The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/ste/if_ste.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1997, 1998, 1999
    3  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. All advertising materials mentioning features or use of this software
   14  *    must display the following acknowledgement:
   15  *      This product includes software developed by Bill Paul.
   16  * 4. Neither the name of the author nor the names of any co-contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   30  * THE POSSIBILITY OF SUCH DAMAGE.
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD$");
   35 
   36 #ifdef HAVE_KERNEL_OPTION_HEADERS
   37 #include "opt_device_polling.h"
   38 #endif
   39 
   40 #include <sys/param.h>
   41 #include <sys/systm.h>
   42 #include <sys/bus.h>
   43 #include <sys/endian.h>
   44 #include <sys/kernel.h>
   45 #include <sys/lock.h>
   46 #include <sys/malloc.h>
   47 #include <sys/mbuf.h>
   48 #include <sys/module.h>
   49 #include <sys/rman.h>
   50 #include <sys/socket.h>
   51 #include <sys/sockio.h>
   52 #include <sys/sysctl.h>
   53 
   54 #include <net/bpf.h>
   55 #include <net/if.h>
   56 #include <net/if_var.h>
   57 #include <net/if_arp.h>
   58 #include <net/ethernet.h>
   59 #include <net/if_dl.h>
   60 #include <net/if_media.h>
   61 #include <net/if_types.h>
   62 #include <net/if_vlan_var.h>
   63 
   64 #include <machine/bus.h>
   65 #include <machine/resource.h>
   66 
   67 #include <dev/mii/mii.h>
   68 #include <dev/mii/mii_bitbang.h>
   69 #include <dev/mii/miivar.h>
   70 
   71 #include <dev/pci/pcireg.h>
   72 #include <dev/pci/pcivar.h>
   73 
   74 #include <dev/ste/if_stereg.h>
   75 
   76 /* "device miibus" required.  See GENERIC if you get errors here. */
   77 #include "miibus_if.h"
   78 
   79 MODULE_DEPEND(ste, pci, 1, 1, 1);
   80 MODULE_DEPEND(ste, ether, 1, 1, 1);
   81 MODULE_DEPEND(ste, miibus, 1, 1, 1);
   82 
   83 /* Define to show Tx error status. */
   84 #define STE_SHOW_TXERRORS
   85 
   86 /*
   87  * Various supported device vendors/types and their names.
   88  */
   89 static const struct ste_type ste_devs[] = {
   90         { ST_VENDORID, ST_DEVICEID_ST201_1, "Sundance ST201 10/100BaseTX" },
   91         { ST_VENDORID, ST_DEVICEID_ST201_2, "Sundance ST201 10/100BaseTX" },
   92         { DL_VENDORID, DL_DEVICEID_DL10050, "D-Link DL10050 10/100BaseTX" },
   93         { 0, 0, NULL }
   94 };
   95 
   96 static int      ste_attach(device_t);
   97 static int      ste_detach(device_t);
   98 static int      ste_probe(device_t);
   99 static int      ste_resume(device_t);
  100 static int      ste_shutdown(device_t);
  101 static int      ste_suspend(device_t);
  102 
  103 static int      ste_dma_alloc(struct ste_softc *);
  104 static void     ste_dma_free(struct ste_softc *);
  105 static void     ste_dmamap_cb(void *, bus_dma_segment_t *, int, int);
  106 static int      ste_eeprom_wait(struct ste_softc *);
  107 static int      ste_encap(struct ste_softc *, struct mbuf **,
  108                     struct ste_chain *);
  109 static int      ste_ifmedia_upd(struct ifnet *);
  110 static void     ste_ifmedia_sts(struct ifnet *, struct ifmediareq *);
  111 static void     ste_init(void *);
  112 static void     ste_init_locked(struct ste_softc *);
  113 static int      ste_init_rx_list(struct ste_softc *);
  114 static void     ste_init_tx_list(struct ste_softc *);
  115 static void     ste_intr(void *);
  116 static int      ste_ioctl(struct ifnet *, u_long, caddr_t);
  117 static uint32_t ste_mii_bitbang_read(device_t);
  118 static void     ste_mii_bitbang_write(device_t, uint32_t);
  119 static int      ste_miibus_readreg(device_t, int, int);
  120 static void     ste_miibus_statchg(device_t);
  121 static int      ste_miibus_writereg(device_t, int, int, int);
  122 static int      ste_newbuf(struct ste_softc *, struct ste_chain_onefrag *);
  123 static int      ste_read_eeprom(struct ste_softc *, uint16_t *, int, int);
  124 static void     ste_reset(struct ste_softc *);
  125 static void     ste_restart_tx(struct ste_softc *);
  126 static int      ste_rxeof(struct ste_softc *, int);
  127 static void     ste_rxfilter(struct ste_softc *);
  128 static void     ste_setwol(struct ste_softc *);
  129 static void     ste_start(struct ifnet *);
  130 static void     ste_start_locked(struct ifnet *);
  131 static void     ste_stats_clear(struct ste_softc *);
  132 static void     ste_stats_update(struct ste_softc *);
  133 static void     ste_stop(struct ste_softc *);
  134 static void     ste_sysctl_node(struct ste_softc *);
  135 static void     ste_tick(void *);
  136 static void     ste_txeoc(struct ste_softc *);
  137 static void     ste_txeof(struct ste_softc *);
  138 static void     ste_wait(struct ste_softc *);
  139 static void     ste_watchdog(struct ste_softc *);
  140 
  141 /*
  142  * MII bit-bang glue
  143  */
  144 static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
  145         ste_mii_bitbang_read,
  146         ste_mii_bitbang_write,
  147         {
  148                 STE_PHYCTL_MDATA,       /* MII_BIT_MDO */
  149                 STE_PHYCTL_MDATA,       /* MII_BIT_MDI */
  150                 STE_PHYCTL_MCLK,        /* MII_BIT_MDC */
  151                 STE_PHYCTL_MDIR,        /* MII_BIT_DIR_HOST_PHY */
  152                 0,                      /* MII_BIT_DIR_PHY_HOST */
  153         }
  154 };
  155 
  156 static device_method_t ste_methods[] = {
  157         /* Device interface */
  158         DEVMETHOD(device_probe,         ste_probe),
  159         DEVMETHOD(device_attach,        ste_attach),
  160         DEVMETHOD(device_detach,        ste_detach),
  161         DEVMETHOD(device_shutdown,      ste_shutdown),
  162         DEVMETHOD(device_suspend,       ste_suspend),
  163         DEVMETHOD(device_resume,        ste_resume),
  164 
  165         /* MII interface */
  166         DEVMETHOD(miibus_readreg,       ste_miibus_readreg),
  167         DEVMETHOD(miibus_writereg,      ste_miibus_writereg),
  168         DEVMETHOD(miibus_statchg,       ste_miibus_statchg),
  169 
  170         DEVMETHOD_END
  171 };
  172 
  173 static driver_t ste_driver = {
  174         "ste",
  175         ste_methods,
  176         sizeof(struct ste_softc)
  177 };
  178 
  179 static devclass_t ste_devclass;
  180 
  181 DRIVER_MODULE(ste, pci, ste_driver, ste_devclass, 0, 0);
  182 DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, 0, 0);
  183 
  184 #define STE_SETBIT4(sc, reg, x)                         \
  185         CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
  186 
  187 #define STE_CLRBIT4(sc, reg, x)                         \
  188         CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
  189 
  190 #define STE_SETBIT2(sc, reg, x)                         \
  191         CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | (x))
  192 
  193 #define STE_CLRBIT2(sc, reg, x)                         \
  194         CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~(x))
  195 
  196 #define STE_SETBIT1(sc, reg, x)                         \
  197         CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | (x))
  198 
  199 #define STE_CLRBIT1(sc, reg, x)                         \
  200         CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~(x))
  201 
  202 /*
  203  * Read the MII serial port for the MII bit-bang module.
  204  */
  205 static uint32_t
  206 ste_mii_bitbang_read(device_t dev)
  207 {
  208         struct ste_softc *sc;
  209         uint32_t val;
  210 
  211         sc = device_get_softc(dev);
  212 
  213         val = CSR_READ_1(sc, STE_PHYCTL);
  214         CSR_BARRIER(sc, STE_PHYCTL, 1,
  215             BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
  216 
  217         return (val);
  218 }
  219 
  220 /*
  221  * Write the MII serial port for the MII bit-bang module.
  222  */
  223 static void
  224 ste_mii_bitbang_write(device_t dev, uint32_t val)
  225 {
  226         struct ste_softc *sc;
  227 
  228         sc = device_get_softc(dev);
  229 
  230         CSR_WRITE_1(sc, STE_PHYCTL, val);
  231         CSR_BARRIER(sc, STE_PHYCTL, 1,
  232             BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
  233 }
  234 
  235 static int
  236 ste_miibus_readreg(device_t dev, int phy, int reg)
  237 {
  238 
  239         return (mii_bitbang_readreg(dev, &ste_mii_bitbang_ops, phy, reg));
  240 }
  241 
  242 static int
  243 ste_miibus_writereg(device_t dev, int phy, int reg, int data)
  244 {
  245 
  246         mii_bitbang_writereg(dev, &ste_mii_bitbang_ops, phy, reg, data);
  247 
  248         return (0);
  249 }
  250 
  251 static void
  252 ste_miibus_statchg(device_t dev)
  253 {
  254         struct ste_softc *sc;
  255         struct mii_data *mii;
  256         struct ifnet *ifp;
  257         uint16_t cfg;
  258 
  259         sc = device_get_softc(dev);
  260 
  261         mii = device_get_softc(sc->ste_miibus);
  262         ifp = sc->ste_ifp;
  263         if (mii == NULL || ifp == NULL ||
  264             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
  265                 return;
  266 
  267         sc->ste_flags &= ~STE_FLAG_LINK;
  268         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
  269             (IFM_ACTIVE | IFM_AVALID)) {
  270                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
  271                 case IFM_10_T:
  272                 case IFM_100_TX:
  273                 case IFM_100_FX:
  274                 case IFM_100_T4:
  275                         sc->ste_flags |= STE_FLAG_LINK;
  276                 default:
  277                         break;
  278                 }
  279         }
  280 
  281         /* Program MACs with resolved speed/duplex/flow-control. */
  282         if ((sc->ste_flags & STE_FLAG_LINK) != 0) {
  283                 cfg = CSR_READ_2(sc, STE_MACCTL0);
  284                 cfg &= ~(STE_MACCTL0_FLOWCTL_ENABLE | STE_MACCTL0_FULLDUPLEX);
  285                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
  286                         /*
  287                          * ST201 data sheet says driver should enable receiving
  288                          * MAC control frames bit of receive mode register to
  289                          * receive flow-control frames but the register has no
  290                          * such bits. In addition the controller has no ability
  291                          * to send pause frames so it should be handled in
  292                          * driver. Implementing pause timer handling in driver
  293                          * layer is not trivial, so don't enable flow-control
  294                          * here.
  295                          */
  296                         cfg |= STE_MACCTL0_FULLDUPLEX;
  297                 }
  298                 CSR_WRITE_2(sc, STE_MACCTL0, cfg);
  299         }
  300 }
  301 
  302 static int
  303 ste_ifmedia_upd(struct ifnet *ifp)
  304 {
  305         struct ste_softc *sc;
  306         struct mii_data *mii;
  307         struct mii_softc *miisc;
  308         int error;
  309 
  310         sc = ifp->if_softc;
  311         STE_LOCK(sc);
  312         mii = device_get_softc(sc->ste_miibus);
  313         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
  314                 PHY_RESET(miisc);
  315         error = mii_mediachg(mii);
  316         STE_UNLOCK(sc);
  317 
  318         return (error);
  319 }
  320 
  321 static void
  322 ste_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
  323 {
  324         struct ste_softc *sc;
  325         struct mii_data *mii;
  326 
  327         sc = ifp->if_softc;
  328         mii = device_get_softc(sc->ste_miibus);
  329 
  330         STE_LOCK(sc);
  331         if ((ifp->if_flags & IFF_UP) == 0) {
  332                 STE_UNLOCK(sc);
  333                 return;
  334         }
  335         mii_pollstat(mii);
  336         ifmr->ifm_active = mii->mii_media_active;
  337         ifmr->ifm_status = mii->mii_media_status;
  338         STE_UNLOCK(sc);
  339 }
  340 
  341 static void
  342 ste_wait(struct ste_softc *sc)
  343 {
  344         int i;
  345 
  346         for (i = 0; i < STE_TIMEOUT; i++) {
  347                 if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
  348                         break;
  349                 DELAY(1);
  350         }
  351 
  352         if (i == STE_TIMEOUT)
  353                 device_printf(sc->ste_dev, "command never completed!\n");
  354 }
  355 
  356 /*
  357  * The EEPROM is slow: give it time to come ready after issuing
  358  * it a command.
  359  */
  360 static int
  361 ste_eeprom_wait(struct ste_softc *sc)
  362 {
  363         int i;
  364 
  365         DELAY(1000);
  366 
  367         for (i = 0; i < 100; i++) {
  368                 if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
  369                         DELAY(1000);
  370                 else
  371                         break;
  372         }
  373 
  374         if (i == 100) {
  375                 device_printf(sc->ste_dev, "eeprom failed to come ready\n");
  376                 return (1);
  377         }
  378 
  379         return (0);
  380 }
  381 
  382 /*
  383  * Read a sequence of words from the EEPROM. Note that ethernet address
  384  * data is stored in the EEPROM in network byte order.
  385  */
  386 static int
  387 ste_read_eeprom(struct ste_softc *sc, uint16_t *dest, int off, int cnt)
  388 {
  389         int err = 0, i;
  390 
  391         if (ste_eeprom_wait(sc))
  392                 return (1);
  393 
  394         for (i = 0; i < cnt; i++) {
  395                 CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
  396                 err = ste_eeprom_wait(sc);
  397                 if (err)
  398                         break;
  399                 *dest = le16toh(CSR_READ_2(sc, STE_EEPROM_DATA));
  400                 dest++;
  401         }
  402 
  403         return (err ? 1 : 0);
  404 }
  405 
  406 static void
  407 ste_rxfilter(struct ste_softc *sc)
  408 {
  409         struct ifnet *ifp;
  410         struct ifmultiaddr *ifma;
  411         uint32_t hashes[2] = { 0, 0 };
  412         uint8_t rxcfg;
  413         int h;
  414 
  415         STE_LOCK_ASSERT(sc);
  416 
  417         ifp = sc->ste_ifp;
  418         rxcfg = CSR_READ_1(sc, STE_RX_MODE);
  419         rxcfg |= STE_RXMODE_UNICAST;
  420         rxcfg &= ~(STE_RXMODE_ALLMULTI | STE_RXMODE_MULTIHASH |
  421             STE_RXMODE_BROADCAST | STE_RXMODE_PROMISC);
  422         if (ifp->if_flags & IFF_BROADCAST)
  423                 rxcfg |= STE_RXMODE_BROADCAST;
  424         if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
  425                 if ((ifp->if_flags & IFF_ALLMULTI) != 0)
  426                         rxcfg |= STE_RXMODE_ALLMULTI;
  427                 if ((ifp->if_flags & IFF_PROMISC) != 0)
  428                         rxcfg |= STE_RXMODE_PROMISC;
  429                 goto chipit;
  430         }
  431 
  432         rxcfg |= STE_RXMODE_MULTIHASH;
  433         /* Now program new ones. */
  434         if_maddr_rlock(ifp);
  435         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
  436                 if (ifma->ifma_addr->sa_family != AF_LINK)
  437                         continue;
  438                 h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
  439                     ifma->ifma_addr), ETHER_ADDR_LEN) & 0x3F;
  440                 if (h < 32)
  441                         hashes[0] |= (1 << h);
  442                 else
  443                         hashes[1] |= (1 << (h - 32));
  444         }
  445         if_maddr_runlock(ifp);
  446 
  447 chipit:
  448         CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
  449         CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
  450         CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
  451         CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
  452         CSR_WRITE_1(sc, STE_RX_MODE, rxcfg);
  453         CSR_READ_1(sc, STE_RX_MODE);
  454 }
  455 
  456 #ifdef DEVICE_POLLING
  457 static poll_handler_t ste_poll, ste_poll_locked;
  458 
  459 static int
  460 ste_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
  461 {
  462         struct ste_softc *sc = ifp->if_softc;
  463         int rx_npkts = 0;
  464 
  465         STE_LOCK(sc);
  466         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
  467                 rx_npkts = ste_poll_locked(ifp, cmd, count);
  468         STE_UNLOCK(sc);
  469         return (rx_npkts);
  470 }
  471 
  472 static int
  473 ste_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
  474 {
  475         struct ste_softc *sc = ifp->if_softc;
  476         int rx_npkts;
  477 
  478         STE_LOCK_ASSERT(sc);
  479 
  480         rx_npkts = ste_rxeof(sc, count);
  481         ste_txeof(sc);
  482         ste_txeoc(sc);
  483         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
  484                 ste_start_locked(ifp);
  485 
  486         if (cmd == POLL_AND_CHECK_STATUS) {
  487                 uint16_t status;
  488 
  489                 status = CSR_READ_2(sc, STE_ISR_ACK);
  490 
  491                 if (status & STE_ISR_STATS_OFLOW)
  492                         ste_stats_update(sc);
  493 
  494                 if (status & STE_ISR_HOSTERR) {
  495                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
  496                         ste_init_locked(sc);
  497                 }
  498         }
  499         return (rx_npkts);
  500 }
  501 #endif /* DEVICE_POLLING */
  502 
  503 static void
  504 ste_intr(void *xsc)
  505 {
  506         struct ste_softc *sc;
  507         struct ifnet *ifp;
  508         uint16_t intrs, status;
  509 
  510         sc = xsc;
  511         STE_LOCK(sc);
  512         ifp = sc->ste_ifp;
  513 
  514 #ifdef DEVICE_POLLING
  515         if (ifp->if_capenable & IFCAP_POLLING) {
  516                 STE_UNLOCK(sc);
  517                 return;
  518         }
  519 #endif
  520         /* Reading STE_ISR_ACK clears STE_IMR register. */
  521         status = CSR_READ_2(sc, STE_ISR_ACK);
  522         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
  523                 STE_UNLOCK(sc);
  524                 return;
  525         }
  526 
  527         intrs = STE_INTRS;
  528         if (status == 0xFFFF || (status & intrs) == 0)
  529                 goto done;
  530 
  531         if (sc->ste_int_rx_act > 0) {
  532                 status &= ~STE_ISR_RX_DMADONE;
  533                 intrs &= ~STE_IMR_RX_DMADONE;
  534         }
  535 
  536         if ((status & (STE_ISR_SOFTINTR | STE_ISR_RX_DMADONE)) != 0) {
  537                 ste_rxeof(sc, -1);
  538                 /*
  539                  * The controller has no ability to Rx interrupt
  540                  * moderation feature. Receiving 64 bytes frames
  541                  * from wire generates too many interrupts which in
  542                  * turn make system useless to process other useful
  543                  * things. Fortunately ST201 supports single shot
  544                  * timer so use the timer to implement Rx interrupt
  545                  * moderation in driver. This adds more register
  546                  * access but it greatly reduces number of Rx
  547                  * interrupts under high network load.
  548                  */
  549                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
  550                     (sc->ste_int_rx_mod != 0)) {
  551                         if ((status & STE_ISR_RX_DMADONE) != 0) {
  552                                 CSR_WRITE_2(sc, STE_COUNTDOWN,
  553                                     STE_TIMER_USECS(sc->ste_int_rx_mod));
  554                                 intrs &= ~STE_IMR_RX_DMADONE;
  555                                 sc->ste_int_rx_act = 1;
  556                         } else {
  557                                 intrs |= STE_IMR_RX_DMADONE;
  558                                 sc->ste_int_rx_act = 0;
  559                         }
  560                 }
  561         }
  562         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
  563                 if ((status & STE_ISR_TX_DMADONE) != 0)
  564                         ste_txeof(sc);
  565                 if ((status & STE_ISR_TX_DONE) != 0)
  566                         ste_txeoc(sc);
  567                 if ((status & STE_ISR_STATS_OFLOW) != 0)
  568                         ste_stats_update(sc);
  569                 if ((status & STE_ISR_HOSTERR) != 0) {
  570                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
  571                         ste_init_locked(sc);
  572                         STE_UNLOCK(sc);
  573                         return;
  574                 }
  575                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
  576                         ste_start_locked(ifp);
  577 done:
  578                 /* Re-enable interrupts */
  579                 CSR_WRITE_2(sc, STE_IMR, intrs);
  580         }
  581         STE_UNLOCK(sc);
  582 }
  583 
  584 /*
  585  * A frame has been uploaded: pass the resulting mbuf chain up to
  586  * the higher level protocols.
  587  */
  588 static int
  589 ste_rxeof(struct ste_softc *sc, int count)
  590 {
  591         struct mbuf *m;
  592         struct ifnet *ifp;
  593         struct ste_chain_onefrag *cur_rx;
  594         uint32_t rxstat;
  595         int total_len, rx_npkts;
  596 
  597         ifp = sc->ste_ifp;
  598 
  599         bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
  600             sc->ste_cdata.ste_rx_list_map,
  601             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
  602 
  603         cur_rx = sc->ste_cdata.ste_rx_head;
  604         for (rx_npkts = 0; rx_npkts < STE_RX_LIST_CNT; rx_npkts++,
  605             cur_rx = cur_rx->ste_next) {
  606                 rxstat = le32toh(cur_rx->ste_ptr->ste_status);
  607                 if ((rxstat & STE_RXSTAT_DMADONE) == 0)
  608                         break;
  609 #ifdef DEVICE_POLLING
  610                 if (ifp->if_capenable & IFCAP_POLLING) {
  611                         if (count == 0)
  612                                 break;
  613                         count--;
  614                 }
  615 #endif
  616                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
  617                         break;
  618                 /*
  619                  * If an error occurs, update stats, clear the
  620                  * status word and leave the mbuf cluster in place:
  621                  * it should simply get re-used next time this descriptor
  622                  * comes up in the ring.
  623                  */
  624                 if (rxstat & STE_RXSTAT_FRAME_ERR) {
  625                         if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
  626                         cur_rx->ste_ptr->ste_status = 0;
  627                         continue;
  628                 }
  629 
  630                 /* No errors; receive the packet. */
  631                 m = cur_rx->ste_mbuf;
  632                 total_len = STE_RX_BYTES(rxstat);
  633 
  634                 /*
  635                  * Try to conjure up a new mbuf cluster. If that
  636                  * fails, it means we have an out of memory condition and
  637                  * should leave the buffer in place and continue. This will
  638                  * result in a lost packet, but there's little else we
  639                  * can do in this situation.
  640                  */
  641                 if (ste_newbuf(sc, cur_rx) != 0) {
  642                         if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
  643                         cur_rx->ste_ptr->ste_status = 0;
  644                         continue;
  645                 }
  646 
  647                 m->m_pkthdr.rcvif = ifp;
  648                 m->m_pkthdr.len = m->m_len = total_len;
  649 
  650                 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
  651                 STE_UNLOCK(sc);
  652                 (*ifp->if_input)(ifp, m);
  653                 STE_LOCK(sc);
  654         }
  655 
  656         if (rx_npkts > 0) {
  657                 sc->ste_cdata.ste_rx_head = cur_rx;
  658                 bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
  659                     sc->ste_cdata.ste_rx_list_map,
  660                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
  661         }
  662 
  663         return (rx_npkts);
  664 }
  665 
  666 static void
  667 ste_txeoc(struct ste_softc *sc)
  668 {
  669         uint16_t txstat;
  670         struct ifnet *ifp;
  671 
  672         STE_LOCK_ASSERT(sc);
  673 
  674         ifp = sc->ste_ifp;
  675 
  676         /*
  677          * STE_TX_STATUS register implements a queue of up to 31
  678          * transmit status byte. Writing an arbitrary value to the
  679          * register will advance the queue to the next transmit
  680          * status byte. This means if driver does not read
  681          * STE_TX_STATUS register after completing sending more
  682          * than 31 frames the controller would be stalled so driver
  683          * should re-wake the Tx MAC. This is the most severe
  684          * limitation of ST201 based controller.
  685          */
  686         for (;;) {
  687                 txstat = CSR_READ_2(sc, STE_TX_STATUS);
  688                 if ((txstat & STE_TXSTATUS_TXDONE) == 0)
  689                         break;
  690                 if ((txstat & (STE_TXSTATUS_UNDERRUN |
  691                     STE_TXSTATUS_EXCESSCOLLS | STE_TXSTATUS_RECLAIMERR |
  692                     STE_TXSTATUS_STATSOFLOW)) != 0) {
  693                         if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
  694 #ifdef  STE_SHOW_TXERRORS
  695                         device_printf(sc->ste_dev, "TX error : 0x%b\n",
  696                             txstat & 0xFF, STE_ERR_BITS);
  697 #endif
  698                         if ((txstat & STE_TXSTATUS_UNDERRUN) != 0 &&
  699                             sc->ste_tx_thresh < STE_PACKET_SIZE) {
  700                                 sc->ste_tx_thresh += STE_MIN_FRAMELEN;
  701                                 if (sc->ste_tx_thresh > STE_PACKET_SIZE)
  702                                         sc->ste_tx_thresh = STE_PACKET_SIZE;
  703                                 device_printf(sc->ste_dev,
  704                                     "TX underrun, increasing TX"
  705                                     " start threshold to %d bytes\n",
  706                                     sc->ste_tx_thresh);
  707                                 /* Make sure to disable active DMA cycles. */
  708                                 STE_SETBIT4(sc, STE_DMACTL,
  709                                     STE_DMACTL_TXDMA_STALL);
  710                                 ste_wait(sc);
  711                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
  712                                 ste_init_locked(sc);
  713                                 break;
  714                         }
  715                         /* Restart Tx. */
  716                         ste_restart_tx(sc);
  717                 }
  718                 /*
  719                  * Advance to next status and ACK TxComplete
  720                  * interrupt. ST201 data sheet was wrong here, to
  721                  * get next Tx status, we have to write both
  722                  * STE_TX_STATUS and STE_TX_FRAMEID register.
  723                  * Otherwise controller returns the same status
  724                  * as well as not acknowledge Tx completion
  725                  * interrupt.
  726                  */
  727                 CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
  728         }
  729 }
  730 
  731 static void
  732 ste_tick(void *arg)
  733 {
  734         struct ste_softc *sc;
  735         struct mii_data *mii;
  736 
  737         sc = (struct ste_softc *)arg;
  738 
  739         STE_LOCK_ASSERT(sc);
  740 
  741         mii = device_get_softc(sc->ste_miibus);
  742         mii_tick(mii);
  743         /*
  744          * ukphy(4) does not seem to generate CB that reports
  745          * resolved link state so if we know we lost a link,
  746          * explicitly check the link state.
  747          */
  748         if ((sc->ste_flags & STE_FLAG_LINK) == 0)
  749                 ste_miibus_statchg(sc->ste_dev);
  750         /*
  751          * Because we are not generating Tx completion
  752          * interrupt for every frame, reclaim transmitted
  753          * buffers here.
  754          */
  755         ste_txeof(sc);
  756         ste_txeoc(sc);
  757         ste_stats_update(sc);
  758         ste_watchdog(sc);
  759         callout_reset(&sc->ste_callout, hz, ste_tick, sc);
  760 }
  761 
  762 static void
  763 ste_txeof(struct ste_softc *sc)
  764 {
  765         struct ifnet *ifp;
  766         struct ste_chain *cur_tx;
  767         uint32_t txstat;
  768         int idx;
  769 
  770         STE_LOCK_ASSERT(sc);
  771 
  772         ifp = sc->ste_ifp;
  773         idx = sc->ste_cdata.ste_tx_cons;
  774         if (idx == sc->ste_cdata.ste_tx_prod)
  775                 return;
  776 
  777         bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
  778             sc->ste_cdata.ste_tx_list_map,
  779             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
  780 
  781         while (idx != sc->ste_cdata.ste_tx_prod) {
  782                 cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
  783                 txstat = le32toh(cur_tx->ste_ptr->ste_ctl);
  784                 if ((txstat & STE_TXCTL_DMADONE) == 0)
  785                         break;
  786                 bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map,
  787                     BUS_DMASYNC_POSTWRITE);
  788                 bus_dmamap_unload(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map);
  789                 KASSERT(cur_tx->ste_mbuf != NULL,
  790                     ("%s: freeing NULL mbuf!\n", __func__));
  791                 m_freem(cur_tx->ste_mbuf);
  792                 cur_tx->ste_mbuf = NULL;
  793                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
  794                 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
  795                 sc->ste_cdata.ste_tx_cnt--;
  796                 STE_INC(idx, STE_TX_LIST_CNT);
  797         }
  798 
  799         sc->ste_cdata.ste_tx_cons = idx;
  800         if (sc->ste_cdata.ste_tx_cnt == 0)
  801                 sc->ste_timer = 0;
  802 }
  803 
  804 static void
  805 ste_stats_clear(struct ste_softc *sc)
  806 {
  807 
  808         STE_LOCK_ASSERT(sc);
  809 
  810         /* Rx stats. */
  811         CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO);
  812         CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI);
  813         CSR_READ_2(sc, STE_STAT_RX_FRAMES);
  814         CSR_READ_1(sc, STE_STAT_RX_BCAST);
  815         CSR_READ_1(sc, STE_STAT_RX_MCAST);
  816         CSR_READ_1(sc, STE_STAT_RX_LOST);
  817         /* Tx stats. */
  818         CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO);
  819         CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI);
  820         CSR_READ_2(sc, STE_STAT_TX_FRAMES);
  821         CSR_READ_1(sc, STE_STAT_TX_BCAST);
  822         CSR_READ_1(sc, STE_STAT_TX_MCAST);
  823         CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
  824         CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
  825         CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
  826         CSR_READ_1(sc, STE_STAT_LATE_COLLS);
  827         CSR_READ_1(sc, STE_STAT_TX_DEFER);
  828         CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
  829         CSR_READ_1(sc, STE_STAT_TX_ABORT);
  830 }
  831 
  832 static void
  833 ste_stats_update(struct ste_softc *sc)
  834 {
  835         struct ifnet *ifp;
  836         struct ste_hw_stats *stats;
  837         uint32_t val;
  838 
  839         STE_LOCK_ASSERT(sc);
  840 
  841         ifp = sc->ste_ifp;
  842         stats = &sc->ste_stats;
  843         /* Rx stats. */
  844         val = (uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO) |
  845             ((uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI)) << 16;
  846         val &= 0x000FFFFF;
  847         stats->rx_bytes += val;
  848         stats->rx_frames += CSR_READ_2(sc, STE_STAT_RX_FRAMES);
  849         stats->rx_bcast_frames += CSR_READ_1(sc, STE_STAT_RX_BCAST);
  850         stats->rx_mcast_frames += CSR_READ_1(sc, STE_STAT_RX_MCAST);
  851         stats->rx_lost_frames += CSR_READ_1(sc, STE_STAT_RX_LOST);
  852         /* Tx stats. */
  853         val = (uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO) |
  854             ((uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI)) << 16;
  855         val &= 0x000FFFFF;
  856         stats->tx_bytes += val;
  857         stats->tx_frames += CSR_READ_2(sc, STE_STAT_TX_FRAMES);
  858         stats->tx_bcast_frames += CSR_READ_1(sc, STE_STAT_TX_BCAST);
  859         stats->tx_mcast_frames += CSR_READ_1(sc, STE_STAT_TX_MCAST);
  860         stats->tx_carrsense_errs += CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
  861         val = CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
  862         stats->tx_single_colls += val;
  863         if_inc_counter(ifp, IFCOUNTER_COLLISIONS, val);
  864         val = CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
  865         stats->tx_multi_colls += val;
  866         if_inc_counter(ifp, IFCOUNTER_COLLISIONS, val);
  867         val += CSR_READ_1(sc, STE_STAT_LATE_COLLS);
  868         stats->tx_late_colls += val;
  869         if_inc_counter(ifp, IFCOUNTER_COLLISIONS, val);
  870         stats->tx_frames_defered += CSR_READ_1(sc, STE_STAT_TX_DEFER);
  871         stats->tx_excess_defers += CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
  872         stats->tx_abort += CSR_READ_1(sc, STE_STAT_TX_ABORT);
  873 }
  874 
  875 /*
  876  * Probe for a Sundance ST201 chip. Check the PCI vendor and device
  877  * IDs against our list and return a device name if we find a match.
  878  */
  879 static int
  880 ste_probe(device_t dev)
  881 {
  882         const struct ste_type *t;
  883 
  884         t = ste_devs;
  885 
  886         while (t->ste_name != NULL) {
  887                 if ((pci_get_vendor(dev) == t->ste_vid) &&
  888                     (pci_get_device(dev) == t->ste_did)) {
  889                         device_set_desc(dev, t->ste_name);
  890                         return (BUS_PROBE_DEFAULT);
  891                 }
  892                 t++;
  893         }
  894 
  895         return (ENXIO);
  896 }
  897 
  898 /*
  899  * Attach the interface. Allocate softc structures, do ifmedia
  900  * setup and ethernet/BPF attach.
  901  */
  902 static int
  903 ste_attach(device_t dev)
  904 {
  905         struct ste_softc *sc;
  906         struct ifnet *ifp;
  907         uint16_t eaddr[ETHER_ADDR_LEN / 2];
  908         int error = 0, phy, pmc, prefer_iomap, rid;
  909 
  910         sc = device_get_softc(dev);
  911         sc->ste_dev = dev;
  912 
  913         /*
  914          * Only use one PHY since this chip reports multiple
  915          * Note on the DFE-550 the PHY is at 1 on the DFE-580
  916          * it is at 0 & 1.  It is rev 0x12.
  917          */
  918         if (pci_get_vendor(dev) == DL_VENDORID &&
  919             pci_get_device(dev) == DL_DEVICEID_DL10050 &&
  920             pci_get_revid(dev) == 0x12 )
  921                 sc->ste_flags |= STE_FLAG_ONE_PHY;
  922 
  923         mtx_init(&sc->ste_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
  924             MTX_DEF);
  925         /*
  926          * Map control/status registers.
  927          */
  928         pci_enable_busmaster(dev);
  929 
  930         /*
  931          * Prefer memory space register mapping over IO space but use
  932          * IO space for a device that is known to have issues on memory
  933          * mapping.
  934          */
  935         prefer_iomap = 0;
  936         if (pci_get_device(dev) == ST_DEVICEID_ST201_1)
  937                 prefer_iomap = 1;
  938         else
  939                 resource_int_value(device_get_name(sc->ste_dev),
  940                     device_get_unit(sc->ste_dev), "prefer_iomap",
  941                     &prefer_iomap);
  942         if (prefer_iomap == 0) {
  943                 sc->ste_res_id = PCIR_BAR(1);
  944                 sc->ste_res_type = SYS_RES_MEMORY;
  945                 sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
  946                     &sc->ste_res_id, RF_ACTIVE);
  947         }
  948         if (prefer_iomap || sc->ste_res == NULL) {
  949                 sc->ste_res_id = PCIR_BAR(0);
  950                 sc->ste_res_type = SYS_RES_IOPORT;
  951                 sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
  952                     &sc->ste_res_id, RF_ACTIVE);
  953         }
  954         if (sc->ste_res == NULL) {
  955                 device_printf(dev, "couldn't map ports/memory\n");
  956                 error = ENXIO;
  957                 goto fail;
  958         }
  959 
  960         /* Allocate interrupt */
  961         rid = 0;
  962         sc->ste_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
  963             RF_SHAREABLE | RF_ACTIVE);
  964 
  965         if (sc->ste_irq == NULL) {
  966                 device_printf(dev, "couldn't map interrupt\n");
  967                 error = ENXIO;
  968                 goto fail;
  969         }
  970 
  971         callout_init_mtx(&sc->ste_callout, &sc->ste_mtx, 0);
  972 
  973         /* Reset the adapter. */
  974         ste_reset(sc);
  975 
  976         /*
  977          * Get station address from the EEPROM.
  978          */
  979         if (ste_read_eeprom(sc, eaddr, STE_EEADDR_NODE0, ETHER_ADDR_LEN / 2)) {
  980                 device_printf(dev, "failed to read station address\n");
  981                 error = ENXIO;
  982                 goto fail;
  983         }
  984         ste_sysctl_node(sc);
  985 
  986         if ((error = ste_dma_alloc(sc)) != 0)
  987                 goto fail;
  988 
  989         ifp = sc->ste_ifp = if_alloc(IFT_ETHER);
  990         if (ifp == NULL) {
  991                 device_printf(dev, "can not if_alloc()\n");
  992                 error = ENOSPC;
  993                 goto fail;
  994         }
  995 
  996         /* Do MII setup. */
  997         phy = MII_PHY_ANY;
  998         if ((sc->ste_flags & STE_FLAG_ONE_PHY) != 0)
  999                 phy = 0;
 1000         error = mii_attach(dev, &sc->ste_miibus, ifp, ste_ifmedia_upd,
 1001                 ste_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
 1002         if (error != 0) {
 1003                 device_printf(dev, "attaching PHYs failed\n");
 1004                 goto fail;
 1005         }
 1006 
 1007         ifp->if_softc = sc;
 1008         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
 1009         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
 1010         ifp->if_ioctl = ste_ioctl;
 1011         ifp->if_start = ste_start;
 1012         ifp->if_init = ste_init;
 1013         IFQ_SET_MAXLEN(&ifp->if_snd, STE_TX_LIST_CNT - 1);
 1014         ifp->if_snd.ifq_drv_maxlen = STE_TX_LIST_CNT - 1;
 1015         IFQ_SET_READY(&ifp->if_snd);
 1016 
 1017         sc->ste_tx_thresh = STE_TXSTART_THRESH;
 1018 
 1019         /*
 1020          * Call MI attach routine.
 1021          */
 1022         ether_ifattach(ifp, (uint8_t *)eaddr);
 1023 
 1024         /*
 1025          * Tell the upper layer(s) we support long frames.
 1026          */
 1027         ifp->if_hdrlen = sizeof(struct ether_vlan_header);
 1028         ifp->if_capabilities |= IFCAP_VLAN_MTU;
 1029         if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
 1030                 ifp->if_capabilities |= IFCAP_WOL_MAGIC;
 1031         ifp->if_capenable = ifp->if_capabilities;
 1032 #ifdef DEVICE_POLLING
 1033         ifp->if_capabilities |= IFCAP_POLLING;
 1034 #endif
 1035 
 1036         /* Hook interrupt last to avoid having to lock softc */
 1037         error = bus_setup_intr(dev, sc->ste_irq, INTR_TYPE_NET | INTR_MPSAFE,
 1038             NULL, ste_intr, sc, &sc->ste_intrhand);
 1039 
 1040         if (error) {
 1041                 device_printf(dev, "couldn't set up irq\n");
 1042                 ether_ifdetach(ifp);
 1043                 goto fail;
 1044         }
 1045 
 1046 fail:
 1047         if (error)
 1048                 ste_detach(dev);
 1049 
 1050         return (error);
 1051 }
 1052 
 1053 /*
 1054  * Shutdown hardware and free up resources. This can be called any
 1055  * time after the mutex has been initialized. It is called in both
 1056  * the error case in attach and the normal detach case so it needs
 1057  * to be careful about only freeing resources that have actually been
 1058  * allocated.
 1059  */
 1060 static int
 1061 ste_detach(device_t dev)
 1062 {
 1063         struct ste_softc *sc;
 1064         struct ifnet *ifp;
 1065 
 1066         sc = device_get_softc(dev);
 1067         KASSERT(mtx_initialized(&sc->ste_mtx), ("ste mutex not initialized"));
 1068         ifp = sc->ste_ifp;
 1069 
 1070 #ifdef DEVICE_POLLING
 1071         if (ifp->if_capenable & IFCAP_POLLING)
 1072                 ether_poll_deregister(ifp);
 1073 #endif
 1074 
 1075         /* These should only be active if attach succeeded */
 1076         if (device_is_attached(dev)) {
 1077                 ether_ifdetach(ifp);
 1078                 STE_LOCK(sc);
 1079                 ste_stop(sc);
 1080                 STE_UNLOCK(sc);
 1081                 callout_drain(&sc->ste_callout);
 1082         }
 1083         if (sc->ste_miibus)
 1084                 device_delete_child(dev, sc->ste_miibus);
 1085         bus_generic_detach(dev);
 1086 
 1087         if (sc->ste_intrhand)
 1088                 bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
 1089         if (sc->ste_irq)
 1090                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
 1091         if (sc->ste_res)
 1092                 bus_release_resource(dev, sc->ste_res_type, sc->ste_res_id,
 1093                     sc->ste_res);
 1094 
 1095         if (ifp)
 1096                 if_free(ifp);
 1097 
 1098         ste_dma_free(sc);
 1099         mtx_destroy(&sc->ste_mtx);
 1100 
 1101         return (0);
 1102 }
 1103 
 1104 struct ste_dmamap_arg {
 1105         bus_addr_t      ste_busaddr;
 1106 };
 1107 
 1108 static void
 1109 ste_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
 1110 {
 1111         struct ste_dmamap_arg *ctx;
 1112 
 1113         if (error != 0)
 1114                 return;
 1115 
 1116         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
 1117 
 1118         ctx = (struct ste_dmamap_arg *)arg;
 1119         ctx->ste_busaddr = segs[0].ds_addr;
 1120 }
 1121 
 1122 static int
 1123 ste_dma_alloc(struct ste_softc *sc)
 1124 {
 1125         struct ste_chain *txc;
 1126         struct ste_chain_onefrag *rxc;
 1127         struct ste_dmamap_arg ctx;
 1128         int error, i;
 1129 
 1130         /* Create parent DMA tag. */
 1131         error = bus_dma_tag_create(
 1132             bus_get_dma_tag(sc->ste_dev), /* parent */
 1133             1, 0,                       /* alignment, boundary */
 1134             BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
 1135             BUS_SPACE_MAXADDR,          /* highaddr */
 1136             NULL, NULL,                 /* filter, filterarg */
 1137             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
 1138             0,                          /* nsegments */
 1139             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
 1140             0,                          /* flags */
 1141             NULL, NULL,                 /* lockfunc, lockarg */
 1142             &sc->ste_cdata.ste_parent_tag);
 1143         if (error != 0) {
 1144                 device_printf(sc->ste_dev,
 1145                     "could not create parent DMA tag.\n");
 1146                 goto fail;
 1147         }
 1148 
 1149         /* Create DMA tag for Tx descriptor list. */
 1150         error = bus_dma_tag_create(
 1151             sc->ste_cdata.ste_parent_tag, /* parent */
 1152             STE_DESC_ALIGN, 0,          /* alignment, boundary */
 1153             BUS_SPACE_MAXADDR,          /* lowaddr */
 1154             BUS_SPACE_MAXADDR,          /* highaddr */
 1155             NULL, NULL,                 /* filter, filterarg */
 1156             STE_TX_LIST_SZ,             /* maxsize */
 1157             1,                          /* nsegments */
 1158             STE_TX_LIST_SZ,             /* maxsegsize */
 1159             0,                          /* flags */
 1160             NULL, NULL,                 /* lockfunc, lockarg */
 1161             &sc->ste_cdata.ste_tx_list_tag);
 1162         if (error != 0) {
 1163                 device_printf(sc->ste_dev,
 1164                     "could not create Tx list DMA tag.\n");
 1165                 goto fail;
 1166         }
 1167 
 1168         /* Create DMA tag for Rx descriptor list. */
 1169         error = bus_dma_tag_create(
 1170             sc->ste_cdata.ste_parent_tag, /* parent */
 1171             STE_DESC_ALIGN, 0,          /* alignment, boundary */
 1172             BUS_SPACE_MAXADDR,          /* lowaddr */
 1173             BUS_SPACE_MAXADDR,          /* highaddr */
 1174             NULL, NULL,                 /* filter, filterarg */
 1175             STE_RX_LIST_SZ,             /* maxsize */
 1176             1,                          /* nsegments */
 1177             STE_RX_LIST_SZ,             /* maxsegsize */
 1178             0,                          /* flags */
 1179             NULL, NULL,                 /* lockfunc, lockarg */
 1180             &sc->ste_cdata.ste_rx_list_tag);
 1181         if (error != 0) {
 1182                 device_printf(sc->ste_dev,
 1183                     "could not create Rx list DMA tag.\n");
 1184                 goto fail;
 1185         }
 1186 
 1187         /* Create DMA tag for Tx buffers. */
 1188         error = bus_dma_tag_create(
 1189             sc->ste_cdata.ste_parent_tag, /* parent */
 1190             1, 0,                       /* alignment, boundary */
 1191             BUS_SPACE_MAXADDR,          /* lowaddr */
 1192             BUS_SPACE_MAXADDR,          /* highaddr */
 1193             NULL, NULL,                 /* filter, filterarg */
 1194             MCLBYTES * STE_MAXFRAGS,    /* maxsize */
 1195             STE_MAXFRAGS,               /* nsegments */
 1196             MCLBYTES,                   /* maxsegsize */
 1197             0,                          /* flags */
 1198             NULL, NULL,                 /* lockfunc, lockarg */
 1199             &sc->ste_cdata.ste_tx_tag);
 1200         if (error != 0) {
 1201                 device_printf(sc->ste_dev, "could not create Tx DMA tag.\n");
 1202                 goto fail;
 1203         }
 1204 
 1205         /* Create DMA tag for Rx buffers. */
 1206         error = bus_dma_tag_create(
 1207             sc->ste_cdata.ste_parent_tag, /* parent */
 1208             1, 0,                       /* alignment, boundary */
 1209             BUS_SPACE_MAXADDR,          /* lowaddr */
 1210             BUS_SPACE_MAXADDR,          /* highaddr */
 1211             NULL, NULL,                 /* filter, filterarg */
 1212             MCLBYTES,                   /* maxsize */
 1213             1,                          /* nsegments */
 1214             MCLBYTES,                   /* maxsegsize */
 1215             0,                          /* flags */
 1216             NULL, NULL,                 /* lockfunc, lockarg */
 1217             &sc->ste_cdata.ste_rx_tag);
 1218         if (error != 0) {
 1219                 device_printf(sc->ste_dev, "could not create Rx DMA tag.\n");
 1220                 goto fail;
 1221         }
 1222 
 1223         /* Allocate DMA'able memory and load the DMA map for Tx list. */
 1224         error = bus_dmamem_alloc(sc->ste_cdata.ste_tx_list_tag,
 1225             (void **)&sc->ste_ldata.ste_tx_list,
 1226             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 1227             &sc->ste_cdata.ste_tx_list_map);
 1228         if (error != 0) {
 1229                 device_printf(sc->ste_dev,
 1230                     "could not allocate DMA'able memory for Tx list.\n");
 1231                 goto fail;
 1232         }
 1233         ctx.ste_busaddr = 0;
 1234         error = bus_dmamap_load(sc->ste_cdata.ste_tx_list_tag,
 1235             sc->ste_cdata.ste_tx_list_map, sc->ste_ldata.ste_tx_list,
 1236             STE_TX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
 1237         if (error != 0 || ctx.ste_busaddr == 0) {
 1238                 device_printf(sc->ste_dev,
 1239                     "could not load DMA'able memory for Tx list.\n");
 1240                 goto fail;
 1241         }
 1242         sc->ste_ldata.ste_tx_list_paddr = ctx.ste_busaddr;
 1243 
 1244         /* Allocate DMA'able memory and load the DMA map for Rx list. */
 1245         error = bus_dmamem_alloc(sc->ste_cdata.ste_rx_list_tag,
 1246             (void **)&sc->ste_ldata.ste_rx_list,
 1247             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 1248             &sc->ste_cdata.ste_rx_list_map);
 1249         if (error != 0) {
 1250                 device_printf(sc->ste_dev,
 1251                     "could not allocate DMA'able memory for Rx list.\n");
 1252                 goto fail;
 1253         }
 1254         ctx.ste_busaddr = 0;
 1255         error = bus_dmamap_load(sc->ste_cdata.ste_rx_list_tag,
 1256             sc->ste_cdata.ste_rx_list_map, sc->ste_ldata.ste_rx_list,
 1257             STE_RX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
 1258         if (error != 0 || ctx.ste_busaddr == 0) {
 1259                 device_printf(sc->ste_dev,
 1260                     "could not load DMA'able memory for Rx list.\n");
 1261                 goto fail;
 1262         }
 1263         sc->ste_ldata.ste_rx_list_paddr = ctx.ste_busaddr;
 1264 
 1265         /* Create DMA maps for Tx buffers. */
 1266         for (i = 0; i < STE_TX_LIST_CNT; i++) {
 1267                 txc = &sc->ste_cdata.ste_tx_chain[i];
 1268                 txc->ste_ptr = NULL;
 1269                 txc->ste_mbuf = NULL;
 1270                 txc->ste_next = NULL;
 1271                 txc->ste_phys = 0;
 1272                 txc->ste_map = NULL;
 1273                 error = bus_dmamap_create(sc->ste_cdata.ste_tx_tag, 0,
 1274                     &txc->ste_map);
 1275                 if (error != 0) {
 1276                         device_printf(sc->ste_dev,
 1277                             "could not create Tx dmamap.\n");
 1278                         goto fail;
 1279                 }
 1280         }
 1281         /* Create DMA maps for Rx buffers. */
 1282         if ((error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
 1283             &sc->ste_cdata.ste_rx_sparemap)) != 0) {
 1284                 device_printf(sc->ste_dev,
 1285                     "could not create spare Rx dmamap.\n");
 1286                 goto fail;
 1287         }
 1288         for (i = 0; i < STE_RX_LIST_CNT; i++) {
 1289                 rxc = &sc->ste_cdata.ste_rx_chain[i];
 1290                 rxc->ste_ptr = NULL;
 1291                 rxc->ste_mbuf = NULL;
 1292                 rxc->ste_next = NULL;
 1293                 rxc->ste_map = NULL;
 1294                 error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
 1295                     &rxc->ste_map);
 1296                 if (error != 0) {
 1297                         device_printf(sc->ste_dev,
 1298                             "could not create Rx dmamap.\n");
 1299                         goto fail;
 1300                 }
 1301         }
 1302 
 1303 fail:
 1304         return (error);
 1305 }
 1306 
 1307 static void
 1308 ste_dma_free(struct ste_softc *sc)
 1309 {
 1310         struct ste_chain *txc;
 1311         struct ste_chain_onefrag *rxc;
 1312         int i;
 1313 
 1314         /* Tx buffers. */
 1315         if (sc->ste_cdata.ste_tx_tag != NULL) {
 1316                 for (i = 0; i < STE_TX_LIST_CNT; i++) {
 1317                         txc = &sc->ste_cdata.ste_tx_chain[i];
 1318                         if (txc->ste_map != NULL) {
 1319                                 bus_dmamap_destroy(sc->ste_cdata.ste_tx_tag,
 1320                                     txc->ste_map);
 1321                                 txc->ste_map = NULL;
 1322                         }
 1323                 }
 1324                 bus_dma_tag_destroy(sc->ste_cdata.ste_tx_tag);
 1325                 sc->ste_cdata.ste_tx_tag = NULL;
 1326         }
 1327         /* Rx buffers. */
 1328         if (sc->ste_cdata.ste_rx_tag != NULL) {
 1329                 for (i = 0; i < STE_RX_LIST_CNT; i++) {
 1330                         rxc = &sc->ste_cdata.ste_rx_chain[i];
 1331                         if (rxc->ste_map != NULL) {
 1332                                 bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
 1333                                     rxc->ste_map);
 1334                                 rxc->ste_map = NULL;
 1335                         }
 1336                 }
 1337                 if (sc->ste_cdata.ste_rx_sparemap != NULL) {
 1338                         bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
 1339                             sc->ste_cdata.ste_rx_sparemap);
 1340                         sc->ste_cdata.ste_rx_sparemap = NULL;
 1341                 }
 1342                 bus_dma_tag_destroy(sc->ste_cdata.ste_rx_tag);
 1343                 sc->ste_cdata.ste_rx_tag = NULL;
 1344         }
 1345         /* Tx descriptor list. */
 1346         if (sc->ste_cdata.ste_tx_list_tag != NULL) {
 1347                 if (sc->ste_ldata.ste_tx_list_paddr != 0)
 1348                         bus_dmamap_unload(sc->ste_cdata.ste_tx_list_tag,
 1349                             sc->ste_cdata.ste_tx_list_map);
 1350                 if (sc->ste_ldata.ste_tx_list != NULL)
 1351                         bus_dmamem_free(sc->ste_cdata.ste_tx_list_tag,
 1352                             sc->ste_ldata.ste_tx_list,
 1353                             sc->ste_cdata.ste_tx_list_map);
 1354                 sc->ste_ldata.ste_tx_list = NULL;
 1355                 sc->ste_ldata.ste_tx_list_paddr = 0;
 1356                 bus_dma_tag_destroy(sc->ste_cdata.ste_tx_list_tag);
 1357                 sc->ste_cdata.ste_tx_list_tag = NULL;
 1358         }
 1359         /* Rx descriptor list. */
 1360         if (sc->ste_cdata.ste_rx_list_tag != NULL) {
 1361                 if (sc->ste_ldata.ste_rx_list_paddr != 0)
 1362                         bus_dmamap_unload(sc->ste_cdata.ste_rx_list_tag,
 1363                             sc->ste_cdata.ste_rx_list_map);
 1364                 if (sc->ste_ldata.ste_rx_list != NULL)
 1365                         bus_dmamem_free(sc->ste_cdata.ste_rx_list_tag,
 1366                             sc->ste_ldata.ste_rx_list,
 1367                             sc->ste_cdata.ste_rx_list_map);
 1368                 sc->ste_ldata.ste_rx_list = NULL;
 1369                 sc->ste_ldata.ste_rx_list_paddr = 0;
 1370                 bus_dma_tag_destroy(sc->ste_cdata.ste_rx_list_tag);
 1371                 sc->ste_cdata.ste_rx_list_tag = NULL;
 1372         }
 1373         if (sc->ste_cdata.ste_parent_tag != NULL) {
 1374                 bus_dma_tag_destroy(sc->ste_cdata.ste_parent_tag);
 1375                 sc->ste_cdata.ste_parent_tag = NULL;
 1376         }
 1377 }
 1378 
 1379 static int
 1380 ste_newbuf(struct ste_softc *sc, struct ste_chain_onefrag *rxc)
 1381 {
 1382         struct mbuf *m;
 1383         bus_dma_segment_t segs[1];
 1384         bus_dmamap_t map;
 1385         int error, nsegs;
 1386 
 1387         m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
 1388         if (m == NULL)
 1389                 return (ENOBUFS);
 1390         m->m_len = m->m_pkthdr.len = MCLBYTES;
 1391         m_adj(m, ETHER_ALIGN);
 1392 
 1393         if ((error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_rx_tag,
 1394             sc->ste_cdata.ste_rx_sparemap, m, segs, &nsegs, 0)) != 0) {
 1395                 m_freem(m);
 1396                 return (error);
 1397         }
 1398         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
 1399 
 1400         if (rxc->ste_mbuf != NULL) {
 1401                 bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
 1402                     BUS_DMASYNC_POSTREAD);
 1403                 bus_dmamap_unload(sc->ste_cdata.ste_rx_tag, rxc->ste_map);
 1404         }
 1405         map = rxc->ste_map;
 1406         rxc->ste_map = sc->ste_cdata.ste_rx_sparemap;
 1407         sc->ste_cdata.ste_rx_sparemap = map;
 1408         bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
 1409             BUS_DMASYNC_PREREAD);
 1410         rxc->ste_mbuf = m;
 1411         rxc->ste_ptr->ste_status = 0;
 1412         rxc->ste_ptr->ste_frag.ste_addr = htole32(segs[0].ds_addr);
 1413         rxc->ste_ptr->ste_frag.ste_len = htole32(segs[0].ds_len |
 1414             STE_FRAG_LAST);
 1415         return (0);
 1416 }
 1417 
 1418 static int
 1419 ste_init_rx_list(struct ste_softc *sc)
 1420 {
 1421         struct ste_chain_data *cd;
 1422         struct ste_list_data *ld;
 1423         int error, i;
 1424 
 1425         sc->ste_int_rx_act = 0;
 1426         cd = &sc->ste_cdata;
 1427         ld = &sc->ste_ldata;
 1428         bzero(ld->ste_rx_list, STE_RX_LIST_SZ);
 1429         for (i = 0; i < STE_RX_LIST_CNT; i++) {
 1430                 cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
 1431                 error = ste_newbuf(sc, &cd->ste_rx_chain[i]);
 1432                 if (error != 0)
 1433                         return (error);
 1434                 if (i == (STE_RX_LIST_CNT - 1)) {
 1435                         cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[0];
 1436                         ld->ste_rx_list[i].ste_next =
 1437                             htole32(ld->ste_rx_list_paddr +
 1438                             (sizeof(struct ste_desc_onefrag) * 0));
 1439                 } else {
 1440                         cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[i + 1];
 1441                         ld->ste_rx_list[i].ste_next =
 1442                             htole32(ld->ste_rx_list_paddr +
 1443                             (sizeof(struct ste_desc_onefrag) * (i + 1)));
 1444                 }
 1445         }
 1446 
 1447         cd->ste_rx_head = &cd->ste_rx_chain[0];
 1448         bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
 1449             sc->ste_cdata.ste_rx_list_map,
 1450             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1451 
 1452         return (0);
 1453 }
 1454 
 1455 static void
 1456 ste_init_tx_list(struct ste_softc *sc)
 1457 {
 1458         struct ste_chain_data *cd;
 1459         struct ste_list_data *ld;
 1460         int i;
 1461 
 1462         cd = &sc->ste_cdata;
 1463         ld = &sc->ste_ldata;
 1464         bzero(ld->ste_tx_list, STE_TX_LIST_SZ);
 1465         for (i = 0; i < STE_TX_LIST_CNT; i++) {
 1466                 cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
 1467                 cd->ste_tx_chain[i].ste_mbuf = NULL;
 1468                 if (i == (STE_TX_LIST_CNT - 1)) {
 1469                         cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[0];
 1470                         cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
 1471                             ld->ste_tx_list_paddr +
 1472                             (sizeof(struct ste_desc) * 0)));
 1473                 } else {
 1474                         cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[i + 1];
 1475                         cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
 1476                             ld->ste_tx_list_paddr +
 1477                             (sizeof(struct ste_desc) * (i + 1))));
 1478                 }
 1479         }
 1480 
 1481         cd->ste_last_tx = NULL;
 1482         cd->ste_tx_prod = 0;
 1483         cd->ste_tx_cons = 0;
 1484         cd->ste_tx_cnt = 0;
 1485 
 1486         bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
 1487             sc->ste_cdata.ste_tx_list_map,
 1488             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1489 }
 1490 
 1491 static void
 1492 ste_init(void *xsc)
 1493 {
 1494         struct ste_softc *sc;
 1495 
 1496         sc = xsc;
 1497         STE_LOCK(sc);
 1498         ste_init_locked(sc);
 1499         STE_UNLOCK(sc);
 1500 }
 1501 
 1502 static void
 1503 ste_init_locked(struct ste_softc *sc)
 1504 {
 1505         struct ifnet *ifp;
 1506         struct mii_data *mii;
 1507         uint8_t val;
 1508         int i;
 1509 
 1510         STE_LOCK_ASSERT(sc);
 1511         ifp = sc->ste_ifp;
 1512         mii = device_get_softc(sc->ste_miibus);
 1513 
 1514         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 1515                 return;
 1516 
 1517         ste_stop(sc);
 1518         /* Reset the chip to a known state. */
 1519         ste_reset(sc);
 1520 
 1521         /* Init our MAC address */
 1522         for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
 1523                 CSR_WRITE_2(sc, STE_PAR0 + i,
 1524                     ((IF_LLADDR(sc->ste_ifp)[i] & 0xff) |
 1525                      IF_LLADDR(sc->ste_ifp)[i + 1] << 8));
 1526         }
 1527 
 1528         /* Init RX list */
 1529         if (ste_init_rx_list(sc) != 0) {
 1530                 device_printf(sc->ste_dev,
 1531                     "initialization failed: no memory for RX buffers\n");
 1532                 ste_stop(sc);
 1533                 return;
 1534         }
 1535 
 1536         /* Set RX polling interval */
 1537         CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 64);
 1538 
 1539         /* Init TX descriptors */
 1540         ste_init_tx_list(sc);
 1541 
 1542         /* Clear and disable WOL. */
 1543         val = CSR_READ_1(sc, STE_WAKE_EVENT);
 1544         val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
 1545             STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
 1546         CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
 1547 
 1548         /* Set the TX freethresh value */
 1549         CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
 1550 
 1551         /* Set the TX start threshold for best performance. */
 1552         CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
 1553 
 1554         /* Set the TX reclaim threshold. */
 1555         CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
 1556 
 1557         /* Accept VLAN length packets */
 1558         CSR_WRITE_2(sc, STE_MAX_FRAMELEN, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN);
 1559 
 1560         /* Set up the RX filter. */
 1561         ste_rxfilter(sc);
 1562 
 1563         /* Load the address of the RX list. */
 1564         STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
 1565         ste_wait(sc);
 1566         CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
 1567             STE_ADDR_LO(sc->ste_ldata.ste_rx_list_paddr));
 1568         STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
 1569         STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
 1570 
 1571         /* Set TX polling interval(defer until we TX first packet). */
 1572         CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
 1573 
 1574         /* Load address of the TX list */
 1575         STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
 1576         ste_wait(sc);
 1577         CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
 1578         STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
 1579         STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
 1580         ste_wait(sc);
 1581         /* Select 3.2us timer. */
 1582         STE_CLRBIT4(sc, STE_DMACTL, STE_DMACTL_COUNTDOWN_SPEED |
 1583             STE_DMACTL_COUNTDOWN_MODE);
 1584 
 1585         /* Enable receiver and transmitter */
 1586         CSR_WRITE_2(sc, STE_MACCTL0, 0);
 1587         CSR_WRITE_2(sc, STE_MACCTL1, 0);
 1588         STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
 1589         STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
 1590 
 1591         /* Enable stats counters. */
 1592         STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
 1593         /* Clear stats counters. */
 1594         ste_stats_clear(sc);
 1595 
 1596         CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
 1597         CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
 1598 #ifdef DEVICE_POLLING
 1599         /* Disable interrupts if we are polling. */
 1600         if (ifp->if_capenable & IFCAP_POLLING)
 1601                 CSR_WRITE_2(sc, STE_IMR, 0);
 1602         else
 1603 #endif
 1604         /* Enable interrupts. */
 1605         CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
 1606 
 1607         sc->ste_flags &= ~STE_FLAG_LINK;
 1608         /* Switch to the current media. */
 1609         mii_mediachg(mii);
 1610 
 1611         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 1612         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 1613 
 1614         callout_reset(&sc->ste_callout, hz, ste_tick, sc);
 1615 }
 1616 
 1617 static void
 1618 ste_stop(struct ste_softc *sc)
 1619 {
 1620         struct ifnet *ifp;
 1621         struct ste_chain_onefrag *cur_rx;
 1622         struct ste_chain *cur_tx;
 1623         uint32_t val;
 1624         int i;
 1625 
 1626         STE_LOCK_ASSERT(sc);
 1627         ifp = sc->ste_ifp;
 1628 
 1629         callout_stop(&sc->ste_callout);
 1630         sc->ste_timer = 0;
 1631         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
 1632 
 1633         CSR_WRITE_2(sc, STE_IMR, 0);
 1634         CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
 1635         /* Stop pending DMA. */
 1636         val = CSR_READ_4(sc, STE_DMACTL);
 1637         val |= STE_DMACTL_TXDMA_STALL | STE_DMACTL_RXDMA_STALL;
 1638         CSR_WRITE_4(sc, STE_DMACTL, val);
 1639         ste_wait(sc);
 1640         /* Disable auto-polling. */
 1641         CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 0);
 1642         CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
 1643         /* Nullify DMA address to stop any further DMA. */
 1644         CSR_WRITE_4(sc, STE_RX_DMALIST_PTR, 0);
 1645         CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
 1646         /* Stop TX/RX MAC. */
 1647         val = CSR_READ_2(sc, STE_MACCTL1);
 1648         val |= STE_MACCTL1_TX_DISABLE | STE_MACCTL1_RX_DISABLE |
 1649             STE_MACCTL1_STATS_DISABLE;
 1650         CSR_WRITE_2(sc, STE_MACCTL1, val);
 1651         for (i = 0; i < STE_TIMEOUT; i++) {
 1652                 DELAY(10);
 1653                 if ((CSR_READ_2(sc, STE_MACCTL1) & (STE_MACCTL1_TX_DISABLE |
 1654                     STE_MACCTL1_RX_DISABLE | STE_MACCTL1_STATS_DISABLE)) == 0)
 1655                         break;
 1656         }
 1657         if (i == STE_TIMEOUT)
 1658                 device_printf(sc->ste_dev, "Stopping MAC timed out\n");
 1659         /* Acknowledge any pending interrupts. */
 1660         CSR_READ_2(sc, STE_ISR_ACK);
 1661         ste_stats_update(sc);
 1662 
 1663         for (i = 0; i < STE_RX_LIST_CNT; i++) {
 1664                 cur_rx = &sc->ste_cdata.ste_rx_chain[i];
 1665                 if (cur_rx->ste_mbuf != NULL) {
 1666                         bus_dmamap_sync(sc->ste_cdata.ste_rx_tag,
 1667                             cur_rx->ste_map, BUS_DMASYNC_POSTREAD);
 1668                         bus_dmamap_unload(sc->ste_cdata.ste_rx_tag,
 1669                             cur_rx->ste_map);
 1670                         m_freem(cur_rx->ste_mbuf);
 1671                         cur_rx->ste_mbuf = NULL;
 1672                 }
 1673         }
 1674 
 1675         for (i = 0; i < STE_TX_LIST_CNT; i++) {
 1676                 cur_tx = &sc->ste_cdata.ste_tx_chain[i];
 1677                 if (cur_tx->ste_mbuf != NULL) {
 1678                         bus_dmamap_sync(sc->ste_cdata.ste_tx_tag,
 1679                             cur_tx->ste_map, BUS_DMASYNC_POSTWRITE);
 1680                         bus_dmamap_unload(sc->ste_cdata.ste_tx_tag,
 1681                             cur_tx->ste_map);
 1682                         m_freem(cur_tx->ste_mbuf);
 1683                         cur_tx->ste_mbuf = NULL;
 1684                 }
 1685         }
 1686 }
 1687 
 1688 static void
 1689 ste_reset(struct ste_softc *sc)
 1690 {
 1691         uint32_t ctl;
 1692         int i;
 1693 
 1694         ctl = CSR_READ_4(sc, STE_ASICCTL);
 1695         ctl |= STE_ASICCTL_GLOBAL_RESET | STE_ASICCTL_RX_RESET |
 1696             STE_ASICCTL_TX_RESET | STE_ASICCTL_DMA_RESET |
 1697             STE_ASICCTL_FIFO_RESET | STE_ASICCTL_NETWORK_RESET |
 1698             STE_ASICCTL_AUTOINIT_RESET |STE_ASICCTL_HOST_RESET |
 1699             STE_ASICCTL_EXTRESET_RESET;
 1700         CSR_WRITE_4(sc, STE_ASICCTL, ctl);
 1701         CSR_READ_4(sc, STE_ASICCTL);
 1702         /*
 1703          * Due to the need of accessing EEPROM controller can take
 1704          * up to 1ms to complete the global reset.
 1705          */
 1706         DELAY(1000);
 1707 
 1708         for (i = 0; i < STE_TIMEOUT; i++) {
 1709                 if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
 1710                         break;
 1711                 DELAY(10);
 1712         }
 1713 
 1714         if (i == STE_TIMEOUT)
 1715                 device_printf(sc->ste_dev, "global reset never completed\n");
 1716 }
 1717 
 1718 static void
 1719 ste_restart_tx(struct ste_softc *sc)
 1720 {
 1721         uint16_t mac;
 1722         int i;
 1723 
 1724         for (i = 0; i < STE_TIMEOUT; i++) {
 1725                 mac = CSR_READ_2(sc, STE_MACCTL1);
 1726                 mac |= STE_MACCTL1_TX_ENABLE;
 1727                 CSR_WRITE_2(sc, STE_MACCTL1, mac);
 1728                 mac = CSR_READ_2(sc, STE_MACCTL1);
 1729                 if ((mac & STE_MACCTL1_TX_ENABLED) != 0)
 1730                         break;
 1731                 DELAY(10);
 1732         }
 1733 
 1734         if (i == STE_TIMEOUT)
 1735                 device_printf(sc->ste_dev, "starting Tx failed");
 1736 }
 1737 
 1738 static int
 1739 ste_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
 1740 {
 1741         struct ste_softc *sc;
 1742         struct ifreq *ifr;
 1743         struct mii_data *mii;
 1744         int error = 0, mask;
 1745 
 1746         sc = ifp->if_softc;
 1747         ifr = (struct ifreq *)data;
 1748 
 1749         switch (command) {
 1750         case SIOCSIFFLAGS:
 1751                 STE_LOCK(sc);
 1752                 if ((ifp->if_flags & IFF_UP) != 0) {
 1753                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
 1754                             ((ifp->if_flags ^ sc->ste_if_flags) &
 1755                              (IFF_PROMISC | IFF_ALLMULTI)) != 0)
 1756                                 ste_rxfilter(sc);
 1757                         else
 1758                                 ste_init_locked(sc);
 1759                 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 1760                         ste_stop(sc);
 1761                 sc->ste_if_flags = ifp->if_flags;
 1762                 STE_UNLOCK(sc);
 1763                 break;
 1764         case SIOCADDMULTI:
 1765         case SIOCDELMULTI:
 1766                 STE_LOCK(sc);
 1767                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 1768                         ste_rxfilter(sc);
 1769                 STE_UNLOCK(sc);
 1770                 break;
 1771         case SIOCGIFMEDIA:
 1772         case SIOCSIFMEDIA:
 1773                 mii = device_get_softc(sc->ste_miibus);
 1774                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
 1775                 break;
 1776         case SIOCSIFCAP:
 1777                 STE_LOCK(sc);
 1778                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
 1779 #ifdef DEVICE_POLLING
 1780                 if ((mask & IFCAP_POLLING) != 0 &&
 1781                     (IFCAP_POLLING & ifp->if_capabilities) != 0) {
 1782                         ifp->if_capenable ^= IFCAP_POLLING;
 1783                         if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
 1784                                 error = ether_poll_register(ste_poll, ifp);
 1785                                 if (error != 0) {
 1786                                         STE_UNLOCK(sc);
 1787                                         break;
 1788                                 }
 1789                                 /* Disable interrupts. */
 1790                                 CSR_WRITE_2(sc, STE_IMR, 0);
 1791                         } else {
 1792                                 error = ether_poll_deregister(ifp);
 1793                                 /* Enable interrupts. */
 1794                                 CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
 1795                         }
 1796                 }
 1797 #endif /* DEVICE_POLLING */
 1798                 if ((mask & IFCAP_WOL_MAGIC) != 0 &&
 1799                     (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
 1800                         ifp->if_capenable ^= IFCAP_WOL_MAGIC;
 1801                 STE_UNLOCK(sc);
 1802                 break;
 1803         default:
 1804                 error = ether_ioctl(ifp, command, data);
 1805                 break;
 1806         }
 1807 
 1808         return (error);
 1809 }
 1810 
 1811 static int
 1812 ste_encap(struct ste_softc *sc, struct mbuf **m_head, struct ste_chain *txc)
 1813 {
 1814         struct ste_frag *frag;
 1815         struct mbuf *m;
 1816         struct ste_desc *desc;
 1817         bus_dma_segment_t txsegs[STE_MAXFRAGS];
 1818         int error, i, nsegs;
 1819 
 1820         STE_LOCK_ASSERT(sc);
 1821         M_ASSERTPKTHDR((*m_head));
 1822 
 1823         error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
 1824             txc->ste_map, *m_head, txsegs, &nsegs, 0);
 1825         if (error == EFBIG) {
 1826                 m = m_collapse(*m_head, M_NOWAIT, STE_MAXFRAGS);
 1827                 if (m == NULL) {
 1828                         m_freem(*m_head);
 1829                         *m_head = NULL;
 1830                         return (ENOMEM);
 1831                 }
 1832                 *m_head = m;
 1833                 error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
 1834                     txc->ste_map, *m_head, txsegs, &nsegs, 0);
 1835                 if (error != 0) {
 1836                         m_freem(*m_head);
 1837                         *m_head = NULL;
 1838                         return (error);
 1839                 }
 1840         } else if (error != 0)
 1841                 return (error);
 1842         if (nsegs == 0) {
 1843                 m_freem(*m_head);
 1844                 *m_head = NULL;
 1845                 return (EIO);
 1846         }
 1847         bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, txc->ste_map,
 1848             BUS_DMASYNC_PREWRITE);
 1849 
 1850         desc = txc->ste_ptr;
 1851         for (i = 0; i < nsegs; i++) {
 1852                 frag = &desc->ste_frags[i];
 1853                 frag->ste_addr = htole32(STE_ADDR_LO(txsegs[i].ds_addr));
 1854                 frag->ste_len = htole32(txsegs[i].ds_len);
 1855         }
 1856         desc->ste_frags[i - 1].ste_len |= htole32(STE_FRAG_LAST);
 1857         /*
 1858          * Because we use Tx polling we can't chain multiple
 1859          * Tx descriptors here. Otherwise we race with controller.
 1860          */
 1861         desc->ste_next = 0;
 1862         if ((sc->ste_cdata.ste_tx_prod % STE_TX_INTR_FRAMES) == 0)
 1863                 desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS |
 1864                     STE_TXCTL_DMAINTR);
 1865         else
 1866                 desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS);
 1867         txc->ste_mbuf = *m_head;
 1868         STE_INC(sc->ste_cdata.ste_tx_prod, STE_TX_LIST_CNT);
 1869         sc->ste_cdata.ste_tx_cnt++;
 1870 
 1871         return (0);
 1872 }
 1873 
 1874 static void
 1875 ste_start(struct ifnet *ifp)
 1876 {
 1877         struct ste_softc *sc;
 1878 
 1879         sc = ifp->if_softc;
 1880         STE_LOCK(sc);
 1881         ste_start_locked(ifp);
 1882         STE_UNLOCK(sc);
 1883 }
 1884 
 1885 static void
 1886 ste_start_locked(struct ifnet *ifp)
 1887 {
 1888         struct ste_softc *sc;
 1889         struct ste_chain *cur_tx;
 1890         struct mbuf *m_head = NULL;
 1891         int enq;
 1892 
 1893         sc = ifp->if_softc;
 1894         STE_LOCK_ASSERT(sc);
 1895 
 1896         if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
 1897             IFF_DRV_RUNNING || (sc->ste_flags & STE_FLAG_LINK) == 0)
 1898                 return;
 1899 
 1900         for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
 1901                 if (sc->ste_cdata.ste_tx_cnt == STE_TX_LIST_CNT - 1) {
 1902                         /*
 1903                          * Controller may have cached copy of the last used
 1904                          * next ptr so we have to reserve one TFD to avoid
 1905                          * TFD overruns.
 1906                          */
 1907                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 1908                         break;
 1909                 }
 1910                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
 1911                 if (m_head == NULL)
 1912                         break;
 1913                 cur_tx = &sc->ste_cdata.ste_tx_chain[sc->ste_cdata.ste_tx_prod];
 1914                 if (ste_encap(sc, &m_head, cur_tx) != 0) {
 1915                         if (m_head == NULL)
 1916                                 break;
 1917                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
 1918                         break;
 1919                 }
 1920                 if (sc->ste_cdata.ste_last_tx == NULL) {
 1921                         bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
 1922                             sc->ste_cdata.ste_tx_list_map,
 1923                             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1924                         STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
 1925                         ste_wait(sc);
 1926                         CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
 1927                             STE_ADDR_LO(sc->ste_ldata.ste_tx_list_paddr));
 1928                         CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
 1929                         STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
 1930                         ste_wait(sc);
 1931                 } else {
 1932                         sc->ste_cdata.ste_last_tx->ste_ptr->ste_next =
 1933                             sc->ste_cdata.ste_last_tx->ste_phys;
 1934                         bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
 1935                             sc->ste_cdata.ste_tx_list_map,
 1936                             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1937                 }
 1938                 sc->ste_cdata.ste_last_tx = cur_tx;
 1939 
 1940                 enq++;
 1941                 /*
 1942                  * If there's a BPF listener, bounce a copy of this frame
 1943                  * to him.
 1944                  */
 1945                 BPF_MTAP(ifp, m_head);
 1946         }
 1947 
 1948         if (enq > 0)
 1949                 sc->ste_timer = STE_TX_TIMEOUT;
 1950 }
 1951 
 1952 static void
 1953 ste_watchdog(struct ste_softc *sc)
 1954 {
 1955         struct ifnet *ifp;
 1956 
 1957         ifp = sc->ste_ifp;
 1958         STE_LOCK_ASSERT(sc);
 1959 
 1960         if (sc->ste_timer == 0 || --sc->ste_timer)
 1961                 return;
 1962 
 1963         if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
 1964         if_printf(ifp, "watchdog timeout\n");
 1965 
 1966         ste_txeof(sc);
 1967         ste_txeoc(sc);
 1968         ste_rxeof(sc, -1);
 1969         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1970         ste_init_locked(sc);
 1971 
 1972         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 1973                 ste_start_locked(ifp);
 1974 }
 1975 
 1976 static int
 1977 ste_shutdown(device_t dev)
 1978 {
 1979 
 1980         return (ste_suspend(dev));
 1981 }
 1982 
 1983 static int
 1984 ste_suspend(device_t dev)
 1985 {
 1986         struct ste_softc *sc;
 1987 
 1988         sc = device_get_softc(dev);
 1989 
 1990         STE_LOCK(sc);
 1991         ste_stop(sc);
 1992         ste_setwol(sc);
 1993         STE_UNLOCK(sc);
 1994 
 1995         return (0);
 1996 }
 1997 
 1998 static int
 1999 ste_resume(device_t dev)
 2000 {
 2001         struct ste_softc *sc;
 2002         struct ifnet *ifp;
 2003         int pmc;
 2004         uint16_t pmstat;
 2005 
 2006         sc = device_get_softc(dev);
 2007         STE_LOCK(sc);
 2008         if (pci_find_cap(sc->ste_dev, PCIY_PMG, &pmc) == 0) {
 2009                 /* Disable PME and clear PME status. */
 2010                 pmstat = pci_read_config(sc->ste_dev,
 2011                     pmc + PCIR_POWER_STATUS, 2);
 2012                 if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
 2013                         pmstat &= ~PCIM_PSTAT_PMEENABLE;
 2014                         pci_write_config(sc->ste_dev,
 2015                             pmc + PCIR_POWER_STATUS, pmstat, 2);
 2016                 }
 2017         }
 2018         ifp = sc->ste_ifp;
 2019         if ((ifp->if_flags & IFF_UP) != 0) {
 2020                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 2021                 ste_init_locked(sc);
 2022         }
 2023         STE_UNLOCK(sc);
 2024 
 2025         return (0);
 2026 }
 2027 
 2028 #define STE_SYSCTL_STAT_ADD32(c, h, n, p, d)    \
 2029             SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
 2030 #define STE_SYSCTL_STAT_ADD64(c, h, n, p, d)    \
 2031             SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
 2032 
 2033 static void
 2034 ste_sysctl_node(struct ste_softc *sc)
 2035 {
 2036         struct sysctl_ctx_list *ctx;
 2037         struct sysctl_oid_list *child, *parent;
 2038         struct sysctl_oid *tree;
 2039         struct ste_hw_stats *stats;
 2040 
 2041         stats = &sc->ste_stats;
 2042         ctx = device_get_sysctl_ctx(sc->ste_dev);
 2043         child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ste_dev));
 2044 
 2045         SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_rx_mod",
 2046             CTLFLAG_RW, &sc->ste_int_rx_mod, 0, "ste RX interrupt moderation");
 2047         /* Pull in device tunables. */
 2048         sc->ste_int_rx_mod = STE_IM_RX_TIMER_DEFAULT;
 2049         resource_int_value(device_get_name(sc->ste_dev),
 2050             device_get_unit(sc->ste_dev), "int_rx_mod", &sc->ste_int_rx_mod);
 2051 
 2052         tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
 2053             NULL, "STE statistics");
 2054         parent = SYSCTL_CHILDREN(tree);
 2055 
 2056         /* Rx statistics. */
 2057         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
 2058             NULL, "Rx MAC statistics");
 2059         child = SYSCTL_CHILDREN(tree);
 2060         STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
 2061             &stats->rx_bytes, "Good octets");
 2062         STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
 2063             &stats->rx_frames, "Good frames");
 2064         STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
 2065             &stats->rx_bcast_frames, "Good broadcast frames");
 2066         STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
 2067             &stats->rx_mcast_frames, "Good multicast frames");
 2068         STE_SYSCTL_STAT_ADD32(ctx, child, "lost_frames",
 2069             &stats->rx_lost_frames, "Lost frames");
 2070 
 2071         /* Tx statistics. */
 2072         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
 2073             NULL, "Tx MAC statistics");
 2074         child = SYSCTL_CHILDREN(tree);
 2075         STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
 2076             &stats->tx_bytes, "Good octets");
 2077         STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
 2078             &stats->tx_frames, "Good frames");
 2079         STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
 2080             &stats->tx_bcast_frames, "Good broadcast frames");
 2081         STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
 2082             &stats->tx_mcast_frames, "Good multicast frames");
 2083         STE_SYSCTL_STAT_ADD32(ctx, child, "carrier_errs",
 2084             &stats->tx_carrsense_errs, "Carrier sense errors");
 2085         STE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
 2086             &stats->tx_single_colls, "Single collisions");
 2087         STE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
 2088             &stats->tx_multi_colls, "Multiple collisions");
 2089         STE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
 2090             &stats->tx_late_colls, "Late collisions");
 2091         STE_SYSCTL_STAT_ADD32(ctx, child, "defers",
 2092             &stats->tx_frames_defered, "Frames with deferrals");
 2093         STE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
 2094             &stats->tx_excess_defers, "Frames with excessive derferrals");
 2095         STE_SYSCTL_STAT_ADD32(ctx, child, "abort",
 2096             &stats->tx_abort, "Aborted frames due to Excessive collisions");
 2097 }
 2098 
 2099 #undef STE_SYSCTL_STAT_ADD32
 2100 #undef STE_SYSCTL_STAT_ADD64
 2101 
 2102 static void
 2103 ste_setwol(struct ste_softc *sc)
 2104 {
 2105         struct ifnet *ifp;
 2106         uint16_t pmstat;
 2107         uint8_t val;
 2108         int pmc;
 2109 
 2110         STE_LOCK_ASSERT(sc);
 2111 
 2112         if (pci_find_cap(sc->ste_dev, PCIY_PMG, &pmc) != 0) {
 2113                 /* Disable WOL. */
 2114                 CSR_READ_1(sc, STE_WAKE_EVENT);
 2115                 CSR_WRITE_1(sc, STE_WAKE_EVENT, 0);
 2116                 return;
 2117         }
 2118 
 2119         ifp = sc->ste_ifp;
 2120         val = CSR_READ_1(sc, STE_WAKE_EVENT);
 2121         val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
 2122             STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
 2123         if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
 2124                 val |= STE_WAKEEVENT_MAGICPKT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB;
 2125         CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
 2126         /* Request PME. */
 2127         pmstat = pci_read_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, 2);
 2128         pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
 2129         if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
 2130                 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
 2131         pci_write_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
 2132 }

Cache object: fa8b86a76c8b0fd7ef9fd2bb2802bada


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.