FreeBSD/Linux Kernel Cross Reference
sys/dev/sume/if_sume.c
1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2015 Bjoern A. Zeeb
5 * Copyright (c) 2020 Denis Salopek
6 *
7 * This software was developed by SRI International and the University of
8 * Cambridge Computer Laboratory under DARPA/AFRL contract FA8750-11-C-0249
9 * ("MRC2"), as part of the DARPA MRC research programme.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35
36 #include <sys/param.h>
37 #include <sys/bus.h>
38 #include <sys/endian.h>
39 #include <sys/kernel.h>
40 #include <sys/limits.h>
41 #include <sys/module.h>
42 #include <sys/rman.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/sysctl.h>
46 #include <sys/taskqueue.h>
47
48 #include <net/if.h>
49 #include <net/if_media.h>
50 #include <net/if_types.h>
51 #include <net/if_var.h>
52
53 #include <netinet/in.h>
54 #include <netinet/if_ether.h>
55
56 #include <dev/pci/pcivar.h>
57 #include <dev/pci/pcireg.h>
58
59 #include <machine/bus.h>
60
61 #include "adapter.h"
62
63 #define PCI_VENDOR_ID_XILINX 0x10ee
64 #define PCI_DEVICE_ID_SUME 0x7028
65
66 /* SUME bus driver interface */
67 static int sume_probe(device_t);
68 static int sume_attach(device_t);
69 static int sume_detach(device_t);
70
71 static device_method_t sume_methods[] = {
72 DEVMETHOD(device_probe, sume_probe),
73 DEVMETHOD(device_attach, sume_attach),
74 DEVMETHOD(device_detach, sume_detach),
75 DEVMETHOD_END
76 };
77
78 static driver_t sume_driver = {
79 "sume",
80 sume_methods,
81 sizeof(struct sume_adapter)
82 };
83
84 /*
85 * The DMA engine for SUME generates interrupts for each RX/TX transaction.
86 * Depending on the channel (0 if packet transaction, 1 if register transaction)
87 * the used bits of the interrupt vector will be the lowest or the second lowest
88 * 5 bits.
89 *
90 * When receiving packets from SUME (RX):
91 * (1) SUME received a packet on one of the interfaces.
92 * (2) SUME generates an interrupt vector, bit 00001 is set (channel 0 - new RX
93 * transaction).
94 * (3) We read the length of the incoming packet and the offset along with the
95 * 'last' flag from the SUME registers.
96 * (4) We prepare for the DMA transaction by setting the bouncebuffer on the
97 * address buf_addr. For now, this is how it's done:
98 * - First 3*sizeof(uint32_t) bytes are: lower and upper 32 bits of physical
99 * address where we want the data to arrive (buf_addr[0] and buf_addr[1]),
100 * and length of incoming data (buf_addr[2]).
101 * - Data will start right after, at buf_addr+3*sizeof(uint32_t). The
102 * physical address buf_hw_addr is a block of contiguous memory mapped to
103 * buf_addr, so we can set the incoming data's physical address (buf_addr[0]
104 * and buf_addr[1]) to buf_hw_addr+3*sizeof(uint32_t).
105 * (5) We notify SUME that the bouncebuffer is ready for the transaction by
106 * writing the lower/upper physical address buf_hw_addr to the SUME
107 * registers RIFFA_TX_SG_ADDR_LO_REG_OFF and RIFFA_TX_SG_ADDR_HI_REG_OFF as
108 * well as the number of segments to the register RIFFA_TX_SG_LEN_REG_OFF.
109 * (6) SUME generates an interrupt vector, bit 00010 is set (channel 0 -
110 * bouncebuffer received).
111 * (7) SUME generates an interrupt vector, bit 00100 is set (channel 0 -
112 * transaction is done).
113 * (8) SUME can do both steps (6) and (7) using the same interrupt.
114 * (8) We read the first 16 bytes (metadata) of the received data and note the
115 * incoming interface so we can later forward it to the right one in the OS
116 * (sume0, sume1, sume2 or sume3).
117 * (10) We create an mbuf and copy the data from the bouncebuffer to the mbuf
118 * and set the mbuf rcvif to the incoming interface.
119 * (11) We forward the mbuf to the appropriate interface via ifp->if_input.
120 *
121 * When sending packets to SUME (TX):
122 * (1) The OS calls sume_if_start() function on TX.
123 * (2) We get the mbuf packet data and copy it to the
124 * buf_addr+3*sizeof(uint32_t) + metadata 16 bytes.
125 * (3) We create the metadata based on the output interface and copy it to the
126 * buf_addr+3*sizeof(uint32_t).
127 * (4) We write the offset/last and length of the packet to the SUME registers
128 * RIFFA_RX_OFFLAST_REG_OFF and RIFFA_RX_LEN_REG_OFF.
129 * (5) We fill the bouncebuffer by filling the first 3*sizeof(uint32_t) bytes
130 * with the physical address and length just as in RX step (4).
131 * (6) We notify SUME that the bouncebuffer is ready by writing to SUME
132 * registers RIFFA_RX_SG_ADDR_LO_REG_OFF, RIFFA_RX_SG_ADDR_HI_REG_OFF and
133 * RIFFA_RX_SG_LEN_REG_OFF just as in RX step (5).
134 * (7) SUME generates an interrupt vector, bit 01000 is set (channel 0 -
135 * bouncebuffer is read).
136 * (8) SUME generates an interrupt vector, bit 10000 is set (channel 0 -
137 * transaction is done).
138 * (9) SUME can do both steps (7) and (8) using the same interrupt.
139 *
140 * Internal registers
141 * Every module in the SUME hardware has its own set of internal registers
142 * (IDs, for debugging and statistic purposes, etc.). Their base addresses are
143 * defined in 'projects/reference_nic/hw/tcl/reference_nic_defines.tcl' and the
144 * offsets to different memory locations of every module are defined in their
145 * corresponding folder inside the library. These registers can be RO/RW and
146 * there is a special method to fetch/change this data over 1 or 2 DMA
147 * transactions. For writing, by calling the sume_module_reg_write(). For
148 * reading, by calling the sume_module_reg_write() and then
149 * sume_module_reg_read(). Check those functions for more information.
150 */
151
152 MALLOC_DECLARE(M_SUME);
153 MALLOC_DEFINE(M_SUME, "sume", "NetFPGA SUME device driver");
154
155 static void check_tx_queues(struct sume_adapter *);
156 static void sume_fill_bb_desc(struct sume_adapter *, struct riffa_chnl_dir *,
157 uint64_t);
158
159 static struct unrhdr *unr;
160
161 static struct {
162 uint16_t device;
163 char *desc;
164 } sume_pciids[] = {
165 {PCI_DEVICE_ID_SUME, "NetFPGA SUME reference NIC"},
166 };
167
168 static inline uint32_t
169 read_reg(struct sume_adapter *adapter, int offset)
170 {
171
172 return (bus_space_read_4(adapter->bt, adapter->bh, offset << 2));
173 }
174
175 static inline void
176 write_reg(struct sume_adapter *adapter, int offset, uint32_t val)
177 {
178
179 bus_space_write_4(adapter->bt, adapter->bh, offset << 2, val);
180 }
181
182 static int
183 sume_probe(device_t dev)
184 {
185 int i;
186 uint16_t v = pci_get_vendor(dev);
187 uint16_t d = pci_get_device(dev);
188
189 if (v != PCI_VENDOR_ID_XILINX)
190 return (ENXIO);
191
192 for (i = 0; i < nitems(sume_pciids); i++) {
193 if (d == sume_pciids[i].device) {
194 device_set_desc(dev, sume_pciids[i].desc);
195 return (BUS_PROBE_DEFAULT);
196 }
197 }
198
199 return (ENXIO);
200 }
201
202 /*
203 * Building mbuf for packet received from SUME. We expect to receive 'len'
204 * bytes of data (including metadata) written from the bouncebuffer address
205 * buf_addr+3*sizeof(uint32_t). Metadata will tell us which SUME interface
206 * received the packet (sport will be 1, 2, 4 or 8), the packet length (plen),
207 * and the magic word needs to be 0xcafe. When we have the packet data, we
208 * create an mbuf and copy the data to it using m_copyback() function, set the
209 * correct interface to rcvif and return the mbuf to be later sent to the OS
210 * with if_input.
211 */
212 static struct mbuf *
213 sume_rx_build_mbuf(struct sume_adapter *adapter, uint32_t len)
214 {
215 struct nf_priv *nf_priv;
216 struct mbuf *m;
217 struct ifnet *ifp = NULL;
218 int np;
219 uint16_t dport, plen, magic;
220 device_t dev = adapter->dev;
221 uint8_t *indata = (uint8_t *)
222 adapter->recv[SUME_RIFFA_CHANNEL_DATA]->buf_addr +
223 sizeof(struct nf_bb_desc);
224 struct nf_metadata *mdata = (struct nf_metadata *) indata;
225
226 /* The metadata header is 16 bytes. */
227 if (len < sizeof(struct nf_metadata)) {
228 device_printf(dev, "short frame (%d)\n", len);
229 adapter->packets_err++;
230 adapter->bytes_err += len;
231 return (NULL);
232 }
233
234 dport = le16toh(mdata->dport);
235 plen = le16toh(mdata->plen);
236 magic = le16toh(mdata->magic);
237
238 if (sizeof(struct nf_metadata) + plen > len ||
239 magic != SUME_RIFFA_MAGIC) {
240 device_printf(dev, "corrupted packet (%zd + %d > %d || magic "
241 "0x%04x != 0x%04x)\n", sizeof(struct nf_metadata), plen,
242 len, magic, SUME_RIFFA_MAGIC);
243 return (NULL);
244 }
245
246 /* We got the packet from one of the even bits */
247 np = (ffs(dport & SUME_DPORT_MASK) >> 1) - 1;
248 if (np > SUME_NPORTS) {
249 device_printf(dev, "invalid destination port 0x%04x (%d)\n",
250 dport, np);
251 adapter->packets_err++;
252 adapter->bytes_err += plen;
253 return (NULL);
254 }
255 ifp = adapter->ifp[np];
256 nf_priv = ifp->if_softc;
257 nf_priv->stats.rx_packets++;
258 nf_priv->stats.rx_bytes += plen;
259
260 /* If the interface is down, well, we are done. */
261 if (!(ifp->if_flags & IFF_UP)) {
262 nf_priv->stats.ifc_down_packets++;
263 nf_priv->stats.ifc_down_bytes += plen;
264 return (NULL);
265 }
266
267 if (adapter->sume_debug)
268 printf("Building mbuf with length: %d\n", plen);
269
270 m = m_getm(NULL, plen, M_NOWAIT, MT_DATA);
271 if (m == NULL) {
272 adapter->packets_err++;
273 adapter->bytes_err += plen;
274 return (NULL);
275 }
276
277 /* Copy the data in at the right offset. */
278 m_copyback(m, 0, plen, (void *) (indata + sizeof(struct nf_metadata)));
279 m->m_pkthdr.rcvif = ifp;
280
281 return (m);
282 }
283
284 /*
285 * SUME interrupt handler for when we get a valid interrupt from the board.
286 * Theoretically, we can receive interrupt for any of the available channels,
287 * but RIFFA DMA uses only 2: 0 and 1, so we use only vect0. The vector is a 32
288 * bit number, using 5 bits for every channel, the least significant bits
289 * correspond to channel 0 and the next 5 bits correspond to channel 1. Vector
290 * bits for RX/TX are:
291 * RX
292 * bit 0 - new transaction from SUME
293 * bit 1 - SUME received our bouncebuffer address
294 * bit 2 - SUME copied the received data to our bouncebuffer, transaction done
295 * TX
296 * bit 3 - SUME received our bouncebuffer address
297 * bit 4 - SUME copied the data from our bouncebuffer, transaction done
298 *
299 * There are two finite state machines (one for TX, one for RX). We loop
300 * through channels 0 and 1 to check and our current state and which interrupt
301 * bit is set.
302 * TX
303 * SUME_RIFFA_CHAN_STATE_IDLE: waiting for the first TX transaction.
304 * SUME_RIFFA_CHAN_STATE_READY: we prepared (filled with data) the bouncebuffer
305 * and triggered the SUME for the TX transaction. Waiting for interrupt bit 3
306 * to go to the next state.
307 * SUME_RIFFA_CHAN_STATE_READ: waiting for interrupt bit 4 (for SUME to send
308 * our packet). Then we get the length of the sent data and go back to the
309 * IDLE state.
310 * RX
311 * SUME_RIFFA_CHAN_STATE_IDLE: waiting for the interrupt bit 0 (new RX
312 * transaction). When we get it, we prepare our bouncebuffer for reading and
313 * trigger the SUME to start the transaction. Go to the next state.
314 * SUME_RIFFA_CHAN_STATE_READY: waiting for the interrupt bit 1 (SUME got our
315 * bouncebuffer). Go to the next state.
316 * SUME_RIFFA_CHAN_STATE_READ: SUME copied data and our bouncebuffer is ready,
317 * we can build the mbuf and go back to the IDLE state.
318 */
319 static void
320 sume_intr_handler(void *arg)
321 {
322 struct sume_adapter *adapter = arg;
323 uint32_t vect, vect0, len;
324 int ch, loops;
325 device_t dev = adapter->dev;
326 struct mbuf *m = NULL;
327 struct ifnet *ifp = NULL;
328 struct riffa_chnl_dir *send, *recv;
329
330 SUME_LOCK(adapter);
331
332 vect0 = read_reg(adapter, RIFFA_IRQ_REG0_OFF);
333 if ((vect0 & SUME_INVALID_VECT) != 0) {
334 SUME_UNLOCK(adapter);
335 return;
336 }
337
338 /*
339 * We only have one interrupt for all channels and no way
340 * to quickly lookup for which channel(s) we got an interrupt?
341 */
342 for (ch = 0; ch < SUME_RIFFA_CHANNELS; ch++) {
343 vect = vect0 >> (5 * ch);
344 send = adapter->send[ch];
345 recv = adapter->recv[ch];
346
347 loops = 0;
348 while ((vect & (SUME_MSI_TXBUF | SUME_MSI_TXDONE)) &&
349 loops <= 5) {
350 if (adapter->sume_debug)
351 device_printf(dev, "TX ch %d state %u vect = "
352 "0x%08x\n", ch, send->state, vect);
353 switch (send->state) {
354 case SUME_RIFFA_CHAN_STATE_IDLE:
355 break;
356 case SUME_RIFFA_CHAN_STATE_READY:
357 if (!(vect & SUME_MSI_TXBUF)) {
358 device_printf(dev, "ch %d unexpected "
359 "interrupt in send+3 state %u: "
360 "vect = 0x%08x\n", ch, send->state,
361 vect);
362 send->recovery = 1;
363 break;
364 }
365 send->state = SUME_RIFFA_CHAN_STATE_READ;
366 vect &= ~SUME_MSI_TXBUF;
367 break;
368 case SUME_RIFFA_CHAN_STATE_READ:
369 if (!(vect & SUME_MSI_TXDONE)) {
370 device_printf(dev, "ch %d unexpected "
371 "interrupt in send+4 state %u: "
372 "vect = 0x%08x\n", ch, send->state,
373 vect);
374 send->recovery = 1;
375 break;
376 }
377 send->state = SUME_RIFFA_CHAN_STATE_LEN;
378
379 len = read_reg(adapter, RIFFA_CHNL_REG(ch,
380 RIFFA_RX_TNFR_LEN_REG_OFF));
381 if (ch == SUME_RIFFA_CHANNEL_DATA) {
382 send->state =
383 SUME_RIFFA_CHAN_STATE_IDLE;
384 check_tx_queues(adapter);
385 } else if (ch == SUME_RIFFA_CHANNEL_REG)
386 wakeup(&send->event);
387 else {
388 device_printf(dev, "ch %d unexpected "
389 "interrupt in send+4 state %u: "
390 "vect = 0x%08x\n", ch, send->state,
391 vect);
392 send->recovery = 1;
393 }
394 vect &= ~SUME_MSI_TXDONE;
395 break;
396 case SUME_RIFFA_CHAN_STATE_LEN:
397 break;
398 default:
399 device_printf(dev, "unknown TX state!\n");
400 }
401 loops++;
402 }
403
404 if ((vect & (SUME_MSI_TXBUF | SUME_MSI_TXDONE)) &&
405 send->recovery)
406 device_printf(dev, "ch %d ignoring vect = 0x%08x "
407 "during TX; not in recovery; state = %d loops = "
408 "%d\n", ch, vect, send->state, loops);
409
410 loops = 0;
411 while ((vect & (SUME_MSI_RXQUE | SUME_MSI_RXBUF |
412 SUME_MSI_RXDONE)) && loops < 5) {
413 if (adapter->sume_debug)
414 device_printf(dev, "RX ch %d state %u vect = "
415 "0x%08x\n", ch, recv->state, vect);
416 switch (recv->state) {
417 case SUME_RIFFA_CHAN_STATE_IDLE:
418 if (!(vect & SUME_MSI_RXQUE)) {
419 device_printf(dev, "ch %d unexpected "
420 "interrupt in recv+0 state %u: "
421 "vect = 0x%08x\n", ch, recv->state,
422 vect);
423 recv->recovery = 1;
424 break;
425 }
426 uint32_t max_ptr;
427
428 /* Clear recovery state. */
429 recv->recovery = 0;
430
431 /* Get offset and length. */
432 recv->offlast = read_reg(adapter,
433 RIFFA_CHNL_REG(ch,
434 RIFFA_TX_OFFLAST_REG_OFF));
435 recv->len = read_reg(adapter, RIFFA_CHNL_REG(ch,
436 RIFFA_TX_LEN_REG_OFF));
437
438 /* Boundary checks. */
439 max_ptr = (uint32_t)((uintptr_t)recv->buf_addr
440 + SUME_RIFFA_OFFSET(recv->offlast)
441 + SUME_RIFFA_LEN(recv->len) - 1);
442 if (max_ptr <
443 (uint32_t)((uintptr_t)recv->buf_addr))
444 device_printf(dev, "receive buffer "
445 "wrap-around overflow.\n");
446 if (SUME_RIFFA_OFFSET(recv->offlast) +
447 SUME_RIFFA_LEN(recv->len) >
448 adapter->sg_buf_size)
449 device_printf(dev, "receive buffer too"
450 " small.\n");
451
452 /* Fill the bouncebuf "descriptor". */
453 sume_fill_bb_desc(adapter, recv,
454 SUME_RIFFA_LEN(recv->len));
455
456 bus_dmamap_sync(recv->ch_tag, recv->ch_map,
457 BUS_DMASYNC_PREREAD |
458 BUS_DMASYNC_PREWRITE);
459 write_reg(adapter, RIFFA_CHNL_REG(ch,
460 RIFFA_TX_SG_ADDR_LO_REG_OFF),
461 SUME_RIFFA_LO_ADDR(recv->buf_hw_addr));
462 write_reg(adapter, RIFFA_CHNL_REG(ch,
463 RIFFA_TX_SG_ADDR_HI_REG_OFF),
464 SUME_RIFFA_HI_ADDR(recv->buf_hw_addr));
465 write_reg(adapter, RIFFA_CHNL_REG(ch,
466 RIFFA_TX_SG_LEN_REG_OFF),
467 4 * recv->num_sg);
468 bus_dmamap_sync(recv->ch_tag, recv->ch_map,
469 BUS_DMASYNC_POSTREAD |
470 BUS_DMASYNC_POSTWRITE);
471
472 recv->state = SUME_RIFFA_CHAN_STATE_READY;
473 vect &= ~SUME_MSI_RXQUE;
474 break;
475 case SUME_RIFFA_CHAN_STATE_READY:
476 if (!(vect & SUME_MSI_RXBUF)) {
477 device_printf(dev, "ch %d unexpected "
478 "interrupt in recv+1 state %u: "
479 "vect = 0x%08x\n", ch, recv->state,
480 vect);
481 recv->recovery = 1;
482 break;
483 }
484 recv->state = SUME_RIFFA_CHAN_STATE_READ;
485 vect &= ~SUME_MSI_RXBUF;
486 break;
487 case SUME_RIFFA_CHAN_STATE_READ:
488 if (!(vect & SUME_MSI_RXDONE)) {
489 device_printf(dev, "ch %d unexpected "
490 "interrupt in recv+2 state %u: "
491 "vect = 0x%08x\n", ch, recv->state,
492 vect);
493 recv->recovery = 1;
494 break;
495 }
496 len = read_reg(adapter, RIFFA_CHNL_REG(ch,
497 RIFFA_TX_TNFR_LEN_REG_OFF));
498
499 /* Remember, len and recv->len are words. */
500 if (ch == SUME_RIFFA_CHANNEL_DATA) {
501 m = sume_rx_build_mbuf(adapter,
502 len << 2);
503 recv->state =
504 SUME_RIFFA_CHAN_STATE_IDLE;
505 } else if (ch == SUME_RIFFA_CHANNEL_REG)
506 wakeup(&recv->event);
507 else {
508 device_printf(dev, "ch %d unexpected "
509 "interrupt in recv+2 state %u: "
510 "vect = 0x%08x\n", ch, recv->state,
511 vect);
512 recv->recovery = 1;
513 }
514 vect &= ~SUME_MSI_RXDONE;
515 break;
516 case SUME_RIFFA_CHAN_STATE_LEN:
517 break;
518 default:
519 device_printf(dev, "unknown RX state!\n");
520 }
521 loops++;
522 }
523
524 if ((vect & (SUME_MSI_RXQUE | SUME_MSI_RXBUF |
525 SUME_MSI_RXDONE)) && recv->recovery) {
526 device_printf(dev, "ch %d ignoring vect = 0x%08x "
527 "during RX; not in recovery; state = %d, loops = "
528 "%d\n", ch, vect, recv->state, loops);
529
530 /* Clean the unfinished transaction. */
531 if (ch == SUME_RIFFA_CHANNEL_REG &&
532 vect & SUME_MSI_RXDONE) {
533 read_reg(adapter, RIFFA_CHNL_REG(ch,
534 RIFFA_TX_TNFR_LEN_REG_OFF));
535 recv->recovery = 0;
536 }
537 }
538 }
539 SUME_UNLOCK(adapter);
540
541 if (m != NULL) {
542 ifp = m->m_pkthdr.rcvif;
543 (*ifp->if_input)(ifp, m);
544 }
545 }
546
547 /*
548 * As we cannot disable interrupt generation, ignore early interrupts by waiting
549 * for the adapter to go into the 'running' state.
550 */
551 static int
552 sume_intr_filter(void *arg)
553 {
554 struct sume_adapter *adapter = arg;
555
556 if (adapter->running == 0)
557 return (FILTER_STRAY);
558
559 return (FILTER_SCHEDULE_THREAD);
560 }
561
562 static int
563 sume_probe_riffa_pci(struct sume_adapter *adapter)
564 {
565 device_t dev = adapter->dev;
566 int error, count, capmem;
567 uint32_t reg, devctl, linkctl;
568
569 pci_enable_busmaster(dev);
570
571 adapter->rid = PCIR_BAR(0);
572 adapter->bar0_addr = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
573 &adapter->rid, RF_ACTIVE);
574 if (adapter->bar0_addr == NULL) {
575 device_printf(dev, "unable to allocate bus resource: "
576 "BAR0 address\n");
577 return (ENXIO);
578 }
579 adapter->bt = rman_get_bustag(adapter->bar0_addr);
580 adapter->bh = rman_get_bushandle(adapter->bar0_addr);
581 adapter->bar0_len = rman_get_size(adapter->bar0_addr);
582 if (adapter->bar0_len != 1024) {
583 device_printf(dev, "BAR0 resource length %lu != 1024\n",
584 adapter->bar0_len);
585 return (ENXIO);
586 }
587
588 count = pci_msi_count(dev);
589 error = pci_alloc_msi(dev, &count);
590 if (error) {
591 device_printf(dev, "unable to allocate bus resource: PCI "
592 "MSI\n");
593 return (error);
594 }
595
596 adapter->irq.rid = 1; /* Should be 1, thus says pci_alloc_msi() */
597 adapter->irq.res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
598 &adapter->irq.rid, RF_SHAREABLE | RF_ACTIVE);
599 if (adapter->irq.res == NULL) {
600 device_printf(dev, "unable to allocate bus resource: IRQ "
601 "memory\n");
602 return (ENXIO);
603 }
604
605 error = bus_setup_intr(dev, adapter->irq.res, INTR_MPSAFE |
606 INTR_TYPE_NET, sume_intr_filter, sume_intr_handler, adapter,
607 &adapter->irq.tag);
608 if (error) {
609 device_printf(dev, "failed to setup interrupt for rid %d, name"
610 " %s: %d\n", adapter->irq.rid, "SUME_INTR", error);
611 return (ENXIO);
612 }
613
614 if (pci_find_cap(dev, PCIY_EXPRESS, &capmem) != 0) {
615 device_printf(dev, "PCI not PCIe capable\n");
616 return (ENXIO);
617 }
618
619 devctl = pci_read_config(dev, capmem + PCIER_DEVICE_CTL, 2);
620 pci_write_config(dev, capmem + PCIER_DEVICE_CTL, (devctl |
621 PCIEM_CTL_EXT_TAG_FIELD), 2);
622
623 devctl = pci_read_config(dev, capmem + PCIER_DEVICE_CTL2, 2);
624 pci_write_config(dev, capmem + PCIER_DEVICE_CTL2, (devctl |
625 PCIEM_CTL2_ID_ORDERED_REQ_EN), 2);
626
627 linkctl = pci_read_config(dev, capmem + PCIER_LINK_CTL, 2);
628 pci_write_config(dev, capmem + PCIER_LINK_CTL, (linkctl |
629 PCIEM_LINK_CTL_RCB), 2);
630
631 reg = read_reg(adapter, RIFFA_INFO_REG_OFF);
632 adapter->num_sg = RIFFA_SG_ELEMS * ((reg >> 19) & 0xf);
633 adapter->sg_buf_size = RIFFA_SG_BUF_SIZE * ((reg >> 19) & 0xf);
634
635 error = ENODEV;
636 /* Check bus master is enabled. */
637 if (((reg >> 4) & 0x1) != 1) {
638 device_printf(dev, "bus master not enabled: %d\n",
639 (reg >> 4) & 0x1);
640 return (error);
641 }
642 /* Check link parameters are valid. */
643 if (((reg >> 5) & 0x3f) == 0 || ((reg >> 11) & 0x3) == 0) {
644 device_printf(dev, "link parameters not valid: %d %d\n",
645 (reg >> 5) & 0x3f, (reg >> 11) & 0x3);
646 return (error);
647 }
648 /* Check # of channels are within valid range. */
649 if ((reg & 0xf) == 0 || (reg & 0xf) > RIFFA_MAX_CHNLS) {
650 device_printf(dev, "number of channels out of range: %d\n",
651 reg & 0xf);
652 return (error);
653 }
654 /* Check bus width. */
655 if (((reg >> 19) & 0xf) == 0 ||
656 ((reg >> 19) & 0xf) > RIFFA_MAX_BUS_WIDTH_PARAM) {
657 device_printf(dev, "bus width out of range: %d\n",
658 (reg >> 19) & 0xf);
659 return (error);
660 }
661
662 device_printf(dev, "[riffa] # of channels: %d\n",
663 reg & 0xf);
664 device_printf(dev, "[riffa] bus interface width: %d\n",
665 ((reg >> 19) & 0xf) << 5);
666 device_printf(dev, "[riffa] bus master enabled: %d\n",
667 (reg >> 4) & 0x1);
668 device_printf(dev, "[riffa] negotiated link width: %d\n",
669 (reg >> 5) & 0x3f);
670 device_printf(dev, "[riffa] negotiated rate width: %d MTs\n",
671 ((reg >> 11) & 0x3) * 2500);
672 device_printf(dev, "[riffa] max downstream payload: %d B\n",
673 128 << ((reg >> 13) & 0x7));
674 device_printf(dev, "[riffa] max upstream payload: %d B\n",
675 128 << ((reg >> 16) & 0x7));
676
677 return (0);
678 }
679
680 /* If there is no sume_if_init, the ether_ioctl panics. */
681 static void
682 sume_if_init(void *sc)
683 {
684 }
685
686 /* Write the address and length for our incoming / outgoing transaction. */
687 static void
688 sume_fill_bb_desc(struct sume_adapter *adapter, struct riffa_chnl_dir *p,
689 uint64_t len)
690 {
691 struct nf_bb_desc *bouncebuf = (struct nf_bb_desc *) p->buf_addr;
692
693 bouncebuf->lower = (p->buf_hw_addr + sizeof(struct nf_bb_desc));
694 bouncebuf->upper = (p->buf_hw_addr + sizeof(struct nf_bb_desc)) >> 32;
695 bouncebuf->len = len >> 2;
696 }
697
698 /* Module register locked write. */
699 static int
700 sume_modreg_write_locked(struct sume_adapter *adapter)
701 {
702 struct riffa_chnl_dir *send = adapter->send[SUME_RIFFA_CHANNEL_REG];
703
704 /* Let the FPGA know about the transfer. */
705 write_reg(adapter, RIFFA_CHNL_REG(SUME_RIFFA_CHANNEL_REG,
706 RIFFA_RX_OFFLAST_REG_OFF), SUME_OFFLAST);
707 write_reg(adapter, RIFFA_CHNL_REG(SUME_RIFFA_CHANNEL_REG,
708 RIFFA_RX_LEN_REG_OFF), send->len); /* words */
709
710 /* Fill the bouncebuf "descriptor". */
711 sume_fill_bb_desc(adapter, send, SUME_RIFFA_LEN(send->len));
712
713 /* Update the state before intiating the DMA to avoid races. */
714 send->state = SUME_RIFFA_CHAN_STATE_READY;
715
716 bus_dmamap_sync(send->ch_tag, send->ch_map,
717 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
718 /* DMA. */
719 write_reg(adapter, RIFFA_CHNL_REG(SUME_RIFFA_CHANNEL_REG,
720 RIFFA_RX_SG_ADDR_LO_REG_OFF),
721 SUME_RIFFA_LO_ADDR(send->buf_hw_addr));
722 write_reg(adapter, RIFFA_CHNL_REG(SUME_RIFFA_CHANNEL_REG,
723 RIFFA_RX_SG_ADDR_HI_REG_OFF),
724 SUME_RIFFA_HI_ADDR(send->buf_hw_addr));
725 write_reg(adapter, RIFFA_CHNL_REG(SUME_RIFFA_CHANNEL_REG,
726 RIFFA_RX_SG_LEN_REG_OFF), 4 * send->num_sg);
727 bus_dmamap_sync(send->ch_tag, send->ch_map,
728 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
729
730 return (0);
731 }
732
733 /*
734 * Request a register read or write (depending on optype).
735 * If optype is set (0x1f) this will result in a register write,
736 * otherwise this will result in a register read request at the given
737 * address and the result will need to be DMAed back.
738 */
739 static int
740 sume_module_reg_write(struct nf_priv *nf_priv, struct sume_ifreq *sifr,
741 uint32_t optype)
742 {
743 struct sume_adapter *adapter = nf_priv->adapter;
744 struct riffa_chnl_dir *send = adapter->send[SUME_RIFFA_CHANNEL_REG];
745 struct nf_regop_data *data;
746 int error;
747
748 /*
749 * 1. Make sure the channel is free; otherwise return EBUSY.
750 * 2. Prepare the memory in the bounce buffer (which we always
751 * use for regs).
752 * 3. Start the DMA process.
753 * 4. Sleep and wait for result and return success or error.
754 */
755 SUME_LOCK(adapter);
756
757 if (send->state != SUME_RIFFA_CHAN_STATE_IDLE) {
758 SUME_UNLOCK(adapter);
759 return (EBUSY);
760 }
761
762 data = (struct nf_regop_data *) (send->buf_addr +
763 sizeof(struct nf_bb_desc));
764 data->addr = htole32(sifr->addr);
765 data->val = htole32(sifr->val);
766 /* Tag to indentify request. */
767 data->rtag = htole32(++send->rtag);
768 data->optype = htole32(optype);
769 send->len = sizeof(struct nf_regop_data) / 4; /* words */
770
771 error = sume_modreg_write_locked(adapter);
772 if (error) {
773 SUME_UNLOCK(adapter);
774 return (EFAULT);
775 }
776
777 /* Timeout after 1s. */
778 if (send->state != SUME_RIFFA_CHAN_STATE_LEN)
779 error = msleep(&send->event, &adapter->lock, 0,
780 "Waiting recv finish", 1 * hz);
781
782 /* This was a write so we are done; were interrupted, or timed out. */
783 if (optype != SUME_MR_READ || error != 0 || error == EWOULDBLOCK) {
784 send->state = SUME_RIFFA_CHAN_STATE_IDLE;
785 if (optype == SUME_MR_READ)
786 error = EWOULDBLOCK;
787 else
788 error = 0;
789 } else
790 error = 0;
791
792 /*
793 * For read requests we will update state once we are done
794 * having read the result to avoid any two outstanding
795 * transactions, or we need a queue and validate tags,
796 * which is a lot of work for a low priority, infrequent
797 * event.
798 */
799
800 SUME_UNLOCK(adapter);
801
802 return (error);
803 }
804
805 /* Module register read. */
806 static int
807 sume_module_reg_read(struct nf_priv *nf_priv, struct sume_ifreq *sifr)
808 {
809 struct sume_adapter *adapter = nf_priv->adapter;
810 struct riffa_chnl_dir *recv = adapter->recv[SUME_RIFFA_CHANNEL_REG];
811 struct riffa_chnl_dir *send = adapter->send[SUME_RIFFA_CHANNEL_REG];
812 struct nf_regop_data *data;
813 int error = 0;
814
815 /*
816 * 0. Sleep waiting for result if needed (unless condition is
817 * true already).
818 * 1. Read DMA results.
819 * 2. Update state on *TX* to IDLE to allow next read to start.
820 */
821 SUME_LOCK(adapter);
822
823 bus_dmamap_sync(recv->ch_tag, recv->ch_map,
824 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
825 /*
826 * We only need to be woken up at the end of the transaction.
827 * Timeout after 1s.
828 */
829 if (recv->state != SUME_RIFFA_CHAN_STATE_READ)
830 error = msleep(&recv->event, &adapter->lock, 0,
831 "Waiting transaction finish", 1 * hz);
832
833 if (recv->state != SUME_RIFFA_CHAN_STATE_READ || error == EWOULDBLOCK) {
834 SUME_UNLOCK(adapter);
835 device_printf(adapter->dev, "wait error: %d\n", error);
836 return (EWOULDBLOCK);
837 }
838
839 bus_dmamap_sync(recv->ch_tag, recv->ch_map,
840 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
841
842 /*
843 * Read reply data and validate address and tag.
844 * Note: we do access the send side without lock but the state
845 * machine does prevent the data from changing.
846 */
847 data = (struct nf_regop_data *) (recv->buf_addr +
848 sizeof(struct nf_bb_desc));
849
850 if (le32toh(data->rtag) != send->rtag)
851 device_printf(adapter->dev, "rtag error: 0x%08x 0x%08x\n",
852 le32toh(data->rtag), send->rtag);
853
854 sifr->val = le32toh(data->val);
855 recv->state = SUME_RIFFA_CHAN_STATE_IDLE;
856
857 /* We are done. */
858 send->state = SUME_RIFFA_CHAN_STATE_IDLE;
859
860 SUME_UNLOCK(adapter);
861
862 return (0);
863 }
864
865 /* Read value from a module register and return it to a sume_ifreq. */
866 static int
867 get_modreg_value(struct nf_priv *nf_priv, struct sume_ifreq *sifr)
868 {
869 int error;
870
871 error = sume_module_reg_write(nf_priv, sifr, SUME_MR_READ);
872 if (!error)
873 error = sume_module_reg_read(nf_priv, sifr);
874
875 return (error);
876 }
877
878 static int
879 sume_if_ioctl(struct ifnet *ifp, unsigned long cmd, caddr_t data)
880 {
881 struct ifreq *ifr = (struct ifreq *) data;
882 struct nf_priv *nf_priv = ifp->if_softc;
883 struct sume_ifreq sifr;
884 int error = 0;
885
886 switch (cmd) {
887 case SIOCGIFMEDIA:
888 case SIOCGIFXMEDIA:
889 error = ifmedia_ioctl(ifp, ifr, &nf_priv->media, cmd);
890 break;
891
892 case SUME_IOCTL_CMD_WRITE_REG:
893 error = copyin(ifr_data_get_ptr(ifr), &sifr, sizeof(sifr));
894 if (error) {
895 error = EINVAL;
896 break;
897 }
898 error = sume_module_reg_write(nf_priv, &sifr, SUME_MR_WRITE);
899 break;
900
901 case SUME_IOCTL_CMD_READ_REG:
902 error = copyin(ifr_data_get_ptr(ifr), &sifr, sizeof(sifr));
903 if (error) {
904 error = EINVAL;
905 break;
906 }
907
908 error = get_modreg_value(nf_priv, &sifr);
909 if (error)
910 break;
911
912 error = copyout(&sifr, ifr_data_get_ptr(ifr), sizeof(sifr));
913 if (error)
914 error = EINVAL;
915
916 break;
917
918 case SIOCSIFFLAGS:
919 /* Silence tcpdump 'promisc mode not supported' warning. */
920 if (ifp->if_flags & IFF_PROMISC)
921 break;
922
923 default:
924 error = ether_ioctl(ifp, cmd, data);
925 break;
926 }
927
928 return (error);
929 }
930
931 static int
932 sume_media_change(struct ifnet *ifp)
933 {
934 struct nf_priv *nf_priv = ifp->if_softc;
935 struct ifmedia *ifm = &nf_priv->media;
936
937 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
938 return (EINVAL);
939
940 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_10G_SR)
941 ifp->if_baudrate = ifmedia_baudrate(IFM_ETHER | IFM_10G_SR);
942 else
943 ifp->if_baudrate = ifmedia_baudrate(ifm->ifm_media);
944
945 return (0);
946 }
947
948 static void
949 sume_update_link_status(struct ifnet *ifp)
950 {
951 struct nf_priv *nf_priv = ifp->if_softc;
952 struct sume_adapter *adapter = nf_priv->adapter;
953 struct sume_ifreq sifr;
954 int link_status;
955
956 sifr.addr = SUME_STATUS_ADDR(nf_priv->port);
957 sifr.val = 0;
958
959 if (get_modreg_value(nf_priv, &sifr))
960 return;
961
962 link_status = SUME_LINK_STATUS(sifr.val);
963
964 if (!link_status && nf_priv->link_up) {
965 if_link_state_change(ifp, LINK_STATE_DOWN);
966 nf_priv->link_up = 0;
967 if (adapter->sume_debug)
968 device_printf(adapter->dev, "port %d link state "
969 "changed to DOWN\n", nf_priv->unit);
970 } else if (link_status && !nf_priv->link_up) {
971 nf_priv->link_up = 1;
972 if_link_state_change(ifp, LINK_STATE_UP);
973 if (adapter->sume_debug)
974 device_printf(adapter->dev, "port %d link state "
975 "changed to UP\n", nf_priv->unit);
976 }
977 }
978
979 static void
980 sume_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
981 {
982 struct nf_priv *nf_priv = ifp->if_softc;
983 struct ifmedia *ifm = &nf_priv->media;
984
985 if (ifm->ifm_cur->ifm_media == (IFM_ETHER | IFM_10G_SR) &&
986 (ifp->if_flags & IFF_UP))
987 ifmr->ifm_active = IFM_ETHER | IFM_10G_SR;
988 else
989 ifmr->ifm_active = ifm->ifm_cur->ifm_media;
990
991 ifmr->ifm_status |= IFM_AVALID;
992
993 sume_update_link_status(ifp);
994
995 if (nf_priv->link_up)
996 ifmr->ifm_status |= IFM_ACTIVE;
997 }
998
999 /*
1000 * Packet to transmit. We take the packet data from the mbuf and copy it to the
1001 * bouncebuffer address buf_addr+3*sizeof(uint32_t)+16. The 16 bytes before the
1002 * packet data are for metadata: sport/dport (depending on our source
1003 * interface), packet length and magic 0xcafe. We tell the SUME about the
1004 * transfer, fill the first 3*sizeof(uint32_t) bytes of the bouncebuffer with
1005 * the information about the start and length of the packet and trigger the
1006 * transaction.
1007 */
1008 static int
1009 sume_if_start_locked(struct ifnet *ifp)
1010 {
1011 struct mbuf *m;
1012 struct nf_priv *nf_priv = ifp->if_softc;
1013 struct sume_adapter *adapter = nf_priv->adapter;
1014 struct riffa_chnl_dir *send = adapter->send[SUME_RIFFA_CHANNEL_DATA];
1015 uint8_t *outbuf;
1016 struct nf_metadata *mdata;
1017 int plen = SUME_MIN_PKT_SIZE;
1018
1019 KASSERT(mtx_owned(&adapter->lock), ("SUME lock not owned"));
1020 KASSERT(send->state == SUME_RIFFA_CHAN_STATE_IDLE,
1021 ("SUME not in IDLE state"));
1022
1023 IFQ_DEQUEUE(&ifp->if_snd, m);
1024 if (m == NULL)
1025 return (EINVAL);
1026
1027 /* Packets large enough do not need to be padded */
1028 if (m->m_pkthdr.len > SUME_MIN_PKT_SIZE)
1029 plen = m->m_pkthdr.len;
1030
1031 if (adapter->sume_debug)
1032 device_printf(adapter->dev, "sending %d bytes to %s%d\n", plen,
1033 SUME_ETH_DEVICE_NAME, nf_priv->unit);
1034
1035 outbuf = (uint8_t *) send->buf_addr + sizeof(struct nf_bb_desc);
1036 mdata = (struct nf_metadata *) outbuf;
1037
1038 /* Clear the recovery flag. */
1039 send->recovery = 0;
1040
1041 /* Make sure we fit with the 16 bytes nf_metadata. */
1042 if (m->m_pkthdr.len + sizeof(struct nf_metadata) >
1043 adapter->sg_buf_size) {
1044 device_printf(adapter->dev, "packet too big for bounce buffer "
1045 "(%d)\n", m->m_pkthdr.len);
1046 m_freem(m);
1047 nf_priv->stats.tx_dropped++;
1048 return (ENOMEM);
1049 }
1050
1051 bus_dmamap_sync(send->ch_tag, send->ch_map,
1052 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1053
1054 /* Zero out the padded data */
1055 if (m->m_pkthdr.len < SUME_MIN_PKT_SIZE)
1056 bzero(outbuf + sizeof(struct nf_metadata), SUME_MIN_PKT_SIZE);
1057 /* Skip the first 16 bytes for the metadata. */
1058 m_copydata(m, 0, m->m_pkthdr.len, outbuf + sizeof(struct nf_metadata));
1059 send->len = (sizeof(struct nf_metadata) + plen + 3) / 4;
1060
1061 /* Fill in the metadata: CPU(DMA) ports are odd, MAC ports are even. */
1062 mdata->sport = htole16(1 << (nf_priv->port * 2 + 1));
1063 mdata->dport = htole16(1 << (nf_priv->port * 2));
1064 mdata->plen = htole16(plen);
1065 mdata->magic = htole16(SUME_RIFFA_MAGIC);
1066 mdata->t1 = htole32(0);
1067 mdata->t2 = htole32(0);
1068
1069 /* Let the FPGA know about the transfer. */
1070 write_reg(adapter, RIFFA_CHNL_REG(SUME_RIFFA_CHANNEL_DATA,
1071 RIFFA_RX_OFFLAST_REG_OFF), SUME_OFFLAST);
1072 write_reg(adapter, RIFFA_CHNL_REG(SUME_RIFFA_CHANNEL_DATA,
1073 RIFFA_RX_LEN_REG_OFF), send->len);
1074
1075 /* Fill the bouncebuf "descriptor". */
1076 sume_fill_bb_desc(adapter, send, SUME_RIFFA_LEN(send->len));
1077
1078 /* Update the state before intiating the DMA to avoid races. */
1079 send->state = SUME_RIFFA_CHAN_STATE_READY;
1080
1081 /* DMA. */
1082 write_reg(adapter, RIFFA_CHNL_REG(SUME_RIFFA_CHANNEL_DATA,
1083 RIFFA_RX_SG_ADDR_LO_REG_OFF),
1084 SUME_RIFFA_LO_ADDR(send->buf_hw_addr));
1085 write_reg(adapter, RIFFA_CHNL_REG(SUME_RIFFA_CHANNEL_DATA,
1086 RIFFA_RX_SG_ADDR_HI_REG_OFF),
1087 SUME_RIFFA_HI_ADDR(send->buf_hw_addr));
1088 write_reg(adapter, RIFFA_CHNL_REG(SUME_RIFFA_CHANNEL_DATA,
1089 RIFFA_RX_SG_LEN_REG_OFF), 4 * send->num_sg);
1090
1091 bus_dmamap_sync(send->ch_tag, send->ch_map,
1092 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1093
1094 nf_priv->stats.tx_packets++;
1095 nf_priv->stats.tx_bytes += plen;
1096
1097 /* We can free as long as we use the bounce buffer. */
1098 m_freem(m);
1099
1100 adapter->last_ifc = nf_priv->port;
1101
1102 /* Reset watchdog counter. */
1103 adapter->wd_counter = 0;
1104
1105 return (0);
1106 }
1107
1108 static void
1109 sume_if_start(struct ifnet *ifp)
1110 {
1111 struct nf_priv *nf_priv = ifp->if_softc;
1112 struct sume_adapter *adapter = nf_priv->adapter;
1113
1114 if (!adapter->running || !(ifp->if_flags & IFF_UP))
1115 return;
1116
1117 SUME_LOCK(adapter);
1118 if (adapter->send[SUME_RIFFA_CHANNEL_DATA]->state ==
1119 SUME_RIFFA_CHAN_STATE_IDLE)
1120 sume_if_start_locked(ifp);
1121 SUME_UNLOCK(adapter);
1122 }
1123
1124 /*
1125 * We call this function at the end of every TX transaction to check for
1126 * remaining packets in the TX queues for every UP interface.
1127 */
1128 static void
1129 check_tx_queues(struct sume_adapter *adapter)
1130 {
1131 int i, last_ifc;
1132
1133 KASSERT(mtx_owned(&adapter->lock), ("SUME lock not owned"));
1134
1135 last_ifc = adapter->last_ifc;
1136
1137 /* Check all interfaces */
1138 for (i = last_ifc + 1; i < last_ifc + SUME_NPORTS + 1; i++) {
1139 struct ifnet *ifp = adapter->ifp[i % SUME_NPORTS];
1140
1141 if (!(ifp->if_flags & IFF_UP))
1142 continue;
1143
1144 if (!sume_if_start_locked(ifp))
1145 break;
1146 }
1147 }
1148
1149 static int
1150 sume_ifp_alloc(struct sume_adapter *adapter, uint32_t port)
1151 {
1152 struct ifnet *ifp;
1153 struct nf_priv *nf_priv = malloc(sizeof(struct nf_priv), M_SUME,
1154 M_ZERO | M_WAITOK);
1155
1156 ifp = if_alloc(IFT_ETHER);
1157 if (ifp == NULL) {
1158 device_printf(adapter->dev, "cannot allocate ifnet\n");
1159 return (ENOMEM);
1160 }
1161
1162 adapter->ifp[port] = ifp;
1163 ifp->if_softc = nf_priv;
1164
1165 nf_priv->adapter = adapter;
1166 nf_priv->unit = alloc_unr(unr);
1167 nf_priv->port = port;
1168 nf_priv->link_up = 0;
1169
1170 if_initname(ifp, SUME_ETH_DEVICE_NAME, nf_priv->unit);
1171 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1172
1173 ifp->if_init = sume_if_init;
1174 ifp->if_start = sume_if_start;
1175 ifp->if_ioctl = sume_if_ioctl;
1176
1177 uint8_t hw_addr[ETHER_ADDR_LEN] = DEFAULT_ETHER_ADDRESS;
1178 hw_addr[ETHER_ADDR_LEN-1] = nf_priv->unit;
1179 ether_ifattach(ifp, hw_addr);
1180
1181 ifmedia_init(&nf_priv->media, IFM_IMASK, sume_media_change,
1182 sume_media_status);
1183 ifmedia_add(&nf_priv->media, IFM_ETHER | IFM_10G_SR, 0, NULL);
1184 ifmedia_set(&nf_priv->media, IFM_ETHER | IFM_10G_SR);
1185
1186 ifp->if_drv_flags |= IFF_DRV_RUNNING;
1187
1188 return (0);
1189 }
1190
1191 static void
1192 callback_dma(void *arg, bus_dma_segment_t *segs, int nseg, int err)
1193 {
1194 if (err)
1195 return;
1196
1197 KASSERT(nseg == 1, ("%d segments returned!", nseg));
1198
1199 *(bus_addr_t *) arg = segs[0].ds_addr;
1200 }
1201
1202 static int
1203 sume_probe_riffa_buffer(const struct sume_adapter *adapter,
1204 struct riffa_chnl_dir ***p, const char *dir)
1205 {
1206 struct riffa_chnl_dir **rp;
1207 bus_addr_t hw_addr;
1208 int error, ch;
1209 device_t dev = adapter->dev;
1210
1211 error = ENOMEM;
1212 *p = malloc(SUME_RIFFA_CHANNELS * sizeof(struct riffa_chnl_dir *),
1213 M_SUME, M_ZERO | M_WAITOK);
1214 if (*p == NULL) {
1215 device_printf(dev, "malloc(%s) failed.\n", dir);
1216 return (error);
1217 }
1218
1219 rp = *p;
1220 /* Allocate the chnl_dir structs themselves. */
1221 for (ch = 0; ch < SUME_RIFFA_CHANNELS; ch++) {
1222 /* One direction. */
1223 rp[ch] = malloc(sizeof(struct riffa_chnl_dir), M_SUME,
1224 M_ZERO | M_WAITOK);
1225 if (rp[ch] == NULL) {
1226 device_printf(dev, "malloc(%s[%d]) riffa_chnl_dir "
1227 "failed.\n", dir, ch);
1228 return (error);
1229 }
1230
1231 int err = bus_dma_tag_create(bus_get_dma_tag(dev),
1232 4, 0,
1233 BUS_SPACE_MAXADDR,
1234 BUS_SPACE_MAXADDR,
1235 NULL, NULL,
1236 adapter->sg_buf_size,
1237 1,
1238 adapter->sg_buf_size,
1239 0,
1240 NULL,
1241 NULL,
1242 &rp[ch]->ch_tag);
1243
1244 if (err) {
1245 device_printf(dev, "bus_dma_tag_create(%s[%d]) "
1246 "failed.\n", dir, ch);
1247 return (err);
1248 }
1249
1250 err = bus_dmamem_alloc(rp[ch]->ch_tag, (void **)
1251 &rp[ch]->buf_addr, BUS_DMA_WAITOK | BUS_DMA_COHERENT |
1252 BUS_DMA_ZERO, &rp[ch]->ch_map);
1253 if (err) {
1254 device_printf(dev, "bus_dmamem_alloc(%s[%d]) failed.\n",
1255 dir, ch);
1256 return (err);
1257 }
1258
1259 bzero(rp[ch]->buf_addr, adapter->sg_buf_size);
1260
1261 err = bus_dmamap_load(rp[ch]->ch_tag, rp[ch]->ch_map,
1262 rp[ch]->buf_addr, adapter->sg_buf_size, callback_dma,
1263 &hw_addr, BUS_DMA_NOWAIT);
1264 if (err) {
1265 device_printf(dev, "bus_dmamap_load(%s[%d]) failed.\n",
1266 dir, ch);
1267 return (err);
1268 }
1269 rp[ch]->buf_hw_addr = hw_addr;
1270 rp[ch]->num_sg = 1;
1271 rp[ch]->state = SUME_RIFFA_CHAN_STATE_IDLE;
1272
1273 rp[ch]->rtag = SUME_INIT_RTAG;
1274 }
1275
1276 return (0);
1277 }
1278
1279 static int
1280 sume_probe_riffa_buffers(struct sume_adapter *adapter)
1281 {
1282 int error;
1283
1284 error = sume_probe_riffa_buffer(adapter, &adapter->recv, "recv");
1285 if (error)
1286 return (error);
1287
1288 error = sume_probe_riffa_buffer(adapter, &adapter->send, "send");
1289
1290 return (error);
1291 }
1292
1293 static void
1294 sume_sysctl_init(struct sume_adapter *adapter)
1295 {
1296 device_t dev = adapter->dev;
1297 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
1298 struct sysctl_oid *tree = device_get_sysctl_tree(dev);
1299 struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
1300 struct sysctl_oid *tmp_tree;
1301 char namebuf[MAX_IFC_NAME_LEN];
1302 int i;
1303
1304 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "sume", CTLFLAG_RW,
1305 0, "SUME top-level tree");
1306 if (tree == NULL) {
1307 device_printf(dev, "SYSCTL_ADD_NODE failed.\n");
1308 return;
1309 }
1310 SYSCTL_ADD_INT(ctx, child, OID_AUTO, "debug", CTLFLAG_RW,
1311 &adapter->sume_debug, 0, "debug int leaf");
1312
1313 /* total RX error stats */
1314 SYSCTL_ADD_U64(ctx, child, OID_AUTO, "rx_epkts",
1315 CTLFLAG_RD, &adapter->packets_err, 0, "rx errors");
1316 SYSCTL_ADD_U64(ctx, child, OID_AUTO, "rx_ebytes",
1317 CTLFLAG_RD, &adapter->bytes_err, 0, "rx error bytes");
1318
1319 for (i = SUME_NPORTS - 1; i >= 0; i--) {
1320 struct ifnet *ifp = adapter->ifp[i];
1321 if (ifp == NULL)
1322 continue;
1323
1324 struct nf_priv *nf_priv = ifp->if_softc;
1325
1326 snprintf(namebuf, MAX_IFC_NAME_LEN, "%s%d",
1327 SUME_ETH_DEVICE_NAME, nf_priv->unit);
1328 tmp_tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
1329 CTLFLAG_RW, 0, "SUME ifc tree");
1330 if (tmp_tree == NULL) {
1331 device_printf(dev, "SYSCTL_ADD_NODE failed.\n");
1332 return;
1333 }
1334
1335 /* Packets dropped by down interface. */
1336 SYSCTL_ADD_U64(ctx, SYSCTL_CHILDREN(tmp_tree), OID_AUTO,
1337 "ifc_down_bytes", CTLFLAG_RD,
1338 &nf_priv->stats.ifc_down_bytes, 0, "ifc_down bytes");
1339 SYSCTL_ADD_U64(ctx, SYSCTL_CHILDREN(tmp_tree), OID_AUTO,
1340 "ifc_down_packets", CTLFLAG_RD,
1341 &nf_priv->stats.ifc_down_packets, 0, "ifc_down packets");
1342
1343 /* HW RX stats */
1344 SYSCTL_ADD_U64(ctx, SYSCTL_CHILDREN(tmp_tree), OID_AUTO,
1345 "hw_rx_packets", CTLFLAG_RD, &nf_priv->stats.hw_rx_packets,
1346 0, "hw_rx packets");
1347
1348 /* HW TX stats */
1349 SYSCTL_ADD_U64(ctx, SYSCTL_CHILDREN(tmp_tree), OID_AUTO,
1350 "hw_tx_packets", CTLFLAG_RD, &nf_priv->stats.hw_tx_packets,
1351 0, "hw_tx packets");
1352
1353 /* RX stats */
1354 SYSCTL_ADD_U64(ctx, SYSCTL_CHILDREN(tmp_tree), OID_AUTO,
1355 "rx_bytes", CTLFLAG_RD, &nf_priv->stats.rx_bytes, 0,
1356 "rx bytes");
1357 SYSCTL_ADD_U64(ctx, SYSCTL_CHILDREN(tmp_tree), OID_AUTO,
1358 "rx_dropped", CTLFLAG_RD, &nf_priv->stats.rx_dropped, 0,
1359 "rx dropped");
1360 SYSCTL_ADD_U64(ctx, SYSCTL_CHILDREN(tmp_tree), OID_AUTO,
1361 "rx_packets", CTLFLAG_RD, &nf_priv->stats.rx_packets, 0,
1362 "rx packets");
1363
1364 /* TX stats */
1365 SYSCTL_ADD_U64(ctx, SYSCTL_CHILDREN(tmp_tree), OID_AUTO,
1366 "tx_bytes", CTLFLAG_RD, &nf_priv->stats.tx_bytes, 0,
1367 "tx bytes");
1368 SYSCTL_ADD_U64(ctx, SYSCTL_CHILDREN(tmp_tree), OID_AUTO,
1369 "tx_dropped", CTLFLAG_RD, &nf_priv->stats.tx_dropped, 0,
1370 "tx dropped");
1371 SYSCTL_ADD_U64(ctx, SYSCTL_CHILDREN(tmp_tree), OID_AUTO,
1372 "tx_packets", CTLFLAG_RD, &nf_priv->stats.tx_packets, 0,
1373 "tx packets");
1374 }
1375 }
1376
1377 static void
1378 sume_local_timer(void *arg)
1379 {
1380 struct sume_adapter *adapter = arg;
1381
1382 if (!adapter->running)
1383 return;
1384
1385 taskqueue_enqueue(adapter->tq, &adapter->stat_task);
1386
1387 SUME_LOCK(adapter);
1388 if (adapter->send[SUME_RIFFA_CHANNEL_DATA]->state !=
1389 SUME_RIFFA_CHAN_STATE_IDLE && ++adapter->wd_counter >= 3) {
1390 /* Resetting interfaces if stuck for 3 seconds. */
1391 device_printf(adapter->dev, "TX stuck, resetting adapter.\n");
1392 read_reg(adapter, RIFFA_INFO_REG_OFF);
1393
1394 adapter->send[SUME_RIFFA_CHANNEL_DATA]->state =
1395 SUME_RIFFA_CHAN_STATE_IDLE;
1396 adapter->wd_counter = 0;
1397
1398 check_tx_queues(adapter);
1399 }
1400 SUME_UNLOCK(adapter);
1401
1402 callout_reset(&adapter->timer, 1 * hz, sume_local_timer, adapter);
1403 }
1404
1405 static void
1406 sume_get_stats(void *context, int pending)
1407 {
1408 struct sume_adapter *adapter = context;
1409 int i;
1410
1411 for (i = 0; i < SUME_NPORTS; i++) {
1412 struct ifnet *ifp = adapter->ifp[i];
1413
1414 if (ifp->if_flags & IFF_UP) {
1415 struct nf_priv *nf_priv = ifp->if_softc;
1416 struct sume_ifreq sifr;
1417
1418 sume_update_link_status(ifp);
1419
1420 /* Get RX counter. */
1421 sifr.addr = SUME_STAT_RX_ADDR(nf_priv->port);
1422 sifr.val = 0;
1423
1424 if (!get_modreg_value(nf_priv, &sifr))
1425 nf_priv->stats.hw_rx_packets += sifr.val;
1426
1427 /* Get TX counter. */
1428 sifr.addr = SUME_STAT_TX_ADDR(nf_priv->port);
1429 sifr.val = 0;
1430
1431 if (!get_modreg_value(nf_priv, &sifr))
1432 nf_priv->stats.hw_tx_packets += sifr.val;
1433 }
1434 }
1435 }
1436
1437 static int
1438 sume_attach(device_t dev)
1439 {
1440 struct sume_adapter *adapter = device_get_softc(dev);
1441 adapter->dev = dev;
1442 int error, i;
1443
1444 mtx_init(&adapter->lock, "Global lock", NULL, MTX_DEF);
1445
1446 adapter->running = 0;
1447
1448 /* OK finish up RIFFA. */
1449 error = sume_probe_riffa_pci(adapter);
1450 if (error != 0)
1451 goto error;
1452
1453 error = sume_probe_riffa_buffers(adapter);
1454 if (error != 0)
1455 goto error;
1456
1457 /* Now do the network interfaces. */
1458 for (i = 0; i < SUME_NPORTS; i++) {
1459 error = sume_ifp_alloc(adapter, i);
1460 if (error != 0)
1461 goto error;
1462 }
1463
1464 /* Register stats and register sysctls. */
1465 sume_sysctl_init(adapter);
1466
1467 /* Reset the HW. */
1468 read_reg(adapter, RIFFA_INFO_REG_OFF);
1469
1470 /* Ready to go, "enable" IRQ. */
1471 adapter->running = 1;
1472
1473 callout_init(&adapter->timer, 1);
1474 TASK_INIT(&adapter->stat_task, 0, sume_get_stats, adapter);
1475
1476 adapter->tq = taskqueue_create("sume_stats", M_NOWAIT,
1477 taskqueue_thread_enqueue, &adapter->tq);
1478 taskqueue_start_threads(&adapter->tq, 1, PI_NET, "%s stattaskq",
1479 device_get_nameunit(adapter->dev));
1480
1481 callout_reset(&adapter->timer, 1 * hz, sume_local_timer, adapter);
1482
1483 return (0);
1484
1485 error:
1486 sume_detach(dev);
1487
1488 return (error);
1489 }
1490
1491 static void
1492 sume_remove_riffa_buffer(const struct sume_adapter *adapter,
1493 struct riffa_chnl_dir **pp)
1494 {
1495 int ch;
1496
1497 for (ch = 0; ch < SUME_RIFFA_CHANNELS; ch++) {
1498 if (pp[ch] == NULL)
1499 continue;
1500
1501 if (pp[ch]->buf_hw_addr != 0) {
1502 bus_dmamem_free(pp[ch]->ch_tag, pp[ch]->buf_addr,
1503 pp[ch]->ch_map);
1504 pp[ch]->buf_hw_addr = 0;
1505 }
1506
1507 free(pp[ch], M_SUME);
1508 }
1509 }
1510
1511 static void
1512 sume_remove_riffa_buffers(struct sume_adapter *adapter)
1513 {
1514 if (adapter->send != NULL) {
1515 sume_remove_riffa_buffer(adapter, adapter->send);
1516 free(adapter->send, M_SUME);
1517 adapter->send = NULL;
1518 }
1519 if (adapter->recv != NULL) {
1520 sume_remove_riffa_buffer(adapter, adapter->recv);
1521 free(adapter->recv, M_SUME);
1522 adapter->recv = NULL;
1523 }
1524 }
1525
1526 static int
1527 sume_detach(device_t dev)
1528 {
1529 struct sume_adapter *adapter = device_get_softc(dev);
1530 int i;
1531 struct nf_priv *nf_priv;
1532
1533 KASSERT(mtx_initialized(&adapter->lock), ("SUME mutex not "
1534 "initialized"));
1535 adapter->running = 0;
1536
1537 /* Drain the stats callout and task queue. */
1538 callout_drain(&adapter->timer);
1539
1540 if (adapter->tq) {
1541 taskqueue_drain(adapter->tq, &adapter->stat_task);
1542 taskqueue_free(adapter->tq);
1543 }
1544
1545 for (i = 0; i < SUME_NPORTS; i++) {
1546 struct ifnet *ifp = adapter->ifp[i];
1547 if (ifp == NULL)
1548 continue;
1549
1550 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1551 nf_priv = ifp->if_softc;
1552
1553 if (ifp->if_flags & IFF_UP)
1554 if_down(ifp);
1555 ifmedia_removeall(&nf_priv->media);
1556 free_unr(unr, nf_priv->unit);
1557
1558 ifp->if_flags &= ~IFF_UP;
1559 ether_ifdetach(ifp);
1560 if_free(ifp);
1561
1562 free(nf_priv, M_SUME);
1563 }
1564
1565 sume_remove_riffa_buffers(adapter);
1566
1567 if (adapter->irq.tag)
1568 bus_teardown_intr(dev, adapter->irq.res, adapter->irq.tag);
1569 if (adapter->irq.res)
1570 bus_release_resource(dev, SYS_RES_IRQ, adapter->irq.rid,
1571 adapter->irq.res);
1572
1573 pci_release_msi(dev);
1574
1575 if (adapter->bar0_addr)
1576 bus_release_resource(dev, SYS_RES_MEMORY, adapter->rid,
1577 adapter->bar0_addr);
1578
1579 mtx_destroy(&adapter->lock);
1580
1581 return (0);
1582 }
1583
1584 static int
1585 mod_event(module_t mod, int cmd, void *arg)
1586 {
1587 switch (cmd) {
1588 case MOD_LOAD:
1589 unr = new_unrhdr(0, INT_MAX, NULL);
1590 break;
1591
1592 case MOD_UNLOAD:
1593 delete_unrhdr(unr);
1594 break;
1595 }
1596
1597 return (0);
1598 }
1599 static devclass_t sume_devclass;
1600
1601 DRIVER_MODULE(sume, pci, sume_driver, sume_devclass, mod_event, 0);
1602 MODULE_VERSION(sume, 1);
Cache object: 321edff753c2919d6cc46b4dbb5c743b
|