The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/sound/pcm/feeder_rate.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2005-2009 Ariff Abdullah <ariff@FreeBSD.org>
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  */
   26 
   27 /*
   28  * feeder_rate: (Codename: Z Resampler), which means any effort to create
   29  *              future replacement for this resampler are simply absurd unless
   30  *              the world decide to add new alphabet after Z.
   31  *
   32  * FreeBSD bandlimited sinc interpolator, technically based on
   33  * "Digital Audio Resampling" by Julius O. Smith III
   34  *  - http://ccrma.stanford.edu/~jos/resample/
   35  *
   36  * The Good:
   37  * + all out fixed point integer operations, no soft-float or anything like
   38  *   that.
   39  * + classic polyphase converters with high quality coefficient's polynomial
   40  *   interpolators.
   41  * + fast, faster, or the fastest of its kind.
   42  * + compile time configurable.
   43  * + etc etc..
   44  *
   45  * The Bad:
   46  * - The z, z_, and Z_ . Due to mental block (or maybe just 0x7a69), I
   47  *   couldn't think of anything simpler than that (feeder_rate_xxx is just
   48  *   too long). Expect possible clashes with other zitizens (any?).
   49  */
   50 
   51 #ifdef _KERNEL
   52 #ifdef HAVE_KERNEL_OPTION_HEADERS
   53 #include "opt_snd.h"
   54 #endif
   55 #include <dev/sound/pcm/sound.h>
   56 #include <dev/sound/pcm/pcm.h>
   57 #include "feeder_if.h"
   58 
   59 #define SND_USE_FXDIV
   60 #include "snd_fxdiv_gen.h"
   61 
   62 SND_DECLARE_FILE("$FreeBSD: releng/8.2/sys/dev/sound/pcm/feeder_rate.c 209828 2010-07-08 20:46:55Z avg $");
   63 #endif
   64 
   65 #include "feeder_rate_gen.h"
   66 
   67 #if !defined(_KERNEL) && defined(SND_DIAGNOSTIC)
   68 #undef Z_DIAGNOSTIC
   69 #define Z_DIAGNOSTIC            1
   70 #elif defined(_KERNEL)
   71 #undef Z_DIAGNOSTIC
   72 #endif
   73 
   74 #ifndef Z_QUALITY_DEFAULT
   75 #define Z_QUALITY_DEFAULT       Z_QUALITY_LINEAR
   76 #endif
   77 
   78 #define Z_RESERVOIR             2048
   79 #define Z_RESERVOIR_MAX         131072
   80 
   81 #define Z_SINC_MAX              0x3fffff
   82 #define Z_SINC_DOWNMAX          48              /* 384000 / 8000 */
   83 
   84 #ifdef _KERNEL
   85 #define Z_POLYPHASE_MAX         183040          /* 286 taps, 640 phases */
   86 #else
   87 #define Z_POLYPHASE_MAX         1464320         /* 286 taps, 5120 phases */
   88 #endif
   89 
   90 #define Z_RATE_DEFAULT          48000
   91 
   92 #define Z_RATE_MIN              FEEDRATE_RATEMIN
   93 #define Z_RATE_MAX              FEEDRATE_RATEMAX
   94 #define Z_ROUNDHZ               FEEDRATE_ROUNDHZ
   95 #define Z_ROUNDHZ_MIN           FEEDRATE_ROUNDHZ_MIN
   96 #define Z_ROUNDHZ_MAX           FEEDRATE_ROUNDHZ_MAX
   97 
   98 #define Z_RATE_SRC              FEEDRATE_SRC
   99 #define Z_RATE_DST              FEEDRATE_DST
  100 #define Z_RATE_QUALITY          FEEDRATE_QUALITY
  101 #define Z_RATE_CHANNELS         FEEDRATE_CHANNELS
  102 
  103 #define Z_PARANOID              1
  104 
  105 #define Z_MULTIFORMAT           1
  106 
  107 #ifdef _KERNEL
  108 #undef Z_USE_ALPHADRIFT
  109 #define Z_USE_ALPHADRIFT        1
  110 #endif
  111 
  112 #define Z_FACTOR_MIN            1
  113 #define Z_FACTOR_MAX            Z_MASK
  114 #define Z_FACTOR_SAFE(v)        (!((v) < Z_FACTOR_MIN || (v) > Z_FACTOR_MAX))
  115 
  116 struct z_info;
  117 
  118 typedef void (*z_resampler_t)(struct z_info *, uint8_t *);
  119 
  120 struct z_info {
  121         int32_t rsrc, rdst;     /* original source / destination rates */
  122         int32_t src, dst;       /* rounded source / destination rates */
  123         int32_t channels;       /* total channels */
  124         int32_t bps;            /* bytes-per-sample */
  125         int32_t quality;        /* resampling quality */
  126 
  127         int32_t z_gx, z_gy;     /* interpolation / decimation ratio */
  128         int32_t z_alpha;        /* output sample time phase / drift */
  129         uint8_t *z_delay;       /* FIR delay line / linear buffer */
  130         int32_t *z_coeff;       /* FIR coefficients */
  131         int32_t *z_dcoeff;      /* FIR coefficients differences */
  132         int32_t *z_pcoeff;      /* FIR polyphase coefficients */
  133         int32_t z_scale;        /* output scaling */
  134         int32_t z_dx;           /* input sample drift increment */
  135         int32_t z_dy;           /* output sample drift increment */
  136 #ifdef Z_USE_ALPHADRIFT
  137         int32_t z_alphadrift;   /* alpha drift rate */
  138         int32_t z_startdrift;   /* buffer start position drift rate */
  139 #endif
  140         int32_t z_mask;         /* delay line full length mask */
  141         int32_t z_size;         /* half width of FIR taps */
  142         int32_t z_full;         /* full size of delay line */
  143         int32_t z_alloc;        /* largest allocated full size of delay line */
  144         int32_t z_start;        /* buffer processing start position */
  145         int32_t z_pos;          /* current position for the next feed */
  146 #ifdef Z_DIAGNOSTIC
  147         uint32_t z_cycle;       /* output cycle, purely for statistical */
  148 #endif
  149         int32_t z_maxfeed;      /* maximum feed to avoid 32bit overflow */
  150 
  151         z_resampler_t z_resample;
  152 };
  153 
  154 int feeder_rate_min = Z_RATE_MIN;
  155 int feeder_rate_max = Z_RATE_MAX;
  156 int feeder_rate_round = Z_ROUNDHZ;
  157 int feeder_rate_quality = Z_QUALITY_DEFAULT;
  158 
  159 static int feeder_rate_polyphase_max = Z_POLYPHASE_MAX;
  160 
  161 #ifdef _KERNEL
  162 static char feeder_rate_presets[] = FEEDER_RATE_PRESETS;
  163 SYSCTL_STRING(_hw_snd, OID_AUTO, feeder_rate_presets, CTLFLAG_RD,
  164     &feeder_rate_presets, 0, "compile-time rate presets");
  165 
  166 TUNABLE_INT("hw.snd.feeder_rate_min", &feeder_rate_min);
  167 TUNABLE_INT("hw.snd.feeder_rate_max", &feeder_rate_max);
  168 TUNABLE_INT("hw.snd.feeder_rate_round", &feeder_rate_round);
  169 TUNABLE_INT("hw.snd.feeder_rate_quality", &feeder_rate_quality);
  170 
  171 TUNABLE_INT("hw.snd.feeder_rate_polyphase_max", &feeder_rate_polyphase_max);
  172 SYSCTL_INT(_hw_snd, OID_AUTO, feeder_rate_polyphase_max, CTLFLAG_RW,
  173     &feeder_rate_polyphase_max, 0, "maximum allowable polyphase entries");
  174 
  175 static int
  176 sysctl_hw_snd_feeder_rate_min(SYSCTL_HANDLER_ARGS)
  177 {
  178         int err, val;
  179 
  180         val = feeder_rate_min;
  181         err = sysctl_handle_int(oidp, &val, 0, req);
  182 
  183         if (err != 0 || req->newptr == NULL || val == feeder_rate_min)
  184                 return (err);
  185 
  186         if (!(Z_FACTOR_SAFE(val) && val < feeder_rate_max))
  187                 return (EINVAL);
  188 
  189         feeder_rate_min = val;
  190 
  191         return (0);
  192 }
  193 SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_min, CTLTYPE_INT | CTLFLAG_RW,
  194     0, sizeof(int), sysctl_hw_snd_feeder_rate_min, "I",
  195     "minimum allowable rate");
  196 
  197 static int
  198 sysctl_hw_snd_feeder_rate_max(SYSCTL_HANDLER_ARGS)
  199 {
  200         int err, val;
  201 
  202         val = feeder_rate_max;
  203         err = sysctl_handle_int(oidp, &val, 0, req);
  204 
  205         if (err != 0 || req->newptr == NULL || val == feeder_rate_max)
  206                 return (err);
  207 
  208         if (!(Z_FACTOR_SAFE(val) && val > feeder_rate_min))
  209                 return (EINVAL);
  210 
  211         feeder_rate_max = val;
  212 
  213         return (0);
  214 }
  215 SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_max, CTLTYPE_INT | CTLFLAG_RW,
  216     0, sizeof(int), sysctl_hw_snd_feeder_rate_max, "I",
  217     "maximum allowable rate");
  218 
  219 static int
  220 sysctl_hw_snd_feeder_rate_round(SYSCTL_HANDLER_ARGS)
  221 {
  222         int err, val;
  223 
  224         val = feeder_rate_round;
  225         err = sysctl_handle_int(oidp, &val, 0, req);
  226 
  227         if (err != 0 || req->newptr == NULL || val == feeder_rate_round)
  228                 return (err);
  229 
  230         if (val < Z_ROUNDHZ_MIN || val > Z_ROUNDHZ_MAX)
  231                 return (EINVAL);
  232 
  233         feeder_rate_round = val - (val % Z_ROUNDHZ);
  234 
  235         return (0);
  236 }
  237 SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_round, CTLTYPE_INT | CTLFLAG_RW,
  238     0, sizeof(int), sysctl_hw_snd_feeder_rate_round, "I",
  239     "sample rate converter rounding threshold");
  240 
  241 static int
  242 sysctl_hw_snd_feeder_rate_quality(SYSCTL_HANDLER_ARGS)
  243 {
  244         struct snddev_info *d;
  245         struct pcm_channel *c;
  246         struct pcm_feeder *f;
  247         int i, err, val;
  248 
  249         val = feeder_rate_quality;
  250         err = sysctl_handle_int(oidp, &val, 0, req);
  251 
  252         if (err != 0 || req->newptr == NULL || val == feeder_rate_quality)
  253                 return (err);
  254 
  255         if (val < Z_QUALITY_MIN || val > Z_QUALITY_MAX)
  256                 return (EINVAL);
  257 
  258         feeder_rate_quality = val;
  259 
  260         /*
  261          * Traverse all available channels on each device and try to
  262          * set resampler quality if and only if it is exist as
  263          * part of feeder chains and the channel is idle.
  264          */
  265         for (i = 0; pcm_devclass != NULL &&
  266             i < devclass_get_maxunit(pcm_devclass); i++) {
  267                 d = devclass_get_softc(pcm_devclass, i);
  268                 if (!PCM_REGISTERED(d))
  269                         continue;
  270                 PCM_LOCK(d);
  271                 PCM_WAIT(d);
  272                 PCM_ACQUIRE(d);
  273                 CHN_FOREACH(c, d, channels.pcm) {
  274                         CHN_LOCK(c);
  275                         f = chn_findfeeder(c, FEEDER_RATE);
  276                         if (f == NULL || f->data == NULL || CHN_STARTED(c)) {
  277                                 CHN_UNLOCK(c);
  278                                 continue;
  279                         }
  280                         (void)FEEDER_SET(f, FEEDRATE_QUALITY, val);
  281                         CHN_UNLOCK(c);
  282                 }
  283                 PCM_RELEASE(d);
  284                 PCM_UNLOCK(d);
  285         }
  286 
  287         return (0);
  288 }
  289 SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_quality, CTLTYPE_INT | CTLFLAG_RW,
  290     0, sizeof(int), sysctl_hw_snd_feeder_rate_quality, "I",
  291     "sample rate converter quality ("__XSTRING(Z_QUALITY_MIN)"=low .. "
  292     __XSTRING(Z_QUALITY_MAX)"=high)");
  293 #endif  /* _KERNEL */
  294 
  295 
  296 /*
  297  * Resampler type.
  298  */
  299 #define Z_IS_ZOH(i)             ((i)->quality == Z_QUALITY_ZOH)
  300 #define Z_IS_LINEAR(i)          ((i)->quality == Z_QUALITY_LINEAR)
  301 #define Z_IS_SINC(i)            ((i)->quality > Z_QUALITY_LINEAR)
  302 
  303 /*
  304  * Macroses for accurate sample time drift calculations.
  305  *
  306  * gy2gx : given the amount of output, return the _exact_ required amount of
  307  *         input.
  308  * gx2gy : given the amount of input, return the _maximum_ amount of output
  309  *         that will be generated.
  310  * drift : given the amount of input and output, return the elapsed
  311  *         sample-time.
  312  */
  313 #define _Z_GCAST(x)             ((uint64_t)(x))
  314 
  315 #if defined(__GNUCLIKE_ASM) && defined(__i386__)
  316 /*
  317  * This is where i386 being beaten to a pulp. Fortunately this function is
  318  * rarely being called and if it is, it will decide the best (hopefully)
  319  * fastest way to do the division. If we can ensure that everything is dword
  320  * aligned, letting the compiler to call udivdi3 to do the division can be
  321  * faster compared to this.
  322  *
  323  * amd64 is the clear winner here, no question about it.
  324  */
  325 static __inline uint32_t
  326 Z_DIV(uint64_t v, uint32_t d)
  327 {
  328         uint32_t hi, lo, quo, rem;
  329 
  330         hi = v >> 32;
  331         lo = v & 0xffffffff;
  332 
  333         /*
  334          * As much as we can, try to avoid long division like a plague.
  335          */
  336         if (hi == 0)
  337                 quo = lo / d;
  338         else
  339                 __asm("divl %2"
  340                     : "=a" (quo), "=d" (rem)
  341                     : "r" (d), "" (lo), "1" (hi));
  342 
  343         return (quo);
  344 }
  345 #else
  346 #define Z_DIV(x, y)             ((x) / (y))
  347 #endif
  348 
  349 #define _Z_GY2GX(i, a, v)                                               \
  350         Z_DIV(((_Z_GCAST((i)->z_gx) * (v)) + ((i)->z_gy - (a) - 1)),    \
  351         (i)->z_gy)
  352 
  353 #define _Z_GX2GY(i, a, v)                                               \
  354         Z_DIV(((_Z_GCAST((i)->z_gy) * (v)) + (a)), (i)->z_gx)
  355 
  356 #define _Z_DRIFT(i, x, y)                                               \
  357         ((_Z_GCAST((i)->z_gy) * (x)) - (_Z_GCAST((i)->z_gx) * (y)))
  358 
  359 #define z_gy2gx(i, v)           _Z_GY2GX(i, (i)->z_alpha, v)
  360 #define z_gx2gy(i, v)           _Z_GX2GY(i, (i)->z_alpha, v)
  361 #define z_drift(i, x, y)        _Z_DRIFT(i, x, y)
  362 
  363 /*
  364  * Macroses for SINC coefficients table manipulations.. whatever.
  365  */
  366 #define Z_SINC_COEFF_IDX(i)     ((i)->quality - Z_QUALITY_LINEAR - 1)
  367 
  368 #define Z_SINC_LEN(i)                                                   \
  369         ((int32_t)(((uint64_t)z_coeff_tab[Z_SINC_COEFF_IDX(i)].len <<   \
  370             Z_SHIFT) / (i)->z_dy))
  371 
  372 #define Z_SINC_BASE_LEN(i)                                              \
  373         ((z_coeff_tab[Z_SINC_COEFF_IDX(i)].len - 1) >> (Z_DRIFT_SHIFT - 1))
  374 
  375 /*
  376  * Macroses for linear delay buffer operations. Alignment is not
  377  * really necessary since we're not using true circular buffer, but it
  378  * will help us guard against possible trespasser. To be honest,
  379  * the linear block operations does not need guarding at all due to
  380  * accurate drifting!
  381  */
  382 #define z_align(i, v)           ((v) & (i)->z_mask)
  383 #define z_next(i, o, v)         z_align(i, (o) + (v))
  384 #define z_prev(i, o, v)         z_align(i, (o) - (v))
  385 #define z_fetched(i)            (z_align(i, (i)->z_pos - (i)->z_start) - 1)
  386 #define z_free(i)               ((i)->z_full - (i)->z_pos)
  387 
  388 /*
  389  * Macroses for Bla Bla .. :)
  390  */
  391 #define z_copy(src, dst, sz)    (void)memcpy(dst, src, sz)
  392 #define z_feed(...)             FEEDER_FEED(__VA_ARGS__)
  393 
  394 static __inline uint32_t
  395 z_min(uint32_t x, uint32_t y)
  396 {
  397 
  398         return ((x < y) ? x : y);
  399 }
  400 
  401 static int32_t
  402 z_gcd(int32_t x, int32_t y)
  403 {
  404         int32_t w;
  405 
  406         while (y != 0) {
  407                 w = x % y;
  408                 x = y;
  409                 y = w;
  410         }
  411 
  412         return (x);
  413 }
  414 
  415 static int32_t
  416 z_roundpow2(int32_t v)
  417 {
  418         int32_t i;
  419 
  420         i = 1;
  421 
  422         /*
  423          * Let it overflow at will..
  424          */
  425         while (i > 0 && i < v)
  426                 i <<= 1;
  427 
  428         return (i);
  429 }
  430 
  431 /*
  432  * Zero Order Hold, the worst of the worst, an insult against quality,
  433  * but super fast.
  434  */
  435 static void
  436 z_feed_zoh(struct z_info *info, uint8_t *dst)
  437 {
  438 #if 0
  439         z_copy(info->z_delay +
  440             (info->z_start * info->channels * info->bps), dst,
  441             info->channels * info->bps);
  442 #else
  443         uint32_t cnt;
  444         uint8_t *src;
  445 
  446         cnt = info->channels * info->bps;
  447         src = info->z_delay + (info->z_start * cnt);
  448 
  449         /*
  450          * This is a bit faster than doing bcopy() since we're dealing
  451          * with possible unaligned samples.
  452          */
  453         do {
  454                 *dst++ = *src++;
  455         } while (--cnt != 0);
  456 #endif
  457 }
  458 
  459 /*
  460  * Linear Interpolation. This at least sounds better (perceptually) and fast,
  461  * but without any proper filtering which means aliasing still exist and
  462  * could become worst with a right sample. Interpolation centered within
  463  * Z_LINEAR_ONE between the present and previous sample and everything is
  464  * done with simple 32bit scaling arithmetic.
  465  */
  466 #define Z_DECLARE_LINEAR(SIGN, BIT, ENDIAN)                                     \
  467 static void                                                                     \
  468 z_feed_linear_##SIGN##BIT##ENDIAN(struct z_info *info, uint8_t *dst)            \
  469 {                                                                               \
  470         int32_t z;                                                              \
  471         intpcm_t x, y;                                                          \
  472         uint32_t ch;                                                            \
  473         uint8_t *sx, *sy;                                                       \
  474                                                                                 \
  475         z = ((uint32_t)info->z_alpha * info->z_dx) >> Z_LINEAR_UNSHIFT;         \
  476                                                                                 \
  477         sx = info->z_delay + (info->z_start * info->channels *                  \
  478             PCM_##BIT##_BPS);                                                   \
  479         sy = sx - (info->channels * PCM_##BIT##_BPS);                           \
  480                                                                                 \
  481         ch = info->channels;                                                    \
  482                                                                                 \
  483         do {                                                                    \
  484                 x = _PCM_READ_##SIGN##BIT##_##ENDIAN(sx);                       \
  485                 y = _PCM_READ_##SIGN##BIT##_##ENDIAN(sy);                       \
  486                 x = Z_LINEAR_INTERPOLATE_##BIT(z, x, y);                        \
  487                 _PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, x);                      \
  488                 sx += PCM_##BIT##_BPS;                                          \
  489                 sy += PCM_##BIT##_BPS;                                          \
  490                 dst += PCM_##BIT##_BPS;                                         \
  491         } while (--ch != 0);                                                    \
  492 }
  493 
  494 /*
  495  * Userland clipping diagnostic check, not enabled in kernel compilation.
  496  * While doing sinc interpolation, unrealistic samples like full scale sine
  497  * wav will clip, but for other things this will not make any noise at all.
  498  * Everybody should learn how to normalized perceived loudness of their own
  499  * music/sounds/samples (hint: ReplayGain).
  500  */
  501 #ifdef Z_DIAGNOSTIC
  502 #define Z_CLIP_CHECK(v, BIT)    do {                                    \
  503         if ((v) > PCM_S##BIT##_MAX) {                                   \
  504                 fprintf(stderr, "Overflow: v=%jd, max=%jd\n",           \
  505                     (intmax_t)(v), (intmax_t)PCM_S##BIT##_MAX);         \
  506         } else if ((v) < PCM_S##BIT##_MIN) {                            \
  507                 fprintf(stderr, "Underflow: v=%jd, min=%jd\n",          \
  508                     (intmax_t)(v), (intmax_t)PCM_S##BIT##_MIN);         \
  509         }                                                               \
  510 } while (0)
  511 #else
  512 #define Z_CLIP_CHECK(...)
  513 #endif
  514 
  515 #define Z_CLAMP(v, BIT)                                                 \
  516         (((v) > PCM_S##BIT##_MAX) ? PCM_S##BIT##_MAX :                  \
  517         (((v) < PCM_S##BIT##_MIN) ? PCM_S##BIT##_MIN : (v)))
  518 
  519 /*
  520  * Sine Cardinal (SINC) Interpolation. Scaling is done in 64 bit, so
  521  * there's no point to hold the plate any longer. All samples will be
  522  * shifted to a full 32 bit, scaled and restored during write for
  523  * maximum dynamic range (only for downsampling).
  524  */
  525 #define _Z_SINC_ACCUMULATE(SIGN, BIT, ENDIAN, adv)                      \
  526         c += z >> Z_SHIFT;                                              \
  527         z &= Z_MASK;                                                    \
  528         coeff = Z_COEFF_INTERPOLATE(z, z_coeff[c], z_dcoeff[c]);        \
  529         x = _PCM_READ_##SIGN##BIT##_##ENDIAN(p);                        \
  530         v += Z_NORM_##BIT((intpcm64_t)x * coeff);                       \
  531         z += info->z_dy;                                                \
  532         p adv##= info->channels * PCM_##BIT##_BPS
  533 
  534 /* 
  535  * XXX GCC4 optimization is such a !@#$%, need manual unrolling.
  536  */
  537 #if defined(__GNUC__) && __GNUC__ >= 4
  538 #define Z_SINC_ACCUMULATE(...)  do {                                    \
  539         _Z_SINC_ACCUMULATE(__VA_ARGS__);                                \
  540         _Z_SINC_ACCUMULATE(__VA_ARGS__);                                \
  541 } while (0)
  542 #define Z_SINC_ACCUMULATE_DECR          2
  543 #else
  544 #define Z_SINC_ACCUMULATE(...)  do {                                    \
  545         _Z_SINC_ACCUMULATE(__VA_ARGS__);                                \
  546 } while (0)
  547 #define Z_SINC_ACCUMULATE_DECR          1
  548 #endif
  549 
  550 #define Z_DECLARE_SINC(SIGN, BIT, ENDIAN)                                       \
  551 static void                                                                     \
  552 z_feed_sinc_##SIGN##BIT##ENDIAN(struct z_info *info, uint8_t *dst)              \
  553 {                                                                               \
  554         intpcm64_t v;                                                           \
  555         intpcm_t x;                                                             \
  556         uint8_t *p;                                                             \
  557         int32_t coeff, z, *z_coeff, *z_dcoeff;                                  \
  558         uint32_t c, center, ch, i;                                              \
  559                                                                                 \
  560         z_coeff = info->z_coeff;                                                \
  561         z_dcoeff = info->z_dcoeff;                                              \
  562         center = z_prev(info, info->z_start, info->z_size);                     \
  563         ch = info->channels * PCM_##BIT##_BPS;                                  \
  564         dst += ch;                                                              \
  565                                                                                 \
  566         do {                                                                    \
  567                 dst -= PCM_##BIT##_BPS;                                         \
  568                 ch -= PCM_##BIT##_BPS;                                          \
  569                 v = 0;                                                          \
  570                 z = info->z_alpha * info->z_dx;                                 \
  571                 c = 0;                                                          \
  572                 p = info->z_delay + (z_next(info, center, 1) *                  \
  573                     info->channels * PCM_##BIT##_BPS) + ch;                     \
  574                 for (i = info->z_size; i != 0; i -= Z_SINC_ACCUMULATE_DECR)     \
  575                         Z_SINC_ACCUMULATE(SIGN, BIT, ENDIAN, +);                \
  576                 z = info->z_dy - (info->z_alpha * info->z_dx);                  \
  577                 c = 0;                                                          \
  578                 p = info->z_delay + (center * info->channels *                  \
  579                     PCM_##BIT##_BPS) + ch;                                      \
  580                 for (i = info->z_size; i != 0; i -= Z_SINC_ACCUMULATE_DECR)     \
  581                         Z_SINC_ACCUMULATE(SIGN, BIT, ENDIAN, -);                \
  582                 if (info->z_scale != Z_ONE)                                     \
  583                         v = Z_SCALE_##BIT(v, info->z_scale);                    \
  584                 else                                                            \
  585                         v >>= Z_COEFF_SHIFT - Z_GUARD_BIT_##BIT;                \
  586                 Z_CLIP_CHECK(v, BIT);                                           \
  587                 _PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, Z_CLAMP(v, BIT));        \
  588         } while (ch != 0);                                                      \
  589 }
  590 
  591 #define Z_DECLARE_SINC_POLYPHASE(SIGN, BIT, ENDIAN)                             \
  592 static void                                                                     \
  593 z_feed_sinc_polyphase_##SIGN##BIT##ENDIAN(struct z_info *info, uint8_t *dst)    \
  594 {                                                                               \
  595         intpcm64_t v;                                                           \
  596         intpcm_t x;                                                             \
  597         uint8_t *p;                                                             \
  598         int32_t ch, i, start, *z_pcoeff;                                        \
  599                                                                                 \
  600         ch = info->channels * PCM_##BIT##_BPS;                                  \
  601         dst += ch;                                                              \
  602         start = z_prev(info, info->z_start, (info->z_size << 1) - 1) * ch;      \
  603                                                                                 \
  604         do {                                                                    \
  605                 dst -= PCM_##BIT##_BPS;                                         \
  606                 ch -= PCM_##BIT##_BPS;                                          \
  607                 v = 0;                                                          \
  608                 p = info->z_delay + start + ch;                                 \
  609                 z_pcoeff = info->z_pcoeff +                                     \
  610                     ((info->z_alpha * info->z_size) << 1);                      \
  611                 for (i = info->z_size; i != 0; i--) {                           \
  612                         x = _PCM_READ_##SIGN##BIT##_##ENDIAN(p);                \
  613                         v += Z_NORM_##BIT((intpcm64_t)x * *z_pcoeff);           \
  614                         z_pcoeff++;                                             \
  615                         p += info->channels * PCM_##BIT##_BPS;                  \
  616                         x = _PCM_READ_##SIGN##BIT##_##ENDIAN(p);                \
  617                         v += Z_NORM_##BIT((intpcm64_t)x * *z_pcoeff);           \
  618                         z_pcoeff++;                                             \
  619                         p += info->channels * PCM_##BIT##_BPS;                  \
  620                 }                                                               \
  621                 if (info->z_scale != Z_ONE)                                     \
  622                         v = Z_SCALE_##BIT(v, info->z_scale);                    \
  623                 else                                                            \
  624                         v >>= Z_COEFF_SHIFT - Z_GUARD_BIT_##BIT;                \
  625                 Z_CLIP_CHECK(v, BIT);                                           \
  626                 _PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, Z_CLAMP(v, BIT));        \
  627         } while (ch != 0);                                                      \
  628 }
  629 
  630 #define Z_DECLARE(SIGN, BIT, ENDIAN)                                    \
  631         Z_DECLARE_LINEAR(SIGN, BIT, ENDIAN)                             \
  632         Z_DECLARE_SINC(SIGN, BIT, ENDIAN)                               \
  633         Z_DECLARE_SINC_POLYPHASE(SIGN, BIT, ENDIAN)
  634 
  635 #if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
  636 Z_DECLARE(S, 16, LE)
  637 Z_DECLARE(S, 32, LE)
  638 #endif
  639 #if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
  640 Z_DECLARE(S, 16, BE)
  641 Z_DECLARE(S, 32, BE)
  642 #endif
  643 #ifdef SND_FEEDER_MULTIFORMAT
  644 Z_DECLARE(S,  8, NE)
  645 Z_DECLARE(S, 24, LE)
  646 Z_DECLARE(S, 24, BE)
  647 Z_DECLARE(U,  8, NE)
  648 Z_DECLARE(U, 16, LE)
  649 Z_DECLARE(U, 24, LE)
  650 Z_DECLARE(U, 32, LE)
  651 Z_DECLARE(U, 16, BE)
  652 Z_DECLARE(U, 24, BE)
  653 Z_DECLARE(U, 32, BE)
  654 #endif
  655 
  656 enum {
  657         Z_RESAMPLER_ZOH,
  658         Z_RESAMPLER_LINEAR,
  659         Z_RESAMPLER_SINC,
  660         Z_RESAMPLER_SINC_POLYPHASE,
  661         Z_RESAMPLER_LAST
  662 };
  663 
  664 #define Z_RESAMPLER_IDX(i)                                              \
  665         (Z_IS_SINC(i) ? Z_RESAMPLER_SINC : (i)->quality)
  666 
  667 #define Z_RESAMPLER_ENTRY(SIGN, BIT, ENDIAN)                                    \
  668         {                                                                       \
  669             AFMT_##SIGN##BIT##_##ENDIAN,                                        \
  670             {                                                                   \
  671                 [Z_RESAMPLER_ZOH]    = z_feed_zoh,                              \
  672                 [Z_RESAMPLER_LINEAR] = z_feed_linear_##SIGN##BIT##ENDIAN,       \
  673                 [Z_RESAMPLER_SINC]   = z_feed_sinc_##SIGN##BIT##ENDIAN,         \
  674                 [Z_RESAMPLER_SINC_POLYPHASE]   =                                \
  675                     z_feed_sinc_polyphase_##SIGN##BIT##ENDIAN                   \
  676             }                                                                   \
  677         }
  678 
  679 static const struct {
  680         uint32_t format;
  681         z_resampler_t resampler[Z_RESAMPLER_LAST];
  682 } z_resampler_tab[] = {
  683 #if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
  684         Z_RESAMPLER_ENTRY(S, 16, LE),
  685         Z_RESAMPLER_ENTRY(S, 32, LE),
  686 #endif
  687 #if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
  688         Z_RESAMPLER_ENTRY(S, 16, BE),
  689         Z_RESAMPLER_ENTRY(S, 32, BE),
  690 #endif
  691 #ifdef SND_FEEDER_MULTIFORMAT
  692         Z_RESAMPLER_ENTRY(S,  8, NE),
  693         Z_RESAMPLER_ENTRY(S, 24, LE),
  694         Z_RESAMPLER_ENTRY(S, 24, BE),
  695         Z_RESAMPLER_ENTRY(U,  8, NE),
  696         Z_RESAMPLER_ENTRY(U, 16, LE),
  697         Z_RESAMPLER_ENTRY(U, 24, LE),
  698         Z_RESAMPLER_ENTRY(U, 32, LE),
  699         Z_RESAMPLER_ENTRY(U, 16, BE),
  700         Z_RESAMPLER_ENTRY(U, 24, BE),
  701         Z_RESAMPLER_ENTRY(U, 32, BE),
  702 #endif
  703 };
  704 
  705 #define Z_RESAMPLER_TAB_SIZE                                            \
  706         ((int32_t)(sizeof(z_resampler_tab) / sizeof(z_resampler_tab[0])))
  707 
  708 static void
  709 z_resampler_reset(struct z_info *info)
  710 {
  711 
  712         info->src = info->rsrc - (info->rsrc % ((feeder_rate_round > 0 &&
  713             info->rsrc > feeder_rate_round) ? feeder_rate_round : 1));
  714         info->dst = info->rdst - (info->rdst % ((feeder_rate_round > 0 &&
  715             info->rdst > feeder_rate_round) ? feeder_rate_round : 1));
  716         info->z_gx = 1;
  717         info->z_gy = 1;
  718         info->z_alpha = 0;
  719         info->z_resample = NULL;
  720         info->z_size = 1;
  721         info->z_coeff = NULL;
  722         info->z_dcoeff = NULL;
  723         if (info->z_pcoeff != NULL) {
  724                 free(info->z_pcoeff, M_DEVBUF);
  725                 info->z_pcoeff = NULL;
  726         }
  727         info->z_scale = Z_ONE;
  728         info->z_dx = Z_FULL_ONE;
  729         info->z_dy = Z_FULL_ONE;
  730 #ifdef Z_DIAGNOSTIC
  731         info->z_cycle = 0;
  732 #endif
  733         if (info->quality < Z_QUALITY_MIN)
  734                 info->quality = Z_QUALITY_MIN;
  735         else if (info->quality > Z_QUALITY_MAX)
  736                 info->quality = Z_QUALITY_MAX;
  737 }
  738 
  739 #ifdef Z_PARANOID
  740 static int32_t
  741 z_resampler_sinc_len(struct z_info *info)
  742 {
  743         int32_t c, z, len, lmax;
  744 
  745         if (!Z_IS_SINC(info))
  746                 return (1);
  747 
  748         /*
  749          * A rather careful (or useless) way to calculate filter length.
  750          * Z_SINC_LEN() itself is accurate enough to do its job. Extra
  751          * sanity checking is not going to hurt though..
  752          */
  753         c = 0;
  754         z = info->z_dy;
  755         len = 0;
  756         lmax = z_coeff_tab[Z_SINC_COEFF_IDX(info)].len;
  757 
  758         do {
  759                 c += z >> Z_SHIFT;
  760                 z &= Z_MASK;
  761                 z += info->z_dy;
  762         } while (c < lmax && ++len > 0);
  763 
  764         if (len != Z_SINC_LEN(info)) {
  765 #ifdef _KERNEL
  766                 printf("%s(): sinc l=%d != Z_SINC_LEN=%d\n",
  767                     __func__, len, Z_SINC_LEN(info));
  768 #else
  769                 fprintf(stderr, "%s(): sinc l=%d != Z_SINC_LEN=%d\n",
  770                     __func__, len, Z_SINC_LEN(info));
  771                 return (-1);
  772 #endif
  773         }
  774 
  775         return (len);
  776 }
  777 #else
  778 #define z_resampler_sinc_len(i)         (Z_IS_SINC(i) ? Z_SINC_LEN(i) : 1)
  779 #endif
  780 
  781 #define Z_POLYPHASE_COEFF_SHIFT         0
  782 
  783 /*
  784  * Pick suitable polynomial interpolators based on filter oversampled ratio
  785  * (2 ^ Z_DRIFT_SHIFT).
  786  */
  787 #if !(defined(Z_COEFF_INTERP_ZOH) || defined(Z_COEFF_INTERP_LINEAR) ||          \
  788     defined(Z_COEFF_INTERP_QUADRATIC) || defined(Z_COEFF_INTERP_HERMITE) ||     \
  789     defined(Z_COEFF_INTER_BSPLINE) || defined(Z_COEFF_INTERP_OPT32X) ||         \
  790     defined(Z_COEFF_INTERP_OPT16X) || defined(Z_COEFF_INTERP_OPT8X) ||          \
  791     defined(Z_COEFF_INTERP_OPT4X) || defined(Z_COEFF_INTERP_OPT2X))
  792 #if Z_DRIFT_SHIFT >= 6
  793 #define Z_COEFF_INTERP_BSPLINE          1
  794 #elif Z_DRIFT_SHIFT >= 5
  795 #define Z_COEFF_INTERP_OPT32X           1
  796 #elif Z_DRIFT_SHIFT == 4
  797 #define Z_COEFF_INTERP_OPT16X           1
  798 #elif Z_DRIFT_SHIFT == 3
  799 #define Z_COEFF_INTERP_OPT8X            1
  800 #elif Z_DRIFT_SHIFT == 2
  801 #define Z_COEFF_INTERP_OPT4X            1
  802 #elif Z_DRIFT_SHIFT == 1
  803 #define Z_COEFF_INTERP_OPT2X            1
  804 #else
  805 #error "Z_DRIFT_SHIFT screwed!"
  806 #endif
  807 #endif
  808 
  809 /*
  810  * In classic polyphase mode, the actual coefficients for each phases need to
  811  * be calculated based on default prototype filters. For highly oversampled
  812  * filter, linear or quadradatic interpolator should be enough. Anything less
  813  * than that require 'special' interpolators to reduce interpolation errors.
  814  *
  815  * "Polynomial Interpolators for High-Quality Resampling of Oversampled Audio"
  816  *    by Olli Niemitalo
  817  *    - http://www.student.oulu.fi/~oniemita/dsp/deip.pdf
  818  *
  819  */
  820 static int32_t
  821 z_coeff_interpolate(int32_t z, int32_t *z_coeff)
  822 {
  823         int32_t coeff;
  824 #if defined(Z_COEFF_INTERP_ZOH)
  825 
  826         /* 1-point, 0th-order (Zero Order Hold) */
  827         z = z;
  828         coeff = z_coeff[0];
  829 #elif defined(Z_COEFF_INTERP_LINEAR)
  830         int32_t zl0, zl1;
  831 
  832         /* 2-point, 1st-order Linear */
  833         zl0 = z_coeff[0];
  834         zl1 = z_coeff[1] - z_coeff[0];
  835 
  836         coeff = Z_RSHIFT((int64_t)zl1 * z, Z_SHIFT) + zl0;
  837 #elif defined(Z_COEFF_INTERP_QUADRATIC)
  838         int32_t zq0, zq1, zq2;
  839 
  840         /* 3-point, 2nd-order Quadratic */
  841         zq0 = z_coeff[0];
  842         zq1 = z_coeff[1] - z_coeff[-1];
  843         zq2 = z_coeff[1] + z_coeff[-1] - (z_coeff[0] << 1);
  844 
  845         coeff = Z_RSHIFT((Z_RSHIFT((int64_t)zq2 * z, Z_SHIFT) +
  846             zq1) * z, Z_SHIFT + 1) + zq0;
  847 #elif defined(Z_COEFF_INTERP_HERMITE)
  848         int32_t zh0, zh1, zh2, zh3;
  849 
  850         /* 4-point, 3rd-order Hermite */
  851         zh0 = z_coeff[0];
  852         zh1 = z_coeff[1] - z_coeff[-1];
  853         zh2 = (z_coeff[-1] << 1) - (z_coeff[0] * 5) + (z_coeff[1] << 2) -
  854             z_coeff[2];
  855         zh3 = z_coeff[2] - z_coeff[-1] + ((z_coeff[0] - z_coeff[1]) * 3);
  856 
  857         coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((int64_t)zh3 * z, Z_SHIFT) +
  858             zh2) * z, Z_SHIFT) + zh1) * z, Z_SHIFT + 1) + zh0;
  859 #elif defined(Z_COEFF_INTERP_BSPLINE)
  860         int32_t zb0, zb1, zb2, zb3;
  861 
  862         /* 4-point, 3rd-order B-Spline */
  863         zb0 = Z_RSHIFT(0x15555555LL * (((int64_t)z_coeff[0] << 2) +
  864             z_coeff[-1] + z_coeff[1]), 30);
  865         zb1 = z_coeff[1] - z_coeff[-1];
  866         zb2 = z_coeff[-1] + z_coeff[1] - (z_coeff[0] << 1);
  867         zb3 = Z_RSHIFT(0x15555555LL * (((z_coeff[0] - z_coeff[1]) * 3) +
  868             z_coeff[2] - z_coeff[-1]), 30);
  869 
  870         coeff = (Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((int64_t)zb3 * z, Z_SHIFT) +
  871             zb2) * z, Z_SHIFT) + zb1) * z, Z_SHIFT) + zb0 + 1) >> 1;
  872 #elif defined(Z_COEFF_INTERP_OPT32X)
  873         int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3;
  874         int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5;
  875 
  876         /* 6-point, 5th-order Optimal 32x */
  877         zoz = z - (Z_ONE >> 1);
  878         zoe1 = z_coeff[1] + z_coeff[0];
  879         zoe2 = z_coeff[2] + z_coeff[-1];
  880         zoe3 = z_coeff[3] + z_coeff[-2];
  881         zoo1 = z_coeff[1] - z_coeff[0];
  882         zoo2 = z_coeff[2] - z_coeff[-1];
  883         zoo3 = z_coeff[3] - z_coeff[-2];
  884 
  885         zoc0 = Z_RSHIFT((0x1ac2260dLL * zoe1) + (0x0526cdcaLL * zoe2) +
  886             (0x00170c29LL * zoe3), 30);
  887         zoc1 = Z_RSHIFT((0x14f8a49aLL * zoo1) + (0x0d6d1109LL * zoo2) +
  888             (0x008cd4dcLL * zoo3), 30);
  889         zoc2 = Z_RSHIFT((-0x0d3e94a4LL * zoe1) + (0x0bddded4LL * zoe2) +
  890             (0x0160b5d0LL * zoe3), 30);
  891         zoc3 = Z_RSHIFT((-0x0de10cc4LL * zoo1) + (0x019b2a7dLL * zoo2) +
  892             (0x01cfe914LL * zoo3), 30);
  893         zoc4 = Z_RSHIFT((0x02aa12d7LL * zoe1) + (-0x03ff1bb3LL * zoe2) +
  894             (0x015508ddLL * zoe3), 30);
  895         zoc5 = Z_RSHIFT((0x051d29e5LL * zoo1) + (-0x028e7647LL * zoo2) +
  896             (0x0082d81aLL * zoo3), 30);
  897 
  898         coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
  899             (int64_t)zoc5 * zoz, Z_SHIFT) +
  900             zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) +
  901             zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0;
  902 #elif defined(Z_COEFF_INTERP_OPT16X)
  903         int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3;
  904         int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5;
  905 
  906         /* 6-point, 5th-order Optimal 16x */
  907         zoz = z - (Z_ONE >> 1);
  908         zoe1 = z_coeff[1] + z_coeff[0];
  909         zoe2 = z_coeff[2] + z_coeff[-1];
  910         zoe3 = z_coeff[3] + z_coeff[-2];
  911         zoo1 = z_coeff[1] - z_coeff[0];
  912         zoo2 = z_coeff[2] - z_coeff[-1];
  913         zoo3 = z_coeff[3] - z_coeff[-2];
  914 
  915         zoc0 = Z_RSHIFT((0x1ac2260dLL * zoe1) + (0x0526cdcaLL * zoe2) +
  916             (0x00170c29LL * zoe3), 30);
  917         zoc1 = Z_RSHIFT((0x14f8a49aLL * zoo1) + (0x0d6d1109LL * zoo2) +
  918             (0x008cd4dcLL * zoo3), 30);
  919         zoc2 = Z_RSHIFT((-0x0d3e94a4LL * zoe1) + (0x0bddded4LL * zoe2) +
  920             (0x0160b5d0LL * zoe3), 30);
  921         zoc3 = Z_RSHIFT((-0x0de10cc4LL * zoo1) + (0x019b2a7dLL * zoo2) +
  922             (0x01cfe914LL * zoo3), 30);
  923         zoc4 = Z_RSHIFT((0x02aa12d7LL * zoe1) + (-0x03ff1bb3LL * zoe2) +
  924             (0x015508ddLL * zoe3), 30);
  925         zoc5 = Z_RSHIFT((0x051d29e5LL * zoo1) + (-0x028e7647LL * zoo2) +
  926             (0x0082d81aLL * zoo3), 30);
  927 
  928         coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
  929             (int64_t)zoc5 * zoz, Z_SHIFT) +
  930             zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) +
  931             zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0;
  932 #elif defined(Z_COEFF_INTERP_OPT8X)
  933         int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3;
  934         int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5;
  935 
  936         /* 6-point, 5th-order Optimal 8x */
  937         zoz = z - (Z_ONE >> 1);
  938         zoe1 = z_coeff[1] + z_coeff[0];
  939         zoe2 = z_coeff[2] + z_coeff[-1];
  940         zoe3 = z_coeff[3] + z_coeff[-2];
  941         zoo1 = z_coeff[1] - z_coeff[0];
  942         zoo2 = z_coeff[2] - z_coeff[-1];
  943         zoo3 = z_coeff[3] - z_coeff[-2];
  944 
  945         zoc0 = Z_RSHIFT((0x1aa9b47dLL * zoe1) + (0x053d9944LL * zoe2) +
  946             (0x0018b23fLL * zoe3), 30);
  947         zoc1 = Z_RSHIFT((0x14a104d1LL * zoo1) + (0x0d7d2504LL * zoo2) +
  948             (0x0094b599LL * zoo3), 30);
  949         zoc2 = Z_RSHIFT((-0x0d22530bLL * zoe1) + (0x0bb37a2cLL * zoe2) +
  950             (0x016ed8e0LL * zoe3), 30);
  951         zoc3 = Z_RSHIFT((-0x0d744b1cLL * zoo1) + (0x01649591LL * zoo2) +
  952             (0x01dae93aLL * zoo3), 30);
  953         zoc4 = Z_RSHIFT((0x02a7ee1bLL * zoe1) + (-0x03fbdb24LL * zoe2) +
  954             (0x0153ed07LL * zoe3), 30);
  955         zoc5 = Z_RSHIFT((0x04cf9b6cLL * zoo1) + (-0x0266b378LL * zoo2) +
  956             (0x007a7c26LL * zoo3), 30);
  957 
  958         coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
  959             (int64_t)zoc5 * zoz, Z_SHIFT) +
  960             zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) +
  961             zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0;
  962 #elif defined(Z_COEFF_INTERP_OPT4X)
  963         int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3;
  964         int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5;
  965 
  966         /* 6-point, 5th-order Optimal 4x */
  967         zoz = z - (Z_ONE >> 1);
  968         zoe1 = z_coeff[1] + z_coeff[0];
  969         zoe2 = z_coeff[2] + z_coeff[-1];
  970         zoe3 = z_coeff[3] + z_coeff[-2];
  971         zoo1 = z_coeff[1] - z_coeff[0];
  972         zoo2 = z_coeff[2] - z_coeff[-1];
  973         zoo3 = z_coeff[3] - z_coeff[-2];
  974 
  975         zoc0 = Z_RSHIFT((0x1a8eda43LL * zoe1) + (0x0556ee38LL * zoe2) +
  976             (0x001a3784LL * zoe3), 30);
  977         zoc1 = Z_RSHIFT((0x143d863eLL * zoo1) + (0x0d910e36LL * zoo2) +
  978             (0x009ca889LL * zoo3), 30);
  979         zoc2 = Z_RSHIFT((-0x0d026821LL * zoe1) + (0x0b837773LL * zoe2) +
  980             (0x017ef0c6LL * zoe3), 30);
  981         zoc3 = Z_RSHIFT((-0x0cef1502LL * zoo1) + (0x01207a8eLL * zoo2) +
  982             (0x01e936dbLL * zoo3), 30);
  983         zoc4 = Z_RSHIFT((0x029fe643LL * zoe1) + (-0x03ef3fc8LL * zoe2) +
  984             (0x014f5923LL * zoe3), 30);
  985         zoc5 = Z_RSHIFT((0x043a9d08LL * zoo1) + (-0x02154febLL * zoo2) +
  986             (0x00670dbdLL * zoo3), 30);
  987 
  988         coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
  989             (int64_t)zoc5 * zoz, Z_SHIFT) +
  990             zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) +
  991             zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0;
  992 #elif defined(Z_COEFF_INTERP_OPT2X)
  993         int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3;
  994         int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5;
  995 
  996         /* 6-point, 5th-order Optimal 2x */
  997         zoz = z - (Z_ONE >> 1);
  998         zoe1 = z_coeff[1] + z_coeff[0];
  999         zoe2 = z_coeff[2] + z_coeff[-1];
 1000         zoe3 = z_coeff[3] + z_coeff[-2];
 1001         zoo1 = z_coeff[1] - z_coeff[0];
 1002         zoo2 = z_coeff[2] - z_coeff[-1];
 1003         zoo3 = z_coeff[3] - z_coeff[-2];
 1004 
 1005         zoc0 = Z_RSHIFT((0x19edb6fdLL * zoe1) + (0x05ebd062LL * zoe2) +
 1006             (0x00267881LL * zoe3), 30);
 1007         zoc1 = Z_RSHIFT((0x1223af76LL * zoo1) + (0x0de3dd6bLL * zoo2) +
 1008             (0x00d683cdLL * zoo3), 30);
 1009         zoc2 = Z_RSHIFT((-0x0c3ee068LL * zoe1) + (0x0a5c3769LL * zoe2) +
 1010             (0x01e2aceaLL * zoe3), 30);
 1011         zoc3 = Z_RSHIFT((-0x0a8ab614LL * zoo1) + (-0x0019522eLL * zoo2) +
 1012             (0x022cefc7LL * zoo3), 30);
 1013         zoc4 = Z_RSHIFT((0x0276187dLL * zoe1) + (-0x03a801e8LL * zoe2) +
 1014             (0x0131d935LL * zoe3), 30);
 1015         zoc5 = Z_RSHIFT((0x02c373f5LL * zoo1) + (-0x01275f83LL * zoo2) +
 1016             (0x0018ee79LL * zoo3), 30);
 1017 
 1018         coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
 1019             (int64_t)zoc5 * zoz, Z_SHIFT) +
 1020             zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) +
 1021             zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0;
 1022 #else
 1023 #error "Interpolation type screwed!"
 1024 #endif
 1025 
 1026 #if Z_POLYPHASE_COEFF_SHIFT > 0
 1027         coeff = Z_RSHIFT(coeff, Z_POLYPHASE_COEFF_SHIFT);
 1028 #endif
 1029         return (coeff);
 1030 }
 1031 
 1032 static int
 1033 z_resampler_build_polyphase(struct z_info *info)
 1034 {
 1035         int32_t alpha, c, i, z, idx;
 1036 
 1037         /* Let this be here first. */
 1038         if (info->z_pcoeff != NULL) {
 1039                 free(info->z_pcoeff, M_DEVBUF);
 1040                 info->z_pcoeff = NULL;
 1041         }
 1042 
 1043         if (feeder_rate_polyphase_max < 1)
 1044                 return (ENOTSUP);
 1045 
 1046         if (((int64_t)info->z_size * info->z_gy * 2) >
 1047             feeder_rate_polyphase_max) {
 1048 #ifndef _KERNEL
 1049                 fprintf(stderr, "Polyphase entries exceed: [%d/%d] %jd > %d\n",
 1050                     info->z_gx, info->z_gy,
 1051                     (intmax_t)info->z_size * info->z_gy * 2,
 1052                     feeder_rate_polyphase_max);
 1053 #endif
 1054                 return (E2BIG);
 1055         }
 1056 
 1057         info->z_pcoeff = malloc(sizeof(int32_t) *
 1058             info->z_size * info->z_gy * 2, M_DEVBUF, M_NOWAIT | M_ZERO);
 1059         if (info->z_pcoeff == NULL)
 1060                 return (ENOMEM);
 1061 
 1062         for (alpha = 0; alpha < info->z_gy; alpha++) {
 1063                 z = alpha * info->z_dx;
 1064                 c = 0;
 1065                 for (i = info->z_size; i != 0; i--) {
 1066                         c += z >> Z_SHIFT;
 1067                         z &= Z_MASK;
 1068                         idx = (alpha * info->z_size * 2) +
 1069                             (info->z_size * 2) - i;
 1070                         info->z_pcoeff[idx] =
 1071                             z_coeff_interpolate(z, info->z_coeff + c);
 1072                         z += info->z_dy;
 1073                 }
 1074                 z = info->z_dy - (alpha * info->z_dx);
 1075                 c = 0;
 1076                 for (i = info->z_size; i != 0; i--) {
 1077                         c += z >> Z_SHIFT;
 1078                         z &= Z_MASK;
 1079                         idx = (alpha * info->z_size * 2) + i - 1;
 1080                         info->z_pcoeff[idx] =
 1081                             z_coeff_interpolate(z, info->z_coeff + c);
 1082                         z += info->z_dy;
 1083                 }
 1084         }
 1085         
 1086 #ifndef _KERNEL
 1087         fprintf(stderr, "Polyphase: [%d/%d] %d entries\n",
 1088             info->z_gx, info->z_gy, info->z_size * info->z_gy * 2);
 1089 #endif
 1090 
 1091         return (0);
 1092 }
 1093 
 1094 static int
 1095 z_resampler_setup(struct pcm_feeder *f)
 1096 {
 1097         struct z_info *info;
 1098         int64_t gy2gx_max, gx2gy_max;
 1099         uint32_t format;
 1100         int32_t align, i, z_scale;
 1101         int adaptive;
 1102 
 1103         info = f->data;
 1104         z_resampler_reset(info);
 1105 
 1106         if (info->src == info->dst)
 1107                 return (0);
 1108 
 1109         /* Shrink by greatest common divisor. */
 1110         i = z_gcd(info->src, info->dst);
 1111         info->z_gx = info->src / i;
 1112         info->z_gy = info->dst / i;
 1113 
 1114         /* Too big, or too small. Bail out. */
 1115         if (!(Z_FACTOR_SAFE(info->z_gx) && Z_FACTOR_SAFE(info->z_gy)))
 1116                 return (EINVAL);
 1117 
 1118         format = f->desc->in;
 1119         adaptive = 0;
 1120         z_scale = 0;
 1121 
 1122         /*
 1123          * Setup everything: filter length, conversion factor, etc.
 1124          */
 1125         if (Z_IS_SINC(info)) {
 1126                 /*
 1127                  * Downsampling, or upsampling scaling factor. As long as the
 1128                  * factor can be represented by a fraction of 1 << Z_SHIFT,
 1129                  * we're pretty much in business. Scaling is not needed for
 1130                  * upsampling, so we just slap Z_ONE there.
 1131                  */
 1132                 if (info->z_gx > info->z_gy)
 1133                         /*
 1134                          * If the downsampling ratio is beyond sanity,
 1135                          * enable semi-adaptive mode. Although handling
 1136                          * extreme ratio is possible, the result of the
 1137                          * conversion is just pointless, unworthy,
 1138                          * nonsensical noises, etc.
 1139                          */
 1140                         if ((info->z_gx / info->z_gy) > Z_SINC_DOWNMAX)
 1141                                 z_scale = Z_ONE / Z_SINC_DOWNMAX;
 1142                         else
 1143                                 z_scale = ((uint64_t)info->z_gy << Z_SHIFT) /
 1144                                     info->z_gx;
 1145                 else
 1146                         z_scale = Z_ONE;
 1147 
 1148                 /*
 1149                  * This is actually impossible, unless anything above
 1150                  * overflow.
 1151                  */
 1152                 if (z_scale < 1)
 1153                         return (E2BIG);
 1154 
 1155                 /*
 1156                  * Calculate sample time/coefficients index drift. It is
 1157                  * a constant for upsampling, but downsampling require
 1158                  * heavy duty filtering with possible too long filters.
 1159                  * If anything goes wrong, revisit again and enable
 1160                  * adaptive mode.
 1161                  */
 1162 z_setup_adaptive_sinc:
 1163                 if (info->z_pcoeff != NULL) {
 1164                         free(info->z_pcoeff, M_DEVBUF);
 1165                         info->z_pcoeff = NULL;
 1166                 }
 1167 
 1168                 if (adaptive == 0) {
 1169                         info->z_dy = z_scale << Z_DRIFT_SHIFT;
 1170                         if (info->z_dy < 1)
 1171                                 return (E2BIG);
 1172                         info->z_scale = z_scale;
 1173                 } else {
 1174                         info->z_dy = Z_FULL_ONE;
 1175                         info->z_scale = Z_ONE;
 1176                 }
 1177 
 1178 #if 0
 1179 #define Z_SCALE_DIV     10000
 1180 #define Z_SCALE_LIMIT(s, v)                                             \
 1181         ((((uint64_t)(s) * (v)) + (Z_SCALE_DIV >> 1)) / Z_SCALE_DIV)
 1182 
 1183                 info->z_scale = Z_SCALE_LIMIT(info->z_scale, 9780);
 1184 #endif
 1185 
 1186                 /* Smallest drift increment. */
 1187                 info->z_dx = info->z_dy / info->z_gy;
 1188 
 1189                 /*
 1190                  * Overflow or underflow. Try adaptive, let it continue and
 1191                  * retry.
 1192                  */
 1193                 if (info->z_dx < 1) {
 1194                         if (adaptive == 0) {
 1195                                 adaptive = 1;
 1196                                 goto z_setup_adaptive_sinc;
 1197                         }
 1198                         return (E2BIG);
 1199                 }
 1200 
 1201                 /*
 1202                  * Round back output drift.
 1203                  */
 1204                 info->z_dy = info->z_dx * info->z_gy;
 1205 
 1206                 for (i = 0; i < Z_COEFF_TAB_SIZE; i++) {
 1207                         if (Z_SINC_COEFF_IDX(info) != i)
 1208                                 continue;
 1209                         /*
 1210                          * Calculate required filter length and guard
 1211                          * against possible abusive result. Note that
 1212                          * this represents only 1/2 of the entire filter
 1213                          * length.
 1214                          */
 1215                         info->z_size = z_resampler_sinc_len(info);
 1216 
 1217                         /*
 1218                          * Multiple of 2 rounding, for better accumulator
 1219                          * performance.
 1220                          */
 1221                         info->z_size &= ~1;
 1222 
 1223                         if (info->z_size < 2 || info->z_size > Z_SINC_MAX) {
 1224                                 if (adaptive == 0) {
 1225                                         adaptive = 1;
 1226                                         goto z_setup_adaptive_sinc;
 1227                                 }
 1228                                 return (E2BIG);
 1229                         }
 1230                         info->z_coeff = z_coeff_tab[i].coeff + Z_COEFF_OFFSET;
 1231                         info->z_dcoeff = z_coeff_tab[i].dcoeff;
 1232                         break;
 1233                 }
 1234 
 1235                 if (info->z_coeff == NULL || info->z_dcoeff == NULL)
 1236                         return (EINVAL);
 1237         } else if (Z_IS_LINEAR(info)) {
 1238                 /*
 1239                  * Don't put much effort if we're doing linear interpolation.
 1240                  * Just center the interpolation distance within Z_LINEAR_ONE,
 1241                  * and be happy about it.
 1242                  */
 1243                 info->z_dx = Z_LINEAR_FULL_ONE / info->z_gy;
 1244         }
 1245 
 1246         /*
 1247          * We're safe for now, lets continue.. Look for our resampler
 1248          * depending on configured format and quality.
 1249          */
 1250         for (i = 0; i < Z_RESAMPLER_TAB_SIZE; i++) {
 1251                 int ridx;
 1252 
 1253                 if (AFMT_ENCODING(format) != z_resampler_tab[i].format)
 1254                         continue;
 1255                 if (Z_IS_SINC(info) && adaptive == 0 &&
 1256                     z_resampler_build_polyphase(info) == 0)
 1257                         ridx = Z_RESAMPLER_SINC_POLYPHASE;
 1258                 else
 1259                         ridx = Z_RESAMPLER_IDX(info);
 1260                 info->z_resample = z_resampler_tab[i].resampler[ridx];
 1261                 break;
 1262         }
 1263 
 1264         if (info->z_resample == NULL)
 1265                 return (EINVAL);
 1266 
 1267         info->bps = AFMT_BPS(format);
 1268         align = info->channels * info->bps;
 1269 
 1270         /*
 1271          * Calculate largest value that can be fed into z_gy2gx() and
 1272          * z_gx2gy() without causing (signed) 32bit overflow. z_gy2gx() will
 1273          * be called early during feeding process to determine how much input
 1274          * samples that is required to generate requested output, while
 1275          * z_gx2gy() will be called just before samples filtering /
 1276          * accumulation process based on available samples that has been
 1277          * calculated using z_gx2gy().
 1278          *
 1279          * Now that is damn confusing, I guess ;-) .
 1280          */
 1281         gy2gx_max = (((uint64_t)info->z_gy * INT32_MAX) - info->z_gy + 1) /
 1282             info->z_gx;
 1283 
 1284         if ((gy2gx_max * align) > SND_FXDIV_MAX)
 1285                 gy2gx_max = SND_FXDIV_MAX / align;
 1286 
 1287         if (gy2gx_max < 1)
 1288                 return (E2BIG);
 1289 
 1290         gx2gy_max = (((uint64_t)info->z_gx * INT32_MAX) - info->z_gy) /
 1291             info->z_gy;
 1292 
 1293         if (gx2gy_max > INT32_MAX)
 1294                 gx2gy_max = INT32_MAX;
 1295 
 1296         if (gx2gy_max < 1)
 1297                 return (E2BIG);
 1298 
 1299         /*
 1300          * Ensure that z_gy2gx() at its largest possible calculated value
 1301          * (alpha = 0) will not cause overflow further late during z_gx2gy()
 1302          * stage.
 1303          */
 1304         if (z_gy2gx(info, gy2gx_max) > _Z_GCAST(gx2gy_max))
 1305                 return (E2BIG);
 1306 
 1307         info->z_maxfeed = gy2gx_max * align;
 1308 
 1309 #ifdef Z_USE_ALPHADRIFT
 1310         info->z_startdrift = z_gy2gx(info, 1);
 1311         info->z_alphadrift = z_drift(info, info->z_startdrift, 1);
 1312 #endif
 1313 
 1314         i = z_gy2gx(info, 1);
 1315         info->z_full = z_roundpow2((info->z_size << 1) + i);
 1316 
 1317         /*
 1318          * Too big to be true, and overflowing left and right like mad ..
 1319          */
 1320         if ((info->z_full * align) < 1) {
 1321                 if (adaptive == 0 && Z_IS_SINC(info)) {
 1322                         adaptive = 1;
 1323                         goto z_setup_adaptive_sinc;
 1324                 }
 1325                 return (E2BIG);
 1326         }
 1327 
 1328         /*
 1329          * Increase full buffer size if its too small to reduce cyclic
 1330          * buffer shifting in main conversion/feeder loop.
 1331          */
 1332         while (info->z_full < Z_RESERVOIR_MAX &&
 1333             (info->z_full - (info->z_size << 1)) < Z_RESERVOIR)
 1334                 info->z_full <<= 1;
 1335 
 1336         /* Initialize buffer position. */
 1337         info->z_mask = info->z_full - 1;
 1338         info->z_start = z_prev(info, info->z_size << 1, 1);
 1339         info->z_pos = z_next(info, info->z_start, 1);
 1340 
 1341         /*
 1342          * Allocate or reuse delay line buffer, whichever makes sense.
 1343          */
 1344         i = info->z_full * align;
 1345         if (i < 1)
 1346                 return (E2BIG);
 1347 
 1348         if (info->z_delay == NULL || info->z_alloc < i ||
 1349             i <= (info->z_alloc >> 1)) {
 1350                 if (info->z_delay != NULL)
 1351                         free(info->z_delay, M_DEVBUF);
 1352                 info->z_delay = malloc(i, M_DEVBUF, M_NOWAIT | M_ZERO);
 1353                 if (info->z_delay == NULL)
 1354                         return (ENOMEM);
 1355                 info->z_alloc = i;
 1356         }
 1357 
 1358         /*
 1359          * Zero out head of buffer to avoid pops and clicks.
 1360          */
 1361         memset(info->z_delay, sndbuf_zerodata(f->desc->out),
 1362             info->z_pos * align);
 1363 
 1364 #ifdef Z_DIAGNOSTIC
 1365         /*
 1366          * XXX Debuging mess !@#$%^
 1367          */
 1368 #define dumpz(x)        fprintf(stderr, "\t%12s = %10u : %-11d\n",      \
 1369                             "z_"__STRING(x), (uint32_t)info->z_##x,     \
 1370                             (int32_t)info->z_##x)
 1371         fprintf(stderr, "\n%s():\n", __func__);
 1372         fprintf(stderr, "\tchannels=%d, bps=%d, format=0x%08x, quality=%d\n",
 1373             info->channels, info->bps, format, info->quality);
 1374         fprintf(stderr, "\t%d (%d) -> %d (%d), ",
 1375             info->src, info->rsrc, info->dst, info->rdst);
 1376         fprintf(stderr, "[%d/%d]\n", info->z_gx, info->z_gy);
 1377         fprintf(stderr, "\tminreq=%d, ", z_gy2gx(info, 1));
 1378         if (adaptive != 0)
 1379                 z_scale = Z_ONE;
 1380         fprintf(stderr, "factor=0x%08x/0x%08x (%f)\n",
 1381             z_scale, Z_ONE, (double)z_scale / Z_ONE);
 1382         fprintf(stderr, "\tbase_length=%d, ", Z_SINC_BASE_LEN(info));
 1383         fprintf(stderr, "adaptive=%s\n", (adaptive != 0) ? "YES" : "NO");
 1384         dumpz(size);
 1385         dumpz(alloc);
 1386         if (info->z_alloc < 1024)
 1387                 fprintf(stderr, "\t%15s%10d Bytes\n",
 1388                     "", info->z_alloc);
 1389         else if (info->z_alloc < (1024 << 10))
 1390                 fprintf(stderr, "\t%15s%10d KBytes\n",
 1391                     "", info->z_alloc >> 10);
 1392         else if (info->z_alloc < (1024 << 20))
 1393                 fprintf(stderr, "\t%15s%10d MBytes\n",
 1394                     "", info->z_alloc >> 20);
 1395         else
 1396                 fprintf(stderr, "\t%15s%10d GBytes\n",
 1397                     "", info->z_alloc >> 30);
 1398         fprintf(stderr, "\t%12s   %10d (min output samples)\n",
 1399             "",
 1400             (int32_t)z_gx2gy(info, info->z_full - (info->z_size << 1)));
 1401         fprintf(stderr, "\t%12s   %10d (min allocated output samples)\n",
 1402             "",
 1403             (int32_t)z_gx2gy(info, (info->z_alloc / align) -
 1404             (info->z_size << 1)));
 1405         fprintf(stderr, "\t%12s = %10d\n",
 1406             "z_gy2gx()", (int32_t)z_gy2gx(info, 1));
 1407         fprintf(stderr, "\t%12s = %10d -> z_gy2gx() -> %d\n",
 1408             "Max", (int32_t)gy2gx_max, (int32_t)z_gy2gx(info, gy2gx_max));
 1409         fprintf(stderr, "\t%12s = %10d\n",
 1410             "z_gx2gy()", (int32_t)z_gx2gy(info, 1));
 1411         fprintf(stderr, "\t%12s = %10d -> z_gx2gy() -> %d\n",
 1412             "Max", (int32_t)gx2gy_max, (int32_t)z_gx2gy(info, gx2gy_max));
 1413         dumpz(maxfeed);
 1414         dumpz(full);
 1415         dumpz(start);
 1416         dumpz(pos);
 1417         dumpz(scale);
 1418         fprintf(stderr, "\t%12s   %10f\n", "",
 1419             (double)info->z_scale / Z_ONE);
 1420         dumpz(dx);
 1421         fprintf(stderr, "\t%12s   %10f\n", "",
 1422             (double)info->z_dx / info->z_dy);
 1423         dumpz(dy);
 1424         fprintf(stderr, "\t%12s   %10d (drift step)\n", "",
 1425             info->z_dy >> Z_SHIFT);
 1426         fprintf(stderr, "\t%12s   %10d (scaling differences)\n", "",
 1427             (z_scale << Z_DRIFT_SHIFT) - info->z_dy);
 1428         fprintf(stderr, "\t%12s = %u bytes\n",
 1429             "intpcm32_t", sizeof(intpcm32_t));
 1430         fprintf(stderr, "\t%12s = 0x%08x, smallest=%.16lf\n",
 1431             "Z_ONE", Z_ONE, (double)1.0 / (double)Z_ONE);
 1432 #endif
 1433 
 1434         return (0);
 1435 }
 1436 
 1437 static int
 1438 z_resampler_set(struct pcm_feeder *f, int what, int32_t value)
 1439 {
 1440         struct z_info *info;
 1441         int32_t oquality;
 1442 
 1443         info = f->data;
 1444 
 1445         switch (what) {
 1446         case Z_RATE_SRC:
 1447                 if (value < feeder_rate_min || value > feeder_rate_max)
 1448                         return (E2BIG);
 1449                 if (value == info->rsrc)
 1450                         return (0);
 1451                 info->rsrc = value;
 1452                 break;
 1453         case Z_RATE_DST:
 1454                 if (value < feeder_rate_min || value > feeder_rate_max)
 1455                         return (E2BIG);
 1456                 if (value == info->rdst)
 1457                         return (0);
 1458                 info->rdst = value;
 1459                 break;
 1460         case Z_RATE_QUALITY:
 1461                 if (value < Z_QUALITY_MIN || value > Z_QUALITY_MAX)
 1462                         return (EINVAL);
 1463                 if (value == info->quality)
 1464                         return (0);
 1465                 /*
 1466                  * If we failed to set the requested quality, restore
 1467                  * the old one. We cannot afford leaving it broken since
 1468                  * passive feeder chains like vchans never reinitialize
 1469                  * itself.
 1470                  */
 1471                 oquality = info->quality;
 1472                 info->quality = value;
 1473                 if (z_resampler_setup(f) == 0)
 1474                         return (0);
 1475                 info->quality = oquality;
 1476                 break;
 1477         case Z_RATE_CHANNELS:
 1478                 if (value < SND_CHN_MIN || value > SND_CHN_MAX)
 1479                         return (EINVAL);
 1480                 if (value == info->channels)
 1481                         return (0);
 1482                 info->channels = value;
 1483                 break;
 1484         default:
 1485                 return (EINVAL);
 1486                 break;
 1487         }
 1488 
 1489         return (z_resampler_setup(f));
 1490 }
 1491 
 1492 static int
 1493 z_resampler_get(struct pcm_feeder *f, int what)
 1494 {
 1495         struct z_info *info;
 1496 
 1497         info = f->data;
 1498 
 1499         switch (what) {
 1500         case Z_RATE_SRC:
 1501                 return (info->rsrc);
 1502                 break;
 1503         case Z_RATE_DST:
 1504                 return (info->rdst);
 1505                 break;
 1506         case Z_RATE_QUALITY:
 1507                 return (info->quality);
 1508                 break;
 1509         case Z_RATE_CHANNELS:
 1510                 return (info->channels);
 1511                 break;
 1512         default:
 1513                 break;
 1514         }
 1515 
 1516         return (-1);
 1517 }
 1518 
 1519 static int
 1520 z_resampler_init(struct pcm_feeder *f)
 1521 {
 1522         struct z_info *info;
 1523         int ret;
 1524 
 1525         if (f->desc->in != f->desc->out)
 1526                 return (EINVAL);
 1527 
 1528         info = malloc(sizeof(*info), M_DEVBUF, M_NOWAIT | M_ZERO);
 1529         if (info == NULL)
 1530                 return (ENOMEM);
 1531 
 1532         info->rsrc = Z_RATE_DEFAULT;
 1533         info->rdst = Z_RATE_DEFAULT;
 1534         info->quality = feeder_rate_quality;
 1535         info->channels = AFMT_CHANNEL(f->desc->in);
 1536 
 1537         f->data = info;
 1538 
 1539         ret = z_resampler_setup(f);
 1540         if (ret != 0) {
 1541                 if (info->z_pcoeff != NULL)
 1542                         free(info->z_pcoeff, M_DEVBUF);
 1543                 if (info->z_delay != NULL)
 1544                         free(info->z_delay, M_DEVBUF);
 1545                 free(info, M_DEVBUF);
 1546                 f->data = NULL;
 1547         }
 1548 
 1549         return (ret);
 1550 }
 1551 
 1552 static int
 1553 z_resampler_free(struct pcm_feeder *f)
 1554 {
 1555         struct z_info *info;
 1556 
 1557         info = f->data;
 1558         if (info != NULL) {
 1559                 if (info->z_pcoeff != NULL)
 1560                         free(info->z_pcoeff, M_DEVBUF);
 1561                 if (info->z_delay != NULL)
 1562                         free(info->z_delay, M_DEVBUF);
 1563                 free(info, M_DEVBUF);
 1564         }
 1565 
 1566         f->data = NULL;
 1567 
 1568         return (0);
 1569 }
 1570 
 1571 static uint32_t
 1572 z_resampler_feed_internal(struct pcm_feeder *f, struct pcm_channel *c,
 1573     uint8_t *b, uint32_t count, void *source)
 1574 {
 1575         struct z_info *info;
 1576         int32_t alphadrift, startdrift, reqout, ocount, reqin, align;
 1577         int32_t fetch, fetched, start, cp;
 1578         uint8_t *dst;
 1579 
 1580         info = f->data;
 1581         if (info->z_resample == NULL)
 1582                 return (z_feed(f->source, c, b, count, source));
 1583 
 1584         /*
 1585          * Calculate sample size alignment and amount of sample output.
 1586          * We will do everything in sample domain, but at the end we
 1587          * will jump back to byte domain.
 1588          */
 1589         align = info->channels * info->bps;
 1590         ocount = SND_FXDIV(count, align);
 1591         if (ocount == 0)
 1592                 return (0);
 1593 
 1594         /*
 1595          * Calculate amount of input samples that is needed to generate
 1596          * exact amount of output.
 1597          */
 1598         reqin = z_gy2gx(info, ocount) - z_fetched(info);
 1599 
 1600 #ifdef Z_USE_ALPHADRIFT
 1601         startdrift = info->z_startdrift;
 1602         alphadrift = info->z_alphadrift;
 1603 #else
 1604         startdrift = _Z_GY2GX(info, 0, 1);
 1605         alphadrift = z_drift(info, startdrift, 1);
 1606 #endif
 1607 
 1608         dst = b;
 1609 
 1610         do {
 1611                 if (reqin != 0) {
 1612                         fetch = z_min(z_free(info), reqin);
 1613                         if (fetch == 0) {
 1614                                 /*
 1615                                  * No more free spaces, so wind enough
 1616                                  * samples back to the head of delay line
 1617                                  * in byte domain.
 1618                                  */
 1619                                 fetched = z_fetched(info);
 1620                                 start = z_prev(info, info->z_start,
 1621                                     (info->z_size << 1) - 1);
 1622                                 cp = (info->z_size << 1) + fetched;
 1623                                 z_copy(info->z_delay + (start * align),
 1624                                     info->z_delay, cp * align);
 1625                                 info->z_start =
 1626                                     z_prev(info, info->z_size << 1, 1);
 1627                                 info->z_pos =
 1628                                     z_next(info, info->z_start, fetched + 1);
 1629                                 fetch = z_min(z_free(info), reqin);
 1630 #ifdef Z_DIAGNOSTIC
 1631                                 if (1) {
 1632                                         static uint32_t kk = 0;
 1633                                         fprintf(stderr,
 1634                                             "Buffer Move: "
 1635                                             "start=%d fetched=%d cp=%d "
 1636                                             "cycle=%u [%u]\r",
 1637                                             start, fetched, cp, info->z_cycle,
 1638                                             ++kk);
 1639                                 }
 1640                                 info->z_cycle = 0;
 1641 #endif
 1642                         }
 1643                         if (fetch != 0) {
 1644                                 /*
 1645                                  * Fetch in byte domain and jump back
 1646                                  * to sample domain.
 1647                                  */
 1648                                 fetched = SND_FXDIV(z_feed(f->source, c,
 1649                                     info->z_delay + (info->z_pos * align),
 1650                                     fetch * align, source), align);
 1651                                 /*
 1652                                  * Prepare to convert fetched buffer,
 1653                                  * or mark us done if we cannot fulfill
 1654                                  * the request.
 1655                                  */
 1656                                 reqin -= fetched;
 1657                                 info->z_pos += fetched;
 1658                                 if (fetched != fetch)
 1659                                         reqin = 0;
 1660                         }
 1661                 }
 1662 
 1663                 reqout = z_min(z_gx2gy(info, z_fetched(info)), ocount);
 1664                 if (reqout != 0) {
 1665                         ocount -= reqout;
 1666 
 1667                         /*
 1668                          * Drift.. drift.. drift..
 1669                          *
 1670                          * Notice that there are 2 methods of doing the drift
 1671                          * operations: The former is much cleaner (in a sense
 1672                          * of mathematical readings of my eyes), but slower
 1673                          * due to integer division in z_gy2gx(). Nevertheless,
 1674                          * both should give the same exact accurate drifting
 1675                          * results, so the later is favourable.
 1676                          */
 1677                         do {
 1678                                 info->z_resample(info, dst);
 1679 #if 0
 1680                                 startdrift = z_gy2gx(info, 1);
 1681                                 alphadrift = z_drift(info, startdrift, 1);
 1682                                 info->z_start += startdrift;
 1683                                 info->z_alpha += alphadrift;
 1684 #else
 1685                                 info->z_alpha += alphadrift;
 1686                                 if (info->z_alpha < info->z_gy)
 1687                                         info->z_start += startdrift;
 1688                                 else {
 1689                                         info->z_start += startdrift - 1;
 1690                                         info->z_alpha -= info->z_gy;
 1691                                 }
 1692 #endif
 1693                                 dst += align;
 1694 #ifdef Z_DIAGNOSTIC
 1695                                 info->z_cycle++;
 1696 #endif
 1697                         } while (--reqout != 0);
 1698                 }
 1699         } while (reqin != 0 && ocount != 0);
 1700 
 1701         /*
 1702          * Back to byte domain..
 1703          */
 1704         return (dst - b);
 1705 }
 1706 
 1707 static int
 1708 z_resampler_feed(struct pcm_feeder *f, struct pcm_channel *c, uint8_t *b,
 1709     uint32_t count, void *source)
 1710 {
 1711         uint32_t feed, maxfeed, left;
 1712 
 1713         /*
 1714          * Split count to smaller chunks to avoid possible 32bit overflow.
 1715          */
 1716         maxfeed = ((struct z_info *)(f->data))->z_maxfeed;
 1717         left = count;
 1718 
 1719         do {
 1720                 feed = z_resampler_feed_internal(f, c, b,
 1721                     z_min(maxfeed, left), source);
 1722                 b += feed;
 1723                 left -= feed;
 1724         } while (left != 0 && feed != 0);
 1725 
 1726         return (count - left);
 1727 }
 1728 
 1729 static struct pcm_feederdesc feeder_rate_desc[] = {
 1730         { FEEDER_RATE, 0, 0, 0, 0 },
 1731         { 0, 0, 0, 0, 0 },
 1732 };
 1733 
 1734 static kobj_method_t feeder_rate_methods[] = {
 1735         KOBJMETHOD(feeder_init,         z_resampler_init),
 1736         KOBJMETHOD(feeder_free,         z_resampler_free),
 1737         KOBJMETHOD(feeder_set,          z_resampler_set),
 1738         KOBJMETHOD(feeder_get,          z_resampler_get),
 1739         KOBJMETHOD(feeder_feed,         z_resampler_feed),
 1740         KOBJMETHOD_END
 1741 };
 1742 
 1743 FEEDER_DECLARE(feeder_rate, NULL);

Cache object: cc5c9e3e99a8633f251b748a2a65937b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.