The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/ste/if_ste.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1997, 1998, 1999
    3  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. All advertising materials mentioning features or use of this software
   14  *    must display the following acknowledgement:
   15  *      This product includes software developed by Bill Paul.
   16  * 4. Neither the name of the author nor the names of any co-contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   30  * THE POSSIBILITY OF SUCH DAMAGE.
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD: releng/9.0/sys/dev/ste/if_ste.c 227277 2011-11-06 21:09:10Z marius $");
   35 
   36 #ifdef HAVE_KERNEL_OPTION_HEADERS
   37 #include "opt_device_polling.h"
   38 #endif
   39 
   40 #include <sys/param.h>
   41 #include <sys/systm.h>
   42 #include <sys/bus.h>
   43 #include <sys/endian.h>
   44 #include <sys/kernel.h>
   45 #include <sys/lock.h>
   46 #include <sys/malloc.h>
   47 #include <sys/mbuf.h>
   48 #include <sys/module.h>
   49 #include <sys/rman.h>
   50 #include <sys/socket.h>
   51 #include <sys/sockio.h>
   52 #include <sys/sysctl.h>
   53 
   54 #include <net/bpf.h>
   55 #include <net/if.h>
   56 #include <net/if_arp.h>
   57 #include <net/ethernet.h>
   58 #include <net/if_dl.h>
   59 #include <net/if_media.h>
   60 #include <net/if_types.h>
   61 #include <net/if_vlan_var.h>
   62 
   63 #include <machine/bus.h>
   64 #include <machine/resource.h>
   65 
   66 #include <dev/mii/mii.h>
   67 #include <dev/mii/mii_bitbang.h>
   68 #include <dev/mii/miivar.h>
   69 
   70 #include <dev/pci/pcireg.h>
   71 #include <dev/pci/pcivar.h>
   72 
   73 #include <dev/ste/if_stereg.h>
   74 
   75 /* "device miibus" required.  See GENERIC if you get errors here. */
   76 #include "miibus_if.h"
   77 
   78 MODULE_DEPEND(ste, pci, 1, 1, 1);
   79 MODULE_DEPEND(ste, ether, 1, 1, 1);
   80 MODULE_DEPEND(ste, miibus, 1, 1, 1);
   81 
   82 /* Define to show Tx error status. */
   83 #define STE_SHOW_TXERRORS
   84 
   85 /*
   86  * Various supported device vendors/types and their names.
   87  */
   88 static const struct ste_type const ste_devs[] = {
   89         { ST_VENDORID, ST_DEVICEID_ST201_1, "Sundance ST201 10/100BaseTX" },
   90         { ST_VENDORID, ST_DEVICEID_ST201_2, "Sundance ST201 10/100BaseTX" },
   91         { DL_VENDORID, DL_DEVICEID_DL10050, "D-Link DL10050 10/100BaseTX" },
   92         { 0, 0, NULL }
   93 };
   94 
   95 static int      ste_attach(device_t);
   96 static int      ste_detach(device_t);
   97 static int      ste_probe(device_t);
   98 static int      ste_resume(device_t);
   99 static int      ste_shutdown(device_t);
  100 static int      ste_suspend(device_t);
  101 
  102 static int      ste_dma_alloc(struct ste_softc *);
  103 static void     ste_dma_free(struct ste_softc *);
  104 static void     ste_dmamap_cb(void *, bus_dma_segment_t *, int, int);
  105 static int      ste_eeprom_wait(struct ste_softc *);
  106 static int      ste_encap(struct ste_softc *, struct mbuf **,
  107                     struct ste_chain *);
  108 static int      ste_ifmedia_upd(struct ifnet *);
  109 static void     ste_ifmedia_sts(struct ifnet *, struct ifmediareq *);
  110 static void     ste_init(void *);
  111 static void     ste_init_locked(struct ste_softc *);
  112 static int      ste_init_rx_list(struct ste_softc *);
  113 static void     ste_init_tx_list(struct ste_softc *);
  114 static void     ste_intr(void *);
  115 static int      ste_ioctl(struct ifnet *, u_long, caddr_t);
  116 static uint32_t ste_mii_bitbang_read(device_t);
  117 static void     ste_mii_bitbang_write(device_t, uint32_t);
  118 static int      ste_miibus_readreg(device_t, int, int);
  119 static void     ste_miibus_statchg(device_t);
  120 static int      ste_miibus_writereg(device_t, int, int, int);
  121 static int      ste_newbuf(struct ste_softc *, struct ste_chain_onefrag *);
  122 static int      ste_read_eeprom(struct ste_softc *, uint16_t *, int, int);
  123 static void     ste_reset(struct ste_softc *);
  124 static void     ste_restart_tx(struct ste_softc *);
  125 static int      ste_rxeof(struct ste_softc *, int);
  126 static void     ste_rxfilter(struct ste_softc *);
  127 static void     ste_setwol(struct ste_softc *);
  128 static void     ste_start(struct ifnet *);
  129 static void     ste_start_locked(struct ifnet *);
  130 static void     ste_stats_clear(struct ste_softc *);
  131 static void     ste_stats_update(struct ste_softc *);
  132 static void     ste_stop(struct ste_softc *);
  133 static void     ste_sysctl_node(struct ste_softc *);
  134 static void     ste_tick(void *);
  135 static void     ste_txeoc(struct ste_softc *);
  136 static void     ste_txeof(struct ste_softc *);
  137 static void     ste_wait(struct ste_softc *);
  138 static void     ste_watchdog(struct ste_softc *);
  139 
  140 /*
  141  * MII bit-bang glue
  142  */
  143 static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
  144         ste_mii_bitbang_read,
  145         ste_mii_bitbang_write,
  146         {
  147                 STE_PHYCTL_MDATA,       /* MII_BIT_MDO */
  148                 STE_PHYCTL_MDATA,       /* MII_BIT_MDI */
  149                 STE_PHYCTL_MCLK,        /* MII_BIT_MDC */
  150                 STE_PHYCTL_MDIR,        /* MII_BIT_DIR_HOST_PHY */
  151                 0,                      /* MII_BIT_DIR_PHY_HOST */
  152         }
  153 };
  154 
  155 static device_method_t ste_methods[] = {
  156         /* Device interface */
  157         DEVMETHOD(device_probe,         ste_probe),
  158         DEVMETHOD(device_attach,        ste_attach),
  159         DEVMETHOD(device_detach,        ste_detach),
  160         DEVMETHOD(device_shutdown,      ste_shutdown),
  161         DEVMETHOD(device_suspend,       ste_suspend),
  162         DEVMETHOD(device_resume,        ste_resume),
  163 
  164         /* bus interface */
  165         DEVMETHOD(bus_print_child,      bus_generic_print_child),
  166         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
  167 
  168         /* MII interface */
  169         DEVMETHOD(miibus_readreg,       ste_miibus_readreg),
  170         DEVMETHOD(miibus_writereg,      ste_miibus_writereg),
  171         DEVMETHOD(miibus_statchg,       ste_miibus_statchg),
  172 
  173         { 0, 0 }
  174 };
  175 
  176 static driver_t ste_driver = {
  177         "ste",
  178         ste_methods,
  179         sizeof(struct ste_softc)
  180 };
  181 
  182 static devclass_t ste_devclass;
  183 
  184 DRIVER_MODULE(ste, pci, ste_driver, ste_devclass, 0, 0);
  185 DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, 0, 0);
  186 
  187 #define STE_SETBIT4(sc, reg, x)                         \
  188         CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
  189 
  190 #define STE_CLRBIT4(sc, reg, x)                         \
  191         CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
  192 
  193 #define STE_SETBIT2(sc, reg, x)                         \
  194         CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | (x))
  195 
  196 #define STE_CLRBIT2(sc, reg, x)                         \
  197         CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~(x))
  198 
  199 #define STE_SETBIT1(sc, reg, x)                         \
  200         CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | (x))
  201 
  202 #define STE_CLRBIT1(sc, reg, x)                         \
  203         CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~(x))
  204 
  205 /*
  206  * Read the MII serial port for the MII bit-bang module.
  207  */
  208 static uint32_t
  209 ste_mii_bitbang_read(device_t dev)
  210 {
  211         struct ste_softc *sc;
  212         uint32_t val;
  213 
  214         sc = device_get_softc(dev);
  215 
  216         val = CSR_READ_1(sc, STE_PHYCTL);
  217         CSR_BARRIER(sc, STE_PHYCTL, 1,
  218             BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
  219 
  220         return (val);
  221 }
  222 
  223 /*
  224  * Write the MII serial port for the MII bit-bang module.
  225  */
  226 static void
  227 ste_mii_bitbang_write(device_t dev, uint32_t val)
  228 {
  229         struct ste_softc *sc;
  230 
  231         sc = device_get_softc(dev);
  232 
  233         CSR_WRITE_1(sc, STE_PHYCTL, val);
  234         CSR_BARRIER(sc, STE_PHYCTL, 1,
  235             BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
  236 }
  237 
  238 static int
  239 ste_miibus_readreg(device_t dev, int phy, int reg)
  240 {
  241 
  242         return (mii_bitbang_readreg(dev, &ste_mii_bitbang_ops, phy, reg));
  243 }
  244 
  245 static int
  246 ste_miibus_writereg(device_t dev, int phy, int reg, int data)
  247 {
  248 
  249         mii_bitbang_writereg(dev, &ste_mii_bitbang_ops, phy, reg, data);
  250 
  251         return (0);
  252 }
  253 
  254 static void
  255 ste_miibus_statchg(device_t dev)
  256 {
  257         struct ste_softc *sc;
  258         struct mii_data *mii;
  259         struct ifnet *ifp;
  260         uint16_t cfg;
  261 
  262         sc = device_get_softc(dev);
  263 
  264         mii = device_get_softc(sc->ste_miibus);
  265         ifp = sc->ste_ifp;
  266         if (mii == NULL || ifp == NULL ||
  267             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
  268                 return;
  269 
  270         sc->ste_flags &= ~STE_FLAG_LINK;
  271         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
  272             (IFM_ACTIVE | IFM_AVALID)) {
  273                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
  274                 case IFM_10_T:
  275                 case IFM_100_TX:
  276                 case IFM_100_FX:
  277                 case IFM_100_T4:
  278                         sc->ste_flags |= STE_FLAG_LINK;
  279                 default:
  280                         break;
  281                 }
  282         }
  283 
  284         /* Program MACs with resolved speed/duplex/flow-control. */
  285         if ((sc->ste_flags & STE_FLAG_LINK) != 0) {
  286                 cfg = CSR_READ_2(sc, STE_MACCTL0);
  287                 cfg &= ~(STE_MACCTL0_FLOWCTL_ENABLE | STE_MACCTL0_FULLDUPLEX);
  288                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
  289                         /*
  290                          * ST201 data sheet says driver should enable receiving
  291                          * MAC control frames bit of receive mode register to
  292                          * receive flow-control frames but the register has no
  293                          * such bits. In addition the controller has no ability
  294                          * to send pause frames so it should be handled in
  295                          * driver. Implementing pause timer handling in driver
  296                          * layer is not trivial, so don't enable flow-control
  297                          * here.
  298                          */
  299                         cfg |= STE_MACCTL0_FULLDUPLEX;
  300                 }
  301                 CSR_WRITE_2(sc, STE_MACCTL0, cfg);
  302         }
  303 }
  304 
  305 static int
  306 ste_ifmedia_upd(struct ifnet *ifp)
  307 {
  308         struct ste_softc *sc;
  309         struct mii_data *mii;
  310         struct mii_softc *miisc;
  311         int error;
  312 
  313         sc = ifp->if_softc;
  314         STE_LOCK(sc);
  315         mii = device_get_softc(sc->ste_miibus);
  316         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
  317                 PHY_RESET(miisc);
  318         error = mii_mediachg(mii);
  319         STE_UNLOCK(sc);
  320 
  321         return (error);
  322 }
  323 
  324 static void
  325 ste_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
  326 {
  327         struct ste_softc *sc;
  328         struct mii_data *mii;
  329 
  330         sc = ifp->if_softc;
  331         mii = device_get_softc(sc->ste_miibus);
  332 
  333         STE_LOCK(sc);
  334         if ((ifp->if_flags & IFF_UP) == 0) {
  335                 STE_UNLOCK(sc);
  336                 return;
  337         }
  338         mii_pollstat(mii);
  339         ifmr->ifm_active = mii->mii_media_active;
  340         ifmr->ifm_status = mii->mii_media_status;
  341         STE_UNLOCK(sc);
  342 }
  343 
  344 static void
  345 ste_wait(struct ste_softc *sc)
  346 {
  347         int i;
  348 
  349         for (i = 0; i < STE_TIMEOUT; i++) {
  350                 if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
  351                         break;
  352                 DELAY(1);
  353         }
  354 
  355         if (i == STE_TIMEOUT)
  356                 device_printf(sc->ste_dev, "command never completed!\n");
  357 }
  358 
  359 /*
  360  * The EEPROM is slow: give it time to come ready after issuing
  361  * it a command.
  362  */
  363 static int
  364 ste_eeprom_wait(struct ste_softc *sc)
  365 {
  366         int i;
  367 
  368         DELAY(1000);
  369 
  370         for (i = 0; i < 100; i++) {
  371                 if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
  372                         DELAY(1000);
  373                 else
  374                         break;
  375         }
  376 
  377         if (i == 100) {
  378                 device_printf(sc->ste_dev, "eeprom failed to come ready\n");
  379                 return (1);
  380         }
  381 
  382         return (0);
  383 }
  384 
  385 /*
  386  * Read a sequence of words from the EEPROM. Note that ethernet address
  387  * data is stored in the EEPROM in network byte order.
  388  */
  389 static int
  390 ste_read_eeprom(struct ste_softc *sc, uint16_t *dest, int off, int cnt)
  391 {
  392         int err = 0, i;
  393 
  394         if (ste_eeprom_wait(sc))
  395                 return (1);
  396 
  397         for (i = 0; i < cnt; i++) {
  398                 CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
  399                 err = ste_eeprom_wait(sc);
  400                 if (err)
  401                         break;
  402                 *dest = le16toh(CSR_READ_2(sc, STE_EEPROM_DATA));
  403                 dest++;
  404         }
  405 
  406         return (err ? 1 : 0);
  407 }
  408 
  409 static void
  410 ste_rxfilter(struct ste_softc *sc)
  411 {
  412         struct ifnet *ifp;
  413         struct ifmultiaddr *ifma;
  414         uint32_t hashes[2] = { 0, 0 };
  415         uint8_t rxcfg;
  416         int h;
  417 
  418         STE_LOCK_ASSERT(sc);
  419 
  420         ifp = sc->ste_ifp;
  421         rxcfg = CSR_READ_1(sc, STE_RX_MODE);
  422         rxcfg |= STE_RXMODE_UNICAST;
  423         rxcfg &= ~(STE_RXMODE_ALLMULTI | STE_RXMODE_MULTIHASH |
  424             STE_RXMODE_BROADCAST | STE_RXMODE_PROMISC);
  425         if (ifp->if_flags & IFF_BROADCAST)
  426                 rxcfg |= STE_RXMODE_BROADCAST;
  427         if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
  428                 if ((ifp->if_flags & IFF_ALLMULTI) != 0)
  429                         rxcfg |= STE_RXMODE_ALLMULTI;
  430                 if ((ifp->if_flags & IFF_PROMISC) != 0)
  431                         rxcfg |= STE_RXMODE_PROMISC;
  432                 goto chipit;
  433         }
  434 
  435         rxcfg |= STE_RXMODE_MULTIHASH;
  436         /* Now program new ones. */
  437         if_maddr_rlock(ifp);
  438         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
  439                 if (ifma->ifma_addr->sa_family != AF_LINK)
  440                         continue;
  441                 h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
  442                     ifma->ifma_addr), ETHER_ADDR_LEN) & 0x3F;
  443                 if (h < 32)
  444                         hashes[0] |= (1 << h);
  445                 else
  446                         hashes[1] |= (1 << (h - 32));
  447         }
  448         if_maddr_runlock(ifp);
  449 
  450 chipit:
  451         CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
  452         CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
  453         CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
  454         CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
  455         CSR_WRITE_1(sc, STE_RX_MODE, rxcfg);
  456         CSR_READ_1(sc, STE_RX_MODE);
  457 }
  458 
  459 #ifdef DEVICE_POLLING
  460 static poll_handler_t ste_poll, ste_poll_locked;
  461 
  462 static int
  463 ste_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
  464 {
  465         struct ste_softc *sc = ifp->if_softc;
  466         int rx_npkts = 0;
  467 
  468         STE_LOCK(sc);
  469         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
  470                 rx_npkts = ste_poll_locked(ifp, cmd, count);
  471         STE_UNLOCK(sc);
  472         return (rx_npkts);
  473 }
  474 
  475 static int
  476 ste_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
  477 {
  478         struct ste_softc *sc = ifp->if_softc;
  479         int rx_npkts;
  480 
  481         STE_LOCK_ASSERT(sc);
  482 
  483         rx_npkts = ste_rxeof(sc, count);
  484         ste_txeof(sc);
  485         ste_txeoc(sc);
  486         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
  487                 ste_start_locked(ifp);
  488 
  489         if (cmd == POLL_AND_CHECK_STATUS) {
  490                 uint16_t status;
  491 
  492                 status = CSR_READ_2(sc, STE_ISR_ACK);
  493 
  494                 if (status & STE_ISR_STATS_OFLOW)
  495                         ste_stats_update(sc);
  496 
  497                 if (status & STE_ISR_HOSTERR) {
  498                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
  499                         ste_init_locked(sc);
  500                 }
  501         }
  502         return (rx_npkts);
  503 }
  504 #endif /* DEVICE_POLLING */
  505 
  506 static void
  507 ste_intr(void *xsc)
  508 {
  509         struct ste_softc *sc;
  510         struct ifnet *ifp;
  511         uint16_t intrs, status;
  512 
  513         sc = xsc;
  514         STE_LOCK(sc);
  515         ifp = sc->ste_ifp;
  516 
  517 #ifdef DEVICE_POLLING
  518         if (ifp->if_capenable & IFCAP_POLLING) {
  519                 STE_UNLOCK(sc);
  520                 return;
  521         }
  522 #endif
  523         /* Reading STE_ISR_ACK clears STE_IMR register. */
  524         status = CSR_READ_2(sc, STE_ISR_ACK);
  525         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
  526                 STE_UNLOCK(sc);
  527                 return;
  528         }
  529 
  530         intrs = STE_INTRS;
  531         if (status == 0xFFFF || (status & intrs) == 0)
  532                 goto done;
  533 
  534         if (sc->ste_int_rx_act > 0) {
  535                 status &= ~STE_ISR_RX_DMADONE;
  536                 intrs &= ~STE_IMR_RX_DMADONE;
  537         }
  538 
  539         if ((status & (STE_ISR_SOFTINTR | STE_ISR_RX_DMADONE)) != 0) {
  540                 ste_rxeof(sc, -1);
  541                 /*
  542                  * The controller has no ability to Rx interrupt
  543                  * moderation feature. Receiving 64 bytes frames
  544                  * from wire generates too many interrupts which in
  545                  * turn make system useless to process other useful
  546                  * things. Fortunately ST201 supports single shot
  547                  * timer so use the timer to implement Rx interrupt
  548                  * moderation in driver. This adds more register
  549                  * access but it greatly reduces number of Rx
  550                  * interrupts under high network load.
  551                  */
  552                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
  553                     (sc->ste_int_rx_mod != 0)) {
  554                         if ((status & STE_ISR_RX_DMADONE) != 0) {
  555                                 CSR_WRITE_2(sc, STE_COUNTDOWN,
  556                                     STE_TIMER_USECS(sc->ste_int_rx_mod));
  557                                 intrs &= ~STE_IMR_RX_DMADONE;
  558                                 sc->ste_int_rx_act = 1;
  559                         } else {
  560                                 intrs |= STE_IMR_RX_DMADONE;
  561                                 sc->ste_int_rx_act = 0;
  562                         }
  563                 }
  564         }
  565         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
  566                 if ((status & STE_ISR_TX_DMADONE) != 0)
  567                         ste_txeof(sc);
  568                 if ((status & STE_ISR_TX_DONE) != 0)
  569                         ste_txeoc(sc);
  570                 if ((status & STE_ISR_STATS_OFLOW) != 0)
  571                         ste_stats_update(sc);
  572                 if ((status & STE_ISR_HOSTERR) != 0) {
  573                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
  574                         ste_init_locked(sc);
  575                         STE_UNLOCK(sc);
  576                         return;
  577                 }
  578                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
  579                         ste_start_locked(ifp);
  580 done:
  581                 /* Re-enable interrupts */
  582                 CSR_WRITE_2(sc, STE_IMR, intrs);
  583         }
  584         STE_UNLOCK(sc);
  585 }
  586 
  587 /*
  588  * A frame has been uploaded: pass the resulting mbuf chain up to
  589  * the higher level protocols.
  590  */
  591 static int
  592 ste_rxeof(struct ste_softc *sc, int count)
  593 {
  594         struct mbuf *m;
  595         struct ifnet *ifp;
  596         struct ste_chain_onefrag *cur_rx;
  597         uint32_t rxstat;
  598         int total_len, rx_npkts;
  599 
  600         ifp = sc->ste_ifp;
  601 
  602         bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
  603             sc->ste_cdata.ste_rx_list_map,
  604             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
  605 
  606         cur_rx = sc->ste_cdata.ste_rx_head;
  607         for (rx_npkts = 0; rx_npkts < STE_RX_LIST_CNT; rx_npkts++,
  608             cur_rx = cur_rx->ste_next) {
  609                 rxstat = le32toh(cur_rx->ste_ptr->ste_status);
  610                 if ((rxstat & STE_RXSTAT_DMADONE) == 0)
  611                         break;
  612 #ifdef DEVICE_POLLING
  613                 if (ifp->if_capenable & IFCAP_POLLING) {
  614                         if (count == 0)
  615                                 break;
  616                         count--;
  617                 }
  618 #endif
  619                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
  620                         break;
  621                 /*
  622                  * If an error occurs, update stats, clear the
  623                  * status word and leave the mbuf cluster in place:
  624                  * it should simply get re-used next time this descriptor
  625                  * comes up in the ring.
  626                  */
  627                 if (rxstat & STE_RXSTAT_FRAME_ERR) {
  628                         ifp->if_ierrors++;
  629                         cur_rx->ste_ptr->ste_status = 0;
  630                         continue;
  631                 }
  632 
  633                 /* No errors; receive the packet. */
  634                 m = cur_rx->ste_mbuf;
  635                 total_len = STE_RX_BYTES(rxstat);
  636 
  637                 /*
  638                  * Try to conjure up a new mbuf cluster. If that
  639                  * fails, it means we have an out of memory condition and
  640                  * should leave the buffer in place and continue. This will
  641                  * result in a lost packet, but there's little else we
  642                  * can do in this situation.
  643                  */
  644                 if (ste_newbuf(sc, cur_rx) != 0) {
  645                         ifp->if_iqdrops++;
  646                         cur_rx->ste_ptr->ste_status = 0;
  647                         continue;
  648                 }
  649 
  650                 m->m_pkthdr.rcvif = ifp;
  651                 m->m_pkthdr.len = m->m_len = total_len;
  652 
  653                 ifp->if_ipackets++;
  654                 STE_UNLOCK(sc);
  655                 (*ifp->if_input)(ifp, m);
  656                 STE_LOCK(sc);
  657         }
  658 
  659         if (rx_npkts > 0) {
  660                 sc->ste_cdata.ste_rx_head = cur_rx;
  661                 bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
  662                     sc->ste_cdata.ste_rx_list_map,
  663                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
  664         }
  665 
  666         return (rx_npkts);
  667 }
  668 
  669 static void
  670 ste_txeoc(struct ste_softc *sc)
  671 {
  672         uint16_t txstat;
  673         struct ifnet *ifp;
  674 
  675         STE_LOCK_ASSERT(sc);
  676 
  677         ifp = sc->ste_ifp;
  678 
  679         /*
  680          * STE_TX_STATUS register implements a queue of up to 31
  681          * transmit status byte. Writing an arbitrary value to the
  682          * register will advance the queue to the next transmit
  683          * status byte. This means if driver does not read
  684          * STE_TX_STATUS register after completing sending more
  685          * than 31 frames the controller would be stalled so driver
  686          * should re-wake the Tx MAC. This is the most severe
  687          * limitation of ST201 based controller.
  688          */
  689         for (;;) {
  690                 txstat = CSR_READ_2(sc, STE_TX_STATUS);
  691                 if ((txstat & STE_TXSTATUS_TXDONE) == 0)
  692                         break;
  693                 if ((txstat & (STE_TXSTATUS_UNDERRUN |
  694                     STE_TXSTATUS_EXCESSCOLLS | STE_TXSTATUS_RECLAIMERR |
  695                     STE_TXSTATUS_STATSOFLOW)) != 0) {
  696                         ifp->if_oerrors++;
  697 #ifdef  STE_SHOW_TXERRORS
  698                         device_printf(sc->ste_dev, "TX error : 0x%b\n",
  699                             txstat & 0xFF, STE_ERR_BITS);
  700 #endif
  701                         if ((txstat & STE_TXSTATUS_UNDERRUN) != 0 &&
  702                             sc->ste_tx_thresh < STE_PACKET_SIZE) {
  703                                 sc->ste_tx_thresh += STE_MIN_FRAMELEN;
  704                                 if (sc->ste_tx_thresh > STE_PACKET_SIZE)
  705                                         sc->ste_tx_thresh = STE_PACKET_SIZE;
  706                                 device_printf(sc->ste_dev,
  707                                     "TX underrun, increasing TX"
  708                                     " start threshold to %d bytes\n",
  709                                     sc->ste_tx_thresh);
  710                                 /* Make sure to disable active DMA cycles. */
  711                                 STE_SETBIT4(sc, STE_DMACTL,
  712                                     STE_DMACTL_TXDMA_STALL);
  713                                 ste_wait(sc);
  714                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
  715                                 ste_init_locked(sc);
  716                                 break;
  717                         }
  718                         /* Restart Tx. */
  719                         ste_restart_tx(sc);
  720                 }
  721                 /*
  722                  * Advance to next status and ACK TxComplete
  723                  * interrupt. ST201 data sheet was wrong here, to
  724                  * get next Tx status, we have to write both
  725                  * STE_TX_STATUS and STE_TX_FRAMEID register.
  726                  * Otherwise controller returns the same status
  727                  * as well as not acknowledge Tx completion
  728                  * interrupt.
  729                  */
  730                 CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
  731         }
  732 }
  733 
  734 static void
  735 ste_tick(void *arg)
  736 {
  737         struct ste_softc *sc;
  738         struct mii_data *mii;
  739 
  740         sc = (struct ste_softc *)arg;
  741 
  742         STE_LOCK_ASSERT(sc);
  743 
  744         mii = device_get_softc(sc->ste_miibus);
  745         mii_tick(mii);
  746         /*
  747          * ukphy(4) does not seem to generate CB that reports
  748          * resolved link state so if we know we lost a link,
  749          * explicitly check the link state.
  750          */
  751         if ((sc->ste_flags & STE_FLAG_LINK) == 0)
  752                 ste_miibus_statchg(sc->ste_dev);
  753         /*
  754          * Because we are not generating Tx completion
  755          * interrupt for every frame, reclaim transmitted
  756          * buffers here.
  757          */
  758         ste_txeof(sc);
  759         ste_txeoc(sc);
  760         ste_stats_update(sc);
  761         ste_watchdog(sc);
  762         callout_reset(&sc->ste_callout, hz, ste_tick, sc);
  763 }
  764 
  765 static void
  766 ste_txeof(struct ste_softc *sc)
  767 {
  768         struct ifnet *ifp;
  769         struct ste_chain *cur_tx;
  770         uint32_t txstat;
  771         int idx;
  772 
  773         STE_LOCK_ASSERT(sc);
  774 
  775         ifp = sc->ste_ifp;
  776         idx = sc->ste_cdata.ste_tx_cons;
  777         if (idx == sc->ste_cdata.ste_tx_prod)
  778                 return;
  779 
  780         bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
  781             sc->ste_cdata.ste_tx_list_map,
  782             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
  783 
  784         while (idx != sc->ste_cdata.ste_tx_prod) {
  785                 cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
  786                 txstat = le32toh(cur_tx->ste_ptr->ste_ctl);
  787                 if ((txstat & STE_TXCTL_DMADONE) == 0)
  788                         break;
  789                 bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map,
  790                     BUS_DMASYNC_POSTWRITE);
  791                 bus_dmamap_unload(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map);
  792                 KASSERT(cur_tx->ste_mbuf != NULL,
  793                     ("%s: freeing NULL mbuf!\n", __func__));
  794                 m_freem(cur_tx->ste_mbuf);
  795                 cur_tx->ste_mbuf = NULL;
  796                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
  797                 ifp->if_opackets++;
  798                 sc->ste_cdata.ste_tx_cnt--;
  799                 STE_INC(idx, STE_TX_LIST_CNT);
  800         }
  801 
  802         sc->ste_cdata.ste_tx_cons = idx;
  803         if (sc->ste_cdata.ste_tx_cnt == 0)
  804                 sc->ste_timer = 0;
  805 }
  806 
  807 static void
  808 ste_stats_clear(struct ste_softc *sc)
  809 {
  810 
  811         STE_LOCK_ASSERT(sc);
  812 
  813         /* Rx stats. */
  814         CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO);
  815         CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI);
  816         CSR_READ_2(sc, STE_STAT_RX_FRAMES);
  817         CSR_READ_1(sc, STE_STAT_RX_BCAST);
  818         CSR_READ_1(sc, STE_STAT_RX_MCAST);
  819         CSR_READ_1(sc, STE_STAT_RX_LOST);
  820         /* Tx stats. */
  821         CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO);
  822         CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI);
  823         CSR_READ_2(sc, STE_STAT_TX_FRAMES);
  824         CSR_READ_1(sc, STE_STAT_TX_BCAST);
  825         CSR_READ_1(sc, STE_STAT_TX_MCAST);
  826         CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
  827         CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
  828         CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
  829         CSR_READ_1(sc, STE_STAT_LATE_COLLS);
  830         CSR_READ_1(sc, STE_STAT_TX_DEFER);
  831         CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
  832         CSR_READ_1(sc, STE_STAT_TX_ABORT);
  833 }
  834 
  835 static void
  836 ste_stats_update(struct ste_softc *sc)
  837 {
  838         struct ifnet *ifp;
  839         struct ste_hw_stats *stats;
  840         uint32_t val;
  841 
  842         STE_LOCK_ASSERT(sc);
  843 
  844         ifp = sc->ste_ifp;
  845         stats = &sc->ste_stats;
  846         /* Rx stats. */
  847         val = (uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO) |
  848             ((uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI)) << 16;
  849         val &= 0x000FFFFF;
  850         stats->rx_bytes += val;
  851         stats->rx_frames += CSR_READ_2(sc, STE_STAT_RX_FRAMES);
  852         stats->rx_bcast_frames += CSR_READ_1(sc, STE_STAT_RX_BCAST);
  853         stats->rx_mcast_frames += CSR_READ_1(sc, STE_STAT_RX_MCAST);
  854         stats->rx_lost_frames += CSR_READ_1(sc, STE_STAT_RX_LOST);
  855         /* Tx stats. */
  856         val = (uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO) |
  857             ((uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI)) << 16;
  858         val &= 0x000FFFFF;
  859         stats->tx_bytes += val;
  860         stats->tx_frames += CSR_READ_2(sc, STE_STAT_TX_FRAMES);
  861         stats->tx_bcast_frames += CSR_READ_1(sc, STE_STAT_TX_BCAST);
  862         stats->tx_mcast_frames += CSR_READ_1(sc, STE_STAT_TX_MCAST);
  863         stats->tx_carrsense_errs += CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
  864         val = CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
  865         stats->tx_single_colls += val;
  866         ifp->if_collisions += val;
  867         val = CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
  868         stats->tx_multi_colls += val;
  869         ifp->if_collisions += val;
  870         val += CSR_READ_1(sc, STE_STAT_LATE_COLLS);
  871         stats->tx_late_colls += val;
  872         ifp->if_collisions += val;
  873         stats->tx_frames_defered += CSR_READ_1(sc, STE_STAT_TX_DEFER);
  874         stats->tx_excess_defers += CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
  875         stats->tx_abort += CSR_READ_1(sc, STE_STAT_TX_ABORT);
  876 }
  877 
  878 /*
  879  * Probe for a Sundance ST201 chip. Check the PCI vendor and device
  880  * IDs against our list and return a device name if we find a match.
  881  */
  882 static int
  883 ste_probe(device_t dev)
  884 {
  885         const struct ste_type *t;
  886 
  887         t = ste_devs;
  888 
  889         while (t->ste_name != NULL) {
  890                 if ((pci_get_vendor(dev) == t->ste_vid) &&
  891                     (pci_get_device(dev) == t->ste_did)) {
  892                         device_set_desc(dev, t->ste_name);
  893                         return (BUS_PROBE_DEFAULT);
  894                 }
  895                 t++;
  896         }
  897 
  898         return (ENXIO);
  899 }
  900 
  901 /*
  902  * Attach the interface. Allocate softc structures, do ifmedia
  903  * setup and ethernet/BPF attach.
  904  */
  905 static int
  906 ste_attach(device_t dev)
  907 {
  908         struct ste_softc *sc;
  909         struct ifnet *ifp;
  910         uint16_t eaddr[ETHER_ADDR_LEN / 2];
  911         int error = 0, phy, pmc, prefer_iomap, rid;
  912 
  913         sc = device_get_softc(dev);
  914         sc->ste_dev = dev;
  915 
  916         /*
  917          * Only use one PHY since this chip reports multiple
  918          * Note on the DFE-550 the PHY is at 1 on the DFE-580
  919          * it is at 0 & 1.  It is rev 0x12.
  920          */
  921         if (pci_get_vendor(dev) == DL_VENDORID &&
  922             pci_get_device(dev) == DL_DEVICEID_DL10050 &&
  923             pci_get_revid(dev) == 0x12 )
  924                 sc->ste_flags |= STE_FLAG_ONE_PHY;
  925 
  926         mtx_init(&sc->ste_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
  927             MTX_DEF);
  928         /*
  929          * Map control/status registers.
  930          */
  931         pci_enable_busmaster(dev);
  932 
  933         /*
  934          * Prefer memory space register mapping over IO space but use
  935          * IO space for a device that is known to have issues on memory
  936          * mapping.
  937          */
  938         prefer_iomap = 0;
  939         if (pci_get_device(dev) == ST_DEVICEID_ST201_1)
  940                 prefer_iomap = 1;
  941         else
  942                 resource_int_value(device_get_name(sc->ste_dev),
  943                     device_get_unit(sc->ste_dev), "prefer_iomap",
  944                     &prefer_iomap);
  945         if (prefer_iomap == 0) {
  946                 sc->ste_res_id = PCIR_BAR(1);
  947                 sc->ste_res_type = SYS_RES_MEMORY;
  948                 sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
  949                     &sc->ste_res_id, RF_ACTIVE);
  950         }
  951         if (prefer_iomap || sc->ste_res == NULL) {
  952                 sc->ste_res_id = PCIR_BAR(0);
  953                 sc->ste_res_type = SYS_RES_IOPORT;
  954                 sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
  955                     &sc->ste_res_id, RF_ACTIVE);
  956         }
  957         if (sc->ste_res == NULL) {
  958                 device_printf(dev, "couldn't map ports/memory\n");
  959                 error = ENXIO;
  960                 goto fail;
  961         }
  962 
  963         /* Allocate interrupt */
  964         rid = 0;
  965         sc->ste_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
  966             RF_SHAREABLE | RF_ACTIVE);
  967 
  968         if (sc->ste_irq == NULL) {
  969                 device_printf(dev, "couldn't map interrupt\n");
  970                 error = ENXIO;
  971                 goto fail;
  972         }
  973 
  974         callout_init_mtx(&sc->ste_callout, &sc->ste_mtx, 0);
  975 
  976         /* Reset the adapter. */
  977         ste_reset(sc);
  978 
  979         /*
  980          * Get station address from the EEPROM.
  981          */
  982         if (ste_read_eeprom(sc, eaddr, STE_EEADDR_NODE0, ETHER_ADDR_LEN / 2)) {
  983                 device_printf(dev, "failed to read station address\n");
  984                 error = ENXIO;
  985                 goto fail;
  986         }
  987         ste_sysctl_node(sc);
  988 
  989         if ((error = ste_dma_alloc(sc)) != 0)
  990                 goto fail;
  991 
  992         ifp = sc->ste_ifp = if_alloc(IFT_ETHER);
  993         if (ifp == NULL) {
  994                 device_printf(dev, "can not if_alloc()\n");
  995                 error = ENOSPC;
  996                 goto fail;
  997         }
  998 
  999         /* Do MII setup. */
 1000         phy = MII_PHY_ANY;
 1001         if ((sc->ste_flags & STE_FLAG_ONE_PHY) != 0)
 1002                 phy = 0;
 1003         error = mii_attach(dev, &sc->ste_miibus, ifp, ste_ifmedia_upd,
 1004                 ste_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
 1005         if (error != 0) {
 1006                 device_printf(dev, "attaching PHYs failed\n");
 1007                 goto fail;
 1008         }
 1009 
 1010         ifp->if_softc = sc;
 1011         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
 1012         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
 1013         ifp->if_ioctl = ste_ioctl;
 1014         ifp->if_start = ste_start;
 1015         ifp->if_init = ste_init;
 1016         IFQ_SET_MAXLEN(&ifp->if_snd, STE_TX_LIST_CNT - 1);
 1017         ifp->if_snd.ifq_drv_maxlen = STE_TX_LIST_CNT - 1;
 1018         IFQ_SET_READY(&ifp->if_snd);
 1019 
 1020         sc->ste_tx_thresh = STE_TXSTART_THRESH;
 1021 
 1022         /*
 1023          * Call MI attach routine.
 1024          */
 1025         ether_ifattach(ifp, (uint8_t *)eaddr);
 1026 
 1027         /*
 1028          * Tell the upper layer(s) we support long frames.
 1029          */
 1030         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
 1031         ifp->if_capabilities |= IFCAP_VLAN_MTU;
 1032         if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
 1033                 ifp->if_capabilities |= IFCAP_WOL_MAGIC;
 1034         ifp->if_capenable = ifp->if_capabilities;
 1035 #ifdef DEVICE_POLLING
 1036         ifp->if_capabilities |= IFCAP_POLLING;
 1037 #endif
 1038 
 1039         /* Hook interrupt last to avoid having to lock softc */
 1040         error = bus_setup_intr(dev, sc->ste_irq, INTR_TYPE_NET | INTR_MPSAFE,
 1041             NULL, ste_intr, sc, &sc->ste_intrhand);
 1042 
 1043         if (error) {
 1044                 device_printf(dev, "couldn't set up irq\n");
 1045                 ether_ifdetach(ifp);
 1046                 goto fail;
 1047         }
 1048 
 1049 fail:
 1050         if (error)
 1051                 ste_detach(dev);
 1052 
 1053         return (error);
 1054 }
 1055 
 1056 /*
 1057  * Shutdown hardware and free up resources. This can be called any
 1058  * time after the mutex has been initialized. It is called in both
 1059  * the error case in attach and the normal detach case so it needs
 1060  * to be careful about only freeing resources that have actually been
 1061  * allocated.
 1062  */
 1063 static int
 1064 ste_detach(device_t dev)
 1065 {
 1066         struct ste_softc *sc;
 1067         struct ifnet *ifp;
 1068 
 1069         sc = device_get_softc(dev);
 1070         KASSERT(mtx_initialized(&sc->ste_mtx), ("ste mutex not initialized"));
 1071         ifp = sc->ste_ifp;
 1072 
 1073 #ifdef DEVICE_POLLING
 1074         if (ifp->if_capenable & IFCAP_POLLING)
 1075                 ether_poll_deregister(ifp);
 1076 #endif
 1077 
 1078         /* These should only be active if attach succeeded */
 1079         if (device_is_attached(dev)) {
 1080                 ether_ifdetach(ifp);
 1081                 STE_LOCK(sc);
 1082                 ste_stop(sc);
 1083                 STE_UNLOCK(sc);
 1084                 callout_drain(&sc->ste_callout);
 1085         }
 1086         if (sc->ste_miibus)
 1087                 device_delete_child(dev, sc->ste_miibus);
 1088         bus_generic_detach(dev);
 1089 
 1090         if (sc->ste_intrhand)
 1091                 bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
 1092         if (sc->ste_irq)
 1093                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
 1094         if (sc->ste_res)
 1095                 bus_release_resource(dev, sc->ste_res_type, sc->ste_res_id,
 1096                     sc->ste_res);
 1097 
 1098         if (ifp)
 1099                 if_free(ifp);
 1100 
 1101         ste_dma_free(sc);
 1102         mtx_destroy(&sc->ste_mtx);
 1103 
 1104         return (0);
 1105 }
 1106 
 1107 struct ste_dmamap_arg {
 1108         bus_addr_t      ste_busaddr;
 1109 };
 1110 
 1111 static void
 1112 ste_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
 1113 {
 1114         struct ste_dmamap_arg *ctx;
 1115 
 1116         if (error != 0)
 1117                 return;
 1118 
 1119         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
 1120 
 1121         ctx = (struct ste_dmamap_arg *)arg;
 1122         ctx->ste_busaddr = segs[0].ds_addr;
 1123 }
 1124 
 1125 static int
 1126 ste_dma_alloc(struct ste_softc *sc)
 1127 {
 1128         struct ste_chain *txc;
 1129         struct ste_chain_onefrag *rxc;
 1130         struct ste_dmamap_arg ctx;
 1131         int error, i;
 1132 
 1133         /* Create parent DMA tag. */
 1134         error = bus_dma_tag_create(
 1135             bus_get_dma_tag(sc->ste_dev), /* parent */
 1136             1, 0,                       /* alignment, boundary */
 1137             BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
 1138             BUS_SPACE_MAXADDR,          /* highaddr */
 1139             NULL, NULL,                 /* filter, filterarg */
 1140             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
 1141             0,                          /* nsegments */
 1142             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
 1143             0,                          /* flags */
 1144             NULL, NULL,                 /* lockfunc, lockarg */
 1145             &sc->ste_cdata.ste_parent_tag);
 1146         if (error != 0) {
 1147                 device_printf(sc->ste_dev,
 1148                     "could not create parent DMA tag.\n");
 1149                 goto fail;
 1150         }
 1151 
 1152         /* Create DMA tag for Tx descriptor list. */
 1153         error = bus_dma_tag_create(
 1154             sc->ste_cdata.ste_parent_tag, /* parent */
 1155             STE_DESC_ALIGN, 0,          /* alignment, boundary */
 1156             BUS_SPACE_MAXADDR,          /* lowaddr */
 1157             BUS_SPACE_MAXADDR,          /* highaddr */
 1158             NULL, NULL,                 /* filter, filterarg */
 1159             STE_TX_LIST_SZ,             /* maxsize */
 1160             1,                          /* nsegments */
 1161             STE_TX_LIST_SZ,             /* maxsegsize */
 1162             0,                          /* flags */
 1163             NULL, NULL,                 /* lockfunc, lockarg */
 1164             &sc->ste_cdata.ste_tx_list_tag);
 1165         if (error != 0) {
 1166                 device_printf(sc->ste_dev,
 1167                     "could not create Tx list DMA tag.\n");
 1168                 goto fail;
 1169         }
 1170 
 1171         /* Create DMA tag for Rx descriptor list. */
 1172         error = bus_dma_tag_create(
 1173             sc->ste_cdata.ste_parent_tag, /* parent */
 1174             STE_DESC_ALIGN, 0,          /* alignment, boundary */
 1175             BUS_SPACE_MAXADDR,          /* lowaddr */
 1176             BUS_SPACE_MAXADDR,          /* highaddr */
 1177             NULL, NULL,                 /* filter, filterarg */
 1178             STE_RX_LIST_SZ,             /* maxsize */
 1179             1,                          /* nsegments */
 1180             STE_RX_LIST_SZ,             /* maxsegsize */
 1181             0,                          /* flags */
 1182             NULL, NULL,                 /* lockfunc, lockarg */
 1183             &sc->ste_cdata.ste_rx_list_tag);
 1184         if (error != 0) {
 1185                 device_printf(sc->ste_dev,
 1186                     "could not create Rx list DMA tag.\n");
 1187                 goto fail;
 1188         }
 1189 
 1190         /* Create DMA tag for Tx buffers. */
 1191         error = bus_dma_tag_create(
 1192             sc->ste_cdata.ste_parent_tag, /* parent */
 1193             1, 0,                       /* alignment, boundary */
 1194             BUS_SPACE_MAXADDR,          /* lowaddr */
 1195             BUS_SPACE_MAXADDR,          /* highaddr */
 1196             NULL, NULL,                 /* filter, filterarg */
 1197             MCLBYTES * STE_MAXFRAGS,    /* maxsize */
 1198             STE_MAXFRAGS,               /* nsegments */
 1199             MCLBYTES,                   /* maxsegsize */
 1200             0,                          /* flags */
 1201             NULL, NULL,                 /* lockfunc, lockarg */
 1202             &sc->ste_cdata.ste_tx_tag);
 1203         if (error != 0) {
 1204                 device_printf(sc->ste_dev, "could not create Tx DMA tag.\n");
 1205                 goto fail;
 1206         }
 1207 
 1208         /* Create DMA tag for Rx buffers. */
 1209         error = bus_dma_tag_create(
 1210             sc->ste_cdata.ste_parent_tag, /* parent */
 1211             1, 0,                       /* alignment, boundary */
 1212             BUS_SPACE_MAXADDR,          /* lowaddr */
 1213             BUS_SPACE_MAXADDR,          /* highaddr */
 1214             NULL, NULL,                 /* filter, filterarg */
 1215             MCLBYTES,                   /* maxsize */
 1216             1,                          /* nsegments */
 1217             MCLBYTES,                   /* maxsegsize */
 1218             0,                          /* flags */
 1219             NULL, NULL,                 /* lockfunc, lockarg */
 1220             &sc->ste_cdata.ste_rx_tag);
 1221         if (error != 0) {
 1222                 device_printf(sc->ste_dev, "could not create Rx DMA tag.\n");
 1223                 goto fail;
 1224         }
 1225 
 1226         /* Allocate DMA'able memory and load the DMA map for Tx list. */
 1227         error = bus_dmamem_alloc(sc->ste_cdata.ste_tx_list_tag,
 1228             (void **)&sc->ste_ldata.ste_tx_list,
 1229             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 1230             &sc->ste_cdata.ste_tx_list_map);
 1231         if (error != 0) {
 1232                 device_printf(sc->ste_dev,
 1233                     "could not allocate DMA'able memory for Tx list.\n");
 1234                 goto fail;
 1235         }
 1236         ctx.ste_busaddr = 0;
 1237         error = bus_dmamap_load(sc->ste_cdata.ste_tx_list_tag,
 1238             sc->ste_cdata.ste_tx_list_map, sc->ste_ldata.ste_tx_list,
 1239             STE_TX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
 1240         if (error != 0 || ctx.ste_busaddr == 0) {
 1241                 device_printf(sc->ste_dev,
 1242                     "could not load DMA'able memory for Tx list.\n");
 1243                 goto fail;
 1244         }
 1245         sc->ste_ldata.ste_tx_list_paddr = ctx.ste_busaddr;
 1246 
 1247         /* Allocate DMA'able memory and load the DMA map for Rx list. */
 1248         error = bus_dmamem_alloc(sc->ste_cdata.ste_rx_list_tag,
 1249             (void **)&sc->ste_ldata.ste_rx_list,
 1250             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 1251             &sc->ste_cdata.ste_rx_list_map);
 1252         if (error != 0) {
 1253                 device_printf(sc->ste_dev,
 1254                     "could not allocate DMA'able memory for Rx list.\n");
 1255                 goto fail;
 1256         }
 1257         ctx.ste_busaddr = 0;
 1258         error = bus_dmamap_load(sc->ste_cdata.ste_rx_list_tag,
 1259             sc->ste_cdata.ste_rx_list_map, sc->ste_ldata.ste_rx_list,
 1260             STE_RX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
 1261         if (error != 0 || ctx.ste_busaddr == 0) {
 1262                 device_printf(sc->ste_dev,
 1263                     "could not load DMA'able memory for Rx list.\n");
 1264                 goto fail;
 1265         }
 1266         sc->ste_ldata.ste_rx_list_paddr = ctx.ste_busaddr;
 1267 
 1268         /* Create DMA maps for Tx buffers. */
 1269         for (i = 0; i < STE_TX_LIST_CNT; i++) {
 1270                 txc = &sc->ste_cdata.ste_tx_chain[i];
 1271                 txc->ste_ptr = NULL;
 1272                 txc->ste_mbuf = NULL;
 1273                 txc->ste_next = NULL;
 1274                 txc->ste_phys = 0;
 1275                 txc->ste_map = NULL;
 1276                 error = bus_dmamap_create(sc->ste_cdata.ste_tx_tag, 0,
 1277                     &txc->ste_map);
 1278                 if (error != 0) {
 1279                         device_printf(sc->ste_dev,
 1280                             "could not create Tx dmamap.\n");
 1281                         goto fail;
 1282                 }
 1283         }
 1284         /* Create DMA maps for Rx buffers. */
 1285         if ((error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
 1286             &sc->ste_cdata.ste_rx_sparemap)) != 0) {
 1287                 device_printf(sc->ste_dev,
 1288                     "could not create spare Rx dmamap.\n");
 1289                 goto fail;
 1290         }
 1291         for (i = 0; i < STE_RX_LIST_CNT; i++) {
 1292                 rxc = &sc->ste_cdata.ste_rx_chain[i];
 1293                 rxc->ste_ptr = NULL;
 1294                 rxc->ste_mbuf = NULL;
 1295                 rxc->ste_next = NULL;
 1296                 rxc->ste_map = NULL;
 1297                 error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
 1298                     &rxc->ste_map);
 1299                 if (error != 0) {
 1300                         device_printf(sc->ste_dev,
 1301                             "could not create Rx dmamap.\n");
 1302                         goto fail;
 1303                 }
 1304         }
 1305 
 1306 fail:
 1307         return (error);
 1308 }
 1309 
 1310 static void
 1311 ste_dma_free(struct ste_softc *sc)
 1312 {
 1313         struct ste_chain *txc;
 1314         struct ste_chain_onefrag *rxc;
 1315         int i;
 1316 
 1317         /* Tx buffers. */
 1318         if (sc->ste_cdata.ste_tx_tag != NULL) {
 1319                 for (i = 0; i < STE_TX_LIST_CNT; i++) {
 1320                         txc = &sc->ste_cdata.ste_tx_chain[i];
 1321                         if (txc->ste_map != NULL) {
 1322                                 bus_dmamap_destroy(sc->ste_cdata.ste_tx_tag,
 1323                                     txc->ste_map);
 1324                                 txc->ste_map = NULL;
 1325                         }
 1326                 }
 1327                 bus_dma_tag_destroy(sc->ste_cdata.ste_tx_tag);
 1328                 sc->ste_cdata.ste_tx_tag = NULL;
 1329         }
 1330         /* Rx buffers. */
 1331         if (sc->ste_cdata.ste_rx_tag != NULL) {
 1332                 for (i = 0; i < STE_RX_LIST_CNT; i++) {
 1333                         rxc = &sc->ste_cdata.ste_rx_chain[i];
 1334                         if (rxc->ste_map != NULL) {
 1335                                 bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
 1336                                     rxc->ste_map);
 1337                                 rxc->ste_map = NULL;
 1338                         }
 1339                 }
 1340                 if (sc->ste_cdata.ste_rx_sparemap != NULL) {
 1341                         bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
 1342                             sc->ste_cdata.ste_rx_sparemap);
 1343                         sc->ste_cdata.ste_rx_sparemap = NULL;
 1344                 }
 1345                 bus_dma_tag_destroy(sc->ste_cdata.ste_rx_tag);
 1346                 sc->ste_cdata.ste_rx_tag = NULL;
 1347         }
 1348         /* Tx descriptor list. */
 1349         if (sc->ste_cdata.ste_tx_list_tag != NULL) {
 1350                 if (sc->ste_cdata.ste_tx_list_map != NULL)
 1351                         bus_dmamap_unload(sc->ste_cdata.ste_tx_list_tag,
 1352                             sc->ste_cdata.ste_tx_list_map);
 1353                 if (sc->ste_cdata.ste_tx_list_map != NULL &&
 1354                     sc->ste_ldata.ste_tx_list != NULL)
 1355                         bus_dmamem_free(sc->ste_cdata.ste_tx_list_tag,
 1356                             sc->ste_ldata.ste_tx_list,
 1357                             sc->ste_cdata.ste_tx_list_map);
 1358                 sc->ste_ldata.ste_tx_list = NULL;
 1359                 sc->ste_cdata.ste_tx_list_map = NULL;
 1360                 bus_dma_tag_destroy(sc->ste_cdata.ste_tx_list_tag);
 1361                 sc->ste_cdata.ste_tx_list_tag = NULL;
 1362         }
 1363         /* Rx descriptor list. */
 1364         if (sc->ste_cdata.ste_rx_list_tag != NULL) {
 1365                 if (sc->ste_cdata.ste_rx_list_map != NULL)
 1366                         bus_dmamap_unload(sc->ste_cdata.ste_rx_list_tag,
 1367                             sc->ste_cdata.ste_rx_list_map);
 1368                 if (sc->ste_cdata.ste_rx_list_map != NULL &&
 1369                     sc->ste_ldata.ste_rx_list != NULL)
 1370                         bus_dmamem_free(sc->ste_cdata.ste_rx_list_tag,
 1371                             sc->ste_ldata.ste_rx_list,
 1372                             sc->ste_cdata.ste_rx_list_map);
 1373                 sc->ste_ldata.ste_rx_list = NULL;
 1374                 sc->ste_cdata.ste_rx_list_map = NULL;
 1375                 bus_dma_tag_destroy(sc->ste_cdata.ste_rx_list_tag);
 1376                 sc->ste_cdata.ste_rx_list_tag = NULL;
 1377         }
 1378         if (sc->ste_cdata.ste_parent_tag != NULL) {
 1379                 bus_dma_tag_destroy(sc->ste_cdata.ste_parent_tag);
 1380                 sc->ste_cdata.ste_parent_tag = NULL;
 1381         }
 1382 }
 1383 
 1384 static int
 1385 ste_newbuf(struct ste_softc *sc, struct ste_chain_onefrag *rxc)
 1386 {
 1387         struct mbuf *m;
 1388         bus_dma_segment_t segs[1];
 1389         bus_dmamap_t map;
 1390         int error, nsegs;
 1391 
 1392         m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
 1393         if (m == NULL)
 1394                 return (ENOBUFS);
 1395         m->m_len = m->m_pkthdr.len = MCLBYTES;
 1396         m_adj(m, ETHER_ALIGN);
 1397 
 1398         if ((error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_rx_tag,
 1399             sc->ste_cdata.ste_rx_sparemap, m, segs, &nsegs, 0)) != 0) {
 1400                 m_freem(m);
 1401                 return (error);
 1402         }
 1403         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
 1404 
 1405         if (rxc->ste_mbuf != NULL) {
 1406                 bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
 1407                     BUS_DMASYNC_POSTREAD);
 1408                 bus_dmamap_unload(sc->ste_cdata.ste_rx_tag, rxc->ste_map);
 1409         }
 1410         map = rxc->ste_map;
 1411         rxc->ste_map = sc->ste_cdata.ste_rx_sparemap;
 1412         sc->ste_cdata.ste_rx_sparemap = map;
 1413         bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
 1414             BUS_DMASYNC_PREREAD);
 1415         rxc->ste_mbuf = m;
 1416         rxc->ste_ptr->ste_status = 0;
 1417         rxc->ste_ptr->ste_frag.ste_addr = htole32(segs[0].ds_addr);
 1418         rxc->ste_ptr->ste_frag.ste_len = htole32(segs[0].ds_len |
 1419             STE_FRAG_LAST);
 1420         return (0);
 1421 }
 1422 
 1423 static int
 1424 ste_init_rx_list(struct ste_softc *sc)
 1425 {
 1426         struct ste_chain_data *cd;
 1427         struct ste_list_data *ld;
 1428         int error, i;
 1429 
 1430         sc->ste_int_rx_act = 0;
 1431         cd = &sc->ste_cdata;
 1432         ld = &sc->ste_ldata;
 1433         bzero(ld->ste_rx_list, STE_RX_LIST_SZ);
 1434         for (i = 0; i < STE_RX_LIST_CNT; i++) {
 1435                 cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
 1436                 error = ste_newbuf(sc, &cd->ste_rx_chain[i]);
 1437                 if (error != 0)
 1438                         return (error);
 1439                 if (i == (STE_RX_LIST_CNT - 1)) {
 1440                         cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[0];
 1441                         ld->ste_rx_list[i].ste_next =
 1442                             htole32(ld->ste_rx_list_paddr +
 1443                             (sizeof(struct ste_desc_onefrag) * 0));
 1444                 } else {
 1445                         cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[i + 1];
 1446                         ld->ste_rx_list[i].ste_next =
 1447                             htole32(ld->ste_rx_list_paddr +
 1448                             (sizeof(struct ste_desc_onefrag) * (i + 1)));
 1449                 }
 1450         }
 1451 
 1452         cd->ste_rx_head = &cd->ste_rx_chain[0];
 1453         bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
 1454             sc->ste_cdata.ste_rx_list_map,
 1455             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1456 
 1457         return (0);
 1458 }
 1459 
 1460 static void
 1461 ste_init_tx_list(struct ste_softc *sc)
 1462 {
 1463         struct ste_chain_data *cd;
 1464         struct ste_list_data *ld;
 1465         int i;
 1466 
 1467         cd = &sc->ste_cdata;
 1468         ld = &sc->ste_ldata;
 1469         bzero(ld->ste_tx_list, STE_TX_LIST_SZ);
 1470         for (i = 0; i < STE_TX_LIST_CNT; i++) {
 1471                 cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
 1472                 cd->ste_tx_chain[i].ste_mbuf = NULL;
 1473                 if (i == (STE_TX_LIST_CNT - 1)) {
 1474                         cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[0];
 1475                         cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
 1476                             ld->ste_tx_list_paddr +
 1477                             (sizeof(struct ste_desc) * 0)));
 1478                 } else {
 1479                         cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[i + 1];
 1480                         cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
 1481                             ld->ste_tx_list_paddr +
 1482                             (sizeof(struct ste_desc) * (i + 1))));
 1483                 }
 1484         }
 1485 
 1486         cd->ste_last_tx = NULL;
 1487         cd->ste_tx_prod = 0;
 1488         cd->ste_tx_cons = 0;
 1489         cd->ste_tx_cnt = 0;
 1490 
 1491         bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
 1492             sc->ste_cdata.ste_tx_list_map,
 1493             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1494 }
 1495 
 1496 static void
 1497 ste_init(void *xsc)
 1498 {
 1499         struct ste_softc *sc;
 1500 
 1501         sc = xsc;
 1502         STE_LOCK(sc);
 1503         ste_init_locked(sc);
 1504         STE_UNLOCK(sc);
 1505 }
 1506 
 1507 static void
 1508 ste_init_locked(struct ste_softc *sc)
 1509 {
 1510         struct ifnet *ifp;
 1511         struct mii_data *mii;
 1512         uint8_t val;
 1513         int i;
 1514 
 1515         STE_LOCK_ASSERT(sc);
 1516         ifp = sc->ste_ifp;
 1517         mii = device_get_softc(sc->ste_miibus);
 1518 
 1519         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 1520                 return;
 1521 
 1522         ste_stop(sc);
 1523         /* Reset the chip to a known state. */
 1524         ste_reset(sc);
 1525 
 1526         /* Init our MAC address */
 1527         for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
 1528                 CSR_WRITE_2(sc, STE_PAR0 + i,
 1529                     ((IF_LLADDR(sc->ste_ifp)[i] & 0xff) |
 1530                      IF_LLADDR(sc->ste_ifp)[i + 1] << 8));
 1531         }
 1532 
 1533         /* Init RX list */
 1534         if (ste_init_rx_list(sc) != 0) {
 1535                 device_printf(sc->ste_dev,
 1536                     "initialization failed: no memory for RX buffers\n");
 1537                 ste_stop(sc);
 1538                 return;
 1539         }
 1540 
 1541         /* Set RX polling interval */
 1542         CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 64);
 1543 
 1544         /* Init TX descriptors */
 1545         ste_init_tx_list(sc);
 1546 
 1547         /* Clear and disable WOL. */
 1548         val = CSR_READ_1(sc, STE_WAKE_EVENT);
 1549         val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
 1550             STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
 1551         CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
 1552 
 1553         /* Set the TX freethresh value */
 1554         CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
 1555 
 1556         /* Set the TX start threshold for best performance. */
 1557         CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
 1558 
 1559         /* Set the TX reclaim threshold. */
 1560         CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
 1561 
 1562         /* Accept VLAN length packets */
 1563         CSR_WRITE_2(sc, STE_MAX_FRAMELEN, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN);
 1564 
 1565         /* Set up the RX filter. */
 1566         ste_rxfilter(sc);
 1567 
 1568         /* Load the address of the RX list. */
 1569         STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
 1570         ste_wait(sc);
 1571         CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
 1572             STE_ADDR_LO(sc->ste_ldata.ste_rx_list_paddr));
 1573         STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
 1574         STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
 1575 
 1576         /* Set TX polling interval(defer until we TX first packet). */
 1577         CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
 1578 
 1579         /* Load address of the TX list */
 1580         STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
 1581         ste_wait(sc);
 1582         CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
 1583         STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
 1584         STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
 1585         ste_wait(sc);
 1586         /* Select 3.2us timer. */
 1587         STE_CLRBIT4(sc, STE_DMACTL, STE_DMACTL_COUNTDOWN_SPEED |
 1588             STE_DMACTL_COUNTDOWN_MODE);
 1589 
 1590         /* Enable receiver and transmitter */
 1591         CSR_WRITE_2(sc, STE_MACCTL0, 0);
 1592         CSR_WRITE_2(sc, STE_MACCTL1, 0);
 1593         STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
 1594         STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
 1595 
 1596         /* Enable stats counters. */
 1597         STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
 1598         /* Clear stats counters. */
 1599         ste_stats_clear(sc);
 1600 
 1601         CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
 1602         CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
 1603 #ifdef DEVICE_POLLING
 1604         /* Disable interrupts if we are polling. */
 1605         if (ifp->if_capenable & IFCAP_POLLING)
 1606                 CSR_WRITE_2(sc, STE_IMR, 0);
 1607         else
 1608 #endif
 1609         /* Enable interrupts. */
 1610         CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
 1611 
 1612         sc->ste_flags &= ~STE_FLAG_LINK;
 1613         /* Switch to the current media. */
 1614         mii_mediachg(mii);
 1615 
 1616         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 1617         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 1618 
 1619         callout_reset(&sc->ste_callout, hz, ste_tick, sc);
 1620 }
 1621 
 1622 static void
 1623 ste_stop(struct ste_softc *sc)
 1624 {
 1625         struct ifnet *ifp;
 1626         struct ste_chain_onefrag *cur_rx;
 1627         struct ste_chain *cur_tx;
 1628         uint32_t val;
 1629         int i;
 1630 
 1631         STE_LOCK_ASSERT(sc);
 1632         ifp = sc->ste_ifp;
 1633 
 1634         callout_stop(&sc->ste_callout);
 1635         sc->ste_timer = 0;
 1636         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
 1637 
 1638         CSR_WRITE_2(sc, STE_IMR, 0);
 1639         CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
 1640         /* Stop pending DMA. */
 1641         val = CSR_READ_4(sc, STE_DMACTL);
 1642         val |= STE_DMACTL_TXDMA_STALL | STE_DMACTL_RXDMA_STALL;
 1643         CSR_WRITE_4(sc, STE_DMACTL, val);
 1644         ste_wait(sc);
 1645         /* Disable auto-polling. */
 1646         CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 0);
 1647         CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
 1648         /* Nullify DMA address to stop any further DMA. */
 1649         CSR_WRITE_4(sc, STE_RX_DMALIST_PTR, 0);
 1650         CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
 1651         /* Stop TX/RX MAC. */
 1652         val = CSR_READ_2(sc, STE_MACCTL1);
 1653         val |= STE_MACCTL1_TX_DISABLE | STE_MACCTL1_RX_DISABLE |
 1654             STE_MACCTL1_STATS_DISABLE;
 1655         CSR_WRITE_2(sc, STE_MACCTL1, val);
 1656         for (i = 0; i < STE_TIMEOUT; i++) {
 1657                 DELAY(10);
 1658                 if ((CSR_READ_2(sc, STE_MACCTL1) & (STE_MACCTL1_TX_DISABLE |
 1659                     STE_MACCTL1_RX_DISABLE | STE_MACCTL1_STATS_DISABLE)) == 0)
 1660                         break;
 1661         }
 1662         if (i == STE_TIMEOUT)
 1663                 device_printf(sc->ste_dev, "Stopping MAC timed out\n");
 1664         /* Acknowledge any pending interrupts. */
 1665         CSR_READ_2(sc, STE_ISR_ACK);
 1666         ste_stats_update(sc);
 1667 
 1668         for (i = 0; i < STE_RX_LIST_CNT; i++) {
 1669                 cur_rx = &sc->ste_cdata.ste_rx_chain[i];
 1670                 if (cur_rx->ste_mbuf != NULL) {
 1671                         bus_dmamap_sync(sc->ste_cdata.ste_rx_tag,
 1672                             cur_rx->ste_map, BUS_DMASYNC_POSTREAD);
 1673                         bus_dmamap_unload(sc->ste_cdata.ste_rx_tag,
 1674                             cur_rx->ste_map);
 1675                         m_freem(cur_rx->ste_mbuf);
 1676                         cur_rx->ste_mbuf = NULL;
 1677                 }
 1678         }
 1679 
 1680         for (i = 0; i < STE_TX_LIST_CNT; i++) {
 1681                 cur_tx = &sc->ste_cdata.ste_tx_chain[i];
 1682                 if (cur_tx->ste_mbuf != NULL) {
 1683                         bus_dmamap_sync(sc->ste_cdata.ste_tx_tag,
 1684                             cur_tx->ste_map, BUS_DMASYNC_POSTWRITE);
 1685                         bus_dmamap_unload(sc->ste_cdata.ste_tx_tag,
 1686                             cur_tx->ste_map);
 1687                         m_freem(cur_tx->ste_mbuf);
 1688                         cur_tx->ste_mbuf = NULL;
 1689                 }
 1690         }
 1691 }
 1692 
 1693 static void
 1694 ste_reset(struct ste_softc *sc)
 1695 {
 1696         uint32_t ctl;
 1697         int i;
 1698 
 1699         ctl = CSR_READ_4(sc, STE_ASICCTL);
 1700         ctl |= STE_ASICCTL_GLOBAL_RESET | STE_ASICCTL_RX_RESET |
 1701             STE_ASICCTL_TX_RESET | STE_ASICCTL_DMA_RESET |
 1702             STE_ASICCTL_FIFO_RESET | STE_ASICCTL_NETWORK_RESET |
 1703             STE_ASICCTL_AUTOINIT_RESET |STE_ASICCTL_HOST_RESET |
 1704             STE_ASICCTL_EXTRESET_RESET;
 1705         CSR_WRITE_4(sc, STE_ASICCTL, ctl);
 1706         CSR_READ_4(sc, STE_ASICCTL);
 1707         /*
 1708          * Due to the need of accessing EEPROM controller can take
 1709          * up to 1ms to complete the global reset.
 1710          */
 1711         DELAY(1000);
 1712 
 1713         for (i = 0; i < STE_TIMEOUT; i++) {
 1714                 if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
 1715                         break;
 1716                 DELAY(10);
 1717         }
 1718 
 1719         if (i == STE_TIMEOUT)
 1720                 device_printf(sc->ste_dev, "global reset never completed\n");
 1721 }
 1722 
 1723 static void
 1724 ste_restart_tx(struct ste_softc *sc)
 1725 {
 1726         uint16_t mac;
 1727         int i;
 1728 
 1729         for (i = 0; i < STE_TIMEOUT; i++) {
 1730                 mac = CSR_READ_2(sc, STE_MACCTL1);
 1731                 mac |= STE_MACCTL1_TX_ENABLE;
 1732                 CSR_WRITE_2(sc, STE_MACCTL1, mac);
 1733                 mac = CSR_READ_2(sc, STE_MACCTL1);
 1734                 if ((mac & STE_MACCTL1_TX_ENABLED) != 0)
 1735                         break;
 1736                 DELAY(10);
 1737         }
 1738 
 1739         if (i == STE_TIMEOUT)
 1740                 device_printf(sc->ste_dev, "starting Tx failed");
 1741 }
 1742 
 1743 static int
 1744 ste_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
 1745 {
 1746         struct ste_softc *sc;
 1747         struct ifreq *ifr;
 1748         struct mii_data *mii;
 1749         int error = 0, mask;
 1750 
 1751         sc = ifp->if_softc;
 1752         ifr = (struct ifreq *)data;
 1753 
 1754         switch (command) {
 1755         case SIOCSIFFLAGS:
 1756                 STE_LOCK(sc);
 1757                 if ((ifp->if_flags & IFF_UP) != 0) {
 1758                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
 1759                             ((ifp->if_flags ^ sc->ste_if_flags) &
 1760                              (IFF_PROMISC | IFF_ALLMULTI)) != 0)
 1761                                 ste_rxfilter(sc);
 1762                         else
 1763                                 ste_init_locked(sc);
 1764                 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 1765                         ste_stop(sc);
 1766                 sc->ste_if_flags = ifp->if_flags;
 1767                 STE_UNLOCK(sc);
 1768                 break;
 1769         case SIOCADDMULTI:
 1770         case SIOCDELMULTI:
 1771                 STE_LOCK(sc);
 1772                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 1773                         ste_rxfilter(sc);
 1774                 STE_UNLOCK(sc);
 1775                 break;
 1776         case SIOCGIFMEDIA:
 1777         case SIOCSIFMEDIA:
 1778                 mii = device_get_softc(sc->ste_miibus);
 1779                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
 1780                 break;
 1781         case SIOCSIFCAP:
 1782                 STE_LOCK(sc);
 1783                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
 1784 #ifdef DEVICE_POLLING
 1785                 if ((mask & IFCAP_POLLING) != 0 &&
 1786                     (IFCAP_POLLING & ifp->if_capabilities) != 0) {
 1787                         ifp->if_capenable ^= IFCAP_POLLING;
 1788                         if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
 1789                                 error = ether_poll_register(ste_poll, ifp);
 1790                                 if (error != 0) {
 1791                                         STE_UNLOCK(sc);
 1792                                         break;
 1793                                 }
 1794                                 /* Disable interrupts. */
 1795                                 CSR_WRITE_2(sc, STE_IMR, 0);
 1796                         } else {
 1797                                 error = ether_poll_deregister(ifp);
 1798                                 /* Enable interrupts. */
 1799                                 CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
 1800                         }
 1801                 }
 1802 #endif /* DEVICE_POLLING */
 1803                 if ((mask & IFCAP_WOL_MAGIC) != 0 &&
 1804                     (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
 1805                         ifp->if_capenable ^= IFCAP_WOL_MAGIC;
 1806                 STE_UNLOCK(sc);
 1807                 break;
 1808         default:
 1809                 error = ether_ioctl(ifp, command, data);
 1810                 break;
 1811         }
 1812 
 1813         return (error);
 1814 }
 1815 
 1816 static int
 1817 ste_encap(struct ste_softc *sc, struct mbuf **m_head, struct ste_chain *txc)
 1818 {
 1819         struct ste_frag *frag;
 1820         struct mbuf *m;
 1821         struct ste_desc *desc;
 1822         bus_dma_segment_t txsegs[STE_MAXFRAGS];
 1823         int error, i, nsegs;
 1824 
 1825         STE_LOCK_ASSERT(sc);
 1826         M_ASSERTPKTHDR((*m_head));
 1827 
 1828         error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
 1829             txc->ste_map, *m_head, txsegs, &nsegs, 0);
 1830         if (error == EFBIG) {
 1831                 m = m_collapse(*m_head, M_DONTWAIT, STE_MAXFRAGS);
 1832                 if (m == NULL) {
 1833                         m_freem(*m_head);
 1834                         *m_head = NULL;
 1835                         return (ENOMEM);
 1836                 }
 1837                 *m_head = m;
 1838                 error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
 1839                     txc->ste_map, *m_head, txsegs, &nsegs, 0);
 1840                 if (error != 0) {
 1841                         m_freem(*m_head);
 1842                         *m_head = NULL;
 1843                         return (error);
 1844                 }
 1845         } else if (error != 0)
 1846                 return (error);
 1847         if (nsegs == 0) {
 1848                 m_freem(*m_head);
 1849                 *m_head = NULL;
 1850                 return (EIO);
 1851         }
 1852         bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, txc->ste_map,
 1853             BUS_DMASYNC_PREWRITE);
 1854 
 1855         desc = txc->ste_ptr;
 1856         for (i = 0; i < nsegs; i++) {
 1857                 frag = &desc->ste_frags[i];
 1858                 frag->ste_addr = htole32(STE_ADDR_LO(txsegs[i].ds_addr));
 1859                 frag->ste_len = htole32(txsegs[i].ds_len);
 1860         }
 1861         desc->ste_frags[i - 1].ste_len |= htole32(STE_FRAG_LAST);
 1862         /*
 1863          * Because we use Tx polling we can't chain multiple
 1864          * Tx descriptors here. Otherwise we race with controller.
 1865          */
 1866         desc->ste_next = 0;
 1867         if ((sc->ste_cdata.ste_tx_prod % STE_TX_INTR_FRAMES) == 0)
 1868                 desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS |
 1869                     STE_TXCTL_DMAINTR);
 1870         else
 1871                 desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS);
 1872         txc->ste_mbuf = *m_head;
 1873         STE_INC(sc->ste_cdata.ste_tx_prod, STE_TX_LIST_CNT);
 1874         sc->ste_cdata.ste_tx_cnt++;
 1875 
 1876         return (0);
 1877 }
 1878 
 1879 static void
 1880 ste_start(struct ifnet *ifp)
 1881 {
 1882         struct ste_softc *sc;
 1883 
 1884         sc = ifp->if_softc;
 1885         STE_LOCK(sc);
 1886         ste_start_locked(ifp);
 1887         STE_UNLOCK(sc);
 1888 }
 1889 
 1890 static void
 1891 ste_start_locked(struct ifnet *ifp)
 1892 {
 1893         struct ste_softc *sc;
 1894         struct ste_chain *cur_tx;
 1895         struct mbuf *m_head = NULL;
 1896         int enq;
 1897 
 1898         sc = ifp->if_softc;
 1899         STE_LOCK_ASSERT(sc);
 1900 
 1901         if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
 1902             IFF_DRV_RUNNING || (sc->ste_flags & STE_FLAG_LINK) == 0)
 1903                 return;
 1904 
 1905         for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
 1906                 if (sc->ste_cdata.ste_tx_cnt == STE_TX_LIST_CNT - 1) {
 1907                         /*
 1908                          * Controller may have cached copy of the last used
 1909                          * next ptr so we have to reserve one TFD to avoid
 1910                          * TFD overruns.
 1911                          */
 1912                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 1913                         break;
 1914                 }
 1915                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
 1916                 if (m_head == NULL)
 1917                         break;
 1918                 cur_tx = &sc->ste_cdata.ste_tx_chain[sc->ste_cdata.ste_tx_prod];
 1919                 if (ste_encap(sc, &m_head, cur_tx) != 0) {
 1920                         if (m_head == NULL)
 1921                                 break;
 1922                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
 1923                         break;
 1924                 }
 1925                 if (sc->ste_cdata.ste_last_tx == NULL) {
 1926                         bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
 1927                             sc->ste_cdata.ste_tx_list_map,
 1928                             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1929                         STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
 1930                         ste_wait(sc);
 1931                         CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
 1932                             STE_ADDR_LO(sc->ste_ldata.ste_tx_list_paddr));
 1933                         CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
 1934                         STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
 1935                         ste_wait(sc);
 1936                 } else {
 1937                         sc->ste_cdata.ste_last_tx->ste_ptr->ste_next =
 1938                             sc->ste_cdata.ste_last_tx->ste_phys;
 1939                         bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
 1940                             sc->ste_cdata.ste_tx_list_map,
 1941                             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1942                 }
 1943                 sc->ste_cdata.ste_last_tx = cur_tx;
 1944 
 1945                 enq++;
 1946                 /*
 1947                  * If there's a BPF listener, bounce a copy of this frame
 1948                  * to him.
 1949                  */
 1950                 BPF_MTAP(ifp, m_head);
 1951         }
 1952 
 1953         if (enq > 0)
 1954                 sc->ste_timer = STE_TX_TIMEOUT;
 1955 }
 1956 
 1957 static void
 1958 ste_watchdog(struct ste_softc *sc)
 1959 {
 1960         struct ifnet *ifp;
 1961 
 1962         ifp = sc->ste_ifp;
 1963         STE_LOCK_ASSERT(sc);
 1964 
 1965         if (sc->ste_timer == 0 || --sc->ste_timer)
 1966                 return;
 1967 
 1968         ifp->if_oerrors++;
 1969         if_printf(ifp, "watchdog timeout\n");
 1970 
 1971         ste_txeof(sc);
 1972         ste_txeoc(sc);
 1973         ste_rxeof(sc, -1);
 1974         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1975         ste_init_locked(sc);
 1976 
 1977         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 1978                 ste_start_locked(ifp);
 1979 }
 1980 
 1981 static int
 1982 ste_shutdown(device_t dev)
 1983 {
 1984 
 1985         return (ste_suspend(dev));
 1986 }
 1987 
 1988 static int
 1989 ste_suspend(device_t dev)
 1990 {
 1991         struct ste_softc *sc;
 1992 
 1993         sc = device_get_softc(dev);
 1994 
 1995         STE_LOCK(sc);
 1996         ste_stop(sc);
 1997         ste_setwol(sc);
 1998         STE_UNLOCK(sc);
 1999 
 2000         return (0);
 2001 }
 2002 
 2003 static int
 2004 ste_resume(device_t dev)
 2005 {
 2006         struct ste_softc *sc;
 2007         struct ifnet *ifp;
 2008         int pmc;
 2009         uint16_t pmstat;
 2010 
 2011         sc = device_get_softc(dev);
 2012         STE_LOCK(sc);
 2013         if (pci_find_cap(sc->ste_dev, PCIY_PMG, &pmc) == 0) {
 2014                 /* Disable PME and clear PME status. */
 2015                 pmstat = pci_read_config(sc->ste_dev,
 2016                     pmc + PCIR_POWER_STATUS, 2);
 2017                 if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
 2018                         pmstat &= ~PCIM_PSTAT_PMEENABLE;
 2019                         pci_write_config(sc->ste_dev,
 2020                             pmc + PCIR_POWER_STATUS, pmstat, 2);
 2021                 }
 2022         }
 2023         ifp = sc->ste_ifp;
 2024         if ((ifp->if_flags & IFF_UP) != 0) {
 2025                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 2026                 ste_init_locked(sc);
 2027         }
 2028         STE_UNLOCK(sc);
 2029 
 2030         return (0);
 2031 }
 2032 
 2033 #define STE_SYSCTL_STAT_ADD32(c, h, n, p, d)    \
 2034             SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
 2035 #define STE_SYSCTL_STAT_ADD64(c, h, n, p, d)    \
 2036             SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
 2037 
 2038 static void
 2039 ste_sysctl_node(struct ste_softc *sc)
 2040 {
 2041         struct sysctl_ctx_list *ctx;
 2042         struct sysctl_oid_list *child, *parent;
 2043         struct sysctl_oid *tree;
 2044         struct ste_hw_stats *stats;
 2045 
 2046         stats = &sc->ste_stats;
 2047         ctx = device_get_sysctl_ctx(sc->ste_dev);
 2048         child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ste_dev));
 2049 
 2050         SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_rx_mod",
 2051             CTLFLAG_RW, &sc->ste_int_rx_mod, 0, "ste RX interrupt moderation");
 2052         /* Pull in device tunables. */
 2053         sc->ste_int_rx_mod = STE_IM_RX_TIMER_DEFAULT;
 2054         resource_int_value(device_get_name(sc->ste_dev),
 2055             device_get_unit(sc->ste_dev), "int_rx_mod", &sc->ste_int_rx_mod);
 2056 
 2057         tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
 2058             NULL, "STE statistics");
 2059         parent = SYSCTL_CHILDREN(tree);
 2060 
 2061         /* Rx statistics. */
 2062         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
 2063             NULL, "Rx MAC statistics");
 2064         child = SYSCTL_CHILDREN(tree);
 2065         STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
 2066             &stats->rx_bytes, "Good octets");
 2067         STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
 2068             &stats->rx_frames, "Good frames");
 2069         STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
 2070             &stats->rx_bcast_frames, "Good broadcast frames");
 2071         STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
 2072             &stats->rx_mcast_frames, "Good multicast frames");
 2073         STE_SYSCTL_STAT_ADD32(ctx, child, "lost_frames",
 2074             &stats->rx_lost_frames, "Lost frames");
 2075 
 2076         /* Tx statistics. */
 2077         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
 2078             NULL, "Tx MAC statistics");
 2079         child = SYSCTL_CHILDREN(tree);
 2080         STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
 2081             &stats->tx_bytes, "Good octets");
 2082         STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
 2083             &stats->tx_frames, "Good frames");
 2084         STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
 2085             &stats->tx_bcast_frames, "Good broadcast frames");
 2086         STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
 2087             &stats->tx_mcast_frames, "Good multicast frames");
 2088         STE_SYSCTL_STAT_ADD32(ctx, child, "carrier_errs",
 2089             &stats->tx_carrsense_errs, "Carrier sense errors");
 2090         STE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
 2091             &stats->tx_single_colls, "Single collisions");
 2092         STE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
 2093             &stats->tx_multi_colls, "Multiple collisions");
 2094         STE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
 2095             &stats->tx_late_colls, "Late collisions");
 2096         STE_SYSCTL_STAT_ADD32(ctx, child, "defers",
 2097             &stats->tx_frames_defered, "Frames with deferrals");
 2098         STE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
 2099             &stats->tx_excess_defers, "Frames with excessive derferrals");
 2100         STE_SYSCTL_STAT_ADD32(ctx, child, "abort",
 2101             &stats->tx_abort, "Aborted frames due to Excessive collisions");
 2102 }
 2103 
 2104 #undef STE_SYSCTL_STAT_ADD32
 2105 #undef STE_SYSCTL_STAT_ADD64
 2106 
 2107 static void
 2108 ste_setwol(struct ste_softc *sc)
 2109 {
 2110         struct ifnet *ifp;
 2111         uint16_t pmstat;
 2112         uint8_t val;
 2113         int pmc;
 2114 
 2115         STE_LOCK_ASSERT(sc);
 2116 
 2117         if (pci_find_cap(sc->ste_dev, PCIY_PMG, &pmc) != 0) {
 2118                 /* Disable WOL. */
 2119                 CSR_READ_1(sc, STE_WAKE_EVENT);
 2120                 CSR_WRITE_1(sc, STE_WAKE_EVENT, 0);
 2121                 return;
 2122         }
 2123 
 2124         ifp = sc->ste_ifp;
 2125         val = CSR_READ_1(sc, STE_WAKE_EVENT);
 2126         val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
 2127             STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
 2128         if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
 2129                 val |= STE_WAKEEVENT_MAGICPKT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB;
 2130         CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
 2131         /* Request PME. */
 2132         pmstat = pci_read_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, 2);
 2133         pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
 2134         if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
 2135                 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
 2136         pci_write_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
 2137 }

Cache object: aed460becb96d83665ce575cedfdf0e2


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.