The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/ste/if_ste.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1997, 1998, 1999
    3  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. All advertising materials mentioning features or use of this software
   14  *    must display the following acknowledgement:
   15  *      This product includes software developed by Bill Paul.
   16  * 4. Neither the name of the author nor the names of any co-contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   30  * THE POSSIBILITY OF SUCH DAMAGE.
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD$");
   35 
   36 #ifdef HAVE_KERNEL_OPTION_HEADERS
   37 #include "opt_device_polling.h"
   38 #endif
   39 
   40 #include <sys/param.h>
   41 #include <sys/systm.h>
   42 #include <sys/bus.h>
   43 #include <sys/endian.h>
   44 #include <sys/kernel.h>
   45 #include <sys/lock.h>
   46 #include <sys/malloc.h>
   47 #include <sys/mbuf.h>
   48 #include <sys/module.h>
   49 #include <sys/rman.h>
   50 #include <sys/socket.h>
   51 #include <sys/sockio.h>
   52 #include <sys/sysctl.h>
   53 
   54 #include <net/bpf.h>
   55 #include <net/if.h>
   56 #include <net/if_arp.h>
   57 #include <net/ethernet.h>
   58 #include <net/if_dl.h>
   59 #include <net/if_media.h>
   60 #include <net/if_types.h>
   61 #include <net/if_vlan_var.h>
   62 
   63 #include <machine/bus.h>
   64 #include <machine/resource.h>
   65 
   66 #include <dev/mii/mii.h>
   67 #include <dev/mii/mii_bitbang.h>
   68 #include <dev/mii/miivar.h>
   69 
   70 #include <dev/pci/pcireg.h>
   71 #include <dev/pci/pcivar.h>
   72 
   73 #include <dev/ste/if_stereg.h>
   74 
   75 /* "device miibus" required.  See GENERIC if you get errors here. */
   76 #include "miibus_if.h"
   77 
   78 MODULE_DEPEND(ste, pci, 1, 1, 1);
   79 MODULE_DEPEND(ste, ether, 1, 1, 1);
   80 MODULE_DEPEND(ste, miibus, 1, 1, 1);
   81 
   82 /* Define to show Tx error status. */
   83 #define STE_SHOW_TXERRORS
   84 
   85 /*
   86  * Various supported device vendors/types and their names.
   87  */
   88 static const struct ste_type const ste_devs[] = {
   89         { ST_VENDORID, ST_DEVICEID_ST201_1, "Sundance ST201 10/100BaseTX" },
   90         { ST_VENDORID, ST_DEVICEID_ST201_2, "Sundance ST201 10/100BaseTX" },
   91         { DL_VENDORID, DL_DEVICEID_DL10050, "D-Link DL10050 10/100BaseTX" },
   92         { 0, 0, NULL }
   93 };
   94 
   95 static int      ste_attach(device_t);
   96 static int      ste_detach(device_t);
   97 static int      ste_probe(device_t);
   98 static int      ste_resume(device_t);
   99 static int      ste_shutdown(device_t);
  100 static int      ste_suspend(device_t);
  101 
  102 static int      ste_dma_alloc(struct ste_softc *);
  103 static void     ste_dma_free(struct ste_softc *);
  104 static void     ste_dmamap_cb(void *, bus_dma_segment_t *, int, int);
  105 static int      ste_eeprom_wait(struct ste_softc *);
  106 static int      ste_encap(struct ste_softc *, struct mbuf **,
  107                     struct ste_chain *);
  108 static int      ste_ifmedia_upd(struct ifnet *);
  109 static void     ste_ifmedia_sts(struct ifnet *, struct ifmediareq *);
  110 static void     ste_init(void *);
  111 static void     ste_init_locked(struct ste_softc *);
  112 static int      ste_init_rx_list(struct ste_softc *);
  113 static void     ste_init_tx_list(struct ste_softc *);
  114 static void     ste_intr(void *);
  115 static int      ste_ioctl(struct ifnet *, u_long, caddr_t);
  116 static uint32_t ste_mii_bitbang_read(device_t);
  117 static void     ste_mii_bitbang_write(device_t, uint32_t);
  118 static int      ste_miibus_readreg(device_t, int, int);
  119 static void     ste_miibus_statchg(device_t);
  120 static int      ste_miibus_writereg(device_t, int, int, int);
  121 static int      ste_newbuf(struct ste_softc *, struct ste_chain_onefrag *);
  122 static int      ste_read_eeprom(struct ste_softc *, uint16_t *, int, int);
  123 static void     ste_reset(struct ste_softc *);
  124 static void     ste_restart_tx(struct ste_softc *);
  125 static void     ste_rxeof(struct ste_softc *, int);
  126 static void     ste_rxfilter(struct ste_softc *);
  127 static void     ste_setwol(struct ste_softc *);
  128 static void     ste_start(struct ifnet *);
  129 static void     ste_start_locked(struct ifnet *);
  130 static void     ste_stats_clear(struct ste_softc *);
  131 static void     ste_stats_update(struct ste_softc *);
  132 static void     ste_stop(struct ste_softc *);
  133 static void     ste_sysctl_node(struct ste_softc *);
  134 static void     ste_tick(void *);
  135 static void     ste_txeoc(struct ste_softc *);
  136 static void     ste_txeof(struct ste_softc *);
  137 static void     ste_wait(struct ste_softc *);
  138 static void     ste_watchdog(struct ste_softc *);
  139 
  140 /*
  141  * MII bit-bang glue
  142  */
  143 static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
  144         ste_mii_bitbang_read,
  145         ste_mii_bitbang_write,
  146         {
  147                 STE_PHYCTL_MDATA,       /* MII_BIT_MDO */
  148                 STE_PHYCTL_MDATA,       /* MII_BIT_MDI */
  149                 STE_PHYCTL_MCLK,        /* MII_BIT_MDC */
  150                 STE_PHYCTL_MDIR,        /* MII_BIT_DIR_HOST_PHY */
  151                 0,                      /* MII_BIT_DIR_PHY_HOST */
  152         }
  153 };
  154 
  155 static device_method_t ste_methods[] = {
  156         /* Device interface */
  157         DEVMETHOD(device_probe,         ste_probe),
  158         DEVMETHOD(device_attach,        ste_attach),
  159         DEVMETHOD(device_detach,        ste_detach),
  160         DEVMETHOD(device_shutdown,      ste_shutdown),
  161         DEVMETHOD(device_suspend,       ste_suspend),
  162         DEVMETHOD(device_resume,        ste_resume),
  163 
  164         /* bus interface */
  165         DEVMETHOD(bus_print_child,      bus_generic_print_child),
  166         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
  167 
  168         /* MII interface */
  169         DEVMETHOD(miibus_readreg,       ste_miibus_readreg),
  170         DEVMETHOD(miibus_writereg,      ste_miibus_writereg),
  171         DEVMETHOD(miibus_statchg,       ste_miibus_statchg),
  172 
  173         { 0, 0 }
  174 };
  175 
  176 static driver_t ste_driver = {
  177         "ste",
  178         ste_methods,
  179         sizeof(struct ste_softc)
  180 };
  181 
  182 static devclass_t ste_devclass;
  183 
  184 DRIVER_MODULE(ste, pci, ste_driver, ste_devclass, 0, 0);
  185 DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, 0, 0);
  186 
  187 #define STE_SETBIT4(sc, reg, x)                         \
  188         CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
  189 
  190 #define STE_CLRBIT4(sc, reg, x)                         \
  191         CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
  192 
  193 #define STE_SETBIT2(sc, reg, x)                         \
  194         CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | (x))
  195 
  196 #define STE_CLRBIT2(sc, reg, x)                         \
  197         CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~(x))
  198 
  199 #define STE_SETBIT1(sc, reg, x)                         \
  200         CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | (x))
  201 
  202 #define STE_CLRBIT1(sc, reg, x)                         \
  203         CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~(x))
  204 
  205 /*
  206  * Read the MII serial port for the MII bit-bang module.
  207  */
  208 static uint32_t
  209 ste_mii_bitbang_read(device_t dev)
  210 {
  211         struct ste_softc *sc;
  212         uint32_t val;
  213 
  214         sc = device_get_softc(dev);
  215 
  216         val = CSR_READ_1(sc, STE_PHYCTL);
  217         CSR_BARRIER(sc, STE_PHYCTL, 1,
  218             BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
  219 
  220         return (val);
  221 }
  222 
  223 /*
  224  * Write the MII serial port for the MII bit-bang module.
  225  */
  226 static void
  227 ste_mii_bitbang_write(device_t dev, uint32_t val)
  228 {
  229         struct ste_softc *sc;
  230 
  231         sc = device_get_softc(dev);
  232 
  233         CSR_WRITE_1(sc, STE_PHYCTL, val);
  234         CSR_BARRIER(sc, STE_PHYCTL, 1,
  235             BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
  236 }
  237 
  238 static int
  239 ste_miibus_readreg(device_t dev, int phy, int reg)
  240 {
  241 
  242         return (mii_bitbang_readreg(dev, &ste_mii_bitbang_ops, phy, reg));
  243 }
  244 
  245 static int
  246 ste_miibus_writereg(device_t dev, int phy, int reg, int data)
  247 {
  248 
  249         mii_bitbang_writereg(dev, &ste_mii_bitbang_ops, phy, reg, data);
  250 
  251         return (0);
  252 }
  253 
  254 static void
  255 ste_miibus_statchg(device_t dev)
  256 {
  257         struct ste_softc *sc;
  258         struct mii_data *mii;
  259         struct ifnet *ifp;
  260         uint16_t cfg;
  261 
  262         sc = device_get_softc(dev);
  263 
  264         mii = device_get_softc(sc->ste_miibus);
  265         ifp = sc->ste_ifp;
  266         if (mii == NULL || ifp == NULL ||
  267             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
  268                 return;
  269 
  270         sc->ste_flags &= ~STE_FLAG_LINK;
  271         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
  272             (IFM_ACTIVE | IFM_AVALID)) {
  273                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
  274                 case IFM_10_T:
  275                 case IFM_100_TX:
  276                 case IFM_100_FX:
  277                 case IFM_100_T4:
  278                         sc->ste_flags |= STE_FLAG_LINK;
  279                 default:
  280                         break;
  281                 }
  282         }
  283 
  284         /* Program MACs with resolved speed/duplex/flow-control. */
  285         if ((sc->ste_flags & STE_FLAG_LINK) != 0) {
  286                 cfg = CSR_READ_2(sc, STE_MACCTL0);
  287                 cfg &= ~(STE_MACCTL0_FLOWCTL_ENABLE | STE_MACCTL0_FULLDUPLEX);
  288                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
  289                         /*
  290                          * ST201 data sheet says driver should enable receiving
  291                          * MAC control frames bit of receive mode register to
  292                          * receive flow-control frames but the register has no
  293                          * such bits. In addition the controller has no ability
  294                          * to send pause frames so it should be handled in
  295                          * driver. Implementing pause timer handling in driver
  296                          * layer is not trivial, so don't enable flow-control
  297                          * here.
  298                          */
  299                         cfg |= STE_MACCTL0_FULLDUPLEX;
  300                 }
  301                 CSR_WRITE_2(sc, STE_MACCTL0, cfg);
  302         }
  303 }
  304 
  305 static int
  306 ste_ifmedia_upd(struct ifnet *ifp)
  307 {
  308         struct ste_softc *sc;
  309         struct mii_data *mii;
  310         struct mii_softc *miisc;
  311         int error;
  312 
  313         sc = ifp->if_softc;
  314         STE_LOCK(sc);
  315         mii = device_get_softc(sc->ste_miibus);
  316         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
  317                 mii_phy_reset(miisc);
  318         error = mii_mediachg(mii);
  319         STE_UNLOCK(sc);
  320 
  321         return (error);
  322 }
  323 
  324 static void
  325 ste_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
  326 {
  327         struct ste_softc *sc;
  328         struct mii_data *mii;
  329 
  330         sc = ifp->if_softc;
  331         mii = device_get_softc(sc->ste_miibus);
  332 
  333         STE_LOCK(sc);
  334         if ((ifp->if_flags & IFF_UP) == 0) {
  335                 STE_UNLOCK(sc);
  336                 return;
  337         }
  338         mii_pollstat(mii);
  339         ifmr->ifm_active = mii->mii_media_active;
  340         ifmr->ifm_status = mii->mii_media_status;
  341         STE_UNLOCK(sc);
  342 }
  343 
  344 static void
  345 ste_wait(struct ste_softc *sc)
  346 {
  347         int i;
  348 
  349         for (i = 0; i < STE_TIMEOUT; i++) {
  350                 if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
  351                         break;
  352                 DELAY(1);
  353         }
  354 
  355         if (i == STE_TIMEOUT)
  356                 device_printf(sc->ste_dev, "command never completed!\n");
  357 }
  358 
  359 /*
  360  * The EEPROM is slow: give it time to come ready after issuing
  361  * it a command.
  362  */
  363 static int
  364 ste_eeprom_wait(struct ste_softc *sc)
  365 {
  366         int i;
  367 
  368         DELAY(1000);
  369 
  370         for (i = 0; i < 100; i++) {
  371                 if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
  372                         DELAY(1000);
  373                 else
  374                         break;
  375         }
  376 
  377         if (i == 100) {
  378                 device_printf(sc->ste_dev, "eeprom failed to come ready\n");
  379                 return (1);
  380         }
  381 
  382         return (0);
  383 }
  384 
  385 /*
  386  * Read a sequence of words from the EEPROM. Note that ethernet address
  387  * data is stored in the EEPROM in network byte order.
  388  */
  389 static int
  390 ste_read_eeprom(struct ste_softc *sc, uint16_t *dest, int off, int cnt)
  391 {
  392         int err = 0, i;
  393 
  394         if (ste_eeprom_wait(sc))
  395                 return (1);
  396 
  397         for (i = 0; i < cnt; i++) {
  398                 CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
  399                 err = ste_eeprom_wait(sc);
  400                 if (err)
  401                         break;
  402                 *dest = le16toh(CSR_READ_2(sc, STE_EEPROM_DATA));
  403                 dest++;
  404         }
  405 
  406         return (err ? 1 : 0);
  407 }
  408 
  409 static void
  410 ste_rxfilter(struct ste_softc *sc)
  411 {
  412         struct ifnet *ifp;
  413         struct ifmultiaddr *ifma;
  414         uint32_t hashes[2] = { 0, 0 };
  415         uint8_t rxcfg;
  416         int h;
  417 
  418         STE_LOCK_ASSERT(sc);
  419 
  420         ifp = sc->ste_ifp;
  421         rxcfg = CSR_READ_1(sc, STE_RX_MODE);
  422         rxcfg |= STE_RXMODE_UNICAST;
  423         rxcfg &= ~(STE_RXMODE_ALLMULTI | STE_RXMODE_MULTIHASH |
  424             STE_RXMODE_BROADCAST | STE_RXMODE_PROMISC);
  425         if (ifp->if_flags & IFF_BROADCAST)
  426                 rxcfg |= STE_RXMODE_BROADCAST;
  427         if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
  428                 if ((ifp->if_flags & IFF_ALLMULTI) != 0)
  429                         rxcfg |= STE_RXMODE_ALLMULTI;
  430                 if ((ifp->if_flags & IFF_PROMISC) != 0)
  431                         rxcfg |= STE_RXMODE_PROMISC;
  432                 goto chipit;
  433         }
  434 
  435         rxcfg |= STE_RXMODE_MULTIHASH;
  436         /* Now program new ones. */
  437         IF_ADDR_LOCK(ifp);
  438         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
  439                 if (ifma->ifma_addr->sa_family != AF_LINK)
  440                         continue;
  441                 h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
  442                     ifma->ifma_addr), ETHER_ADDR_LEN) & 0x3F;
  443                 if (h < 32)
  444                         hashes[0] |= (1 << h);
  445                 else
  446                         hashes[1] |= (1 << (h - 32));
  447         }
  448         IF_ADDR_UNLOCK(ifp);
  449 
  450 chipit:
  451         CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
  452         CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
  453         CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
  454         CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
  455         CSR_WRITE_1(sc, STE_RX_MODE, rxcfg);
  456         CSR_READ_1(sc, STE_RX_MODE);
  457 }
  458 
  459 #ifdef DEVICE_POLLING
  460 static poll_handler_t ste_poll, ste_poll_locked;
  461 
  462 static void
  463 ste_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
  464 {
  465         struct ste_softc *sc = ifp->if_softc;
  466 
  467         STE_LOCK(sc);
  468         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
  469                 ste_poll_locked(ifp, cmd, count);
  470         STE_UNLOCK(sc);
  471 }
  472 
  473 static void
  474 ste_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
  475 {
  476         struct ste_softc *sc = ifp->if_softc;
  477 
  478         STE_LOCK_ASSERT(sc);
  479 
  480         ste_rxeof(sc, count);
  481         ste_txeof(sc);
  482         ste_txeoc(sc);
  483         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
  484                 ste_start_locked(ifp);
  485 
  486         if (cmd == POLL_AND_CHECK_STATUS) {
  487                 uint16_t status;
  488 
  489                 status = CSR_READ_2(sc, STE_ISR_ACK);
  490 
  491                 if (status & STE_ISR_STATS_OFLOW)
  492                         ste_stats_update(sc);
  493 
  494                 if (status & STE_ISR_HOSTERR) {
  495                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
  496                         ste_init_locked(sc);
  497                 }
  498         }
  499 }
  500 #endif /* DEVICE_POLLING */
  501 
  502 static void
  503 ste_intr(void *xsc)
  504 {
  505         struct ste_softc *sc;
  506         struct ifnet *ifp;
  507         uint16_t intrs, status;
  508 
  509         sc = xsc;
  510         STE_LOCK(sc);
  511         ifp = sc->ste_ifp;
  512 
  513 #ifdef DEVICE_POLLING
  514         if (ifp->if_capenable & IFCAP_POLLING) {
  515                 STE_UNLOCK(sc);
  516                 return;
  517         }
  518 #endif
  519         /* Reading STE_ISR_ACK clears STE_IMR register. */
  520         status = CSR_READ_2(sc, STE_ISR_ACK);
  521         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
  522                 STE_UNLOCK(sc);
  523                 return;
  524         }
  525 
  526         intrs = STE_INTRS;
  527         if (status == 0xFFFF || (status & intrs) == 0)
  528                 goto done;
  529 
  530         if (sc->ste_int_rx_act > 0) {
  531                 status &= ~STE_ISR_RX_DMADONE;
  532                 intrs &= ~STE_IMR_RX_DMADONE;
  533         }
  534 
  535         if ((status & (STE_ISR_SOFTINTR | STE_ISR_RX_DMADONE)) != 0) {
  536                 ste_rxeof(sc, -1);
  537                 /*
  538                  * The controller has no ability to Rx interrupt
  539                  * moderation feature. Receiving 64 bytes frames
  540                  * from wire generates too many interrupts which in
  541                  * turn make system useless to process other useful
  542                  * things. Fortunately ST201 supports single shot
  543                  * timer so use the timer to implement Rx interrupt
  544                  * moderation in driver. This adds more register
  545                  * access but it greatly reduces number of Rx
  546                  * interrupts under high network load.
  547                  */
  548                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
  549                     (sc->ste_int_rx_mod != 0)) {
  550                         if ((status & STE_ISR_RX_DMADONE) != 0) {
  551                                 CSR_WRITE_2(sc, STE_COUNTDOWN,
  552                                     STE_TIMER_USECS(sc->ste_int_rx_mod));
  553                                 intrs &= ~STE_IMR_RX_DMADONE;
  554                                 sc->ste_int_rx_act = 1;
  555                         } else {
  556                                 intrs |= STE_IMR_RX_DMADONE;
  557                                 sc->ste_int_rx_act = 0;
  558                         }
  559                 }
  560         }
  561         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
  562                 if ((status & STE_ISR_TX_DMADONE) != 0)
  563                         ste_txeof(sc);
  564                 if ((status & STE_ISR_TX_DONE) != 0)
  565                         ste_txeoc(sc);
  566                 if ((status & STE_ISR_STATS_OFLOW) != 0)
  567                         ste_stats_update(sc);
  568                 if ((status & STE_ISR_HOSTERR) != 0) {
  569                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
  570                         ste_init_locked(sc);
  571                         STE_UNLOCK(sc);
  572                         return;
  573                 }
  574                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
  575                         ste_start_locked(ifp);
  576 done:
  577                 /* Re-enable interrupts */
  578                 CSR_WRITE_2(sc, STE_IMR, intrs);
  579         }
  580         STE_UNLOCK(sc);
  581 }
  582 
  583 /*
  584  * A frame has been uploaded: pass the resulting mbuf chain up to
  585  * the higher level protocols.
  586  */
  587 static void
  588 ste_rxeof(struct ste_softc *sc, int count)
  589 {
  590         struct mbuf *m;
  591         struct ifnet *ifp;
  592         struct ste_chain_onefrag *cur_rx;
  593         uint32_t rxstat;
  594         int total_len, rx_npkts;
  595 
  596         ifp = sc->ste_ifp;
  597 
  598         bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
  599             sc->ste_cdata.ste_rx_list_map,
  600             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
  601 
  602         cur_rx = sc->ste_cdata.ste_rx_head;
  603         for (rx_npkts = 0; rx_npkts < STE_RX_LIST_CNT; rx_npkts++,
  604             cur_rx = cur_rx->ste_next) {
  605                 rxstat = le32toh(cur_rx->ste_ptr->ste_status);
  606                 if ((rxstat & STE_RXSTAT_DMADONE) == 0)
  607                         break;
  608 #ifdef DEVICE_POLLING
  609                 if (ifp->if_capenable & IFCAP_POLLING) {
  610                         if (count == 0)
  611                                 break;
  612                         count--;
  613                 }
  614 #endif
  615                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
  616                         break;
  617                 /*
  618                  * If an error occurs, update stats, clear the
  619                  * status word and leave the mbuf cluster in place:
  620                  * it should simply get re-used next time this descriptor
  621                  * comes up in the ring.
  622                  */
  623                 if (rxstat & STE_RXSTAT_FRAME_ERR) {
  624                         ifp->if_ierrors++;
  625                         cur_rx->ste_ptr->ste_status = 0;
  626                         continue;
  627                 }
  628 
  629                 /* No errors; receive the packet. */
  630                 m = cur_rx->ste_mbuf;
  631                 total_len = STE_RX_BYTES(rxstat);
  632 
  633                 /*
  634                  * Try to conjure up a new mbuf cluster. If that
  635                  * fails, it means we have an out of memory condition and
  636                  * should leave the buffer in place and continue. This will
  637                  * result in a lost packet, but there's little else we
  638                  * can do in this situation.
  639                  */
  640                 if (ste_newbuf(sc, cur_rx) != 0) {
  641                         ifp->if_iqdrops++;
  642                         cur_rx->ste_ptr->ste_status = 0;
  643                         continue;
  644                 }
  645 
  646                 m->m_pkthdr.rcvif = ifp;
  647                 m->m_pkthdr.len = m->m_len = total_len;
  648 
  649                 ifp->if_ipackets++;
  650                 STE_UNLOCK(sc);
  651                 (*ifp->if_input)(ifp, m);
  652                 STE_LOCK(sc);
  653         }
  654 
  655         if (rx_npkts > 0) {
  656                 sc->ste_cdata.ste_rx_head = cur_rx;
  657                 bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
  658                     sc->ste_cdata.ste_rx_list_map,
  659                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
  660         }
  661 }
  662 
  663 static void
  664 ste_txeoc(struct ste_softc *sc)
  665 {
  666         uint16_t txstat;
  667         struct ifnet *ifp;
  668 
  669         STE_LOCK_ASSERT(sc);
  670 
  671         ifp = sc->ste_ifp;
  672 
  673         /*
  674          * STE_TX_STATUS register implements a queue of up to 31
  675          * transmit status byte. Writing an arbitrary value to the
  676          * register will advance the queue to the next transmit
  677          * status byte. This means if driver does not read
  678          * STE_TX_STATUS register after completing sending more
  679          * than 31 frames the controller would be stalled so driver
  680          * should re-wake the Tx MAC. This is the most severe
  681          * limitation of ST201 based controller.
  682          */
  683         for (;;) {
  684                 txstat = CSR_READ_2(sc, STE_TX_STATUS);
  685                 if ((txstat & STE_TXSTATUS_TXDONE) == 0)
  686                         break;
  687                 if ((txstat & (STE_TXSTATUS_UNDERRUN |
  688                     STE_TXSTATUS_EXCESSCOLLS | STE_TXSTATUS_RECLAIMERR |
  689                     STE_TXSTATUS_STATSOFLOW)) != 0) {
  690                         ifp->if_oerrors++;
  691 #ifdef  STE_SHOW_TXERRORS
  692                         device_printf(sc->ste_dev, "TX error : 0x%b\n",
  693                             txstat & 0xFF, STE_ERR_BITS);
  694 #endif
  695                         if ((txstat & STE_TXSTATUS_UNDERRUN) != 0 &&
  696                             sc->ste_tx_thresh < STE_PACKET_SIZE) {
  697                                 sc->ste_tx_thresh += STE_MIN_FRAMELEN;
  698                                 if (sc->ste_tx_thresh > STE_PACKET_SIZE)
  699                                         sc->ste_tx_thresh = STE_PACKET_SIZE;
  700                                 device_printf(sc->ste_dev,
  701                                     "TX underrun, increasing TX"
  702                                     " start threshold to %d bytes\n",
  703                                     sc->ste_tx_thresh);
  704                                 /* Make sure to disable active DMA cycles. */
  705                                 STE_SETBIT4(sc, STE_DMACTL,
  706                                     STE_DMACTL_TXDMA_STALL);
  707                                 ste_wait(sc);
  708                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
  709                                 ste_init_locked(sc);
  710                                 break;
  711                         }
  712                         /* Restart Tx. */
  713                         ste_restart_tx(sc);
  714                 }
  715                 /*
  716                  * Advance to next status and ACK TxComplete
  717                  * interrupt. ST201 data sheet was wrong here, to
  718                  * get next Tx status, we have to write both
  719                  * STE_TX_STATUS and STE_TX_FRAMEID register.
  720                  * Otherwise controller returns the same status
  721                  * as well as not acknowledge Tx completion
  722                  * interrupt.
  723                  */
  724                 CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
  725         }
  726 }
  727 
  728 static void
  729 ste_tick(void *arg)
  730 {
  731         struct ste_softc *sc;
  732         struct mii_data *mii;
  733 
  734         sc = (struct ste_softc *)arg;
  735 
  736         STE_LOCK_ASSERT(sc);
  737 
  738         mii = device_get_softc(sc->ste_miibus);
  739         mii_tick(mii);
  740         /*
  741          * ukphy(4) does not seem to generate CB that reports
  742          * resolved link state so if we know we lost a link,
  743          * explicitly check the link state.
  744          */
  745         if ((sc->ste_flags & STE_FLAG_LINK) == 0)
  746                 ste_miibus_statchg(sc->ste_dev);
  747         /*
  748          * Because we are not generating Tx completion
  749          * interrupt for every frame, reclaim transmitted
  750          * buffers here.
  751          */
  752         ste_txeof(sc);
  753         ste_txeoc(sc);
  754         ste_stats_update(sc);
  755         ste_watchdog(sc);
  756         callout_reset(&sc->ste_callout, hz, ste_tick, sc);
  757 }
  758 
  759 static void
  760 ste_txeof(struct ste_softc *sc)
  761 {
  762         struct ifnet *ifp;
  763         struct ste_chain *cur_tx;
  764         uint32_t txstat;
  765         int idx;
  766 
  767         STE_LOCK_ASSERT(sc);
  768 
  769         ifp = sc->ste_ifp;
  770         idx = sc->ste_cdata.ste_tx_cons;
  771         if (idx == sc->ste_cdata.ste_tx_prod)
  772                 return;
  773 
  774         bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
  775             sc->ste_cdata.ste_tx_list_map,
  776             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
  777 
  778         while (idx != sc->ste_cdata.ste_tx_prod) {
  779                 cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
  780                 txstat = le32toh(cur_tx->ste_ptr->ste_ctl);
  781                 if ((txstat & STE_TXCTL_DMADONE) == 0)
  782                         break;
  783                 bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map,
  784                     BUS_DMASYNC_POSTWRITE);
  785                 bus_dmamap_unload(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map);
  786                 KASSERT(cur_tx->ste_mbuf != NULL,
  787                     ("%s: freeing NULL mbuf!\n", __func__));
  788                 m_freem(cur_tx->ste_mbuf);
  789                 cur_tx->ste_mbuf = NULL;
  790                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
  791                 ifp->if_opackets++;
  792                 sc->ste_cdata.ste_tx_cnt--;
  793                 STE_INC(idx, STE_TX_LIST_CNT);
  794         }
  795 
  796         sc->ste_cdata.ste_tx_cons = idx;
  797         if (sc->ste_cdata.ste_tx_cnt == 0)
  798                 sc->ste_timer = 0;
  799 }
  800 
  801 static void
  802 ste_stats_clear(struct ste_softc *sc)
  803 {
  804 
  805         STE_LOCK_ASSERT(sc);
  806 
  807         /* Rx stats. */
  808         CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO);
  809         CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI);
  810         CSR_READ_2(sc, STE_STAT_RX_FRAMES);
  811         CSR_READ_1(sc, STE_STAT_RX_BCAST);
  812         CSR_READ_1(sc, STE_STAT_RX_MCAST);
  813         CSR_READ_1(sc, STE_STAT_RX_LOST);
  814         /* Tx stats. */
  815         CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO);
  816         CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI);
  817         CSR_READ_2(sc, STE_STAT_TX_FRAMES);
  818         CSR_READ_1(sc, STE_STAT_TX_BCAST);
  819         CSR_READ_1(sc, STE_STAT_TX_MCAST);
  820         CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
  821         CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
  822         CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
  823         CSR_READ_1(sc, STE_STAT_LATE_COLLS);
  824         CSR_READ_1(sc, STE_STAT_TX_DEFER);
  825         CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
  826         CSR_READ_1(sc, STE_STAT_TX_ABORT);
  827 }
  828 
  829 static void
  830 ste_stats_update(struct ste_softc *sc)
  831 {
  832         struct ifnet *ifp;
  833         struct ste_hw_stats *stats;
  834         uint32_t val;
  835 
  836         STE_LOCK_ASSERT(sc);
  837 
  838         ifp = sc->ste_ifp;
  839         stats = &sc->ste_stats;
  840         /* Rx stats. */
  841         val = (uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO) |
  842             ((uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI)) << 16;
  843         val &= 0x000FFFFF;
  844         stats->rx_bytes += val;
  845         stats->rx_frames += CSR_READ_2(sc, STE_STAT_RX_FRAMES);
  846         stats->rx_bcast_frames += CSR_READ_1(sc, STE_STAT_RX_BCAST);
  847         stats->rx_mcast_frames += CSR_READ_1(sc, STE_STAT_RX_MCAST);
  848         stats->rx_lost_frames += CSR_READ_1(sc, STE_STAT_RX_LOST);
  849         /* Tx stats. */
  850         val = (uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO) |
  851             ((uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI)) << 16;
  852         val &= 0x000FFFFF;
  853         stats->tx_bytes += val;
  854         stats->tx_frames += CSR_READ_2(sc, STE_STAT_TX_FRAMES);
  855         stats->tx_bcast_frames += CSR_READ_1(sc, STE_STAT_TX_BCAST);
  856         stats->tx_mcast_frames += CSR_READ_1(sc, STE_STAT_TX_MCAST);
  857         stats->tx_carrsense_errs += CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
  858         val = CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
  859         stats->tx_single_colls += val;
  860         ifp->if_collisions += val;
  861         val = CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
  862         stats->tx_multi_colls += val;
  863         ifp->if_collisions += val;
  864         val += CSR_READ_1(sc, STE_STAT_LATE_COLLS);
  865         stats->tx_late_colls += val;
  866         ifp->if_collisions += val;
  867         stats->tx_frames_defered += CSR_READ_1(sc, STE_STAT_TX_DEFER);
  868         stats->tx_excess_defers += CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
  869         stats->tx_abort += CSR_READ_1(sc, STE_STAT_TX_ABORT);
  870 }
  871 
  872 /*
  873  * Probe for a Sundance ST201 chip. Check the PCI vendor and device
  874  * IDs against our list and return a device name if we find a match.
  875  */
  876 static int
  877 ste_probe(device_t dev)
  878 {
  879         const struct ste_type *t;
  880 
  881         t = ste_devs;
  882 
  883         while (t->ste_name != NULL) {
  884                 if ((pci_get_vendor(dev) == t->ste_vid) &&
  885                     (pci_get_device(dev) == t->ste_did)) {
  886                         device_set_desc(dev, t->ste_name);
  887                         return (BUS_PROBE_DEFAULT);
  888                 }
  889                 t++;
  890         }
  891 
  892         return (ENXIO);
  893 }
  894 
  895 /*
  896  * Attach the interface. Allocate softc structures, do ifmedia
  897  * setup and ethernet/BPF attach.
  898  */
  899 static int
  900 ste_attach(device_t dev)
  901 {
  902         struct ste_softc *sc;
  903         struct ifnet *ifp;
  904         uint16_t eaddr[ETHER_ADDR_LEN / 2];
  905         int error = 0, phy, pmc, prefer_iomap, rid;
  906 
  907         sc = device_get_softc(dev);
  908         sc->ste_dev = dev;
  909 
  910         /*
  911          * Only use one PHY since this chip reports multiple
  912          * Note on the DFE-550 the PHY is at 1 on the DFE-580
  913          * it is at 0 & 1.  It is rev 0x12.
  914          */
  915         if (pci_get_vendor(dev) == DL_VENDORID &&
  916             pci_get_device(dev) == DL_DEVICEID_DL10050 &&
  917             pci_get_revid(dev) == 0x12 )
  918                 sc->ste_flags |= STE_FLAG_ONE_PHY;
  919 
  920         mtx_init(&sc->ste_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
  921             MTX_DEF);
  922         /*
  923          * Map control/status registers.
  924          */
  925         pci_enable_busmaster(dev);
  926 
  927         /*
  928          * Prefer memory space register mapping over IO space but use
  929          * IO space for a device that is known to have issues on memory
  930          * mapping.
  931          */
  932         prefer_iomap = 0;
  933         if (pci_get_device(dev) == ST_DEVICEID_ST201_1)
  934                 prefer_iomap = 1;
  935         else
  936                 resource_int_value(device_get_name(sc->ste_dev),
  937                     device_get_unit(sc->ste_dev), "prefer_iomap",
  938                     &prefer_iomap);
  939         if (prefer_iomap == 0) {
  940                 sc->ste_res_id = PCIR_BAR(1);
  941                 sc->ste_res_type = SYS_RES_MEMORY;
  942                 sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
  943                     &sc->ste_res_id, RF_ACTIVE);
  944         }
  945         if (prefer_iomap || sc->ste_res == NULL) {
  946                 sc->ste_res_id = PCIR_BAR(0);
  947                 sc->ste_res_type = SYS_RES_IOPORT;
  948                 sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
  949                     &sc->ste_res_id, RF_ACTIVE);
  950         }
  951         if (sc->ste_res == NULL) {
  952                 device_printf(dev, "couldn't map ports/memory\n");
  953                 error = ENXIO;
  954                 goto fail;
  955         }
  956 
  957         /* Allocate interrupt */
  958         rid = 0;
  959         sc->ste_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
  960             RF_SHAREABLE | RF_ACTIVE);
  961 
  962         if (sc->ste_irq == NULL) {
  963                 device_printf(dev, "couldn't map interrupt\n");
  964                 error = ENXIO;
  965                 goto fail;
  966         }
  967 
  968         callout_init_mtx(&sc->ste_callout, &sc->ste_mtx, 0);
  969 
  970         /* Reset the adapter. */
  971         ste_reset(sc);
  972 
  973         /*
  974          * Get station address from the EEPROM.
  975          */
  976         if (ste_read_eeprom(sc, eaddr, STE_EEADDR_NODE0, ETHER_ADDR_LEN / 2)) {
  977                 device_printf(dev, "failed to read station address\n");
  978                 error = ENXIO;;
  979                 goto fail;
  980         }
  981         ste_sysctl_node(sc);
  982 
  983         if ((error = ste_dma_alloc(sc)) != 0)
  984                 goto fail;
  985 
  986         ifp = sc->ste_ifp = if_alloc(IFT_ETHER);
  987         if (ifp == NULL) {
  988                 device_printf(dev, "can not if_alloc()\n");
  989                 error = ENOSPC;
  990                 goto fail;
  991         }
  992 
  993         /* Do MII setup. */
  994         phy = MII_PHY_ANY;
  995         if ((sc->ste_flags & STE_FLAG_ONE_PHY) != 0)
  996                 phy = 0;
  997         error = mii_attach(dev, &sc->ste_miibus, ifp, ste_ifmedia_upd,
  998                 ste_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
  999         if (error != 0) {
 1000                 device_printf(dev, "attaching PHYs failed\n");
 1001                 goto fail;
 1002         }
 1003 
 1004         ifp->if_softc = sc;
 1005         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
 1006         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
 1007         ifp->if_ioctl = ste_ioctl;
 1008         ifp->if_start = ste_start;
 1009         ifp->if_init = ste_init;
 1010         IFQ_SET_MAXLEN(&ifp->if_snd, STE_TX_LIST_CNT - 1);
 1011         ifp->if_snd.ifq_drv_maxlen = STE_TX_LIST_CNT - 1;
 1012         IFQ_SET_READY(&ifp->if_snd);
 1013 
 1014         sc->ste_tx_thresh = STE_TXSTART_THRESH;
 1015 
 1016         /*
 1017          * Call MI attach routine.
 1018          */
 1019         ether_ifattach(ifp, (uint8_t *)eaddr);
 1020 
 1021         /*
 1022          * Tell the upper layer(s) we support long frames.
 1023          */
 1024         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
 1025         ifp->if_capabilities |= IFCAP_VLAN_MTU;
 1026         if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0)
 1027                 ifp->if_capabilities |= IFCAP_WOL_MAGIC;
 1028         ifp->if_capenable = ifp->if_capabilities;
 1029 #ifdef DEVICE_POLLING
 1030         ifp->if_capabilities |= IFCAP_POLLING;
 1031 #endif
 1032 
 1033         /* Hook interrupt last to avoid having to lock softc */
 1034         error = bus_setup_intr(dev, sc->ste_irq, INTR_TYPE_NET | INTR_MPSAFE,
 1035             NULL, ste_intr, sc, &sc->ste_intrhand);
 1036 
 1037         if (error) {
 1038                 device_printf(dev, "couldn't set up irq\n");
 1039                 ether_ifdetach(ifp);
 1040                 goto fail;
 1041         }
 1042 
 1043 fail:
 1044         if (error)
 1045                 ste_detach(dev);
 1046 
 1047         return (error);
 1048 }
 1049 
 1050 /*
 1051  * Shutdown hardware and free up resources. This can be called any
 1052  * time after the mutex has been initialized. It is called in both
 1053  * the error case in attach and the normal detach case so it needs
 1054  * to be careful about only freeing resources that have actually been
 1055  * allocated.
 1056  */
 1057 static int
 1058 ste_detach(device_t dev)
 1059 {
 1060         struct ste_softc *sc;
 1061         struct ifnet *ifp;
 1062 
 1063         sc = device_get_softc(dev);
 1064         KASSERT(mtx_initialized(&sc->ste_mtx), ("ste mutex not initialized"));
 1065         ifp = sc->ste_ifp;
 1066 
 1067 #ifdef DEVICE_POLLING
 1068         if (ifp->if_capenable & IFCAP_POLLING)
 1069                 ether_poll_deregister(ifp);
 1070 #endif
 1071 
 1072         /* These should only be active if attach succeeded */
 1073         if (device_is_attached(dev)) {
 1074                 ether_ifdetach(ifp);
 1075                 STE_LOCK(sc);
 1076                 ste_stop(sc);
 1077                 STE_UNLOCK(sc);
 1078                 callout_drain(&sc->ste_callout);
 1079         }
 1080         if (sc->ste_miibus)
 1081                 device_delete_child(dev, sc->ste_miibus);
 1082         bus_generic_detach(dev);
 1083 
 1084         if (sc->ste_intrhand)
 1085                 bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
 1086         if (sc->ste_irq)
 1087                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
 1088         if (sc->ste_res)
 1089                 bus_release_resource(dev, sc->ste_res_type, sc->ste_res_id,
 1090                     sc->ste_res);
 1091 
 1092         if (ifp)
 1093                 if_free(ifp);
 1094 
 1095         ste_dma_free(sc);
 1096         mtx_destroy(&sc->ste_mtx);
 1097 
 1098         return (0);
 1099 }
 1100 
 1101 struct ste_dmamap_arg {
 1102         bus_addr_t      ste_busaddr;
 1103 };
 1104 
 1105 static void
 1106 ste_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
 1107 {
 1108         struct ste_dmamap_arg *ctx;
 1109 
 1110         if (error != 0)
 1111                 return;
 1112 
 1113         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
 1114 
 1115         ctx = (struct ste_dmamap_arg *)arg;
 1116         ctx->ste_busaddr = segs[0].ds_addr;
 1117 }
 1118 
 1119 static int
 1120 ste_dma_alloc(struct ste_softc *sc)
 1121 {
 1122         struct ste_chain *txc;
 1123         struct ste_chain_onefrag *rxc;
 1124         struct ste_dmamap_arg ctx;
 1125         int error, i;
 1126 
 1127         /* Create parent DMA tag. */
 1128         error = bus_dma_tag_create(
 1129             bus_get_dma_tag(sc->ste_dev), /* parent */
 1130             1, 0,                       /* alignment, boundary */
 1131             BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
 1132             BUS_SPACE_MAXADDR,          /* highaddr */
 1133             NULL, NULL,                 /* filter, filterarg */
 1134             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
 1135             0,                          /* nsegments */
 1136             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
 1137             0,                          /* flags */
 1138             NULL, NULL,                 /* lockfunc, lockarg */
 1139             &sc->ste_cdata.ste_parent_tag);
 1140         if (error != 0) {
 1141                 device_printf(sc->ste_dev,
 1142                     "could not create parent DMA tag.\n");
 1143                 goto fail;
 1144         }
 1145 
 1146         /* Create DMA tag for Tx descriptor list. */
 1147         error = bus_dma_tag_create(
 1148             sc->ste_cdata.ste_parent_tag, /* parent */
 1149             STE_DESC_ALIGN, 0,          /* alignment, boundary */
 1150             BUS_SPACE_MAXADDR,          /* lowaddr */
 1151             BUS_SPACE_MAXADDR,          /* highaddr */
 1152             NULL, NULL,                 /* filter, filterarg */
 1153             STE_TX_LIST_SZ,             /* maxsize */
 1154             1,                          /* nsegments */
 1155             STE_TX_LIST_SZ,             /* maxsegsize */
 1156             0,                          /* flags */
 1157             NULL, NULL,                 /* lockfunc, lockarg */
 1158             &sc->ste_cdata.ste_tx_list_tag);
 1159         if (error != 0) {
 1160                 device_printf(sc->ste_dev,
 1161                     "could not create Tx list DMA tag.\n");
 1162                 goto fail;
 1163         }
 1164 
 1165         /* Create DMA tag for Rx descriptor list. */
 1166         error = bus_dma_tag_create(
 1167             sc->ste_cdata.ste_parent_tag, /* parent */
 1168             STE_DESC_ALIGN, 0,          /* alignment, boundary */
 1169             BUS_SPACE_MAXADDR,          /* lowaddr */
 1170             BUS_SPACE_MAXADDR,          /* highaddr */
 1171             NULL, NULL,                 /* filter, filterarg */
 1172             STE_RX_LIST_SZ,             /* maxsize */
 1173             1,                          /* nsegments */
 1174             STE_RX_LIST_SZ,             /* maxsegsize */
 1175             0,                          /* flags */
 1176             NULL, NULL,                 /* lockfunc, lockarg */
 1177             &sc->ste_cdata.ste_rx_list_tag);
 1178         if (error != 0) {
 1179                 device_printf(sc->ste_dev,
 1180                     "could not create Rx list DMA tag.\n");
 1181                 goto fail;
 1182         }
 1183 
 1184         /* Create DMA tag for Tx buffers. */
 1185         error = bus_dma_tag_create(
 1186             sc->ste_cdata.ste_parent_tag, /* parent */
 1187             1, 0,                       /* alignment, boundary */
 1188             BUS_SPACE_MAXADDR,          /* lowaddr */
 1189             BUS_SPACE_MAXADDR,          /* highaddr */
 1190             NULL, NULL,                 /* filter, filterarg */
 1191             MCLBYTES * STE_MAXFRAGS,    /* maxsize */
 1192             STE_MAXFRAGS,               /* nsegments */
 1193             MCLBYTES,                   /* maxsegsize */
 1194             0,                          /* flags */
 1195             NULL, NULL,                 /* lockfunc, lockarg */
 1196             &sc->ste_cdata.ste_tx_tag);
 1197         if (error != 0) {
 1198                 device_printf(sc->ste_dev, "could not create Tx DMA tag.\n");
 1199                 goto fail;
 1200         }
 1201 
 1202         /* Create DMA tag for Rx buffers. */
 1203         error = bus_dma_tag_create(
 1204             sc->ste_cdata.ste_parent_tag, /* parent */
 1205             1, 0,                       /* alignment, boundary */
 1206             BUS_SPACE_MAXADDR,          /* lowaddr */
 1207             BUS_SPACE_MAXADDR,          /* highaddr */
 1208             NULL, NULL,                 /* filter, filterarg */
 1209             MCLBYTES,                   /* maxsize */
 1210             1,                          /* nsegments */
 1211             MCLBYTES,                   /* maxsegsize */
 1212             0,                          /* flags */
 1213             NULL, NULL,                 /* lockfunc, lockarg */
 1214             &sc->ste_cdata.ste_rx_tag);
 1215         if (error != 0) {
 1216                 device_printf(sc->ste_dev, "could not create Rx DMA tag.\n");
 1217                 goto fail;
 1218         }
 1219 
 1220         /* Allocate DMA'able memory and load the DMA map for Tx list. */
 1221         error = bus_dmamem_alloc(sc->ste_cdata.ste_tx_list_tag,
 1222             (void **)&sc->ste_ldata.ste_tx_list,
 1223             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 1224             &sc->ste_cdata.ste_tx_list_map);
 1225         if (error != 0) {
 1226                 device_printf(sc->ste_dev,
 1227                     "could not allocate DMA'able memory for Tx list.\n");
 1228                 goto fail;
 1229         }
 1230         ctx.ste_busaddr = 0;
 1231         error = bus_dmamap_load(sc->ste_cdata.ste_tx_list_tag,
 1232             sc->ste_cdata.ste_tx_list_map, sc->ste_ldata.ste_tx_list,
 1233             STE_TX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
 1234         if (error != 0 || ctx.ste_busaddr == 0) {
 1235                 device_printf(sc->ste_dev,
 1236                     "could not load DMA'able memory for Tx list.\n");
 1237                 goto fail;
 1238         }
 1239         sc->ste_ldata.ste_tx_list_paddr = ctx.ste_busaddr;
 1240 
 1241         /* Allocate DMA'able memory and load the DMA map for Rx list. */
 1242         error = bus_dmamem_alloc(sc->ste_cdata.ste_rx_list_tag,
 1243             (void **)&sc->ste_ldata.ste_rx_list,
 1244             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 1245             &sc->ste_cdata.ste_rx_list_map);
 1246         if (error != 0) {
 1247                 device_printf(sc->ste_dev,
 1248                     "could not allocate DMA'able memory for Rx list.\n");
 1249                 goto fail;
 1250         }
 1251         ctx.ste_busaddr = 0;
 1252         error = bus_dmamap_load(sc->ste_cdata.ste_rx_list_tag,
 1253             sc->ste_cdata.ste_rx_list_map, sc->ste_ldata.ste_rx_list,
 1254             STE_RX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
 1255         if (error != 0 || ctx.ste_busaddr == 0) {
 1256                 device_printf(sc->ste_dev,
 1257                     "could not load DMA'able memory for Rx list.\n");
 1258                 goto fail;
 1259         }
 1260         sc->ste_ldata.ste_rx_list_paddr = ctx.ste_busaddr;
 1261 
 1262         /* Create DMA maps for Tx buffers. */
 1263         for (i = 0; i < STE_TX_LIST_CNT; i++) {
 1264                 txc = &sc->ste_cdata.ste_tx_chain[i];
 1265                 txc->ste_ptr = NULL;
 1266                 txc->ste_mbuf = NULL;
 1267                 txc->ste_next = NULL;
 1268                 txc->ste_phys = 0;
 1269                 txc->ste_map = NULL;
 1270                 error = bus_dmamap_create(sc->ste_cdata.ste_tx_tag, 0,
 1271                     &txc->ste_map);
 1272                 if (error != 0) {
 1273                         device_printf(sc->ste_dev,
 1274                             "could not create Tx dmamap.\n");
 1275                         goto fail;
 1276                 }
 1277         }
 1278         /* Create DMA maps for Rx buffers. */
 1279         if ((error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
 1280             &sc->ste_cdata.ste_rx_sparemap)) != 0) {
 1281                 device_printf(sc->ste_dev,
 1282                     "could not create spare Rx dmamap.\n");
 1283                 goto fail;
 1284         }
 1285         for (i = 0; i < STE_RX_LIST_CNT; i++) {
 1286                 rxc = &sc->ste_cdata.ste_rx_chain[i];
 1287                 rxc->ste_ptr = NULL;
 1288                 rxc->ste_mbuf = NULL;
 1289                 rxc->ste_next = NULL;
 1290                 rxc->ste_map = NULL;
 1291                 error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
 1292                     &rxc->ste_map);
 1293                 if (error != 0) {
 1294                         device_printf(sc->ste_dev,
 1295                             "could not create Rx dmamap.\n");
 1296                         goto fail;
 1297                 }
 1298         }
 1299 
 1300 fail:
 1301         return (error);
 1302 }
 1303 
 1304 static void
 1305 ste_dma_free(struct ste_softc *sc)
 1306 {
 1307         struct ste_chain *txc;
 1308         struct ste_chain_onefrag *rxc;
 1309         int i;
 1310 
 1311         /* Tx buffers. */
 1312         if (sc->ste_cdata.ste_tx_tag != NULL) {
 1313                 for (i = 0; i < STE_TX_LIST_CNT; i++) {
 1314                         txc = &sc->ste_cdata.ste_tx_chain[i];
 1315                         if (txc->ste_map != NULL) {
 1316                                 bus_dmamap_destroy(sc->ste_cdata.ste_tx_tag,
 1317                                     txc->ste_map);
 1318                                 txc->ste_map = NULL;
 1319                         }
 1320                 }
 1321                 bus_dma_tag_destroy(sc->ste_cdata.ste_tx_tag);
 1322                 sc->ste_cdata.ste_tx_tag = NULL;
 1323         }
 1324         /* Rx buffers. */
 1325         if (sc->ste_cdata.ste_rx_tag != NULL) {
 1326                 for (i = 0; i < STE_RX_LIST_CNT; i++) {
 1327                         rxc = &sc->ste_cdata.ste_rx_chain[i];
 1328                         if (rxc->ste_map != NULL) {
 1329                                 bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
 1330                                     rxc->ste_map);
 1331                                 rxc->ste_map = NULL;
 1332                         }
 1333                 }
 1334                 if (sc->ste_cdata.ste_rx_sparemap != NULL) {
 1335                         bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
 1336                             sc->ste_cdata.ste_rx_sparemap);
 1337                         sc->ste_cdata.ste_rx_sparemap = NULL;
 1338                 }
 1339                 bus_dma_tag_destroy(sc->ste_cdata.ste_rx_tag);
 1340                 sc->ste_cdata.ste_rx_tag = NULL;
 1341         }
 1342         /* Tx descriptor list. */
 1343         if (sc->ste_cdata.ste_tx_list_tag != NULL) {
 1344                 if (sc->ste_cdata.ste_tx_list_map != NULL)
 1345                         bus_dmamap_unload(sc->ste_cdata.ste_tx_list_tag,
 1346                             sc->ste_cdata.ste_tx_list_map);
 1347                 if (sc->ste_cdata.ste_tx_list_map != NULL &&
 1348                     sc->ste_ldata.ste_tx_list != NULL)
 1349                         bus_dmamem_free(sc->ste_cdata.ste_tx_list_tag,
 1350                             sc->ste_ldata.ste_tx_list,
 1351                             sc->ste_cdata.ste_tx_list_map);
 1352                 sc->ste_ldata.ste_tx_list = NULL;
 1353                 sc->ste_cdata.ste_tx_list_map = NULL;
 1354                 bus_dma_tag_destroy(sc->ste_cdata.ste_tx_list_tag);
 1355                 sc->ste_cdata.ste_tx_list_tag = NULL;
 1356         }
 1357         /* Rx descriptor list. */
 1358         if (sc->ste_cdata.ste_rx_list_tag != NULL) {
 1359                 if (sc->ste_cdata.ste_rx_list_map != NULL)
 1360                         bus_dmamap_unload(sc->ste_cdata.ste_rx_list_tag,
 1361                             sc->ste_cdata.ste_rx_list_map);
 1362                 if (sc->ste_cdata.ste_rx_list_map != NULL &&
 1363                     sc->ste_ldata.ste_rx_list != NULL)
 1364                         bus_dmamem_free(sc->ste_cdata.ste_rx_list_tag,
 1365                             sc->ste_ldata.ste_rx_list,
 1366                             sc->ste_cdata.ste_rx_list_map);
 1367                 sc->ste_ldata.ste_rx_list = NULL;
 1368                 sc->ste_cdata.ste_rx_list_map = NULL;
 1369                 bus_dma_tag_destroy(sc->ste_cdata.ste_rx_list_tag);
 1370                 sc->ste_cdata.ste_rx_list_tag = NULL;
 1371         }
 1372         if (sc->ste_cdata.ste_parent_tag != NULL) {
 1373                 bus_dma_tag_destroy(sc->ste_cdata.ste_parent_tag);
 1374                 sc->ste_cdata.ste_parent_tag = NULL;
 1375         }
 1376 }
 1377 
 1378 static int
 1379 ste_newbuf(struct ste_softc *sc, struct ste_chain_onefrag *rxc)
 1380 {
 1381         struct mbuf *m;
 1382         bus_dma_segment_t segs[1];
 1383         bus_dmamap_t map;
 1384         int error, nsegs;
 1385 
 1386         m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
 1387         if (m == NULL)
 1388                 return (ENOBUFS);
 1389         m->m_len = m->m_pkthdr.len = MCLBYTES;
 1390         m_adj(m, ETHER_ALIGN);
 1391 
 1392         if ((error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_rx_tag,
 1393             sc->ste_cdata.ste_rx_sparemap, m, segs, &nsegs, 0)) != 0) {
 1394                 m_freem(m);
 1395                 return (error);
 1396         }
 1397         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
 1398 
 1399         if (rxc->ste_mbuf != NULL) {
 1400                 bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
 1401                     BUS_DMASYNC_POSTREAD);
 1402                 bus_dmamap_unload(sc->ste_cdata.ste_rx_tag, rxc->ste_map);
 1403         }
 1404         map = rxc->ste_map;
 1405         rxc->ste_map = sc->ste_cdata.ste_rx_sparemap;
 1406         sc->ste_cdata.ste_rx_sparemap = map;
 1407         bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
 1408             BUS_DMASYNC_PREREAD);
 1409         rxc->ste_mbuf = m;
 1410         rxc->ste_ptr->ste_status = 0;
 1411         rxc->ste_ptr->ste_frag.ste_addr = htole32(segs[0].ds_addr);
 1412         rxc->ste_ptr->ste_frag.ste_len = htole32(segs[0].ds_len |
 1413             STE_FRAG_LAST);
 1414         return (0);
 1415 }
 1416 
 1417 static int
 1418 ste_init_rx_list(struct ste_softc *sc)
 1419 {
 1420         struct ste_chain_data *cd;
 1421         struct ste_list_data *ld;
 1422         int error, i;
 1423 
 1424         sc->ste_int_rx_act = 0;
 1425         cd = &sc->ste_cdata;
 1426         ld = &sc->ste_ldata;
 1427         bzero(ld->ste_rx_list, STE_RX_LIST_SZ);
 1428         for (i = 0; i < STE_RX_LIST_CNT; i++) {
 1429                 cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
 1430                 error = ste_newbuf(sc, &cd->ste_rx_chain[i]);
 1431                 if (error != 0)
 1432                         return (error);
 1433                 if (i == (STE_RX_LIST_CNT - 1)) {
 1434                         cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[0];
 1435                         ld->ste_rx_list[i].ste_next =
 1436                             htole32(ld->ste_rx_list_paddr +
 1437                             (sizeof(struct ste_desc_onefrag) * 0));
 1438                 } else {
 1439                         cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[i + 1];
 1440                         ld->ste_rx_list[i].ste_next =
 1441                             htole32(ld->ste_rx_list_paddr +
 1442                             (sizeof(struct ste_desc_onefrag) * (i + 1)));
 1443                 }
 1444         }
 1445 
 1446         cd->ste_rx_head = &cd->ste_rx_chain[0];
 1447         bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
 1448             sc->ste_cdata.ste_rx_list_map,
 1449             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1450 
 1451         return (0);
 1452 }
 1453 
 1454 static void
 1455 ste_init_tx_list(struct ste_softc *sc)
 1456 {
 1457         struct ste_chain_data *cd;
 1458         struct ste_list_data *ld;
 1459         int i;
 1460 
 1461         cd = &sc->ste_cdata;
 1462         ld = &sc->ste_ldata;
 1463         bzero(ld->ste_tx_list, STE_TX_LIST_SZ);
 1464         for (i = 0; i < STE_TX_LIST_CNT; i++) {
 1465                 cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
 1466                 cd->ste_tx_chain[i].ste_mbuf = NULL;
 1467                 if (i == (STE_TX_LIST_CNT - 1)) {
 1468                         cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[0];
 1469                         cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
 1470                             ld->ste_tx_list_paddr +
 1471                             (sizeof(struct ste_desc) * 0)));
 1472                 } else {
 1473                         cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[i + 1];
 1474                         cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
 1475                             ld->ste_tx_list_paddr +
 1476                             (sizeof(struct ste_desc) * (i + 1))));
 1477                 }
 1478         }
 1479 
 1480         cd->ste_last_tx = NULL;
 1481         cd->ste_tx_prod = 0;
 1482         cd->ste_tx_cons = 0;
 1483         cd->ste_tx_cnt = 0;
 1484 
 1485         bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
 1486             sc->ste_cdata.ste_tx_list_map,
 1487             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1488 }
 1489 
 1490 static void
 1491 ste_init(void *xsc)
 1492 {
 1493         struct ste_softc *sc;
 1494 
 1495         sc = xsc;
 1496         STE_LOCK(sc);
 1497         ste_init_locked(sc);
 1498         STE_UNLOCK(sc);
 1499 }
 1500 
 1501 static void
 1502 ste_init_locked(struct ste_softc *sc)
 1503 {
 1504         struct ifnet *ifp;
 1505         struct mii_data *mii;
 1506         uint8_t val;
 1507         int i;
 1508 
 1509         STE_LOCK_ASSERT(sc);
 1510         ifp = sc->ste_ifp;
 1511         mii = device_get_softc(sc->ste_miibus);
 1512 
 1513         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 1514                 return;
 1515 
 1516         ste_stop(sc);
 1517         /* Reset the chip to a known state. */
 1518         ste_reset(sc);
 1519 
 1520         /* Init our MAC address */
 1521         for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
 1522                 CSR_WRITE_2(sc, STE_PAR0 + i,
 1523                     ((IF_LLADDR(sc->ste_ifp)[i] & 0xff) |
 1524                      IF_LLADDR(sc->ste_ifp)[i + 1] << 8));
 1525         }
 1526 
 1527         /* Init RX list */
 1528         if (ste_init_rx_list(sc) != 0) {
 1529                 device_printf(sc->ste_dev,
 1530                     "initialization failed: no memory for RX buffers\n");
 1531                 ste_stop(sc);
 1532                 return;
 1533         }
 1534 
 1535         /* Set RX polling interval */
 1536         CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 64);
 1537 
 1538         /* Init TX descriptors */
 1539         ste_init_tx_list(sc);
 1540 
 1541         /* Clear and disable WOL. */
 1542         val = CSR_READ_1(sc, STE_WAKE_EVENT);
 1543         val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
 1544             STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
 1545         CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
 1546 
 1547         /* Set the TX freethresh value */
 1548         CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
 1549 
 1550         /* Set the TX start threshold for best performance. */
 1551         CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
 1552 
 1553         /* Set the TX reclaim threshold. */
 1554         CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
 1555 
 1556         /* Accept VLAN length packets */
 1557         CSR_WRITE_2(sc, STE_MAX_FRAMELEN, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN);
 1558 
 1559         /* Set up the RX filter. */
 1560         ste_rxfilter(sc);
 1561 
 1562         /* Load the address of the RX list. */
 1563         STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
 1564         ste_wait(sc);
 1565         CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
 1566             STE_ADDR_LO(sc->ste_ldata.ste_rx_list_paddr));
 1567         STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
 1568         STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
 1569 
 1570         /* Set TX polling interval(defer until we TX first packet). */
 1571         CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
 1572 
 1573         /* Load address of the TX list */
 1574         STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
 1575         ste_wait(sc);
 1576         CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
 1577         STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
 1578         STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
 1579         ste_wait(sc);
 1580         /* Select 3.2us timer. */
 1581         STE_CLRBIT4(sc, STE_DMACTL, STE_DMACTL_COUNTDOWN_SPEED |
 1582             STE_DMACTL_COUNTDOWN_MODE);
 1583 
 1584         /* Enable receiver and transmitter */
 1585         CSR_WRITE_2(sc, STE_MACCTL0, 0);
 1586         CSR_WRITE_2(sc, STE_MACCTL1, 0);
 1587         STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
 1588         STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
 1589 
 1590         /* Enable stats counters. */
 1591         STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
 1592         /* Clear stats counters. */
 1593         ste_stats_clear(sc);
 1594 
 1595         CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
 1596         CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
 1597 #ifdef DEVICE_POLLING
 1598         /* Disable interrupts if we are polling. */
 1599         if (ifp->if_capenable & IFCAP_POLLING)
 1600                 CSR_WRITE_2(sc, STE_IMR, 0);
 1601         else
 1602 #endif
 1603         /* Enable interrupts. */
 1604         CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
 1605 
 1606         sc->ste_flags &= ~STE_FLAG_LINK;
 1607         /* Switch to the current media. */
 1608         mii_mediachg(mii);
 1609 
 1610         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 1611         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 1612 
 1613         callout_reset(&sc->ste_callout, hz, ste_tick, sc);
 1614 }
 1615 
 1616 static void
 1617 ste_stop(struct ste_softc *sc)
 1618 {
 1619         struct ifnet *ifp;
 1620         struct ste_chain_onefrag *cur_rx;
 1621         struct ste_chain *cur_tx;
 1622         uint32_t val;
 1623         int i;
 1624 
 1625         STE_LOCK_ASSERT(sc);
 1626         ifp = sc->ste_ifp;
 1627 
 1628         callout_stop(&sc->ste_callout);
 1629         sc->ste_timer = 0;
 1630         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
 1631 
 1632         CSR_WRITE_2(sc, STE_IMR, 0);
 1633         CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
 1634         /* Stop pending DMA. */
 1635         val = CSR_READ_4(sc, STE_DMACTL);
 1636         val |= STE_DMACTL_TXDMA_STALL | STE_DMACTL_RXDMA_STALL;
 1637         CSR_WRITE_4(sc, STE_DMACTL, val);
 1638         ste_wait(sc);
 1639         /* Disable auto-polling. */
 1640         CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 0);
 1641         CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
 1642         /* Nullify DMA address to stop any further DMA. */
 1643         CSR_WRITE_4(sc, STE_RX_DMALIST_PTR, 0);
 1644         CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
 1645         /* Stop TX/RX MAC. */
 1646         val = CSR_READ_2(sc, STE_MACCTL1);
 1647         val |= STE_MACCTL1_TX_DISABLE | STE_MACCTL1_RX_DISABLE |
 1648             STE_MACCTL1_STATS_DISABLE;
 1649         CSR_WRITE_2(sc, STE_MACCTL1, val);
 1650         for (i = 0; i < STE_TIMEOUT; i++) {
 1651                 DELAY(10);
 1652                 if ((CSR_READ_2(sc, STE_MACCTL1) & (STE_MACCTL1_TX_DISABLE |
 1653                     STE_MACCTL1_RX_DISABLE | STE_MACCTL1_STATS_DISABLE)) == 0)
 1654                         break;
 1655         }
 1656         if (i == STE_TIMEOUT)
 1657                 device_printf(sc->ste_dev, "Stopping MAC timed out\n");
 1658         /* Acknowledge any pending interrupts. */
 1659         CSR_READ_2(sc, STE_ISR_ACK);
 1660         ste_stats_update(sc);
 1661 
 1662         for (i = 0; i < STE_RX_LIST_CNT; i++) {
 1663                 cur_rx = &sc->ste_cdata.ste_rx_chain[i];
 1664                 if (cur_rx->ste_mbuf != NULL) {
 1665                         bus_dmamap_sync(sc->ste_cdata.ste_rx_tag,
 1666                             cur_rx->ste_map, BUS_DMASYNC_POSTREAD);
 1667                         bus_dmamap_unload(sc->ste_cdata.ste_rx_tag,
 1668                             cur_rx->ste_map);
 1669                         m_freem(cur_rx->ste_mbuf);
 1670                         cur_rx->ste_mbuf = NULL;
 1671                 }
 1672         }
 1673 
 1674         for (i = 0; i < STE_TX_LIST_CNT; i++) {
 1675                 cur_tx = &sc->ste_cdata.ste_tx_chain[i];
 1676                 if (cur_tx->ste_mbuf != NULL) {
 1677                         bus_dmamap_sync(sc->ste_cdata.ste_tx_tag,
 1678                             cur_tx->ste_map, BUS_DMASYNC_POSTWRITE);
 1679                         bus_dmamap_unload(sc->ste_cdata.ste_tx_tag,
 1680                             cur_tx->ste_map);
 1681                         m_freem(cur_tx->ste_mbuf);
 1682                         cur_tx->ste_mbuf = NULL;
 1683                 }
 1684         }
 1685 }
 1686 
 1687 static void
 1688 ste_reset(struct ste_softc *sc)
 1689 {
 1690         uint32_t ctl;
 1691         int i;
 1692 
 1693         ctl = CSR_READ_4(sc, STE_ASICCTL);
 1694         ctl |= STE_ASICCTL_GLOBAL_RESET | STE_ASICCTL_RX_RESET |
 1695             STE_ASICCTL_TX_RESET | STE_ASICCTL_DMA_RESET |
 1696             STE_ASICCTL_FIFO_RESET | STE_ASICCTL_NETWORK_RESET |
 1697             STE_ASICCTL_AUTOINIT_RESET |STE_ASICCTL_HOST_RESET |
 1698             STE_ASICCTL_EXTRESET_RESET;
 1699         CSR_WRITE_4(sc, STE_ASICCTL, ctl);
 1700         CSR_READ_4(sc, STE_ASICCTL);
 1701         /*
 1702          * Due to the need of accessing EEPROM controller can take
 1703          * up to 1ms to complete the global reset.
 1704          */
 1705         DELAY(1000);
 1706 
 1707         for (i = 0; i < STE_TIMEOUT; i++) {
 1708                 if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
 1709                         break;
 1710                 DELAY(10);
 1711         }
 1712 
 1713         if (i == STE_TIMEOUT)
 1714                 device_printf(sc->ste_dev, "global reset never completed\n");
 1715 }
 1716 
 1717 static void
 1718 ste_restart_tx(struct ste_softc *sc)
 1719 {
 1720         uint16_t mac;
 1721         int i;
 1722 
 1723         for (i = 0; i < STE_TIMEOUT; i++) {
 1724                 mac = CSR_READ_2(sc, STE_MACCTL1);
 1725                 mac |= STE_MACCTL1_TX_ENABLE;
 1726                 CSR_WRITE_2(sc, STE_MACCTL1, mac);
 1727                 mac = CSR_READ_2(sc, STE_MACCTL1);
 1728                 if ((mac & STE_MACCTL1_TX_ENABLED) != 0)
 1729                         break;
 1730                 DELAY(10);
 1731         }
 1732 
 1733         if (i == STE_TIMEOUT)
 1734                 device_printf(sc->ste_dev, "starting Tx failed");
 1735 }
 1736 
 1737 static int
 1738 ste_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
 1739 {
 1740         struct ste_softc *sc;
 1741         struct ifreq *ifr;
 1742         struct mii_data *mii;
 1743         int error = 0, mask;
 1744 
 1745         sc = ifp->if_softc;
 1746         ifr = (struct ifreq *)data;
 1747 
 1748         switch (command) {
 1749         case SIOCSIFFLAGS:
 1750                 STE_LOCK(sc);
 1751                 if ((ifp->if_flags & IFF_UP) != 0) {
 1752                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
 1753                             ((ifp->if_flags ^ sc->ste_if_flags) &
 1754                              (IFF_PROMISC | IFF_ALLMULTI)) != 0)
 1755                                 ste_rxfilter(sc);
 1756                         else
 1757                                 ste_init_locked(sc);
 1758                 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 1759                         ste_stop(sc);
 1760                 sc->ste_if_flags = ifp->if_flags;
 1761                 STE_UNLOCK(sc);
 1762                 break;
 1763         case SIOCADDMULTI:
 1764         case SIOCDELMULTI:
 1765                 STE_LOCK(sc);
 1766                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 1767                         ste_rxfilter(sc);
 1768                 STE_UNLOCK(sc);
 1769                 break;
 1770         case SIOCGIFMEDIA:
 1771         case SIOCSIFMEDIA:
 1772                 mii = device_get_softc(sc->ste_miibus);
 1773                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
 1774                 break;
 1775         case SIOCSIFCAP:
 1776                 STE_LOCK(sc);
 1777                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
 1778 #ifdef DEVICE_POLLING
 1779                 if ((mask & IFCAP_POLLING) != 0 &&
 1780                     (IFCAP_POLLING & ifp->if_capabilities) != 0) {
 1781                         ifp->if_capenable ^= IFCAP_POLLING;
 1782                         if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
 1783                                 error = ether_poll_register(ste_poll, ifp);
 1784                                 if (error != 0) {
 1785                                         STE_UNLOCK(sc);
 1786                                         break;
 1787                                 }
 1788                                 /* Disable interrupts. */
 1789                                 CSR_WRITE_2(sc, STE_IMR, 0);
 1790                         } else {
 1791                                 error = ether_poll_deregister(ifp);
 1792                                 /* Enable interrupts. */
 1793                                 CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
 1794                         }
 1795                 }
 1796 #endif /* DEVICE_POLLING */
 1797                 if ((mask & IFCAP_WOL_MAGIC) != 0 &&
 1798                     (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
 1799                         ifp->if_capenable ^= IFCAP_WOL_MAGIC;
 1800                 STE_UNLOCK(sc);
 1801                 break;
 1802         default:
 1803                 error = ether_ioctl(ifp, command, data);
 1804                 break;
 1805         }
 1806 
 1807         return (error);
 1808 }
 1809 
 1810 static int
 1811 ste_encap(struct ste_softc *sc, struct mbuf **m_head, struct ste_chain *txc)
 1812 {
 1813         struct ste_frag *frag;
 1814         struct mbuf *m;
 1815         struct ste_desc *desc;
 1816         bus_dma_segment_t txsegs[STE_MAXFRAGS];
 1817         int error, i, nsegs;
 1818 
 1819         STE_LOCK_ASSERT(sc);
 1820         M_ASSERTPKTHDR((*m_head));
 1821 
 1822         error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
 1823             txc->ste_map, *m_head, txsegs, &nsegs, 0);
 1824         if (error == EFBIG) {
 1825                 m = m_collapse(*m_head, M_DONTWAIT, STE_MAXFRAGS);
 1826                 if (m == NULL) {
 1827                         m_freem(*m_head);
 1828                         *m_head = NULL;
 1829                         return (ENOMEM);
 1830                 }
 1831                 *m_head = m;
 1832                 error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
 1833                     txc->ste_map, *m_head, txsegs, &nsegs, 0);
 1834                 if (error != 0) {
 1835                         m_freem(*m_head);
 1836                         *m_head = NULL;
 1837                         return (error);
 1838                 }
 1839         } else if (error != 0)
 1840                 return (error);
 1841         if (nsegs == 0) {
 1842                 m_freem(*m_head);
 1843                 *m_head = NULL;
 1844                 return (EIO);
 1845         }
 1846         bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, txc->ste_map,
 1847             BUS_DMASYNC_PREWRITE);
 1848 
 1849         desc = txc->ste_ptr;
 1850         for (i = 0; i < nsegs; i++) {
 1851                 frag = &desc->ste_frags[i];
 1852                 frag->ste_addr = htole32(STE_ADDR_LO(txsegs[i].ds_addr));
 1853                 frag->ste_len = htole32(txsegs[i].ds_len);
 1854         }
 1855         desc->ste_frags[i - 1].ste_len |= htole32(STE_FRAG_LAST);
 1856         /*
 1857          * Because we use Tx polling we can't chain multiple
 1858          * Tx descriptors here. Otherwise we race with controller.
 1859          */
 1860         desc->ste_next = 0;
 1861         if ((sc->ste_cdata.ste_tx_prod % STE_TX_INTR_FRAMES) == 0)
 1862                 desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS |
 1863                     STE_TXCTL_DMAINTR);
 1864         else
 1865                 desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS);
 1866         txc->ste_mbuf = *m_head;
 1867         STE_INC(sc->ste_cdata.ste_tx_prod, STE_TX_LIST_CNT);
 1868         sc->ste_cdata.ste_tx_cnt++;
 1869 
 1870         return (0);
 1871 }
 1872 
 1873 static void
 1874 ste_start(struct ifnet *ifp)
 1875 {
 1876         struct ste_softc *sc;
 1877 
 1878         sc = ifp->if_softc;
 1879         STE_LOCK(sc);
 1880         ste_start_locked(ifp);
 1881         STE_UNLOCK(sc);
 1882 }
 1883 
 1884 static void
 1885 ste_start_locked(struct ifnet *ifp)
 1886 {
 1887         struct ste_softc *sc;
 1888         struct ste_chain *cur_tx;
 1889         struct mbuf *m_head = NULL;
 1890         int enq;
 1891 
 1892         sc = ifp->if_softc;
 1893         STE_LOCK_ASSERT(sc);
 1894 
 1895         if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
 1896             IFF_DRV_RUNNING || (sc->ste_flags & STE_FLAG_LINK) == 0)
 1897                 return;
 1898 
 1899         for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
 1900                 if (sc->ste_cdata.ste_tx_cnt == STE_TX_LIST_CNT - 1) {
 1901                         /*
 1902                          * Controller may have cached copy of the last used
 1903                          * next ptr so we have to reserve one TFD to avoid
 1904                          * TFD overruns.
 1905                          */
 1906                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 1907                         break;
 1908                 }
 1909                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
 1910                 if (m_head == NULL)
 1911                         break;
 1912                 cur_tx = &sc->ste_cdata.ste_tx_chain[sc->ste_cdata.ste_tx_prod];
 1913                 if (ste_encap(sc, &m_head, cur_tx) != 0) {
 1914                         if (m_head == NULL)
 1915                                 break;
 1916                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
 1917                         break;
 1918                 }
 1919                 if (sc->ste_cdata.ste_last_tx == NULL) {
 1920                         bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
 1921                             sc->ste_cdata.ste_tx_list_map,
 1922                             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1923                         STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
 1924                         ste_wait(sc);
 1925                         CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
 1926                             STE_ADDR_LO(sc->ste_ldata.ste_tx_list_paddr));
 1927                         CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
 1928                         STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
 1929                         ste_wait(sc);
 1930                 } else {
 1931                         sc->ste_cdata.ste_last_tx->ste_ptr->ste_next =
 1932                             sc->ste_cdata.ste_last_tx->ste_phys;
 1933                         bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
 1934                             sc->ste_cdata.ste_tx_list_map,
 1935                             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1936                 }
 1937                 sc->ste_cdata.ste_last_tx = cur_tx;
 1938 
 1939                 enq++;
 1940                 /*
 1941                  * If there's a BPF listener, bounce a copy of this frame
 1942                  * to him.
 1943                  */
 1944                 BPF_MTAP(ifp, m_head);
 1945         }
 1946 
 1947         if (enq > 0)
 1948                 sc->ste_timer = STE_TX_TIMEOUT;
 1949 }
 1950 
 1951 static void
 1952 ste_watchdog(struct ste_softc *sc)
 1953 {
 1954         struct ifnet *ifp;
 1955 
 1956         ifp = sc->ste_ifp;
 1957         STE_LOCK_ASSERT(sc);
 1958 
 1959         if (sc->ste_timer == 0 || --sc->ste_timer)
 1960                 return;
 1961 
 1962         ifp->if_oerrors++;
 1963         if_printf(ifp, "watchdog timeout\n");
 1964 
 1965         ste_txeof(sc);
 1966         ste_txeoc(sc);
 1967         ste_rxeof(sc, -1);
 1968         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1969         ste_init_locked(sc);
 1970 
 1971         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 1972                 ste_start_locked(ifp);
 1973 }
 1974 
 1975 static int
 1976 ste_shutdown(device_t dev)
 1977 {
 1978 
 1979         return (ste_suspend(dev));
 1980 }
 1981 
 1982 static int
 1983 ste_suspend(device_t dev)
 1984 {
 1985         struct ste_softc *sc;
 1986 
 1987         sc = device_get_softc(dev);
 1988 
 1989         STE_LOCK(sc);
 1990         ste_stop(sc);
 1991         ste_setwol(sc);
 1992         STE_UNLOCK(sc);
 1993 
 1994         return (0);
 1995 }
 1996 
 1997 static int
 1998 ste_resume(device_t dev)
 1999 {
 2000         struct ste_softc *sc;
 2001         struct ifnet *ifp;
 2002         int pmc;
 2003         uint16_t pmstat;
 2004 
 2005         sc = device_get_softc(dev);
 2006         STE_LOCK(sc);
 2007         if (pci_find_extcap(sc->ste_dev, PCIY_PMG, &pmc) == 0) {
 2008                 /* Disable PME and clear PME status. */
 2009                 pmstat = pci_read_config(sc->ste_dev,
 2010                     pmc + PCIR_POWER_STATUS, 2);
 2011                 if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
 2012                         pmstat &= ~PCIM_PSTAT_PMEENABLE;
 2013                         pci_write_config(sc->ste_dev,
 2014                             pmc + PCIR_POWER_STATUS, pmstat, 2);
 2015                 }
 2016         }
 2017         ifp = sc->ste_ifp;
 2018         if ((ifp->if_flags & IFF_UP) != 0) {
 2019                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 2020                 ste_init_locked(sc);
 2021         }
 2022         STE_UNLOCK(sc);
 2023 
 2024         return (0);
 2025 }
 2026 
 2027 #define STE_SYSCTL_STAT_ADD32(c, h, n, p, d)    \
 2028             SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
 2029 #define STE_SYSCTL_STAT_ADD64(c, h, n, p, d)    \
 2030             SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
 2031 
 2032 static void
 2033 ste_sysctl_node(struct ste_softc *sc)
 2034 {
 2035         struct sysctl_ctx_list *ctx;
 2036         struct sysctl_oid_list *child, *parent;
 2037         struct sysctl_oid *tree;
 2038         struct ste_hw_stats *stats;
 2039 
 2040         stats = &sc->ste_stats;
 2041         ctx = device_get_sysctl_ctx(sc->ste_dev);
 2042         child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ste_dev));
 2043 
 2044         SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_rx_mod",
 2045             CTLFLAG_RW, &sc->ste_int_rx_mod, 0, "ste RX interrupt moderation");
 2046         /* Pull in device tunables. */
 2047         sc->ste_int_rx_mod = STE_IM_RX_TIMER_DEFAULT;
 2048         resource_int_value(device_get_name(sc->ste_dev),
 2049             device_get_unit(sc->ste_dev), "int_rx_mod", &sc->ste_int_rx_mod);
 2050 
 2051         tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
 2052             NULL, "STE statistics");
 2053         parent = SYSCTL_CHILDREN(tree);
 2054 
 2055         /* Rx statistics. */
 2056         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
 2057             NULL, "Rx MAC statistics");
 2058         child = SYSCTL_CHILDREN(tree);
 2059         STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
 2060             &stats->rx_bytes, "Good octets");
 2061         STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
 2062             &stats->rx_frames, "Good frames");
 2063         STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
 2064             &stats->rx_bcast_frames, "Good broadcast frames");
 2065         STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
 2066             &stats->rx_mcast_frames, "Good multicast frames");
 2067         STE_SYSCTL_STAT_ADD32(ctx, child, "lost_frames",
 2068             &stats->rx_lost_frames, "Lost frames");
 2069 
 2070         /* Tx statistics. */
 2071         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
 2072             NULL, "Tx MAC statistics");
 2073         child = SYSCTL_CHILDREN(tree);
 2074         STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
 2075             &stats->tx_bytes, "Good octets");
 2076         STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
 2077             &stats->tx_frames, "Good frames");
 2078         STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
 2079             &stats->tx_bcast_frames, "Good broadcast frames");
 2080         STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
 2081             &stats->tx_mcast_frames, "Good multicast frames");
 2082         STE_SYSCTL_STAT_ADD32(ctx, child, "carrier_errs",
 2083             &stats->tx_carrsense_errs, "Carrier sense errors");
 2084         STE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
 2085             &stats->tx_single_colls, "Single collisions");
 2086         STE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
 2087             &stats->tx_multi_colls, "Multiple collisions");
 2088         STE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
 2089             &stats->tx_late_colls, "Late collisions");
 2090         STE_SYSCTL_STAT_ADD32(ctx, child, "defers",
 2091             &stats->tx_frames_defered, "Frames with deferrals");
 2092         STE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
 2093             &stats->tx_excess_defers, "Frames with excessive derferrals");
 2094         STE_SYSCTL_STAT_ADD32(ctx, child, "abort",
 2095             &stats->tx_abort, "Aborted frames due to Excessive collisions");
 2096 }
 2097 
 2098 #undef STE_SYSCTL_STAT_ADD32
 2099 #undef STE_SYSCTL_STAT_ADD64
 2100 
 2101 static void
 2102 ste_setwol(struct ste_softc *sc)
 2103 {
 2104         struct ifnet *ifp;
 2105         uint16_t pmstat;
 2106         uint8_t val;
 2107         int pmc;
 2108 
 2109         STE_LOCK_ASSERT(sc);
 2110 
 2111         if (pci_find_extcap(sc->ste_dev, PCIY_PMG, &pmc) != 0) {
 2112                 /* Disable WOL. */
 2113                 CSR_READ_1(sc, STE_WAKE_EVENT);
 2114                 CSR_WRITE_1(sc, STE_WAKE_EVENT, 0);
 2115                 return;
 2116         }
 2117 
 2118         ifp = sc->ste_ifp;
 2119         val = CSR_READ_1(sc, STE_WAKE_EVENT);
 2120         val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
 2121             STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
 2122         if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
 2123                 val |= STE_WAKEEVENT_MAGICPKT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB;
 2124         CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
 2125         /* Request PME. */
 2126         pmstat = pci_read_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, 2);
 2127         pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
 2128         if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
 2129                 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
 2130         pci_write_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
 2131 }

Cache object: e2b8e8fed62add882eb246b74a13dac7


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.