The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/sound/pci/hda/hdac.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2006 Stephane E. Potvin <sepotvin@videotron.ca>
    5  * Copyright (c) 2006 Ariff Abdullah <ariff@FreeBSD.org>
    6  * Copyright (c) 2008-2012 Alexander Motin <mav@FreeBSD.org>
    7  * All rights reserved.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   28  * SUCH DAMAGE.
   29  */
   30 
   31 /*
   32  * Intel High Definition Audio (Controller) driver for FreeBSD.
   33  */
   34 
   35 #ifdef HAVE_KERNEL_OPTION_HEADERS
   36 #include "opt_snd.h"
   37 #endif
   38 
   39 #include <dev/sound/pcm/sound.h>
   40 #include <dev/pci/pcireg.h>
   41 #include <dev/pci/pcivar.h>
   42 
   43 #include <sys/ctype.h>
   44 #include <sys/endian.h>
   45 #include <sys/taskqueue.h>
   46 
   47 #include <dev/sound/pci/hda/hdac_private.h>
   48 #include <dev/sound/pci/hda/hdac_reg.h>
   49 #include <dev/sound/pci/hda/hda_reg.h>
   50 #include <dev/sound/pci/hda/hdac.h>
   51 
   52 #define HDA_DRV_TEST_REV        "20120126_0002"
   53 
   54 SND_DECLARE_FILE("$FreeBSD$");
   55 
   56 #define hdac_lock(sc)           snd_mtxlock((sc)->lock)
   57 #define hdac_unlock(sc)         snd_mtxunlock((sc)->lock)
   58 #define hdac_lockassert(sc)     snd_mtxassert((sc)->lock)
   59 
   60 #define HDAC_QUIRK_64BIT        (1 << 0)
   61 #define HDAC_QUIRK_DMAPOS       (1 << 1)
   62 #define HDAC_QUIRK_MSI          (1 << 2)
   63 
   64 static const struct {
   65         const char *key;
   66         uint32_t value;
   67 } hdac_quirks_tab[] = {
   68         { "64bit", HDAC_QUIRK_64BIT },
   69         { "dmapos", HDAC_QUIRK_DMAPOS },
   70         { "msi", HDAC_QUIRK_MSI },
   71 };
   72 
   73 MALLOC_DEFINE(M_HDAC, "hdac", "HDA Controller");
   74 
   75 static const struct {
   76         uint32_t        model;
   77         const char      *desc;
   78         char            quirks_on;
   79         char            quirks_off;
   80 } hdac_devices[] = {
   81         { HDA_INTEL_OAK,     "Intel Oaktrail",  0, 0 },
   82         { HDA_INTEL_CMLKLP,  "Intel Comet Lake-LP",     0, 0 },
   83         { HDA_INTEL_CMLKH,   "Intel Comet Lake-H",      0, 0 },
   84         { HDA_INTEL_BAY,     "Intel BayTrail",  0, 0 },
   85         { HDA_INTEL_HSW1,    "Intel Haswell",   0, 0 },
   86         { HDA_INTEL_HSW2,    "Intel Haswell",   0, 0 },
   87         { HDA_INTEL_HSW3,    "Intel Haswell",   0, 0 },
   88         { HDA_INTEL_BDW1,    "Intel Broadwell", 0, 0 },
   89         { HDA_INTEL_BDW2,    "Intel Broadwell", 0, 0 },
   90         { HDA_INTEL_BXTNT,   "Intel Broxton-T", 0, 0 },
   91         { HDA_INTEL_CPT,     "Intel Cougar Point",      0, 0 },
   92         { HDA_INTEL_PATSBURG,"Intel Patsburg",  0, 0 },
   93         { HDA_INTEL_PPT1,    "Intel Panther Point",     0, 0 },
   94         { HDA_INTEL_BR,      "Intel Braswell",  0, 0 },
   95         { HDA_INTEL_LPT1,    "Intel Lynx Point",        0, 0 },
   96         { HDA_INTEL_LPT2,    "Intel Lynx Point",        0, 0 },
   97         { HDA_INTEL_WCPT,    "Intel Wildcat Point",     0, 0 },
   98         { HDA_INTEL_WELLS1,  "Intel Wellsburg", 0, 0 },
   99         { HDA_INTEL_WELLS2,  "Intel Wellsburg", 0, 0 },
  100         { HDA_INTEL_LPTLP1,  "Intel Lynx Point-LP",     0, 0 },
  101         { HDA_INTEL_LPTLP2,  "Intel Lynx Point-LP",     0, 0 },
  102         { HDA_INTEL_SRPTLP,  "Intel Sunrise Point-LP",  0, 0 },
  103         { HDA_INTEL_KBLKLP,  "Intel Kaby Lake-LP",      0, 0 },
  104         { HDA_INTEL_SRPT,    "Intel Sunrise Point",     0, 0 },
  105         { HDA_INTEL_KBLK,    "Intel Kaby Lake", 0, 0 },
  106         { HDA_INTEL_KBLKH,   "Intel Kaby Lake-H",       0, 0 },
  107         { HDA_INTEL_CFLK,    "Intel Coffee Lake",       0, 0 },
  108         { HDA_INTEL_CMLKS,   "Intel Comet Lake-S",      0, 0 },
  109         { HDA_INTEL_CNLK,    "Intel Cannon Lake",       0, 0 },
  110         { HDA_INTEL_ICLK,    "Intel Ice Lake",          0, 0 },
  111         { HDA_INTEL_CMLKLP,  "Intel Comet Lake-LP",     0, 0 },
  112         { HDA_INTEL_CMLKH,   "Intel Comet Lake-H",      0, 0 },
  113         { HDA_INTEL_TGLK,    "Intel Tiger Lake",        0, 0 },
  114         { HDA_INTEL_GMLK,    "Intel Gemini Lake",       0, 0 },
  115         { HDA_INTEL_ALLK,    "Intel Alder Lake",        0, 0 },
  116         { HDA_INTEL_ALLKM,   "Intel Alder Lake-M",      0, 0 },
  117         { HDA_INTEL_ALLKN,   "Intel Alder Lake-N",      0, 0 },
  118         { HDA_INTEL_ALLKP1,  "Intel Alder Lake-P",      0, 0 },
  119         { HDA_INTEL_ALLKP2,  "Intel Alder Lake-P",      0, 0 },
  120         { HDA_INTEL_ALLKPS,  "Intel Alder Lake-PS",     0, 0 },
  121         { HDA_INTEL_RPTLK1,  "Intel Raptor Lake-P",     0, 0 },
  122         { HDA_INTEL_RPTLK2,  "Intel Raptor Lake-P",     0, 0 },
  123         { HDA_INTEL_82801F,  "Intel 82801F",    0, 0 },
  124         { HDA_INTEL_63XXESB, "Intel 631x/632xESB",      0, 0 },
  125         { HDA_INTEL_82801G,  "Intel 82801G",    0, 0 },
  126         { HDA_INTEL_82801H,  "Intel 82801H",    0, 0 },
  127         { HDA_INTEL_82801I,  "Intel 82801I",    0, 0 },
  128         { HDA_INTEL_JLK,     "Intel Jasper Lake",       0, 0 },
  129         { HDA_INTEL_82801JI, "Intel 82801JI",   0, 0 },
  130         { HDA_INTEL_82801JD, "Intel 82801JD",   0, 0 },
  131         { HDA_INTEL_PCH,     "Intel Ibex Peak", 0, 0 },
  132         { HDA_INTEL_PCH2,    "Intel Ibex Peak", 0, 0 },
  133         { HDA_INTEL_ELLK,    "Intel Elkhart Lake",      0, 0 },
  134         { HDA_INTEL_JLK2,    "Intel Jasper Lake",       0, 0 },
  135         { HDA_INTEL_BXTNP,   "Intel Broxton-P", 0, 0 },
  136         { HDA_INTEL_SCH,     "Intel SCH",       0, 0 },
  137         { HDA_NVIDIA_MCP51,  "NVIDIA MCP51",    0, HDAC_QUIRK_MSI },
  138         { HDA_NVIDIA_MCP55,  "NVIDIA MCP55",    0, HDAC_QUIRK_MSI },
  139         { HDA_NVIDIA_MCP61_1, "NVIDIA MCP61",   0, 0 },
  140         { HDA_NVIDIA_MCP61_2, "NVIDIA MCP61",   0, 0 },
  141         { HDA_NVIDIA_MCP65_1, "NVIDIA MCP65",   0, 0 },
  142         { HDA_NVIDIA_MCP65_2, "NVIDIA MCP65",   0, 0 },
  143         { HDA_NVIDIA_MCP67_1, "NVIDIA MCP67",   0, 0 },
  144         { HDA_NVIDIA_MCP67_2, "NVIDIA MCP67",   0, 0 },
  145         { HDA_NVIDIA_MCP73_1, "NVIDIA MCP73",   0, 0 },
  146         { HDA_NVIDIA_MCP73_2, "NVIDIA MCP73",   0, 0 },
  147         { HDA_NVIDIA_MCP78_1, "NVIDIA MCP78",   0, HDAC_QUIRK_64BIT },
  148         { HDA_NVIDIA_MCP78_2, "NVIDIA MCP78",   0, HDAC_QUIRK_64BIT },
  149         { HDA_NVIDIA_MCP78_3, "NVIDIA MCP78",   0, HDAC_QUIRK_64BIT },
  150         { HDA_NVIDIA_MCP78_4, "NVIDIA MCP78",   0, HDAC_QUIRK_64BIT },
  151         { HDA_NVIDIA_MCP79_1, "NVIDIA MCP79",   0, 0 },
  152         { HDA_NVIDIA_MCP79_2, "NVIDIA MCP79",   0, 0 },
  153         { HDA_NVIDIA_MCP79_3, "NVIDIA MCP79",   0, 0 },
  154         { HDA_NVIDIA_MCP79_4, "NVIDIA MCP79",   0, 0 },
  155         { HDA_NVIDIA_MCP89_1, "NVIDIA MCP89",   0, 0 },
  156         { HDA_NVIDIA_MCP89_2, "NVIDIA MCP89",   0, 0 },
  157         { HDA_NVIDIA_MCP89_3, "NVIDIA MCP89",   0, 0 },
  158         { HDA_NVIDIA_MCP89_4, "NVIDIA MCP89",   0, 0 },
  159         { HDA_NVIDIA_0BE2,   "NVIDIA (0x0be2)", 0, HDAC_QUIRK_MSI },
  160         { HDA_NVIDIA_0BE3,   "NVIDIA (0x0be3)", 0, HDAC_QUIRK_MSI },
  161         { HDA_NVIDIA_0BE4,   "NVIDIA (0x0be4)", 0, HDAC_QUIRK_MSI },
  162         { HDA_NVIDIA_GT100,  "NVIDIA GT100",    0, HDAC_QUIRK_MSI },
  163         { HDA_NVIDIA_GT104,  "NVIDIA GT104",    0, HDAC_QUIRK_MSI },
  164         { HDA_NVIDIA_GT106,  "NVIDIA GT106",    0, HDAC_QUIRK_MSI },
  165         { HDA_NVIDIA_GT108,  "NVIDIA GT108",    0, HDAC_QUIRK_MSI },
  166         { HDA_NVIDIA_GT116,  "NVIDIA GT116",    0, HDAC_QUIRK_MSI },
  167         { HDA_NVIDIA_GF119,  "NVIDIA GF119",    0, 0 },
  168         { HDA_NVIDIA_GF110_1, "NVIDIA GF110",   0, HDAC_QUIRK_MSI },
  169         { HDA_NVIDIA_GF110_2, "NVIDIA GF110",   0, HDAC_QUIRK_MSI },
  170         { HDA_ATI_SB450,     "ATI SB450",       0, 0 },
  171         { HDA_ATI_SB600,     "ATI SB600",       0, 0 },
  172         { HDA_ATI_RS600,     "ATI RS600",       0, 0 },
  173         { HDA_ATI_RS690,     "ATI RS690",       0, 0 },
  174         { HDA_ATI_RS780,     "ATI RS780",       0, 0 },
  175         { HDA_ATI_RS880,     "ATI RS880",       0, 0 },
  176         { HDA_ATI_R600,      "ATI R600",        0, 0 },
  177         { HDA_ATI_RV610,     "ATI RV610",       0, 0 },
  178         { HDA_ATI_RV620,     "ATI RV620",       0, 0 },
  179         { HDA_ATI_RV630,     "ATI RV630",       0, 0 },
  180         { HDA_ATI_RV635,     "ATI RV635",       0, 0 },
  181         { HDA_ATI_RV710,     "ATI RV710",       0, 0 },
  182         { HDA_ATI_RV730,     "ATI RV730",       0, 0 },
  183         { HDA_ATI_RV740,     "ATI RV740",       0, 0 },
  184         { HDA_ATI_RV770,     "ATI RV770",       0, 0 },
  185         { HDA_ATI_RV810,     "ATI RV810",       0, 0 },
  186         { HDA_ATI_RV830,     "ATI RV830",       0, 0 },
  187         { HDA_ATI_RV840,     "ATI RV840",       0, 0 },
  188         { HDA_ATI_RV870,     "ATI RV870",       0, 0 },
  189         { HDA_ATI_RV910,     "ATI RV910",       0, 0 },
  190         { HDA_ATI_RV930,     "ATI RV930",       0, 0 },
  191         { HDA_ATI_RV940,     "ATI RV940",       0, 0 },
  192         { HDA_ATI_RV970,     "ATI RV970",       0, 0 },
  193         { HDA_ATI_R1000,     "ATI R1000",       0, 0 },
  194         { HDA_ATI_KABINI,    "ATI Kabini",      0, 0 },
  195         { HDA_ATI_TRINITY,   "ATI Trinity",     0, 0 },
  196         { HDA_AMD_X370,      "AMD X370",        0, 0 },
  197         { HDA_AMD_X570,      "AMD X570",        0, 0 },
  198         { HDA_AMD_STONEY,    "AMD Stoney",      0, 0 },
  199         { HDA_AMD_RAVEN,     "AMD Raven",       0, 0 },
  200         { HDA_AMD_HUDSON2,   "AMD Hudson-2",    0, 0 },
  201         { HDA_RDC_M3010,     "RDC M3010",       0, 0 },
  202         { HDA_VIA_VT82XX,    "VIA VT8251/8237A",0, 0 },
  203         { HDA_VMWARE,        "VMware",          0, 0 },
  204         { HDA_SIS_966,       "SiS 966/968",     0, 0 },
  205         { HDA_ULI_M5461,     "ULI M5461",       0, 0 },
  206         /* Unknown */
  207         { HDA_INTEL_ALL,  "Intel",              0, 0 },
  208         { HDA_NVIDIA_ALL, "NVIDIA",             0, 0 },
  209         { HDA_ATI_ALL,    "ATI",                0, 0 },
  210         { HDA_AMD_ALL,    "AMD",                0, 0 },
  211         { HDA_CREATIVE_ALL,    "Creative",      0, 0 },
  212         { HDA_VIA_ALL,    "VIA",                0, 0 },
  213         { HDA_VMWARE_ALL, "VMware",             0, 0 },
  214         { HDA_SIS_ALL,    "SiS",                0, 0 },
  215         { HDA_ULI_ALL,    "ULI",                0, 0 },
  216 };
  217 
  218 static const struct {
  219         uint16_t vendor;
  220         uint8_t reg;
  221         uint8_t mask;
  222         uint8_t enable;
  223 } hdac_pcie_snoop[] = {
  224         {  INTEL_VENDORID, 0x00, 0x00, 0x00 },
  225         {    ATI_VENDORID, 0x42, 0xf8, 0x02 },
  226         {    AMD_VENDORID, 0x42, 0xf8, 0x02 },
  227         { NVIDIA_VENDORID, 0x4e, 0xf0, 0x0f },
  228 };
  229 
  230 /****************************************************************************
  231  * Function prototypes
  232  ****************************************************************************/
  233 static void     hdac_intr_handler(void *);
  234 static int      hdac_reset(struct hdac_softc *, bool);
  235 static int      hdac_get_capabilities(struct hdac_softc *);
  236 static void     hdac_dma_cb(void *, bus_dma_segment_t *, int, int);
  237 static int      hdac_dma_alloc(struct hdac_softc *,
  238                                         struct hdac_dma *, bus_size_t);
  239 static void     hdac_dma_free(struct hdac_softc *, struct hdac_dma *);
  240 static int      hdac_mem_alloc(struct hdac_softc *);
  241 static void     hdac_mem_free(struct hdac_softc *);
  242 static int      hdac_irq_alloc(struct hdac_softc *);
  243 static void     hdac_irq_free(struct hdac_softc *);
  244 static void     hdac_corb_init(struct hdac_softc *);
  245 static void     hdac_rirb_init(struct hdac_softc *);
  246 static void     hdac_corb_start(struct hdac_softc *);
  247 static void     hdac_rirb_start(struct hdac_softc *);
  248 
  249 static void     hdac_attach2(void *);
  250 
  251 static uint32_t hdac_send_command(struct hdac_softc *, nid_t, uint32_t);
  252 
  253 static int      hdac_probe(device_t);
  254 static int      hdac_attach(device_t);
  255 static int      hdac_detach(device_t);
  256 static int      hdac_suspend(device_t);
  257 static int      hdac_resume(device_t);
  258 
  259 static int      hdac_rirb_flush(struct hdac_softc *sc);
  260 static int      hdac_unsolq_flush(struct hdac_softc *sc);
  261 
  262 /* This function surely going to make its way into upper level someday. */
  263 static void
  264 hdac_config_fetch(struct hdac_softc *sc, uint32_t *on, uint32_t *off)
  265 {
  266         const char *res = NULL;
  267         int i = 0, j, k, len, inv;
  268 
  269         if (resource_string_value(device_get_name(sc->dev),
  270             device_get_unit(sc->dev), "config", &res) != 0)
  271                 return;
  272         if (!(res != NULL && strlen(res) > 0))
  273                 return;
  274         HDA_BOOTVERBOSE(
  275                 device_printf(sc->dev, "Config options:");
  276         );
  277         for (;;) {
  278                 while (res[i] != '\0' &&
  279                     (res[i] == ',' || isspace(res[i]) != 0))
  280                         i++;
  281                 if (res[i] == '\0') {
  282                         HDA_BOOTVERBOSE(
  283                                 printf("\n");
  284                         );
  285                         return;
  286                 }
  287                 j = i;
  288                 while (res[j] != '\0' &&
  289                     !(res[j] == ',' || isspace(res[j]) != 0))
  290                         j++;
  291                 len = j - i;
  292                 if (len > 2 && strncmp(res + i, "no", 2) == 0)
  293                         inv = 2;
  294                 else
  295                         inv = 0;
  296                 for (k = 0; len > inv && k < nitems(hdac_quirks_tab); k++) {
  297                         if (strncmp(res + i + inv,
  298                             hdac_quirks_tab[k].key, len - inv) != 0)
  299                                 continue;
  300                         if (len - inv != strlen(hdac_quirks_tab[k].key))
  301                                 continue;
  302                         HDA_BOOTVERBOSE(
  303                                 printf(" %s%s", (inv != 0) ? "no" : "",
  304                                     hdac_quirks_tab[k].key);
  305                         );
  306                         if (inv == 0) {
  307                                 *on |= hdac_quirks_tab[k].value;
  308                                 *off &= ~hdac_quirks_tab[k].value;
  309                         } else if (inv != 0) {
  310                                 *off |= hdac_quirks_tab[k].value;
  311                                 *on &= ~hdac_quirks_tab[k].value;
  312                         }
  313                         break;
  314                 }
  315                 i = j;
  316         }
  317 }
  318 
  319 static void
  320 hdac_one_intr(struct hdac_softc *sc, uint32_t intsts)
  321 {
  322         device_t dev;
  323         uint8_t rirbsts;
  324         int i;
  325 
  326         /* Was this a controller interrupt? */
  327         if (intsts & HDAC_INTSTS_CIS) {
  328                 /*
  329                  * Placeholder: if we ever enable any bits in HDAC_WAKEEN, then
  330                  * we will need to check and clear HDAC_STATESTS.
  331                  * That event is used to report codec status changes such as
  332                  * a reset or a wake-up event.
  333                  */
  334                 /*
  335                  * Placeholder: if we ever enable HDAC_CORBCTL_CMEIE, then we
  336                  * will need to check and clear HDAC_CORBSTS_CMEI in
  337                  * HDAC_CORBSTS.
  338                  * That event is used to report CORB memory errors.
  339                  */
  340                 /*
  341                  * Placeholder: if we ever enable HDAC_RIRBCTL_RIRBOIC, then we
  342                  * will need to check and clear HDAC_RIRBSTS_RIRBOIS in
  343                  * HDAC_RIRBSTS.
  344                  * That event is used to report response FIFO overruns.
  345                  */
  346 
  347                 /* Get as many responses that we can */
  348                 rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS);
  349                 while (rirbsts & HDAC_RIRBSTS_RINTFL) {
  350                         HDAC_WRITE_1(&sc->mem,
  351                             HDAC_RIRBSTS, HDAC_RIRBSTS_RINTFL);
  352                         hdac_rirb_flush(sc);
  353                         rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS);
  354                 }
  355                 if (sc->unsolq_rp != sc->unsolq_wp)
  356                         taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task);
  357         }
  358 
  359         if (intsts & HDAC_INTSTS_SIS_MASK) {
  360                 for (i = 0; i < sc->num_ss; i++) {
  361                         if ((intsts & (1 << i)) == 0)
  362                                 continue;
  363                         HDAC_WRITE_1(&sc->mem, (i << 5) + HDAC_SDSTS,
  364                             HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS);
  365                         if ((dev = sc->streams[i].dev) != NULL) {
  366                                 HDAC_STREAM_INTR(dev,
  367                                     sc->streams[i].dir, sc->streams[i].stream);
  368                         }
  369                 }
  370         }
  371 }
  372 
  373 /****************************************************************************
  374  * void hdac_intr_handler(void *)
  375  *
  376  * Interrupt handler. Processes interrupts received from the hdac.
  377  ****************************************************************************/
  378 static void
  379 hdac_intr_handler(void *context)
  380 {
  381         struct hdac_softc *sc;
  382         uint32_t intsts;
  383 
  384         sc = (struct hdac_softc *)context;
  385 
  386         /*
  387          * Loop until HDAC_INTSTS_GIS gets clear.
  388          * It is plausible that hardware interrupts a host only when GIS goes
  389          * from zero to one.  GIS is formed by OR-ing multiple hardware
  390          * statuses, so it's possible that a previously cleared status gets set
  391          * again while another status has not been cleared yet.  Thus, there
  392          * will be no new interrupt as GIS always stayed set.  If we don't
  393          * re-examine GIS then we can leave it set and never get an interrupt
  394          * again.
  395          */
  396         hdac_lock(sc);
  397         intsts = HDAC_READ_4(&sc->mem, HDAC_INTSTS);
  398         while (intsts != 0xffffffff && (intsts & HDAC_INTSTS_GIS) != 0) {
  399                 hdac_one_intr(sc, intsts);
  400                 intsts = HDAC_READ_4(&sc->mem, HDAC_INTSTS);
  401         }
  402         hdac_unlock(sc);
  403 }
  404 
  405 static void
  406 hdac_poll_callback(void *arg)
  407 {
  408         struct hdac_softc *sc = arg;
  409 
  410         if (sc == NULL)
  411                 return;
  412 
  413         hdac_lock(sc);
  414         if (sc->polling == 0) {
  415                 hdac_unlock(sc);
  416                 return;
  417         }
  418         callout_reset(&sc->poll_callout, sc->poll_ival, hdac_poll_callback, sc);
  419         hdac_unlock(sc);
  420 
  421         hdac_intr_handler(sc);
  422 }
  423 
  424 /****************************************************************************
  425  * int hdac_reset(hdac_softc *, bool)
  426  *
  427  * Reset the hdac to a quiescent and known state.
  428  ****************************************************************************/
  429 static int
  430 hdac_reset(struct hdac_softc *sc, bool wakeup)
  431 {
  432         uint32_t gctl;
  433         int count, i;
  434 
  435         /*
  436          * Stop all Streams DMA engine
  437          */
  438         for (i = 0; i < sc->num_iss; i++)
  439                 HDAC_WRITE_4(&sc->mem, HDAC_ISDCTL(sc, i), 0x0);
  440         for (i = 0; i < sc->num_oss; i++)
  441                 HDAC_WRITE_4(&sc->mem, HDAC_OSDCTL(sc, i), 0x0);
  442         for (i = 0; i < sc->num_bss; i++)
  443                 HDAC_WRITE_4(&sc->mem, HDAC_BSDCTL(sc, i), 0x0);
  444 
  445         /*
  446          * Stop Control DMA engines.
  447          */
  448         HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, 0x0);
  449         HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, 0x0);
  450 
  451         /*
  452          * Reset DMA position buffer.
  453          */
  454         HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE, 0x0);
  455         HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, 0x0);
  456 
  457         /*
  458          * Reset the controller. The reset must remain asserted for
  459          * a minimum of 100us.
  460          */
  461         gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
  462         HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl & ~HDAC_GCTL_CRST);
  463         count = 10000;
  464         do {
  465                 gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
  466                 if (!(gctl & HDAC_GCTL_CRST))
  467                         break;
  468                 DELAY(10);
  469         } while (--count);
  470         if (gctl & HDAC_GCTL_CRST) {
  471                 device_printf(sc->dev, "Unable to put hdac in reset\n");
  472                 return (ENXIO);
  473         }
  474 
  475         /* If wakeup is not requested - leave the controller in reset state. */
  476         if (!wakeup)
  477                 return (0);
  478 
  479         DELAY(100);
  480         gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
  481         HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl | HDAC_GCTL_CRST);
  482         count = 10000;
  483         do {
  484                 gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
  485                 if (gctl & HDAC_GCTL_CRST)
  486                         break;
  487                 DELAY(10);
  488         } while (--count);
  489         if (!(gctl & HDAC_GCTL_CRST)) {
  490                 device_printf(sc->dev, "Device stuck in reset\n");
  491                 return (ENXIO);
  492         }
  493 
  494         /*
  495          * Wait for codecs to finish their own reset sequence. The delay here
  496          * must be at least 521us (HDA 1.0a section 4.3 Codec Discovery).
  497          */
  498         DELAY(1000);
  499 
  500         return (0);
  501 }
  502 
  503 /****************************************************************************
  504  * int hdac_get_capabilities(struct hdac_softc *);
  505  *
  506  * Retreive the general capabilities of the hdac;
  507  *      Number of Input Streams
  508  *      Number of Output Streams
  509  *      Number of bidirectional Streams
  510  *      64bit ready
  511  *      CORB and RIRB sizes
  512  ****************************************************************************/
  513 static int
  514 hdac_get_capabilities(struct hdac_softc *sc)
  515 {
  516         uint16_t gcap;
  517         uint8_t corbsize, rirbsize;
  518 
  519         gcap = HDAC_READ_2(&sc->mem, HDAC_GCAP);
  520         sc->num_iss = HDAC_GCAP_ISS(gcap);
  521         sc->num_oss = HDAC_GCAP_OSS(gcap);
  522         sc->num_bss = HDAC_GCAP_BSS(gcap);
  523         sc->num_ss = sc->num_iss + sc->num_oss + sc->num_bss;
  524         sc->num_sdo = HDAC_GCAP_NSDO(gcap);
  525         sc->support_64bit = (gcap & HDAC_GCAP_64OK) != 0;
  526         if (sc->quirks_on & HDAC_QUIRK_64BIT)
  527                 sc->support_64bit = 1;
  528         else if (sc->quirks_off & HDAC_QUIRK_64BIT)
  529                 sc->support_64bit = 0;
  530 
  531         corbsize = HDAC_READ_1(&sc->mem, HDAC_CORBSIZE);
  532         if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_256) ==
  533             HDAC_CORBSIZE_CORBSZCAP_256)
  534                 sc->corb_size = 256;
  535         else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_16) ==
  536             HDAC_CORBSIZE_CORBSZCAP_16)
  537                 sc->corb_size = 16;
  538         else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_2) ==
  539             HDAC_CORBSIZE_CORBSZCAP_2)
  540                 sc->corb_size = 2;
  541         else {
  542                 device_printf(sc->dev, "%s: Invalid corb size (%x)\n",
  543                     __func__, corbsize);
  544                 return (ENXIO);
  545         }
  546 
  547         rirbsize = HDAC_READ_1(&sc->mem, HDAC_RIRBSIZE);
  548         if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_256) ==
  549             HDAC_RIRBSIZE_RIRBSZCAP_256)
  550                 sc->rirb_size = 256;
  551         else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_16) ==
  552             HDAC_RIRBSIZE_RIRBSZCAP_16)
  553                 sc->rirb_size = 16;
  554         else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_2) ==
  555             HDAC_RIRBSIZE_RIRBSZCAP_2)
  556                 sc->rirb_size = 2;
  557         else {
  558                 device_printf(sc->dev, "%s: Invalid rirb size (%x)\n",
  559                     __func__, rirbsize);
  560                 return (ENXIO);
  561         }
  562 
  563         HDA_BOOTVERBOSE(
  564                 device_printf(sc->dev, "Caps: OSS %d, ISS %d, BSS %d, "
  565                     "NSDO %d%s, CORB %d, RIRB %d\n",
  566                     sc->num_oss, sc->num_iss, sc->num_bss, 1 << sc->num_sdo,
  567                     sc->support_64bit ? ", 64bit" : "",
  568                     sc->corb_size, sc->rirb_size);
  569         );
  570 
  571         return (0);
  572 }
  573 
  574 /****************************************************************************
  575  * void hdac_dma_cb
  576  *
  577  * This function is called by bus_dmamap_load when the mapping has been
  578  * established. We just record the physical address of the mapping into
  579  * the struct hdac_dma passed in.
  580  ****************************************************************************/
  581 static void
  582 hdac_dma_cb(void *callback_arg, bus_dma_segment_t *segs, int nseg, int error)
  583 {
  584         struct hdac_dma *dma;
  585 
  586         if (error == 0) {
  587                 dma = (struct hdac_dma *)callback_arg;
  588                 dma->dma_paddr = segs[0].ds_addr;
  589         }
  590 }
  591 
  592 /****************************************************************************
  593  * int hdac_dma_alloc
  594  *
  595  * This function allocate and setup a dma region (struct hdac_dma).
  596  * It must be freed by a corresponding hdac_dma_free.
  597  ****************************************************************************/
  598 static int
  599 hdac_dma_alloc(struct hdac_softc *sc, struct hdac_dma *dma, bus_size_t size)
  600 {
  601         bus_size_t roundsz;
  602         int result;
  603 
  604         roundsz = roundup2(size, HDA_DMA_ALIGNMENT);
  605         bzero(dma, sizeof(*dma));
  606 
  607         /*
  608          * Create a DMA tag
  609          */
  610         result = bus_dma_tag_create(
  611             bus_get_dma_tag(sc->dev),           /* parent */
  612             HDA_DMA_ALIGNMENT,                  /* alignment */
  613             0,                                  /* boundary */
  614             (sc->support_64bit) ? BUS_SPACE_MAXADDR :
  615                 BUS_SPACE_MAXADDR_32BIT,        /* lowaddr */
  616             BUS_SPACE_MAXADDR,                  /* highaddr */
  617             NULL,                               /* filtfunc */
  618             NULL,                               /* fistfuncarg */
  619             roundsz,                            /* maxsize */
  620             1,                                  /* nsegments */
  621             roundsz,                            /* maxsegsz */
  622             0,                                  /* flags */
  623             NULL,                               /* lockfunc */
  624             NULL,                               /* lockfuncarg */
  625             &dma->dma_tag);                     /* dmat */
  626         if (result != 0) {
  627                 device_printf(sc->dev, "%s: bus_dma_tag_create failed (%d)\n",
  628                     __func__, result);
  629                 goto hdac_dma_alloc_fail;
  630         }
  631 
  632         /*
  633          * Allocate DMA memory
  634          */
  635         result = bus_dmamem_alloc(dma->dma_tag, (void **)&dma->dma_vaddr,
  636             BUS_DMA_NOWAIT | BUS_DMA_ZERO |
  637             ((sc->flags & HDAC_F_DMA_NOCACHE) ? BUS_DMA_NOCACHE :
  638              BUS_DMA_COHERENT),
  639             &dma->dma_map);
  640         if (result != 0) {
  641                 device_printf(sc->dev, "%s: bus_dmamem_alloc failed (%d)\n",
  642                     __func__, result);
  643                 goto hdac_dma_alloc_fail;
  644         }
  645 
  646         dma->dma_size = roundsz;
  647 
  648         /*
  649          * Map the memory
  650          */
  651         result = bus_dmamap_load(dma->dma_tag, dma->dma_map,
  652             (void *)dma->dma_vaddr, roundsz, hdac_dma_cb, (void *)dma, 0);
  653         if (result != 0 || dma->dma_paddr == 0) {
  654                 if (result == 0)
  655                         result = ENOMEM;
  656                 device_printf(sc->dev, "%s: bus_dmamem_load failed (%d)\n",
  657                     __func__, result);
  658                 goto hdac_dma_alloc_fail;
  659         }
  660 
  661         HDA_BOOTHVERBOSE(
  662                 device_printf(sc->dev, "%s: size=%ju -> roundsz=%ju\n",
  663                     __func__, (uintmax_t)size, (uintmax_t)roundsz);
  664         );
  665 
  666         return (0);
  667 
  668 hdac_dma_alloc_fail:
  669         hdac_dma_free(sc, dma);
  670 
  671         return (result);
  672 }
  673 
  674 /****************************************************************************
  675  * void hdac_dma_free(struct hdac_softc *, struct hdac_dma *)
  676  *
  677  * Free a struct hdac_dma that has been previously allocated via the
  678  * hdac_dma_alloc function.
  679  ****************************************************************************/
  680 static void
  681 hdac_dma_free(struct hdac_softc *sc, struct hdac_dma *dma)
  682 {
  683         if (dma->dma_paddr != 0) {
  684                 /* Flush caches */
  685                 bus_dmamap_sync(dma->dma_tag, dma->dma_map,
  686                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
  687                 bus_dmamap_unload(dma->dma_tag, dma->dma_map);
  688                 dma->dma_paddr = 0;
  689         }
  690         if (dma->dma_vaddr != NULL) {
  691                 bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
  692                 dma->dma_vaddr = NULL;
  693         }
  694         if (dma->dma_tag != NULL) {
  695                 bus_dma_tag_destroy(dma->dma_tag);
  696                 dma->dma_tag = NULL;
  697         }
  698         dma->dma_size = 0;
  699 }
  700 
  701 /****************************************************************************
  702  * int hdac_mem_alloc(struct hdac_softc *)
  703  *
  704  * Allocate all the bus resources necessary to speak with the physical
  705  * controller.
  706  ****************************************************************************/
  707 static int
  708 hdac_mem_alloc(struct hdac_softc *sc)
  709 {
  710         struct hdac_mem *mem;
  711 
  712         mem = &sc->mem;
  713         mem->mem_rid = PCIR_BAR(0);
  714         mem->mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
  715             &mem->mem_rid, RF_ACTIVE);
  716         if (mem->mem_res == NULL) {
  717                 device_printf(sc->dev,
  718                     "%s: Unable to allocate memory resource\n", __func__);
  719                 return (ENOMEM);
  720         }
  721         mem->mem_tag = rman_get_bustag(mem->mem_res);
  722         mem->mem_handle = rman_get_bushandle(mem->mem_res);
  723 
  724         return (0);
  725 }
  726 
  727 /****************************************************************************
  728  * void hdac_mem_free(struct hdac_softc *)
  729  *
  730  * Free up resources previously allocated by hdac_mem_alloc.
  731  ****************************************************************************/
  732 static void
  733 hdac_mem_free(struct hdac_softc *sc)
  734 {
  735         struct hdac_mem *mem;
  736 
  737         mem = &sc->mem;
  738         if (mem->mem_res != NULL)
  739                 bus_release_resource(sc->dev, SYS_RES_MEMORY, mem->mem_rid,
  740                     mem->mem_res);
  741         mem->mem_res = NULL;
  742 }
  743 
  744 /****************************************************************************
  745  * int hdac_irq_alloc(struct hdac_softc *)
  746  *
  747  * Allocate and setup the resources necessary for interrupt handling.
  748  ****************************************************************************/
  749 static int
  750 hdac_irq_alloc(struct hdac_softc *sc)
  751 {
  752         struct hdac_irq *irq;
  753         int result;
  754 
  755         irq = &sc->irq;
  756         irq->irq_rid = 0x0;
  757 
  758         if ((sc->quirks_off & HDAC_QUIRK_MSI) == 0 &&
  759             (result = pci_msi_count(sc->dev)) == 1 &&
  760             pci_alloc_msi(sc->dev, &result) == 0)
  761                 irq->irq_rid = 0x1;
  762 
  763         irq->irq_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
  764             &irq->irq_rid, RF_SHAREABLE | RF_ACTIVE);
  765         if (irq->irq_res == NULL) {
  766                 device_printf(sc->dev, "%s: Unable to allocate irq\n",
  767                     __func__);
  768                 goto hdac_irq_alloc_fail;
  769         }
  770         result = bus_setup_intr(sc->dev, irq->irq_res, INTR_MPSAFE | INTR_TYPE_AV,
  771             NULL, hdac_intr_handler, sc, &irq->irq_handle);
  772         if (result != 0) {
  773                 device_printf(sc->dev,
  774                     "%s: Unable to setup interrupt handler (%d)\n",
  775                     __func__, result);
  776                 goto hdac_irq_alloc_fail;
  777         }
  778 
  779         return (0);
  780 
  781 hdac_irq_alloc_fail:
  782         hdac_irq_free(sc);
  783 
  784         return (ENXIO);
  785 }
  786 
  787 /****************************************************************************
  788  * void hdac_irq_free(struct hdac_softc *)
  789  *
  790  * Free up resources previously allocated by hdac_irq_alloc.
  791  ****************************************************************************/
  792 static void
  793 hdac_irq_free(struct hdac_softc *sc)
  794 {
  795         struct hdac_irq *irq;
  796 
  797         irq = &sc->irq;
  798         if (irq->irq_res != NULL && irq->irq_handle != NULL)
  799                 bus_teardown_intr(sc->dev, irq->irq_res, irq->irq_handle);
  800         if (irq->irq_res != NULL)
  801                 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->irq_rid,
  802                     irq->irq_res);
  803         if (irq->irq_rid == 0x1)
  804                 pci_release_msi(sc->dev);
  805         irq->irq_handle = NULL;
  806         irq->irq_res = NULL;
  807         irq->irq_rid = 0x0;
  808 }
  809 
  810 /****************************************************************************
  811  * void hdac_corb_init(struct hdac_softc *)
  812  *
  813  * Initialize the corb registers for operations but do not start it up yet.
  814  * The CORB engine must not be running when this function is called.
  815  ****************************************************************************/
  816 static void
  817 hdac_corb_init(struct hdac_softc *sc)
  818 {
  819         uint8_t corbsize;
  820         uint64_t corbpaddr;
  821 
  822         /* Setup the CORB size. */
  823         switch (sc->corb_size) {
  824         case 256:
  825                 corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_256);
  826                 break;
  827         case 16:
  828                 corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_16);
  829                 break;
  830         case 2:
  831                 corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_2);
  832                 break;
  833         default:
  834                 panic("%s: Invalid CORB size (%x)\n", __func__, sc->corb_size);
  835         }
  836         HDAC_WRITE_1(&sc->mem, HDAC_CORBSIZE, corbsize);
  837 
  838         /* Setup the CORB Address in the hdac */
  839         corbpaddr = (uint64_t)sc->corb_dma.dma_paddr;
  840         HDAC_WRITE_4(&sc->mem, HDAC_CORBLBASE, (uint32_t)corbpaddr);
  841         HDAC_WRITE_4(&sc->mem, HDAC_CORBUBASE, (uint32_t)(corbpaddr >> 32));
  842 
  843         /* Set the WP and RP */
  844         sc->corb_wp = 0;
  845         HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp);
  846         HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, HDAC_CORBRP_CORBRPRST);
  847         /*
  848          * The HDA specification indicates that the CORBRPRST bit will always
  849          * read as zero. Unfortunately, it seems that at least the 82801G
  850          * doesn't reset the bit to zero, which stalls the corb engine.
  851          * manually reset the bit to zero before continuing.
  852          */
  853         HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, 0x0);
  854 
  855         /* Enable CORB error reporting */
  856 #if 0
  857         HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, HDAC_CORBCTL_CMEIE);
  858 #endif
  859 }
  860 
  861 /****************************************************************************
  862  * void hdac_rirb_init(struct hdac_softc *)
  863  *
  864  * Initialize the rirb registers for operations but do not start it up yet.
  865  * The RIRB engine must not be running when this function is called.
  866  ****************************************************************************/
  867 static void
  868 hdac_rirb_init(struct hdac_softc *sc)
  869 {
  870         uint8_t rirbsize;
  871         uint64_t rirbpaddr;
  872 
  873         /* Setup the RIRB size. */
  874         switch (sc->rirb_size) {
  875         case 256:
  876                 rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_256);
  877                 break;
  878         case 16:
  879                 rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_16);
  880                 break;
  881         case 2:
  882                 rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_2);
  883                 break;
  884         default:
  885                 panic("%s: Invalid RIRB size (%x)\n", __func__, sc->rirb_size);
  886         }
  887         HDAC_WRITE_1(&sc->mem, HDAC_RIRBSIZE, rirbsize);
  888 
  889         /* Setup the RIRB Address in the hdac */
  890         rirbpaddr = (uint64_t)sc->rirb_dma.dma_paddr;
  891         HDAC_WRITE_4(&sc->mem, HDAC_RIRBLBASE, (uint32_t)rirbpaddr);
  892         HDAC_WRITE_4(&sc->mem, HDAC_RIRBUBASE, (uint32_t)(rirbpaddr >> 32));
  893 
  894         /* Setup the WP and RP */
  895         sc->rirb_rp = 0;
  896         HDAC_WRITE_2(&sc->mem, HDAC_RIRBWP, HDAC_RIRBWP_RIRBWPRST);
  897 
  898         /* Setup the interrupt threshold */
  899         HDAC_WRITE_2(&sc->mem, HDAC_RINTCNT, sc->rirb_size / 2);
  900 
  901         /* Enable Overrun and response received reporting */
  902 #if 0
  903         HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL,
  904             HDAC_RIRBCTL_RIRBOIC | HDAC_RIRBCTL_RINTCTL);
  905 #else
  906         HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, HDAC_RIRBCTL_RINTCTL);
  907 #endif
  908 
  909         /*
  910          * Make sure that the Host CPU cache doesn't contain any dirty
  911          * cache lines that falls in the rirb. If I understood correctly, it
  912          * should be sufficient to do this only once as the rirb is purely
  913          * read-only from now on.
  914          */
  915         bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
  916             BUS_DMASYNC_PREREAD);
  917 }
  918 
  919 /****************************************************************************
  920  * void hdac_corb_start(hdac_softc *)
  921  *
  922  * Startup the corb DMA engine
  923  ****************************************************************************/
  924 static void
  925 hdac_corb_start(struct hdac_softc *sc)
  926 {
  927         uint32_t corbctl;
  928 
  929         corbctl = HDAC_READ_1(&sc->mem, HDAC_CORBCTL);
  930         corbctl |= HDAC_CORBCTL_CORBRUN;
  931         HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, corbctl);
  932 }
  933 
  934 /****************************************************************************
  935  * void hdac_rirb_start(hdac_softc *)
  936  *
  937  * Startup the rirb DMA engine
  938  ****************************************************************************/
  939 static void
  940 hdac_rirb_start(struct hdac_softc *sc)
  941 {
  942         uint32_t rirbctl;
  943 
  944         rirbctl = HDAC_READ_1(&sc->mem, HDAC_RIRBCTL);
  945         rirbctl |= HDAC_RIRBCTL_RIRBDMAEN;
  946         HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, rirbctl);
  947 }
  948 
  949 static int
  950 hdac_rirb_flush(struct hdac_softc *sc)
  951 {
  952         struct hdac_rirb *rirb_base, *rirb;
  953         nid_t cad;
  954         uint32_t resp, resp_ex;
  955         uint8_t rirbwp;
  956         int ret;
  957 
  958         rirb_base = (struct hdac_rirb *)sc->rirb_dma.dma_vaddr;
  959         rirbwp = HDAC_READ_1(&sc->mem, HDAC_RIRBWP);
  960         bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
  961             BUS_DMASYNC_POSTREAD);
  962 
  963         ret = 0;
  964         while (sc->rirb_rp != rirbwp) {
  965                 sc->rirb_rp++;
  966                 sc->rirb_rp %= sc->rirb_size;
  967                 rirb = &rirb_base[sc->rirb_rp];
  968                 resp = le32toh(rirb->response);
  969                 resp_ex = le32toh(rirb->response_ex);
  970                 cad = HDAC_RIRB_RESPONSE_EX_SDATA_IN(resp_ex);
  971                 if (resp_ex & HDAC_RIRB_RESPONSE_EX_UNSOLICITED) {
  972                         sc->unsolq[sc->unsolq_wp++] = resp;
  973                         sc->unsolq_wp %= HDAC_UNSOLQ_MAX;
  974                         sc->unsolq[sc->unsolq_wp++] = cad;
  975                         sc->unsolq_wp %= HDAC_UNSOLQ_MAX;
  976                 } else if (sc->codecs[cad].pending <= 0) {
  977                         device_printf(sc->dev, "Unexpected unsolicited "
  978                             "response from address %d: %08x\n", cad, resp);
  979                 } else {
  980                         sc->codecs[cad].response = resp;
  981                         sc->codecs[cad].pending--;
  982                 }
  983                 ret++;
  984         }
  985 
  986         bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
  987             BUS_DMASYNC_PREREAD);
  988         return (ret);
  989 }
  990 
  991 static int
  992 hdac_unsolq_flush(struct hdac_softc *sc)
  993 {
  994         device_t child;
  995         nid_t cad;
  996         uint32_t resp;
  997         int ret = 0;
  998 
  999         if (sc->unsolq_st == HDAC_UNSOLQ_READY) {
 1000                 sc->unsolq_st = HDAC_UNSOLQ_BUSY;
 1001                 while (sc->unsolq_rp != sc->unsolq_wp) {
 1002                         resp = sc->unsolq[sc->unsolq_rp++];
 1003                         sc->unsolq_rp %= HDAC_UNSOLQ_MAX;
 1004                         cad = sc->unsolq[sc->unsolq_rp++];
 1005                         sc->unsolq_rp %= HDAC_UNSOLQ_MAX;
 1006                         if ((child = sc->codecs[cad].dev) != NULL &&
 1007                             device_is_attached(child))
 1008                                 HDAC_UNSOL_INTR(child, resp);
 1009                         ret++;
 1010                 }
 1011                 sc->unsolq_st = HDAC_UNSOLQ_READY;
 1012         }
 1013 
 1014         return (ret);
 1015 }
 1016 
 1017 /****************************************************************************
 1018  * uint32_t hdac_send_command
 1019  *
 1020  * Wrapper function that sends only one command to a given codec
 1021  ****************************************************************************/
 1022 static uint32_t
 1023 hdac_send_command(struct hdac_softc *sc, nid_t cad, uint32_t verb)
 1024 {
 1025         int timeout;
 1026         uint32_t *corb;
 1027 
 1028         hdac_lockassert(sc);
 1029         verb &= ~HDA_CMD_CAD_MASK;
 1030         verb |= ((uint32_t)cad) << HDA_CMD_CAD_SHIFT;
 1031         sc->codecs[cad].response = HDA_INVALID;
 1032 
 1033         sc->codecs[cad].pending++;
 1034         sc->corb_wp++;
 1035         sc->corb_wp %= sc->corb_size;
 1036         corb = (uint32_t *)sc->corb_dma.dma_vaddr;
 1037         bus_dmamap_sync(sc->corb_dma.dma_tag,
 1038             sc->corb_dma.dma_map, BUS_DMASYNC_PREWRITE);
 1039         corb[sc->corb_wp] = htole32(verb);
 1040         bus_dmamap_sync(sc->corb_dma.dma_tag,
 1041             sc->corb_dma.dma_map, BUS_DMASYNC_POSTWRITE);
 1042         HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp);
 1043 
 1044         timeout = 10000;
 1045         do {
 1046                 if (hdac_rirb_flush(sc) == 0)
 1047                         DELAY(10);
 1048         } while (sc->codecs[cad].pending != 0 && --timeout);
 1049 
 1050         if (sc->codecs[cad].pending != 0) {
 1051                 device_printf(sc->dev, "Command 0x%08x timeout on address %d\n",
 1052                     verb, cad);
 1053                 sc->codecs[cad].pending = 0;
 1054         }
 1055 
 1056         if (sc->unsolq_rp != sc->unsolq_wp)
 1057                 taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task);
 1058         return (sc->codecs[cad].response);
 1059 }
 1060 
 1061 /****************************************************************************
 1062  * Device Methods
 1063  ****************************************************************************/
 1064 
 1065 /****************************************************************************
 1066  * int hdac_probe(device_t)
 1067  *
 1068  * Probe for the presence of an hdac. If none is found, check for a generic
 1069  * match using the subclass of the device.
 1070  ****************************************************************************/
 1071 static int
 1072 hdac_probe(device_t dev)
 1073 {
 1074         int i, result;
 1075         uint32_t model;
 1076         uint16_t class, subclass;
 1077         char desc[64];
 1078 
 1079         model = (uint32_t)pci_get_device(dev) << 16;
 1080         model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff;
 1081         class = pci_get_class(dev);
 1082         subclass = pci_get_subclass(dev);
 1083 
 1084         bzero(desc, sizeof(desc));
 1085         result = ENXIO;
 1086         for (i = 0; i < nitems(hdac_devices); i++) {
 1087                 if (hdac_devices[i].model == model) {
 1088                         strlcpy(desc, hdac_devices[i].desc, sizeof(desc));
 1089                         result = BUS_PROBE_DEFAULT;
 1090                         break;
 1091                 }
 1092                 if (HDA_DEV_MATCH(hdac_devices[i].model, model) &&
 1093                     class == PCIC_MULTIMEDIA &&
 1094                     subclass == PCIS_MULTIMEDIA_HDA) {
 1095                         snprintf(desc, sizeof(desc), "%s (0x%04x)",
 1096                             hdac_devices[i].desc, pci_get_device(dev));
 1097                         result = BUS_PROBE_GENERIC;
 1098                         break;
 1099                 }
 1100         }
 1101         if (result == ENXIO && class == PCIC_MULTIMEDIA &&
 1102             subclass == PCIS_MULTIMEDIA_HDA) {
 1103                 snprintf(desc, sizeof(desc), "Generic (0x%08x)", model);
 1104                 result = BUS_PROBE_GENERIC;
 1105         }
 1106         if (result != ENXIO) {
 1107                 strlcat(desc, " HDA Controller", sizeof(desc));
 1108                 device_set_desc_copy(dev, desc);
 1109         }
 1110 
 1111         return (result);
 1112 }
 1113 
 1114 static void
 1115 hdac_unsolq_task(void *context, int pending)
 1116 {
 1117         struct hdac_softc *sc;
 1118 
 1119         sc = (struct hdac_softc *)context;
 1120 
 1121         hdac_lock(sc);
 1122         hdac_unsolq_flush(sc);
 1123         hdac_unlock(sc);
 1124 }
 1125 
 1126 /****************************************************************************
 1127  * int hdac_attach(device_t)
 1128  *
 1129  * Attach the device into the kernel. Interrupts usually won't be enabled
 1130  * when this function is called. Setup everything that doesn't require
 1131  * interrupts and defer probing of codecs until interrupts are enabled.
 1132  ****************************************************************************/
 1133 static int
 1134 hdac_attach(device_t dev)
 1135 {
 1136         struct hdac_softc *sc;
 1137         int result;
 1138         int i, devid = -1;
 1139         uint32_t model;
 1140         uint16_t class, subclass;
 1141         uint16_t vendor;
 1142         uint8_t v;
 1143 
 1144         sc = device_get_softc(dev);
 1145         HDA_BOOTVERBOSE(
 1146                 device_printf(dev, "PCI card vendor: 0x%04x, device: 0x%04x\n",
 1147                     pci_get_subvendor(dev), pci_get_subdevice(dev));
 1148                 device_printf(dev, "HDA Driver Revision: %s\n",
 1149                     HDA_DRV_TEST_REV);
 1150         );
 1151 
 1152         model = (uint32_t)pci_get_device(dev) << 16;
 1153         model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff;
 1154         class = pci_get_class(dev);
 1155         subclass = pci_get_subclass(dev);
 1156 
 1157         for (i = 0; i < nitems(hdac_devices); i++) {
 1158                 if (hdac_devices[i].model == model) {
 1159                         devid = i;
 1160                         break;
 1161                 }
 1162                 if (HDA_DEV_MATCH(hdac_devices[i].model, model) &&
 1163                     class == PCIC_MULTIMEDIA &&
 1164                     subclass == PCIS_MULTIMEDIA_HDA) {
 1165                         devid = i;
 1166                         break;
 1167                 }
 1168         }
 1169 
 1170         sc->lock = snd_mtxcreate(device_get_nameunit(dev), "HDA driver mutex");
 1171         sc->dev = dev;
 1172         TASK_INIT(&sc->unsolq_task, 0, hdac_unsolq_task, sc);
 1173         callout_init(&sc->poll_callout, 1);
 1174         for (i = 0; i < HDAC_CODEC_MAX; i++)
 1175                 sc->codecs[i].dev = NULL;
 1176         if (devid >= 0) {
 1177                 sc->quirks_on = hdac_devices[devid].quirks_on;
 1178                 sc->quirks_off = hdac_devices[devid].quirks_off;
 1179         } else {
 1180                 sc->quirks_on = 0;
 1181                 sc->quirks_off = 0;
 1182         }
 1183         if (resource_int_value(device_get_name(dev),
 1184             device_get_unit(dev), "msi", &i) == 0) {
 1185                 if (i == 0)
 1186                         sc->quirks_off |= HDAC_QUIRK_MSI;
 1187                 else {
 1188                         sc->quirks_on |= HDAC_QUIRK_MSI;
 1189                         sc->quirks_off |= ~HDAC_QUIRK_MSI;
 1190                 }
 1191         }
 1192         hdac_config_fetch(sc, &sc->quirks_on, &sc->quirks_off);
 1193         HDA_BOOTVERBOSE(
 1194                 device_printf(sc->dev,
 1195                     "Config options: on=0x%08x off=0x%08x\n",
 1196                     sc->quirks_on, sc->quirks_off);
 1197         );
 1198         sc->poll_ival = hz;
 1199         if (resource_int_value(device_get_name(dev),
 1200             device_get_unit(dev), "polling", &i) == 0 && i != 0)
 1201                 sc->polling = 1;
 1202         else
 1203                 sc->polling = 0;
 1204 
 1205         pci_enable_busmaster(dev);
 1206 
 1207         vendor = pci_get_vendor(dev);
 1208         if (vendor == INTEL_VENDORID) {
 1209                 /* TCSEL -> TC0 */
 1210                 v = pci_read_config(dev, 0x44, 1);
 1211                 pci_write_config(dev, 0x44, v & 0xf8, 1);
 1212                 HDA_BOOTHVERBOSE(
 1213                         device_printf(dev, "TCSEL: 0x%02d -> 0x%02d\n", v,
 1214                             pci_read_config(dev, 0x44, 1));
 1215                 );
 1216         }
 1217 
 1218 #if defined(__i386__) || defined(__amd64__)
 1219         sc->flags |= HDAC_F_DMA_NOCACHE;
 1220 
 1221         if (resource_int_value(device_get_name(dev),
 1222             device_get_unit(dev), "snoop", &i) == 0 && i != 0) {
 1223 #else
 1224         sc->flags &= ~HDAC_F_DMA_NOCACHE;
 1225 #endif
 1226                 /*
 1227                  * Try to enable PCIe snoop to avoid messing around with
 1228                  * uncacheable DMA attribute. Since PCIe snoop register
 1229                  * config is pretty much vendor specific, there are no
 1230                  * general solutions on how to enable it, forcing us (even
 1231                  * Microsoft) to enable uncacheable or write combined DMA
 1232                  * by default.
 1233                  *
 1234                  * http://msdn2.microsoft.com/en-us/library/ms790324.aspx
 1235                  */
 1236                 for (i = 0; i < nitems(hdac_pcie_snoop); i++) {
 1237                         if (hdac_pcie_snoop[i].vendor != vendor)
 1238                                 continue;
 1239                         sc->flags &= ~HDAC_F_DMA_NOCACHE;
 1240                         if (hdac_pcie_snoop[i].reg == 0x00)
 1241                                 break;
 1242                         v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1);
 1243                         if ((v & hdac_pcie_snoop[i].enable) ==
 1244                             hdac_pcie_snoop[i].enable)
 1245                                 break;
 1246                         v &= hdac_pcie_snoop[i].mask;
 1247                         v |= hdac_pcie_snoop[i].enable;
 1248                         pci_write_config(dev, hdac_pcie_snoop[i].reg, v, 1);
 1249                         v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1);
 1250                         if ((v & hdac_pcie_snoop[i].enable) !=
 1251                             hdac_pcie_snoop[i].enable) {
 1252                                 HDA_BOOTVERBOSE(
 1253                                         device_printf(dev,
 1254                                             "WARNING: Failed to enable PCIe "
 1255                                             "snoop!\n");
 1256                                 );
 1257 #if defined(__i386__) || defined(__amd64__)
 1258                                 sc->flags |= HDAC_F_DMA_NOCACHE;
 1259 #endif
 1260                         }
 1261                         break;
 1262                 }
 1263 #if defined(__i386__) || defined(__amd64__)
 1264         }
 1265 #endif
 1266 
 1267         HDA_BOOTHVERBOSE(
 1268                 device_printf(dev, "DMA Coherency: %s / vendor=0x%04x\n",
 1269                     (sc->flags & HDAC_F_DMA_NOCACHE) ?
 1270                     "Uncacheable" : "PCIe snoop", vendor);
 1271         );
 1272 
 1273         /* Allocate resources */
 1274         result = hdac_mem_alloc(sc);
 1275         if (result != 0)
 1276                 goto hdac_attach_fail;
 1277         result = hdac_irq_alloc(sc);
 1278         if (result != 0)
 1279                 goto hdac_attach_fail;
 1280 
 1281         /* Get Capabilities */
 1282         result = hdac_get_capabilities(sc);
 1283         if (result != 0)
 1284                 goto hdac_attach_fail;
 1285 
 1286         /* Allocate CORB, RIRB, POS and BDLs dma memory */
 1287         result = hdac_dma_alloc(sc, &sc->corb_dma,
 1288             sc->corb_size * sizeof(uint32_t));
 1289         if (result != 0)
 1290                 goto hdac_attach_fail;
 1291         result = hdac_dma_alloc(sc, &sc->rirb_dma,
 1292             sc->rirb_size * sizeof(struct hdac_rirb));
 1293         if (result != 0)
 1294                 goto hdac_attach_fail;
 1295         sc->streams = malloc(sizeof(struct hdac_stream) * sc->num_ss,
 1296             M_HDAC, M_ZERO | M_WAITOK);
 1297         for (i = 0; i < sc->num_ss; i++) {
 1298                 result = hdac_dma_alloc(sc, &sc->streams[i].bdl,
 1299                     sizeof(struct hdac_bdle) * HDA_BDL_MAX);
 1300                 if (result != 0)
 1301                         goto hdac_attach_fail;
 1302         }
 1303         if (sc->quirks_on & HDAC_QUIRK_DMAPOS) {
 1304                 if (hdac_dma_alloc(sc, &sc->pos_dma, (sc->num_ss) * 8) != 0) {
 1305                         HDA_BOOTVERBOSE(
 1306                                 device_printf(dev, "Failed to "
 1307                                     "allocate DMA pos buffer "
 1308                                     "(non-fatal)\n");
 1309                         );
 1310                 } else {
 1311                         uint64_t addr = sc->pos_dma.dma_paddr;
 1312 
 1313                         HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, addr >> 32);
 1314                         HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE,
 1315                             (addr & HDAC_DPLBASE_DPLBASE_MASK) |
 1316                             HDAC_DPLBASE_DPLBASE_DMAPBE);
 1317                 }
 1318         }
 1319 
 1320         result = bus_dma_tag_create(
 1321             bus_get_dma_tag(sc->dev),           /* parent */
 1322             HDA_DMA_ALIGNMENT,                  /* alignment */
 1323             0,                                  /* boundary */
 1324             (sc->support_64bit) ? BUS_SPACE_MAXADDR :
 1325                 BUS_SPACE_MAXADDR_32BIT,        /* lowaddr */
 1326             BUS_SPACE_MAXADDR,                  /* highaddr */
 1327             NULL,                               /* filtfunc */
 1328             NULL,                               /* fistfuncarg */
 1329             HDA_BUFSZ_MAX,                      /* maxsize */
 1330             1,                                  /* nsegments */
 1331             HDA_BUFSZ_MAX,                      /* maxsegsz */
 1332             0,                                  /* flags */
 1333             NULL,                               /* lockfunc */
 1334             NULL,                               /* lockfuncarg */
 1335             &sc->chan_dmat);                    /* dmat */
 1336         if (result != 0) {
 1337                 device_printf(dev, "%s: bus_dma_tag_create failed (%d)\n",
 1338                      __func__, result);
 1339                 goto hdac_attach_fail;
 1340         }
 1341 
 1342         /* Quiesce everything */
 1343         HDA_BOOTHVERBOSE(
 1344                 device_printf(dev, "Reset controller...\n");
 1345         );
 1346         hdac_reset(sc, true);
 1347 
 1348         /* Initialize the CORB and RIRB */
 1349         hdac_corb_init(sc);
 1350         hdac_rirb_init(sc);
 1351 
 1352         /* Defer remaining of initialization until interrupts are enabled */
 1353         sc->intrhook.ich_func = hdac_attach2;
 1354         sc->intrhook.ich_arg = (void *)sc;
 1355         if (cold == 0 || config_intrhook_establish(&sc->intrhook) != 0) {
 1356                 sc->intrhook.ich_func = NULL;
 1357                 hdac_attach2((void *)sc);
 1358         }
 1359 
 1360         return (0);
 1361 
 1362 hdac_attach_fail:
 1363         hdac_irq_free(sc);
 1364         if (sc->streams != NULL)
 1365                 for (i = 0; i < sc->num_ss; i++)
 1366                         hdac_dma_free(sc, &sc->streams[i].bdl);
 1367         free(sc->streams, M_HDAC);
 1368         hdac_dma_free(sc, &sc->rirb_dma);
 1369         hdac_dma_free(sc, &sc->corb_dma);
 1370         hdac_mem_free(sc);
 1371         snd_mtxfree(sc->lock);
 1372 
 1373         return (ENXIO);
 1374 }
 1375 
 1376 static int
 1377 sysctl_hdac_pindump(SYSCTL_HANDLER_ARGS)
 1378 {
 1379         struct hdac_softc *sc;
 1380         device_t *devlist;
 1381         device_t dev;
 1382         int devcount, i, err, val;
 1383 
 1384         dev = oidp->oid_arg1;
 1385         sc = device_get_softc(dev);
 1386         if (sc == NULL)
 1387                 return (EINVAL);
 1388         val = 0;
 1389         err = sysctl_handle_int(oidp, &val, 0, req);
 1390         if (err != 0 || req->newptr == NULL || val == 0)
 1391                 return (err);
 1392 
 1393         /* XXX: Temporary. For debugging. */
 1394         if (val == 100) {
 1395                 hdac_suspend(dev);
 1396                 return (0);
 1397         } else if (val == 101) {
 1398                 hdac_resume(dev);
 1399                 return (0);
 1400         }
 1401 
 1402         bus_topo_lock();
 1403 
 1404         if ((err = device_get_children(dev, &devlist, &devcount)) != 0) {
 1405                 bus_topo_unlock();
 1406                 return (err);
 1407         }
 1408 
 1409         hdac_lock(sc);
 1410         for (i = 0; i < devcount; i++)
 1411                 HDAC_PINDUMP(devlist[i]);
 1412         hdac_unlock(sc);
 1413 
 1414         bus_topo_unlock();
 1415 
 1416         free(devlist, M_TEMP);
 1417         return (0);
 1418 }
 1419 
 1420 static int
 1421 hdac_mdata_rate(uint16_t fmt)
 1422 {
 1423         static const int mbits[8] = { 8, 16, 32, 32, 32, 32, 32, 32 };
 1424         int rate, bits;
 1425 
 1426         if (fmt & (1 << 14))
 1427                 rate = 44100;
 1428         else
 1429                 rate = 48000;
 1430         rate *= ((fmt >> 11) & 0x07) + 1;
 1431         rate /= ((fmt >> 8) & 0x07) + 1;
 1432         bits = mbits[(fmt >> 4) & 0x03];
 1433         bits *= (fmt & 0x0f) + 1;
 1434         return (rate * bits);
 1435 }
 1436 
 1437 static int
 1438 hdac_bdata_rate(uint16_t fmt, int output)
 1439 {
 1440         static const int bbits[8] = { 8, 16, 20, 24, 32, 32, 32, 32 };
 1441         int rate, bits;
 1442 
 1443         rate = 48000;
 1444         rate *= ((fmt >> 11) & 0x07) + 1;
 1445         bits = bbits[(fmt >> 4) & 0x03];
 1446         bits *= (fmt & 0x0f) + 1;
 1447         if (!output)
 1448                 bits = ((bits + 7) & ~0x07) + 10;
 1449         return (rate * bits);
 1450 }
 1451 
 1452 static void
 1453 hdac_poll_reinit(struct hdac_softc *sc)
 1454 {
 1455         int i, pollticks, min = 1000000;
 1456         struct hdac_stream *s;
 1457 
 1458         if (sc->polling == 0)
 1459                 return;
 1460         if (sc->unsol_registered > 0)
 1461                 min = hz / 2;
 1462         for (i = 0; i < sc->num_ss; i++) {
 1463                 s = &sc->streams[i];
 1464                 if (s->running == 0)
 1465                         continue;
 1466                 pollticks = ((uint64_t)hz * s->blksz) /
 1467                     (hdac_mdata_rate(s->format) / 8);
 1468                 pollticks >>= 1;
 1469                 if (pollticks > hz)
 1470                         pollticks = hz;
 1471                 if (pollticks < 1)
 1472                         pollticks = 1;
 1473                 if (min > pollticks)
 1474                         min = pollticks;
 1475         }
 1476         sc->poll_ival = min;
 1477         if (min == 1000000)
 1478                 callout_stop(&sc->poll_callout);
 1479         else
 1480                 callout_reset(&sc->poll_callout, 1, hdac_poll_callback, sc);
 1481 }
 1482 
 1483 static int
 1484 sysctl_hdac_polling(SYSCTL_HANDLER_ARGS)
 1485 {
 1486         struct hdac_softc *sc;
 1487         device_t dev;
 1488         uint32_t ctl;
 1489         int err, val;
 1490 
 1491         dev = oidp->oid_arg1;
 1492         sc = device_get_softc(dev);
 1493         if (sc == NULL)
 1494                 return (EINVAL);
 1495         hdac_lock(sc);
 1496         val = sc->polling;
 1497         hdac_unlock(sc);
 1498         err = sysctl_handle_int(oidp, &val, 0, req);
 1499 
 1500         if (err != 0 || req->newptr == NULL)
 1501                 return (err);
 1502         if (val < 0 || val > 1)
 1503                 return (EINVAL);
 1504 
 1505         hdac_lock(sc);
 1506         if (val != sc->polling) {
 1507                 if (val == 0) {
 1508                         callout_stop(&sc->poll_callout);
 1509                         hdac_unlock(sc);
 1510                         callout_drain(&sc->poll_callout);
 1511                         hdac_lock(sc);
 1512                         sc->polling = 0;
 1513                         ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
 1514                         ctl |= HDAC_INTCTL_GIE;
 1515                         HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
 1516                 } else {
 1517                         ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
 1518                         ctl &= ~HDAC_INTCTL_GIE;
 1519                         HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
 1520                         sc->polling = 1;
 1521                         hdac_poll_reinit(sc);
 1522                 }
 1523         }
 1524         hdac_unlock(sc);
 1525 
 1526         return (err);
 1527 }
 1528 
 1529 static void
 1530 hdac_attach2(void *arg)
 1531 {
 1532         struct hdac_softc *sc;
 1533         device_t child;
 1534         uint32_t vendorid, revisionid;
 1535         int i;
 1536         uint16_t statests;
 1537 
 1538         sc = (struct hdac_softc *)arg;
 1539 
 1540         hdac_lock(sc);
 1541 
 1542         /* Remove ourselves from the config hooks */
 1543         if (sc->intrhook.ich_func != NULL) {
 1544                 config_intrhook_disestablish(&sc->intrhook);
 1545                 sc->intrhook.ich_func = NULL;
 1546         }
 1547 
 1548         HDA_BOOTHVERBOSE(
 1549                 device_printf(sc->dev, "Starting CORB Engine...\n");
 1550         );
 1551         hdac_corb_start(sc);
 1552         HDA_BOOTHVERBOSE(
 1553                 device_printf(sc->dev, "Starting RIRB Engine...\n");
 1554         );
 1555         hdac_rirb_start(sc);
 1556 
 1557         /*
 1558          * Clear HDAC_WAKEEN as at present we have no use for SDI wake
 1559          * (status change) interrupts.  The documentation says that we
 1560          * should not make any assumptions about the state of this register
 1561          * and set it explicitly.
 1562          * NB: this needs to be done before the interrupt is enabled as
 1563          * the handler does not expect this interrupt source.
 1564          */
 1565         HDAC_WRITE_2(&sc->mem, HDAC_WAKEEN, 0);
 1566 
 1567         /*
 1568          * Read and clear post-reset SDI wake status.
 1569          * Each set bit corresponds to a codec that came out of reset.
 1570          */
 1571         statests = HDAC_READ_2(&sc->mem, HDAC_STATESTS);
 1572         HDAC_WRITE_2(&sc->mem, HDAC_STATESTS, statests);
 1573 
 1574         HDA_BOOTHVERBOSE(
 1575                 device_printf(sc->dev,
 1576                     "Enabling controller interrupt...\n");
 1577         );
 1578         HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) |
 1579             HDAC_GCTL_UNSOL);
 1580         if (sc->polling == 0) {
 1581                 HDAC_WRITE_4(&sc->mem, HDAC_INTCTL,
 1582                     HDAC_INTCTL_CIE | HDAC_INTCTL_GIE);
 1583         }
 1584         DELAY(1000);
 1585 
 1586         HDA_BOOTHVERBOSE(
 1587                 device_printf(sc->dev, "Scanning HDA codecs ...\n");
 1588         );
 1589         hdac_unlock(sc);
 1590         for (i = 0; i < HDAC_CODEC_MAX; i++) {
 1591                 if (HDAC_STATESTS_SDIWAKE(statests, i)) {
 1592                         HDA_BOOTHVERBOSE(
 1593                                 device_printf(sc->dev,
 1594                                     "Found CODEC at address %d\n", i);
 1595                         );
 1596                         hdac_lock(sc);
 1597                         vendorid = hdac_send_command(sc, i,
 1598                             HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_VENDOR_ID));
 1599                         revisionid = hdac_send_command(sc, i,
 1600                             HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_REVISION_ID));
 1601                         hdac_unlock(sc);
 1602                         if (vendorid == HDA_INVALID &&
 1603                             revisionid == HDA_INVALID) {
 1604                                 device_printf(sc->dev,
 1605                                     "CODEC at address %d not responding!\n", i);
 1606                                 continue;
 1607                         }
 1608                         sc->codecs[i].vendor_id =
 1609                             HDA_PARAM_VENDOR_ID_VENDOR_ID(vendorid);
 1610                         sc->codecs[i].device_id =
 1611                             HDA_PARAM_VENDOR_ID_DEVICE_ID(vendorid);
 1612                         sc->codecs[i].revision_id =
 1613                             HDA_PARAM_REVISION_ID_REVISION_ID(revisionid);
 1614                         sc->codecs[i].stepping_id =
 1615                             HDA_PARAM_REVISION_ID_STEPPING_ID(revisionid);
 1616                         child = device_add_child(sc->dev, "hdacc", -1);
 1617                         if (child == NULL) {
 1618                                 device_printf(sc->dev,
 1619                                     "Failed to add CODEC device\n");
 1620                                 continue;
 1621                         }
 1622                         device_set_ivars(child, (void *)(intptr_t)i);
 1623                         sc->codecs[i].dev = child;
 1624                 }
 1625         }
 1626         bus_generic_attach(sc->dev);
 1627 
 1628         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
 1629             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO,
 1630             "pindump", CTLTYPE_INT | CTLFLAG_RW, sc->dev,
 1631             sizeof(sc->dev), sysctl_hdac_pindump, "I", "Dump pin states/data");
 1632         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
 1633             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO,
 1634             "polling", CTLTYPE_INT | CTLFLAG_RW, sc->dev,
 1635             sizeof(sc->dev), sysctl_hdac_polling, "I", "Enable polling mode");
 1636 }
 1637 
 1638 /****************************************************************************
 1639  * int hdac_suspend(device_t)
 1640  *
 1641  * Suspend and power down HDA bus and codecs.
 1642  ****************************************************************************/
 1643 static int
 1644 hdac_suspend(device_t dev)
 1645 {
 1646         struct hdac_softc *sc = device_get_softc(dev);
 1647 
 1648         HDA_BOOTHVERBOSE(
 1649                 device_printf(dev, "Suspend...\n");
 1650         );
 1651         bus_generic_suspend(dev);
 1652 
 1653         hdac_lock(sc);
 1654         HDA_BOOTHVERBOSE(
 1655                 device_printf(dev, "Reset controller...\n");
 1656         );
 1657         callout_stop(&sc->poll_callout);
 1658         hdac_reset(sc, false);
 1659         hdac_unlock(sc);
 1660         callout_drain(&sc->poll_callout);
 1661         taskqueue_drain(taskqueue_thread, &sc->unsolq_task);
 1662         HDA_BOOTHVERBOSE(
 1663                 device_printf(dev, "Suspend done\n");
 1664         );
 1665         return (0);
 1666 }
 1667 
 1668 /****************************************************************************
 1669  * int hdac_resume(device_t)
 1670  *
 1671  * Powerup and restore HDA bus and codecs state.
 1672  ****************************************************************************/
 1673 static int
 1674 hdac_resume(device_t dev)
 1675 {
 1676         struct hdac_softc *sc = device_get_softc(dev);
 1677         int error;
 1678 
 1679         HDA_BOOTHVERBOSE(
 1680                 device_printf(dev, "Resume...\n");
 1681         );
 1682         hdac_lock(sc);
 1683 
 1684         /* Quiesce everything */
 1685         HDA_BOOTHVERBOSE(
 1686                 device_printf(dev, "Reset controller...\n");
 1687         );
 1688         hdac_reset(sc, true);
 1689 
 1690         /* Initialize the CORB and RIRB */
 1691         hdac_corb_init(sc);
 1692         hdac_rirb_init(sc);
 1693 
 1694         HDA_BOOTHVERBOSE(
 1695                 device_printf(dev, "Starting CORB Engine...\n");
 1696         );
 1697         hdac_corb_start(sc);
 1698         HDA_BOOTHVERBOSE(
 1699                 device_printf(dev, "Starting RIRB Engine...\n");
 1700         );
 1701         hdac_rirb_start(sc);
 1702 
 1703         /*
 1704          * Clear HDAC_WAKEEN as at present we have no use for SDI wake
 1705          * (status change) events.  The documentation says that we should
 1706          * not make any assumptions about the state of this register and
 1707          * set it explicitly.
 1708          * Also, clear HDAC_STATESTS.
 1709          * NB: this needs to be done before the interrupt is enabled as
 1710          * the handler does not expect this interrupt source.
 1711          */
 1712         HDAC_WRITE_2(&sc->mem, HDAC_WAKEEN, 0);
 1713         HDAC_WRITE_2(&sc->mem, HDAC_STATESTS, HDAC_STATESTS_SDIWAKE_MASK);
 1714 
 1715         HDA_BOOTHVERBOSE(
 1716                 device_printf(dev, "Enabling controller interrupt...\n");
 1717         );
 1718         HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) |
 1719             HDAC_GCTL_UNSOL);
 1720         HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, HDAC_INTCTL_CIE | HDAC_INTCTL_GIE);
 1721         DELAY(1000);
 1722         hdac_poll_reinit(sc);
 1723         hdac_unlock(sc);
 1724 
 1725         error = bus_generic_resume(dev);
 1726         HDA_BOOTHVERBOSE(
 1727                 device_printf(dev, "Resume done\n");
 1728         );
 1729         return (error);
 1730 }
 1731 
 1732 /****************************************************************************
 1733  * int hdac_detach(device_t)
 1734  *
 1735  * Detach and free up resources utilized by the hdac device.
 1736  ****************************************************************************/
 1737 static int
 1738 hdac_detach(device_t dev)
 1739 {
 1740         struct hdac_softc *sc = device_get_softc(dev);
 1741         device_t *devlist;
 1742         int cad, i, devcount, error;
 1743 
 1744         if ((error = device_get_children(dev, &devlist, &devcount)) != 0)
 1745                 return (error);
 1746         for (i = 0; i < devcount; i++) {
 1747                 cad = (intptr_t)device_get_ivars(devlist[i]);
 1748                 if ((error = device_delete_child(dev, devlist[i])) != 0) {
 1749                         free(devlist, M_TEMP);
 1750                         return (error);
 1751                 }
 1752                 sc->codecs[cad].dev = NULL;
 1753         }
 1754         free(devlist, M_TEMP);
 1755 
 1756         hdac_lock(sc);
 1757         hdac_reset(sc, false);
 1758         hdac_unlock(sc);
 1759         taskqueue_drain(taskqueue_thread, &sc->unsolq_task);
 1760         hdac_irq_free(sc);
 1761 
 1762         for (i = 0; i < sc->num_ss; i++)
 1763                 hdac_dma_free(sc, &sc->streams[i].bdl);
 1764         free(sc->streams, M_HDAC);
 1765         hdac_dma_free(sc, &sc->pos_dma);
 1766         hdac_dma_free(sc, &sc->rirb_dma);
 1767         hdac_dma_free(sc, &sc->corb_dma);
 1768         if (sc->chan_dmat != NULL) {
 1769                 bus_dma_tag_destroy(sc->chan_dmat);
 1770                 sc->chan_dmat = NULL;
 1771         }
 1772         hdac_mem_free(sc);
 1773         snd_mtxfree(sc->lock);
 1774         return (0);
 1775 }
 1776 
 1777 static bus_dma_tag_t
 1778 hdac_get_dma_tag(device_t dev, device_t child)
 1779 {
 1780         struct hdac_softc *sc = device_get_softc(dev);
 1781 
 1782         return (sc->chan_dmat);
 1783 }
 1784 
 1785 static int
 1786 hdac_print_child(device_t dev, device_t child)
 1787 {
 1788         int retval;
 1789 
 1790         retval = bus_print_child_header(dev, child);
 1791         retval += printf(" at cad %d", (int)(intptr_t)device_get_ivars(child));
 1792         retval += bus_print_child_footer(dev, child);
 1793 
 1794         return (retval);
 1795 }
 1796 
 1797 static int
 1798 hdac_child_location(device_t dev, device_t child, struct sbuf *sb)
 1799 {
 1800 
 1801         sbuf_printf(sb, "cad=%d", (int)(intptr_t)device_get_ivars(child));
 1802         return (0);
 1803 }
 1804 
 1805 static int
 1806 hdac_child_pnpinfo_method(device_t dev, device_t child, struct sbuf *sb)
 1807 {
 1808         struct hdac_softc *sc = device_get_softc(dev);
 1809         nid_t cad = (uintptr_t)device_get_ivars(child);
 1810 
 1811         sbuf_printf(sb,
 1812             "vendor=0x%04x device=0x%04x revision=0x%02x stepping=0x%02x",
 1813             sc->codecs[cad].vendor_id, sc->codecs[cad].device_id,
 1814             sc->codecs[cad].revision_id, sc->codecs[cad].stepping_id);
 1815         return (0);
 1816 }
 1817 
 1818 static int
 1819 hdac_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
 1820 {
 1821         struct hdac_softc *sc = device_get_softc(dev);
 1822         nid_t cad = (uintptr_t)device_get_ivars(child);
 1823 
 1824         switch (which) {
 1825         case HDA_IVAR_CODEC_ID:
 1826                 *result = cad;
 1827                 break;
 1828         case HDA_IVAR_VENDOR_ID:
 1829                 *result = sc->codecs[cad].vendor_id;
 1830                 break;
 1831         case HDA_IVAR_DEVICE_ID:
 1832                 *result = sc->codecs[cad].device_id;
 1833                 break;
 1834         case HDA_IVAR_REVISION_ID:
 1835                 *result = sc->codecs[cad].revision_id;
 1836                 break;
 1837         case HDA_IVAR_STEPPING_ID:
 1838                 *result = sc->codecs[cad].stepping_id;
 1839                 break;
 1840         case HDA_IVAR_SUBVENDOR_ID:
 1841                 *result = pci_get_subvendor(dev);
 1842                 break;
 1843         case HDA_IVAR_SUBDEVICE_ID:
 1844                 *result = pci_get_subdevice(dev);
 1845                 break;
 1846         case HDA_IVAR_DMA_NOCACHE:
 1847                 *result = (sc->flags & HDAC_F_DMA_NOCACHE) != 0;
 1848                 break;
 1849         case HDA_IVAR_STRIPES_MASK:
 1850                 *result = (1 << (1 << sc->num_sdo)) - 1;
 1851                 break;
 1852         default:
 1853                 return (ENOENT);
 1854         }
 1855         return (0);
 1856 }
 1857 
 1858 static struct mtx *
 1859 hdac_get_mtx(device_t dev, device_t child)
 1860 {
 1861         struct hdac_softc *sc = device_get_softc(dev);
 1862 
 1863         return (sc->lock);
 1864 }
 1865 
 1866 static uint32_t
 1867 hdac_codec_command(device_t dev, device_t child, uint32_t verb)
 1868 {
 1869 
 1870         return (hdac_send_command(device_get_softc(dev),
 1871             (intptr_t)device_get_ivars(child), verb));
 1872 }
 1873 
 1874 static int
 1875 hdac_find_stream(struct hdac_softc *sc, int dir, int stream)
 1876 {
 1877         int i, ss;
 1878 
 1879         ss = -1;
 1880         /* Allocate ISS/OSS first. */
 1881         if (dir == 0) {
 1882                 for (i = 0; i < sc->num_iss; i++) {
 1883                         if (sc->streams[i].stream == stream) {
 1884                                 ss = i;
 1885                                 break;
 1886                         }
 1887                 }
 1888         } else {
 1889                 for (i = 0; i < sc->num_oss; i++) {
 1890                         if (sc->streams[i + sc->num_iss].stream == stream) {
 1891                                 ss = i + sc->num_iss;
 1892                                 break;
 1893                         }
 1894                 }
 1895         }
 1896         /* Fallback to BSS. */
 1897         if (ss == -1) {
 1898                 for (i = 0; i < sc->num_bss; i++) {
 1899                         if (sc->streams[i + sc->num_iss + sc->num_oss].stream
 1900                             == stream) {
 1901                                 ss = i + sc->num_iss + sc->num_oss;
 1902                                 break;
 1903                         }
 1904                 }
 1905         }
 1906         return (ss);
 1907 }
 1908 
 1909 static int
 1910 hdac_stream_alloc(device_t dev, device_t child, int dir, int format, int stripe,
 1911     uint32_t **dmapos)
 1912 {
 1913         struct hdac_softc *sc = device_get_softc(dev);
 1914         nid_t cad = (uintptr_t)device_get_ivars(child);
 1915         int stream, ss, bw, maxbw, prevbw;
 1916 
 1917         /* Look for empty stream. */
 1918         ss = hdac_find_stream(sc, dir, 0);
 1919 
 1920         /* Return if found nothing. */
 1921         if (ss < 0)
 1922                 return (0);
 1923 
 1924         /* Check bus bandwidth. */
 1925         bw = hdac_bdata_rate(format, dir);
 1926         if (dir == 1) {
 1927                 bw *= 1 << (sc->num_sdo - stripe);
 1928                 prevbw = sc->sdo_bw_used;
 1929                 maxbw = 48000 * 960 * (1 << sc->num_sdo);
 1930         } else {
 1931                 prevbw = sc->codecs[cad].sdi_bw_used;
 1932                 maxbw = 48000 * 464;
 1933         }
 1934         HDA_BOOTHVERBOSE(
 1935                 device_printf(dev, "%dKbps of %dKbps bandwidth used%s\n",
 1936                     (bw + prevbw) / 1000, maxbw / 1000,
 1937                     bw + prevbw > maxbw ? " -- OVERFLOW!" : "");
 1938         );
 1939         if (bw + prevbw > maxbw)
 1940                 return (0);
 1941         if (dir == 1)
 1942                 sc->sdo_bw_used += bw;
 1943         else
 1944                 sc->codecs[cad].sdi_bw_used += bw;
 1945 
 1946         /* Allocate stream number */
 1947         if (ss >= sc->num_iss + sc->num_oss)
 1948                 stream = 15 - (ss - sc->num_iss - sc->num_oss);
 1949         else if (ss >= sc->num_iss)
 1950                 stream = ss - sc->num_iss + 1;
 1951         else
 1952                 stream = ss + 1;
 1953 
 1954         sc->streams[ss].dev = child;
 1955         sc->streams[ss].dir = dir;
 1956         sc->streams[ss].stream = stream;
 1957         sc->streams[ss].bw = bw;
 1958         sc->streams[ss].format = format;
 1959         sc->streams[ss].stripe = stripe;
 1960         if (dmapos != NULL) {
 1961                 if (sc->pos_dma.dma_vaddr != NULL)
 1962                         *dmapos = (uint32_t *)(sc->pos_dma.dma_vaddr + ss * 8);
 1963                 else
 1964                         *dmapos = NULL;
 1965         }
 1966         return (stream);
 1967 }
 1968 
 1969 static void
 1970 hdac_stream_free(device_t dev, device_t child, int dir, int stream)
 1971 {
 1972         struct hdac_softc *sc = device_get_softc(dev);
 1973         nid_t cad = (uintptr_t)device_get_ivars(child);
 1974         int ss;
 1975 
 1976         ss = hdac_find_stream(sc, dir, stream);
 1977         KASSERT(ss >= 0,
 1978             ("Free for not allocated stream (%d/%d)\n", dir, stream));
 1979         if (dir == 1)
 1980                 sc->sdo_bw_used -= sc->streams[ss].bw;
 1981         else
 1982                 sc->codecs[cad].sdi_bw_used -= sc->streams[ss].bw;
 1983         sc->streams[ss].stream = 0;
 1984         sc->streams[ss].dev = NULL;
 1985 }
 1986 
 1987 static int
 1988 hdac_stream_start(device_t dev, device_t child, int dir, int stream,
 1989     bus_addr_t buf, int blksz, int blkcnt)
 1990 {
 1991         struct hdac_softc *sc = device_get_softc(dev);
 1992         struct hdac_bdle *bdle;
 1993         uint64_t addr;
 1994         int i, ss, off;
 1995         uint32_t ctl;
 1996 
 1997         ss = hdac_find_stream(sc, dir, stream);
 1998         KASSERT(ss >= 0,
 1999             ("Start for not allocated stream (%d/%d)\n", dir, stream));
 2000 
 2001         addr = (uint64_t)buf;
 2002         bdle = (struct hdac_bdle *)sc->streams[ss].bdl.dma_vaddr;
 2003         for (i = 0; i < blkcnt; i++, bdle++) {
 2004                 bdle->addrl = htole32((uint32_t)addr);
 2005                 bdle->addrh = htole32((uint32_t)(addr >> 32));
 2006                 bdle->len = htole32(blksz);
 2007                 bdle->ioc = htole32(1);
 2008                 addr += blksz;
 2009         }
 2010 
 2011         bus_dmamap_sync(sc->streams[ss].bdl.dma_tag,
 2012             sc->streams[ss].bdl.dma_map, BUS_DMASYNC_PREWRITE);
 2013 
 2014         off = ss << 5;
 2015         HDAC_WRITE_4(&sc->mem, off + HDAC_SDCBL, blksz * blkcnt);
 2016         HDAC_WRITE_2(&sc->mem, off + HDAC_SDLVI, blkcnt - 1);
 2017         addr = sc->streams[ss].bdl.dma_paddr;
 2018         HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPL, (uint32_t)addr);
 2019         HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPU, (uint32_t)(addr >> 32));
 2020 
 2021         ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL2);
 2022         if (dir)
 2023                 ctl |= HDAC_SDCTL2_DIR;
 2024         else
 2025                 ctl &= ~HDAC_SDCTL2_DIR;
 2026         ctl &= ~HDAC_SDCTL2_STRM_MASK;
 2027         ctl |= stream << HDAC_SDCTL2_STRM_SHIFT;
 2028         ctl &= ~HDAC_SDCTL2_STRIPE_MASK;
 2029         ctl |= sc->streams[ss].stripe << HDAC_SDCTL2_STRIPE_SHIFT;
 2030         HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL2, ctl);
 2031 
 2032         HDAC_WRITE_2(&sc->mem, off + HDAC_SDFMT, sc->streams[ss].format);
 2033 
 2034         ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
 2035         ctl |= 1 << ss;
 2036         HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
 2037 
 2038         HDAC_WRITE_1(&sc->mem, off + HDAC_SDSTS,
 2039             HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS);
 2040         ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
 2041         ctl |= HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE |
 2042             HDAC_SDCTL_RUN;
 2043         HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
 2044 
 2045         sc->streams[ss].blksz = blksz;
 2046         sc->streams[ss].running = 1;
 2047         hdac_poll_reinit(sc);
 2048         return (0);
 2049 }
 2050 
 2051 static void
 2052 hdac_stream_stop(device_t dev, device_t child, int dir, int stream)
 2053 {
 2054         struct hdac_softc *sc = device_get_softc(dev);
 2055         int ss, off;
 2056         uint32_t ctl;
 2057 
 2058         ss = hdac_find_stream(sc, dir, stream);
 2059         KASSERT(ss >= 0,
 2060             ("Stop for not allocated stream (%d/%d)\n", dir, stream));
 2061 
 2062         bus_dmamap_sync(sc->streams[ss].bdl.dma_tag,
 2063             sc->streams[ss].bdl.dma_map, BUS_DMASYNC_POSTWRITE);
 2064 
 2065         off = ss << 5;
 2066         ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
 2067         ctl &= ~(HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE |
 2068             HDAC_SDCTL_RUN);
 2069         HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
 2070 
 2071         ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
 2072         ctl &= ~(1 << ss);
 2073         HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
 2074 
 2075         sc->streams[ss].running = 0;
 2076         hdac_poll_reinit(sc);
 2077 }
 2078 
 2079 static void
 2080 hdac_stream_reset(device_t dev, device_t child, int dir, int stream)
 2081 {
 2082         struct hdac_softc *sc = device_get_softc(dev);
 2083         int timeout = 1000;
 2084         int to = timeout;
 2085         int ss, off;
 2086         uint32_t ctl;
 2087 
 2088         ss = hdac_find_stream(sc, dir, stream);
 2089         KASSERT(ss >= 0,
 2090             ("Reset for not allocated stream (%d/%d)\n", dir, stream));
 2091 
 2092         off = ss << 5;
 2093         ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
 2094         ctl |= HDAC_SDCTL_SRST;
 2095         HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
 2096         do {
 2097                 ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
 2098                 if (ctl & HDAC_SDCTL_SRST)
 2099                         break;
 2100                 DELAY(10);
 2101         } while (--to);
 2102         if (!(ctl & HDAC_SDCTL_SRST))
 2103                 device_printf(dev, "Reset setting timeout\n");
 2104         ctl &= ~HDAC_SDCTL_SRST;
 2105         HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
 2106         to = timeout;
 2107         do {
 2108                 ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
 2109                 if (!(ctl & HDAC_SDCTL_SRST))
 2110                         break;
 2111                 DELAY(10);
 2112         } while (--to);
 2113         if (ctl & HDAC_SDCTL_SRST)
 2114                 device_printf(dev, "Reset timeout!\n");
 2115 }
 2116 
 2117 static uint32_t
 2118 hdac_stream_getptr(device_t dev, device_t child, int dir, int stream)
 2119 {
 2120         struct hdac_softc *sc = device_get_softc(dev);
 2121         int ss, off;
 2122 
 2123         ss = hdac_find_stream(sc, dir, stream);
 2124         KASSERT(ss >= 0,
 2125             ("Reset for not allocated stream (%d/%d)\n", dir, stream));
 2126 
 2127         off = ss << 5;
 2128         return (HDAC_READ_4(&sc->mem, off + HDAC_SDLPIB));
 2129 }
 2130 
 2131 static int
 2132 hdac_unsol_alloc(device_t dev, device_t child, int tag)
 2133 {
 2134         struct hdac_softc *sc = device_get_softc(dev);
 2135 
 2136         sc->unsol_registered++;
 2137         hdac_poll_reinit(sc);
 2138         return (tag);
 2139 }
 2140 
 2141 static void
 2142 hdac_unsol_free(device_t dev, device_t child, int tag)
 2143 {
 2144         struct hdac_softc *sc = device_get_softc(dev);
 2145 
 2146         sc->unsol_registered--;
 2147         hdac_poll_reinit(sc);
 2148 }
 2149 
 2150 static device_method_t hdac_methods[] = {
 2151         /* device interface */
 2152         DEVMETHOD(device_probe,         hdac_probe),
 2153         DEVMETHOD(device_attach,        hdac_attach),
 2154         DEVMETHOD(device_detach,        hdac_detach),
 2155         DEVMETHOD(device_suspend,       hdac_suspend),
 2156         DEVMETHOD(device_resume,        hdac_resume),
 2157         /* Bus interface */
 2158         DEVMETHOD(bus_get_dma_tag,      hdac_get_dma_tag),
 2159         DEVMETHOD(bus_print_child,      hdac_print_child),
 2160         DEVMETHOD(bus_child_location,   hdac_child_location),
 2161         DEVMETHOD(bus_child_pnpinfo,    hdac_child_pnpinfo_method),
 2162         DEVMETHOD(bus_read_ivar,        hdac_read_ivar),
 2163         DEVMETHOD(hdac_get_mtx,         hdac_get_mtx),
 2164         DEVMETHOD(hdac_codec_command,   hdac_codec_command),
 2165         DEVMETHOD(hdac_stream_alloc,    hdac_stream_alloc),
 2166         DEVMETHOD(hdac_stream_free,     hdac_stream_free),
 2167         DEVMETHOD(hdac_stream_start,    hdac_stream_start),
 2168         DEVMETHOD(hdac_stream_stop,     hdac_stream_stop),
 2169         DEVMETHOD(hdac_stream_reset,    hdac_stream_reset),
 2170         DEVMETHOD(hdac_stream_getptr,   hdac_stream_getptr),
 2171         DEVMETHOD(hdac_unsol_alloc,     hdac_unsol_alloc),
 2172         DEVMETHOD(hdac_unsol_free,      hdac_unsol_free),
 2173         DEVMETHOD_END
 2174 };
 2175 
 2176 static driver_t hdac_driver = {
 2177         "hdac",
 2178         hdac_methods,
 2179         sizeof(struct hdac_softc),
 2180 };
 2181 
 2182 DRIVER_MODULE(snd_hda, pci, hdac_driver, NULL, NULL);

Cache object: 843cd663634c3da09646be984c77eb17


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.