The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/ste/if_ste.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1997, 1998, 1999
    3  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. All advertising materials mentioning features or use of this software
   14  *    must display the following acknowledgement:
   15  *      This product includes software developed by Bill Paul.
   16  * 4. Neither the name of the author nor the names of any co-contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   30  * THE POSSIBILITY OF SUCH DAMAGE.
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD: releng/8.0/sys/dev/ste/if_ste.c 195049 2009-06-26 11:45:06Z rwatson $");
   35 
   36 #ifdef HAVE_KERNEL_OPTION_HEADERS
   37 #include "opt_device_polling.h"
   38 #endif
   39 
   40 #include <sys/param.h>
   41 #include <sys/systm.h>
   42 #include <sys/sockio.h>
   43 #include <sys/mbuf.h>
   44 #include <sys/malloc.h>
   45 #include <sys/kernel.h>
   46 #include <sys/module.h>
   47 #include <sys/socket.h>
   48 #include <sys/sysctl.h>
   49 
   50 #include <net/if.h>
   51 #include <net/if_arp.h>
   52 #include <net/ethernet.h>
   53 #include <net/if_dl.h>
   54 #include <net/if_media.h>
   55 #include <net/if_types.h>
   56 #include <net/if_vlan_var.h>
   57 
   58 #include <net/bpf.h>
   59 
   60 #include <vm/vm.h>              /* for vtophys */
   61 #include <vm/pmap.h>            /* for vtophys */
   62 #include <machine/bus.h>
   63 #include <machine/resource.h>
   64 #include <sys/bus.h>
   65 #include <sys/rman.h>
   66 
   67 #include <dev/mii/mii.h>
   68 #include <dev/mii/miivar.h>
   69 
   70 #include <dev/pci/pcireg.h>
   71 #include <dev/pci/pcivar.h>
   72 
   73 /* "device miibus" required.  See GENERIC if you get errors here. */
   74 #include "miibus_if.h"
   75 
   76 #define STE_USEIOSPACE
   77 
   78 #include <dev/ste/if_stereg.h>
   79 
   80 MODULE_DEPEND(ste, pci, 1, 1, 1);
   81 MODULE_DEPEND(ste, ether, 1, 1, 1);
   82 MODULE_DEPEND(ste, miibus, 1, 1, 1);
   83 
   84 /*
   85  * Various supported device vendors/types and their names.
   86  */
   87 static struct ste_type ste_devs[] = {
   88         { ST_VENDORID, ST_DEVICEID_ST201_1, "Sundance ST201 10/100BaseTX" },
   89         { ST_VENDORID, ST_DEVICEID_ST201_2, "Sundance ST201 10/100BaseTX" },
   90         { DL_VENDORID, DL_DEVICEID_DL10050, "D-Link DL10050 10/100BaseTX" },
   91         { 0, 0, NULL }
   92 };
   93 
   94 static int ste_probe(device_t);
   95 static int ste_attach(device_t);
   96 static int ste_detach(device_t);
   97 static void ste_init(void *);
   98 static void ste_init_locked(struct ste_softc *);
   99 static void ste_intr(void *);
  100 static void ste_rxeoc(struct ste_softc *);
  101 static int ste_rxeof(struct ste_softc *);
  102 static void ste_txeoc(struct ste_softc *);
  103 static void ste_txeof(struct ste_softc *);
  104 static void ste_stats_update(void *);
  105 static void ste_stop(struct ste_softc *);
  106 static void ste_reset(struct ste_softc *);
  107 static int ste_ioctl(struct ifnet *, u_long, caddr_t);
  108 static int ste_encap(struct ste_softc *, struct ste_chain *, struct mbuf *);
  109 static void ste_start(struct ifnet *);
  110 static void ste_start_locked(struct ifnet *);
  111 static void ste_watchdog(struct ifnet *);
  112 static int ste_shutdown(device_t);
  113 static int ste_newbuf(struct ste_softc *, struct ste_chain_onefrag *,
  114                 struct mbuf *);
  115 static int ste_ifmedia_upd(struct ifnet *);
  116 static void ste_ifmedia_upd_locked(struct ifnet *);
  117 static void ste_ifmedia_sts(struct ifnet *, struct ifmediareq *);
  118 
  119 static void ste_mii_sync(struct ste_softc *);
  120 static void ste_mii_send(struct ste_softc *, u_int32_t, int);
  121 static int ste_mii_readreg(struct ste_softc *, struct ste_mii_frame *);
  122 static int ste_mii_writereg(struct ste_softc *, struct ste_mii_frame *);
  123 static int ste_miibus_readreg(device_t, int, int);
  124 static int ste_miibus_writereg(device_t, int, int, int);
  125 static void ste_miibus_statchg(device_t);
  126 
  127 static int ste_eeprom_wait(struct ste_softc *);
  128 static int ste_read_eeprom(struct ste_softc *, caddr_t, int, int, int);
  129 static void ste_wait(struct ste_softc *);
  130 static void ste_setmulti(struct ste_softc *);
  131 static int ste_init_rx_list(struct ste_softc *);
  132 static void ste_init_tx_list(struct ste_softc *);
  133 
  134 #ifdef STE_USEIOSPACE
  135 #define STE_RES                 SYS_RES_IOPORT
  136 #define STE_RID                 STE_PCI_LOIO
  137 #else
  138 #define STE_RES                 SYS_RES_MEMORY
  139 #define STE_RID                 STE_PCI_LOMEM
  140 #endif
  141 
  142 static device_method_t ste_methods[] = {
  143         /* Device interface */
  144         DEVMETHOD(device_probe,         ste_probe),
  145         DEVMETHOD(device_attach,        ste_attach),
  146         DEVMETHOD(device_detach,        ste_detach),
  147         DEVMETHOD(device_shutdown,      ste_shutdown),
  148 
  149         /* bus interface */
  150         DEVMETHOD(bus_print_child,      bus_generic_print_child),
  151         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
  152 
  153         /* MII interface */
  154         DEVMETHOD(miibus_readreg,       ste_miibus_readreg),
  155         DEVMETHOD(miibus_writereg,      ste_miibus_writereg),
  156         DEVMETHOD(miibus_statchg,       ste_miibus_statchg),
  157 
  158         { 0, 0 }
  159 };
  160 
  161 static driver_t ste_driver = {
  162         "ste",
  163         ste_methods,
  164         sizeof(struct ste_softc)
  165 };
  166 
  167 static devclass_t ste_devclass;
  168 
  169 DRIVER_MODULE(ste, pci, ste_driver, ste_devclass, 0, 0);
  170 DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, 0, 0);
  171 
  172 SYSCTL_NODE(_hw, OID_AUTO, ste, CTLFLAG_RD, 0, "if_ste parameters");
  173 
  174 static int ste_rxsyncs;
  175 SYSCTL_INT(_hw_ste, OID_AUTO, rxsyncs, CTLFLAG_RW, &ste_rxsyncs, 0, "");
  176 
  177 #define STE_SETBIT4(sc, reg, x)                         \
  178         CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
  179 
  180 #define STE_CLRBIT4(sc, reg, x)                         \
  181         CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
  182 
  183 #define STE_SETBIT2(sc, reg, x)                         \
  184         CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | (x))
  185 
  186 #define STE_CLRBIT2(sc, reg, x)                         \
  187         CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~(x))
  188 
  189 #define STE_SETBIT1(sc, reg, x)                         \
  190         CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | (x))
  191 
  192 #define STE_CLRBIT1(sc, reg, x)                         \
  193         CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~(x))
  194 
  195 
  196 #define MII_SET(x)              STE_SETBIT1(sc, STE_PHYCTL, x)
  197 #define MII_CLR(x)              STE_CLRBIT1(sc, STE_PHYCTL, x) 
  198 
  199 /*
  200  * Sync the PHYs by setting data bit and strobing the clock 32 times.
  201  */
  202 static void
  203 ste_mii_sync(sc)
  204         struct ste_softc                *sc;
  205 {
  206         register int            i;
  207 
  208         MII_SET(STE_PHYCTL_MDIR|STE_PHYCTL_MDATA);
  209 
  210         for (i = 0; i < 32; i++) {
  211                 MII_SET(STE_PHYCTL_MCLK);
  212                 DELAY(1);
  213                 MII_CLR(STE_PHYCTL_MCLK);
  214                 DELAY(1);
  215         }
  216 
  217         return;
  218 }
  219 
  220 /*
  221  * Clock a series of bits through the MII.
  222  */
  223 static void
  224 ste_mii_send(sc, bits, cnt)
  225         struct ste_softc                *sc;
  226         u_int32_t               bits;
  227         int                     cnt;
  228 {
  229         int                     i;
  230 
  231         MII_CLR(STE_PHYCTL_MCLK);
  232 
  233         for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
  234                 if (bits & i) {
  235                         MII_SET(STE_PHYCTL_MDATA);
  236                 } else {
  237                         MII_CLR(STE_PHYCTL_MDATA);
  238                 }
  239                 DELAY(1);
  240                 MII_CLR(STE_PHYCTL_MCLK);
  241                 DELAY(1);
  242                 MII_SET(STE_PHYCTL_MCLK);
  243         }
  244 }
  245 
  246 /*
  247  * Read an PHY register through the MII.
  248  */
  249 static int
  250 ste_mii_readreg(sc, frame)
  251         struct ste_softc                *sc;
  252         struct ste_mii_frame    *frame;
  253         
  254 {
  255         int                     i, ack;
  256 
  257         /*
  258          * Set up frame for RX.
  259          */
  260         frame->mii_stdelim = STE_MII_STARTDELIM;
  261         frame->mii_opcode = STE_MII_READOP;
  262         frame->mii_turnaround = 0;
  263         frame->mii_data = 0;
  264         
  265         CSR_WRITE_2(sc, STE_PHYCTL, 0);
  266         /*
  267          * Turn on data xmit.
  268          */
  269         MII_SET(STE_PHYCTL_MDIR);
  270 
  271         ste_mii_sync(sc);
  272 
  273         /*
  274          * Send command/address info.
  275          */
  276         ste_mii_send(sc, frame->mii_stdelim, 2);
  277         ste_mii_send(sc, frame->mii_opcode, 2);
  278         ste_mii_send(sc, frame->mii_phyaddr, 5);
  279         ste_mii_send(sc, frame->mii_regaddr, 5);
  280 
  281         /* Turn off xmit. */
  282         MII_CLR(STE_PHYCTL_MDIR);
  283 
  284         /* Idle bit */
  285         MII_CLR((STE_PHYCTL_MCLK|STE_PHYCTL_MDATA));
  286         DELAY(1);
  287         MII_SET(STE_PHYCTL_MCLK);
  288         DELAY(1);
  289 
  290         /* Check for ack */
  291         MII_CLR(STE_PHYCTL_MCLK);
  292         DELAY(1);
  293         ack = CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA;
  294         MII_SET(STE_PHYCTL_MCLK);
  295         DELAY(1);
  296 
  297         /*
  298          * Now try reading data bits. If the ack failed, we still
  299          * need to clock through 16 cycles to keep the PHY(s) in sync.
  300          */
  301         if (ack) {
  302                 for(i = 0; i < 16; i++) {
  303                         MII_CLR(STE_PHYCTL_MCLK);
  304                         DELAY(1);
  305                         MII_SET(STE_PHYCTL_MCLK);
  306                         DELAY(1);
  307                 }
  308                 goto fail;
  309         }
  310 
  311         for (i = 0x8000; i; i >>= 1) {
  312                 MII_CLR(STE_PHYCTL_MCLK);
  313                 DELAY(1);
  314                 if (!ack) {
  315                         if (CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA)
  316                                 frame->mii_data |= i;
  317                         DELAY(1);
  318                 }
  319                 MII_SET(STE_PHYCTL_MCLK);
  320                 DELAY(1);
  321         }
  322 
  323 fail:
  324 
  325         MII_CLR(STE_PHYCTL_MCLK);
  326         DELAY(1);
  327         MII_SET(STE_PHYCTL_MCLK);
  328         DELAY(1);
  329 
  330         if (ack)
  331                 return(1);
  332         return(0);
  333 }
  334 
  335 /*
  336  * Write to a PHY register through the MII.
  337  */
  338 static int
  339 ste_mii_writereg(sc, frame)
  340         struct ste_softc                *sc;
  341         struct ste_mii_frame    *frame;
  342         
  343 {
  344 
  345         /*
  346          * Set up frame for TX.
  347          */
  348 
  349         frame->mii_stdelim = STE_MII_STARTDELIM;
  350         frame->mii_opcode = STE_MII_WRITEOP;
  351         frame->mii_turnaround = STE_MII_TURNAROUND;
  352         
  353         /*
  354          * Turn on data output.
  355          */
  356         MII_SET(STE_PHYCTL_MDIR);
  357 
  358         ste_mii_sync(sc);
  359 
  360         ste_mii_send(sc, frame->mii_stdelim, 2);
  361         ste_mii_send(sc, frame->mii_opcode, 2);
  362         ste_mii_send(sc, frame->mii_phyaddr, 5);
  363         ste_mii_send(sc, frame->mii_regaddr, 5);
  364         ste_mii_send(sc, frame->mii_turnaround, 2);
  365         ste_mii_send(sc, frame->mii_data, 16);
  366 
  367         /* Idle bit. */
  368         MII_SET(STE_PHYCTL_MCLK);
  369         DELAY(1);
  370         MII_CLR(STE_PHYCTL_MCLK);
  371         DELAY(1);
  372 
  373         /*
  374          * Turn off xmit.
  375          */
  376         MII_CLR(STE_PHYCTL_MDIR);
  377 
  378         return(0);
  379 }
  380 
  381 static int
  382 ste_miibus_readreg(dev, phy, reg)
  383         device_t                dev;
  384         int                     phy, reg;
  385 {
  386         struct ste_softc        *sc;
  387         struct ste_mii_frame    frame;
  388 
  389         sc = device_get_softc(dev);
  390 
  391         if ( sc->ste_one_phy && phy != 0 )
  392                 return (0);
  393 
  394         bzero((char *)&frame, sizeof(frame));
  395 
  396         frame.mii_phyaddr = phy;
  397         frame.mii_regaddr = reg;
  398         ste_mii_readreg(sc, &frame);
  399 
  400         return(frame.mii_data);
  401 }
  402 
  403 static int
  404 ste_miibus_writereg(dev, phy, reg, data)
  405         device_t                dev;
  406         int                     phy, reg, data;
  407 {
  408         struct ste_softc        *sc;
  409         struct ste_mii_frame    frame;
  410 
  411         sc = device_get_softc(dev);
  412         bzero((char *)&frame, sizeof(frame));
  413 
  414         frame.mii_phyaddr = phy;
  415         frame.mii_regaddr = reg;
  416         frame.mii_data = data;
  417 
  418         ste_mii_writereg(sc, &frame);
  419 
  420         return(0);
  421 }
  422 
  423 static void
  424 ste_miibus_statchg(dev)
  425         device_t                dev;
  426 {
  427         struct ste_softc        *sc;
  428         struct mii_data         *mii;
  429 
  430         sc = device_get_softc(dev);
  431 
  432         mii = device_get_softc(sc->ste_miibus);
  433 
  434         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
  435                 STE_SETBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
  436         } else {
  437                 STE_CLRBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
  438         }
  439 
  440         return;
  441 }
  442  
  443 static int
  444 ste_ifmedia_upd(ifp)
  445         struct ifnet            *ifp;
  446 {
  447         struct ste_softc        *sc;
  448 
  449         sc = ifp->if_softc;
  450         STE_LOCK(sc);
  451         ste_ifmedia_upd_locked(ifp);
  452         STE_UNLOCK(sc);
  453 
  454         return(0);      
  455 }
  456 
  457 static void
  458 ste_ifmedia_upd_locked(ifp)
  459         struct ifnet            *ifp;
  460 {
  461         struct ste_softc        *sc;
  462         struct mii_data         *mii;
  463 
  464         sc = ifp->if_softc;
  465         STE_LOCK_ASSERT(sc);
  466         mii = device_get_softc(sc->ste_miibus);
  467         sc->ste_link = 0;
  468         if (mii->mii_instance) {
  469                 struct mii_softc        *miisc;
  470                 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
  471                         mii_phy_reset(miisc);
  472         }
  473         mii_mediachg(mii);
  474 }
  475 
  476 static void
  477 ste_ifmedia_sts(ifp, ifmr)
  478         struct ifnet            *ifp;
  479         struct ifmediareq       *ifmr;
  480 {
  481         struct ste_softc        *sc;
  482         struct mii_data         *mii;
  483 
  484         sc = ifp->if_softc;
  485         mii = device_get_softc(sc->ste_miibus);
  486 
  487         STE_LOCK(sc);
  488         mii_pollstat(mii);
  489         ifmr->ifm_active = mii->mii_media_active;
  490         ifmr->ifm_status = mii->mii_media_status;
  491         STE_UNLOCK(sc);
  492 
  493         return;
  494 }
  495 
  496 static void
  497 ste_wait(sc)
  498         struct ste_softc                *sc;
  499 {
  500         register int            i;
  501 
  502         for (i = 0; i < STE_TIMEOUT; i++) {
  503                 if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
  504                         break;
  505         }
  506 
  507         if (i == STE_TIMEOUT)
  508                 device_printf(sc->ste_dev, "command never completed!\n");
  509 
  510         return;
  511 }
  512 
  513 /*
  514  * The EEPROM is slow: give it time to come ready after issuing
  515  * it a command.
  516  */
  517 static int
  518 ste_eeprom_wait(sc)
  519         struct ste_softc                *sc;
  520 {
  521         int                     i;
  522 
  523         DELAY(1000);
  524 
  525         for (i = 0; i < 100; i++) {
  526                 if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
  527                         DELAY(1000);
  528                 else
  529                         break;
  530         }
  531 
  532         if (i == 100) {
  533                 device_printf(sc->ste_dev, "eeprom failed to come ready\n");
  534                 return(1);
  535         }
  536 
  537         return(0);
  538 }
  539 
  540 /*
  541  * Read a sequence of words from the EEPROM. Note that ethernet address
  542  * data is stored in the EEPROM in network byte order.
  543  */
  544 static int
  545 ste_read_eeprom(sc, dest, off, cnt, swap)
  546         struct ste_softc                *sc;
  547         caddr_t                 dest;
  548         int                     off;
  549         int                     cnt;
  550         int                     swap;
  551 {
  552         int                     err = 0, i;
  553         u_int16_t               word = 0, *ptr;
  554 
  555         if (ste_eeprom_wait(sc))
  556                 return(1);
  557 
  558         for (i = 0; i < cnt; i++) {
  559                 CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
  560                 err = ste_eeprom_wait(sc);
  561                 if (err)
  562                         break;
  563                 word = CSR_READ_2(sc, STE_EEPROM_DATA);
  564                 ptr = (u_int16_t *)(dest + (i * 2));
  565                 if (swap)
  566                         *ptr = ntohs(word);
  567                 else
  568                         *ptr = word;    
  569         }
  570 
  571         return(err ? 1 : 0);
  572 }
  573 
  574 static void
  575 ste_setmulti(sc)
  576         struct ste_softc        *sc;
  577 {
  578         struct ifnet            *ifp;
  579         int                     h = 0;
  580         u_int32_t               hashes[2] = { 0, 0 };
  581         struct ifmultiaddr      *ifma;
  582 
  583         ifp = sc->ste_ifp;
  584         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
  585                 STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
  586                 STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
  587                 return;
  588         }
  589 
  590         /* first, zot all the existing hash bits */
  591         CSR_WRITE_2(sc, STE_MAR0, 0);
  592         CSR_WRITE_2(sc, STE_MAR1, 0);
  593         CSR_WRITE_2(sc, STE_MAR2, 0);
  594         CSR_WRITE_2(sc, STE_MAR3, 0);
  595 
  596         /* now program new ones */
  597         if_maddr_rlock(ifp);
  598         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
  599                 if (ifma->ifma_addr->sa_family != AF_LINK)
  600                         continue;
  601                 h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
  602                     ifma->ifma_addr), ETHER_ADDR_LEN) & 0x3F;
  603                 if (h < 32)
  604                         hashes[0] |= (1 << h);
  605                 else
  606                         hashes[1] |= (1 << (h - 32));
  607         }
  608         if_maddr_runlock(ifp);
  609 
  610         CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
  611         CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
  612         CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
  613         CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
  614         STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
  615         STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
  616 
  617         return;
  618 }
  619 
  620 #ifdef DEVICE_POLLING
  621 static poll_handler_t ste_poll, ste_poll_locked;
  622 
  623 static int
  624 ste_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
  625 {
  626         struct ste_softc *sc = ifp->if_softc;
  627         int rx_npkts = 0;
  628 
  629         STE_LOCK(sc);
  630         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
  631                 rx_npkts = ste_poll_locked(ifp, cmd, count);
  632         STE_UNLOCK(sc);
  633         return (rx_npkts);
  634 }
  635 
  636 static int
  637 ste_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
  638 {
  639         struct ste_softc *sc = ifp->if_softc;
  640         int rx_npkts;
  641 
  642         STE_LOCK_ASSERT(sc);
  643 
  644         sc->rxcycles = count;
  645         if (cmd == POLL_AND_CHECK_STATUS)
  646                 ste_rxeoc(sc);
  647         rx_npkts = ste_rxeof(sc);
  648         ste_txeof(sc);
  649         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
  650                 ste_start_locked(ifp);
  651 
  652         if (cmd == POLL_AND_CHECK_STATUS) {
  653                 u_int16_t status;
  654 
  655                 status = CSR_READ_2(sc, STE_ISR_ACK);
  656 
  657                 if (status & STE_ISR_TX_DONE)
  658                         ste_txeoc(sc);
  659 
  660                 if (status & STE_ISR_STATS_OFLOW) {
  661                         callout_stop(&sc->ste_stat_callout);
  662                         ste_stats_update(sc);
  663                 }
  664 
  665                 if (status & STE_ISR_LINKEVENT)
  666                         mii_pollstat(device_get_softc(sc->ste_miibus));
  667 
  668                 if (status & STE_ISR_HOSTERR) {
  669                         ste_reset(sc);
  670                         ste_init_locked(sc);
  671                 }
  672         }
  673         return (rx_npkts);
  674 }
  675 #endif /* DEVICE_POLLING */
  676 
  677 static void
  678 ste_intr(xsc)
  679         void                    *xsc;
  680 {
  681         struct ste_softc        *sc;
  682         struct ifnet            *ifp;
  683         u_int16_t               status;
  684 
  685         sc = xsc;
  686         STE_LOCK(sc);
  687         ifp = sc->ste_ifp;
  688 
  689 #ifdef DEVICE_POLLING
  690         if (ifp->if_capenable & IFCAP_POLLING) {
  691                 STE_UNLOCK(sc);
  692                 return;
  693         }
  694 #endif
  695 
  696         /* See if this is really our interrupt. */
  697         if (!(CSR_READ_2(sc, STE_ISR) & STE_ISR_INTLATCH)) {
  698                 STE_UNLOCK(sc);
  699                 return;
  700         }
  701 
  702         for (;;) {
  703                 status = CSR_READ_2(sc, STE_ISR_ACK);
  704 
  705                 if (!(status & STE_INTRS))
  706                         break;
  707 
  708                 if (status & STE_ISR_RX_DMADONE) {
  709                         ste_rxeoc(sc);
  710                         ste_rxeof(sc);
  711                 }
  712 
  713                 if (status & STE_ISR_TX_DMADONE)
  714                         ste_txeof(sc);
  715 
  716                 if (status & STE_ISR_TX_DONE)
  717                         ste_txeoc(sc);
  718 
  719                 if (status & STE_ISR_STATS_OFLOW) {
  720                         callout_stop(&sc->ste_stat_callout);
  721                         ste_stats_update(sc);
  722                 }
  723 
  724                 if (status & STE_ISR_LINKEVENT)
  725                         mii_pollstat(device_get_softc(sc->ste_miibus));
  726 
  727 
  728                 if (status & STE_ISR_HOSTERR) {
  729                         ste_reset(sc);
  730                         ste_init_locked(sc);
  731                 }
  732         }
  733 
  734         /* Re-enable interrupts */
  735         CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
  736 
  737         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
  738                 ste_start_locked(ifp);
  739 
  740         STE_UNLOCK(sc);
  741 
  742         return;
  743 }
  744 
  745 static void
  746 ste_rxeoc(struct ste_softc *sc)
  747 {
  748         struct ste_chain_onefrag *cur_rx;
  749 
  750         STE_LOCK_ASSERT(sc);
  751 
  752         if (sc->ste_cdata.ste_rx_head->ste_ptr->ste_status == 0) {
  753                 cur_rx = sc->ste_cdata.ste_rx_head;
  754                 do {
  755                         cur_rx = cur_rx->ste_next;
  756                         /* If the ring is empty, just return. */
  757                         if (cur_rx == sc->ste_cdata.ste_rx_head)
  758                                 return;
  759                 } while (cur_rx->ste_ptr->ste_status == 0);
  760                 if (sc->ste_cdata.ste_rx_head->ste_ptr->ste_status == 0) {
  761                         /* We've fallen behind the chip: catch it. */
  762                         sc->ste_cdata.ste_rx_head = cur_rx;
  763                         ++ste_rxsyncs;
  764                 }
  765         }
  766 }
  767 
  768 /*
  769  * A frame has been uploaded: pass the resulting mbuf chain up to
  770  * the higher level protocols.
  771  */
  772 static int
  773 ste_rxeof(sc)
  774         struct ste_softc                *sc;
  775 {
  776         struct mbuf             *m;
  777         struct ifnet            *ifp;
  778         struct ste_chain_onefrag        *cur_rx;
  779         int                     total_len = 0, count=0, rx_npkts = 0;
  780         u_int32_t               rxstat;
  781 
  782         STE_LOCK_ASSERT(sc);
  783 
  784         ifp = sc->ste_ifp;
  785 
  786         while((rxstat = sc->ste_cdata.ste_rx_head->ste_ptr->ste_status)
  787               & STE_RXSTAT_DMADONE) {
  788 #ifdef DEVICE_POLLING
  789                 if (ifp->if_capenable & IFCAP_POLLING) {
  790                         if (sc->rxcycles <= 0)
  791                                 break;
  792                         sc->rxcycles--;
  793                 }
  794 #endif
  795                 if ((STE_RX_LIST_CNT - count) < 3) {
  796                         break;
  797                 }
  798 
  799                 cur_rx = sc->ste_cdata.ste_rx_head;
  800                 sc->ste_cdata.ste_rx_head = cur_rx->ste_next;
  801 
  802                 /*
  803                  * If an error occurs, update stats, clear the
  804                  * status word and leave the mbuf cluster in place:
  805                  * it should simply get re-used next time this descriptor
  806                  * comes up in the ring.
  807                  */
  808                 if (rxstat & STE_RXSTAT_FRAME_ERR) {
  809                         ifp->if_ierrors++;
  810                         cur_rx->ste_ptr->ste_status = 0;
  811                         continue;
  812                 }
  813 
  814                 /*
  815                  * If there error bit was not set, the upload complete
  816                  * bit should be set which means we have a valid packet.
  817                  * If not, something truly strange has happened.
  818                  */
  819                 if (!(rxstat & STE_RXSTAT_DMADONE)) {
  820                         device_printf(sc->ste_dev,
  821                             "bad receive status -- packet dropped\n");
  822                         ifp->if_ierrors++;
  823                         cur_rx->ste_ptr->ste_status = 0;
  824                         continue;
  825                 }
  826 
  827                 /* No errors; receive the packet. */    
  828                 m = cur_rx->ste_mbuf;
  829                 total_len = cur_rx->ste_ptr->ste_status & STE_RXSTAT_FRAMELEN;
  830 
  831                 /*
  832                  * Try to conjure up a new mbuf cluster. If that
  833                  * fails, it means we have an out of memory condition and
  834                  * should leave the buffer in place and continue. This will
  835                  * result in a lost packet, but there's little else we
  836                  * can do in this situation.
  837                  */
  838                 if (ste_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
  839                         ifp->if_ierrors++;
  840                         cur_rx->ste_ptr->ste_status = 0;
  841                         continue;
  842                 }
  843 
  844                 m->m_pkthdr.rcvif = ifp;
  845                 m->m_pkthdr.len = m->m_len = total_len;
  846 
  847                 ifp->if_ipackets++;
  848                 STE_UNLOCK(sc);
  849                 (*ifp->if_input)(ifp, m);
  850                 STE_LOCK(sc);
  851 
  852                 cur_rx->ste_ptr->ste_status = 0;
  853                 count++;
  854                 rx_npkts++;
  855         }
  856 
  857         return (rx_npkts);
  858 }
  859 
  860 static void
  861 ste_txeoc(sc)
  862         struct ste_softc        *sc;
  863 {
  864         u_int8_t                txstat;
  865         struct ifnet            *ifp;
  866 
  867         ifp = sc->ste_ifp;
  868 
  869         while ((txstat = CSR_READ_1(sc, STE_TX_STATUS)) &
  870             STE_TXSTATUS_TXDONE) {
  871                 if (txstat & STE_TXSTATUS_UNDERRUN ||
  872                     txstat & STE_TXSTATUS_EXCESSCOLLS ||
  873                     txstat & STE_TXSTATUS_RECLAIMERR) {
  874                         ifp->if_oerrors++;
  875                         device_printf(sc->ste_dev,
  876                             "transmission error: %x\n", txstat);
  877 
  878                         ste_reset(sc);
  879                         ste_init_locked(sc);
  880 
  881                         if (txstat & STE_TXSTATUS_UNDERRUN &&
  882                             sc->ste_tx_thresh < STE_PACKET_SIZE) {
  883                                 sc->ste_tx_thresh += STE_MIN_FRAMELEN;
  884                                 device_printf(sc->ste_dev,
  885                                     "tx underrun, increasing tx"
  886                                     " start threshold to %d bytes\n",
  887                                     sc->ste_tx_thresh);
  888                         }
  889                         CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
  890                         CSR_WRITE_2(sc, STE_TX_RECLAIM_THRESH,
  891                             (STE_PACKET_SIZE >> 4));
  892                 }
  893                 ste_init_locked(sc);
  894                 CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
  895         }
  896 
  897         return;
  898 }
  899 
  900 static void
  901 ste_txeof(sc)
  902         struct ste_softc        *sc;
  903 {
  904         struct ste_chain        *cur_tx;
  905         struct ifnet            *ifp;
  906         int                     idx;
  907 
  908         ifp = sc->ste_ifp;
  909 
  910         idx = sc->ste_cdata.ste_tx_cons;
  911         while(idx != sc->ste_cdata.ste_tx_prod) {
  912                 cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
  913 
  914                 if (!(cur_tx->ste_ptr->ste_ctl & STE_TXCTL_DMADONE))
  915                         break;
  916 
  917                 m_freem(cur_tx->ste_mbuf);
  918                 cur_tx->ste_mbuf = NULL;
  919                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
  920                 ifp->if_opackets++;
  921 
  922                 STE_INC(idx, STE_TX_LIST_CNT);
  923         }
  924 
  925         sc->ste_cdata.ste_tx_cons = idx;
  926         if (idx == sc->ste_cdata.ste_tx_prod)
  927                 ifp->if_timer = 0;
  928 }
  929 
  930 static void
  931 ste_stats_update(xsc)
  932         void                    *xsc;
  933 {
  934         struct ste_softc        *sc;
  935         struct ifnet            *ifp;
  936         struct mii_data         *mii;
  937 
  938         sc = xsc;
  939         STE_LOCK_ASSERT(sc);
  940 
  941         ifp = sc->ste_ifp;
  942         mii = device_get_softc(sc->ste_miibus);
  943 
  944         ifp->if_collisions += CSR_READ_1(sc, STE_LATE_COLLS)
  945             + CSR_READ_1(sc, STE_MULTI_COLLS)
  946             + CSR_READ_1(sc, STE_SINGLE_COLLS);
  947 
  948         if (!sc->ste_link) {
  949                 mii_pollstat(mii);
  950                 if (mii->mii_media_status & IFM_ACTIVE &&
  951                     IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
  952                         sc->ste_link++;
  953                         /*
  954                         * we don't get a call-back on re-init so do it
  955                         * otherwise we get stuck in the wrong link state
  956                         */
  957                         ste_miibus_statchg(sc->ste_dev);
  958                         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
  959                                 ste_start_locked(ifp);
  960                 }
  961         }
  962 
  963         callout_reset(&sc->ste_stat_callout, hz, ste_stats_update, sc);
  964 
  965         return;
  966 }
  967 
  968 
  969 /*
  970  * Probe for a Sundance ST201 chip. Check the PCI vendor and device
  971  * IDs against our list and return a device name if we find a match.
  972  */
  973 static int
  974 ste_probe(dev)
  975         device_t                dev;
  976 {
  977         struct ste_type         *t;
  978 
  979         t = ste_devs;
  980 
  981         while(t->ste_name != NULL) {
  982                 if ((pci_get_vendor(dev) == t->ste_vid) &&
  983                     (pci_get_device(dev) == t->ste_did)) {
  984                         device_set_desc(dev, t->ste_name);
  985                         return (BUS_PROBE_DEFAULT);
  986                 }
  987                 t++;
  988         }
  989 
  990         return(ENXIO);
  991 }
  992 
  993 /*
  994  * Attach the interface. Allocate softc structures, do ifmedia
  995  * setup and ethernet/BPF attach.
  996  */
  997 static int
  998 ste_attach(dev)
  999         device_t                dev;
 1000 {
 1001         struct ste_softc        *sc;
 1002         struct ifnet            *ifp;
 1003         int                     error = 0, rid;
 1004         u_char                  eaddr[6];
 1005 
 1006         sc = device_get_softc(dev);
 1007         sc->ste_dev = dev;
 1008 
 1009         /*
 1010          * Only use one PHY since this chip reports multiple
 1011          * Note on the DFE-550 the PHY is at 1 on the DFE-580
 1012          * it is at 0 & 1.  It is rev 0x12.
 1013          */
 1014         if (pci_get_vendor(dev) == DL_VENDORID &&
 1015             pci_get_device(dev) == DL_DEVICEID_DL10050 &&
 1016             pci_get_revid(dev) == 0x12 )
 1017                 sc->ste_one_phy = 1;
 1018 
 1019         mtx_init(&sc->ste_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
 1020             MTX_DEF);
 1021         /*
 1022          * Map control/status registers.
 1023          */
 1024         pci_enable_busmaster(dev);
 1025 
 1026         rid = STE_RID;
 1027         sc->ste_res = bus_alloc_resource_any(dev, STE_RES, &rid, RF_ACTIVE);
 1028 
 1029         if (sc->ste_res == NULL) {
 1030                 device_printf(dev, "couldn't map ports/memory\n");
 1031                 error = ENXIO;
 1032                 goto fail;
 1033         }
 1034 
 1035         sc->ste_btag = rman_get_bustag(sc->ste_res);
 1036         sc->ste_bhandle = rman_get_bushandle(sc->ste_res);
 1037 
 1038         /* Allocate interrupt */
 1039         rid = 0;
 1040         sc->ste_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
 1041             RF_SHAREABLE | RF_ACTIVE);
 1042 
 1043         if (sc->ste_irq == NULL) {
 1044                 device_printf(dev, "couldn't map interrupt\n");
 1045                 error = ENXIO;
 1046                 goto fail;
 1047         }
 1048 
 1049         callout_init_mtx(&sc->ste_stat_callout, &sc->ste_mtx, 0);
 1050 
 1051         /* Reset the adapter. */
 1052         ste_reset(sc);
 1053 
 1054         /*
 1055          * Get station address from the EEPROM.
 1056          */
 1057         if (ste_read_eeprom(sc, eaddr,
 1058             STE_EEADDR_NODE0, 3, 0)) {
 1059                 device_printf(dev, "failed to read station address\n");
 1060                 error = ENXIO;;
 1061                 goto fail;
 1062         }
 1063 
 1064         /* Allocate the descriptor queues. */
 1065         sc->ste_ldata = contigmalloc(sizeof(struct ste_list_data), M_DEVBUF,
 1066             M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
 1067 
 1068         if (sc->ste_ldata == NULL) {
 1069                 device_printf(dev, "no memory for list buffers!\n");
 1070                 error = ENXIO;
 1071                 goto fail;
 1072         }
 1073 
 1074         bzero(sc->ste_ldata, sizeof(struct ste_list_data));
 1075 
 1076         ifp = sc->ste_ifp = if_alloc(IFT_ETHER);
 1077         if (ifp == NULL) {
 1078                 device_printf(dev, "can not if_alloc()\n");
 1079                 error = ENOSPC;
 1080                 goto fail;
 1081         }
 1082 
 1083         /* Do MII setup. */
 1084         if (mii_phy_probe(dev, &sc->ste_miibus,
 1085             ste_ifmedia_upd, ste_ifmedia_sts)) {
 1086                 device_printf(dev, "MII without any phy!\n");
 1087                 error = ENXIO;
 1088                 goto fail;
 1089         }
 1090 
 1091         ifp->if_softc = sc;
 1092         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
 1093         ifp->if_mtu = ETHERMTU;
 1094         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
 1095         ifp->if_ioctl = ste_ioctl;
 1096         ifp->if_start = ste_start;
 1097         ifp->if_watchdog = ste_watchdog;
 1098         ifp->if_init = ste_init;
 1099         IFQ_SET_MAXLEN(&ifp->if_snd, STE_TX_LIST_CNT - 1);
 1100         ifp->if_snd.ifq_drv_maxlen = STE_TX_LIST_CNT - 1;
 1101         IFQ_SET_READY(&ifp->if_snd);
 1102 
 1103         sc->ste_tx_thresh = STE_TXSTART_THRESH;
 1104 
 1105         /*
 1106          * Call MI attach routine.
 1107          */
 1108         ether_ifattach(ifp, eaddr);
 1109 
 1110         /*
 1111          * Tell the upper layer(s) we support long frames.
 1112          */
 1113         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
 1114         ifp->if_capabilities |= IFCAP_VLAN_MTU;
 1115         ifp->if_capenable = ifp->if_capabilities;
 1116 #ifdef DEVICE_POLLING
 1117         ifp->if_capabilities |= IFCAP_POLLING;
 1118 #endif
 1119 
 1120         /* Hook interrupt last to avoid having to lock softc */
 1121         error = bus_setup_intr(dev, sc->ste_irq, INTR_TYPE_NET | INTR_MPSAFE,
 1122             NULL, ste_intr, sc, &sc->ste_intrhand);
 1123 
 1124         if (error) {
 1125                 device_printf(dev, "couldn't set up irq\n");
 1126                 ether_ifdetach(ifp);
 1127                 goto fail;
 1128         }
 1129 
 1130 fail:
 1131         if (error)
 1132                 ste_detach(dev);
 1133 
 1134         return(error);
 1135 }
 1136 
 1137 /*
 1138  * Shutdown hardware and free up resources. This can be called any
 1139  * time after the mutex has been initialized. It is called in both
 1140  * the error case in attach and the normal detach case so it needs
 1141  * to be careful about only freeing resources that have actually been
 1142  * allocated.
 1143  */
 1144 static int
 1145 ste_detach(dev)
 1146         device_t                dev;
 1147 {
 1148         struct ste_softc        *sc;
 1149         struct ifnet            *ifp;
 1150 
 1151         sc = device_get_softc(dev);
 1152         KASSERT(mtx_initialized(&sc->ste_mtx), ("ste mutex not initialized"));
 1153         ifp = sc->ste_ifp;
 1154 
 1155 #ifdef DEVICE_POLLING
 1156         if (ifp->if_capenable & IFCAP_POLLING)
 1157                 ether_poll_deregister(ifp);
 1158 #endif
 1159 
 1160         /* These should only be active if attach succeeded */
 1161         if (device_is_attached(dev)) {
 1162                 STE_LOCK(sc);
 1163                 ste_stop(sc);
 1164                 STE_UNLOCK(sc);
 1165                 callout_drain(&sc->ste_stat_callout);
 1166                 ether_ifdetach(ifp);
 1167         }
 1168         if (sc->ste_miibus)
 1169                 device_delete_child(dev, sc->ste_miibus);
 1170         bus_generic_detach(dev);
 1171 
 1172         if (sc->ste_intrhand)
 1173                 bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
 1174         if (sc->ste_irq)
 1175                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
 1176         if (sc->ste_res)
 1177                 bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
 1178 
 1179         if (ifp)
 1180                 if_free(ifp);
 1181 
 1182         if (sc->ste_ldata) {
 1183                 contigfree(sc->ste_ldata, sizeof(struct ste_list_data),
 1184                     M_DEVBUF);
 1185         }
 1186 
 1187         mtx_destroy(&sc->ste_mtx);
 1188 
 1189         return(0);
 1190 }
 1191 
 1192 static int
 1193 ste_newbuf(sc, c, m)
 1194         struct ste_softc        *sc;
 1195         struct ste_chain_onefrag        *c;
 1196         struct mbuf             *m;
 1197 {
 1198         struct mbuf             *m_new = NULL;
 1199 
 1200         if (m == NULL) {
 1201                 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
 1202                 if (m_new == NULL)
 1203                         return(ENOBUFS);
 1204                 MCLGET(m_new, M_DONTWAIT);
 1205                 if (!(m_new->m_flags & M_EXT)) {
 1206                         m_freem(m_new);
 1207                         return(ENOBUFS);
 1208                 }
 1209                 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
 1210         } else {
 1211                 m_new = m;
 1212                 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
 1213                 m_new->m_data = m_new->m_ext.ext_buf;
 1214         }
 1215 
 1216         m_adj(m_new, ETHER_ALIGN);
 1217 
 1218         c->ste_mbuf = m_new;
 1219         c->ste_ptr->ste_status = 0;
 1220         c->ste_ptr->ste_frag.ste_addr = vtophys(mtod(m_new, caddr_t));
 1221         c->ste_ptr->ste_frag.ste_len = (1536 + ETHER_VLAN_ENCAP_LEN) | STE_FRAG_LAST;
 1222 
 1223         return(0);
 1224 }
 1225 
 1226 static int
 1227 ste_init_rx_list(sc)
 1228         struct ste_softc        *sc;
 1229 {
 1230         struct ste_chain_data   *cd;
 1231         struct ste_list_data    *ld;
 1232         int                     i;
 1233 
 1234         cd = &sc->ste_cdata;
 1235         ld = sc->ste_ldata;
 1236 
 1237         for (i = 0; i < STE_RX_LIST_CNT; i++) {
 1238                 cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
 1239                 if (ste_newbuf(sc, &cd->ste_rx_chain[i], NULL) == ENOBUFS)
 1240                         return(ENOBUFS);
 1241                 if (i == (STE_RX_LIST_CNT - 1)) {
 1242                         cd->ste_rx_chain[i].ste_next =
 1243                             &cd->ste_rx_chain[0];
 1244                         ld->ste_rx_list[i].ste_next =
 1245                             vtophys(&ld->ste_rx_list[0]);
 1246                 } else {
 1247                         cd->ste_rx_chain[i].ste_next =
 1248                             &cd->ste_rx_chain[i + 1];
 1249                         ld->ste_rx_list[i].ste_next =
 1250                             vtophys(&ld->ste_rx_list[i + 1]);
 1251                 }
 1252                 ld->ste_rx_list[i].ste_status = 0;
 1253         }
 1254 
 1255         cd->ste_rx_head = &cd->ste_rx_chain[0];
 1256 
 1257         return(0);
 1258 }
 1259 
 1260 static void
 1261 ste_init_tx_list(sc)
 1262         struct ste_softc        *sc;
 1263 {
 1264         struct ste_chain_data   *cd;
 1265         struct ste_list_data    *ld;
 1266         int                     i;
 1267 
 1268         cd = &sc->ste_cdata;
 1269         ld = sc->ste_ldata;
 1270         for (i = 0; i < STE_TX_LIST_CNT; i++) {
 1271                 cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
 1272                 cd->ste_tx_chain[i].ste_ptr->ste_next = 0;
 1273                 cd->ste_tx_chain[i].ste_ptr->ste_ctl  = 0;
 1274                 cd->ste_tx_chain[i].ste_phys = vtophys(&ld->ste_tx_list[i]);
 1275                 if (i == (STE_TX_LIST_CNT - 1))
 1276                         cd->ste_tx_chain[i].ste_next =
 1277                             &cd->ste_tx_chain[0];
 1278                 else
 1279                         cd->ste_tx_chain[i].ste_next =
 1280                             &cd->ste_tx_chain[i + 1];
 1281         }
 1282 
 1283         cd->ste_tx_prod = 0;
 1284         cd->ste_tx_cons = 0;
 1285 
 1286         return;
 1287 }
 1288 
 1289 static void
 1290 ste_init(xsc)
 1291         void                    *xsc;
 1292 {
 1293         struct ste_softc        *sc;
 1294 
 1295         sc = xsc;
 1296         STE_LOCK(sc);
 1297         ste_init_locked(sc);
 1298         STE_UNLOCK(sc);
 1299 }
 1300 
 1301 static void
 1302 ste_init_locked(sc)
 1303         struct ste_softc        *sc;
 1304 {
 1305         int                     i;
 1306         struct ifnet            *ifp;
 1307 
 1308         STE_LOCK_ASSERT(sc);
 1309         ifp = sc->ste_ifp;
 1310 
 1311         ste_stop(sc);
 1312 
 1313         /* Init our MAC address */
 1314         for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
 1315                 CSR_WRITE_2(sc, STE_PAR0 + i,
 1316                     ((IF_LLADDR(sc->ste_ifp)[i] & 0xff) |
 1317                      IF_LLADDR(sc->ste_ifp)[i + 1] << 8));
 1318         }
 1319 
 1320         /* Init RX list */
 1321         if (ste_init_rx_list(sc) == ENOBUFS) {
 1322                 device_printf(sc->ste_dev,
 1323                     "initialization failed: no memory for RX buffers\n");
 1324                 ste_stop(sc);
 1325                 return;
 1326         }
 1327 
 1328         /* Set RX polling interval */
 1329         CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 64);
 1330 
 1331         /* Init TX descriptors */
 1332         ste_init_tx_list(sc);
 1333 
 1334         /* Set the TX freethresh value */
 1335         CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
 1336 
 1337         /* Set the TX start threshold for best performance. */
 1338         CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
 1339 
 1340         /* Set the TX reclaim threshold. */
 1341         CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
 1342 
 1343         /* Set up the RX filter. */
 1344         CSR_WRITE_1(sc, STE_RX_MODE, STE_RXMODE_UNICAST);
 1345 
 1346         /* If we want promiscuous mode, set the allframes bit. */
 1347         if (ifp->if_flags & IFF_PROMISC) {
 1348                 STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
 1349         } else {
 1350                 STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
 1351         }
 1352 
 1353         /* Set capture broadcast bit to accept broadcast frames. */
 1354         if (ifp->if_flags & IFF_BROADCAST) {
 1355                 STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
 1356         } else {
 1357                 STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
 1358         }
 1359 
 1360         ste_setmulti(sc);
 1361 
 1362         /* Load the address of the RX list. */
 1363         STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
 1364         ste_wait(sc);
 1365         CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
 1366             vtophys(&sc->ste_ldata->ste_rx_list[0]));
 1367         STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
 1368         STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
 1369 
 1370         /* Set TX polling interval (defer until we TX first packet */
 1371         CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
 1372 
 1373         /* Load address of the TX list */
 1374         STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
 1375         ste_wait(sc);
 1376         CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
 1377         STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
 1378         STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
 1379         ste_wait(sc);
 1380         sc->ste_tx_prev = NULL;
 1381 
 1382         /* Enable receiver and transmitter */
 1383         CSR_WRITE_2(sc, STE_MACCTL0, 0);
 1384         CSR_WRITE_2(sc, STE_MACCTL1, 0);
 1385         STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
 1386         STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
 1387 
 1388         /* Enable stats counters. */
 1389         STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
 1390 
 1391         CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
 1392 #ifdef DEVICE_POLLING
 1393         /* Disable interrupts if we are polling. */
 1394         if (ifp->if_capenable & IFCAP_POLLING)
 1395                 CSR_WRITE_2(sc, STE_IMR, 0);
 1396         else   
 1397 #endif
 1398         /* Enable interrupts. */
 1399         CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
 1400 
 1401         /* Accept VLAN length packets */
 1402         CSR_WRITE_2(sc, STE_MAX_FRAMELEN, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN);
 1403 
 1404         ste_ifmedia_upd_locked(ifp);
 1405 
 1406         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 1407         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 1408 
 1409         callout_reset(&sc->ste_stat_callout, hz, ste_stats_update, sc);
 1410 
 1411         return;
 1412 }
 1413 
 1414 static void
 1415 ste_stop(sc)
 1416         struct ste_softc        *sc;
 1417 {
 1418         int                     i;
 1419         struct ifnet            *ifp;
 1420 
 1421         STE_LOCK_ASSERT(sc);
 1422         ifp = sc->ste_ifp;
 1423 
 1424         callout_stop(&sc->ste_stat_callout);
 1425         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
 1426 
 1427         CSR_WRITE_2(sc, STE_IMR, 0);
 1428         STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_DISABLE);
 1429         STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_DISABLE);
 1430         STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_DISABLE);
 1431         STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
 1432         STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
 1433         ste_wait(sc);
 1434         /* 
 1435          * Try really hard to stop the RX engine or under heavy RX 
 1436          * data chip will write into de-allocated memory.
 1437          */
 1438         ste_reset(sc);
 1439 
 1440         sc->ste_link = 0;
 1441 
 1442         for (i = 0; i < STE_RX_LIST_CNT; i++) {
 1443                 if (sc->ste_cdata.ste_rx_chain[i].ste_mbuf != NULL) {
 1444                         m_freem(sc->ste_cdata.ste_rx_chain[i].ste_mbuf);
 1445                         sc->ste_cdata.ste_rx_chain[i].ste_mbuf = NULL;
 1446                 }
 1447         }
 1448 
 1449         for (i = 0; i < STE_TX_LIST_CNT; i++) {
 1450                 if (sc->ste_cdata.ste_tx_chain[i].ste_mbuf != NULL) {
 1451                         m_freem(sc->ste_cdata.ste_tx_chain[i].ste_mbuf);
 1452                         sc->ste_cdata.ste_tx_chain[i].ste_mbuf = NULL;
 1453                 }
 1454         }
 1455 
 1456         bzero(sc->ste_ldata, sizeof(struct ste_list_data));
 1457 
 1458         return;
 1459 }
 1460 
 1461 static void
 1462 ste_reset(sc)
 1463         struct ste_softc        *sc;
 1464 {
 1465         int                     i;
 1466 
 1467         STE_SETBIT4(sc, STE_ASICCTL,
 1468             STE_ASICCTL_GLOBAL_RESET|STE_ASICCTL_RX_RESET|
 1469             STE_ASICCTL_TX_RESET|STE_ASICCTL_DMA_RESET|
 1470             STE_ASICCTL_FIFO_RESET|STE_ASICCTL_NETWORK_RESET|
 1471             STE_ASICCTL_AUTOINIT_RESET|STE_ASICCTL_HOST_RESET|
 1472             STE_ASICCTL_EXTRESET_RESET);
 1473 
 1474         DELAY(100000);
 1475 
 1476         for (i = 0; i < STE_TIMEOUT; i++) {
 1477                 if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
 1478                         break;
 1479         }
 1480 
 1481         if (i == STE_TIMEOUT)
 1482                 device_printf(sc->ste_dev, "global reset never completed\n");
 1483 
 1484         return;
 1485 }
 1486 
 1487 static int
 1488 ste_ioctl(ifp, command, data)
 1489         struct ifnet            *ifp;
 1490         u_long                  command;
 1491         caddr_t                 data;
 1492 {
 1493         struct ste_softc        *sc;
 1494         struct ifreq            *ifr;
 1495         struct mii_data         *mii;
 1496         int                     error = 0;
 1497 
 1498         sc = ifp->if_softc;
 1499         ifr = (struct ifreq *)data;
 1500 
 1501         switch(command) {
 1502         case SIOCSIFFLAGS:
 1503                 STE_LOCK(sc);
 1504                 if (ifp->if_flags & IFF_UP) {
 1505                         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
 1506                             ifp->if_flags & IFF_PROMISC &&
 1507                             !(sc->ste_if_flags & IFF_PROMISC)) {
 1508                                 STE_SETBIT1(sc, STE_RX_MODE,
 1509                                     STE_RXMODE_PROMISC);
 1510                         } else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
 1511                             !(ifp->if_flags & IFF_PROMISC) &&
 1512                             sc->ste_if_flags & IFF_PROMISC) {
 1513                                 STE_CLRBIT1(sc, STE_RX_MODE,
 1514                                     STE_RXMODE_PROMISC);
 1515                         } 
 1516                         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
 1517                             (ifp->if_flags ^ sc->ste_if_flags) & IFF_ALLMULTI)
 1518                                 ste_setmulti(sc);
 1519                         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
 1520                                 sc->ste_tx_thresh = STE_TXSTART_THRESH;
 1521                                 ste_init_locked(sc);
 1522                         }
 1523                 } else {
 1524                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 1525                                 ste_stop(sc);
 1526                 }
 1527                 sc->ste_if_flags = ifp->if_flags;
 1528                 STE_UNLOCK(sc);
 1529                 error = 0;
 1530                 break;
 1531         case SIOCADDMULTI:
 1532         case SIOCDELMULTI:
 1533                 STE_LOCK(sc);
 1534                 ste_setmulti(sc);
 1535                 STE_UNLOCK(sc);
 1536                 error = 0;
 1537                 break;
 1538         case SIOCGIFMEDIA:
 1539         case SIOCSIFMEDIA:
 1540                 mii = device_get_softc(sc->ste_miibus);
 1541                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
 1542                 break;
 1543         case SIOCSIFCAP:
 1544 #ifdef DEVICE_POLLING
 1545                 if (ifr->ifr_reqcap & IFCAP_POLLING &&
 1546                     !(ifp->if_capenable & IFCAP_POLLING)) {
 1547                         error = ether_poll_register(ste_poll, ifp);
 1548                         if (error)
 1549                                 return(error);
 1550                         STE_LOCK(sc);
 1551                         /* Disable interrupts */
 1552                         CSR_WRITE_2(sc, STE_IMR, 0);
 1553                         ifp->if_capenable |= IFCAP_POLLING;
 1554                         STE_UNLOCK(sc);
 1555                         return (error);
 1556                         
 1557                 }
 1558                 if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
 1559                     ifp->if_capenable & IFCAP_POLLING) {
 1560                         error = ether_poll_deregister(ifp);
 1561                         /* Enable interrupts. */
 1562                         STE_LOCK(sc);
 1563                         CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
 1564                         ifp->if_capenable &= ~IFCAP_POLLING;
 1565                         STE_UNLOCK(sc);
 1566                         return (error);
 1567                 }
 1568 #endif /* DEVICE_POLLING */
 1569                 break;
 1570         default:
 1571                 error = ether_ioctl(ifp, command, data);
 1572                 break;
 1573         }
 1574 
 1575         return(error);
 1576 }
 1577 
 1578 static int
 1579 ste_encap(sc, c, m_head)
 1580         struct ste_softc        *sc;
 1581         struct ste_chain        *c;
 1582         struct mbuf             *m_head;
 1583 {
 1584         int                     frag = 0;
 1585         struct ste_frag         *f = NULL;
 1586         struct mbuf             *m;
 1587         struct ste_desc         *d;
 1588 
 1589         d = c->ste_ptr;
 1590         d->ste_ctl = 0;
 1591 
 1592 encap_retry:
 1593         for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
 1594                 if (m->m_len != 0) {
 1595                         if (frag == STE_MAXFRAGS)
 1596                                 break;
 1597                         f = &d->ste_frags[frag];
 1598                         f->ste_addr = vtophys(mtod(m, vm_offset_t));
 1599                         f->ste_len = m->m_len;
 1600                         frag++;
 1601                 }
 1602         }
 1603 
 1604         if (m != NULL) {
 1605                 struct mbuf *mn;
 1606 
 1607                 /*
 1608                  * We ran out of segments. We have to recopy this
 1609                  * mbuf chain first. Bail out if we can't get the
 1610                  * new buffers.
 1611                  */
 1612                 mn = m_defrag(m_head, M_DONTWAIT);
 1613                 if (mn == NULL) {
 1614                         m_freem(m_head);
 1615                         return ENOMEM;
 1616                 }
 1617                 m_head = mn;
 1618                 goto encap_retry;
 1619         }
 1620 
 1621         c->ste_mbuf = m_head;
 1622         d->ste_frags[frag - 1].ste_len |= STE_FRAG_LAST;
 1623         d->ste_ctl = 1;
 1624 
 1625         return(0);
 1626 }
 1627 
 1628 static void
 1629 ste_start(ifp)
 1630         struct ifnet            *ifp;
 1631 {
 1632         struct ste_softc        *sc;
 1633 
 1634         sc = ifp->if_softc;
 1635         STE_LOCK(sc);
 1636         ste_start_locked(ifp);
 1637         STE_UNLOCK(sc);
 1638 }
 1639 
 1640 static void
 1641 ste_start_locked(ifp)
 1642         struct ifnet            *ifp;
 1643 {
 1644         struct ste_softc        *sc;
 1645         struct mbuf             *m_head = NULL;
 1646         struct ste_chain        *cur_tx;
 1647         int                     idx;
 1648 
 1649         sc = ifp->if_softc;
 1650         STE_LOCK_ASSERT(sc);
 1651 
 1652         if (!sc->ste_link)
 1653                 return;
 1654 
 1655         if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
 1656                 return;
 1657 
 1658         idx = sc->ste_cdata.ste_tx_prod;
 1659 
 1660         while(sc->ste_cdata.ste_tx_chain[idx].ste_mbuf == NULL) {
 1661                 /*
 1662                  * We cannot re-use the last (free) descriptor;
 1663                  * the chip may not have read its ste_next yet.
 1664                  */
 1665                 if (STE_NEXT(idx, STE_TX_LIST_CNT) ==
 1666                     sc->ste_cdata.ste_tx_cons) {
 1667                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 1668                         break;
 1669                 }
 1670 
 1671                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
 1672                 if (m_head == NULL)
 1673                         break;
 1674 
 1675                 cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
 1676 
 1677                 if (ste_encap(sc, cur_tx, m_head) != 0)
 1678                         break;
 1679 
 1680                 cur_tx->ste_ptr->ste_next = 0;
 1681 
 1682                 if (sc->ste_tx_prev == NULL) {
 1683                         cur_tx->ste_ptr->ste_ctl = STE_TXCTL_DMAINTR | 1;
 1684                         /* Load address of the TX list */
 1685                         STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
 1686                         ste_wait(sc);
 1687 
 1688                         CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
 1689                             vtophys(&sc->ste_ldata->ste_tx_list[0]));
 1690 
 1691                         /* Set TX polling interval to start TX engine */
 1692                         CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
 1693                   
 1694                         STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
 1695                         ste_wait(sc);
 1696                 }else{
 1697                         cur_tx->ste_ptr->ste_ctl = STE_TXCTL_DMAINTR | 1;
 1698                         sc->ste_tx_prev->ste_ptr->ste_next
 1699                                 = cur_tx->ste_phys;
 1700                 }
 1701 
 1702                 sc->ste_tx_prev = cur_tx;
 1703 
 1704                 /*
 1705                  * If there's a BPF listener, bounce a copy of this frame
 1706                  * to him.
 1707                  */
 1708                 BPF_MTAP(ifp, cur_tx->ste_mbuf);
 1709 
 1710                 STE_INC(idx, STE_TX_LIST_CNT);
 1711                 ifp->if_timer = 5;
 1712         }
 1713         sc->ste_cdata.ste_tx_prod = idx;
 1714 
 1715         return;
 1716 }
 1717 
 1718 static void
 1719 ste_watchdog(ifp)
 1720         struct ifnet            *ifp;
 1721 {
 1722         struct ste_softc        *sc;
 1723 
 1724         sc = ifp->if_softc;
 1725         STE_LOCK(sc);
 1726 
 1727         ifp->if_oerrors++;
 1728         if_printf(ifp, "watchdog timeout\n");
 1729 
 1730         ste_txeoc(sc);
 1731         ste_txeof(sc);
 1732         ste_rxeoc(sc);
 1733         ste_rxeof(sc);
 1734         ste_reset(sc);
 1735         ste_init_locked(sc);
 1736 
 1737         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 1738                 ste_start_locked(ifp);
 1739         STE_UNLOCK(sc);
 1740 
 1741         return;
 1742 }
 1743 
 1744 static int
 1745 ste_shutdown(dev)
 1746         device_t                dev;
 1747 {
 1748         struct ste_softc        *sc;
 1749 
 1750         sc = device_get_softc(dev);
 1751 
 1752         STE_LOCK(sc);
 1753         ste_stop(sc);
 1754         STE_UNLOCK(sc);
 1755 
 1756         return (0);
 1757 }

Cache object: 7a111cc5b4a718111a429f553227981b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.