The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/ste/if_ste.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-4-Clause
    3  *
    4  * Copyright (c) 1997, 1998, 1999
    5  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 3. All advertising materials mentioning features or use of this software
   16  *    must display the following acknowledgement:
   17  *      This product includes software developed by Bill Paul.
   18  * 4. Neither the name of the author nor the names of any co-contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   32  * THE POSSIBILITY OF SUCH DAMAGE.
   33  */
   34 
   35 #include <sys/cdefs.h>
   36 __FBSDID("$FreeBSD$");
   37 
   38 #ifdef HAVE_KERNEL_OPTION_HEADERS
   39 #include "opt_device_polling.h"
   40 #endif
   41 
   42 #include <sys/param.h>
   43 #include <sys/systm.h>
   44 #include <sys/bus.h>
   45 #include <sys/endian.h>
   46 #include <sys/kernel.h>
   47 #include <sys/lock.h>
   48 #include <sys/malloc.h>
   49 #include <sys/mbuf.h>
   50 #include <sys/module.h>
   51 #include <sys/rman.h>
   52 #include <sys/socket.h>
   53 #include <sys/sockio.h>
   54 #include <sys/sysctl.h>
   55 
   56 #include <net/bpf.h>
   57 #include <net/if.h>
   58 #include <net/if_var.h>
   59 #include <net/if_arp.h>
   60 #include <net/ethernet.h>
   61 #include <net/if_dl.h>
   62 #include <net/if_media.h>
   63 #include <net/if_types.h>
   64 #include <net/if_vlan_var.h>
   65 
   66 #include <machine/bus.h>
   67 #include <machine/resource.h>
   68 
   69 #include <dev/mii/mii.h>
   70 #include <dev/mii/mii_bitbang.h>
   71 #include <dev/mii/miivar.h>
   72 
   73 #include <dev/pci/pcireg.h>
   74 #include <dev/pci/pcivar.h>
   75 
   76 #include <dev/ste/if_stereg.h>
   77 
   78 /* "device miibus" required.  See GENERIC if you get errors here. */
   79 #include "miibus_if.h"
   80 
   81 MODULE_DEPEND(ste, pci, 1, 1, 1);
   82 MODULE_DEPEND(ste, ether, 1, 1, 1);
   83 MODULE_DEPEND(ste, miibus, 1, 1, 1);
   84 
   85 /* Define to show Tx error status. */
   86 #define STE_SHOW_TXERRORS
   87 
   88 /*
   89  * Various supported device vendors/types and their names.
   90  */
   91 static const struct ste_type ste_devs[] = {
   92         { ST_VENDORID, ST_DEVICEID_ST201_1, "Sundance ST201 10/100BaseTX" },
   93         { ST_VENDORID, ST_DEVICEID_ST201_2, "Sundance ST201 10/100BaseTX" },
   94         { DL_VENDORID, DL_DEVICEID_DL10050, "D-Link DL10050 10/100BaseTX" },
   95         { 0, 0, NULL }
   96 };
   97 
   98 static int      ste_attach(device_t);
   99 static int      ste_detach(device_t);
  100 static int      ste_probe(device_t);
  101 static int      ste_resume(device_t);
  102 static int      ste_shutdown(device_t);
  103 static int      ste_suspend(device_t);
  104 
  105 static int      ste_dma_alloc(struct ste_softc *);
  106 static void     ste_dma_free(struct ste_softc *);
  107 static void     ste_dmamap_cb(void *, bus_dma_segment_t *, int, int);
  108 static int      ste_eeprom_wait(struct ste_softc *);
  109 static int      ste_encap(struct ste_softc *, struct mbuf **,
  110                     struct ste_chain *);
  111 static int      ste_ifmedia_upd(struct ifnet *);
  112 static void     ste_ifmedia_sts(struct ifnet *, struct ifmediareq *);
  113 static void     ste_init(void *);
  114 static void     ste_init_locked(struct ste_softc *);
  115 static int      ste_init_rx_list(struct ste_softc *);
  116 static void     ste_init_tx_list(struct ste_softc *);
  117 static void     ste_intr(void *);
  118 static int      ste_ioctl(struct ifnet *, u_long, caddr_t);
  119 static uint32_t ste_mii_bitbang_read(device_t);
  120 static void     ste_mii_bitbang_write(device_t, uint32_t);
  121 static int      ste_miibus_readreg(device_t, int, int);
  122 static void     ste_miibus_statchg(device_t);
  123 static int      ste_miibus_writereg(device_t, int, int, int);
  124 static int      ste_newbuf(struct ste_softc *, struct ste_chain_onefrag *);
  125 static int      ste_read_eeprom(struct ste_softc *, uint16_t *, int, int);
  126 static void     ste_reset(struct ste_softc *);
  127 static void     ste_restart_tx(struct ste_softc *);
  128 static int      ste_rxeof(struct ste_softc *, int);
  129 static void     ste_rxfilter(struct ste_softc *);
  130 static void     ste_setwol(struct ste_softc *);
  131 static void     ste_start(struct ifnet *);
  132 static void     ste_start_locked(struct ifnet *);
  133 static void     ste_stats_clear(struct ste_softc *);
  134 static void     ste_stats_update(struct ste_softc *);
  135 static void     ste_stop(struct ste_softc *);
  136 static void     ste_sysctl_node(struct ste_softc *);
  137 static void     ste_tick(void *);
  138 static void     ste_txeoc(struct ste_softc *);
  139 static void     ste_txeof(struct ste_softc *);
  140 static void     ste_wait(struct ste_softc *);
  141 static void     ste_watchdog(struct ste_softc *);
  142 
  143 /*
  144  * MII bit-bang glue
  145  */
  146 static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
  147         ste_mii_bitbang_read,
  148         ste_mii_bitbang_write,
  149         {
  150                 STE_PHYCTL_MDATA,       /* MII_BIT_MDO */
  151                 STE_PHYCTL_MDATA,       /* MII_BIT_MDI */
  152                 STE_PHYCTL_MCLK,        /* MII_BIT_MDC */
  153                 STE_PHYCTL_MDIR,        /* MII_BIT_DIR_HOST_PHY */
  154                 0,                      /* MII_BIT_DIR_PHY_HOST */
  155         }
  156 };
  157 
  158 static device_method_t ste_methods[] = {
  159         /* Device interface */
  160         DEVMETHOD(device_probe,         ste_probe),
  161         DEVMETHOD(device_attach,        ste_attach),
  162         DEVMETHOD(device_detach,        ste_detach),
  163         DEVMETHOD(device_shutdown,      ste_shutdown),
  164         DEVMETHOD(device_suspend,       ste_suspend),
  165         DEVMETHOD(device_resume,        ste_resume),
  166 
  167         /* MII interface */
  168         DEVMETHOD(miibus_readreg,       ste_miibus_readreg),
  169         DEVMETHOD(miibus_writereg,      ste_miibus_writereg),
  170         DEVMETHOD(miibus_statchg,       ste_miibus_statchg),
  171 
  172         DEVMETHOD_END
  173 };
  174 
  175 static driver_t ste_driver = {
  176         "ste",
  177         ste_methods,
  178         sizeof(struct ste_softc)
  179 };
  180 
  181 DRIVER_MODULE(ste, pci, ste_driver, 0, 0);
  182 DRIVER_MODULE(miibus, ste, miibus_driver, 0, 0);
  183 
  184 #define STE_SETBIT4(sc, reg, x)                         \
  185         CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
  186 
  187 #define STE_CLRBIT4(sc, reg, x)                         \
  188         CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
  189 
  190 #define STE_SETBIT2(sc, reg, x)                         \
  191         CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | (x))
  192 
  193 #define STE_CLRBIT2(sc, reg, x)                         \
  194         CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~(x))
  195 
  196 #define STE_SETBIT1(sc, reg, x)                         \
  197         CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | (x))
  198 
  199 #define STE_CLRBIT1(sc, reg, x)                         \
  200         CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~(x))
  201 
  202 /*
  203  * Read the MII serial port for the MII bit-bang module.
  204  */
  205 static uint32_t
  206 ste_mii_bitbang_read(device_t dev)
  207 {
  208         struct ste_softc *sc;
  209         uint32_t val;
  210 
  211         sc = device_get_softc(dev);
  212 
  213         val = CSR_READ_1(sc, STE_PHYCTL);
  214         CSR_BARRIER(sc, STE_PHYCTL, 1,
  215             BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
  216 
  217         return (val);
  218 }
  219 
  220 /*
  221  * Write the MII serial port for the MII bit-bang module.
  222  */
  223 static void
  224 ste_mii_bitbang_write(device_t dev, uint32_t val)
  225 {
  226         struct ste_softc *sc;
  227 
  228         sc = device_get_softc(dev);
  229 
  230         CSR_WRITE_1(sc, STE_PHYCTL, val);
  231         CSR_BARRIER(sc, STE_PHYCTL, 1,
  232             BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
  233 }
  234 
  235 static int
  236 ste_miibus_readreg(device_t dev, int phy, int reg)
  237 {
  238 
  239         return (mii_bitbang_readreg(dev, &ste_mii_bitbang_ops, phy, reg));
  240 }
  241 
  242 static int
  243 ste_miibus_writereg(device_t dev, int phy, int reg, int data)
  244 {
  245 
  246         mii_bitbang_writereg(dev, &ste_mii_bitbang_ops, phy, reg, data);
  247 
  248         return (0);
  249 }
  250 
  251 static void
  252 ste_miibus_statchg(device_t dev)
  253 {
  254         struct ste_softc *sc;
  255         struct mii_data *mii;
  256         struct ifnet *ifp;
  257         uint16_t cfg;
  258 
  259         sc = device_get_softc(dev);
  260 
  261         mii = device_get_softc(sc->ste_miibus);
  262         ifp = sc->ste_ifp;
  263         if (mii == NULL || ifp == NULL ||
  264             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
  265                 return;
  266 
  267         sc->ste_flags &= ~STE_FLAG_LINK;
  268         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
  269             (IFM_ACTIVE | IFM_AVALID)) {
  270                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
  271                 case IFM_10_T:
  272                 case IFM_100_TX:
  273                 case IFM_100_FX:
  274                 case IFM_100_T4:
  275                         sc->ste_flags |= STE_FLAG_LINK;
  276                 default:
  277                         break;
  278                 }
  279         }
  280 
  281         /* Program MACs with resolved speed/duplex/flow-control. */
  282         if ((sc->ste_flags & STE_FLAG_LINK) != 0) {
  283                 cfg = CSR_READ_2(sc, STE_MACCTL0);
  284                 cfg &= ~(STE_MACCTL0_FLOWCTL_ENABLE | STE_MACCTL0_FULLDUPLEX);
  285                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
  286                         /*
  287                          * ST201 data sheet says driver should enable receiving
  288                          * MAC control frames bit of receive mode register to
  289                          * receive flow-control frames but the register has no
  290                          * such bits. In addition the controller has no ability
  291                          * to send pause frames so it should be handled in
  292                          * driver. Implementing pause timer handling in driver
  293                          * layer is not trivial, so don't enable flow-control
  294                          * here.
  295                          */
  296                         cfg |= STE_MACCTL0_FULLDUPLEX;
  297                 }
  298                 CSR_WRITE_2(sc, STE_MACCTL0, cfg);
  299         }
  300 }
  301 
  302 static int
  303 ste_ifmedia_upd(struct ifnet *ifp)
  304 {
  305         struct ste_softc *sc;
  306         struct mii_data *mii;
  307         struct mii_softc *miisc;
  308         int error;
  309 
  310         sc = ifp->if_softc;
  311         STE_LOCK(sc);
  312         mii = device_get_softc(sc->ste_miibus);
  313         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
  314                 PHY_RESET(miisc);
  315         error = mii_mediachg(mii);
  316         STE_UNLOCK(sc);
  317 
  318         return (error);
  319 }
  320 
  321 static void
  322 ste_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
  323 {
  324         struct ste_softc *sc;
  325         struct mii_data *mii;
  326 
  327         sc = ifp->if_softc;
  328         mii = device_get_softc(sc->ste_miibus);
  329 
  330         STE_LOCK(sc);
  331         if ((ifp->if_flags & IFF_UP) == 0) {
  332                 STE_UNLOCK(sc);
  333                 return;
  334         }
  335         mii_pollstat(mii);
  336         ifmr->ifm_active = mii->mii_media_active;
  337         ifmr->ifm_status = mii->mii_media_status;
  338         STE_UNLOCK(sc);
  339 }
  340 
  341 static void
  342 ste_wait(struct ste_softc *sc)
  343 {
  344         int i;
  345 
  346         for (i = 0; i < STE_TIMEOUT; i++) {
  347                 if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
  348                         break;
  349                 DELAY(1);
  350         }
  351 
  352         if (i == STE_TIMEOUT)
  353                 device_printf(sc->ste_dev, "command never completed!\n");
  354 }
  355 
  356 /*
  357  * The EEPROM is slow: give it time to come ready after issuing
  358  * it a command.
  359  */
  360 static int
  361 ste_eeprom_wait(struct ste_softc *sc)
  362 {
  363         int i;
  364 
  365         DELAY(1000);
  366 
  367         for (i = 0; i < 100; i++) {
  368                 if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
  369                         DELAY(1000);
  370                 else
  371                         break;
  372         }
  373 
  374         if (i == 100) {
  375                 device_printf(sc->ste_dev, "eeprom failed to come ready\n");
  376                 return (1);
  377         }
  378 
  379         return (0);
  380 }
  381 
  382 /*
  383  * Read a sequence of words from the EEPROM. Note that ethernet address
  384  * data is stored in the EEPROM in network byte order.
  385  */
  386 static int
  387 ste_read_eeprom(struct ste_softc *sc, uint16_t *dest, int off, int cnt)
  388 {
  389         int err = 0, i;
  390 
  391         if (ste_eeprom_wait(sc))
  392                 return (1);
  393 
  394         for (i = 0; i < cnt; i++) {
  395                 CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
  396                 err = ste_eeprom_wait(sc);
  397                 if (err)
  398                         break;
  399                 *dest = le16toh(CSR_READ_2(sc, STE_EEPROM_DATA));
  400                 dest++;
  401         }
  402 
  403         return (err ? 1 : 0);
  404 }
  405 
  406 static u_int
  407 ste_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
  408 {
  409         uint32_t *hashes = arg;
  410         int h;
  411 
  412         h = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) & 0x3F;
  413         if (h < 32)
  414                 hashes[0] |= (1 << h);
  415         else
  416                 hashes[1] |= (1 << (h - 32));
  417 
  418         return (1);
  419 }
  420 
  421 static void
  422 ste_rxfilter(struct ste_softc *sc)
  423 {
  424         struct ifnet *ifp;
  425         uint32_t hashes[2] = { 0, 0 };
  426         uint8_t rxcfg;
  427 
  428         STE_LOCK_ASSERT(sc);
  429 
  430         ifp = sc->ste_ifp;
  431         rxcfg = CSR_READ_1(sc, STE_RX_MODE);
  432         rxcfg |= STE_RXMODE_UNICAST;
  433         rxcfg &= ~(STE_RXMODE_ALLMULTI | STE_RXMODE_MULTIHASH |
  434             STE_RXMODE_BROADCAST | STE_RXMODE_PROMISC);
  435         if (ifp->if_flags & IFF_BROADCAST)
  436                 rxcfg |= STE_RXMODE_BROADCAST;
  437         if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
  438                 if ((ifp->if_flags & IFF_ALLMULTI) != 0)
  439                         rxcfg |= STE_RXMODE_ALLMULTI;
  440                 if ((ifp->if_flags & IFF_PROMISC) != 0)
  441                         rxcfg |= STE_RXMODE_PROMISC;
  442                 goto chipit;
  443         }
  444 
  445         rxcfg |= STE_RXMODE_MULTIHASH;
  446         /* Now program new ones. */
  447         if_foreach_llmaddr(ifp, ste_hash_maddr, hashes);
  448 
  449 chipit:
  450         CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
  451         CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
  452         CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
  453         CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
  454         CSR_WRITE_1(sc, STE_RX_MODE, rxcfg);
  455         CSR_READ_1(sc, STE_RX_MODE);
  456 }
  457 
  458 #ifdef DEVICE_POLLING
  459 static poll_handler_t ste_poll, ste_poll_locked;
  460 
  461 static int
  462 ste_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
  463 {
  464         struct ste_softc *sc = ifp->if_softc;
  465         int rx_npkts = 0;
  466 
  467         STE_LOCK(sc);
  468         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
  469                 rx_npkts = ste_poll_locked(ifp, cmd, count);
  470         STE_UNLOCK(sc);
  471         return (rx_npkts);
  472 }
  473 
  474 static int
  475 ste_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
  476 {
  477         struct ste_softc *sc = ifp->if_softc;
  478         int rx_npkts;
  479 
  480         STE_LOCK_ASSERT(sc);
  481 
  482         rx_npkts = ste_rxeof(sc, count);
  483         ste_txeof(sc);
  484         ste_txeoc(sc);
  485         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
  486                 ste_start_locked(ifp);
  487 
  488         if (cmd == POLL_AND_CHECK_STATUS) {
  489                 uint16_t status;
  490 
  491                 status = CSR_READ_2(sc, STE_ISR_ACK);
  492 
  493                 if (status & STE_ISR_STATS_OFLOW)
  494                         ste_stats_update(sc);
  495 
  496                 if (status & STE_ISR_HOSTERR) {
  497                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
  498                         ste_init_locked(sc);
  499                 }
  500         }
  501         return (rx_npkts);
  502 }
  503 #endif /* DEVICE_POLLING */
  504 
  505 static void
  506 ste_intr(void *xsc)
  507 {
  508         struct ste_softc *sc;
  509         struct ifnet *ifp;
  510         uint16_t intrs, status;
  511 
  512         sc = xsc;
  513         STE_LOCK(sc);
  514         ifp = sc->ste_ifp;
  515 
  516 #ifdef DEVICE_POLLING
  517         if (ifp->if_capenable & IFCAP_POLLING) {
  518                 STE_UNLOCK(sc);
  519                 return;
  520         }
  521 #endif
  522         /* Reading STE_ISR_ACK clears STE_IMR register. */
  523         status = CSR_READ_2(sc, STE_ISR_ACK);
  524         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
  525                 STE_UNLOCK(sc);
  526                 return;
  527         }
  528 
  529         intrs = STE_INTRS;
  530         if (status == 0xFFFF || (status & intrs) == 0)
  531                 goto done;
  532 
  533         if (sc->ste_int_rx_act > 0) {
  534                 status &= ~STE_ISR_RX_DMADONE;
  535                 intrs &= ~STE_IMR_RX_DMADONE;
  536         }
  537 
  538         if ((status & (STE_ISR_SOFTINTR | STE_ISR_RX_DMADONE)) != 0) {
  539                 ste_rxeof(sc, -1);
  540                 /*
  541                  * The controller has no ability to Rx interrupt
  542                  * moderation feature. Receiving 64 bytes frames
  543                  * from wire generates too many interrupts which in
  544                  * turn make system useless to process other useful
  545                  * things. Fortunately ST201 supports single shot
  546                  * timer so use the timer to implement Rx interrupt
  547                  * moderation in driver. This adds more register
  548                  * access but it greatly reduces number of Rx
  549                  * interrupts under high network load.
  550                  */
  551                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
  552                     (sc->ste_int_rx_mod != 0)) {
  553                         if ((status & STE_ISR_RX_DMADONE) != 0) {
  554                                 CSR_WRITE_2(sc, STE_COUNTDOWN,
  555                                     STE_TIMER_USECS(sc->ste_int_rx_mod));
  556                                 intrs &= ~STE_IMR_RX_DMADONE;
  557                                 sc->ste_int_rx_act = 1;
  558                         } else {
  559                                 intrs |= STE_IMR_RX_DMADONE;
  560                                 sc->ste_int_rx_act = 0;
  561                         }
  562                 }
  563         }
  564         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
  565                 if ((status & STE_ISR_TX_DMADONE) != 0)
  566                         ste_txeof(sc);
  567                 if ((status & STE_ISR_TX_DONE) != 0)
  568                         ste_txeoc(sc);
  569                 if ((status & STE_ISR_STATS_OFLOW) != 0)
  570                         ste_stats_update(sc);
  571                 if ((status & STE_ISR_HOSTERR) != 0) {
  572                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
  573                         ste_init_locked(sc);
  574                         STE_UNLOCK(sc);
  575                         return;
  576                 }
  577                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
  578                         ste_start_locked(ifp);
  579 done:
  580                 /* Re-enable interrupts */
  581                 CSR_WRITE_2(sc, STE_IMR, intrs);
  582         }
  583         STE_UNLOCK(sc);
  584 }
  585 
  586 /*
  587  * A frame has been uploaded: pass the resulting mbuf chain up to
  588  * the higher level protocols.
  589  */
  590 static int
  591 ste_rxeof(struct ste_softc *sc, int count)
  592 {
  593         struct mbuf *m;
  594         struct ifnet *ifp;
  595         struct ste_chain_onefrag *cur_rx;
  596         uint32_t rxstat;
  597         int total_len, rx_npkts;
  598 
  599         ifp = sc->ste_ifp;
  600 
  601         bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
  602             sc->ste_cdata.ste_rx_list_map,
  603             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
  604 
  605         cur_rx = sc->ste_cdata.ste_rx_head;
  606         for (rx_npkts = 0; rx_npkts < STE_RX_LIST_CNT; rx_npkts++,
  607             cur_rx = cur_rx->ste_next) {
  608                 rxstat = le32toh(cur_rx->ste_ptr->ste_status);
  609                 if ((rxstat & STE_RXSTAT_DMADONE) == 0)
  610                         break;
  611 #ifdef DEVICE_POLLING
  612                 if (ifp->if_capenable & IFCAP_POLLING) {
  613                         if (count == 0)
  614                                 break;
  615                         count--;
  616                 }
  617 #endif
  618                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
  619                         break;
  620                 /*
  621                  * If an error occurs, update stats, clear the
  622                  * status word and leave the mbuf cluster in place:
  623                  * it should simply get re-used next time this descriptor
  624                  * comes up in the ring.
  625                  */
  626                 if (rxstat & STE_RXSTAT_FRAME_ERR) {
  627                         if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
  628                         cur_rx->ste_ptr->ste_status = 0;
  629                         continue;
  630                 }
  631 
  632                 /* No errors; receive the packet. */
  633                 m = cur_rx->ste_mbuf;
  634                 total_len = STE_RX_BYTES(rxstat);
  635 
  636                 /*
  637                  * Try to conjure up a new mbuf cluster. If that
  638                  * fails, it means we have an out of memory condition and
  639                  * should leave the buffer in place and continue. This will
  640                  * result in a lost packet, but there's little else we
  641                  * can do in this situation.
  642                  */
  643                 if (ste_newbuf(sc, cur_rx) != 0) {
  644                         if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
  645                         cur_rx->ste_ptr->ste_status = 0;
  646                         continue;
  647                 }
  648 
  649                 m->m_pkthdr.rcvif = ifp;
  650                 m->m_pkthdr.len = m->m_len = total_len;
  651 
  652                 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
  653                 STE_UNLOCK(sc);
  654                 (*ifp->if_input)(ifp, m);
  655                 STE_LOCK(sc);
  656         }
  657 
  658         if (rx_npkts > 0) {
  659                 sc->ste_cdata.ste_rx_head = cur_rx;
  660                 bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
  661                     sc->ste_cdata.ste_rx_list_map,
  662                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
  663         }
  664 
  665         return (rx_npkts);
  666 }
  667 
  668 static void
  669 ste_txeoc(struct ste_softc *sc)
  670 {
  671         uint16_t txstat;
  672         struct ifnet *ifp;
  673 
  674         STE_LOCK_ASSERT(sc);
  675 
  676         ifp = sc->ste_ifp;
  677 
  678         /*
  679          * STE_TX_STATUS register implements a queue of up to 31
  680          * transmit status byte. Writing an arbitrary value to the
  681          * register will advance the queue to the next transmit
  682          * status byte. This means if driver does not read
  683          * STE_TX_STATUS register after completing sending more
  684          * than 31 frames the controller would be stalled so driver
  685          * should re-wake the Tx MAC. This is the most severe
  686          * limitation of ST201 based controller.
  687          */
  688         for (;;) {
  689                 txstat = CSR_READ_2(sc, STE_TX_STATUS);
  690                 if ((txstat & STE_TXSTATUS_TXDONE) == 0)
  691                         break;
  692                 if ((txstat & (STE_TXSTATUS_UNDERRUN |
  693                     STE_TXSTATUS_EXCESSCOLLS | STE_TXSTATUS_RECLAIMERR |
  694                     STE_TXSTATUS_STATSOFLOW)) != 0) {
  695                         if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
  696 #ifdef  STE_SHOW_TXERRORS
  697                         device_printf(sc->ste_dev, "TX error : 0x%b\n",
  698                             txstat & 0xFF, STE_ERR_BITS);
  699 #endif
  700                         if ((txstat & STE_TXSTATUS_UNDERRUN) != 0 &&
  701                             sc->ste_tx_thresh < STE_PACKET_SIZE) {
  702                                 sc->ste_tx_thresh += STE_MIN_FRAMELEN;
  703                                 if (sc->ste_tx_thresh > STE_PACKET_SIZE)
  704                                         sc->ste_tx_thresh = STE_PACKET_SIZE;
  705                                 device_printf(sc->ste_dev,
  706                                     "TX underrun, increasing TX"
  707                                     " start threshold to %d bytes\n",
  708                                     sc->ste_tx_thresh);
  709                                 /* Make sure to disable active DMA cycles. */
  710                                 STE_SETBIT4(sc, STE_DMACTL,
  711                                     STE_DMACTL_TXDMA_STALL);
  712                                 ste_wait(sc);
  713                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
  714                                 ste_init_locked(sc);
  715                                 break;
  716                         }
  717                         /* Restart Tx. */
  718                         ste_restart_tx(sc);
  719                 }
  720                 /*
  721                  * Advance to next status and ACK TxComplete
  722                  * interrupt. ST201 data sheet was wrong here, to
  723                  * get next Tx status, we have to write both
  724                  * STE_TX_STATUS and STE_TX_FRAMEID register.
  725                  * Otherwise controller returns the same status
  726                  * as well as not acknowledge Tx completion
  727                  * interrupt.
  728                  */
  729                 CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
  730         }
  731 }
  732 
  733 static void
  734 ste_tick(void *arg)
  735 {
  736         struct ste_softc *sc;
  737         struct mii_data *mii;
  738 
  739         sc = (struct ste_softc *)arg;
  740 
  741         STE_LOCK_ASSERT(sc);
  742 
  743         mii = device_get_softc(sc->ste_miibus);
  744         mii_tick(mii);
  745         /*
  746          * ukphy(4) does not seem to generate CB that reports
  747          * resolved link state so if we know we lost a link,
  748          * explicitly check the link state.
  749          */
  750         if ((sc->ste_flags & STE_FLAG_LINK) == 0)
  751                 ste_miibus_statchg(sc->ste_dev);
  752         /*
  753          * Because we are not generating Tx completion
  754          * interrupt for every frame, reclaim transmitted
  755          * buffers here.
  756          */
  757         ste_txeof(sc);
  758         ste_txeoc(sc);
  759         ste_stats_update(sc);
  760         ste_watchdog(sc);
  761         callout_reset(&sc->ste_callout, hz, ste_tick, sc);
  762 }
  763 
  764 static void
  765 ste_txeof(struct ste_softc *sc)
  766 {
  767         struct ifnet *ifp;
  768         struct ste_chain *cur_tx;
  769         uint32_t txstat;
  770         int idx;
  771 
  772         STE_LOCK_ASSERT(sc);
  773 
  774         ifp = sc->ste_ifp;
  775         idx = sc->ste_cdata.ste_tx_cons;
  776         if (idx == sc->ste_cdata.ste_tx_prod)
  777                 return;
  778 
  779         bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
  780             sc->ste_cdata.ste_tx_list_map,
  781             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
  782 
  783         while (idx != sc->ste_cdata.ste_tx_prod) {
  784                 cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
  785                 txstat = le32toh(cur_tx->ste_ptr->ste_ctl);
  786                 if ((txstat & STE_TXCTL_DMADONE) == 0)
  787                         break;
  788                 bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map,
  789                     BUS_DMASYNC_POSTWRITE);
  790                 bus_dmamap_unload(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map);
  791                 KASSERT(cur_tx->ste_mbuf != NULL,
  792                     ("%s: freeing NULL mbuf!\n", __func__));
  793                 m_freem(cur_tx->ste_mbuf);
  794                 cur_tx->ste_mbuf = NULL;
  795                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
  796                 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
  797                 sc->ste_cdata.ste_tx_cnt--;
  798                 STE_INC(idx, STE_TX_LIST_CNT);
  799         }
  800 
  801         sc->ste_cdata.ste_tx_cons = idx;
  802         if (sc->ste_cdata.ste_tx_cnt == 0)
  803                 sc->ste_timer = 0;
  804 }
  805 
  806 static void
  807 ste_stats_clear(struct ste_softc *sc)
  808 {
  809 
  810         STE_LOCK_ASSERT(sc);
  811 
  812         /* Rx stats. */
  813         CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO);
  814         CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI);
  815         CSR_READ_2(sc, STE_STAT_RX_FRAMES);
  816         CSR_READ_1(sc, STE_STAT_RX_BCAST);
  817         CSR_READ_1(sc, STE_STAT_RX_MCAST);
  818         CSR_READ_1(sc, STE_STAT_RX_LOST);
  819         /* Tx stats. */
  820         CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO);
  821         CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI);
  822         CSR_READ_2(sc, STE_STAT_TX_FRAMES);
  823         CSR_READ_1(sc, STE_STAT_TX_BCAST);
  824         CSR_READ_1(sc, STE_STAT_TX_MCAST);
  825         CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
  826         CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
  827         CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
  828         CSR_READ_1(sc, STE_STAT_LATE_COLLS);
  829         CSR_READ_1(sc, STE_STAT_TX_DEFER);
  830         CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
  831         CSR_READ_1(sc, STE_STAT_TX_ABORT);
  832 }
  833 
  834 static void
  835 ste_stats_update(struct ste_softc *sc)
  836 {
  837         struct ifnet *ifp;
  838         struct ste_hw_stats *stats;
  839         uint32_t val;
  840 
  841         STE_LOCK_ASSERT(sc);
  842 
  843         ifp = sc->ste_ifp;
  844         stats = &sc->ste_stats;
  845         /* Rx stats. */
  846         val = (uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO) |
  847             ((uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI)) << 16;
  848         val &= 0x000FFFFF;
  849         stats->rx_bytes += val;
  850         stats->rx_frames += CSR_READ_2(sc, STE_STAT_RX_FRAMES);
  851         stats->rx_bcast_frames += CSR_READ_1(sc, STE_STAT_RX_BCAST);
  852         stats->rx_mcast_frames += CSR_READ_1(sc, STE_STAT_RX_MCAST);
  853         stats->rx_lost_frames += CSR_READ_1(sc, STE_STAT_RX_LOST);
  854         /* Tx stats. */
  855         val = (uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO) |
  856             ((uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI)) << 16;
  857         val &= 0x000FFFFF;
  858         stats->tx_bytes += val;
  859         stats->tx_frames += CSR_READ_2(sc, STE_STAT_TX_FRAMES);
  860         stats->tx_bcast_frames += CSR_READ_1(sc, STE_STAT_TX_BCAST);
  861         stats->tx_mcast_frames += CSR_READ_1(sc, STE_STAT_TX_MCAST);
  862         stats->tx_carrsense_errs += CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
  863         val = CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
  864         stats->tx_single_colls += val;
  865         if_inc_counter(ifp, IFCOUNTER_COLLISIONS, val);
  866         val = CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
  867         stats->tx_multi_colls += val;
  868         if_inc_counter(ifp, IFCOUNTER_COLLISIONS, val);
  869         val += CSR_READ_1(sc, STE_STAT_LATE_COLLS);
  870         stats->tx_late_colls += val;
  871         if_inc_counter(ifp, IFCOUNTER_COLLISIONS, val);
  872         stats->tx_frames_defered += CSR_READ_1(sc, STE_STAT_TX_DEFER);
  873         stats->tx_excess_defers += CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
  874         stats->tx_abort += CSR_READ_1(sc, STE_STAT_TX_ABORT);
  875 }
  876 
  877 /*
  878  * Probe for a Sundance ST201 chip. Check the PCI vendor and device
  879  * IDs against our list and return a device name if we find a match.
  880  */
  881 static int
  882 ste_probe(device_t dev)
  883 {
  884         const struct ste_type *t;
  885 
  886         t = ste_devs;
  887 
  888         while (t->ste_name != NULL) {
  889                 if ((pci_get_vendor(dev) == t->ste_vid) &&
  890                     (pci_get_device(dev) == t->ste_did)) {
  891                         device_set_desc(dev, t->ste_name);
  892                         return (BUS_PROBE_DEFAULT);
  893                 }
  894                 t++;
  895         }
  896 
  897         return (ENXIO);
  898 }
  899 
  900 /*
  901  * Attach the interface. Allocate softc structures, do ifmedia
  902  * setup and ethernet/BPF attach.
  903  */
  904 static int
  905 ste_attach(device_t dev)
  906 {
  907         struct ste_softc *sc;
  908         struct ifnet *ifp;
  909         uint16_t eaddr[ETHER_ADDR_LEN / 2];
  910         int error = 0, phy, pmc, prefer_iomap, rid;
  911 
  912         sc = device_get_softc(dev);
  913         sc->ste_dev = dev;
  914 
  915         /*
  916          * Only use one PHY since this chip reports multiple
  917          * Note on the DFE-550 the PHY is at 1 on the DFE-580
  918          * it is at 0 & 1.  It is rev 0x12.
  919          */
  920         if (pci_get_vendor(dev) == DL_VENDORID &&
  921             pci_get_device(dev) == DL_DEVICEID_DL10050 &&
  922             pci_get_revid(dev) == 0x12 )
  923                 sc->ste_flags |= STE_FLAG_ONE_PHY;
  924 
  925         mtx_init(&sc->ste_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
  926             MTX_DEF);
  927         /*
  928          * Map control/status registers.
  929          */
  930         pci_enable_busmaster(dev);
  931 
  932         /*
  933          * Prefer memory space register mapping over IO space but use
  934          * IO space for a device that is known to have issues on memory
  935          * mapping.
  936          */
  937         prefer_iomap = 0;
  938         if (pci_get_device(dev) == ST_DEVICEID_ST201_1)
  939                 prefer_iomap = 1;
  940         else
  941                 resource_int_value(device_get_name(sc->ste_dev),
  942                     device_get_unit(sc->ste_dev), "prefer_iomap",
  943                     &prefer_iomap);
  944         if (prefer_iomap == 0) {
  945                 sc->ste_res_id = PCIR_BAR(1);
  946                 sc->ste_res_type = SYS_RES_MEMORY;
  947                 sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
  948                     &sc->ste_res_id, RF_ACTIVE);
  949         }
  950         if (prefer_iomap || sc->ste_res == NULL) {
  951                 sc->ste_res_id = PCIR_BAR(0);
  952                 sc->ste_res_type = SYS_RES_IOPORT;
  953                 sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
  954                     &sc->ste_res_id, RF_ACTIVE);
  955         }
  956         if (sc->ste_res == NULL) {
  957                 device_printf(dev, "couldn't map ports/memory\n");
  958                 error = ENXIO;
  959                 goto fail;
  960         }
  961 
  962         /* Allocate interrupt */
  963         rid = 0;
  964         sc->ste_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
  965             RF_SHAREABLE | RF_ACTIVE);
  966 
  967         if (sc->ste_irq == NULL) {
  968                 device_printf(dev, "couldn't map interrupt\n");
  969                 error = ENXIO;
  970                 goto fail;
  971         }
  972 
  973         callout_init_mtx(&sc->ste_callout, &sc->ste_mtx, 0);
  974 
  975         /* Reset the adapter. */
  976         ste_reset(sc);
  977 
  978         /*
  979          * Get station address from the EEPROM.
  980          */
  981         if (ste_read_eeprom(sc, eaddr, STE_EEADDR_NODE0, ETHER_ADDR_LEN / 2)) {
  982                 device_printf(dev, "failed to read station address\n");
  983                 error = ENXIO;
  984                 goto fail;
  985         }
  986         ste_sysctl_node(sc);
  987 
  988         if ((error = ste_dma_alloc(sc)) != 0)
  989                 goto fail;
  990 
  991         ifp = sc->ste_ifp = if_alloc(IFT_ETHER);
  992         if (ifp == NULL) {
  993                 device_printf(dev, "can not if_alloc()\n");
  994                 error = ENOSPC;
  995                 goto fail;
  996         }
  997 
  998         /* Do MII setup. */
  999         phy = MII_PHY_ANY;
 1000         if ((sc->ste_flags & STE_FLAG_ONE_PHY) != 0)
 1001                 phy = 0;
 1002         error = mii_attach(dev, &sc->ste_miibus, ifp, ste_ifmedia_upd,
 1003                 ste_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
 1004         if (error != 0) {
 1005                 device_printf(dev, "attaching PHYs failed\n");
 1006                 goto fail;
 1007         }
 1008 
 1009         ifp->if_softc = sc;
 1010         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
 1011         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
 1012         ifp->if_ioctl = ste_ioctl;
 1013         ifp->if_start = ste_start;
 1014         ifp->if_init = ste_init;
 1015         IFQ_SET_MAXLEN(&ifp->if_snd, STE_TX_LIST_CNT - 1);
 1016         ifp->if_snd.ifq_drv_maxlen = STE_TX_LIST_CNT - 1;
 1017         IFQ_SET_READY(&ifp->if_snd);
 1018 
 1019         sc->ste_tx_thresh = STE_TXSTART_THRESH;
 1020 
 1021         /*
 1022          * Call MI attach routine.
 1023          */
 1024         ether_ifattach(ifp, (uint8_t *)eaddr);
 1025 
 1026         /*
 1027          * Tell the upper layer(s) we support long frames.
 1028          */
 1029         ifp->if_hdrlen = sizeof(struct ether_vlan_header);
 1030         ifp->if_capabilities |= IFCAP_VLAN_MTU;
 1031         if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
 1032                 ifp->if_capabilities |= IFCAP_WOL_MAGIC;
 1033         ifp->if_capenable = ifp->if_capabilities;
 1034 #ifdef DEVICE_POLLING
 1035         ifp->if_capabilities |= IFCAP_POLLING;
 1036 #endif
 1037 
 1038         /* Hook interrupt last to avoid having to lock softc */
 1039         error = bus_setup_intr(dev, sc->ste_irq, INTR_TYPE_NET | INTR_MPSAFE,
 1040             NULL, ste_intr, sc, &sc->ste_intrhand);
 1041 
 1042         if (error) {
 1043                 device_printf(dev, "couldn't set up irq\n");
 1044                 ether_ifdetach(ifp);
 1045                 goto fail;
 1046         }
 1047 
 1048 fail:
 1049         if (error)
 1050                 ste_detach(dev);
 1051 
 1052         return (error);
 1053 }
 1054 
 1055 /*
 1056  * Shutdown hardware and free up resources. This can be called any
 1057  * time after the mutex has been initialized. It is called in both
 1058  * the error case in attach and the normal detach case so it needs
 1059  * to be careful about only freeing resources that have actually been
 1060  * allocated.
 1061  */
 1062 static int
 1063 ste_detach(device_t dev)
 1064 {
 1065         struct ste_softc *sc;
 1066         struct ifnet *ifp;
 1067 
 1068         sc = device_get_softc(dev);
 1069         KASSERT(mtx_initialized(&sc->ste_mtx), ("ste mutex not initialized"));
 1070         ifp = sc->ste_ifp;
 1071 
 1072 #ifdef DEVICE_POLLING
 1073         if (ifp->if_capenable & IFCAP_POLLING)
 1074                 ether_poll_deregister(ifp);
 1075 #endif
 1076 
 1077         /* These should only be active if attach succeeded */
 1078         if (device_is_attached(dev)) {
 1079                 ether_ifdetach(ifp);
 1080                 STE_LOCK(sc);
 1081                 ste_stop(sc);
 1082                 STE_UNLOCK(sc);
 1083                 callout_drain(&sc->ste_callout);
 1084         }
 1085         if (sc->ste_miibus)
 1086                 device_delete_child(dev, sc->ste_miibus);
 1087         bus_generic_detach(dev);
 1088 
 1089         if (sc->ste_intrhand)
 1090                 bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
 1091         if (sc->ste_irq)
 1092                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
 1093         if (sc->ste_res)
 1094                 bus_release_resource(dev, sc->ste_res_type, sc->ste_res_id,
 1095                     sc->ste_res);
 1096 
 1097         if (ifp)
 1098                 if_free(ifp);
 1099 
 1100         ste_dma_free(sc);
 1101         mtx_destroy(&sc->ste_mtx);
 1102 
 1103         return (0);
 1104 }
 1105 
 1106 struct ste_dmamap_arg {
 1107         bus_addr_t      ste_busaddr;
 1108 };
 1109 
 1110 static void
 1111 ste_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
 1112 {
 1113         struct ste_dmamap_arg *ctx;
 1114 
 1115         if (error != 0)
 1116                 return;
 1117 
 1118         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
 1119 
 1120         ctx = (struct ste_dmamap_arg *)arg;
 1121         ctx->ste_busaddr = segs[0].ds_addr;
 1122 }
 1123 
 1124 static int
 1125 ste_dma_alloc(struct ste_softc *sc)
 1126 {
 1127         struct ste_chain *txc;
 1128         struct ste_chain_onefrag *rxc;
 1129         struct ste_dmamap_arg ctx;
 1130         int error, i;
 1131 
 1132         /* Create parent DMA tag. */
 1133         error = bus_dma_tag_create(
 1134             bus_get_dma_tag(sc->ste_dev), /* parent */
 1135             1, 0,                       /* alignment, boundary */
 1136             BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
 1137             BUS_SPACE_MAXADDR,          /* highaddr */
 1138             NULL, NULL,                 /* filter, filterarg */
 1139             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
 1140             0,                          /* nsegments */
 1141             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
 1142             0,                          /* flags */
 1143             NULL, NULL,                 /* lockfunc, lockarg */
 1144             &sc->ste_cdata.ste_parent_tag);
 1145         if (error != 0) {
 1146                 device_printf(sc->ste_dev,
 1147                     "could not create parent DMA tag.\n");
 1148                 goto fail;
 1149         }
 1150 
 1151         /* Create DMA tag for Tx descriptor list. */
 1152         error = bus_dma_tag_create(
 1153             sc->ste_cdata.ste_parent_tag, /* parent */
 1154             STE_DESC_ALIGN, 0,          /* alignment, boundary */
 1155             BUS_SPACE_MAXADDR,          /* lowaddr */
 1156             BUS_SPACE_MAXADDR,          /* highaddr */
 1157             NULL, NULL,                 /* filter, filterarg */
 1158             STE_TX_LIST_SZ,             /* maxsize */
 1159             1,                          /* nsegments */
 1160             STE_TX_LIST_SZ,             /* maxsegsize */
 1161             0,                          /* flags */
 1162             NULL, NULL,                 /* lockfunc, lockarg */
 1163             &sc->ste_cdata.ste_tx_list_tag);
 1164         if (error != 0) {
 1165                 device_printf(sc->ste_dev,
 1166                     "could not create Tx list DMA tag.\n");
 1167                 goto fail;
 1168         }
 1169 
 1170         /* Create DMA tag for Rx descriptor list. */
 1171         error = bus_dma_tag_create(
 1172             sc->ste_cdata.ste_parent_tag, /* parent */
 1173             STE_DESC_ALIGN, 0,          /* alignment, boundary */
 1174             BUS_SPACE_MAXADDR,          /* lowaddr */
 1175             BUS_SPACE_MAXADDR,          /* highaddr */
 1176             NULL, NULL,                 /* filter, filterarg */
 1177             STE_RX_LIST_SZ,             /* maxsize */
 1178             1,                          /* nsegments */
 1179             STE_RX_LIST_SZ,             /* maxsegsize */
 1180             0,                          /* flags */
 1181             NULL, NULL,                 /* lockfunc, lockarg */
 1182             &sc->ste_cdata.ste_rx_list_tag);
 1183         if (error != 0) {
 1184                 device_printf(sc->ste_dev,
 1185                     "could not create Rx list DMA tag.\n");
 1186                 goto fail;
 1187         }
 1188 
 1189         /* Create DMA tag for Tx buffers. */
 1190         error = bus_dma_tag_create(
 1191             sc->ste_cdata.ste_parent_tag, /* parent */
 1192             1, 0,                       /* alignment, boundary */
 1193             BUS_SPACE_MAXADDR,          /* lowaddr */
 1194             BUS_SPACE_MAXADDR,          /* highaddr */
 1195             NULL, NULL,                 /* filter, filterarg */
 1196             MCLBYTES * STE_MAXFRAGS,    /* maxsize */
 1197             STE_MAXFRAGS,               /* nsegments */
 1198             MCLBYTES,                   /* maxsegsize */
 1199             0,                          /* flags */
 1200             NULL, NULL,                 /* lockfunc, lockarg */
 1201             &sc->ste_cdata.ste_tx_tag);
 1202         if (error != 0) {
 1203                 device_printf(sc->ste_dev, "could not create Tx DMA tag.\n");
 1204                 goto fail;
 1205         }
 1206 
 1207         /* Create DMA tag for Rx buffers. */
 1208         error = bus_dma_tag_create(
 1209             sc->ste_cdata.ste_parent_tag, /* parent */
 1210             1, 0,                       /* alignment, boundary */
 1211             BUS_SPACE_MAXADDR,          /* lowaddr */
 1212             BUS_SPACE_MAXADDR,          /* highaddr */
 1213             NULL, NULL,                 /* filter, filterarg */
 1214             MCLBYTES,                   /* maxsize */
 1215             1,                          /* nsegments */
 1216             MCLBYTES,                   /* maxsegsize */
 1217             0,                          /* flags */
 1218             NULL, NULL,                 /* lockfunc, lockarg */
 1219             &sc->ste_cdata.ste_rx_tag);
 1220         if (error != 0) {
 1221                 device_printf(sc->ste_dev, "could not create Rx DMA tag.\n");
 1222                 goto fail;
 1223         }
 1224 
 1225         /* Allocate DMA'able memory and load the DMA map for Tx list. */
 1226         error = bus_dmamem_alloc(sc->ste_cdata.ste_tx_list_tag,
 1227             (void **)&sc->ste_ldata.ste_tx_list,
 1228             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 1229             &sc->ste_cdata.ste_tx_list_map);
 1230         if (error != 0) {
 1231                 device_printf(sc->ste_dev,
 1232                     "could not allocate DMA'able memory for Tx list.\n");
 1233                 goto fail;
 1234         }
 1235         ctx.ste_busaddr = 0;
 1236         error = bus_dmamap_load(sc->ste_cdata.ste_tx_list_tag,
 1237             sc->ste_cdata.ste_tx_list_map, sc->ste_ldata.ste_tx_list,
 1238             STE_TX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
 1239         if (error != 0 || ctx.ste_busaddr == 0) {
 1240                 device_printf(sc->ste_dev,
 1241                     "could not load DMA'able memory for Tx list.\n");
 1242                 goto fail;
 1243         }
 1244         sc->ste_ldata.ste_tx_list_paddr = ctx.ste_busaddr;
 1245 
 1246         /* Allocate DMA'able memory and load the DMA map for Rx list. */
 1247         error = bus_dmamem_alloc(sc->ste_cdata.ste_rx_list_tag,
 1248             (void **)&sc->ste_ldata.ste_rx_list,
 1249             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 1250             &sc->ste_cdata.ste_rx_list_map);
 1251         if (error != 0) {
 1252                 device_printf(sc->ste_dev,
 1253                     "could not allocate DMA'able memory for Rx list.\n");
 1254                 goto fail;
 1255         }
 1256         ctx.ste_busaddr = 0;
 1257         error = bus_dmamap_load(sc->ste_cdata.ste_rx_list_tag,
 1258             sc->ste_cdata.ste_rx_list_map, sc->ste_ldata.ste_rx_list,
 1259             STE_RX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
 1260         if (error != 0 || ctx.ste_busaddr == 0) {
 1261                 device_printf(sc->ste_dev,
 1262                     "could not load DMA'able memory for Rx list.\n");
 1263                 goto fail;
 1264         }
 1265         sc->ste_ldata.ste_rx_list_paddr = ctx.ste_busaddr;
 1266 
 1267         /* Create DMA maps for Tx buffers. */
 1268         for (i = 0; i < STE_TX_LIST_CNT; i++) {
 1269                 txc = &sc->ste_cdata.ste_tx_chain[i];
 1270                 txc->ste_ptr = NULL;
 1271                 txc->ste_mbuf = NULL;
 1272                 txc->ste_next = NULL;
 1273                 txc->ste_phys = 0;
 1274                 txc->ste_map = NULL;
 1275                 error = bus_dmamap_create(sc->ste_cdata.ste_tx_tag, 0,
 1276                     &txc->ste_map);
 1277                 if (error != 0) {
 1278                         device_printf(sc->ste_dev,
 1279                             "could not create Tx dmamap.\n");
 1280                         goto fail;
 1281                 }
 1282         }
 1283         /* Create DMA maps for Rx buffers. */
 1284         if ((error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
 1285             &sc->ste_cdata.ste_rx_sparemap)) != 0) {
 1286                 device_printf(sc->ste_dev,
 1287                     "could not create spare Rx dmamap.\n");
 1288                 goto fail;
 1289         }
 1290         for (i = 0; i < STE_RX_LIST_CNT; i++) {
 1291                 rxc = &sc->ste_cdata.ste_rx_chain[i];
 1292                 rxc->ste_ptr = NULL;
 1293                 rxc->ste_mbuf = NULL;
 1294                 rxc->ste_next = NULL;
 1295                 rxc->ste_map = NULL;
 1296                 error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
 1297                     &rxc->ste_map);
 1298                 if (error != 0) {
 1299                         device_printf(sc->ste_dev,
 1300                             "could not create Rx dmamap.\n");
 1301                         goto fail;
 1302                 }
 1303         }
 1304 
 1305 fail:
 1306         return (error);
 1307 }
 1308 
 1309 static void
 1310 ste_dma_free(struct ste_softc *sc)
 1311 {
 1312         struct ste_chain *txc;
 1313         struct ste_chain_onefrag *rxc;
 1314         int i;
 1315 
 1316         /* Tx buffers. */
 1317         if (sc->ste_cdata.ste_tx_tag != NULL) {
 1318                 for (i = 0; i < STE_TX_LIST_CNT; i++) {
 1319                         txc = &sc->ste_cdata.ste_tx_chain[i];
 1320                         if (txc->ste_map != NULL) {
 1321                                 bus_dmamap_destroy(sc->ste_cdata.ste_tx_tag,
 1322                                     txc->ste_map);
 1323                                 txc->ste_map = NULL;
 1324                         }
 1325                 }
 1326                 bus_dma_tag_destroy(sc->ste_cdata.ste_tx_tag);
 1327                 sc->ste_cdata.ste_tx_tag = NULL;
 1328         }
 1329         /* Rx buffers. */
 1330         if (sc->ste_cdata.ste_rx_tag != NULL) {
 1331                 for (i = 0; i < STE_RX_LIST_CNT; i++) {
 1332                         rxc = &sc->ste_cdata.ste_rx_chain[i];
 1333                         if (rxc->ste_map != NULL) {
 1334                                 bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
 1335                                     rxc->ste_map);
 1336                                 rxc->ste_map = NULL;
 1337                         }
 1338                 }
 1339                 if (sc->ste_cdata.ste_rx_sparemap != NULL) {
 1340                         bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
 1341                             sc->ste_cdata.ste_rx_sparemap);
 1342                         sc->ste_cdata.ste_rx_sparemap = NULL;
 1343                 }
 1344                 bus_dma_tag_destroy(sc->ste_cdata.ste_rx_tag);
 1345                 sc->ste_cdata.ste_rx_tag = NULL;
 1346         }
 1347         /* Tx descriptor list. */
 1348         if (sc->ste_cdata.ste_tx_list_tag != NULL) {
 1349                 if (sc->ste_ldata.ste_tx_list_paddr != 0)
 1350                         bus_dmamap_unload(sc->ste_cdata.ste_tx_list_tag,
 1351                             sc->ste_cdata.ste_tx_list_map);
 1352                 if (sc->ste_ldata.ste_tx_list != NULL)
 1353                         bus_dmamem_free(sc->ste_cdata.ste_tx_list_tag,
 1354                             sc->ste_ldata.ste_tx_list,
 1355                             sc->ste_cdata.ste_tx_list_map);
 1356                 sc->ste_ldata.ste_tx_list = NULL;
 1357                 sc->ste_ldata.ste_tx_list_paddr = 0;
 1358                 bus_dma_tag_destroy(sc->ste_cdata.ste_tx_list_tag);
 1359                 sc->ste_cdata.ste_tx_list_tag = NULL;
 1360         }
 1361         /* Rx descriptor list. */
 1362         if (sc->ste_cdata.ste_rx_list_tag != NULL) {
 1363                 if (sc->ste_ldata.ste_rx_list_paddr != 0)
 1364                         bus_dmamap_unload(sc->ste_cdata.ste_rx_list_tag,
 1365                             sc->ste_cdata.ste_rx_list_map);
 1366                 if (sc->ste_ldata.ste_rx_list != NULL)
 1367                         bus_dmamem_free(sc->ste_cdata.ste_rx_list_tag,
 1368                             sc->ste_ldata.ste_rx_list,
 1369                             sc->ste_cdata.ste_rx_list_map);
 1370                 sc->ste_ldata.ste_rx_list = NULL;
 1371                 sc->ste_ldata.ste_rx_list_paddr = 0;
 1372                 bus_dma_tag_destroy(sc->ste_cdata.ste_rx_list_tag);
 1373                 sc->ste_cdata.ste_rx_list_tag = NULL;
 1374         }
 1375         if (sc->ste_cdata.ste_parent_tag != NULL) {
 1376                 bus_dma_tag_destroy(sc->ste_cdata.ste_parent_tag);
 1377                 sc->ste_cdata.ste_parent_tag = NULL;
 1378         }
 1379 }
 1380 
 1381 static int
 1382 ste_newbuf(struct ste_softc *sc, struct ste_chain_onefrag *rxc)
 1383 {
 1384         struct mbuf *m;
 1385         bus_dma_segment_t segs[1];
 1386         bus_dmamap_t map;
 1387         int error, nsegs;
 1388 
 1389         m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
 1390         if (m == NULL)
 1391                 return (ENOBUFS);
 1392         m->m_len = m->m_pkthdr.len = MCLBYTES;
 1393         m_adj(m, ETHER_ALIGN);
 1394 
 1395         if ((error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_rx_tag,
 1396             sc->ste_cdata.ste_rx_sparemap, m, segs, &nsegs, 0)) != 0) {
 1397                 m_freem(m);
 1398                 return (error);
 1399         }
 1400         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
 1401 
 1402         if (rxc->ste_mbuf != NULL) {
 1403                 bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
 1404                     BUS_DMASYNC_POSTREAD);
 1405                 bus_dmamap_unload(sc->ste_cdata.ste_rx_tag, rxc->ste_map);
 1406         }
 1407         map = rxc->ste_map;
 1408         rxc->ste_map = sc->ste_cdata.ste_rx_sparemap;
 1409         sc->ste_cdata.ste_rx_sparemap = map;
 1410         bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
 1411             BUS_DMASYNC_PREREAD);
 1412         rxc->ste_mbuf = m;
 1413         rxc->ste_ptr->ste_status = 0;
 1414         rxc->ste_ptr->ste_frag.ste_addr = htole32(segs[0].ds_addr);
 1415         rxc->ste_ptr->ste_frag.ste_len = htole32(segs[0].ds_len |
 1416             STE_FRAG_LAST);
 1417         return (0);
 1418 }
 1419 
 1420 static int
 1421 ste_init_rx_list(struct ste_softc *sc)
 1422 {
 1423         struct ste_chain_data *cd;
 1424         struct ste_list_data *ld;
 1425         int error, i;
 1426 
 1427         sc->ste_int_rx_act = 0;
 1428         cd = &sc->ste_cdata;
 1429         ld = &sc->ste_ldata;
 1430         bzero(ld->ste_rx_list, STE_RX_LIST_SZ);
 1431         for (i = 0; i < STE_RX_LIST_CNT; i++) {
 1432                 cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
 1433                 error = ste_newbuf(sc, &cd->ste_rx_chain[i]);
 1434                 if (error != 0)
 1435                         return (error);
 1436                 if (i == (STE_RX_LIST_CNT - 1)) {
 1437                         cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[0];
 1438                         ld->ste_rx_list[i].ste_next =
 1439                             htole32(ld->ste_rx_list_paddr +
 1440                             (sizeof(struct ste_desc_onefrag) * 0));
 1441                 } else {
 1442                         cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[i + 1];
 1443                         ld->ste_rx_list[i].ste_next =
 1444                             htole32(ld->ste_rx_list_paddr +
 1445                             (sizeof(struct ste_desc_onefrag) * (i + 1)));
 1446                 }
 1447         }
 1448 
 1449         cd->ste_rx_head = &cd->ste_rx_chain[0];
 1450         bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
 1451             sc->ste_cdata.ste_rx_list_map,
 1452             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1453 
 1454         return (0);
 1455 }
 1456 
 1457 static void
 1458 ste_init_tx_list(struct ste_softc *sc)
 1459 {
 1460         struct ste_chain_data *cd;
 1461         struct ste_list_data *ld;
 1462         int i;
 1463 
 1464         cd = &sc->ste_cdata;
 1465         ld = &sc->ste_ldata;
 1466         bzero(ld->ste_tx_list, STE_TX_LIST_SZ);
 1467         for (i = 0; i < STE_TX_LIST_CNT; i++) {
 1468                 cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
 1469                 cd->ste_tx_chain[i].ste_mbuf = NULL;
 1470                 if (i == (STE_TX_LIST_CNT - 1)) {
 1471                         cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[0];
 1472                         cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
 1473                             ld->ste_tx_list_paddr +
 1474                             (sizeof(struct ste_desc) * 0)));
 1475                 } else {
 1476                         cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[i + 1];
 1477                         cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
 1478                             ld->ste_tx_list_paddr +
 1479                             (sizeof(struct ste_desc) * (i + 1))));
 1480                 }
 1481         }
 1482 
 1483         cd->ste_last_tx = NULL;
 1484         cd->ste_tx_prod = 0;
 1485         cd->ste_tx_cons = 0;
 1486         cd->ste_tx_cnt = 0;
 1487 
 1488         bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
 1489             sc->ste_cdata.ste_tx_list_map,
 1490             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1491 }
 1492 
 1493 static void
 1494 ste_init(void *xsc)
 1495 {
 1496         struct ste_softc *sc;
 1497 
 1498         sc = xsc;
 1499         STE_LOCK(sc);
 1500         ste_init_locked(sc);
 1501         STE_UNLOCK(sc);
 1502 }
 1503 
 1504 static void
 1505 ste_init_locked(struct ste_softc *sc)
 1506 {
 1507         struct ifnet *ifp;
 1508         struct mii_data *mii;
 1509         uint8_t val;
 1510         int i;
 1511 
 1512         STE_LOCK_ASSERT(sc);
 1513         ifp = sc->ste_ifp;
 1514         mii = device_get_softc(sc->ste_miibus);
 1515 
 1516         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 1517                 return;
 1518 
 1519         ste_stop(sc);
 1520         /* Reset the chip to a known state. */
 1521         ste_reset(sc);
 1522 
 1523         /* Init our MAC address */
 1524         for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
 1525                 CSR_WRITE_2(sc, STE_PAR0 + i,
 1526                     ((IF_LLADDR(sc->ste_ifp)[i] & 0xff) |
 1527                      IF_LLADDR(sc->ste_ifp)[i + 1] << 8));
 1528         }
 1529 
 1530         /* Init RX list */
 1531         if (ste_init_rx_list(sc) != 0) {
 1532                 device_printf(sc->ste_dev,
 1533                     "initialization failed: no memory for RX buffers\n");
 1534                 ste_stop(sc);
 1535                 return;
 1536         }
 1537 
 1538         /* Set RX polling interval */
 1539         CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 64);
 1540 
 1541         /* Init TX descriptors */
 1542         ste_init_tx_list(sc);
 1543 
 1544         /* Clear and disable WOL. */
 1545         val = CSR_READ_1(sc, STE_WAKE_EVENT);
 1546         val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
 1547             STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
 1548         CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
 1549 
 1550         /* Set the TX freethresh value */
 1551         CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
 1552 
 1553         /* Set the TX start threshold for best performance. */
 1554         CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
 1555 
 1556         /* Set the TX reclaim threshold. */
 1557         CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
 1558 
 1559         /* Accept VLAN length packets */
 1560         CSR_WRITE_2(sc, STE_MAX_FRAMELEN, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN);
 1561 
 1562         /* Set up the RX filter. */
 1563         ste_rxfilter(sc);
 1564 
 1565         /* Load the address of the RX list. */
 1566         STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
 1567         ste_wait(sc);
 1568         CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
 1569             STE_ADDR_LO(sc->ste_ldata.ste_rx_list_paddr));
 1570         STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
 1571         STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
 1572 
 1573         /* Set TX polling interval(defer until we TX first packet). */
 1574         CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
 1575 
 1576         /* Load address of the TX list */
 1577         STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
 1578         ste_wait(sc);
 1579         CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
 1580         STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
 1581         STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
 1582         ste_wait(sc);
 1583         /* Select 3.2us timer. */
 1584         STE_CLRBIT4(sc, STE_DMACTL, STE_DMACTL_COUNTDOWN_SPEED |
 1585             STE_DMACTL_COUNTDOWN_MODE);
 1586 
 1587         /* Enable receiver and transmitter */
 1588         CSR_WRITE_2(sc, STE_MACCTL0, 0);
 1589         CSR_WRITE_2(sc, STE_MACCTL1, 0);
 1590         STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
 1591         STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
 1592 
 1593         /* Enable stats counters. */
 1594         STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
 1595         /* Clear stats counters. */
 1596         ste_stats_clear(sc);
 1597 
 1598         CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
 1599         CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
 1600 #ifdef DEVICE_POLLING
 1601         /* Disable interrupts if we are polling. */
 1602         if (ifp->if_capenable & IFCAP_POLLING)
 1603                 CSR_WRITE_2(sc, STE_IMR, 0);
 1604         else
 1605 #endif
 1606         /* Enable interrupts. */
 1607         CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
 1608 
 1609         sc->ste_flags &= ~STE_FLAG_LINK;
 1610         /* Switch to the current media. */
 1611         mii_mediachg(mii);
 1612 
 1613         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 1614         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 1615 
 1616         callout_reset(&sc->ste_callout, hz, ste_tick, sc);
 1617 }
 1618 
 1619 static void
 1620 ste_stop(struct ste_softc *sc)
 1621 {
 1622         struct ifnet *ifp;
 1623         struct ste_chain_onefrag *cur_rx;
 1624         struct ste_chain *cur_tx;
 1625         uint32_t val;
 1626         int i;
 1627 
 1628         STE_LOCK_ASSERT(sc);
 1629         ifp = sc->ste_ifp;
 1630 
 1631         callout_stop(&sc->ste_callout);
 1632         sc->ste_timer = 0;
 1633         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
 1634 
 1635         CSR_WRITE_2(sc, STE_IMR, 0);
 1636         CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
 1637         /* Stop pending DMA. */
 1638         val = CSR_READ_4(sc, STE_DMACTL);
 1639         val |= STE_DMACTL_TXDMA_STALL | STE_DMACTL_RXDMA_STALL;
 1640         CSR_WRITE_4(sc, STE_DMACTL, val);
 1641         ste_wait(sc);
 1642         /* Disable auto-polling. */
 1643         CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 0);
 1644         CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
 1645         /* Nullify DMA address to stop any further DMA. */
 1646         CSR_WRITE_4(sc, STE_RX_DMALIST_PTR, 0);
 1647         CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
 1648         /* Stop TX/RX MAC. */
 1649         val = CSR_READ_2(sc, STE_MACCTL1);
 1650         val |= STE_MACCTL1_TX_DISABLE | STE_MACCTL1_RX_DISABLE |
 1651             STE_MACCTL1_STATS_DISABLE;
 1652         CSR_WRITE_2(sc, STE_MACCTL1, val);
 1653         for (i = 0; i < STE_TIMEOUT; i++) {
 1654                 DELAY(10);
 1655                 if ((CSR_READ_2(sc, STE_MACCTL1) & (STE_MACCTL1_TX_DISABLE |
 1656                     STE_MACCTL1_RX_DISABLE | STE_MACCTL1_STATS_DISABLE)) == 0)
 1657                         break;
 1658         }
 1659         if (i == STE_TIMEOUT)
 1660                 device_printf(sc->ste_dev, "Stopping MAC timed out\n");
 1661         /* Acknowledge any pending interrupts. */
 1662         CSR_READ_2(sc, STE_ISR_ACK);
 1663         ste_stats_update(sc);
 1664 
 1665         for (i = 0; i < STE_RX_LIST_CNT; i++) {
 1666                 cur_rx = &sc->ste_cdata.ste_rx_chain[i];
 1667                 if (cur_rx->ste_mbuf != NULL) {
 1668                         bus_dmamap_sync(sc->ste_cdata.ste_rx_tag,
 1669                             cur_rx->ste_map, BUS_DMASYNC_POSTREAD);
 1670                         bus_dmamap_unload(sc->ste_cdata.ste_rx_tag,
 1671                             cur_rx->ste_map);
 1672                         m_freem(cur_rx->ste_mbuf);
 1673                         cur_rx->ste_mbuf = NULL;
 1674                 }
 1675         }
 1676 
 1677         for (i = 0; i < STE_TX_LIST_CNT; i++) {
 1678                 cur_tx = &sc->ste_cdata.ste_tx_chain[i];
 1679                 if (cur_tx->ste_mbuf != NULL) {
 1680                         bus_dmamap_sync(sc->ste_cdata.ste_tx_tag,
 1681                             cur_tx->ste_map, BUS_DMASYNC_POSTWRITE);
 1682                         bus_dmamap_unload(sc->ste_cdata.ste_tx_tag,
 1683                             cur_tx->ste_map);
 1684                         m_freem(cur_tx->ste_mbuf);
 1685                         cur_tx->ste_mbuf = NULL;
 1686                 }
 1687         }
 1688 }
 1689 
 1690 static void
 1691 ste_reset(struct ste_softc *sc)
 1692 {
 1693         uint32_t ctl;
 1694         int i;
 1695 
 1696         ctl = CSR_READ_4(sc, STE_ASICCTL);
 1697         ctl |= STE_ASICCTL_GLOBAL_RESET | STE_ASICCTL_RX_RESET |
 1698             STE_ASICCTL_TX_RESET | STE_ASICCTL_DMA_RESET |
 1699             STE_ASICCTL_FIFO_RESET | STE_ASICCTL_NETWORK_RESET |
 1700             STE_ASICCTL_AUTOINIT_RESET |STE_ASICCTL_HOST_RESET |
 1701             STE_ASICCTL_EXTRESET_RESET;
 1702         CSR_WRITE_4(sc, STE_ASICCTL, ctl);
 1703         CSR_READ_4(sc, STE_ASICCTL);
 1704         /*
 1705          * Due to the need of accessing EEPROM controller can take
 1706          * up to 1ms to complete the global reset.
 1707          */
 1708         DELAY(1000);
 1709 
 1710         for (i = 0; i < STE_TIMEOUT; i++) {
 1711                 if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
 1712                         break;
 1713                 DELAY(10);
 1714         }
 1715 
 1716         if (i == STE_TIMEOUT)
 1717                 device_printf(sc->ste_dev, "global reset never completed\n");
 1718 }
 1719 
 1720 static void
 1721 ste_restart_tx(struct ste_softc *sc)
 1722 {
 1723         uint16_t mac;
 1724         int i;
 1725 
 1726         for (i = 0; i < STE_TIMEOUT; i++) {
 1727                 mac = CSR_READ_2(sc, STE_MACCTL1);
 1728                 mac |= STE_MACCTL1_TX_ENABLE;
 1729                 CSR_WRITE_2(sc, STE_MACCTL1, mac);
 1730                 mac = CSR_READ_2(sc, STE_MACCTL1);
 1731                 if ((mac & STE_MACCTL1_TX_ENABLED) != 0)
 1732                         break;
 1733                 DELAY(10);
 1734         }
 1735 
 1736         if (i == STE_TIMEOUT)
 1737                 device_printf(sc->ste_dev, "starting Tx failed");
 1738 }
 1739 
 1740 static int
 1741 ste_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
 1742 {
 1743         struct ste_softc *sc;
 1744         struct ifreq *ifr;
 1745         struct mii_data *mii;
 1746         int error = 0, mask;
 1747 
 1748         sc = ifp->if_softc;
 1749         ifr = (struct ifreq *)data;
 1750 
 1751         switch (command) {
 1752         case SIOCSIFFLAGS:
 1753                 STE_LOCK(sc);
 1754                 if ((ifp->if_flags & IFF_UP) != 0) {
 1755                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
 1756                             ((ifp->if_flags ^ sc->ste_if_flags) &
 1757                              (IFF_PROMISC | IFF_ALLMULTI)) != 0)
 1758                                 ste_rxfilter(sc);
 1759                         else
 1760                                 ste_init_locked(sc);
 1761                 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 1762                         ste_stop(sc);
 1763                 sc->ste_if_flags = ifp->if_flags;
 1764                 STE_UNLOCK(sc);
 1765                 break;
 1766         case SIOCADDMULTI:
 1767         case SIOCDELMULTI:
 1768                 STE_LOCK(sc);
 1769                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 1770                         ste_rxfilter(sc);
 1771                 STE_UNLOCK(sc);
 1772                 break;
 1773         case SIOCGIFMEDIA:
 1774         case SIOCSIFMEDIA:
 1775                 mii = device_get_softc(sc->ste_miibus);
 1776                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
 1777                 break;
 1778         case SIOCSIFCAP:
 1779                 STE_LOCK(sc);
 1780                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
 1781 #ifdef DEVICE_POLLING
 1782                 if ((mask & IFCAP_POLLING) != 0 &&
 1783                     (IFCAP_POLLING & ifp->if_capabilities) != 0) {
 1784                         ifp->if_capenable ^= IFCAP_POLLING;
 1785                         if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
 1786                                 error = ether_poll_register(ste_poll, ifp);
 1787                                 if (error != 0) {
 1788                                         STE_UNLOCK(sc);
 1789                                         break;
 1790                                 }
 1791                                 /* Disable interrupts. */
 1792                                 CSR_WRITE_2(sc, STE_IMR, 0);
 1793                         } else {
 1794                                 error = ether_poll_deregister(ifp);
 1795                                 /* Enable interrupts. */
 1796                                 CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
 1797                         }
 1798                 }
 1799 #endif /* DEVICE_POLLING */
 1800                 if ((mask & IFCAP_WOL_MAGIC) != 0 &&
 1801                     (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
 1802                         ifp->if_capenable ^= IFCAP_WOL_MAGIC;
 1803                 STE_UNLOCK(sc);
 1804                 break;
 1805         default:
 1806                 error = ether_ioctl(ifp, command, data);
 1807                 break;
 1808         }
 1809 
 1810         return (error);
 1811 }
 1812 
 1813 static int
 1814 ste_encap(struct ste_softc *sc, struct mbuf **m_head, struct ste_chain *txc)
 1815 {
 1816         struct ste_frag *frag;
 1817         struct mbuf *m;
 1818         struct ste_desc *desc;
 1819         bus_dma_segment_t txsegs[STE_MAXFRAGS];
 1820         int error, i, nsegs;
 1821 
 1822         STE_LOCK_ASSERT(sc);
 1823         M_ASSERTPKTHDR((*m_head));
 1824 
 1825         error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
 1826             txc->ste_map, *m_head, txsegs, &nsegs, 0);
 1827         if (error == EFBIG) {
 1828                 m = m_collapse(*m_head, M_NOWAIT, STE_MAXFRAGS);
 1829                 if (m == NULL) {
 1830                         m_freem(*m_head);
 1831                         *m_head = NULL;
 1832                         return (ENOMEM);
 1833                 }
 1834                 *m_head = m;
 1835                 error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
 1836                     txc->ste_map, *m_head, txsegs, &nsegs, 0);
 1837                 if (error != 0) {
 1838                         m_freem(*m_head);
 1839                         *m_head = NULL;
 1840                         return (error);
 1841                 }
 1842         } else if (error != 0)
 1843                 return (error);
 1844         if (nsegs == 0) {
 1845                 m_freem(*m_head);
 1846                 *m_head = NULL;
 1847                 return (EIO);
 1848         }
 1849         bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, txc->ste_map,
 1850             BUS_DMASYNC_PREWRITE);
 1851 
 1852         desc = txc->ste_ptr;
 1853         for (i = 0; i < nsegs; i++) {
 1854                 frag = &desc->ste_frags[i];
 1855                 frag->ste_addr = htole32(STE_ADDR_LO(txsegs[i].ds_addr));
 1856                 frag->ste_len = htole32(txsegs[i].ds_len);
 1857         }
 1858         desc->ste_frags[i - 1].ste_len |= htole32(STE_FRAG_LAST);
 1859         /*
 1860          * Because we use Tx polling we can't chain multiple
 1861          * Tx descriptors here. Otherwise we race with controller.
 1862          */
 1863         desc->ste_next = 0;
 1864         if ((sc->ste_cdata.ste_tx_prod % STE_TX_INTR_FRAMES) == 0)
 1865                 desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS |
 1866                     STE_TXCTL_DMAINTR);
 1867         else
 1868                 desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS);
 1869         txc->ste_mbuf = *m_head;
 1870         STE_INC(sc->ste_cdata.ste_tx_prod, STE_TX_LIST_CNT);
 1871         sc->ste_cdata.ste_tx_cnt++;
 1872 
 1873         return (0);
 1874 }
 1875 
 1876 static void
 1877 ste_start(struct ifnet *ifp)
 1878 {
 1879         struct ste_softc *sc;
 1880 
 1881         sc = ifp->if_softc;
 1882         STE_LOCK(sc);
 1883         ste_start_locked(ifp);
 1884         STE_UNLOCK(sc);
 1885 }
 1886 
 1887 static void
 1888 ste_start_locked(struct ifnet *ifp)
 1889 {
 1890         struct ste_softc *sc;
 1891         struct ste_chain *cur_tx;
 1892         struct mbuf *m_head = NULL;
 1893         int enq;
 1894 
 1895         sc = ifp->if_softc;
 1896         STE_LOCK_ASSERT(sc);
 1897 
 1898         if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
 1899             IFF_DRV_RUNNING || (sc->ste_flags & STE_FLAG_LINK) == 0)
 1900                 return;
 1901 
 1902         for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
 1903                 if (sc->ste_cdata.ste_tx_cnt == STE_TX_LIST_CNT - 1) {
 1904                         /*
 1905                          * Controller may have cached copy of the last used
 1906                          * next ptr so we have to reserve one TFD to avoid
 1907                          * TFD overruns.
 1908                          */
 1909                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 1910                         break;
 1911                 }
 1912                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
 1913                 if (m_head == NULL)
 1914                         break;
 1915                 cur_tx = &sc->ste_cdata.ste_tx_chain[sc->ste_cdata.ste_tx_prod];
 1916                 if (ste_encap(sc, &m_head, cur_tx) != 0) {
 1917                         if (m_head == NULL)
 1918                                 break;
 1919                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
 1920                         break;
 1921                 }
 1922                 if (sc->ste_cdata.ste_last_tx == NULL) {
 1923                         bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
 1924                             sc->ste_cdata.ste_tx_list_map,
 1925                             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1926                         STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
 1927                         ste_wait(sc);
 1928                         CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
 1929                             STE_ADDR_LO(sc->ste_ldata.ste_tx_list_paddr));
 1930                         CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
 1931                         STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
 1932                         ste_wait(sc);
 1933                 } else {
 1934                         sc->ste_cdata.ste_last_tx->ste_ptr->ste_next =
 1935                             sc->ste_cdata.ste_last_tx->ste_phys;
 1936                         bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
 1937                             sc->ste_cdata.ste_tx_list_map,
 1938                             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1939                 }
 1940                 sc->ste_cdata.ste_last_tx = cur_tx;
 1941 
 1942                 enq++;
 1943                 /*
 1944                  * If there's a BPF listener, bounce a copy of this frame
 1945                  * to him.
 1946                  */
 1947                 BPF_MTAP(ifp, m_head);
 1948         }
 1949 
 1950         if (enq > 0)
 1951                 sc->ste_timer = STE_TX_TIMEOUT;
 1952 }
 1953 
 1954 static void
 1955 ste_watchdog(struct ste_softc *sc)
 1956 {
 1957         struct ifnet *ifp;
 1958 
 1959         ifp = sc->ste_ifp;
 1960         STE_LOCK_ASSERT(sc);
 1961 
 1962         if (sc->ste_timer == 0 || --sc->ste_timer)
 1963                 return;
 1964 
 1965         if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
 1966         if_printf(ifp, "watchdog timeout\n");
 1967 
 1968         ste_txeof(sc);
 1969         ste_txeoc(sc);
 1970         ste_rxeof(sc, -1);
 1971         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1972         ste_init_locked(sc);
 1973 
 1974         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 1975                 ste_start_locked(ifp);
 1976 }
 1977 
 1978 static int
 1979 ste_shutdown(device_t dev)
 1980 {
 1981 
 1982         return (ste_suspend(dev));
 1983 }
 1984 
 1985 static int
 1986 ste_suspend(device_t dev)
 1987 {
 1988         struct ste_softc *sc;
 1989 
 1990         sc = device_get_softc(dev);
 1991 
 1992         STE_LOCK(sc);
 1993         ste_stop(sc);
 1994         ste_setwol(sc);
 1995         STE_UNLOCK(sc);
 1996 
 1997         return (0);
 1998 }
 1999 
 2000 static int
 2001 ste_resume(device_t dev)
 2002 {
 2003         struct ste_softc *sc;
 2004         struct ifnet *ifp;
 2005         int pmc;
 2006         uint16_t pmstat;
 2007 
 2008         sc = device_get_softc(dev);
 2009         STE_LOCK(sc);
 2010         if (pci_find_cap(sc->ste_dev, PCIY_PMG, &pmc) == 0) {
 2011                 /* Disable PME and clear PME status. */
 2012                 pmstat = pci_read_config(sc->ste_dev,
 2013                     pmc + PCIR_POWER_STATUS, 2);
 2014                 if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
 2015                         pmstat &= ~PCIM_PSTAT_PMEENABLE;
 2016                         pci_write_config(sc->ste_dev,
 2017                             pmc + PCIR_POWER_STATUS, pmstat, 2);
 2018                 }
 2019         }
 2020         ifp = sc->ste_ifp;
 2021         if ((ifp->if_flags & IFF_UP) != 0) {
 2022                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 2023                 ste_init_locked(sc);
 2024         }
 2025         STE_UNLOCK(sc);
 2026 
 2027         return (0);
 2028 }
 2029 
 2030 #define STE_SYSCTL_STAT_ADD32(c, h, n, p, d)    \
 2031             SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
 2032 #define STE_SYSCTL_STAT_ADD64(c, h, n, p, d)    \
 2033             SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
 2034 
 2035 static void
 2036 ste_sysctl_node(struct ste_softc *sc)
 2037 {
 2038         struct sysctl_ctx_list *ctx;
 2039         struct sysctl_oid_list *child, *parent;
 2040         struct sysctl_oid *tree;
 2041         struct ste_hw_stats *stats;
 2042 
 2043         stats = &sc->ste_stats;
 2044         ctx = device_get_sysctl_ctx(sc->ste_dev);
 2045         child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ste_dev));
 2046 
 2047         SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_rx_mod",
 2048             CTLFLAG_RW, &sc->ste_int_rx_mod, 0, "ste RX interrupt moderation");
 2049         /* Pull in device tunables. */
 2050         sc->ste_int_rx_mod = STE_IM_RX_TIMER_DEFAULT;
 2051         resource_int_value(device_get_name(sc->ste_dev),
 2052             device_get_unit(sc->ste_dev), "int_rx_mod", &sc->ste_int_rx_mod);
 2053 
 2054         tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
 2055             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "STE statistics");
 2056         parent = SYSCTL_CHILDREN(tree);
 2057 
 2058         /* Rx statistics. */
 2059         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
 2060             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
 2061         child = SYSCTL_CHILDREN(tree);
 2062         STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
 2063             &stats->rx_bytes, "Good octets");
 2064         STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
 2065             &stats->rx_frames, "Good frames");
 2066         STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
 2067             &stats->rx_bcast_frames, "Good broadcast frames");
 2068         STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
 2069             &stats->rx_mcast_frames, "Good multicast frames");
 2070         STE_SYSCTL_STAT_ADD32(ctx, child, "lost_frames",
 2071             &stats->rx_lost_frames, "Lost frames");
 2072 
 2073         /* Tx statistics. */
 2074         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
 2075             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
 2076         child = SYSCTL_CHILDREN(tree);
 2077         STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
 2078             &stats->tx_bytes, "Good octets");
 2079         STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
 2080             &stats->tx_frames, "Good frames");
 2081         STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
 2082             &stats->tx_bcast_frames, "Good broadcast frames");
 2083         STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
 2084             &stats->tx_mcast_frames, "Good multicast frames");
 2085         STE_SYSCTL_STAT_ADD32(ctx, child, "carrier_errs",
 2086             &stats->tx_carrsense_errs, "Carrier sense errors");
 2087         STE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
 2088             &stats->tx_single_colls, "Single collisions");
 2089         STE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
 2090             &stats->tx_multi_colls, "Multiple collisions");
 2091         STE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
 2092             &stats->tx_late_colls, "Late collisions");
 2093         STE_SYSCTL_STAT_ADD32(ctx, child, "defers",
 2094             &stats->tx_frames_defered, "Frames with deferrals");
 2095         STE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
 2096             &stats->tx_excess_defers, "Frames with excessive derferrals");
 2097         STE_SYSCTL_STAT_ADD32(ctx, child, "abort",
 2098             &stats->tx_abort, "Aborted frames due to Excessive collisions");
 2099 }
 2100 
 2101 #undef STE_SYSCTL_STAT_ADD32
 2102 #undef STE_SYSCTL_STAT_ADD64
 2103 
 2104 static void
 2105 ste_setwol(struct ste_softc *sc)
 2106 {
 2107         struct ifnet *ifp;
 2108         uint16_t pmstat;
 2109         uint8_t val;
 2110         int pmc;
 2111 
 2112         STE_LOCK_ASSERT(sc);
 2113 
 2114         if (pci_find_cap(sc->ste_dev, PCIY_PMG, &pmc) != 0) {
 2115                 /* Disable WOL. */
 2116                 CSR_READ_1(sc, STE_WAKE_EVENT);
 2117                 CSR_WRITE_1(sc, STE_WAKE_EVENT, 0);
 2118                 return;
 2119         }
 2120 
 2121         ifp = sc->ste_ifp;
 2122         val = CSR_READ_1(sc, STE_WAKE_EVENT);
 2123         val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
 2124             STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
 2125         if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
 2126                 val |= STE_WAKEEVENT_MAGICPKT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB;
 2127         CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
 2128         /* Request PME. */
 2129         pmstat = pci_read_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, 2);
 2130         pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
 2131         if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
 2132                 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
 2133         pci_write_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
 2134 }

Cache object: e69e7760dbe96f3de6804af9858ee05d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.