The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/sound/pci/csa.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1999 Seigo Tanimura
    3  * All rights reserved.
    4  *
    5  * Portions of this source are based on cwcealdr.cpp and dhwiface.cpp in
    6  * cwcealdr1.zip, the sample sources by Crystal Semiconductor.
    7  * Copyright (c) 1996-1998 Crystal Semiconductor Corp.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   28  * SUCH DAMAGE.
   29  */
   30 
   31 #include <sys/param.h>
   32 #include <sys/systm.h>
   33 #include <sys/kernel.h>
   34 #include <sys/bus.h>
   35 #include <sys/malloc.h>
   36 #include <sys/module.h>
   37 #include <machine/resource.h>
   38 #include <machine/bus.h>
   39 #include <sys/rman.h>
   40 #include <sys/soundcard.h>
   41 #include <dev/sound/pcm/sound.h>
   42 #include <dev/sound/chip.h>
   43 #include <dev/sound/pci/csareg.h>
   44 #include <dev/sound/pci/csavar.h>
   45 
   46 #include <dev/pci/pcireg.h>
   47 #include <dev/pci/pcivar.h>
   48 
   49 #include <gnu/dev/sound/pci/csaimg.h>
   50 
   51 SND_DECLARE_FILE("$FreeBSD$");
   52 
   53 /* This is the pci device id. */
   54 #define CS4610_PCI_ID 0x60011013
   55 #define CS4614_PCI_ID 0x60031013
   56 #define CS4615_PCI_ID 0x60041013
   57 
   58 /* Here is the parameter structure per a device. */
   59 struct csa_softc {
   60         device_t dev; /* device */
   61         csa_res res; /* resources */
   62 
   63         device_t pcm; /* pcm device */
   64         driver_intr_t* pcmintr; /* pcm intr */
   65         void *pcmintr_arg; /* pcm intr arg */
   66         device_t midi; /* midi device */
   67         driver_intr_t* midiintr; /* midi intr */
   68         void *midiintr_arg; /* midi intr arg */
   69         void *ih; /* cookie */
   70 
   71         struct csa_card *card;
   72         struct csa_bridgeinfo binfo; /* The state of this bridge. */
   73 };
   74 
   75 typedef struct csa_softc *sc_p;
   76 
   77 static int csa_probe(device_t dev);
   78 static int csa_attach(device_t dev);
   79 static struct resource *csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
   80                                               u_long start, u_long end, u_long count, u_int flags);
   81 static int csa_release_resource(device_t bus, device_t child, int type, int rid,
   82                                    struct resource *r);
   83 static int csa_setup_intr(device_t bus, device_t child,
   84                           struct resource *irq, int flags,
   85                           driver_intr_t *intr, void *arg, void **cookiep);
   86 static int csa_teardown_intr(device_t bus, device_t child,
   87                              struct resource *irq, void *cookie);
   88 static driver_intr_t csa_intr;
   89 static int csa_initialize(sc_p scp);
   90 static int csa_downloadimage(csa_res *resp);
   91 
   92 static devclass_t csa_devclass;
   93 
   94 static void
   95 amp_none(void)
   96 {
   97 }
   98 
   99 static void
  100 amp_voyetra(void)
  101 {
  102 }
  103 
  104 static int
  105 clkrun_hack(int run)
  106 {
  107 #ifdef __i386__
  108         devclass_t              pci_devclass;
  109         device_t                *pci_devices, *pci_children, *busp, *childp;
  110         int                     pci_count = 0, pci_childcount = 0;
  111         int                     i, j, port;
  112         u_int16_t               control;
  113         bus_space_tag_t         btag;
  114 
  115         if ((pci_devclass = devclass_find("pci")) == NULL) {
  116                 return ENXIO;
  117         }
  118 
  119         devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
  120 
  121         for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
  122                 pci_childcount = 0;
  123                 device_get_children(*busp, &pci_children, &pci_childcount);
  124                 for (j = 0, childp = pci_children; j < pci_childcount; j++, childp++) {
  125                         if (pci_get_vendor(*childp) == 0x8086 && pci_get_device(*childp) == 0x7113) {
  126                                 port = (pci_read_config(*childp, 0x41, 1) << 8) + 0x10;
  127                                 /* XXX */
  128                                 btag = I386_BUS_SPACE_IO;
  129 
  130                                 control = bus_space_read_2(btag, 0x0, port);
  131                                 control &= ~0x2000;
  132                                 control |= run? 0 : 0x2000;
  133                                 bus_space_write_2(btag, 0x0, port, control);
  134                                 free(pci_devices, M_TEMP);
  135                                 free(pci_children, M_TEMP);
  136                                 return 0;
  137                         }
  138                 }
  139                 free(pci_children, M_TEMP);
  140         }
  141 
  142         free(pci_devices, M_TEMP);
  143         return ENXIO;
  144 #else
  145         return 0;
  146 #endif
  147 }
  148 
  149 static struct csa_card cards_4610[] = {
  150         {0, 0, "Unknown/invalid SSID (CS4610)", NULL, NULL, NULL, 0},
  151 };
  152 
  153 static struct csa_card cards_4614[] = {
  154         {0x1489, 0x7001, "Genius Soundmaker 128 value", amp_none, NULL, NULL, 0},
  155         {0x5053, 0x3357, "Turtle Beach Santa Cruz", amp_voyetra, NULL, NULL, 1},
  156         {0x1071, 0x6003, "Mitac MI6020/21", amp_voyetra, NULL, NULL, 0},
  157         {0x14AF, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0},
  158         {0x1681, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0},
  159         {0x1014, 0x0132, "Thinkpad 570", amp_none, NULL, NULL, 0},
  160         {0x1014, 0x0153, "Thinkpad 600X/A20/T20", amp_none, NULL, clkrun_hack, 0},
  161         {0x1014, 0x1010, "Thinkpad 600E (unsupported)", NULL, NULL, NULL, 0},
  162         {0, 0, "Unknown/invalid SSID (CS4614)", NULL, NULL, NULL, 0},
  163 };
  164 
  165 static struct csa_card cards_4615[] = {
  166         {0, 0, "Unknown/invalid SSID (CS4615)", NULL, NULL, NULL, 0},
  167 };
  168 
  169 static struct csa_card nocard = {0, 0, "unknown", NULL, NULL, NULL, 0};
  170 
  171 struct card_type {
  172         u_int32_t devid;
  173         char *name;
  174         struct csa_card *cards;
  175 };
  176 
  177 static struct card_type cards[] = {
  178         {CS4610_PCI_ID, "CS4610/CS4611", cards_4610},
  179         {CS4614_PCI_ID, "CS4280/CS4614/CS4622/CS4624/CS4630", cards_4614},
  180         {CS4615_PCI_ID, "CS4615", cards_4615},
  181         {0, NULL, NULL},
  182 };
  183 
  184 static struct card_type *
  185 csa_findcard(device_t dev)
  186 {
  187         int i;
  188 
  189         i = 0;
  190         while (cards[i].devid != 0) {
  191                 if (pci_get_devid(dev) == cards[i].devid)
  192                         return &cards[i];
  193                 i++;
  194         }
  195         return NULL;
  196 }
  197 
  198 struct csa_card *
  199 csa_findsubcard(device_t dev)
  200 {
  201         int i;
  202         struct card_type *card;
  203         struct csa_card *subcard;
  204 
  205         card = csa_findcard(dev);
  206         if (card == NULL)
  207                 return &nocard;
  208         subcard = card->cards;
  209         i = 0;
  210         while (subcard[i].subvendor != 0) {
  211                 if (pci_get_subvendor(dev) == subcard[i].subvendor
  212                     && pci_get_subdevice(dev) == subcard[i].subdevice) {
  213                         return &subcard[i];
  214                 }
  215                 i++;
  216         }
  217         return &subcard[i];
  218 }
  219 
  220 static int
  221 csa_probe(device_t dev)
  222 {
  223         struct card_type *card;
  224 
  225         card = csa_findcard(dev);
  226         if (card) {
  227                 device_set_desc(dev, card->name);
  228                 return 0;
  229         }
  230         return ENXIO;
  231 }
  232 
  233 static int
  234 csa_attach(device_t dev)
  235 {
  236         u_int32_t stcmd;
  237         sc_p scp;
  238         csa_res *resp;
  239         struct sndcard_func *func;
  240         int error = ENXIO;
  241 
  242         scp = device_get_softc(dev);
  243 
  244         /* Fill in the softc. */
  245         bzero(scp, sizeof(*scp));
  246         scp->dev = dev;
  247 
  248         /* Wake up the device. */
  249         stcmd = pci_read_config(dev, PCIR_COMMAND, 2);
  250         if ((stcmd & PCIM_CMD_MEMEN) == 0 || (stcmd & PCIM_CMD_BUSMASTEREN) == 0) {
  251                 stcmd |= (PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
  252                 pci_write_config(dev, PCIR_COMMAND, stcmd, 2);
  253         }
  254 
  255         /* Allocate the resources. */
  256         resp = &scp->res;
  257         scp->card = csa_findsubcard(dev);
  258         scp->binfo.card = scp->card;
  259         printf("csa: card is %s\n", scp->card->name);
  260         resp->io_rid = PCIR_BAR(0);
  261         resp->io = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 
  262                 &resp->io_rid, RF_ACTIVE);
  263         if (resp->io == NULL)
  264                 return (ENXIO);
  265         resp->mem_rid = PCIR_BAR(1);
  266         resp->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
  267                 &resp->mem_rid, RF_ACTIVE);
  268         if (resp->mem == NULL)
  269                 goto err_io;
  270         resp->irq_rid = 0;
  271         resp->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
  272                 &resp->irq_rid, RF_ACTIVE | RF_SHAREABLE);
  273         if (resp->irq == NULL)
  274                 goto err_mem;
  275 
  276         /* Enable interrupt. */
  277         if (snd_setup_intr(dev, resp->irq, 0, csa_intr, scp, &scp->ih))
  278                 goto err_intr;
  279 #if 0
  280         if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0)
  281                 csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
  282 #endif
  283 
  284         /* Initialize the chip. */
  285         if (csa_initialize(scp))
  286                 goto err_teardown;
  287 
  288         /* Reset the Processor. */
  289         csa_resetdsp(resp);
  290 
  291         /* Download the Processor Image to the processor. */
  292         if (csa_downloadimage(resp))
  293                 goto err_teardown;
  294 
  295         /* Attach the children. */
  296 
  297         /* PCM Audio */
  298         func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT | M_ZERO);
  299         if (func == NULL) {
  300                 error = ENOMEM;
  301                 goto err_teardown;
  302         }
  303         func->varinfo = &scp->binfo;
  304         func->func = SCF_PCM;
  305         scp->pcm = device_add_child(dev, "pcm", -1);
  306         device_set_ivars(scp->pcm, func);
  307 
  308         /* Midi Interface */
  309         func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT | M_ZERO);
  310         if (func == NULL) {
  311                 error = ENOMEM;
  312                 goto err_teardown;
  313         }
  314         func->varinfo = &scp->binfo;
  315         func->func = SCF_MIDI;
  316         scp->midi = device_add_child(dev, "midi", -1);
  317         device_set_ivars(scp->midi, func);
  318 
  319         bus_generic_attach(dev);
  320 
  321         return (0);
  322 
  323 err_teardown:
  324         bus_teardown_intr(dev, resp->irq, scp->ih);
  325 err_intr:
  326         bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
  327 err_mem:
  328         bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
  329 err_io:
  330         bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
  331         return (error);
  332 }
  333 
  334 static int
  335 csa_detach(device_t dev)
  336 {
  337         csa_res *resp;
  338         sc_p scp;
  339         int err;
  340 
  341         scp = device_get_softc(dev);
  342         resp = &scp->res;
  343 
  344         err = 0;
  345         if (scp->midi != NULL)
  346                 err = device_delete_child(dev, scp->midi);
  347         if (err)
  348                 return err;
  349         scp->midi = NULL;
  350 
  351         if (scp->pcm != NULL)
  352                 err = device_delete_child(dev, scp->pcm);
  353         if (err)
  354                 return err;
  355         scp->pcm = NULL;
  356 
  357         bus_teardown_intr(dev, resp->irq, scp->ih);
  358         bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
  359         bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
  360         bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
  361 
  362         return bus_generic_detach(dev);
  363 }
  364 
  365 static int
  366 csa_resume(device_t dev)
  367 {
  368         csa_res *resp;
  369         sc_p scp;
  370 
  371         scp = device_get_softc(dev);
  372         resp = &scp->res;
  373 
  374         /* Initialize the chip. */
  375         if (csa_initialize(scp))
  376                 return (ENXIO);
  377 
  378         /* Reset the Processor. */
  379         csa_resetdsp(resp);
  380 
  381         /* Download the Processor Image to the processor. */
  382         if (csa_downloadimage(resp))
  383                 return (ENXIO);
  384 
  385         return (bus_generic_resume(dev));
  386 }
  387 
  388 static struct resource *
  389 csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
  390                       u_long start, u_long end, u_long count, u_int flags)
  391 {
  392         sc_p scp;
  393         csa_res *resp;
  394         struct resource *res;
  395 
  396         scp = device_get_softc(bus);
  397         resp = &scp->res;
  398         switch (type) {
  399         case SYS_RES_IRQ:
  400                 if (*rid != 0)
  401                         return (NULL);
  402                 res = resp->irq;
  403                 break;
  404         case SYS_RES_MEMORY:
  405                 switch (*rid) {
  406                 case PCIR_BAR(0):
  407                         res = resp->io;
  408                         break;
  409                 case PCIR_BAR(1):
  410                         res = resp->mem;
  411                         break;
  412                 default:
  413                         return (NULL);
  414                 }
  415                 break;
  416         default:
  417                 return (NULL);
  418         }
  419 
  420         return res;
  421 }
  422 
  423 static int
  424 csa_release_resource(device_t bus, device_t child, int type, int rid,
  425                         struct resource *r)
  426 {
  427         return (0);
  428 }
  429 
  430 /*
  431  * The following three functions deal with interrupt handling.
  432  * An interrupt is primarily handled by the bridge driver.
  433  * The bridge driver then determines the child devices to pass
  434  * the interrupt. Certain information of the device can be read
  435  * only once(eg the value of HISR). The bridge driver is responsible
  436  * to pass such the information to the children.
  437  */
  438 
  439 static int
  440 csa_setup_intr(device_t bus, device_t child,
  441                struct resource *irq, int flags,
  442                driver_intr_t *intr, void *arg, void **cookiep)
  443 {
  444         sc_p scp;
  445         csa_res *resp;
  446         struct sndcard_func *func;
  447 
  448         scp = device_get_softc(bus);
  449         resp = &scp->res;
  450 
  451         /*
  452          * Look at the function code of the child to determine
  453          * the appropriate hander for it.
  454          */
  455         func = device_get_ivars(child);
  456         if (func == NULL || irq != resp->irq)
  457                 return (EINVAL);
  458 
  459         switch (func->func) {
  460         case SCF_PCM:
  461                 scp->pcmintr = intr;
  462                 scp->pcmintr_arg = arg;
  463                 break;
  464 
  465         case SCF_MIDI:
  466                 scp->midiintr = intr;
  467                 scp->midiintr_arg = arg;
  468                 break;
  469 
  470         default:
  471                 return (EINVAL);
  472         }
  473         *cookiep = scp;
  474         if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0)
  475                 csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
  476 
  477         return (0);
  478 }
  479 
  480 static int
  481 csa_teardown_intr(device_t bus, device_t child,
  482                   struct resource *irq, void *cookie)
  483 {
  484         sc_p scp;
  485         csa_res *resp;
  486         struct sndcard_func *func;
  487 
  488         scp = device_get_softc(bus);
  489         resp = &scp->res;
  490 
  491         /*
  492          * Look at the function code of the child to determine
  493          * the appropriate hander for it.
  494          */
  495         func = device_get_ivars(child);
  496         if (func == NULL || irq != resp->irq || cookie != scp)
  497                 return (EINVAL);
  498 
  499         switch (func->func) {
  500         case SCF_PCM:
  501                 scp->pcmintr = NULL;
  502                 scp->pcmintr_arg = NULL;
  503                 break;
  504 
  505         case SCF_MIDI:
  506                 scp->midiintr = NULL;
  507                 scp->midiintr_arg = NULL;
  508                 break;
  509 
  510         default:
  511                 return (EINVAL);
  512         }
  513 
  514         return (0);
  515 }
  516 
  517 /* The interrupt handler */
  518 static void
  519 csa_intr(void *arg)
  520 {
  521         sc_p scp = arg;
  522         csa_res *resp;
  523         u_int32_t hisr;
  524 
  525         resp = &scp->res;
  526 
  527         /* Is this interrupt for us? */
  528         hisr = csa_readio(resp, BA0_HISR);
  529         if ((hisr & 0x7fffffff) == 0) {
  530                 /* Throw an eoi. */
  531                 csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
  532                 return;
  533         }
  534 
  535         /*
  536          * Pass the value of HISR via struct csa_bridgeinfo.
  537          * The children get access through their ivars.
  538          */
  539         scp->binfo.hisr = hisr;
  540 
  541         /* Invoke the handlers of the children. */
  542         if ((hisr & (HISR_VC0 | HISR_VC1)) != 0 && scp->pcmintr != NULL) {
  543                 scp->pcmintr(scp->pcmintr_arg);
  544                 hisr &= ~(HISR_VC0 | HISR_VC1);
  545         }
  546         if ((hisr & HISR_MIDI) != 0 && scp->midiintr != NULL) {
  547                 scp->midiintr(scp->midiintr_arg);
  548                 hisr &= ~HISR_MIDI;
  549         }
  550 
  551         /* Throw an eoi. */
  552         csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
  553 }
  554 
  555 static int
  556 csa_initialize(sc_p scp)
  557 {
  558         int i;
  559         u_int32_t acsts, acisv;
  560         csa_res *resp;
  561 
  562         resp = &scp->res;
  563 
  564         /*
  565          * First, blast the clock control register to zero so that the PLL starts
  566          * out in a known state, and blast the master serial port control register
  567          * to zero so that the serial ports also start out in a known state.
  568          */
  569         csa_writeio(resp, BA0_CLKCR1, 0);
  570         csa_writeio(resp, BA0_SERMC1, 0);
  571 
  572         /*
  573          * If we are in AC97 mode, then we must set the part to a host controlled
  574          * AC-link.  Otherwise, we won't be able to bring up the link.
  575          */
  576 #if 1
  577         csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_1_03); /* 1.03 codec */
  578 #else
  579         csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_2_0); /* 2.0 codec */
  580 #endif /* 1 */
  581 
  582         /*
  583          * Drive the ARST# pin low for a minimum of 1uS (as defined in the AC97
  584          * spec) and then drive it high.  This is done for non AC97 modes since
  585          * there might be logic external to the CS461x that uses the ARST# line
  586          * for a reset.
  587          */
  588         csa_writeio(resp, BA0_ACCTL, 1);
  589         DELAY(50);
  590         csa_writeio(resp, BA0_ACCTL, 0);
  591         DELAY(50);
  592         csa_writeio(resp, BA0_ACCTL, ACCTL_RSTN);
  593 
  594         /*
  595          * The first thing we do here is to enable sync generation.  As soon
  596          * as we start receiving bit clock, we'll start producing the SYNC
  597          * signal.
  598          */
  599         csa_writeio(resp, BA0_ACCTL, ACCTL_ESYN | ACCTL_RSTN);
  600 
  601         /*
  602          * Now wait for a short while to allow the AC97 part to start
  603          * generating bit clock (so we don't try to start the PLL without an
  604          * input clock).
  605          */
  606         DELAY(50000);
  607 
  608         /*
  609          * Set the serial port timing configuration, so that
  610          * the clock control circuit gets its clock from the correct place.
  611          */
  612         csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97);
  613         DELAY(700000);
  614 
  615         /*
  616          * Write the selected clock control setup to the hardware.  Do not turn on
  617          * SWCE yet (if requested), so that the devices clocked by the output of
  618          * PLL are not clocked until the PLL is stable.
  619          */
  620         csa_writeio(resp, BA0_PLLCC, PLLCC_LPF_1050_2780_KHZ | PLLCC_CDR_73_104_MHZ);
  621         csa_writeio(resp, BA0_PLLM, 0x3a);
  622         csa_writeio(resp, BA0_CLKCR2, CLKCR2_PDIVS_8);
  623 
  624         /*
  625          * Power up the PLL.
  626          */
  627         csa_writeio(resp, BA0_CLKCR1, CLKCR1_PLLP);
  628 
  629         /*
  630          * Wait until the PLL has stabilized.
  631          */
  632         DELAY(5000);
  633 
  634         /*
  635          * Turn on clocking of the core so that we can setup the serial ports.
  636          */
  637         csa_writeio(resp, BA0_CLKCR1, csa_readio(resp, BA0_CLKCR1) | CLKCR1_SWCE);
  638 
  639         /*
  640          * Fill the serial port FIFOs with silence.
  641          */
  642         csa_clearserialfifos(resp);
  643 
  644         /*
  645          * Set the serial port FIFO pointer to the first sample in the FIFO.
  646          */
  647 #if notdef
  648         csa_writeio(resp, BA0_SERBSP, 0);
  649 #endif /* notdef */
  650 
  651         /*
  652          *  Write the serial port configuration to the part.  The master
  653          *  enable bit is not set until all other values have been written.
  654          */
  655         csa_writeio(resp, BA0_SERC1, SERC1_SO1F_AC97 | SERC1_SO1EN);
  656         csa_writeio(resp, BA0_SERC2, SERC2_SI1F_AC97 | SERC1_SO1EN);
  657         csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97 | SERMC1_MSPE);
  658 
  659         /*
  660          * Wait for the codec ready signal from the AC97 codec.
  661          */
  662         acsts = 0;
  663         for (i = 0 ; i < 1000 ; i++) {
  664                 /*
  665                  * First, lets wait a short while to let things settle out a bit,
  666                  * and to prevent retrying the read too quickly.
  667                  */
  668                 DELAY(125);
  669 
  670                 /*
  671                  * Read the AC97 status register to see if we've seen a CODEC READY
  672                  * signal from the AC97 codec.
  673                  */
  674                 acsts = csa_readio(resp, BA0_ACSTS);
  675                 if ((acsts & ACSTS_CRDY) != 0)
  676                         break;
  677         }
  678 
  679         /*
  680          * Make sure we sampled CODEC READY.
  681          */
  682         if ((acsts & ACSTS_CRDY) == 0)
  683                 return (ENXIO);
  684 
  685         /*
  686          * Assert the vaid frame signal so that we can start sending commands
  687          * to the AC97 codec.
  688          */
  689         csa_writeio(resp, BA0_ACCTL, ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
  690 
  691         /*
  692          * Wait until we've sampled input slots 3 and 4 as valid, meaning that
  693          * the codec is pumping ADC data across the AC-link.
  694          */
  695         acisv = 0;
  696         for (i = 0 ; i < 1000 ; i++) {
  697                 /*
  698                  * First, lets wait a short while to let things settle out a bit,
  699                  * and to prevent retrying the read too quickly.
  700                  */
  701 #if notdef
  702                 DELAY(10000000L); /* clw */
  703 #else
  704                 DELAY(1000);
  705 #endif /* notdef */
  706                 /*
  707                  * Read the input slot valid register and see if input slots 3 and
  708                  * 4 are valid yet.
  709                  */
  710                 acisv = csa_readio(resp, BA0_ACISV);
  711                 if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) == (ACISV_ISV3 | ACISV_ISV4))
  712                         break;
  713         }
  714         /*
  715          * Make sure we sampled valid input slots 3 and 4.  If not, then return
  716          * an error.
  717          */
  718         if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) != (ACISV_ISV3 | ACISV_ISV4))
  719                 return (ENXIO);
  720 
  721         /*
  722          * Now, assert valid frame and the slot 3 and 4 valid bits.  This will
  723          * commense the transfer of digital audio data to the AC97 codec.
  724          */
  725         csa_writeio(resp, BA0_ACOSV, ACOSV_SLV3 | ACOSV_SLV4);
  726 
  727         /*
  728          * Power down the DAC and ADC.  We will power them up (if) when we need
  729          * them.
  730          */
  731 #if notdef
  732         csa_writeio(resp, BA0_AC97_POWERDOWN, 0x300);
  733 #endif /* notdef */
  734 
  735         /*
  736          * Turn off the Processor by turning off the software clock enable flag in
  737          * the clock control register.
  738          */
  739 #if notdef
  740         clkcr1 = csa_readio(resp, BA0_CLKCR1) & ~CLKCR1_SWCE;
  741         csa_writeio(resp, BA0_CLKCR1, clkcr1);
  742 #endif /* notdef */
  743 
  744         /*
  745          * Enable interrupts on the part.
  746          */
  747 #if 0
  748         csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
  749 #endif /* notdef */
  750 
  751         return (0);
  752 }
  753 
  754 void
  755 csa_clearserialfifos(csa_res *resp)
  756 {
  757         int i, j, pwr;
  758         u_int8_t clkcr1, serbst;
  759 
  760         /*
  761          * See if the devices are powered down.  If so, we must power them up first
  762          * or they will not respond.
  763          */
  764         pwr = 1;
  765         clkcr1 = csa_readio(resp, BA0_CLKCR1);
  766         if ((clkcr1 & CLKCR1_SWCE) == 0) {
  767                 csa_writeio(resp, BA0_CLKCR1, clkcr1 | CLKCR1_SWCE);
  768                 pwr = 0;
  769         }
  770 
  771         /*
  772          * We want to clear out the serial port FIFOs so we don't end up playing
  773          * whatever random garbage happens to be in them.  We fill the sample FIFOs
  774          * with zero (silence).
  775          */
  776         csa_writeio(resp, BA0_SERBWP, 0);
  777 
  778         /* Fill all 256 sample FIFO locations. */
  779         serbst = 0;
  780         for (i = 0 ; i < 256 ; i++) {
  781                 /* Make sure the previous FIFO write operation has completed. */
  782                 for (j = 0 ; j < 5 ; j++) {
  783                         DELAY(100);
  784                         serbst = csa_readio(resp, BA0_SERBST);
  785                         if ((serbst & SERBST_WBSY) == 0)
  786                                 break;
  787                 }
  788                 if ((serbst & SERBST_WBSY) != 0) {
  789                         if (!pwr)
  790                                 csa_writeio(resp, BA0_CLKCR1, clkcr1);
  791                 }
  792                 /* Write the serial port FIFO index. */
  793                 csa_writeio(resp, BA0_SERBAD, i);
  794                 /* Tell the serial port to load the new value into the FIFO location. */
  795                 csa_writeio(resp, BA0_SERBCM, SERBCM_WRC);
  796         }
  797         /*
  798          *  Now, if we powered up the devices, then power them back down again.
  799          *  This is kinda ugly, but should never happen.
  800          */
  801         if (!pwr)
  802                 csa_writeio(resp, BA0_CLKCR1, clkcr1);
  803 }
  804 
  805 void
  806 csa_resetdsp(csa_res *resp)
  807 {
  808         int i;
  809 
  810         /*
  811          * Write the reset bit of the SP control register.
  812          */
  813         csa_writemem(resp, BA1_SPCR, SPCR_RSTSP);
  814 
  815         /*
  816          * Write the control register.
  817          */
  818         csa_writemem(resp, BA1_SPCR, SPCR_DRQEN);
  819 
  820         /*
  821          * Clear the trap registers.
  822          */
  823         for (i = 0 ; i < 8 ; i++) {
  824                 csa_writemem(resp, BA1_DREG, DREG_REGID_TRAP_SELECT + i);
  825                 csa_writemem(resp, BA1_TWPR, 0xffff);
  826         }
  827         csa_writemem(resp, BA1_DREG, 0);
  828 
  829         /*
  830          * Set the frame timer to reflect the number of cycles per frame.
  831          */
  832         csa_writemem(resp, BA1_FRMT, 0xadf);
  833 }
  834 
  835 static int
  836 csa_downloadimage(csa_res *resp)
  837 {
  838         int i;
  839         u_int32_t tmp, src, dst, count, data;
  840 
  841         for (i = 0; i < CLEAR__COUNT; i++) {
  842                 dst = ClrStat[i].BA1__DestByteOffset;
  843                 count = ClrStat[i].BA1__SourceSize;
  844                 for (tmp = 0; tmp < count; tmp += 4)
  845                         csa_writemem(resp, dst + tmp, 0x00000000);
  846         }
  847 
  848         for (i = 0; i < FILL__COUNT; i++) {
  849                 src = 0;
  850                 dst = FillStat[i].Offset;
  851                 count = FillStat[i].Size;
  852                 for (tmp = 0; tmp < count; tmp += 4) {
  853                         data = FillStat[i].pFill[src];
  854                         csa_writemem(resp, dst + tmp, data);
  855                         src++;
  856                 }
  857         }
  858 
  859         return (0);
  860 }
  861 
  862 int
  863 csa_readcodec(csa_res *resp, u_long offset, u_int32_t *data)
  864 {
  865         int i;
  866         u_int32_t acsda, acctl, acsts;
  867 
  868         /*
  869          * Make sure that there is not data sitting around from a previous
  870          * uncompleted access. ACSDA = Status Data Register = 47Ch
  871          */
  872         acsda = csa_readio(resp, BA0_ACSDA);
  873 
  874         /*
  875          * Setup the AC97 control registers on the CS461x to send the
  876          * appropriate command to the AC97 to perform the read.
  877          * ACCAD = Command Address Register = 46Ch
  878          * ACCDA = Command Data Register = 470h
  879          * ACCTL = Control Register = 460h
  880          * set DCV - will clear when process completed
  881          * set CRW - Read command
  882          * set VFRM - valid frame enabled
  883          * set ESYN - ASYNC generation enabled
  884          * set RSTN - ARST# inactive, AC97 codec not reset
  885          */
  886 
  887         /*
  888          * Get the actual AC97 register from the offset
  889          */
  890         csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
  891         csa_writeio(resp, BA0_ACCDA, 0);
  892         csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_CRW | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
  893 
  894         /*
  895          * Wait for the read to occur.
  896          */
  897         acctl = 0;
  898         for (i = 0 ; i < 10 ; i++) {
  899                 /*
  900                  * First, we want to wait for a short time.
  901                  */
  902                 DELAY(25);
  903 
  904                 /*
  905                  * Now, check to see if the read has completed.
  906                  * ACCTL = 460h, DCV should be reset by now and 460h = 17h
  907                  */
  908                 acctl = csa_readio(resp, BA0_ACCTL);
  909                 if ((acctl & ACCTL_DCV) == 0)
  910                         break;
  911         }
  912 
  913         /*
  914          * Make sure the read completed.
  915          */
  916         if ((acctl & ACCTL_DCV) != 0)
  917                 return (EAGAIN);
  918 
  919         /*
  920          * Wait for the valid status bit to go active.
  921          */
  922         acsts = 0;
  923         for (i = 0 ; i < 10 ; i++) {
  924                 /*
  925                  * Read the AC97 status register.
  926                  * ACSTS = Status Register = 464h
  927                  */
  928                 acsts = csa_readio(resp, BA0_ACSTS);
  929                 /*
  930                  * See if we have valid status.
  931                  * VSTS - Valid Status
  932                  */
  933                 if ((acsts & ACSTS_VSTS) != 0)
  934                         break;
  935                 /*
  936                  * Wait for a short while.
  937                  */
  938                  DELAY(25);
  939         }
  940 
  941         /*
  942          * Make sure we got valid status.
  943          */
  944         if ((acsts & ACSTS_VSTS) == 0)
  945                 return (EAGAIN);
  946 
  947         /*
  948          * Read the data returned from the AC97 register.
  949          * ACSDA = Status Data Register = 474h
  950          */
  951         *data = csa_readio(resp, BA0_ACSDA);
  952 
  953         return (0);
  954 }
  955 
  956 int
  957 csa_writecodec(csa_res *resp, u_long offset, u_int32_t data)
  958 {
  959         int i;
  960         u_int32_t acctl;
  961 
  962         /*
  963          * Setup the AC97 control registers on the CS461x to send the
  964          * appropriate command to the AC97 to perform the write.
  965          * ACCAD = Command Address Register = 46Ch
  966          * ACCDA = Command Data Register = 470h
  967          * ACCTL = Control Register = 460h
  968          * set DCV - will clear when process completed
  969          * set VFRM - valid frame enabled
  970          * set ESYN - ASYNC generation enabled
  971          * set RSTN - ARST# inactive, AC97 codec not reset
  972          */
  973 
  974         /*
  975          * Get the actual AC97 register from the offset
  976          */
  977         csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
  978         csa_writeio(resp, BA0_ACCDA, data);
  979         csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
  980 
  981         /*
  982          * Wait for the write to occur.
  983          */
  984         acctl = 0;
  985         for (i = 0 ; i < 10 ; i++) {
  986                 /*
  987                  * First, we want to wait for a short time.
  988                  */
  989                 DELAY(25);
  990 
  991                 /*
  992                  * Now, check to see if the read has completed.
  993                  * ACCTL = 460h, DCV should be reset by now and 460h = 17h
  994                  */
  995                 acctl = csa_readio(resp, BA0_ACCTL);
  996                 if ((acctl & ACCTL_DCV) == 0)
  997                         break;
  998         }
  999 
 1000         /*
 1001          * Make sure the write completed.
 1002          */
 1003         if ((acctl & ACCTL_DCV) != 0)
 1004                 return (EAGAIN);
 1005 
 1006         return (0);
 1007 }
 1008 
 1009 u_int32_t
 1010 csa_readio(csa_res *resp, u_long offset)
 1011 {
 1012         u_int32_t ul;
 1013 
 1014         if (offset < BA0_AC97_RESET)
 1015                 return bus_space_read_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset) & 0xffffffff;
 1016         else {
 1017                 if (csa_readcodec(resp, offset, &ul))
 1018                         ul = 0;
 1019                 return (ul);
 1020         }
 1021 }
 1022 
 1023 void
 1024 csa_writeio(csa_res *resp, u_long offset, u_int32_t data)
 1025 {
 1026         if (offset < BA0_AC97_RESET)
 1027                 bus_space_write_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset, data);
 1028         else
 1029                 csa_writecodec(resp, offset, data);
 1030 }
 1031 
 1032 u_int32_t
 1033 csa_readmem(csa_res *resp, u_long offset)
 1034 {
 1035         return bus_space_read_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset);
 1036 }
 1037 
 1038 void
 1039 csa_writemem(csa_res *resp, u_long offset, u_int32_t data)
 1040 {
 1041         bus_space_write_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset, data);
 1042 }
 1043 
 1044 static device_method_t csa_methods[] = {
 1045         /* Device interface */
 1046         DEVMETHOD(device_probe,         csa_probe),
 1047         DEVMETHOD(device_attach,        csa_attach),
 1048         DEVMETHOD(device_detach,        csa_detach),
 1049         DEVMETHOD(device_shutdown,      bus_generic_shutdown),
 1050         DEVMETHOD(device_suspend,       bus_generic_suspend),
 1051         DEVMETHOD(device_resume,        csa_resume),
 1052 
 1053         /* Bus interface */
 1054         DEVMETHOD(bus_print_child,      bus_generic_print_child),
 1055         DEVMETHOD(bus_alloc_resource,   csa_alloc_resource),
 1056         DEVMETHOD(bus_release_resource, csa_release_resource),
 1057         DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
 1058         DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
 1059         DEVMETHOD(bus_setup_intr,       csa_setup_intr),
 1060         DEVMETHOD(bus_teardown_intr,    csa_teardown_intr),
 1061 
 1062         { 0, 0 }
 1063 };
 1064 
 1065 static driver_t csa_driver = {
 1066         "csa",
 1067         csa_methods,
 1068         sizeof(struct csa_softc),
 1069 };
 1070 
 1071 /*
 1072  * csa can be attached to a pci bus.
 1073  */
 1074 DRIVER_MODULE(snd_csa, pci, csa_driver, csa_devclass, 0, 0);
 1075 MODULE_DEPEND(snd_csa, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
 1076 MODULE_VERSION(snd_csa, 1);

Cache object: 2a7606af881df0dd488d87c2a36a8a1e


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.