The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/sound/pci/csa.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 1999 Seigo Tanimura
    5  * All rights reserved.
    6  *
    7  * Portions of this source are based on cwcealdr.cpp and dhwiface.cpp in
    8  * cwcealdr1.zip, the sample sources by Crystal Semiconductor.
    9  * Copyright (c) 1996-1998 Crystal Semiconductor Corp.
   10  *
   11  * Redistribution and use in source and binary forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  */
   32 
   33 #include <sys/param.h>
   34 #include <sys/systm.h>
   35 #include <sys/kernel.h>
   36 #include <sys/bus.h>
   37 #include <sys/malloc.h>
   38 #include <sys/module.h>
   39 #include <machine/resource.h>
   40 #include <machine/bus.h>
   41 #include <sys/rman.h>
   42 
   43 #ifdef HAVE_KERNEL_OPTION_HEADERS
   44 #include "opt_snd.h"
   45 #endif
   46 
   47 #include <dev/sound/pcm/sound.h>
   48 #include <dev/sound/chip.h>
   49 #include <dev/sound/pci/csareg.h>
   50 #include <dev/sound/pci/csavar.h>
   51 
   52 #include <dev/pci/pcireg.h>
   53 #include <dev/pci/pcivar.h>
   54 
   55 #include <dev/sound/pci/cs461x_dsp.h>
   56 
   57 SND_DECLARE_FILE("$FreeBSD$");
   58 
   59 /* This is the pci device id. */
   60 #define CS4610_PCI_ID 0x60011013
   61 #define CS4614_PCI_ID 0x60031013
   62 #define CS4615_PCI_ID 0x60041013
   63 
   64 /* Here is the parameter structure per a device. */
   65 struct csa_softc {
   66         device_t dev; /* device */
   67         csa_res res; /* resources */
   68 
   69         device_t pcm; /* pcm device */
   70         driver_intr_t* pcmintr; /* pcm intr */
   71         void *pcmintr_arg; /* pcm intr arg */
   72         device_t midi; /* midi device */
   73         driver_intr_t* midiintr; /* midi intr */
   74         void *midiintr_arg; /* midi intr arg */
   75         void *ih; /* cookie */
   76 
   77         struct csa_card *card;
   78         struct csa_bridgeinfo binfo; /* The state of this bridge. */
   79 };
   80 
   81 typedef struct csa_softc *sc_p;
   82 
   83 static int csa_probe(device_t dev);
   84 static int csa_attach(device_t dev);
   85 static struct resource *csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
   86                                               rman_res_t start, rman_res_t end,
   87                                               rman_res_t count, u_int flags);
   88 static int csa_release_resource(device_t bus, device_t child, int type, int rid,
   89                                    struct resource *r);
   90 static int csa_setup_intr(device_t bus, device_t child,
   91                           struct resource *irq, int flags,
   92                           driver_filter_t *filter,
   93                           driver_intr_t *intr,  void *arg, void **cookiep);
   94 static int csa_teardown_intr(device_t bus, device_t child,
   95                              struct resource *irq, void *cookie);
   96 static driver_intr_t csa_intr;
   97 static int csa_initialize(sc_p scp);
   98 static int csa_downloadimage(csa_res *resp);
   99 static int csa_transferimage(csa_res *resp, u_int32_t *src, u_long dest, u_long len);
  100 
  101 static void
  102 amp_none(void)
  103 {
  104 }
  105 
  106 static void
  107 amp_voyetra(void)
  108 {
  109 }
  110 
  111 static int
  112 clkrun_hack(int run)
  113 {
  114 #ifdef __i386__
  115         devclass_t              pci_devclass;
  116         device_t                *pci_devices, *pci_children, *busp, *childp;
  117         int                     pci_count = 0, pci_childcount = 0;
  118         int                     i, j, port;
  119         u_int16_t               control;
  120         bus_space_tag_t         btag;
  121 
  122         if ((pci_devclass = devclass_find("pci")) == NULL) {
  123                 return ENXIO;
  124         }
  125 
  126         devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
  127 
  128         for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
  129                 pci_childcount = 0;
  130                 if (device_get_children(*busp, &pci_children, &pci_childcount))
  131                         continue;
  132                 for (j = 0, childp = pci_children; j < pci_childcount; j++, childp++) {
  133                         if (pci_get_vendor(*childp) == 0x8086 && pci_get_device(*childp) == 0x7113) {
  134                                 port = (pci_read_config(*childp, 0x41, 1) << 8) + 0x10;
  135                                 /* XXX */
  136                                 btag = X86_BUS_SPACE_IO;
  137 
  138                                 control = bus_space_read_2(btag, 0x0, port);
  139                                 control &= ~0x2000;
  140                                 control |= run? 0 : 0x2000;
  141                                 bus_space_write_2(btag, 0x0, port, control);
  142                                 free(pci_devices, M_TEMP);
  143                                 free(pci_children, M_TEMP);
  144                                 return 0;
  145                         }
  146                 }
  147                 free(pci_children, M_TEMP);
  148         }
  149 
  150         free(pci_devices, M_TEMP);
  151         return ENXIO;
  152 #else
  153         return 0;
  154 #endif
  155 }
  156 
  157 static struct csa_card cards_4610[] = {
  158         {0, 0, "Unknown/invalid SSID (CS4610)", NULL, NULL, NULL, 0},
  159 };
  160 
  161 static struct csa_card cards_4614[] = {
  162         {0x1489, 0x7001, "Genius Soundmaker 128 value", amp_none, NULL, NULL, 0},
  163         {0x5053, 0x3357, "Turtle Beach Santa Cruz", amp_voyetra, NULL, NULL, 1},
  164         {0x1071, 0x6003, "Mitac MI6020/21", amp_voyetra, NULL, NULL, 0},
  165         {0x14AF, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0},
  166         {0x1681, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0},
  167         {0x1014, 0x0132, "Thinkpad 570", amp_none, NULL, NULL, 0},
  168         {0x1014, 0x0153, "Thinkpad 600X/A20/T20", amp_none, NULL, clkrun_hack, 0},
  169         {0x1014, 0x1010, "Thinkpad 600E (unsupported)", NULL, NULL, NULL, 0},
  170         {0x153b, 0x1136, "Terratec SiXPack 5.1+", NULL, NULL, NULL, 0},
  171         {0, 0, "Unknown/invalid SSID (CS4614)", NULL, NULL, NULL, 0},
  172 };
  173 
  174 static struct csa_card cards_4615[] = {
  175         {0, 0, "Unknown/invalid SSID (CS4615)", NULL, NULL, NULL, 0},
  176 };
  177 
  178 static struct csa_card nocard = {0, 0, "unknown", NULL, NULL, NULL, 0};
  179 
  180 struct card_type {
  181         u_int32_t devid;
  182         char *name;
  183         struct csa_card *cards;
  184 };
  185 
  186 static struct card_type cards[] = {
  187         {CS4610_PCI_ID, "CS4610/CS4611", cards_4610},
  188         {CS4614_PCI_ID, "CS4280/CS4614/CS4622/CS4624/CS4630", cards_4614},
  189         {CS4615_PCI_ID, "CS4615", cards_4615},
  190         {0, NULL, NULL},
  191 };
  192 
  193 static struct card_type *
  194 csa_findcard(device_t dev)
  195 {
  196         int i;
  197 
  198         i = 0;
  199         while (cards[i].devid != 0) {
  200                 if (pci_get_devid(dev) == cards[i].devid)
  201                         return &cards[i];
  202                 i++;
  203         }
  204         return NULL;
  205 }
  206 
  207 struct csa_card *
  208 csa_findsubcard(device_t dev)
  209 {
  210         int i;
  211         struct card_type *card;
  212         struct csa_card *subcard;
  213 
  214         card = csa_findcard(dev);
  215         if (card == NULL)
  216                 return &nocard;
  217         subcard = card->cards;
  218         i = 0;
  219         while (subcard[i].subvendor != 0) {
  220                 if (pci_get_subvendor(dev) == subcard[i].subvendor
  221                     && pci_get_subdevice(dev) == subcard[i].subdevice) {
  222                         return &subcard[i];
  223                 }
  224                 i++;
  225         }
  226         return &subcard[i];
  227 }
  228 
  229 static int
  230 csa_probe(device_t dev)
  231 {
  232         struct card_type *card;
  233 
  234         card = csa_findcard(dev);
  235         if (card) {
  236                 device_set_desc(dev, card->name);
  237                 return BUS_PROBE_DEFAULT;
  238         }
  239         return ENXIO;
  240 }
  241 
  242 static int
  243 csa_attach(device_t dev)
  244 {
  245         sc_p scp;
  246         csa_res *resp;
  247         struct sndcard_func *func;
  248         int error = ENXIO;
  249 
  250         scp = device_get_softc(dev);
  251 
  252         /* Fill in the softc. */
  253         bzero(scp, sizeof(*scp));
  254         scp->dev = dev;
  255 
  256         pci_enable_busmaster(dev);
  257 
  258         /* Allocate the resources. */
  259         resp = &scp->res;
  260         scp->card = csa_findsubcard(dev);
  261         scp->binfo.card = scp->card;
  262         printf("csa: card is %s\n", scp->card->name);
  263         resp->io_rid = PCIR_BAR(0);
  264         resp->io = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 
  265                 &resp->io_rid, RF_ACTIVE);
  266         if (resp->io == NULL)
  267                 return (ENXIO);
  268         resp->mem_rid = PCIR_BAR(1);
  269         resp->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
  270                 &resp->mem_rid, RF_ACTIVE);
  271         if (resp->mem == NULL)
  272                 goto err_io;
  273         resp->irq_rid = 0;
  274         resp->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
  275                 &resp->irq_rid, RF_ACTIVE | RF_SHAREABLE);
  276         if (resp->irq == NULL)
  277                 goto err_mem;
  278 
  279         /* Enable interrupt. */
  280         if (snd_setup_intr(dev, resp->irq, 0, csa_intr, scp, &scp->ih))
  281                 goto err_intr;
  282 #if 0
  283         if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0)
  284                 csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
  285 #endif
  286 
  287         /* Initialize the chip. */
  288         if (csa_initialize(scp))
  289                 goto err_teardown;
  290 
  291         /* Reset the Processor. */
  292         csa_resetdsp(resp);
  293 
  294         /* Download the Processor Image to the processor. */
  295         if (csa_downloadimage(resp))
  296                 goto err_teardown;
  297 
  298         /* Attach the children. */
  299 
  300         /* PCM Audio */
  301         func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT | M_ZERO);
  302         if (func == NULL) {
  303                 error = ENOMEM;
  304                 goto err_teardown;
  305         }
  306         func->varinfo = &scp->binfo;
  307         func->func = SCF_PCM;
  308         scp->pcm = device_add_child(dev, "pcm", -1);
  309         device_set_ivars(scp->pcm, func);
  310 
  311         /* Midi Interface */
  312         func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT | M_ZERO);
  313         if (func == NULL) {
  314                 error = ENOMEM;
  315                 goto err_teardown;
  316         }
  317         func->varinfo = &scp->binfo;
  318         func->func = SCF_MIDI;
  319         scp->midi = device_add_child(dev, "midi", -1);
  320         device_set_ivars(scp->midi, func);
  321 
  322         bus_generic_attach(dev);
  323 
  324         return (0);
  325 
  326 err_teardown:
  327         bus_teardown_intr(dev, resp->irq, scp->ih);
  328 err_intr:
  329         bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
  330 err_mem:
  331         bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
  332 err_io:
  333         bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
  334         return (error);
  335 }
  336 
  337 static int
  338 csa_detach(device_t dev)
  339 {
  340         csa_res *resp;
  341         sc_p scp;
  342         struct sndcard_func *func;
  343         int err;
  344 
  345         scp = device_get_softc(dev);
  346         resp = &scp->res;
  347 
  348         if (scp->midi != NULL) {
  349                 func = device_get_ivars(scp->midi);
  350                 err = device_delete_child(dev, scp->midi);
  351                 if (err != 0)
  352                         return err;
  353                 if (func != NULL)
  354                         free(func, M_DEVBUF);
  355                 scp->midi = NULL;
  356         }
  357 
  358         if (scp->pcm != NULL) {
  359                 func = device_get_ivars(scp->pcm);
  360                 err = device_delete_child(dev, scp->pcm);
  361                 if (err != 0)
  362                         return err;
  363                 if (func != NULL)
  364                         free(func, M_DEVBUF);
  365                 scp->pcm = NULL;
  366         }
  367 
  368         bus_teardown_intr(dev, resp->irq, scp->ih);
  369         bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
  370         bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
  371         bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
  372 
  373         return bus_generic_detach(dev);
  374 }
  375 
  376 static int
  377 csa_resume(device_t dev)
  378 {
  379         csa_res *resp;
  380         sc_p scp;
  381 
  382         scp = device_get_softc(dev);
  383         resp = &scp->res;
  384 
  385         /* Initialize the chip. */
  386         if (csa_initialize(scp))
  387                 return (ENXIO);
  388 
  389         /* Reset the Processor. */
  390         csa_resetdsp(resp);
  391 
  392         /* Download the Processor Image to the processor. */
  393         if (csa_downloadimage(resp))
  394                 return (ENXIO);
  395 
  396         return (bus_generic_resume(dev));
  397 }
  398 
  399 static struct resource *
  400 csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
  401                    rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
  402 {
  403         sc_p scp;
  404         csa_res *resp;
  405         struct resource *res;
  406 
  407         scp = device_get_softc(bus);
  408         resp = &scp->res;
  409         switch (type) {
  410         case SYS_RES_IRQ:
  411                 if (*rid != 0)
  412                         return (NULL);
  413                 res = resp->irq;
  414                 break;
  415         case SYS_RES_MEMORY:
  416                 switch (*rid) {
  417                 case PCIR_BAR(0):
  418                         res = resp->io;
  419                         break;
  420                 case PCIR_BAR(1):
  421                         res = resp->mem;
  422                         break;
  423                 default:
  424                         return (NULL);
  425                 }
  426                 break;
  427         default:
  428                 return (NULL);
  429         }
  430 
  431         return res;
  432 }
  433 
  434 static int
  435 csa_release_resource(device_t bus, device_t child, int type, int rid,
  436                         struct resource *r)
  437 {
  438         return (0);
  439 }
  440 
  441 /*
  442  * The following three functions deal with interrupt handling.
  443  * An interrupt is primarily handled by the bridge driver.
  444  * The bridge driver then determines the child devices to pass
  445  * the interrupt. Certain information of the device can be read
  446  * only once(eg the value of HISR). The bridge driver is responsible
  447  * to pass such the information to the children.
  448  */
  449 
  450 static int
  451 csa_setup_intr(device_t bus, device_t child,
  452                struct resource *irq, int flags,
  453                driver_filter_t *filter,
  454                driver_intr_t *intr, void *arg, void **cookiep)
  455 {
  456         sc_p scp;
  457         csa_res *resp;
  458         struct sndcard_func *func;
  459 
  460         if (filter != NULL) {
  461                 printf("ata-csa.c: we cannot use a filter here\n");
  462                 return (EINVAL);
  463         }
  464         scp = device_get_softc(bus);
  465         resp = &scp->res;
  466 
  467         /*
  468          * Look at the function code of the child to determine
  469          * the appropriate handler for it.
  470          */
  471         func = device_get_ivars(child);
  472         if (func == NULL || irq != resp->irq)
  473                 return (EINVAL);
  474 
  475         switch (func->func) {
  476         case SCF_PCM:
  477                 scp->pcmintr = intr;
  478                 scp->pcmintr_arg = arg;
  479                 break;
  480 
  481         case SCF_MIDI:
  482                 scp->midiintr = intr;
  483                 scp->midiintr_arg = arg;
  484                 break;
  485 
  486         default:
  487                 return (EINVAL);
  488         }
  489         *cookiep = scp;
  490         if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0)
  491                 csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
  492 
  493         return (0);
  494 }
  495 
  496 static int
  497 csa_teardown_intr(device_t bus, device_t child,
  498                   struct resource *irq, void *cookie)
  499 {
  500         sc_p scp;
  501         csa_res *resp;
  502         struct sndcard_func *func;
  503 
  504         scp = device_get_softc(bus);
  505         resp = &scp->res;
  506 
  507         /*
  508          * Look at the function code of the child to determine
  509          * the appropriate handler for it.
  510          */
  511         func = device_get_ivars(child);
  512         if (func == NULL || irq != resp->irq || cookie != scp)
  513                 return (EINVAL);
  514 
  515         switch (func->func) {
  516         case SCF_PCM:
  517                 scp->pcmintr = NULL;
  518                 scp->pcmintr_arg = NULL;
  519                 break;
  520 
  521         case SCF_MIDI:
  522                 scp->midiintr = NULL;
  523                 scp->midiintr_arg = NULL;
  524                 break;
  525 
  526         default:
  527                 return (EINVAL);
  528         }
  529 
  530         return (0);
  531 }
  532 
  533 /* The interrupt handler */
  534 static void
  535 csa_intr(void *arg)
  536 {
  537         sc_p scp = arg;
  538         csa_res *resp;
  539         u_int32_t hisr;
  540 
  541         resp = &scp->res;
  542 
  543         /* Is this interrupt for us? */
  544         hisr = csa_readio(resp, BA0_HISR);
  545         if ((hisr & 0x7fffffff) == 0) {
  546                 /* Throw an eoi. */
  547                 csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
  548                 return;
  549         }
  550 
  551         /*
  552          * Pass the value of HISR via struct csa_bridgeinfo.
  553          * The children get access through their ivars.
  554          */
  555         scp->binfo.hisr = hisr;
  556 
  557         /* Invoke the handlers of the children. */
  558         if ((hisr & (HISR_VC0 | HISR_VC1)) != 0 && scp->pcmintr != NULL) {
  559                 scp->pcmintr(scp->pcmintr_arg);
  560                 hisr &= ~(HISR_VC0 | HISR_VC1);
  561         }
  562         if ((hisr & HISR_MIDI) != 0 && scp->midiintr != NULL) {
  563                 scp->midiintr(scp->midiintr_arg);
  564                 hisr &= ~HISR_MIDI;
  565         }
  566 
  567         /* Throw an eoi. */
  568         csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
  569 }
  570 
  571 static int
  572 csa_initialize(sc_p scp)
  573 {
  574         int i;
  575         u_int32_t acsts, acisv;
  576         csa_res *resp;
  577 
  578         resp = &scp->res;
  579 
  580         /*
  581          * First, blast the clock control register to zero so that the PLL starts
  582          * out in a known state, and blast the master serial port control register
  583          * to zero so that the serial ports also start out in a known state.
  584          */
  585         csa_writeio(resp, BA0_CLKCR1, 0);
  586         csa_writeio(resp, BA0_SERMC1, 0);
  587 
  588         /*
  589          * If we are in AC97 mode, then we must set the part to a host controlled
  590          * AC-link.  Otherwise, we won't be able to bring up the link.
  591          */
  592 #if 1
  593         csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_1_03); /* 1.03 codec */
  594 #else
  595         csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_2_0); /* 2.0 codec */
  596 #endif /* 1 */
  597 
  598         /*
  599          * Drive the ARST# pin low for a minimum of 1uS (as defined in the AC97
  600          * spec) and then drive it high.  This is done for non AC97 modes since
  601          * there might be logic external to the CS461x that uses the ARST# line
  602          * for a reset.
  603          */
  604         csa_writeio(resp, BA0_ACCTL, 1);
  605         DELAY(50);
  606         csa_writeio(resp, BA0_ACCTL, 0);
  607         DELAY(50);
  608         csa_writeio(resp, BA0_ACCTL, ACCTL_RSTN);
  609 
  610         /*
  611          * The first thing we do here is to enable sync generation.  As soon
  612          * as we start receiving bit clock, we'll start producing the SYNC
  613          * signal.
  614          */
  615         csa_writeio(resp, BA0_ACCTL, ACCTL_ESYN | ACCTL_RSTN);
  616 
  617         /*
  618          * Now wait for a short while to allow the AC97 part to start
  619          * generating bit clock (so we don't try to start the PLL without an
  620          * input clock).
  621          */
  622         DELAY(50000);
  623 
  624         /*
  625          * Set the serial port timing configuration, so that
  626          * the clock control circuit gets its clock from the correct place.
  627          */
  628         csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97);
  629         DELAY(700000);
  630 
  631         /*
  632          * Write the selected clock control setup to the hardware.  Do not turn on
  633          * SWCE yet (if requested), so that the devices clocked by the output of
  634          * PLL are not clocked until the PLL is stable.
  635          */
  636         csa_writeio(resp, BA0_PLLCC, PLLCC_LPF_1050_2780_KHZ | PLLCC_CDR_73_104_MHZ);
  637         csa_writeio(resp, BA0_PLLM, 0x3a);
  638         csa_writeio(resp, BA0_CLKCR2, CLKCR2_PDIVS_8);
  639 
  640         /*
  641          * Power up the PLL.
  642          */
  643         csa_writeio(resp, BA0_CLKCR1, CLKCR1_PLLP);
  644 
  645         /*
  646          * Wait until the PLL has stabilized.
  647          */
  648         DELAY(5000);
  649 
  650         /*
  651          * Turn on clocking of the core so that we can setup the serial ports.
  652          */
  653         csa_writeio(resp, BA0_CLKCR1, csa_readio(resp, BA0_CLKCR1) | CLKCR1_SWCE);
  654 
  655         /*
  656          * Fill the serial port FIFOs with silence.
  657          */
  658         csa_clearserialfifos(resp);
  659 
  660         /*
  661          * Set the serial port FIFO pointer to the first sample in the FIFO.
  662          */
  663 #ifdef notdef
  664         csa_writeio(resp, BA0_SERBSP, 0);
  665 #endif /* notdef */
  666 
  667         /*
  668          *  Write the serial port configuration to the part.  The master
  669          *  enable bit is not set until all other values have been written.
  670          */
  671         csa_writeio(resp, BA0_SERC1, SERC1_SO1F_AC97 | SERC1_SO1EN);
  672         csa_writeio(resp, BA0_SERC2, SERC2_SI1F_AC97 | SERC1_SO1EN);
  673         csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97 | SERMC1_MSPE);
  674 
  675         /*
  676          * Wait for the codec ready signal from the AC97 codec.
  677          */
  678         acsts = 0;
  679         for (i = 0 ; i < 1000 ; i++) {
  680                 /*
  681                  * First, lets wait a short while to let things settle out a bit,
  682                  * and to prevent retrying the read too quickly.
  683                  */
  684                 DELAY(125);
  685 
  686                 /*
  687                  * Read the AC97 status register to see if we've seen a CODEC READY
  688                  * signal from the AC97 codec.
  689                  */
  690                 acsts = csa_readio(resp, BA0_ACSTS);
  691                 if ((acsts & ACSTS_CRDY) != 0)
  692                         break;
  693         }
  694 
  695         /*
  696          * Make sure we sampled CODEC READY.
  697          */
  698         if ((acsts & ACSTS_CRDY) == 0)
  699                 return (ENXIO);
  700 
  701         /*
  702          * Assert the vaid frame signal so that we can start sending commands
  703          * to the AC97 codec.
  704          */
  705         csa_writeio(resp, BA0_ACCTL, ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
  706 
  707         /*
  708          * Wait until we've sampled input slots 3 and 4 as valid, meaning that
  709          * the codec is pumping ADC data across the AC-link.
  710          */
  711         acisv = 0;
  712         for (i = 0 ; i < 2000 ; i++) {
  713                 /*
  714                  * First, lets wait a short while to let things settle out a bit,
  715                  * and to prevent retrying the read too quickly.
  716                  */
  717 #ifdef notdef
  718                 DELAY(10000000L); /* clw */
  719 #else
  720                 DELAY(1000);
  721 #endif /* notdef */
  722                 /*
  723                  * Read the input slot valid register and see if input slots 3 and
  724                  * 4 are valid yet.
  725                  */
  726                 acisv = csa_readio(resp, BA0_ACISV);
  727                 if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) == (ACISV_ISV3 | ACISV_ISV4))
  728                         break;
  729         }
  730         /*
  731          * Make sure we sampled valid input slots 3 and 4.  If not, then return
  732          * an error.
  733          */
  734         if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) != (ACISV_ISV3 | ACISV_ISV4))
  735                 return (ENXIO);
  736 
  737         /*
  738          * Now, assert valid frame and the slot 3 and 4 valid bits.  This will
  739          * commense the transfer of digital audio data to the AC97 codec.
  740          */
  741         csa_writeio(resp, BA0_ACOSV, ACOSV_SLV3 | ACOSV_SLV4);
  742 
  743         /*
  744          * Power down the DAC and ADC.  We will power them up (if) when we need
  745          * them.
  746          */
  747 #ifdef notdef
  748         csa_writeio(resp, BA0_AC97_POWERDOWN, 0x300);
  749 #endif /* notdef */
  750 
  751         /*
  752          * Turn off the Processor by turning off the software clock enable flag in
  753          * the clock control register.
  754          */
  755 #ifdef notdef
  756         clkcr1 = csa_readio(resp, BA0_CLKCR1) & ~CLKCR1_SWCE;
  757         csa_writeio(resp, BA0_CLKCR1, clkcr1);
  758 #endif /* notdef */
  759 
  760         /*
  761          * Enable interrupts on the part.
  762          */
  763 #if 0
  764         csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
  765 #endif /* notdef */
  766 
  767         return (0);
  768 }
  769 
  770 void
  771 csa_clearserialfifos(csa_res *resp)
  772 {
  773         int i, j, pwr;
  774         u_int8_t clkcr1, serbst;
  775 
  776         /*
  777          * See if the devices are powered down.  If so, we must power them up first
  778          * or they will not respond.
  779          */
  780         pwr = 1;
  781         clkcr1 = csa_readio(resp, BA0_CLKCR1);
  782         if ((clkcr1 & CLKCR1_SWCE) == 0) {
  783                 csa_writeio(resp, BA0_CLKCR1, clkcr1 | CLKCR1_SWCE);
  784                 pwr = 0;
  785         }
  786 
  787         /*
  788          * We want to clear out the serial port FIFOs so we don't end up playing
  789          * whatever random garbage happens to be in them.  We fill the sample FIFOs
  790          * with zero (silence).
  791          */
  792         csa_writeio(resp, BA0_SERBWP, 0);
  793 
  794         /* Fill all 256 sample FIFO locations. */
  795         serbst = 0;
  796         for (i = 0 ; i < 256 ; i++) {
  797                 /* Make sure the previous FIFO write operation has completed. */
  798                 for (j = 0 ; j < 5 ; j++) {
  799                         DELAY(100);
  800                         serbst = csa_readio(resp, BA0_SERBST);
  801                         if ((serbst & SERBST_WBSY) == 0)
  802                                 break;
  803                 }
  804                 if ((serbst & SERBST_WBSY) != 0) {
  805                         if (!pwr)
  806                                 csa_writeio(resp, BA0_CLKCR1, clkcr1);
  807                 }
  808                 /* Write the serial port FIFO index. */
  809                 csa_writeio(resp, BA0_SERBAD, i);
  810                 /* Tell the serial port to load the new value into the FIFO location. */
  811                 csa_writeio(resp, BA0_SERBCM, SERBCM_WRC);
  812         }
  813         /*
  814          *  Now, if we powered up the devices, then power them back down again.
  815          *  This is kinda ugly, but should never happen.
  816          */
  817         if (!pwr)
  818                 csa_writeio(resp, BA0_CLKCR1, clkcr1);
  819 }
  820 
  821 void
  822 csa_resetdsp(csa_res *resp)
  823 {
  824         int i;
  825 
  826         /*
  827          * Write the reset bit of the SP control register.
  828          */
  829         csa_writemem(resp, BA1_SPCR, SPCR_RSTSP);
  830 
  831         /*
  832          * Write the control register.
  833          */
  834         csa_writemem(resp, BA1_SPCR, SPCR_DRQEN);
  835 
  836         /*
  837          * Clear the trap registers.
  838          */
  839         for (i = 0 ; i < 8 ; i++) {
  840                 csa_writemem(resp, BA1_DREG, DREG_REGID_TRAP_SELECT + i);
  841                 csa_writemem(resp, BA1_TWPR, 0xffff);
  842         }
  843         csa_writemem(resp, BA1_DREG, 0);
  844 
  845         /*
  846          * Set the frame timer to reflect the number of cycles per frame.
  847          */
  848         csa_writemem(resp, BA1_FRMT, 0xadf);
  849 }
  850 
  851 static int
  852 csa_downloadimage(csa_res *resp)
  853 {
  854         int ret;
  855         u_long ul, offset;
  856 
  857         for (ul = 0, offset = 0 ; ul < INKY_MEMORY_COUNT ; ul++) {
  858                 /*
  859                  * DMA this block from host memory to the appropriate
  860                  * memory on the CSDevice.
  861                  */
  862                 ret = csa_transferimage(resp,
  863                     cs461x_firmware.BA1Array + offset,
  864                     cs461x_firmware.MemoryStat[ul].ulDestAddr,
  865                     cs461x_firmware.MemoryStat[ul].ulSourceSize);
  866                 if (ret)
  867                         return (ret);
  868                 offset += cs461x_firmware.MemoryStat[ul].ulSourceSize >> 2;
  869         }
  870         return (0);
  871 }
  872 
  873 static int
  874 csa_transferimage(csa_res *resp, u_int32_t *src, u_long dest, u_long len)
  875 {
  876         u_long ul;
  877 
  878         /*
  879          * We do not allow DMAs from host memory to host memory (although the DMA
  880          * can do it) and we do not allow DMAs which are not a multiple of 4 bytes
  881          * in size (because that DMA can not do that).  Return an error if either
  882          * of these conditions exist.
  883          */
  884         if ((len & 0x3) != 0)
  885                 return (EINVAL);
  886 
  887         /* Check the destination address that it is a multiple of 4 */
  888         if ((dest & 0x3) != 0)
  889                 return (EINVAL);
  890 
  891         /* Write the buffer out. */
  892         for (ul = 0 ; ul < len ; ul += 4)
  893                 csa_writemem(resp, dest + ul, src[ul >> 2]);
  894         return (0);
  895 }
  896 
  897 int
  898 csa_readcodec(csa_res *resp, u_long offset, u_int32_t *data)
  899 {
  900         int i;
  901         u_int32_t acctl, acsts;
  902 
  903         /*
  904          * Make sure that there is not data sitting around from a previous
  905          * uncompleted access. ACSDA = Status Data Register = 47Ch
  906          */
  907         csa_readio(resp, BA0_ACSDA);
  908 
  909         /*
  910          * Setup the AC97 control registers on the CS461x to send the
  911          * appropriate command to the AC97 to perform the read.
  912          * ACCAD = Command Address Register = 46Ch
  913          * ACCDA = Command Data Register = 470h
  914          * ACCTL = Control Register = 460h
  915          * set DCV - will clear when process completed
  916          * set CRW - Read command
  917          * set VFRM - valid frame enabled
  918          * set ESYN - ASYNC generation enabled
  919          * set RSTN - ARST# inactive, AC97 codec not reset
  920          */
  921 
  922         /*
  923          * Get the actual AC97 register from the offset
  924          */
  925         csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
  926         csa_writeio(resp, BA0_ACCDA, 0);
  927         csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_CRW | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
  928 
  929         /*
  930          * Wait for the read to occur.
  931          */
  932         acctl = 0;
  933         for (i = 0 ; i < 10 ; i++) {
  934                 /*
  935                  * First, we want to wait for a short time.
  936                  */
  937                 DELAY(25);
  938 
  939                 /*
  940                  * Now, check to see if the read has completed.
  941                  * ACCTL = 460h, DCV should be reset by now and 460h = 17h
  942                  */
  943                 acctl = csa_readio(resp, BA0_ACCTL);
  944                 if ((acctl & ACCTL_DCV) == 0)
  945                         break;
  946         }
  947 
  948         /*
  949          * Make sure the read completed.
  950          */
  951         if ((acctl & ACCTL_DCV) != 0)
  952                 return (EAGAIN);
  953 
  954         /*
  955          * Wait for the valid status bit to go active.
  956          */
  957         acsts = 0;
  958         for (i = 0 ; i < 10 ; i++) {
  959                 /*
  960                  * Read the AC97 status register.
  961                  * ACSTS = Status Register = 464h
  962                  */
  963                 acsts = csa_readio(resp, BA0_ACSTS);
  964                 /*
  965                  * See if we have valid status.
  966                  * VSTS - Valid Status
  967                  */
  968                 if ((acsts & ACSTS_VSTS) != 0)
  969                         break;
  970                 /*
  971                  * Wait for a short while.
  972                  */
  973                  DELAY(25);
  974         }
  975 
  976         /*
  977          * Make sure we got valid status.
  978          */
  979         if ((acsts & ACSTS_VSTS) == 0)
  980                 return (EAGAIN);
  981 
  982         /*
  983          * Read the data returned from the AC97 register.
  984          * ACSDA = Status Data Register = 474h
  985          */
  986         *data = csa_readio(resp, BA0_ACSDA);
  987 
  988         return (0);
  989 }
  990 
  991 int
  992 csa_writecodec(csa_res *resp, u_long offset, u_int32_t data)
  993 {
  994         int i;
  995         u_int32_t acctl;
  996 
  997         /*
  998          * Setup the AC97 control registers on the CS461x to send the
  999          * appropriate command to the AC97 to perform the write.
 1000          * ACCAD = Command Address Register = 46Ch
 1001          * ACCDA = Command Data Register = 470h
 1002          * ACCTL = Control Register = 460h
 1003          * set DCV - will clear when process completed
 1004          * set VFRM - valid frame enabled
 1005          * set ESYN - ASYNC generation enabled
 1006          * set RSTN - ARST# inactive, AC97 codec not reset
 1007          */
 1008 
 1009         /*
 1010          * Get the actual AC97 register from the offset
 1011          */
 1012         csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
 1013         csa_writeio(resp, BA0_ACCDA, data);
 1014         csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
 1015 
 1016         /*
 1017          * Wait for the write to occur.
 1018          */
 1019         acctl = 0;
 1020         for (i = 0 ; i < 10 ; i++) {
 1021                 /*
 1022                  * First, we want to wait for a short time.
 1023                  */
 1024                 DELAY(25);
 1025 
 1026                 /*
 1027                  * Now, check to see if the read has completed.
 1028                  * ACCTL = 460h, DCV should be reset by now and 460h = 17h
 1029                  */
 1030                 acctl = csa_readio(resp, BA0_ACCTL);
 1031                 if ((acctl & ACCTL_DCV) == 0)
 1032                         break;
 1033         }
 1034 
 1035         /*
 1036          * Make sure the write completed.
 1037          */
 1038         if ((acctl & ACCTL_DCV) != 0)
 1039                 return (EAGAIN);
 1040 
 1041         return (0);
 1042 }
 1043 
 1044 u_int32_t
 1045 csa_readio(csa_res *resp, u_long offset)
 1046 {
 1047         u_int32_t ul;
 1048 
 1049         if (offset < BA0_AC97_RESET)
 1050                 return bus_space_read_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset) & 0xffffffff;
 1051         else {
 1052                 if (csa_readcodec(resp, offset, &ul))
 1053                         ul = 0;
 1054                 return (ul);
 1055         }
 1056 }
 1057 
 1058 void
 1059 csa_writeio(csa_res *resp, u_long offset, u_int32_t data)
 1060 {
 1061         if (offset < BA0_AC97_RESET)
 1062                 bus_space_write_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset, data);
 1063         else
 1064                 csa_writecodec(resp, offset, data);
 1065 }
 1066 
 1067 u_int32_t
 1068 csa_readmem(csa_res *resp, u_long offset)
 1069 {
 1070         return bus_space_read_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset);
 1071 }
 1072 
 1073 void
 1074 csa_writemem(csa_res *resp, u_long offset, u_int32_t data)
 1075 {
 1076         bus_space_write_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset, data);
 1077 }
 1078 
 1079 static device_method_t csa_methods[] = {
 1080         /* Device interface */
 1081         DEVMETHOD(device_probe,         csa_probe),
 1082         DEVMETHOD(device_attach,        csa_attach),
 1083         DEVMETHOD(device_detach,        csa_detach),
 1084         DEVMETHOD(device_shutdown,      bus_generic_shutdown),
 1085         DEVMETHOD(device_suspend,       bus_generic_suspend),
 1086         DEVMETHOD(device_resume,        csa_resume),
 1087 
 1088         /* Bus interface */
 1089         DEVMETHOD(bus_alloc_resource,   csa_alloc_resource),
 1090         DEVMETHOD(bus_release_resource, csa_release_resource),
 1091         DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
 1092         DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
 1093         DEVMETHOD(bus_setup_intr,       csa_setup_intr),
 1094         DEVMETHOD(bus_teardown_intr,    csa_teardown_intr),
 1095 
 1096         DEVMETHOD_END
 1097 };
 1098 
 1099 static driver_t csa_driver = {
 1100         "csa",
 1101         csa_methods,
 1102         sizeof(struct csa_softc),
 1103 };
 1104 
 1105 /*
 1106  * csa can be attached to a pci bus.
 1107  */
 1108 DRIVER_MODULE(snd_csa, pci, csa_driver, 0, 0);
 1109 MODULE_DEPEND(snd_csa, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
 1110 MODULE_VERSION(snd_csa, 1);

Cache object: d6be3fbc29e665b3fb6cc36fbadf9b8a


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.