS_INDEX);
  923         prev &= ~MSS_TRD;
  924         io_wr(mss, MSS_INDEX, prev | MSS_MCE);
  925 }
  926 
  927 static void
  928 ad_leave_MCE(struct mss_info *mss)
  929 {
  930         u_char   prev;
  931 
  932         if ((mss->bd_flags & BD_F_MCE_BIT) == 0) {
  933                 DEB(printf("--- hey, leave_MCE: MCE bit was not set!\n"));
  934                 return;
  935         }
  936 
  937         ad_wait_init(mss, 1000000);
  938 
  939         mss->bd_flags &= ~BD_F_MCE_BIT;
  940 
  941         prev = io_rd(mss, MSS_INDEX);
  942         prev &= ~MSS_TRD;
  943         io_wr(mss, MSS_INDEX, prev & ~MSS_MCE); /* Clear the MCE bit */
  944         wait_for_calibration(mss);
  945 }
  946 
  947 static int
  948 mss_speed(struct mss_chinfo *ch, int speed)
  949 {
  950         struct mss_info *mss = ch->parent;
  951         /*
  952         * In the CS4231, the low 4 bits of I8 are used to hold the
  953         * sample rate.  Only a fixed number of values is allowed. This
  954         * table lists them. The speed-setting routines scans the table
  955         * looking for the closest match. This is the only supported method.
  956         *
  957         * In the CS4236, there is an alternate metod (which we do not
  958         * support yet) which provides almost arbitrary frequency setting.
  959         * In the AD1845, it looks like the sample rate can be
  960         * almost arbitrary, and written directly to a register.
  961         * In the OPTi931, there is a SB command which provides for
  962         * almost arbitrary frequency setting.
  963         *
  964         */
  965         ad_enter_MCE(mss);
  966         if (mss->bd_id == MD_AD1845) { /* Use alternate speed select regs */
  967                 ad_write(mss, 22, (speed >> 8) & 0xff); /* Speed MSB */
  968                 ad_write(mss, 23, speed & 0xff);        /* Speed LSB */
  969                 /* XXX must also do something in I27 for the ad1845 */
  970         } else {
  971                 int i, sel = 0; /* assume entry 0 does not contain -1 */
  972                 static int speeds[] =
  973                 {8000, 5512, 16000, 11025, 27429, 18900, 32000, 22050,
  974                 -1, 37800, -1, 44100, 48000, 33075, 9600, 6615};
  975 
  976                 for (i = 1; i < 16; i++)
  977                         if (speeds[i] > 0 &&
  978                             abs(speed-speeds[i]) < abs(speed-speeds[sel])) sel = i;
  979                 speed = speeds[sel];
  980                 ad_write(mss, 8, (ad_read(mss, 8) & 0xf0) | sel);
  981                 ad_wait_init(mss, 10000);
  982         }
  983         ad_leave_MCE(mss);
  984 
  985         return speed;
  986 }
  987 
  988 /*
  989  * mss_format checks that the format is supported (or defaults to AFMT_U8)
  990  * and returns the bit setting for the 1848 register corresponding to
  991  * the desired format.
  992  *
  993  * fixed lr970724
  994  */
  995 
  996 static int
  997 mss_format(struct mss_chinfo *ch, u_int32_t format)
  998 {
  999         struct mss_info *mss = ch->parent;
 1000         int i, arg = format & ~AFMT_STEREO;
 1001 
 1002         /*
 1003         * The data format uses 3 bits (just 2 on the 1848). For each
 1004         * bit setting, the following array returns the corresponding format.
 1005         * The code scans the array looking for a suitable format. In
 1006         * case it is not found, default to AFMT_U8 (not such a good
 1007         * choice, but let's do it for compatibility...).
 1008         */
 1009 
 1010         static int fmts[] =
 1011                 {AFMT_U8, AFMT_MU_LAW, AFMT_S16_LE, AFMT_A_LAW,
 1012                 -1, AFMT_IMA_ADPCM, AFMT_U16_BE, -1};
 1013 
 1014         ch->fmt = format;
 1015         for (i = 0; i < 8; i++) if (arg == fmts[i]) break;
 1016         arg = i << 1;
 1017         if (format & AFMT_STEREO) arg |= 1;
 1018         arg <<= 4;
 1019         ad_enter_MCE(mss);
 1020         ad_write(mss, 8, (ad_read(mss, 8) & 0x0f) | arg);
 1021         ad_wait_init(mss, 10000);
 1022         if (ad_read(mss, 12) & 0x40) {  /* mode2? */
 1023                 ad_write(mss, 28, arg); /* capture mode */
 1024                 ad_wait_init(mss, 10000);
 1025         }
 1026         ad_leave_MCE(mss);
 1027         return format;
 1028 }
 1029 
 1030 static int
 1031 mss_trigger(struct mss_chinfo *ch, int go)
 1032 {
 1033         struct mss_info *mss = ch->parent;
 1034         u_char m;
 1035         int retry, wr, cnt, ss;
 1036 
 1037         ss = 1;
 1038         ss <<= (ch->fmt & AFMT_STEREO)? 1 : 0;
 1039         ss <<= (ch->fmt & AFMT_16BIT)? 1 : 0;
 1040 
 1041         wr = (ch->dir == PCMDIR_PLAY)? 1 : 0;
 1042         m = ad_read(mss, 9);
 1043         switch (go) {
 1044         case PCMTRIG_START:
 1045                 cnt = (ch->blksz / ss) - 1;
 1046 
 1047                 DEB(if (m & 4) printf("OUCH! reg 9 0x%02x\n", m););
 1048                 m |= wr? I9_PEN : I9_CEN; /* enable DMA */
 1049                 ad_write_cnt(mss, (wr || !FULL_DUPLEX(mss))? 14 : 30, cnt);
 1050                 break;
 1051 
 1052         case PCMTRIG_STOP:
 1053         case PCMTRIG_ABORT: /* XXX check this... */
 1054                 m &= ~(wr? I9_PEN : I9_CEN); /* Stop DMA */
 1055 #if 0
 1056                 /*
 1057                 * try to disable DMA by clearing count registers. Not sure it
 1058                 * is needed, and it might cause false interrupts when the
 1059                 * DMA is re-enabled later.
 1060                 */
 1061                 ad_write_cnt(mss, (wr || !FULL_DUPLEX(mss))? 14 : 30, 0);
 1062 #endif
 1063         }
 1064         /* on the OPTi931 the enable bit seems hard to set... */
 1065         for (retry = 10; retry > 0; retry--) {
 1066                 ad_write(mss, 9, m);
 1067                 if (ad_read(mss, 9) == m) break;
 1068         }
 1069         if (retry == 0) BVDDB(printf("stop dma, failed to set bit 0x%02x 0x%02x\n", \
 1070                                m, ad_read(mss, 9)));
 1071         return 0;
 1072 }
 1073 
 1074 
 1075 /*
 1076  * the opti931 seems to miss interrupts when working in full
 1077  * duplex, so we try some heuristics to catch them.
 1078  */
 1079 static void
 1080 opti931_intr(void *arg)
 1081 {
 1082         struct mss_info *mss = (struct mss_info *)arg;
 1083         u_char masked = 0, i11, mc11, c = 0;
 1084         u_char reason; /* b0 = playback, b1 = capture, b2 = timer */
 1085         int loops = 10;
 1086 
 1087 #if 0
 1088         reason = io_rd(mss, MSS_STATUS);
 1089         if (!(reason & 1)) {/* no int, maybe a shared line ? */
 1090                 DEB(printf("intr: flag 0, mcir11 0x%02x\n", ad_read(mss, 11)));
 1091                 return;
 1092         }
 1093 #endif
 1094         mss_lock(mss);
 1095         i11 = ad_read(mss, 11); /* XXX what's for ? */
 1096         again:
 1097 
 1098         c = mc11 = FULL_DUPLEX(mss)? opti_rd(mss, 11) : 0xc;
 1099         mc11 &= 0x0c;
 1100         if (c & 0x10) {
 1101                 DEB(printf("Warning: CD interrupt\n");)
 1102                 mc11 |= 0x10;
 1103         }
 1104         if (c & 0x20) {
 1105                 DEB(printf("Warning: MPU interrupt\n");)
 1106                 mc11 |= 0x20;
 1107         }
 1108         if (mc11 & masked) BVDDB(printf("irq reset failed, mc11 0x%02x, 0x%02x\n",\
 1109                                   mc11, masked));
 1110         masked |= mc11;
 1111         /*
 1112         * the nice OPTi931 sets the IRQ line before setting the bits in
 1113         * mc11. So, on some occasions I have to retry (max 10 times).
 1114         */
 1115         if (mc11 == 0) { /* perhaps can return ... */
 1116                 reason = io_rd(mss, MSS_STATUS);
 1117                 if (reason & 1) {
 1118                         DEB(printf("one more try...\n");)
 1119                         if (--loops) goto again;
 1120                         else BVDDB(printf("intr, but mc11 not set\n");)
 1121                 }
 1122                 if (loops == 0) BVDDB(printf("intr, nothing in mcir11 0x%02x\n", mc11));
 1123                 mss_unlock(mss);
 1124                 return;
 1125         }
 1126 
 1127         if (sndbuf_runsz(mss->rch.buffer) && (mc11 & 8)) {
 1128                 mss_unlock(mss);
 1129                 chn_intr(mss->rch.channel);
 1130                 mss_lock(mss);
 1131         }
 1132         if (sndbuf_runsz(mss->pch.buffer) && (mc11 & 4)) {
 1133                 mss_unlock(mss);
 1134                 chn_intr(mss->pch.channel);
 1135                 mss_lock(mss);
 1136         }
 1137         opti_wr(mss, 11, ~mc11); /* ack */
 1138         if (--loops) goto again;
 1139         mss_unlock(mss);
 1140         DEB(printf("xxx too many loops\n");)
 1141 }
 1142 
 1143 /* -------------------------------------------------------------------- */
 1144 /* channel interface */
 1145 static void *
 1146 msschan_init(kobj_t obj, void *devinfo, struct snd_dbuf *b, struct pcm_channel *c, int dir)
 1147 {
 1148         struct mss_info *mss = devinfo;
 1149         struct mss_chinfo *ch = (dir == PCMDIR_PLAY)? &mss->pch : &mss->rch;
 1150 
 1151         ch->parent = mss;
 1152         ch->channel = c;
 1153         ch->buffer = b;
 1154         ch->dir = dir;
 1155         if (sndbuf_alloc(ch->buffer, mss->parent_dmat, mss->bufsize) != 0)
 1156                 return NULL;
 1157         sndbuf_dmasetup(ch->buffer, (dir == PCMDIR_PLAY)? mss->drq1 : mss->drq2);
 1158         return ch;
 1159 }
 1160 
 1161 static int
 1162 msschan_setformat(kobj_t obj, void *data, u_int32_t format)
 1163 {
 1164         struct mss_chinfo *ch = data;
 1165         struct mss_info *mss = ch->parent;
 1166 
 1167         mss_lock(mss);
 1168         mss_format(ch, format);
 1169         mss_unlock(mss);
 1170         return 0;
 1171 }
 1172 
 1173 static int
 1174 msschan_setspeed(kobj_t obj, void *data, u_int32_t speed)
 1175 {
 1176         struct mss_chinfo *ch = data;
 1177         struct mss_info *mss = ch->parent;
 1178         int r;
 1179 
 1180         mss_lock(mss);
 1181         r = mss_speed(ch, speed);
 1182         mss_unlock(mss);
 1183 
 1184         return r;
 1185 }
 1186 
 1187 static int
 1188 msschan_setblocksize(kobj_t obj, void *data, u_int32_t blocksize)
 1189 {
 1190         struct mss_chinfo *ch = data;
 1191 
 1192         ch->blksz = blocksize;
 1193         sndbuf_resize(ch->buffer, 2, ch->blksz);
 1194 
 1195         return ch->blksz;
 1196 }
 1197 
 1198 static int
 1199 msschan_trigger(kobj_t obj, void *data, int go)
 1200 {
 1201         struct mss_chinfo *ch = data;
 1202         struct mss_info *mss = ch->parent;
 1203 
 1204         if (go == PCMTRIG_EMLDMAWR || go == PCMTRIG_EMLDMARD)
 1205                 return 0;
 1206 
 1207         sndbuf_dma(ch->buffer, go);
 1208         mss_lock(mss);
 1209         mss_trigger(ch, go);
 1210         mss_unlock(mss);
 1211         return 0;
 1212 }
 1213 
 1214 static int
 1215 msschan_getptr(kobj_t obj, void *data)
 1216 {
 1217         struct mss_chinfo *ch = data;
 1218         return sndbuf_dmaptr(ch->buffer);
 1219 }
 1220 
 1221 static struct pcmchan_caps *
 1222 msschan_getcaps(kobj_t obj, void *data)
 1223 {
 1224         struct mss_chinfo *ch = data;
 1225 
 1226         switch(ch->parent->bd_id) {
 1227         case MD_OPTI931:
 1228                 return &opti931_caps;
 1229                 break;
 1230 
 1231         case MD_GUSPNP:
 1232         case MD_GUSMAX:
 1233                 return &guspnp_caps;
 1234                 break;
 1235 
 1236         default:
 1237                 return &mss_caps;
 1238                 break;
 1239         }
 1240 }
 1241 
 1242 static kobj_method_t msschan_methods[] = {
 1243         KOBJMETHOD(channel_init,                msschan_init),
 1244         KOBJMETHOD(channel_setformat,           msschan_setformat),
 1245         KOBJMETHOD(channel_setspeed,            msschan_setspeed),
 1246         KOBJMETHOD(channel_setblocksize,        msschan_setblocksize),
 1247         KOBJMETHOD(channel_trigger,             msschan_trigger),
 1248         KOBJMETHOD(channel_getptr,              msschan_getptr),
 1249         KOBJMETHOD(channel_getcaps,             msschan_getcaps),
 1250         { 0, 0 }
 1251 };
 1252 CHANNEL_DECLARE(msschan);
 1253 
 1254 /* -------------------------------------------------------------------- */
 1255 
 1256 /*
 1257  * mss_probe() is the probe routine. Note, it is not necessary to
 1258  * go through this for PnP devices, since they are already
 1259  * indentified precisely using their PnP id.
 1260  *
 1261  * The base address supplied in the device refers to the old MSS
 1262  * specs where the four 4 registers in io space contain configuration
 1263  * information. Some boards (as an example, early MSS boards)
 1264  * has such a block of registers, whereas others (generally CS42xx)
 1265  * do not.  In order to distinguish between the two and do not have
 1266  * to supply two separate probe routines, the flags entry in isa_device
 1267  * has a bit to mark this.
 1268  *
 1269  */
 1270 
 1271 static int
 1272 mss_probe(device_t dev)
 1273 {
 1274         u_char tmp, tmpx;
 1275         int flags, irq, drq, result = ENXIO, setres = 0;
 1276         struct mss_info *mss;
 1277 
 1278         if (isa_get_logicalid(dev)) return ENXIO; /* not yet */
 1279 
 1280         mss = (struct mss_info *)malloc(sizeof *mss, M_DEVBUF, M_NOWAIT | M_ZERO);
 1281         if (!mss) return ENXIO;
 1282 
 1283         mss->io_rid = 0;
 1284         mss->conf_rid = -1;
 1285         mss->irq_rid = 0;
 1286         mss->drq1_rid = 0;
 1287         mss->drq2_rid = -1;
 1288         mss->io_base = bus_alloc_resource(dev, SYS_RES_IOPORT, &mss->io_rid,
 1289                                         0, ~0, 8, RF_ACTIVE);
 1290         if (!mss->io_base) {
 1291                 BVDDB(printf("mss_probe: no address given, try 0x%x\n", 0x530));
 1292                 mss->io_rid = 0;
 1293                 /* XXX verify this */
 1294                 setres = 1;
 1295                 bus_set_resource(dev, SYS_RES_IOPORT, mss->io_rid,
 1296                                 0x530, 8);
 1297                 mss->io_base = bus_alloc_resource(dev, SYS_RES_IOPORT, &mss->io_rid,
 1298                                                 0, ~0, 8, RF_ACTIVE);
 1299         }
 1300         if (!mss->io_base) goto no;
 1301 
 1302         /* got irq/dma regs? */
 1303         flags = device_get_flags(dev);
 1304         irq = isa_get_irq(dev);
 1305         drq = isa_get_drq(dev);
 1306 
 1307         if (!(device_get_flags(dev) & DV_F_TRUE_MSS)) goto mss_probe_end;
 1308 
 1309         /*
 1310         * Check if the IO port returns valid signature. The original MS
 1311         * Sound system returns 0x04 while some cards
 1312         * (AudioTriX Pro for example) return 0x00 or 0x0f.
 1313         */
 1314 
 1315         device_set_desc(dev, "MSS");
 1316         tmpx = tmp = io_rd(mss, 3);
 1317         if (tmp == 0xff) {      /* Bus float */
 1318                 BVDDB(printf("I/O addr inactive (%x), try pseudo_mss\n", tmp));
 1319                 device_set_flags(dev, flags & ~DV_F_TRUE_MSS);
 1320                 goto mss_probe_end;
 1321         }
 1322         tmp &= 0x3f;
 1323         if (!(tmp == 0x04 || tmp == 0x0f || tmp == 0x00)) {
 1324                 BVDDB(printf("No MSS signature detected on port 0x%lx (0x%x)\n",
 1325                         rman_get_start(mss->io_base), tmpx));
 1326                 goto no;
 1327         }
 1328 #ifdef PC98
 1329         if (irq > 12) {
 1330 #else
 1331         if (irq > 11) {
 1332 #endif
 1333                 printf("MSS: Bad IRQ %d\n", irq);
 1334                 goto no;
 1335         }
 1336         if (!(drq == 0 || drq == 1 || drq == 3)) {
 1337                 printf("MSS: Bad DMA %d\n", drq);
 1338                 goto no;
 1339         }
 1340         if (tmpx & 0x80) {
 1341                 /* 8-bit board: only drq1/3 and irq7/9 */
 1342                 if (drq == 0) {
 1343                         printf("MSS: Can't use DMA0 with a 8 bit card/slot\n");
 1344                         goto no;
 1345                 }
 1346                 if (!(irq == 7 || irq == 9)) {
 1347                         printf("MSS: Can't use IRQ%d with a 8 bit card/slot\n",
 1348                                irq);
 1349                         goto no;
 1350                 }
 1351         }
 1352         mss_probe_end:
 1353         result = mss_detect(dev, mss);
 1354         no:
 1355         mss_release_resources(mss, dev);
 1356 #if 0
 1357         if (setres) ISA_DELETE_RESOURCE(device_get_parent(dev), dev,
 1358                                         SYS_RES_IOPORT, mss->io_rid); /* XXX ? */
 1359 #endif
 1360         return result;
 1361 }
 1362 
 1363 static int
 1364 mss_detect(device_t dev, struct mss_info *mss)
 1365 {
 1366         int          i;
 1367         u_char       tmp = 0, tmp1, tmp2;
 1368         char        *name, *yamaha;
 1369 
 1370         if (mss->bd_id != 0) {
 1371                 device_printf(dev, "presel bd_id 0x%04x -- %s\n", mss->bd_id,
 1372                         device_get_desc(dev));
 1373                 return 0;
 1374         }
 1375 
 1376         name = "AD1848";
 1377         mss->bd_id = MD_AD1848; /* AD1848 or CS4248 */
 1378 
 1379 #ifndef PC98
 1380         if (opti_detect(dev, mss)) {
 1381                 switch (mss->bd_id) {
 1382                         case MD_OPTI924:
 1383                                 name = "OPTi924";
 1384                                 break;
 1385                         case MD_OPTI930:
 1386                                 name = "OPTi930";
 1387                                 break;
 1388                 }
 1389                 printf("Found OPTi device %s\n", name);
 1390                 if (opti_init(dev, mss) == 0) goto gotit;
 1391         }
 1392 #endif
 1393 
 1394         /*
 1395         * Check that the I/O address is in use.
 1396         *
 1397         * bit 7 of the base I/O port is known to be 0 after the chip has
 1398         * performed its power on initialization. Just assume this has
 1399         * happened before the OS is starting.
 1400         *
 1401         * If the I/O address is unused, it typically returns 0xff.
 1402         */
 1403 
 1404         for (i = 0; i < 10; i++)
 1405                 if ((tmp = io_rd(mss, MSS_INDEX)) & MSS_IDXBUSY) DELAY(10000);
 1406                 else break;
 1407 
 1408         if (i >= 10) {  /* Not an AD1848 */
 1409                 BVDDB(printf("mss_detect, busy still set (0x%02x)\n", tmp));
 1410                 goto no;
 1411         }
 1412         /*
 1413         * Test if it's possible to change contents of the indirect
 1414         * registers. Registers 0 and 1 are ADC volume registers. The bit
 1415         * 0x10 is read only so try to avoid using it.
 1416         */
 1417 
 1418         ad_write(mss, 0, 0xaa);
 1419         ad_write(mss, 1, 0x45);/* 0x55 with bit 0x10 clear */
 1420         tmp1 = ad_read(mss, 0);
 1421         tmp2 = ad_read(mss, 1);
 1422         if (tmp1 != 0xaa || tmp2 != 0x45) {
 1423                 BVDDB(printf("mss_detect error - IREG (%x/%x)\n", tmp1, tmp2));
 1424                 goto no;
 1425         }
 1426 
 1427         ad_write(mss, 0, 0x45);
 1428         ad_write(mss, 1, 0xaa);
 1429         tmp1 = ad_read(mss, 0);
 1430         tmp2 = ad_read(mss, 1);
 1431         if (tmp1 != 0x45 || tmp2 != 0xaa) {
 1432                 BVDDB(printf("mss_detect error - IREG2 (%x/%x)\n", tmp1, tmp2));
 1433                 goto no;
 1434         }
 1435 
 1436         /*
 1437         * The indirect register I12 has some read only bits. Lets try to
 1438         * change them.
 1439         */
 1440 
 1441         tmp = ad_read(mss, 12);
 1442         ad_write(mss, 12, (~tmp) & 0x0f);
 1443         tmp1 = ad_read(mss, 12);
 1444 
 1445         if ((tmp & 0x0f) != (tmp1 & 0x0f)) {
 1446                 BVDDB(printf("mss_detect - I12 (0x%02x was 0x%02x)\n", tmp1, tmp));
 1447                 goto no;
 1448         }
 1449 
 1450         /*
 1451         * NOTE! Last 4 bits of the reg I12 tell the chip revision.
 1452         *       0x01=RevB
 1453         *  0x0A=RevC. also CS4231/CS4231A and OPTi931
 1454         */
 1455 
 1456         BVDDB(printf("mss_detect - chip revision 0x%02x\n", tmp & 0x0f);)
 1457 
 1458         /*
 1459         * The original AD1848/CS4248 has just 16 indirect registers. This
 1460         * means that I0 and I16 should return the same value (etc.). Ensure
 1461         * that the Mode2 enable bit of I12 is 0. Otherwise this test fails
 1462         * with new parts.
 1463         */
 1464 
 1465         ad_write(mss, 12, 0);   /* Mode2=disabled */
 1466 #if 0
 1467         for (i = 0; i < 16; i++) {
 1468                 if ((tmp1 = ad_read(mss, i)) != (tmp2 = ad_read(mss, i + 16))) {
 1469                 BVDDB(printf("mss_detect warning - I%d: 0x%02x/0x%02x\n",
 1470                         i, tmp1, tmp2));
 1471                 /*
 1472                 * note - this seems to fail on the 4232 on I11. So we just break
 1473                 * rather than fail.  (which makes this test pointless - cg)
 1474                 */
 1475                 break; /* return 0; */
 1476                 }
 1477         }
 1478 #endif
 1479         /*
 1480         * Try to switch the chip to mode2 (CS4231) by setting the MODE2 bit
 1481         * (0x40). The bit 0x80 is always 1 in CS4248 and CS4231.
 1482         *
 1483         * On the OPTi931, however, I12 is readonly and only contains the
 1484         * chip revision ID (as in the CS4231A). The upper bits return 0.
 1485         */
 1486 
 1487         ad_write(mss, 12, 0x40);        /* Set mode2, clear 0x80 */
 1488 
 1489         tmp1 = ad_read(mss, 12);
 1490         if (tmp1 & 0x80) name = "CS4248"; /* Our best knowledge just now */
 1491         if ((tmp1 & 0xf0) == 0x00) {
 1492                 BVDDB(printf("this should be an OPTi931\n");)
 1493         } else if ((tmp1 & 0xc0) != 0xC0) goto gotit;
 1494         /*
 1495         * The 4231 has bit7=1 always, and bit6 we just set to 1.
 1496         * We want to check that this is really a CS4231
 1497         * Verify that setting I0 doesn't change I16.
 1498         */
 1499         ad_write(mss, 16, 0);   /* Set I16 to known value */
 1500         ad_write(mss, 0, 0x45);
 1501         if ((tmp1 = ad_read(mss, 16)) == 0x45) goto gotit;
 1502 
 1503         ad_write(mss, 0, 0xaa);
 1504         if ((tmp1 = ad_read(mss, 16)) == 0xaa) {        /* Rotten bits? */
 1505                 BVDDB(printf("mss_detect error - step H(%x)\n", tmp1));
 1506                 goto no;
 1507         }
 1508         /* Verify that some bits of I25 are read only. */
 1509         tmp1 = ad_read(mss, 25);        /* Original bits */
 1510         ad_write(mss, 25, ~tmp1);       /* Invert all bits */
 1511         if ((ad_read(mss, 25) & 0xe7) == (tmp1 & 0xe7)) {
 1512                 int id;
 1513 
 1514                 /* It's at least CS4231 */
 1515                 name = "CS4231";
 1516                 mss->bd_id = MD_CS42XX;
 1517 
 1518                 /*
 1519                 * It could be an AD1845 or CS4231A as well.
 1520                 * CS4231 and AD1845 report the same revision info in I25
 1521                 * while the CS4231A reports different.
 1522                 */
 1523 
 1524                 id = ad_read(mss, 25) & 0xe7;
 1525                 /*
 1526                 * b7-b5 = version number;
 1527                 *       100 : all CS4231
 1528                 *       101 : CS4231A
 1529                 *
 1530                 * b2-b0 = chip id;
 1531                 */
 1532                 switch (id) {
 1533 
 1534                 case 0xa0:
 1535                         name = "CS4231A";
 1536                         mss->bd_id = MD_CS42XX;
 1537                 break;
 1538 
 1539                 case 0xa2:
 1540                         name = "CS4232";
 1541                         mss->bd_id = MD_CS42XX;
 1542                 break;
 1543 
 1544                 case 0xb2:
 1545                 /* strange: the 4231 data sheet says b4-b3 are XX
 1546                 * so this should be the same as 0xa2
 1547                 */
 1548                         name = "CS4232A";
 1549                         mss->bd_id = MD_CS42XX;
 1550                 break;
 1551 
 1552                 case 0x80:
 1553                         /*
 1554                         * It must be a CS4231 or AD1845. The register I23
 1555                         * of CS4231 is undefined and it appears to be read
 1556                         * only. AD1845 uses I23 for setting sample rate.
 1557                         * Assume the chip is AD1845 if I23 is changeable.
 1558                         */
 1559 
 1560                         tmp = ad_read(mss, 23);
 1561 
 1562                         ad_write(mss, 23, ~tmp);
 1563                         if (ad_read(mss, 23) != tmp) {  /* AD1845 ? */
 1564                                 name = "AD1845";
 1565                                 mss->bd_id = MD_AD1845;
 1566                         }
 1567                         ad_write(mss, 23, tmp); /* Restore */
 1568 
 1569                         yamaha = ymf_test(dev, mss);
 1570                         if (yamaha) {
 1571                                 mss->bd_id = MD_YM0020;
 1572                                 name = yamaha;
 1573                         }
 1574                         break;
 1575 
 1576                 case 0x83:      /* CS4236 */
 1577                 case 0x03:      /* CS4236 on Intel PR440FX motherboard XXX */
 1578                         name = "CS4236";
 1579                         mss->bd_id = MD_CS42XX;
 1580                         break;
 1581 
 1582                 default:        /* Assume CS4231 */
 1583                         BVDDB(printf("unknown id 0x%02x, assuming CS4231\n", id);)
 1584                         mss->bd_id = MD_CS42XX;
 1585                 }
 1586         }
 1587         ad_write(mss, 25, tmp1);        /* Restore bits */
 1588 gotit:
 1589         BVDDB(printf("mss_detect() - Detected %s\n", name));
 1590         device_set_desc(dev, name);
 1591         device_set_flags(dev,
 1592                          ((device_get_flags(dev) & ~DV_F_DEV_MASK) |
 1593                           ((mss->bd_id << DV_F_DEV_SHIFT) & DV_F_DEV_MASK)));
 1594         return 0;
 1595 no:
 1596         return ENXIO;
 1597 }
 1598 
 1599 #ifndef PC98
 1600 static int
 1601 opti_detect(device_t dev, struct mss_info *mss)
 1602 {
 1603         int c;
 1604         static const struct opticard {
 1605                 int boardid;
 1606                 int passwdreg;
 1607                 int password;
 1608                 int base;
 1609                 int indir_reg;
 1610         } cards[] = {
 1611                 { MD_OPTI930, 0, 0xe4, 0xf8f, 0xe0e },  /* 930 */
 1612                 { MD_OPTI924, 3, 0xe5, 0xf8c, 0,    },  /* 924 */
 1613                 { 0 },
 1614         };
 1615         mss->conf_rid = 3;
 1616         mss->indir_rid = 4;
 1617         for (c = 0; cards[c].base; c++) {
 1618                 mss->optibase = cards[c].base;
 1619                 mss->password = cards[c].password;
 1620                 mss->passwdreg = cards[c].passwdreg;
 1621                 mss->bd_id = cards[c].boardid;
 1622 
 1623                 if (cards[c].indir_reg)
 1624                         mss->indir = bus_alloc_resource(dev, SYS_RES_IOPORT,
 1625                                 &mss->indir_rid, cards[c].indir_reg,
 1626                                 cards[c].indir_reg+1, 1, RF_ACTIVE);
 1627 
 1628                 mss->conf_base = bus_alloc_resource(dev, SYS_RES_IOPORT,
 1629                         &mss->conf_rid, mss->optibase, mss->optibase+9,
 1630                         9, RF_ACTIVE);
 1631 
 1632                 if (opti_read(mss, 1) != 0xff) {
 1633                         return 1;
 1634                 } else {
 1635                         if (mss->indir)
 1636                                 bus_release_resource(dev, SYS_RES_IOPORT, mss->indir_rid, mss->indir);
 1637                         mss->indir = NULL;
 1638                         if (mss->conf_base)
 1639                                 bus_release_resource(dev, SYS_RES_IOPORT, mss->conf_rid, mss->conf_base);
 1640                         mss->conf_base = NULL;
 1641                 }
 1642         }
 1643         return 0;
 1644 }
 1645 #endif
 1646 
 1647 static char *
 1648 ymf_test(device_t dev, struct mss_info *mss)
 1649 {
 1650         static int ports[] = {0x370, 0x310, 0x538};
 1651         int p, i, j, version;
 1652         static char *chipset[] = {
 1653                 NULL,                   /* 0 */
 1654                 "OPL3-SA2 (YMF711)",    /* 1 */
 1655                 "OPL3-SA3 (YMF715)",    /* 2 */
 1656                 "OPL3-SA3 (YMF715)",    /* 3 */
 1657                 "OPL3-SAx (YMF719)",    /* 4 */
 1658                 "OPL3-SAx (YMF719)",    /* 5 */
 1659                 "OPL3-SAx (YMF719)",    /* 6 */
 1660                 "OPL3-SAx (YMF719)",    /* 7 */
 1661         };
 1662 
 1663         for (p = 0; p < 3; p++) {
 1664                 mss->conf_rid = 1;
 1665                 mss->conf_base = bus_alloc_resource(dev,
 1666                                                 SYS_RES_IOPORT,
 1667                                                 &mss->conf_rid,
 1668                                                 ports[p], ports[p] + 1, 2,
 1669                                                 RF_ACTIVE);
 1670                 if (!mss->conf_base) return 0;
 1671 
 1672                 /* Test the index port of the config registers */
 1673                 i = port_rd(mss->conf_base, 0);
 1674                 port_wr(mss->conf_base, 0, OPL3SAx_DMACONF);
 1675                 j = (port_rd(mss->conf_base, 0) == OPL3SAx_DMACONF)? 1 : 0;
 1676                 port_wr(mss->conf_base, 0, i);
 1677                 if (!j) {
 1678                         bus_release_resource(dev, SYS_RES_IOPORT,
 1679                                              mss->conf_rid, mss->conf_base);
 1680 #ifdef PC98
 1681                         /* PC98 need this. I don't know reason why. */
 1682                         bus_delete_resource(dev, SYS_RES_IOPORT, mss->conf_rid);
 1683 #endif
 1684                         mss->conf_base = 0;
 1685                         continue;
 1686                 }
 1687                 version = conf_rd(mss, OPL3SAx_MISC) & 0x07;
 1688                 return chipset[version];
 1689         }
 1690         return NULL;
 1691 }
 1692 
 1693 static int
 1694 mss_doattach(device_t dev, struct mss_info *mss)
 1695 {
 1696         int pdma, rdma, flags = device_get_flags(dev);
 1697         char status[SND_STATUSLEN], status2[SND_STATUSLEN];
 1698 
 1699         mss->lock = snd_mtxcreate(device_get_nameunit(dev), "sound softc");
 1700         mss->bufsize = pcm_getbuffersize(dev, 4096, MSS_DEFAULT_BUFSZ, 65536);
 1701         if (!mss_alloc_resources(mss, dev)) goto no;
 1702         mss_init(mss, dev);
 1703         pdma = rman_get_start(mss->drq1);
 1704         rdma = rman_get_start(mss->drq2);
 1705         if (flags & DV_F_TRUE_MSS) {
 1706                 /* has IRQ/DMA registers, set IRQ and DMA addr */
 1707 #ifdef PC98 /* CS423[12] in PC98 can use IRQ3,5,10,12 */
 1708                 static char     interrupt_bits[13] =
 1709                 {-1, -1, -1, 0x08, -1, 0x10, -1, -1, -1, -1, 0x18, -1, 0x20};
 1710 #else
 1711                 static char     interrupt_bits[12] =
 1712                 {-1, -1, -1, -1, -1, 0x28, -1, 0x08, -1, 0x10, 0x18, 0x20};
 1713 #endif
 1714                 static char     pdma_bits[4] =  {1, 2, -1, 3};
 1715                 static char     valid_rdma[4] = {1, 0, -1, 0};
 1716                 char            bits;
 1717 
 1718                 if (!mss->irq || (bits = interrupt_bits[rman_get_start(mss->irq)]) == -1)
 1719                         goto no;
 1720 #ifndef PC98 /* CS423[12] in PC98 don't support this. */
 1721                 io_wr(mss, 0, bits | 0x40);     /* config port */
 1722                 if ((io_rd(mss, 3) & 0x40) == 0) device_printf(dev, "IRQ Conflict?\n");
 1723 #endif
 1724                 /* Write IRQ+DMA setup */
 1725                 if (pdma_bits[pdma] == -1) goto no;
 1726                 bits |= pdma_bits[pdma];
 1727                 if (pdma != rdma) {
 1728                         if (rdma == valid_rdma[pdma]) bits |= 4;
 1729                         else {
 1730                                 printf("invalid dual dma config %d:%d\n", pdma, rdma);
 1731                                 goto no;
 1732                         }
 1733                 }
 1734                 io_wr(mss, 0, bits);
 1735                 printf("drq/irq conf %x\n", io_rd(mss, 0));
 1736         }
 1737         mixer_init(dev, (mss->bd_id == MD_YM0020)? &ymmix_mixer_class : &mssmix_mixer_class, mss);
 1738         switch (mss->bd_id) {
 1739         case MD_OPTI931:
 1740                 snd_setup_intr(dev, mss->irq, 0, opti931_intr, mss, &mss->ih);
 1741                 break;
 1742         default:
 1743                 snd_setup_intr(dev, mss->irq, 0, mss_intr, mss, &mss->ih);
 1744         }
 1745         if (pdma == rdma)
 1746                 pcm_setflags(dev, pcm_getflags(dev) | SD_F_SIMPLEX);
 1747         if (bus_dma_tag_create(/*parent*/NULL, /*alignment*/2, /*boundary*/0,
 1748                         /*lowaddr*/BUS_SPACE_MAXADDR_24BIT,
 1749                         /*highaddr*/BUS_SPACE_MAXADDR,
 1750                         /*filter*/NULL, /*filterarg*/NULL,
 1751                         /*maxsize*/mss->bufsize, /*nsegments*/1,
 1752                         /*maxsegz*/0x3ffff, /*flags*/0,
 1753                         /*lockfunc*/busdma_lock_mutex, /*lockarg*/&Giant,
 1754                         &mss->parent_dmat) != 0) {
 1755                 device_printf(dev, "unable to create dma tag\n");
 1756                 goto no;
 1757         }
 1758 
 1759         if (pdma != rdma)
 1760                 snprintf(status2, SND_STATUSLEN, ":%d", rdma);
 1761         else
 1762                 status2[0] = '\0';
 1763 
 1764         snprintf(status, SND_STATUSLEN, "at io 0x%lx irq %ld drq %d%s bufsz %u",
 1765                 rman_get_start(mss->io_base), rman_get_start(mss->irq), pdma, status2, mss->bufsize);
 1766 
 1767         if (pcm_register(dev, mss, 1, 1)) goto no;
 1768         pcm_addchan(dev, PCMDIR_REC, &msschan_class, mss);
 1769         pcm_addchan(dev, PCMDIR_PLAY, &msschan_class, mss);
 1770         pcm_setstatus(dev, status);
 1771 
 1772         return 0;
 1773 no:
 1774         mss_release_resources(mss, dev);
 1775         return ENXIO;
 1776 }
 1777 
 1778 static int
 1779 mss_detach(device_t dev)
 1780 {
 1781         int r;
 1782         struct mss_info *mss;
 1783 
 1784         r = pcm_unregister(dev);
 1785         if (r)
 1786                 return r;
 1787 
 1788         mss = pcm_getdevinfo(dev);
 1789         mss_release_resources(mss, dev);
 1790 
 1791         return 0;
 1792 }
 1793 
 1794 static int
 1795 mss_attach(device_t dev)
 1796 {
 1797         struct mss_info *mss;
 1798         int flags = device_get_flags(dev);
 1799 
 1800         mss = (struct mss_info *)malloc(sizeof *mss, M_DEVBUF, M_NOWAIT | M_ZERO);
 1801         if (!mss) return ENXIO;
 1802 
 1803         mss->io_rid = 0;
 1804         mss->conf_rid = -1;
 1805         mss->irq_rid = 0;
 1806         mss->drq1_rid = 0;
 1807         mss->drq2_rid = -1;
 1808         if (flags & DV_F_DUAL_DMA) {
 1809                 bus_set_resource(dev, SYS_RES_DRQ, 1,
 1810                                  flags & DV_F_DRQ_MASK, 1);
 1811                 mss->drq2_rid = 1;
 1812         }
 1813         mss->bd_id = (device_get_flags(dev) & DV_F_DEV_MASK) >> DV_F_DEV_SHIFT;
 1814         if (mss->bd_id == MD_YM0020) ymf_test(dev, mss);
 1815         return mss_doattach(dev, mss);
 1816 }
 1817 
 1818 /*
 1819  * mss_resume() is the code to allow a laptop to resume using the sound
 1820  * card.
 1821  *
 1822  * This routine re-sets the state of the board to the state before going
 1823  * to sleep.  According to the yamaha docs this is the right thing to do,
 1824  * but getting DMA restarted appears to be a bit of a trick, so the device
 1825  * has to be closed and re-opened to be re-used, but there is no skipping
 1826  * problem, and volume, bass/treble and most other things are restored
 1827  * properly.
 1828  *
 1829  */
 1830 
 1831 static int
 1832 mss_resume(device_t dev)
 1833 {
 1834         /*
 1835          * Restore the state taken below.
 1836          */
 1837         struct mss_info *mss;
 1838         int i;
 1839 
 1840         mss = pcm_getdevinfo(dev);
 1841 
 1842         if(mss->bd_id == MD_YM0020 || mss->bd_id == MD_CS423X) {
 1843                 /* This works on a Toshiba Libretto 100CT. */
 1844                 for (i = 0; i < MSS_INDEXED_REGS; i++)
 1845                         ad_write(mss, i, mss->mss_indexed_regs[i]);
 1846                 for (i = 0; i < OPL_INDEXED_REGS; i++)
 1847                         conf_wr(mss, i, mss->opl_indexed_regs[i]);
 1848                 mss_intr(mss);
 1849         }
 1850 
 1851         if (mss->bd_id == MD_CS423X) {
 1852                 /* Needed on IBM Thinkpad 600E */
 1853                 mss_lock(mss);
 1854                 mss_format(&mss->pch, mss->pch.channel->format);
 1855                 mss_speed(&mss->pch, mss->pch.channel->speed);
 1856                 mss_unlock(mss);
 1857         }
 1858 
 1859         return 0;
 1860 
 1861 }
 1862 
 1863 /*
 1864  * mss_suspend() is the code that gets called right before a laptop
 1865  * suspends.
 1866  *
 1867  * This code saves the state of the sound card right before shutdown
 1868  * so it can be restored above.
 1869  *
 1870  */
 1871 
 1872 static int
 1873 mss_suspend(device_t dev)
 1874 {
 1875         int i;
 1876         struct mss_info *mss;
 1877 
 1878         mss = pcm_getdevinfo(dev);
 1879 
 1880         if(mss->bd_id == MD_YM0020 || mss->bd_id == MD_CS423X)
 1881         {
 1882                 /* this stops playback. */
 1883                 conf_wr(mss, 0x12, 0x0c);
 1884                 for(i = 0; i < MSS_INDEXED_REGS; i++)
 1885                         mss->mss_indexed_regs[i] = ad_read(mss, i);
 1886                 for(i = 0; i < OPL_INDEXED_REGS; i++)
 1887                         mss->opl_indexed_regs[i] = conf_rd(mss, i);
 1888                 mss->opl_indexed_regs[0x12] = 0x0;
 1889         }
 1890         return 0;
 1891 }
 1892 
 1893 static device_method_t mss_methods[] = {
 1894         /* Device interface */
 1895         DEVMETHOD(device_probe,         mss_probe),
 1896         DEVMETHOD(device_attach,        mss_attach),
 1897         DEVMETHOD(device_detach,        mss_detach),
 1898         DEVMETHOD(device_suspend,       mss_suspend),
 1899         DEVMETHOD(device_resume,        mss_resume),
 1900 
 1901         { 0, 0 }
 1902 };
 1903 
 1904 static driver_t mss_driver = {
 1905         "pcm",
 1906         mss_methods,
 1907         PCM_SOFTC_SIZE,
 1908 };
 1909 
 1910 DRIVER_MODULE(snd_mss, isa, mss_driver, pcm_devclass, 0, 0);
 1911 MODULE_DEPEND(snd_mss, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
 1912 MODULE_VERSION(snd_mss, 1);
 1913 
 1914 static int
 1915 azt2320_mss_mode(struct mss_info *mss, device_t dev)
 1916 {
 1917         struct resource *sbport;
 1918         int             i, ret, rid;
 1919 
 1920         rid = 0;
 1921         ret = -1;
 1922         sbport = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid, RF_ACTIVE);
 1923         if (sbport) {
 1924                 for (i = 0; i < 1000; i++) {
 1925                         if ((port_rd(sbport, SBDSP_STATUS) & 0x80))
 1926                                 DELAY((i > 100) ? 1000 : 10);
 1927                         else {
 1928                                 port_wr(sbport, SBDSP_CMD, 0x09);
 1929                                 break;
 1930                         }
 1931                 }
 1932                 for (i = 0; i < 1000; i++) {
 1933                         if ((port_rd(sbport, SBDSP_STATUS) & 0x80))
 1934                                 DELAY((i > 100) ? 1000 : 10);
 1935                         else {
 1936                                 port_wr(sbport, SBDSP_CMD, 0x00);
 1937                                 ret = 0;
 1938                                 break;
 1939                         }
 1940                 }
 1941                 DELAY(1000);
 1942                 bus_release_resource(dev, SYS_RES_IOPORT, rid, sbport);
 1943         }
 1944         return ret;
 1945 }
 1946 
 1947 static struct isa_pnp_id pnpmss_ids[] = {
 1948         {0x0000630e, "CS423x"},                         /* CSC0000 */
 1949         {0x0001630e, "CS423x-PCI"},                     /* CSC0100 */
 1950         {0x01000000, "CMI8330"},                        /* @@@0001 */
 1951         {0x2100a865, "Yamaha OPL-SAx"},                 /* YMH0021 */
 1952         {0x1110d315, "ENSONIQ SoundscapeVIVO"},         /* ENS1011 */
 1953         {0x1093143e, "OPTi931"},                        /* OPT9310 */
 1954         {0x5092143e, "OPTi925"},                        /* OPT9250 XXX guess */
 1955         {0x0000143e, "OPTi924"},                        /* OPT0924 */
 1956         {0x1022b839, "Neomagic 256AV (non-ac97)"},      /* NMX2210 */
 1957         {0x01005407, "Aztech 2320"},                    /* AZT0001 */
 1958 #if 0
 1959         {0x0000561e, "GusPnP"},                         /* GRV0000 */
 1960 #endif
 1961         {0},
 1962 };
 1963 
 1964 static int
 1965 pnpmss_probe(device_t dev)
 1966 {
 1967         u_int32_t lid, vid;
 1968 
 1969         lid = isa_get_logicalid(dev);
 1970         vid = isa_get_vendorid(dev);
 1971         if (lid == 0x01000000 && vid != 0x0100a90d) /* CMI0001 */
 1972                 return ENXIO;
 1973         return ISA_PNP_PROBE(device_get_parent(dev), dev, pnpmss_ids);
 1974 }
 1975 
 1976 static int
 1977 pnpmss_attach(device_t dev)
 1978 {
 1979         struct mss_info *mss;
 1980 
 1981         mss = (struct mss_info *)malloc(sizeof *mss, M_DEVBUF, M_NOWAIT | M_ZERO);
 1982         if (!mss)
 1983             return ENXIO;
 1984 
 1985         mss->io_rid = 0;
 1986         mss->conf_rid = -1;
 1987         mss->irq_rid = 0;
 1988         mss->drq1_rid = 0;
 1989         mss->drq2_rid = 1;
 1990         mss->bd_id = MD_CS42XX;
 1991 
 1992         switch (isa_get_logicalid(dev)) {
 1993         case 0x0000630e:                        /* CSC0000 */
 1994         case 0x0001630e:                        /* CSC0100 */
 1995             mss->bd_flags |= BD_F_MSS_OFFSET;
 1996             mss->bd_id = MD_CS423X;
 1997             break;
 1998 
 1999         case 0x2100a865:                        /* YHM0021 */
 2000             mss->io_rid = 1;
 2001             mss->conf_rid = 4;
 2002             mss->bd_id = MD_YM0020;
 2003             break;
 2004 
 2005         case 0x1110d315:                        /* ENS1011 */
 2006             mss->io_rid = 1;
 2007             mss->bd_id = MD_VIVO;
 2008             break;
 2009 
 2010         case 0x1093143e:                        /* OPT9310 */
 2011             mss->bd_flags |= BD_F_MSS_OFFSET;
 2012             mss->conf_rid = 3;
 2013             mss->bd_id = MD_OPTI931;
 2014             break;
 2015 
 2016         case 0x5092143e:                        /* OPT9250 XXX guess */
 2017             mss->io_rid = 1;
 2018             mss->conf_rid = 3;
 2019             mss->bd_id = MD_OPTI925;
 2020             break;
 2021 
 2022         case 0x0000143e:                        /* OPT0924 */
 2023             mss->password = 0xe5;
 2024             mss->passwdreg = 3;
 2025             mss->optibase = 0xf0c;
 2026             mss->io_rid = 2;
 2027             mss->conf_rid = 3;
 2028             mss->bd_id = MD_OPTI924;
 2029             mss->bd_flags |= BD_F_924PNP;
 2030             if(opti_init(dev, mss) != 0) {
 2031                     free(mss, M_DEVBUF);
 2032                     return ENXIO;
 2033             }
 2034             break;
 2035 
 2036         case 0x1022b839:                        /* NMX2210 */
 2037             mss->io_rid = 1;
 2038             break;
 2039 
 2040         case 0x01005407:                        /* AZT0001 */
 2041             /* put into MSS mode first (snatched from NetBSD) */
 2042             if (azt2320_mss_mode(mss, dev) == -1) {
 2043                     free(mss, M_DEVBUF);
 2044                     return ENXIO;
 2045             }
 2046 
 2047             mss->bd_flags |= BD_F_MSS_OFFSET;
 2048             mss->io_rid = 2;
 2049             break;
 2050             
 2051 #if 0
 2052         case 0x0000561e:                        /* GRV0000 */
 2053             mss->bd_flags |= BD_F_MSS_OFFSET;
 2054             mss->io_rid = 2;
 2055             mss->conf_rid = 1;
 2056             mss->drq1_rid = 1;
 2057             mss->drq2_rid = 0;
 2058             mss->bd_id = MD_GUSPNP;
 2059             break;
 2060 #endif
 2061         case 0x01000000:                        /* @@@0001 */
 2062             mss->drq2_rid = -1;
 2063             break;
 2064 
 2065         /* Unknown MSS default.  We could let the CSC0000 stuff match too */
 2066         default:
 2067             mss->bd_flags |= BD_F_MSS_OFFSET;
 2068             break;
 2069         }
 2070         return mss_doattach(dev, mss);
 2071 }
 2072 
 2073 static int
 2074 opti_init(device_t dev, struct mss_info *mss)
 2075 {
 2076         int flags = device_get_flags(dev);
 2077         int basebits = 0;
 2078 
 2079         if (!mss->conf_base) {
 2080                 bus_set_resource(dev, SYS_RES_IOPORT, mss->conf_rid,
 2081                         mss->optibase, 0x9);
 2082 
 2083                 mss->conf_base = bus_alloc_resource(dev, SYS_RES_IOPORT,
 2084                         &mss->conf_rid, mss->optibase, mss->optibase+0x9,
 2085                         0x9, RF_ACTIVE);
 2086         }
 2087 
 2088         if (!mss->conf_base)
 2089                 return ENXIO;
 2090 
 2091         if (!mss->io_base)
 2092                 mss->io_base = bus_alloc_resource(dev, SYS_RES_IOPORT,
 2093                         &mss->io_rid, 0, ~0, 8, RF_ACTIVE);
 2094 
 2095         if (!mss->io_base)      /* No hint specified, use 0x530 */
 2096                 mss->io_base = bus_alloc_resource(dev, SYS_RES_IOPORT,
 2097                         &mss->io_rid, 0x530, 0x537, 8, RF_ACTIVE);
 2098 
 2099         if (!mss->io_base)
 2100                 return ENXIO;
 2101 
 2102         switch (rman_get_start(mss->io_base)) {
 2103                 case 0x530:
 2104                         basebits = 0x0;
 2105                         break;
 2106                 case 0xe80:
 2107                         basebits = 0x10;
 2108                         break;
 2109                 case 0xf40:
 2110                         basebits = 0x20;
 2111                         break;
 2112                 case 0x604:
 2113                         basebits = 0x30;
 2114                         break;
 2115                 default:
 2116                         printf("opti_init: invalid MSS base address!\n");
 2117                         return ENXIO;
 2118         }
 2119 
 2120 
 2121         switch (mss->bd_id) {
 2122         case MD_OPTI924:
 2123                 opti_write(mss, 1, 0x80 | basebits);    /* MSS mode */
 2124                 opti_write(mss, 2, 0x00);       /* Disable CD */
 2125                 opti_write(mss, 3, 0xf0);       /* Disable SB IRQ */
 2126                 opti_write(mss, 4, 0xf0);
 2127                 opti_write(mss, 5, 0x00);
 2128                 opti_write(mss, 6, 0x02);       /* MPU stuff */
 2129                 break;
 2130 
 2131         case MD_OPTI930:
 2132                 opti_write(mss, 1, 0x00 | basebits);
 2133                 opti_write(mss, 3, 0x00);       /* Disable SB IRQ/DMA */
 2134                 opti_write(mss, 4, 0x52);       /* Empty FIFO */
 2135                 opti_write(mss, 5, 0x3c);       /* Mode 2 */
 2136                 opti_write(mss, 6, 0x02);       /* Enable MSS */
 2137                 break;
 2138         }
 2139 
 2140         if (mss->bd_flags & BD_F_924PNP) {
 2141                 u_int32_t irq = isa_get_irq(dev);
 2142                 u_int32_t drq = isa_get_drq(dev);
 2143                 bus_set_resource(dev, SYS_RES_IRQ, 0, irq, 1);
 2144                 bus_set_resource(dev, SYS_RES_DRQ, mss->drq1_rid, drq, 1);
 2145                 if (flags & DV_F_DUAL_DMA) {
 2146                         bus_set_resource(dev, SYS_RES_DRQ, 1,
 2147                                 flags & DV_F_DRQ_MASK, 1);
 2148                         mss->drq2_rid = 1;
 2149                 }
 2150         }
 2151 
 2152         /* OPTixxx has I/DRQ registers */
 2153 
 2154         device_set_flags(dev, device_get_flags(dev) | DV_F_TRUE_MSS);
 2155 
 2156         return 0;
 2157 }
 2158 
 2159 static void
 2160 opti_write(struct mss_info *mss, u_char reg, u_char val)
 2161 {
 2162         port_wr(mss->conf_base, mss->passwdreg, mss->password);
 2163 
 2164         switch(mss->bd_id) {
 2165         case MD_OPTI924:
 2166                 if (reg > 7) {          /* Indirect register */
 2167                         port_wr(mss->conf_base, mss->passwdreg, reg);
 2168                         port_wr(mss->conf_base, mss->passwdreg,
 2169                                 mss->password);
 2170                         port_wr(mss->conf_base, 9, val);
 2171                         return;
 2172                 }
 2173                 port_wr(mss->conf_base, reg, val);
 2174                 break;
 2175 
 2176         case MD_OPTI930:
 2177                 port_wr(mss->indir, 0, reg);
 2178                 port_wr(mss->conf_base, mss->passwdreg, mss->password);
 2179                 port_wr(mss->indir, 1, val);
 2180                 break;
 2181         }
 2182 }
 2183 
 2184 #ifndef PC98
 2185 u_char
 2186 opti_read(struct mss_info *mss, u_char reg)
 2187 {
 2188         port_wr(mss->conf_base, mss->passwdreg, mss->password);
 2189 
 2190         switch(mss->bd_id) {
 2191         case MD_OPTI924:
 2192                 if (reg > 7) {          /* Indirect register */
 2193                         port_wr(mss->conf_base, mss->passwdreg, reg);
 2194                         port_wr(mss->conf_base, mss->passwdreg, mss->password);
 2195                         return(port_rd(mss->conf_base, 9));
 2196                 }
 2197                 return(port_rd(mss->conf_base, reg));
 2198                 break;
 2199 
 2200         case MD_OPTI930:
 2201                 port_wr(mss->indir, 0, reg);
 2202                 port_wr(mss->conf_base, mss->passwdreg, mss->password);
 2203                 return port_rd(mss->indir, 1);
 2204                 break;
 2205         }
 2206         return -1;
 2207 }
 2208 #endif
 2209 
 2210 static device_method_t pnpmss_methods[] = {
 2211         /* Device interface */
 2212         DEVMETHOD(device_probe,         pnpmss_probe),
 2213         DEVMETHOD(device_attach,        pnpmss_attach),
 2214         DEVMETHOD(device_detach,        mss_detach),
 2215         DEVMETHOD(device_suspend,       mss_suspend),
 2216         DEVMETHOD(device_resume,        mss_resume),
 2217 
 2218         { 0, 0 }
 2219 };
 2220 
 2221 static driver_t pnpmss_driver = {
 2222         "pcm",
 2223         pnpmss_methods,
 2224         PCM_SOFTC_SIZE,
 2225 };
 2226 
 2227 DRIVER_MODULE(snd_pnpmss, isa, pnpmss_driver, pcm_devclass, 0, 0);
 2228 DRIVER_MODULE(snd_pnpmss, acpi, pnpmss_driver, pcm_devclass, 0, 0);
 2229 MODULE_DEPEND(snd_pnpmss, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
 2230 MODULE_VERSION(snd_pnpmss, 1);
 2231 
 2232 static int
 2233 guspcm_probe(device_t dev)
 2234 {
 2235         struct sndcard_func *func;
 2236 
 2237         func = device_get_ivars(dev);
 2238         if (func == NULL || func->func != SCF_PCM)
 2239                 return ENXIO;
 2240 
 2241         device_set_desc(dev, "GUS CS4231");
 2242         return 0;
 2243 }
 2244 
 2245 static int
 2246 guspcm_attach(device_t dev)
 2247 {
 2248         device_t parent = device_get_parent(dev);
 2249         struct mss_info *mss;
 2250         int base, flags;
 2251         unsigned char ctl;
 2252 
 2253         mss = (struct mss_info *)malloc(sizeof *mss, M_DEVBUF, M_NOWAIT | M_ZERO);
 2254         if (mss == NULL)
 2255                 return ENOMEM;
 2256 
 2257         mss->bd_flags = BD_F_MSS_OFFSET;
 2258         mss->io_rid = 2;
 2259         mss->conf_rid = 1;
 2260         mss->irq_rid = 0;
 2261         mss->drq1_rid = 1;
 2262         mss->drq2_rid = -1;
 2263 
 2264         if (isa_get_logicalid(parent) == 0)
 2265                 mss->bd_id = MD_GUSMAX;
 2266         else {
 2267                 mss->bd_id = MD_GUSPNP;
 2268                 mss->drq2_rid = 0;
 2269                 goto skip_setup;
 2270         }
 2271 
 2272         flags = device_get_flags(parent);
 2273         if (flags & DV_F_DUAL_DMA)
 2274                 mss->drq2_rid = 0;
 2275 
 2276         mss->conf_base = bus_alloc_resource(dev, SYS_RES_IOPORT, &mss->conf_rid,
 2277                                             0, ~0, 8, RF_ACTIVE);
 2278 
 2279         if (mss->conf_base == NULL) {
 2280                 mss_release_resources(mss, dev);
 2281                 return ENXIO;
 2282         }
 2283 
 2284         base = isa_get_port(parent);
 2285 
 2286         ctl = 0x40;                     /* CS4231 enable */
 2287         if (isa_get_drq(dev) > 3)
 2288                 ctl |= 0x10;            /* 16-bit dma channel 1 */
 2289         if ((flags & DV_F_DUAL_DMA) != 0 && (flags & DV_F_DRQ_MASK) > 3)
 2290                 ctl |= 0x20;            /* 16-bit dma channel 2 */
 2291         ctl |= (base >> 4) & 0x0f;      /* 2X0 -> 3XC */
 2292         port_wr(mss->conf_base, 6, ctl);
 2293 
 2294 skip_setup:
 2295         return mss_doattach(dev, mss);
 2296 }
 2297 
 2298 static device_method_t guspcm_methods[] = {
 2299         DEVMETHOD(device_probe,         guspcm_probe),
 2300         DEVMETHOD(device_attach,        guspcm_attach),
 2301         DEVMETHOD(device_detach,        mss_detach),
 2302 
 2303         { 0, 0 }
 2304 };
 2305 
 2306 static driver_t guspcm_driver = {
 2307         "pcm",
 2308         guspcm_methods,
 2309         PCM_SOFTC_SIZE,
 2310 };
 2311 
 2312 DRIVER_MODULE(snd_guspcm, gusc, guspcm_driver, pcm_devclass, 0, 0);
 2313 MODULE_DEPEND(snd_guspcm, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
 2314 MODULE_VERSION(snd_guspcm, 1);
 2315 
 2316 

Cache object: 8df47ccb4c929ed17a1f480b193d57f1


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.