FreeBSD/Linux Kernel Cross Reference
sys/dev/sound/pci/csa.c
1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 1999 Seigo Tanimura
5 * All rights reserved.
6 *
7 * Portions of this source are based on cwcealdr.cpp and dhwiface.cpp in
8 * cwcealdr1.zip, the sample sources by Crystal Semiconductor.
9 * Copyright (c) 1996-1998 Crystal Semiconductor Corp.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/bus.h>
37 #include <sys/malloc.h>
38 #include <sys/module.h>
39 #include <machine/resource.h>
40 #include <machine/bus.h>
41 #include <sys/rman.h>
42
43 #ifdef HAVE_KERNEL_OPTION_HEADERS
44 #include "opt_snd.h"
45 #endif
46
47 #include <dev/sound/pcm/sound.h>
48 #include <dev/sound/chip.h>
49 #include <dev/sound/pci/csareg.h>
50 #include <dev/sound/pci/csavar.h>
51
52 #include <dev/pci/pcireg.h>
53 #include <dev/pci/pcivar.h>
54
55 #include <dev/sound/pci/cs461x_dsp.h>
56
57 SND_DECLARE_FILE("$FreeBSD$");
58
59 /* This is the pci device id. */
60 #define CS4610_PCI_ID 0x60011013
61 #define CS4614_PCI_ID 0x60031013
62 #define CS4615_PCI_ID 0x60041013
63
64 /* Here is the parameter structure per a device. */
65 struct csa_softc {
66 device_t dev; /* device */
67 csa_res res; /* resources */
68
69 device_t pcm; /* pcm device */
70 driver_intr_t* pcmintr; /* pcm intr */
71 void *pcmintr_arg; /* pcm intr arg */
72 device_t midi; /* midi device */
73 driver_intr_t* midiintr; /* midi intr */
74 void *midiintr_arg; /* midi intr arg */
75 void *ih; /* cookie */
76
77 struct csa_card *card;
78 struct csa_bridgeinfo binfo; /* The state of this bridge. */
79 };
80
81 typedef struct csa_softc *sc_p;
82
83 static int csa_probe(device_t dev);
84 static int csa_attach(device_t dev);
85 static struct resource *csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
86 rman_res_t start, rman_res_t end,
87 rman_res_t count, u_int flags);
88 static int csa_release_resource(device_t bus, device_t child, int type, int rid,
89 struct resource *r);
90 static int csa_setup_intr(device_t bus, device_t child,
91 struct resource *irq, int flags,
92 driver_filter_t *filter,
93 driver_intr_t *intr, void *arg, void **cookiep);
94 static int csa_teardown_intr(device_t bus, device_t child,
95 struct resource *irq, void *cookie);
96 static driver_intr_t csa_intr;
97 static int csa_initialize(sc_p scp);
98 static int csa_downloadimage(csa_res *resp);
99 static int csa_transferimage(csa_res *resp, u_int32_t *src, u_long dest, u_long len);
100
101 static void
102 amp_none(void)
103 {
104 }
105
106 static void
107 amp_voyetra(void)
108 {
109 }
110
111 static int
112 clkrun_hack(int run)
113 {
114 #ifdef __i386__
115 devclass_t pci_devclass;
116 device_t *pci_devices, *pci_children, *busp, *childp;
117 int pci_count = 0, pci_childcount = 0;
118 int i, j, port;
119 u_int16_t control;
120 bus_space_tag_t btag;
121
122 if ((pci_devclass = devclass_find("pci")) == NULL) {
123 return ENXIO;
124 }
125
126 devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
127
128 for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
129 pci_childcount = 0;
130 if (device_get_children(*busp, &pci_children, &pci_childcount))
131 continue;
132 for (j = 0, childp = pci_children; j < pci_childcount; j++, childp++) {
133 if (pci_get_vendor(*childp) == 0x8086 && pci_get_device(*childp) == 0x7113) {
134 port = (pci_read_config(*childp, 0x41, 1) << 8) + 0x10;
135 /* XXX */
136 btag = X86_BUS_SPACE_IO;
137
138 control = bus_space_read_2(btag, 0x0, port);
139 control &= ~0x2000;
140 control |= run? 0 : 0x2000;
141 bus_space_write_2(btag, 0x0, port, control);
142 free(pci_devices, M_TEMP);
143 free(pci_children, M_TEMP);
144 return 0;
145 }
146 }
147 free(pci_children, M_TEMP);
148 }
149
150 free(pci_devices, M_TEMP);
151 return ENXIO;
152 #else
153 return 0;
154 #endif
155 }
156
157 static struct csa_card cards_4610[] = {
158 {0, 0, "Unknown/invalid SSID (CS4610)", NULL, NULL, NULL, 0},
159 };
160
161 static struct csa_card cards_4614[] = {
162 {0x1489, 0x7001, "Genius Soundmaker 128 value", amp_none, NULL, NULL, 0},
163 {0x5053, 0x3357, "Turtle Beach Santa Cruz", amp_voyetra, NULL, NULL, 1},
164 {0x1071, 0x6003, "Mitac MI6020/21", amp_voyetra, NULL, NULL, 0},
165 {0x14AF, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0},
166 {0x1681, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0},
167 {0x1014, 0x0132, "Thinkpad 570", amp_none, NULL, NULL, 0},
168 {0x1014, 0x0153, "Thinkpad 600X/A20/T20", amp_none, NULL, clkrun_hack, 0},
169 {0x1014, 0x1010, "Thinkpad 600E (unsupported)", NULL, NULL, NULL, 0},
170 {0x153b, 0x1136, "Terratec SiXPack 5.1+", NULL, NULL, NULL, 0},
171 {0, 0, "Unknown/invalid SSID (CS4614)", NULL, NULL, NULL, 0},
172 };
173
174 static struct csa_card cards_4615[] = {
175 {0, 0, "Unknown/invalid SSID (CS4615)", NULL, NULL, NULL, 0},
176 };
177
178 static struct csa_card nocard = {0, 0, "unknown", NULL, NULL, NULL, 0};
179
180 struct card_type {
181 u_int32_t devid;
182 char *name;
183 struct csa_card *cards;
184 };
185
186 static struct card_type cards[] = {
187 {CS4610_PCI_ID, "CS4610/CS4611", cards_4610},
188 {CS4614_PCI_ID, "CS4280/CS4614/CS4622/CS4624/CS4630", cards_4614},
189 {CS4615_PCI_ID, "CS4615", cards_4615},
190 {0, NULL, NULL},
191 };
192
193 static struct card_type *
194 csa_findcard(device_t dev)
195 {
196 int i;
197
198 i = 0;
199 while (cards[i].devid != 0) {
200 if (pci_get_devid(dev) == cards[i].devid)
201 return &cards[i];
202 i++;
203 }
204 return NULL;
205 }
206
207 struct csa_card *
208 csa_findsubcard(device_t dev)
209 {
210 int i;
211 struct card_type *card;
212 struct csa_card *subcard;
213
214 card = csa_findcard(dev);
215 if (card == NULL)
216 return &nocard;
217 subcard = card->cards;
218 i = 0;
219 while (subcard[i].subvendor != 0) {
220 if (pci_get_subvendor(dev) == subcard[i].subvendor
221 && pci_get_subdevice(dev) == subcard[i].subdevice) {
222 return &subcard[i];
223 }
224 i++;
225 }
226 return &subcard[i];
227 }
228
229 static int
230 csa_probe(device_t dev)
231 {
232 struct card_type *card;
233
234 card = csa_findcard(dev);
235 if (card) {
236 device_set_desc(dev, card->name);
237 return BUS_PROBE_DEFAULT;
238 }
239 return ENXIO;
240 }
241
242 static int
243 csa_attach(device_t dev)
244 {
245 sc_p scp;
246 csa_res *resp;
247 struct sndcard_func *func;
248 int error = ENXIO;
249
250 scp = device_get_softc(dev);
251
252 /* Fill in the softc. */
253 bzero(scp, sizeof(*scp));
254 scp->dev = dev;
255
256 pci_enable_busmaster(dev);
257
258 /* Allocate the resources. */
259 resp = &scp->res;
260 scp->card = csa_findsubcard(dev);
261 scp->binfo.card = scp->card;
262 printf("csa: card is %s\n", scp->card->name);
263 resp->io_rid = PCIR_BAR(0);
264 resp->io = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
265 &resp->io_rid, RF_ACTIVE);
266 if (resp->io == NULL)
267 return (ENXIO);
268 resp->mem_rid = PCIR_BAR(1);
269 resp->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
270 &resp->mem_rid, RF_ACTIVE);
271 if (resp->mem == NULL)
272 goto err_io;
273 resp->irq_rid = 0;
274 resp->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
275 &resp->irq_rid, RF_ACTIVE | RF_SHAREABLE);
276 if (resp->irq == NULL)
277 goto err_mem;
278
279 /* Enable interrupt. */
280 if (snd_setup_intr(dev, resp->irq, 0, csa_intr, scp, &scp->ih))
281 goto err_intr;
282 #if 0
283 if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0)
284 csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
285 #endif
286
287 /* Initialize the chip. */
288 if (csa_initialize(scp))
289 goto err_teardown;
290
291 /* Reset the Processor. */
292 csa_resetdsp(resp);
293
294 /* Download the Processor Image to the processor. */
295 if (csa_downloadimage(resp))
296 goto err_teardown;
297
298 /* Attach the children. */
299
300 /* PCM Audio */
301 func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT | M_ZERO);
302 if (func == NULL) {
303 error = ENOMEM;
304 goto err_teardown;
305 }
306 func->varinfo = &scp->binfo;
307 func->func = SCF_PCM;
308 scp->pcm = device_add_child(dev, "pcm", -1);
309 device_set_ivars(scp->pcm, func);
310
311 /* Midi Interface */
312 func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT | M_ZERO);
313 if (func == NULL) {
314 error = ENOMEM;
315 goto err_teardown;
316 }
317 func->varinfo = &scp->binfo;
318 func->func = SCF_MIDI;
319 scp->midi = device_add_child(dev, "midi", -1);
320 device_set_ivars(scp->midi, func);
321
322 bus_generic_attach(dev);
323
324 return (0);
325
326 err_teardown:
327 bus_teardown_intr(dev, resp->irq, scp->ih);
328 err_intr:
329 bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
330 err_mem:
331 bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
332 err_io:
333 bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
334 return (error);
335 }
336
337 static int
338 csa_detach(device_t dev)
339 {
340 csa_res *resp;
341 sc_p scp;
342 struct sndcard_func *func;
343 int err;
344
345 scp = device_get_softc(dev);
346 resp = &scp->res;
347
348 if (scp->midi != NULL) {
349 func = device_get_ivars(scp->midi);
350 err = device_delete_child(dev, scp->midi);
351 if (err != 0)
352 return err;
353 if (func != NULL)
354 free(func, M_DEVBUF);
355 scp->midi = NULL;
356 }
357
358 if (scp->pcm != NULL) {
359 func = device_get_ivars(scp->pcm);
360 err = device_delete_child(dev, scp->pcm);
361 if (err != 0)
362 return err;
363 if (func != NULL)
364 free(func, M_DEVBUF);
365 scp->pcm = NULL;
366 }
367
368 bus_teardown_intr(dev, resp->irq, scp->ih);
369 bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
370 bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
371 bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
372
373 return bus_generic_detach(dev);
374 }
375
376 static int
377 csa_resume(device_t dev)
378 {
379 csa_res *resp;
380 sc_p scp;
381
382 scp = device_get_softc(dev);
383 resp = &scp->res;
384
385 /* Initialize the chip. */
386 if (csa_initialize(scp))
387 return (ENXIO);
388
389 /* Reset the Processor. */
390 csa_resetdsp(resp);
391
392 /* Download the Processor Image to the processor. */
393 if (csa_downloadimage(resp))
394 return (ENXIO);
395
396 return (bus_generic_resume(dev));
397 }
398
399 static struct resource *
400 csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
401 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
402 {
403 sc_p scp;
404 csa_res *resp;
405 struct resource *res;
406
407 scp = device_get_softc(bus);
408 resp = &scp->res;
409 switch (type) {
410 case SYS_RES_IRQ:
411 if (*rid != 0)
412 return (NULL);
413 res = resp->irq;
414 break;
415 case SYS_RES_MEMORY:
416 switch (*rid) {
417 case PCIR_BAR(0):
418 res = resp->io;
419 break;
420 case PCIR_BAR(1):
421 res = resp->mem;
422 break;
423 default:
424 return (NULL);
425 }
426 break;
427 default:
428 return (NULL);
429 }
430
431 return res;
432 }
433
434 static int
435 csa_release_resource(device_t bus, device_t child, int type, int rid,
436 struct resource *r)
437 {
438 return (0);
439 }
440
441 /*
442 * The following three functions deal with interrupt handling.
443 * An interrupt is primarily handled by the bridge driver.
444 * The bridge driver then determines the child devices to pass
445 * the interrupt. Certain information of the device can be read
446 * only once(eg the value of HISR). The bridge driver is responsible
447 * to pass such the information to the children.
448 */
449
450 static int
451 csa_setup_intr(device_t bus, device_t child,
452 struct resource *irq, int flags,
453 driver_filter_t *filter,
454 driver_intr_t *intr, void *arg, void **cookiep)
455 {
456 sc_p scp;
457 csa_res *resp;
458 struct sndcard_func *func;
459
460 if (filter != NULL) {
461 printf("ata-csa.c: we cannot use a filter here\n");
462 return (EINVAL);
463 }
464 scp = device_get_softc(bus);
465 resp = &scp->res;
466
467 /*
468 * Look at the function code of the child to determine
469 * the appropriate handler for it.
470 */
471 func = device_get_ivars(child);
472 if (func == NULL || irq != resp->irq)
473 return (EINVAL);
474
475 switch (func->func) {
476 case SCF_PCM:
477 scp->pcmintr = intr;
478 scp->pcmintr_arg = arg;
479 break;
480
481 case SCF_MIDI:
482 scp->midiintr = intr;
483 scp->midiintr_arg = arg;
484 break;
485
486 default:
487 return (EINVAL);
488 }
489 *cookiep = scp;
490 if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0)
491 csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
492
493 return (0);
494 }
495
496 static int
497 csa_teardown_intr(device_t bus, device_t child,
498 struct resource *irq, void *cookie)
499 {
500 sc_p scp;
501 csa_res *resp;
502 struct sndcard_func *func;
503
504 scp = device_get_softc(bus);
505 resp = &scp->res;
506
507 /*
508 * Look at the function code of the child to determine
509 * the appropriate handler for it.
510 */
511 func = device_get_ivars(child);
512 if (func == NULL || irq != resp->irq || cookie != scp)
513 return (EINVAL);
514
515 switch (func->func) {
516 case SCF_PCM:
517 scp->pcmintr = NULL;
518 scp->pcmintr_arg = NULL;
519 break;
520
521 case SCF_MIDI:
522 scp->midiintr = NULL;
523 scp->midiintr_arg = NULL;
524 break;
525
526 default:
527 return (EINVAL);
528 }
529
530 return (0);
531 }
532
533 /* The interrupt handler */
534 static void
535 csa_intr(void *arg)
536 {
537 sc_p scp = arg;
538 csa_res *resp;
539 u_int32_t hisr;
540
541 resp = &scp->res;
542
543 /* Is this interrupt for us? */
544 hisr = csa_readio(resp, BA0_HISR);
545 if ((hisr & 0x7fffffff) == 0) {
546 /* Throw an eoi. */
547 csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
548 return;
549 }
550
551 /*
552 * Pass the value of HISR via struct csa_bridgeinfo.
553 * The children get access through their ivars.
554 */
555 scp->binfo.hisr = hisr;
556
557 /* Invoke the handlers of the children. */
558 if ((hisr & (HISR_VC0 | HISR_VC1)) != 0 && scp->pcmintr != NULL) {
559 scp->pcmintr(scp->pcmintr_arg);
560 hisr &= ~(HISR_VC0 | HISR_VC1);
561 }
562 if ((hisr & HISR_MIDI) != 0 && scp->midiintr != NULL) {
563 scp->midiintr(scp->midiintr_arg);
564 hisr &= ~HISR_MIDI;
565 }
566
567 /* Throw an eoi. */
568 csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
569 }
570
571 static int
572 csa_initialize(sc_p scp)
573 {
574 int i;
575 u_int32_t acsts, acisv;
576 csa_res *resp;
577
578 resp = &scp->res;
579
580 /*
581 * First, blast the clock control register to zero so that the PLL starts
582 * out in a known state, and blast the master serial port control register
583 * to zero so that the serial ports also start out in a known state.
584 */
585 csa_writeio(resp, BA0_CLKCR1, 0);
586 csa_writeio(resp, BA0_SERMC1, 0);
587
588 /*
589 * If we are in AC97 mode, then we must set the part to a host controlled
590 * AC-link. Otherwise, we won't be able to bring up the link.
591 */
592 #if 1
593 csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_1_03); /* 1.03 codec */
594 #else
595 csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_2_0); /* 2.0 codec */
596 #endif /* 1 */
597
598 /*
599 * Drive the ARST# pin low for a minimum of 1uS (as defined in the AC97
600 * spec) and then drive it high. This is done for non AC97 modes since
601 * there might be logic external to the CS461x that uses the ARST# line
602 * for a reset.
603 */
604 csa_writeio(resp, BA0_ACCTL, 1);
605 DELAY(50);
606 csa_writeio(resp, BA0_ACCTL, 0);
607 DELAY(50);
608 csa_writeio(resp, BA0_ACCTL, ACCTL_RSTN);
609
610 /*
611 * The first thing we do here is to enable sync generation. As soon
612 * as we start receiving bit clock, we'll start producing the SYNC
613 * signal.
614 */
615 csa_writeio(resp, BA0_ACCTL, ACCTL_ESYN | ACCTL_RSTN);
616
617 /*
618 * Now wait for a short while to allow the AC97 part to start
619 * generating bit clock (so we don't try to start the PLL without an
620 * input clock).
621 */
622 DELAY(50000);
623
624 /*
625 * Set the serial port timing configuration, so that
626 * the clock control circuit gets its clock from the correct place.
627 */
628 csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97);
629 DELAY(700000);
630
631 /*
632 * Write the selected clock control setup to the hardware. Do not turn on
633 * SWCE yet (if requested), so that the devices clocked by the output of
634 * PLL are not clocked until the PLL is stable.
635 */
636 csa_writeio(resp, BA0_PLLCC, PLLCC_LPF_1050_2780_KHZ | PLLCC_CDR_73_104_MHZ);
637 csa_writeio(resp, BA0_PLLM, 0x3a);
638 csa_writeio(resp, BA0_CLKCR2, CLKCR2_PDIVS_8);
639
640 /*
641 * Power up the PLL.
642 */
643 csa_writeio(resp, BA0_CLKCR1, CLKCR1_PLLP);
644
645 /*
646 * Wait until the PLL has stabilized.
647 */
648 DELAY(5000);
649
650 /*
651 * Turn on clocking of the core so that we can setup the serial ports.
652 */
653 csa_writeio(resp, BA0_CLKCR1, csa_readio(resp, BA0_CLKCR1) | CLKCR1_SWCE);
654
655 /*
656 * Fill the serial port FIFOs with silence.
657 */
658 csa_clearserialfifos(resp);
659
660 /*
661 * Set the serial port FIFO pointer to the first sample in the FIFO.
662 */
663 #ifdef notdef
664 csa_writeio(resp, BA0_SERBSP, 0);
665 #endif /* notdef */
666
667 /*
668 * Write the serial port configuration to the part. The master
669 * enable bit is not set until all other values have been written.
670 */
671 csa_writeio(resp, BA0_SERC1, SERC1_SO1F_AC97 | SERC1_SO1EN);
672 csa_writeio(resp, BA0_SERC2, SERC2_SI1F_AC97 | SERC1_SO1EN);
673 csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97 | SERMC1_MSPE);
674
675 /*
676 * Wait for the codec ready signal from the AC97 codec.
677 */
678 acsts = 0;
679 for (i = 0 ; i < 1000 ; i++) {
680 /*
681 * First, lets wait a short while to let things settle out a bit,
682 * and to prevent retrying the read too quickly.
683 */
684 DELAY(125);
685
686 /*
687 * Read the AC97 status register to see if we've seen a CODEC READY
688 * signal from the AC97 codec.
689 */
690 acsts = csa_readio(resp, BA0_ACSTS);
691 if ((acsts & ACSTS_CRDY) != 0)
692 break;
693 }
694
695 /*
696 * Make sure we sampled CODEC READY.
697 */
698 if ((acsts & ACSTS_CRDY) == 0)
699 return (ENXIO);
700
701 /*
702 * Assert the vaid frame signal so that we can start sending commands
703 * to the AC97 codec.
704 */
705 csa_writeio(resp, BA0_ACCTL, ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
706
707 /*
708 * Wait until we've sampled input slots 3 and 4 as valid, meaning that
709 * the codec is pumping ADC data across the AC-link.
710 */
711 acisv = 0;
712 for (i = 0 ; i < 2000 ; i++) {
713 /*
714 * First, lets wait a short while to let things settle out a bit,
715 * and to prevent retrying the read too quickly.
716 */
717 #ifdef notdef
718 DELAY(10000000L); /* clw */
719 #else
720 DELAY(1000);
721 #endif /* notdef */
722 /*
723 * Read the input slot valid register and see if input slots 3 and
724 * 4 are valid yet.
725 */
726 acisv = csa_readio(resp, BA0_ACISV);
727 if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) == (ACISV_ISV3 | ACISV_ISV4))
728 break;
729 }
730 /*
731 * Make sure we sampled valid input slots 3 and 4. If not, then return
732 * an error.
733 */
734 if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) != (ACISV_ISV3 | ACISV_ISV4))
735 return (ENXIO);
736
737 /*
738 * Now, assert valid frame and the slot 3 and 4 valid bits. This will
739 * commense the transfer of digital audio data to the AC97 codec.
740 */
741 csa_writeio(resp, BA0_ACOSV, ACOSV_SLV3 | ACOSV_SLV4);
742
743 /*
744 * Power down the DAC and ADC. We will power them up (if) when we need
745 * them.
746 */
747 #ifdef notdef
748 csa_writeio(resp, BA0_AC97_POWERDOWN, 0x300);
749 #endif /* notdef */
750
751 /*
752 * Turn off the Processor by turning off the software clock enable flag in
753 * the clock control register.
754 */
755 #ifdef notdef
756 clkcr1 = csa_readio(resp, BA0_CLKCR1) & ~CLKCR1_SWCE;
757 csa_writeio(resp, BA0_CLKCR1, clkcr1);
758 #endif /* notdef */
759
760 /*
761 * Enable interrupts on the part.
762 */
763 #if 0
764 csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
765 #endif /* notdef */
766
767 return (0);
768 }
769
770 void
771 csa_clearserialfifos(csa_res *resp)
772 {
773 int i, j, pwr;
774 u_int8_t clkcr1, serbst;
775
776 /*
777 * See if the devices are powered down. If so, we must power them up first
778 * or they will not respond.
779 */
780 pwr = 1;
781 clkcr1 = csa_readio(resp, BA0_CLKCR1);
782 if ((clkcr1 & CLKCR1_SWCE) == 0) {
783 csa_writeio(resp, BA0_CLKCR1, clkcr1 | CLKCR1_SWCE);
784 pwr = 0;
785 }
786
787 /*
788 * We want to clear out the serial port FIFOs so we don't end up playing
789 * whatever random garbage happens to be in them. We fill the sample FIFOs
790 * with zero (silence).
791 */
792 csa_writeio(resp, BA0_SERBWP, 0);
793
794 /* Fill all 256 sample FIFO locations. */
795 serbst = 0;
796 for (i = 0 ; i < 256 ; i++) {
797 /* Make sure the previous FIFO write operation has completed. */
798 for (j = 0 ; j < 5 ; j++) {
799 DELAY(100);
800 serbst = csa_readio(resp, BA0_SERBST);
801 if ((serbst & SERBST_WBSY) == 0)
802 break;
803 }
804 if ((serbst & SERBST_WBSY) != 0) {
805 if (!pwr)
806 csa_writeio(resp, BA0_CLKCR1, clkcr1);
807 }
808 /* Write the serial port FIFO index. */
809 csa_writeio(resp, BA0_SERBAD, i);
810 /* Tell the serial port to load the new value into the FIFO location. */
811 csa_writeio(resp, BA0_SERBCM, SERBCM_WRC);
812 }
813 /*
814 * Now, if we powered up the devices, then power them back down again.
815 * This is kinda ugly, but should never happen.
816 */
817 if (!pwr)
818 csa_writeio(resp, BA0_CLKCR1, clkcr1);
819 }
820
821 void
822 csa_resetdsp(csa_res *resp)
823 {
824 int i;
825
826 /*
827 * Write the reset bit of the SP control register.
828 */
829 csa_writemem(resp, BA1_SPCR, SPCR_RSTSP);
830
831 /*
832 * Write the control register.
833 */
834 csa_writemem(resp, BA1_SPCR, SPCR_DRQEN);
835
836 /*
837 * Clear the trap registers.
838 */
839 for (i = 0 ; i < 8 ; i++) {
840 csa_writemem(resp, BA1_DREG, DREG_REGID_TRAP_SELECT + i);
841 csa_writemem(resp, BA1_TWPR, 0xffff);
842 }
843 csa_writemem(resp, BA1_DREG, 0);
844
845 /*
846 * Set the frame timer to reflect the number of cycles per frame.
847 */
848 csa_writemem(resp, BA1_FRMT, 0xadf);
849 }
850
851 static int
852 csa_downloadimage(csa_res *resp)
853 {
854 int ret;
855 u_long ul, offset;
856
857 for (ul = 0, offset = 0 ; ul < INKY_MEMORY_COUNT ; ul++) {
858 /*
859 * DMA this block from host memory to the appropriate
860 * memory on the CSDevice.
861 */
862 ret = csa_transferimage(resp,
863 cs461x_firmware.BA1Array + offset,
864 cs461x_firmware.MemoryStat[ul].ulDestAddr,
865 cs461x_firmware.MemoryStat[ul].ulSourceSize);
866 if (ret)
867 return (ret);
868 offset += cs461x_firmware.MemoryStat[ul].ulSourceSize >> 2;
869 }
870 return (0);
871 }
872
873 static int
874 csa_transferimage(csa_res *resp, u_int32_t *src, u_long dest, u_long len)
875 {
876 u_long ul;
877
878 /*
879 * We do not allow DMAs from host memory to host memory (although the DMA
880 * can do it) and we do not allow DMAs which are not a multiple of 4 bytes
881 * in size (because that DMA can not do that). Return an error if either
882 * of these conditions exist.
883 */
884 if ((len & 0x3) != 0)
885 return (EINVAL);
886
887 /* Check the destination address that it is a multiple of 4 */
888 if ((dest & 0x3) != 0)
889 return (EINVAL);
890
891 /* Write the buffer out. */
892 for (ul = 0 ; ul < len ; ul += 4)
893 csa_writemem(resp, dest + ul, src[ul >> 2]);
894 return (0);
895 }
896
897 int
898 csa_readcodec(csa_res *resp, u_long offset, u_int32_t *data)
899 {
900 int i;
901 u_int32_t acctl, acsts;
902
903 /*
904 * Make sure that there is not data sitting around from a previous
905 * uncompleted access. ACSDA = Status Data Register = 47Ch
906 */
907 csa_readio(resp, BA0_ACSDA);
908
909 /*
910 * Setup the AC97 control registers on the CS461x to send the
911 * appropriate command to the AC97 to perform the read.
912 * ACCAD = Command Address Register = 46Ch
913 * ACCDA = Command Data Register = 470h
914 * ACCTL = Control Register = 460h
915 * set DCV - will clear when process completed
916 * set CRW - Read command
917 * set VFRM - valid frame enabled
918 * set ESYN - ASYNC generation enabled
919 * set RSTN - ARST# inactive, AC97 codec not reset
920 */
921
922 /*
923 * Get the actual AC97 register from the offset
924 */
925 csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
926 csa_writeio(resp, BA0_ACCDA, 0);
927 csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_CRW | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
928
929 /*
930 * Wait for the read to occur.
931 */
932 acctl = 0;
933 for (i = 0 ; i < 10 ; i++) {
934 /*
935 * First, we want to wait for a short time.
936 */
937 DELAY(25);
938
939 /*
940 * Now, check to see if the read has completed.
941 * ACCTL = 460h, DCV should be reset by now and 460h = 17h
942 */
943 acctl = csa_readio(resp, BA0_ACCTL);
944 if ((acctl & ACCTL_DCV) == 0)
945 break;
946 }
947
948 /*
949 * Make sure the read completed.
950 */
951 if ((acctl & ACCTL_DCV) != 0)
952 return (EAGAIN);
953
954 /*
955 * Wait for the valid status bit to go active.
956 */
957 acsts = 0;
958 for (i = 0 ; i < 10 ; i++) {
959 /*
960 * Read the AC97 status register.
961 * ACSTS = Status Register = 464h
962 */
963 acsts = csa_readio(resp, BA0_ACSTS);
964 /*
965 * See if we have valid status.
966 * VSTS - Valid Status
967 */
968 if ((acsts & ACSTS_VSTS) != 0)
969 break;
970 /*
971 * Wait for a short while.
972 */
973 DELAY(25);
974 }
975
976 /*
977 * Make sure we got valid status.
978 */
979 if ((acsts & ACSTS_VSTS) == 0)
980 return (EAGAIN);
981
982 /*
983 * Read the data returned from the AC97 register.
984 * ACSDA = Status Data Register = 474h
985 */
986 *data = csa_readio(resp, BA0_ACSDA);
987
988 return (0);
989 }
990
991 int
992 csa_writecodec(csa_res *resp, u_long offset, u_int32_t data)
993 {
994 int i;
995 u_int32_t acctl;
996
997 /*
998 * Setup the AC97 control registers on the CS461x to send the
999 * appropriate command to the AC97 to perform the write.
1000 * ACCAD = Command Address Register = 46Ch
1001 * ACCDA = Command Data Register = 470h
1002 * ACCTL = Control Register = 460h
1003 * set DCV - will clear when process completed
1004 * set VFRM - valid frame enabled
1005 * set ESYN - ASYNC generation enabled
1006 * set RSTN - ARST# inactive, AC97 codec not reset
1007 */
1008
1009 /*
1010 * Get the actual AC97 register from the offset
1011 */
1012 csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
1013 csa_writeio(resp, BA0_ACCDA, data);
1014 csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
1015
1016 /*
1017 * Wait for the write to occur.
1018 */
1019 acctl = 0;
1020 for (i = 0 ; i < 10 ; i++) {
1021 /*
1022 * First, we want to wait for a short time.
1023 */
1024 DELAY(25);
1025
1026 /*
1027 * Now, check to see if the read has completed.
1028 * ACCTL = 460h, DCV should be reset by now and 460h = 17h
1029 */
1030 acctl = csa_readio(resp, BA0_ACCTL);
1031 if ((acctl & ACCTL_DCV) == 0)
1032 break;
1033 }
1034
1035 /*
1036 * Make sure the write completed.
1037 */
1038 if ((acctl & ACCTL_DCV) != 0)
1039 return (EAGAIN);
1040
1041 return (0);
1042 }
1043
1044 u_int32_t
1045 csa_readio(csa_res *resp, u_long offset)
1046 {
1047 u_int32_t ul;
1048
1049 if (offset < BA0_AC97_RESET)
1050 return bus_space_read_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset) & 0xffffffff;
1051 else {
1052 if (csa_readcodec(resp, offset, &ul))
1053 ul = 0;
1054 return (ul);
1055 }
1056 }
1057
1058 void
1059 csa_writeio(csa_res *resp, u_long offset, u_int32_t data)
1060 {
1061 if (offset < BA0_AC97_RESET)
1062 bus_space_write_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset, data);
1063 else
1064 csa_writecodec(resp, offset, data);
1065 }
1066
1067 u_int32_t
1068 csa_readmem(csa_res *resp, u_long offset)
1069 {
1070 return bus_space_read_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset);
1071 }
1072
1073 void
1074 csa_writemem(csa_res *resp, u_long offset, u_int32_t data)
1075 {
1076 bus_space_write_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset, data);
1077 }
1078
1079 static device_method_t csa_methods[] = {
1080 /* Device interface */
1081 DEVMETHOD(device_probe, csa_probe),
1082 DEVMETHOD(device_attach, csa_attach),
1083 DEVMETHOD(device_detach, csa_detach),
1084 DEVMETHOD(device_shutdown, bus_generic_shutdown),
1085 DEVMETHOD(device_suspend, bus_generic_suspend),
1086 DEVMETHOD(device_resume, csa_resume),
1087
1088 /* Bus interface */
1089 DEVMETHOD(bus_alloc_resource, csa_alloc_resource),
1090 DEVMETHOD(bus_release_resource, csa_release_resource),
1091 DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
1092 DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
1093 DEVMETHOD(bus_setup_intr, csa_setup_intr),
1094 DEVMETHOD(bus_teardown_intr, csa_teardown_intr),
1095
1096 DEVMETHOD_END
1097 };
1098
1099 static driver_t csa_driver = {
1100 "csa",
1101 csa_methods,
1102 sizeof(struct csa_softc),
1103 };
1104
1105 /*
1106 * csa can be attached to a pci bus.
1107 */
1108 DRIVER_MODULE(snd_csa, pci, csa_driver, 0, 0);
1109 MODULE_DEPEND(snd_csa, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
1110 MODULE_VERSION(snd_csa, 1);
Cache object: d6be3fbc29e665b3fb6cc36fbadf9b8a
|