FreeBSD/Linux Kernel Cross Reference
sys/dev/sym/sym_fw2.h
1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010
5 * PCI-SCSI controllers.
6 *
7 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
8 *
9 * This driver also supports the following Symbios/LSI PCI-SCSI chips:
10 * 53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895,
11 * 53C810, 53C815, 53C825 and the 53C1510D is 53C8XX mode.
12 *
13 *
14 * This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver.
15 * Copyright (C) 1998-1999 Gerard Roudier
16 *
17 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
18 * a port of the FreeBSD ncr driver to Linux-1.2.13.
19 *
20 * The original ncr driver has been written for 386bsd and FreeBSD by
21 * Wolfgang Stanglmeier <wolf@cologne.de>
22 * Stefan Esser <se@mi.Uni-Koeln.de>
23 * Copyright (C) 1994 Wolfgang Stanglmeier
24 *
25 * The initialisation code, and part of the code that addresses
26 * FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM
27 * written by Justin T. Gibbs.
28 *
29 * Other major contributions:
30 *
31 * NVRAM detection and reading.
32 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
33 *
34 *-----------------------------------------------------------------------------
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. The name of the author may not be used to endorse or promote products
45 * derived from this software without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
51 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 * SUCH DAMAGE.
58 */
59
60 /* $FreeBSD$ */
61
62 /*
63 * Scripts for SYMBIOS-Processor
64 *
65 * We have to know the offsets of all labels before we reach
66 * them (for forward jumps). Therefore we declare a struct
67 * here. If you make changes inside the script,
68 *
69 * DONT FORGET TO CHANGE THE LENGTHS HERE!
70 */
71
72 /*
73 * Script fragments which are loaded into the on-chip RAM
74 * of 825A, 875, 876, 895, 895A, 896 and 1010 chips.
75 * Must not exceed 4K bytes.
76 */
77 struct SYM_FWA_SCR {
78 u32 start [ 14];
79 u32 getjob_begin [ 4];
80 u32 getjob_end [ 4];
81 u32 select [ 8];
82 u32 wf_sel_done [ 2];
83 u32 sel_done [ 2];
84 u32 send_ident [ 2];
85 #ifdef SYM_CONF_IARB_SUPPORT
86 u32 select2 [ 8];
87 #else
88 u32 select2 [ 2];
89 #endif
90 u32 command [ 2];
91 u32 dispatch [ 28];
92 u32 sel_no_cmd [ 10];
93 u32 init [ 6];
94 u32 clrack [ 4];
95 u32 disp_status [ 4];
96 u32 datai_done [ 26];
97 u32 datao_done [ 12];
98 u32 datai_phase [ 2];
99 u32 datao_phase [ 4];
100 u32 msg_in [ 2];
101 u32 msg_in2 [ 10];
102 #ifdef SYM_CONF_IARB_SUPPORT
103 u32 status [ 14];
104 #else
105 u32 status [ 10];
106 #endif
107 u32 complete [ 8];
108 u32 complete2 [ 12];
109 u32 complete_error [ 4];
110 u32 done [ 14];
111 u32 done_end [ 2];
112 u32 save_dp [ 8];
113 u32 restore_dp [ 4];
114 u32 disconnect [ 20];
115 #ifdef SYM_CONF_IARB_SUPPORT
116 u32 idle [ 4];
117 #else
118 u32 idle [ 2];
119 #endif
120 #ifdef SYM_CONF_IARB_SUPPORT
121 u32 ungetjob [ 6];
122 #else
123 u32 ungetjob [ 4];
124 #endif
125 u32 reselect [ 4];
126 u32 reselected [ 22];
127 u32 resel_scntl4 [ 20];
128 u32 resel_lun0 [ 6];
129 #if SYM_CONF_MAX_TASK*4 > 512
130 u32 resel_tag [ 26];
131 #elif SYM_CONF_MAX_TASK*4 > 256
132 u32 resel_tag [ 20];
133 #else
134 u32 resel_tag [ 16];
135 #endif
136 u32 resel_dsa [ 2];
137 u32 resel_dsa1 [ 6];
138 u32 resel_no_tag [ 6];
139 u32 data_in [SYM_CONF_MAX_SG * 2];
140 u32 data_in2 [ 4];
141 u32 data_out [SYM_CONF_MAX_SG * 2];
142 u32 data_out2 [ 4];
143 u32 pm0_data [ 12];
144 u32 pm0_data_out [ 6];
145 u32 pm0_data_end [ 6];
146 u32 pm1_data [ 12];
147 u32 pm1_data_out [ 6];
148 u32 pm1_data_end [ 6];
149 };
150
151 /*
152 * Script fragments which stay in main memory for all chips
153 * except for chips that support 8K on-chip RAM.
154 */
155 struct SYM_FWB_SCR {
156 u32 start64 [ 2];
157 u32 no_data [ 2];
158 u32 sel_for_abort [ 18];
159 u32 sel_for_abort_1 [ 2];
160 u32 msg_in_etc [ 12];
161 u32 msg_received [ 4];
162 u32 msg_weird_seen [ 4];
163 u32 msg_extended [ 20];
164 u32 msg_bad [ 6];
165 u32 msg_weird [ 4];
166 u32 msg_weird1 [ 8];
167
168 u32 wdtr_resp [ 6];
169 u32 send_wdtr [ 4];
170 u32 sdtr_resp [ 6];
171 u32 send_sdtr [ 4];
172 u32 ppr_resp [ 6];
173 u32 send_ppr [ 4];
174 u32 nego_bad_phase [ 4];
175 u32 msg_out [ 4];
176 u32 msg_out_done [ 4];
177 u32 data_ovrun [ 2];
178 u32 data_ovrun1 [ 22];
179 u32 data_ovrun2 [ 8];
180 u32 abort_resel [ 16];
181 u32 resend_ident [ 4];
182 u32 ident_break [ 4];
183 u32 ident_break_atn [ 4];
184 u32 sdata_in [ 6];
185 u32 resel_bad_lun [ 4];
186 u32 bad_i_t_l [ 4];
187 u32 bad_i_t_l_q [ 4];
188 u32 bad_status [ 6];
189 u32 pm_handle [ 20];
190 u32 pm_handle1 [ 4];
191 u32 pm_save [ 4];
192 u32 pm0_save [ 14];
193 u32 pm1_save [ 14];
194
195 /* WSR handling */
196 u32 pm_wsr_handle [ 42];
197 u32 wsr_ma_helper [ 4];
198
199 /* Data area */
200 u32 zero [ 1];
201 u32 scratch [ 1];
202 u32 pm0_data_addr [ 1];
203 u32 pm1_data_addr [ 1];
204 u32 saved_dsa [ 1];
205 u32 saved_drs [ 1];
206 u32 done_pos [ 1];
207 u32 startpos [ 1];
208 u32 targtbl [ 1];
209 /* End of data area */
210
211 u32 snooptest [ 6];
212 u32 snoopend [ 2];
213 };
214
215 static const struct SYM_FWA_SCR SYM_FWA_SCR = {
216 /*--------------------------< START >----------------------------*/ {
217 /*
218 * Switch the LED on.
219 * Will be patched with a NO_OP if LED
220 * not needed or not desired.
221 */
222 SCR_REG_REG (gpreg, SCR_AND, 0xfe),
223 0,
224 /*
225 * Clear SIGP.
226 */
227 SCR_FROM_REG (ctest2),
228 0,
229 /*
230 * Stop here if the C code wants to perform
231 * some error recovery procedure manually.
232 * (Indicate this by setting SEM in ISTAT)
233 */
234 SCR_FROM_REG (istat),
235 0,
236 /*
237 * Report to the C code the next position in
238 * the start queue the SCRIPTS will schedule.
239 * The C code must not change SCRATCHA.
240 */
241 SCR_LOAD_ABS (scratcha, 4),
242 PADDR_B (startpos),
243 SCR_INT ^ IFTRUE (MASK (SEM, SEM)),
244 SIR_SCRIPT_STOPPED,
245 /*
246 * Start the next job.
247 *
248 * @DSA = start point for this job.
249 * SCRATCHA = address of this job in the start queue.
250 *
251 * We will restore startpos with SCRATCHA if we fails the
252 * arbitration or if it is the idle job.
253 *
254 * The below GETJOB_BEGIN to GETJOB_END section of SCRIPTS
255 * is a critical path. If it is partially executed, it then
256 * may happen that the job address is not yet in the DSA
257 * and the next queue position points to the next JOB.
258 */
259 SCR_LOAD_ABS (dsa, 4),
260 PADDR_B (startpos),
261 SCR_LOAD_REL (temp, 4),
262 4,
263 }/*-------------------------< GETJOB_BEGIN >---------------------*/,{
264 SCR_STORE_ABS (temp, 4),
265 PADDR_B (startpos),
266 SCR_LOAD_REL (dsa, 4),
267 0,
268 }/*-------------------------< GETJOB_END >-----------------------*/,{
269 SCR_LOAD_REL (temp, 4),
270 0,
271 SCR_RETURN,
272 0,
273 }/*-------------------------< SELECT >---------------------------*/,{
274 /*
275 * DSA contains the address of a scheduled
276 * data structure.
277 *
278 * SCRATCHA contains the address of the start queue
279 * entry which points to the next job.
280 *
281 * Set Initiator mode.
282 *
283 * (Target mode is left as an exercise for the reader)
284 */
285 SCR_CLR (SCR_TRG),
286 0,
287 /*
288 * And try to select this target.
289 */
290 SCR_SEL_TBL_ATN ^ offsetof (struct sym_dsb, select),
291 PADDR_A (ungetjob),
292 /*
293 * Now there are 4 possibilities:
294 *
295 * (1) The chip loses arbitration.
296 * This is ok, because it will try again,
297 * when the bus becomes idle.
298 * (But beware of the timeout function!)
299 *
300 * (2) The chip is reselected.
301 * Then the script processor takes the jump
302 * to the RESELECT label.
303 *
304 * (3) The chip wins arbitration.
305 * Then it will execute SCRIPTS instruction until
306 * the next instruction that checks SCSI phase.
307 * Then will stop and wait for selection to be
308 * complete or selection time-out to occur.
309 *
310 * After having won arbitration, the SCRIPTS
311 * processor is able to execute instructions while
312 * the SCSI core is performing SCSI selection.
313 */
314 /*
315 * load the savep (saved data pointer) into
316 * the actual data pointer.
317 */
318 SCR_LOAD_REL (temp, 4),
319 offsetof (struct sym_ccb, phys.head.savep),
320 /*
321 * Initialize the status registers
322 */
323 SCR_LOAD_REL (scr0, 4),
324 offsetof (struct sym_ccb, phys.head.status),
325 }/*-------------------------< WF_SEL_DONE >----------------------*/,{
326 SCR_INT ^ IFFALSE (WHEN (SCR_MSG_OUT)),
327 SIR_SEL_ATN_NO_MSG_OUT,
328 }/*-------------------------< SEL_DONE >-------------------------*/,{
329 /*
330 * C1010-33 errata work-around.
331 * Due to a race, the SCSI core may not have
332 * loaded SCNTL3 on SEL_TBL instruction.
333 * We reload it once phase is stable.
334 * Patched with a NOOP for other chips.
335 */
336 SCR_LOAD_REL (scntl3, 1),
337 offsetof(struct sym_dsb, select.sel_scntl3),
338 }/*-------------------------< SEND_IDENT >-----------------------*/,{
339 /*
340 * Selection complete.
341 * Send the IDENTIFY and possibly the TAG message
342 * and negotiation message if present.
343 */
344 SCR_MOVE_TBL ^ SCR_MSG_OUT,
345 offsetof (struct sym_dsb, smsg),
346 }/*-------------------------< SELECT2 >--------------------------*/,{
347 #ifdef SYM_CONF_IARB_SUPPORT
348 /*
349 * Set IMMEDIATE ARBITRATION if we have been given
350 * a hint to do so. (Some job to do after this one).
351 */
352 SCR_FROM_REG (HF_REG),
353 0,
354 SCR_JUMPR ^ IFFALSE (MASK (HF_HINT_IARB, HF_HINT_IARB)),
355 8,
356 SCR_REG_REG (scntl1, SCR_OR, IARB),
357 0,
358 #endif
359 /*
360 * Anticipate the COMMAND phase.
361 * This is the PHASE we expect at this point.
362 */
363 SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)),
364 PADDR_A (sel_no_cmd),
365 }/*-------------------------< COMMAND >--------------------------*/,{
366 /*
367 * ... and send the command
368 */
369 SCR_MOVE_TBL ^ SCR_COMMAND,
370 offsetof (struct sym_dsb, cmd),
371 }/*-------------------------< DISPATCH >-------------------------*/,{
372 /*
373 * MSG_IN is the only phase that shall be
374 * entered at least once for each (re)selection.
375 * So we test it first.
376 */
377 SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
378 PADDR_A (msg_in),
379 SCR_JUMP ^ IFTRUE (IF (SCR_DATA_OUT)),
380 PADDR_A (datao_phase),
381 SCR_JUMP ^ IFTRUE (IF (SCR_DATA_IN)),
382 PADDR_A (datai_phase),
383 SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)),
384 PADDR_A (status),
385 SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)),
386 PADDR_A (command),
387 SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)),
388 PADDR_B (msg_out),
389 /*
390 * Discard as many illegal phases as
391 * required and tell the C code about.
392 */
393 SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_OUT)),
394 16,
395 SCR_MOVE_ABS (1) ^ SCR_ILG_OUT,
396 HADDR_1 (scratch),
397 SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_OUT)),
398 -16,
399 SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_IN)),
400 16,
401 SCR_MOVE_ABS (1) ^ SCR_ILG_IN,
402 HADDR_1 (scratch),
403 SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_IN)),
404 -16,
405 SCR_INT,
406 SIR_BAD_PHASE,
407 SCR_JUMP,
408 PADDR_A (dispatch),
409 }/*-------------------------< SEL_NO_CMD >-----------------------*/,{
410 /*
411 * The target does not switch to command
412 * phase after IDENTIFY has been sent.
413 *
414 * If it stays in MSG OUT phase send it
415 * the IDENTIFY again.
416 */
417 SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
418 PADDR_B (resend_ident),
419 /*
420 * If target does not switch to MSG IN phase
421 * and we sent a negotiation, assert the
422 * failure immediately.
423 */
424 SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
425 PADDR_A (dispatch),
426 SCR_FROM_REG (HS_REG),
427 0,
428 SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
429 SIR_NEGO_FAILED,
430 /*
431 * Jump to dispatcher.
432 */
433 SCR_JUMP,
434 PADDR_A (dispatch),
435 }/*-------------------------< INIT >-----------------------------*/,{
436 /*
437 * Wait for the SCSI RESET signal to be
438 * inactive before restarting operations,
439 * since the chip may hang on SEL_ATN
440 * if SCSI RESET is active.
441 */
442 SCR_FROM_REG (sstat0),
443 0,
444 SCR_JUMPR ^ IFTRUE (MASK (IRST, IRST)),
445 -16,
446 SCR_JUMP,
447 PADDR_A (start),
448 }/*-------------------------< CLRACK >---------------------------*/,{
449 /*
450 * Terminate possible pending message phase.
451 */
452 SCR_CLR (SCR_ACK),
453 0,
454 SCR_JUMP,
455 PADDR_A (dispatch),
456 }/*-------------------------< DISP_STATUS >----------------------*/,{
457 /*
458 * Anticipate STATUS phase.
459 *
460 * Does spare 3 SCRIPTS instructions when we have
461 * completed the INPUT of the data.
462 */
463 SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)),
464 PADDR_A (status),
465 SCR_JUMP,
466 PADDR_A (dispatch),
467 }/*-------------------------< DATAI_DONE >-----------------------*/,{
468 /*
469 * If the device still wants to send us data,
470 * we must count the extra bytes.
471 */
472 SCR_JUMP ^ IFTRUE (WHEN (SCR_DATA_IN)),
473 PADDR_B (data_ovrun),
474 /*
475 * If the SWIDE is not full, jump to dispatcher.
476 * We anticipate a STATUS phase.
477 */
478 SCR_FROM_REG (scntl2),
479 0,
480 SCR_JUMP ^ IFFALSE (MASK (WSR, WSR)),
481 PADDR_A (disp_status),
482 /*
483 * The SWIDE is full.
484 * Clear this condition.
485 */
486 SCR_REG_REG (scntl2, SCR_OR, WSR),
487 0,
488 /*
489 * We are expecting an IGNORE RESIDUE message
490 * from the device, otherwise we are in data
491 * overrun condition. Check against MSG_IN phase.
492 */
493 SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
494 SIR_SWIDE_OVERRUN,
495 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
496 PADDR_A (disp_status),
497 /*
498 * We are in MSG_IN phase,
499 * Read the first byte of the message.
500 * If it is not an IGNORE RESIDUE message,
501 * signal overrun and jump to message
502 * processing.
503 */
504 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
505 HADDR_1 (msgin[0]),
506 SCR_INT ^ IFFALSE (DATA (M_IGN_RESIDUE)),
507 SIR_SWIDE_OVERRUN,
508 SCR_JUMP ^ IFFALSE (DATA (M_IGN_RESIDUE)),
509 PADDR_A (msg_in2),
510 /*
511 * We got the message we expected.
512 * Read the 2nd byte, and jump to dispatcher.
513 */
514 SCR_CLR (SCR_ACK),
515 0,
516 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
517 HADDR_1 (msgin[1]),
518 SCR_CLR (SCR_ACK),
519 0,
520 SCR_JUMP,
521 PADDR_A (disp_status),
522 }/*-------------------------< DATAO_DONE >-----------------------*/,{
523 /*
524 * If the device wants us to send more data,
525 * we must count the extra bytes.
526 */
527 SCR_JUMP ^ IFTRUE (WHEN (SCR_DATA_OUT)),
528 PADDR_B (data_ovrun),
529 /*
530 * If the SODL is not full jump to dispatcher.
531 * We anticipate a STATUS phase.
532 */
533 SCR_FROM_REG (scntl2),
534 0,
535 SCR_JUMP ^ IFFALSE (MASK (WSS, WSS)),
536 PADDR_A (disp_status),
537 /*
538 * The SODL is full, clear this condition.
539 */
540 SCR_REG_REG (scntl2, SCR_OR, WSS),
541 0,
542 /*
543 * And signal a DATA UNDERRUN condition
544 * to the C code.
545 */
546 SCR_INT,
547 SIR_SODL_UNDERRUN,
548 SCR_JUMP,
549 PADDR_A (dispatch),
550 }/*-------------------------< DATAI_PHASE >----------------------*/,{
551 SCR_RETURN,
552 0,
553 }/*-------------------------< DATAO_PHASE >----------------------*/,{
554 /*
555 * C1010-66 errata work-around.
556 * Extra clocks of data hold must be inserted
557 * in DATA OUT phase on 33 MHz PCI BUS.
558 * Patched with a NOOP for other chips.
559 */
560 SCR_REG_REG (scntl4, SCR_OR, (XCLKH_DT|XCLKH_ST)),
561 0,
562 SCR_RETURN,
563 0,
564 }/*-------------------------< MSG_IN >---------------------------*/,{
565 /*
566 * Get the first byte of the message.
567 *
568 * The script processor doesn't negate the
569 * ACK signal after this transfer.
570 */
571 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
572 HADDR_1 (msgin[0]),
573 }/*-------------------------< MSG_IN2 >--------------------------*/,{
574 /*
575 * Check first against 1 byte messages
576 * that we handle from SCRIPTS.
577 */
578 SCR_JUMP ^ IFTRUE (DATA (M_COMPLETE)),
579 PADDR_A (complete),
580 SCR_JUMP ^ IFTRUE (DATA (M_DISCONNECT)),
581 PADDR_A (disconnect),
582 SCR_JUMP ^ IFTRUE (DATA (M_SAVE_DP)),
583 PADDR_A (save_dp),
584 SCR_JUMP ^ IFTRUE (DATA (M_RESTORE_DP)),
585 PADDR_A (restore_dp),
586 /*
587 * We handle all other messages from the
588 * C code, so no need to waste on-chip RAM
589 * for those ones.
590 */
591 SCR_JUMP,
592 PADDR_B (msg_in_etc),
593 }/*-------------------------< STATUS >---------------------------*/,{
594 /*
595 * get the status
596 */
597 SCR_MOVE_ABS (1) ^ SCR_STATUS,
598 HADDR_1 (scratch),
599 #ifdef SYM_CONF_IARB_SUPPORT
600 /*
601 * If STATUS is not GOOD, clear IMMEDIATE ARBITRATION,
602 * since we may have to tamper the start queue from
603 * the C code.
604 */
605 SCR_JUMPR ^ IFTRUE (DATA (S_GOOD)),
606 8,
607 SCR_REG_REG (scntl1, SCR_AND, ~IARB),
608 0,
609 #endif
610 /*
611 * save status to scsi_status.
612 * mark as complete.
613 */
614 SCR_TO_REG (SS_REG),
615 0,
616 SCR_LOAD_REG (HS_REG, HS_COMPLETE),
617 0,
618 /*
619 * Anticipate the MESSAGE PHASE for
620 * the TASK COMPLETE message.
621 */
622 SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
623 PADDR_A (msg_in),
624 SCR_JUMP,
625 PADDR_A (dispatch),
626 }/*-------------------------< COMPLETE >-------------------------*/,{
627 /*
628 * Complete message.
629 *
630 * Copy the data pointer to LASTP.
631 */
632 SCR_STORE_REL (temp, 4),
633 offsetof (struct sym_ccb, phys.head.lastp),
634 /*
635 * When we terminate the cycle by clearing ACK,
636 * the target may disconnect immediately.
637 *
638 * We don't want to be told of an "unexpected disconnect",
639 * so we disable this feature.
640 */
641 SCR_REG_REG (scntl2, SCR_AND, 0x7f),
642 0,
643 /*
644 * Terminate cycle ...
645 */
646 SCR_CLR (SCR_ACK|SCR_ATN),
647 0,
648 /*
649 * ... and wait for the disconnect.
650 */
651 SCR_WAIT_DISC,
652 0,
653 }/*-------------------------< COMPLETE2 >------------------------*/,{
654 /*
655 * Save host status.
656 */
657 SCR_STORE_REL (scr0, 4),
658 offsetof (struct sym_ccb, phys.head.status),
659 /*
660 * Some bridges may reorder DMA writes to memory.
661 * We donnot want the CPU to deal with completions
662 * without all the posted write having been flushed
663 * to memory. This DUMMY READ should flush posted
664 * buffers prior to the CPU having to deal with
665 * completions.
666 */
667 SCR_LOAD_REL (scr0, 4), /* DUMMY READ */
668 offsetof (struct sym_ccb, phys.head.status),
669
670 /*
671 * If command resulted in not GOOD status,
672 * call the C code if needed.
673 */
674 SCR_FROM_REG (SS_REG),
675 0,
676 SCR_CALL ^ IFFALSE (DATA (S_GOOD)),
677 PADDR_B (bad_status),
678 /*
679 * If we performed an auto-sense, call
680 * the C code to synchronyze task aborts
681 * with UNIT ATTENTION conditions.
682 */
683 SCR_FROM_REG (HF_REG),
684 0,
685 SCR_JUMPR ^ IFTRUE (MASK (0 ,(HF_SENSE|HF_EXT_ERR))),
686 16,
687 }/*-------------------------< COMPLETE_ERROR >-------------------*/,{
688 SCR_LOAD_ABS (scratcha, 4),
689 PADDR_B (startpos),
690 SCR_INT,
691 SIR_COMPLETE_ERROR,
692 }/*-------------------------< DONE >-----------------------------*/,{
693 /*
694 * Copy the DSA to the DONE QUEUE and
695 * signal completion to the host.
696 * If we are interrupted between DONE
697 * and DONE_END, we must reset, otherwise
698 * the completed CCB may be lost.
699 */
700 SCR_STORE_ABS (dsa, 4),
701 PADDR_B (saved_dsa),
702 SCR_LOAD_ABS (dsa, 4),
703 PADDR_B (done_pos),
704 SCR_LOAD_ABS (scratcha, 4),
705 PADDR_B (saved_dsa),
706 SCR_STORE_REL (scratcha, 4),
707 0,
708 /*
709 * The instruction below reads the DONE QUEUE next
710 * free position from memory.
711 * In addition it ensures that all PCI posted writes
712 * are flushed and so the DSA value of the done
713 * CCB is visible by the CPU before INTFLY is raised.
714 */
715 SCR_LOAD_REL (temp, 4),
716 4,
717 SCR_INT_FLY,
718 0,
719 SCR_STORE_ABS (temp, 4),
720 PADDR_B (done_pos),
721 }/*-------------------------< DONE_END >-------------------------*/,{
722 SCR_JUMP,
723 PADDR_A (start),
724 }/*-------------------------< SAVE_DP >--------------------------*/,{
725 /*
726 * Clear ACK immediately.
727 * No need to delay it.
728 */
729 SCR_CLR (SCR_ACK),
730 0,
731 /*
732 * Keep track we received a SAVE DP, so
733 * we will switch to the other PM context
734 * on the next PM since the DP may point
735 * to the current PM context.
736 */
737 SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED),
738 0,
739 /*
740 * SAVE_DP message:
741 * Copy the data pointer to SAVEP.
742 */
743 SCR_STORE_REL (temp, 4),
744 offsetof (struct sym_ccb, phys.head.savep),
745 SCR_JUMP,
746 PADDR_A (dispatch),
747 }/*-------------------------< RESTORE_DP >-----------------------*/,{
748 /*
749 * RESTORE_DP message:
750 * Copy SAVEP to actual data pointer.
751 */
752 SCR_LOAD_REL (temp, 4),
753 offsetof (struct sym_ccb, phys.head.savep),
754 SCR_JUMP,
755 PADDR_A (clrack),
756 }/*-------------------------< DISCONNECT >-----------------------*/,{
757 /*
758 * DISCONNECTing ...
759 *
760 * disable the "unexpected disconnect" feature,
761 * and remove the ACK signal.
762 */
763 SCR_REG_REG (scntl2, SCR_AND, 0x7f),
764 0,
765 SCR_CLR (SCR_ACK|SCR_ATN),
766 0,
767 /*
768 * Wait for the disconnect.
769 */
770 SCR_WAIT_DISC,
771 0,
772 /*
773 * Status is: DISCONNECTED.
774 */
775 SCR_LOAD_REG (HS_REG, HS_DISCONNECT),
776 0,
777 /*
778 * Save host status.
779 */
780 SCR_STORE_REL (scr0, 4),
781 offsetof (struct sym_ccb, phys.head.status),
782 /*
783 * If QUIRK_AUTOSAVE is set,
784 * do a "save pointer" operation.
785 */
786 SCR_FROM_REG (QU_REG),
787 0,
788 SCR_JUMP ^ IFFALSE (MASK (SYM_QUIRK_AUTOSAVE, SYM_QUIRK_AUTOSAVE)),
789 PADDR_A (start),
790 /*
791 * like SAVE_DP message:
792 * Remember we saved the data pointer.
793 * Copy data pointer to SAVEP.
794 */
795 SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED),
796 0,
797 SCR_STORE_REL (temp, 4),
798 offsetof (struct sym_ccb, phys.head.savep),
799 SCR_JUMP,
800 PADDR_A (start),
801 }/*-------------------------< IDLE >-----------------------------*/,{
802 /*
803 * Nothing to do?
804 * Switch the LED off and wait for reselect.
805 * Will be patched with a NO_OP if LED
806 * not needed or not desired.
807 */
808 SCR_REG_REG (gpreg, SCR_OR, 0x01),
809 0,
810 #ifdef SYM_CONF_IARB_SUPPORT
811 SCR_JUMPR,
812 8,
813 #endif
814 }/*-------------------------< UNGETJOB >-------------------------*/,{
815 #ifdef SYM_CONF_IARB_SUPPORT
816 /*
817 * Set IMMEDIATE ARBITRATION, for the next time.
818 * This will give us better chance to win arbitration
819 * for the job we just wanted to do.
820 */
821 SCR_REG_REG (scntl1, SCR_OR, IARB),
822 0,
823 #endif
824 /*
825 * We are not able to restart the SCRIPTS if we are
826 * interrupted and these instruction haven't been
827 * all executed. BTW, this is very unlikely to
828 * happen, but we check that from the C code.
829 */
830 SCR_LOAD_REG (dsa, 0xff),
831 0,
832 SCR_STORE_ABS (scratcha, 4),
833 PADDR_B (startpos),
834 }/*-------------------------< RESELECT >-------------------------*/,{
835 /*
836 * Make sure we are in initiator mode.
837 */
838 SCR_CLR (SCR_TRG),
839 0,
840 /*
841 * Sleep waiting for a reselection.
842 */
843 SCR_WAIT_RESEL,
844 PADDR_A(start),
845 }/*-------------------------< RESELECTED >-----------------------*/,{
846 /*
847 * Switch the LED on.
848 * Will be patched with a NO_OP if LED
849 * not needed or not desired.
850 */
851 SCR_REG_REG (gpreg, SCR_AND, 0xfe),
852 0,
853 /*
854 * load the target id into the sdid
855 */
856 SCR_REG_SFBR (ssid, SCR_AND, 0x8F),
857 0,
858 SCR_TO_REG (sdid),
859 0,
860 /*
861 * Load the target control block address
862 */
863 SCR_LOAD_ABS (dsa, 4),
864 PADDR_B (targtbl),
865 SCR_SFBR_REG (dsa, SCR_SHL, 0),
866 0,
867 SCR_REG_REG (dsa, SCR_SHL, 0),
868 0,
869 SCR_REG_REG (dsa, SCR_AND, 0x3c),
870 0,
871 SCR_LOAD_REL (dsa, 4),
872 0,
873 /*
874 * We expect MESSAGE IN phase.
875 * If not, get help from the C code.
876 */
877 SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
878 SIR_RESEL_NO_MSG_IN,
879 /*
880 * Load the legacy synchronous transfer registers.
881 */
882 SCR_LOAD_REL (scntl3, 1),
883 offsetof(struct sym_tcb, head.wval),
884 SCR_LOAD_REL (sxfer, 1),
885 offsetof(struct sym_tcb, head.sval),
886 }/*-------------------------< RESEL_SCNTL4 >---------------------*/,{
887 /*
888 * The C1010 uses a new synchronous timing scheme.
889 * Will be patched with a NO_OP if not a C1010.
890 */
891 SCR_LOAD_REL (scntl4, 1),
892 offsetof(struct sym_tcb, head.uval),
893 /*
894 * Get the IDENTIFY message.
895 */
896 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
897 HADDR_1 (msgin),
898 /*
899 * If IDENTIFY LUN #0, use a faster path
900 * to find the LCB structure.
901 */
902 SCR_JUMP ^ IFTRUE (MASK (0x80, 0xbf)),
903 PADDR_A (resel_lun0),
904 /*
905 * If message isn't an IDENTIFY,
906 * tell the C code about.
907 */
908 SCR_INT ^ IFFALSE (MASK (0x80, 0x80)),
909 SIR_RESEL_NO_IDENTIFY,
910 /*
911 * It is an IDENTIFY message,
912 * Load the LUN control block address.
913 */
914 SCR_LOAD_REL (dsa, 4),
915 offsetof(struct sym_tcb, head.luntbl_sa),
916 SCR_SFBR_REG (dsa, SCR_SHL, 0),
917 0,
918 SCR_REG_REG (dsa, SCR_SHL, 0),
919 0,
920 SCR_REG_REG (dsa, SCR_AND, 0xfc),
921 0,
922 SCR_LOAD_REL (dsa, 4),
923 0,
924 SCR_JUMPR,
925 8,
926 }/*-------------------------< RESEL_LUN0 >-----------------------*/,{
927 /*
928 * LUN 0 special case (but usual one :))
929 */
930 SCR_LOAD_REL (dsa, 4),
931 offsetof(struct sym_tcb, head.lun0_sa),
932 /*
933 * Jump indirectly to the reselect action for this LUN.
934 */
935 SCR_LOAD_REL (temp, 4),
936 offsetof(struct sym_lcb, head.resel_sa),
937 SCR_RETURN,
938 0,
939 /* In normal situations, we jump to RESEL_TAG or RESEL_NO_TAG */
940 }/*-------------------------< RESEL_TAG >------------------------*/,{
941 /*
942 * ACK the IDENTIFY previously received.
943 */
944 SCR_CLR (SCR_ACK),
945 0,
946 /*
947 * It shall be a tagged command.
948 * Read SIMPLE+TAG.
949 * The C code will deal with errors.
950 * Aggressive optimization, isn't it? :)
951 */
952 SCR_MOVE_ABS (2) ^ SCR_MSG_IN,
953 HADDR_1 (msgin),
954 /*
955 * Load the pointer to the tagged task
956 * table for this LUN.
957 */
958 SCR_LOAD_REL (dsa, 4),
959 offsetof(struct sym_lcb, head.itlq_tbl_sa),
960 /*
961 * The SIDL still contains the TAG value.
962 * Aggressive optimization, isn't it? :):)
963 */
964 SCR_REG_SFBR (sidl, SCR_SHL, 0),
965 0,
966 #if SYM_CONF_MAX_TASK*4 > 512
967 SCR_JUMPR ^ IFFALSE (CARRYSET),
968 8,
969 SCR_REG_REG (dsa1, SCR_OR, 2),
970 0,
971 SCR_REG_REG (sfbr, SCR_SHL, 0),
972 0,
973 SCR_JUMPR ^ IFFALSE (CARRYSET),
974 8,
975 SCR_REG_REG (dsa1, SCR_OR, 1),
976 0,
977 #elif SYM_CONF_MAX_TASK*4 > 256
978 SCR_JUMPR ^ IFFALSE (CARRYSET),
979 8,
980 SCR_REG_REG (dsa1, SCR_OR, 1),
981 0,
982 #endif
983 /*
984 * Retrieve the DSA of this task.
985 * JUMP indirectly to the restart point of the CCB.
986 */
987 SCR_SFBR_REG (dsa, SCR_AND, 0xfc),
988 0,
989 SCR_LOAD_REL (dsa, 4),
990 0,
991 SCR_LOAD_REL (temp, 4),
992 offsetof(struct sym_ccb, phys.head.go.restart),
993 SCR_RETURN,
994 0,
995 /* In normal situations we branch to RESEL_DSA */
996 }/*-------------------------< RESEL_DSA >------------------------*/,{
997 /*
998 * ACK the IDENTIFY or TAG previously received.
999 */
1000 SCR_CLR (SCR_ACK),
1001 0,
1002 }/*-------------------------< RESEL_DSA1 >-----------------------*/,{
1003 /*
1004 * load the savep (saved pointer) into
1005 * the actual data pointer.
1006 */
1007 SCR_LOAD_REL (temp, 4),
1008 offsetof (struct sym_ccb, phys.head.savep),
1009 /*
1010 * Initialize the status registers
1011 */
1012 SCR_LOAD_REL (scr0, 4),
1013 offsetof (struct sym_ccb, phys.head.status),
1014 /*
1015 * Jump to dispatcher.
1016 */
1017 SCR_JUMP,
1018 PADDR_A (dispatch),
1019 }/*-------------------------< RESEL_NO_TAG >---------------------*/,{
1020 /*
1021 * Load the DSA with the unique ITL task.
1022 */
1023 SCR_LOAD_REL (dsa, 4),
1024 offsetof(struct sym_lcb, head.itl_task_sa),
1025 /*
1026 * JUMP indirectly to the restart point of the CCB.
1027 */
1028 SCR_LOAD_REL (temp, 4),
1029 offsetof(struct sym_ccb, phys.head.go.restart),
1030 SCR_RETURN,
1031 0,
1032 /* In normal situations we branch to RESEL_DSA */
1033 }/*-------------------------< DATA_IN >--------------------------*/,{
1034 /*
1035 * Because the size depends on the
1036 * #define SYM_CONF_MAX_SG parameter,
1037 * it is filled in at runtime.
1038 *
1039 * ##===========< i=0; i<SYM_CONF_MAX_SG >=========
1040 * || SCR_CHMOV_TBL ^ SCR_DATA_IN,
1041 * || offsetof (struct sym_dsb, data[ i]),
1042 * ##==========================================
1043 */
1044
1045 }/*-------------------------< DATA_IN2 >-------------------------*/,{
1046 SCR_CALL,
1047 PADDR_A (datai_done),
1048 SCR_JUMP,
1049 PADDR_B (data_ovrun),
1050 }/*-------------------------< DATA_OUT >-------------------------*/,{
1051 /*
1052 * Because the size depends on the
1053 * #define SYM_CONF_MAX_SG parameter,
1054 * it is filled in at runtime.
1055 *
1056 * ##===========< i=0; i<SYM_CONF_MAX_SG >=========
1057 * || SCR_CHMOV_TBL ^ SCR_DATA_OUT,
1058 * || offsetof (struct sym_dsb, data[ i]),
1059 * ##==========================================
1060 */
1061
1062 }/*-------------------------< DATA_OUT2 >------------------------*/,{
1063 SCR_CALL,
1064 PADDR_A (datao_done),
1065 SCR_JUMP,
1066 PADDR_B (data_ovrun),
1067 }/*-------------------------< PM0_DATA >-------------------------*/,{
1068 /*
1069 * Read our host flags to SFBR, so we will be able
1070 * to check against the data direction we expect.
1071 */
1072 SCR_FROM_REG (HF_REG),
1073 0,
1074 /*
1075 * Check against actual DATA PHASE.
1076 */
1077 SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
1078 PADDR_A (pm0_data_out),
1079 /*
1080 * Actual phase is DATA IN.
1081 * Check against expected direction.
1082 */
1083 SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)),
1084 PADDR_B (data_ovrun),
1085 /*
1086 * Keep track we are moving data from the
1087 * PM0 DATA mini-script.
1088 */
1089 SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0),
1090 0,
1091 /*
1092 * Move the data to memory.
1093 */
1094 SCR_CHMOV_TBL ^ SCR_DATA_IN,
1095 offsetof (struct sym_ccb, phys.pm0.sg),
1096 SCR_JUMP,
1097 PADDR_A (pm0_data_end),
1098 }/*-------------------------< PM0_DATA_OUT >---------------------*/,{
1099 /*
1100 * Actual phase is DATA OUT.
1101 * Check against expected direction.
1102 */
1103 SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)),
1104 PADDR_B (data_ovrun),
1105 /*
1106 * Keep track we are moving data from the
1107 * PM0 DATA mini-script.
1108 */
1109 SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0),
1110 0,
1111 /*
1112 * Move the data from memory.
1113 */
1114 SCR_CHMOV_TBL ^ SCR_DATA_OUT,
1115 offsetof (struct sym_ccb, phys.pm0.sg),
1116 }/*-------------------------< PM0_DATA_END >---------------------*/,{
1117 /*
1118 * Clear the flag that told we were moving
1119 * data from the PM0 DATA mini-script.
1120 */
1121 SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM0)),
1122 0,
1123 /*
1124 * Return to the previous DATA script which
1125 * is guaranteed by design (if no bug) to be
1126 * the main DATA script for this transfer.
1127 */
1128 SCR_LOAD_REL (temp, 4),
1129 offsetof (struct sym_ccb, phys.pm0.ret),
1130 SCR_RETURN,
1131 0,
1132 }/*-------------------------< PM1_DATA >-------------------------*/,{
1133 /*
1134 * Read our host flags to SFBR, so we will be able
1135 * to check against the data direction we expect.
1136 */
1137 SCR_FROM_REG (HF_REG),
1138 0,
1139 /*
1140 * Check against actual DATA PHASE.
1141 */
1142 SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
1143 PADDR_A (pm1_data_out),
1144 /*
1145 * Actual phase is DATA IN.
1146 * Check against expected direction.
1147 */
1148 SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)),
1149 PADDR_B (data_ovrun),
1150 /*
1151 * Keep track we are moving data from the
1152 * PM1 DATA mini-script.
1153 */
1154 SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1),
1155 0,
1156 /*
1157 * Move the data to memory.
1158 */
1159 SCR_CHMOV_TBL ^ SCR_DATA_IN,
1160 offsetof (struct sym_ccb, phys.pm1.sg),
1161 SCR_JUMP,
1162 PADDR_A (pm1_data_end),
1163 }/*-------------------------< PM1_DATA_OUT >---------------------*/,{
1164 /*
1165 * Actual phase is DATA OUT.
1166 * Check against expected direction.
1167 */
1168 SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)),
1169 PADDR_B (data_ovrun),
1170 /*
1171 * Keep track we are moving data from the
1172 * PM1 DATA mini-script.
1173 */
1174 SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1),
1175 0,
1176 /*
1177 * Move the data from memory.
1178 */
1179 SCR_CHMOV_TBL ^ SCR_DATA_OUT,
1180 offsetof (struct sym_ccb, phys.pm1.sg),
1181 }/*-------------------------< PM1_DATA_END >---------------------*/,{
1182 /*
1183 * Clear the flag that told we were moving
1184 * data from the PM1 DATA mini-script.
1185 */
1186 SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM1)),
1187 0,
1188 /*
1189 * Return to the previous DATA script which
1190 * is guaranteed by design (if no bug) to be
1191 * the main DATA script for this transfer.
1192 */
1193 SCR_LOAD_REL (temp, 4),
1194 offsetof (struct sym_ccb, phys.pm1.ret),
1195 SCR_RETURN,
1196 0,
1197 }/*-------------------------<>-----------------------------------*/
1198 };
1199
1200 static const struct SYM_FWB_SCR SYM_FWB_SCR = {
1201 /*--------------------------< START64 >--------------------------*/ {
1202 /*
1203 * SCRIPT entry point for the 895A, 896 and 1010.
1204 * For now, there is no specific stuff for those
1205 * chips at this point, but this may come.
1206 */
1207 SCR_JUMP,
1208 PADDR_A (init),
1209 }/*-------------------------< NO_DATA >--------------------------*/,{
1210 SCR_JUMP,
1211 PADDR_B (data_ovrun),
1212 }/*-------------------------< SEL_FOR_ABORT >--------------------*/,{
1213 /*
1214 * We are jumped here by the C code, if we have
1215 * some target to reset or some disconnected
1216 * job to abort. Since error recovery is a serious
1217 * busyness, we will really reset the SCSI BUS, if
1218 * case of a SCSI interrupt occurring in this path.
1219 */
1220
1221 /*
1222 * Set initiator mode.
1223 */
1224 SCR_CLR (SCR_TRG),
1225 0,
1226 /*
1227 * And try to select this target.
1228 */
1229 SCR_SEL_TBL_ATN ^ offsetof (struct sym_hcb, abrt_sel),
1230 PADDR_A (reselect),
1231 /*
1232 * Wait for the selection to complete or
1233 * the selection to time out.
1234 */
1235 SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1236 -8,
1237 /*
1238 * Call the C code.
1239 */
1240 SCR_INT,
1241 SIR_TARGET_SELECTED,
1242 /*
1243 * The C code should let us continue here.
1244 * Send the 'kiss of death' message.
1245 * We expect an immediate disconnect once
1246 * the target has eaten the message.
1247 */
1248 SCR_REG_REG (scntl2, SCR_AND, 0x7f),
1249 0,
1250 SCR_MOVE_TBL ^ SCR_MSG_OUT,
1251 offsetof (struct sym_hcb, abrt_tbl),
1252 SCR_CLR (SCR_ACK|SCR_ATN),
1253 0,
1254 SCR_WAIT_DISC,
1255 0,
1256 /*
1257 * Tell the C code that we are done.
1258 */
1259 SCR_INT,
1260 SIR_ABORT_SENT,
1261 }/*-------------------------< SEL_FOR_ABORT_1 >------------------*/,{
1262 /*
1263 * Jump at scheduler.
1264 */
1265 SCR_JUMP,
1266 PADDR_A (start),
1267 }/*-------------------------< MSG_IN_ETC >-----------------------*/,{
1268 /*
1269 * If it is an EXTENDED (variable size message)
1270 * Handle it.
1271 */
1272 SCR_JUMP ^ IFTRUE (DATA (M_EXTENDED)),
1273 PADDR_B (msg_extended),
1274 /*
1275 * Let the C code handle any other
1276 * 1 byte message.
1277 */
1278 SCR_JUMP ^ IFTRUE (MASK (0x00, 0xf0)),
1279 PADDR_B (msg_received),
1280 SCR_JUMP ^ IFTRUE (MASK (0x10, 0xf0)),
1281 PADDR_B (msg_received),
1282 /*
1283 * We donnot handle 2 bytes messages from SCRIPTS.
1284 * So, let the C code deal with these ones too.
1285 */
1286 SCR_JUMP ^ IFFALSE (MASK (0x20, 0xf0)),
1287 PADDR_B (msg_weird_seen),
1288 SCR_CLR (SCR_ACK),
1289 0,
1290 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
1291 HADDR_1 (msgin[1]),
1292 }/*-------------------------< MSG_RECEIVED >---------------------*/,{
1293 SCR_LOAD_REL (scratcha, 4), /* DUMMY READ */
1294 0,
1295 SCR_INT,
1296 SIR_MSG_RECEIVED,
1297 }/*-------------------------< MSG_WEIRD_SEEN >-------------------*/,{
1298 SCR_LOAD_REL (scratcha, 4), /* DUMMY READ */
1299 0,
1300 SCR_INT,
1301 SIR_MSG_WEIRD,
1302 }/*-------------------------< MSG_EXTENDED >---------------------*/,{
1303 /*
1304 * Clear ACK and get the next byte
1305 * assumed to be the message length.
1306 */
1307 SCR_CLR (SCR_ACK),
1308 0,
1309 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
1310 HADDR_1 (msgin[1]),
1311 /*
1312 * Try to catch some unlikely situations as 0 length
1313 * or too large the length.
1314 */
1315 SCR_JUMP ^ IFTRUE (DATA (0)),
1316 PADDR_B (msg_weird_seen),
1317 SCR_TO_REG (scratcha),
1318 0,
1319 SCR_REG_REG (sfbr, SCR_ADD, (256-8)),
1320 0,
1321 SCR_JUMP ^ IFTRUE (CARRYSET),
1322 PADDR_B (msg_weird_seen),
1323 /*
1324 * We donnot handle extended messages from SCRIPTS.
1325 * Read the amount of data corresponding to the
1326 * message length and call the C code.
1327 */
1328 SCR_STORE_REL (scratcha, 1),
1329 offsetof (struct sym_dsb, smsg_ext.size),
1330 SCR_CLR (SCR_ACK),
1331 0,
1332 SCR_MOVE_TBL ^ SCR_MSG_IN,
1333 offsetof (struct sym_dsb, smsg_ext),
1334 SCR_JUMP,
1335 PADDR_B (msg_received),
1336 }/*-------------------------< MSG_BAD >--------------------------*/,{
1337 /*
1338 * unimplemented message - reject it.
1339 */
1340 SCR_INT,
1341 SIR_REJECT_TO_SEND,
1342 SCR_SET (SCR_ATN),
1343 0,
1344 SCR_JUMP,
1345 PADDR_A (clrack),
1346 }/*-------------------------< MSG_WEIRD >------------------------*/,{
1347 /*
1348 * weird message received
1349 * ignore all MSG IN phases and reject it.
1350 */
1351 SCR_INT,
1352 SIR_REJECT_TO_SEND,
1353 SCR_SET (SCR_ATN),
1354 0,
1355 }/*-------------------------< MSG_WEIRD1 >-----------------------*/,{
1356 SCR_CLR (SCR_ACK),
1357 0,
1358 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
1359 PADDR_A (dispatch),
1360 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
1361 HADDR_1 (scratch),
1362 SCR_JUMP,
1363 PADDR_B (msg_weird1),
1364 }/*-------------------------< WDTR_RESP >------------------------*/,{
1365 /*
1366 * let the target fetch our answer.
1367 */
1368 SCR_SET (SCR_ATN),
1369 0,
1370 SCR_CLR (SCR_ACK),
1371 0,
1372 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1373 PADDR_B (nego_bad_phase),
1374 }/*-------------------------< SEND_WDTR >------------------------*/,{
1375 /*
1376 * Send the M_X_WIDE_REQ
1377 */
1378 SCR_MOVE_ABS (4) ^ SCR_MSG_OUT,
1379 HADDR_1 (msgout),
1380 SCR_JUMP,
1381 PADDR_B (msg_out_done),
1382 }/*-------------------------< SDTR_RESP >------------------------*/,{
1383 /*
1384 * let the target fetch our answer.
1385 */
1386 SCR_SET (SCR_ATN),
1387 0,
1388 SCR_CLR (SCR_ACK),
1389 0,
1390 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1391 PADDR_B (nego_bad_phase),
1392 }/*-------------------------< SEND_SDTR >------------------------*/,{
1393 /*
1394 * Send the M_X_SYNC_REQ
1395 */
1396 SCR_MOVE_ABS (5) ^ SCR_MSG_OUT,
1397 HADDR_1 (msgout),
1398 SCR_JUMP,
1399 PADDR_B (msg_out_done),
1400 }/*-------------------------< PPR_RESP >-------------------------*/,{
1401 /*
1402 * let the target fetch our answer.
1403 */
1404 SCR_SET (SCR_ATN),
1405 0,
1406 SCR_CLR (SCR_ACK),
1407 0,
1408 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1409 PADDR_B (nego_bad_phase),
1410 }/*-------------------------< SEND_PPR >-------------------------*/,{
1411 /*
1412 * Send the M_X_PPR_REQ
1413 */
1414 SCR_MOVE_ABS (8) ^ SCR_MSG_OUT,
1415 HADDR_1 (msgout),
1416 SCR_JUMP,
1417 PADDR_B (msg_out_done),
1418 }/*-------------------------< NEGO_BAD_PHASE >-------------------*/,{
1419 SCR_INT,
1420 SIR_NEGO_PROTO,
1421 SCR_JUMP,
1422 PADDR_A (dispatch),
1423 }/*-------------------------< MSG_OUT >--------------------------*/,{
1424 /*
1425 * The target requests a message.
1426 * We donnot send messages that may
1427 * require the device to go to bus free.
1428 */
1429 SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
1430 HADDR_1 (msgout),
1431 /*
1432 * ... wait for the next phase
1433 * if it's a message out, send it again, ...
1434 */
1435 SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
1436 PADDR_B (msg_out),
1437 }/*-------------------------< MSG_OUT_DONE >---------------------*/,{
1438 /*
1439 * Let the C code be aware of the
1440 * sent message and clear the message.
1441 */
1442 SCR_INT,
1443 SIR_MSG_OUT_DONE,
1444 /*
1445 * ... and process the next phase
1446 */
1447 SCR_JUMP,
1448 PADDR_A (dispatch),
1449 }/*-------------------------< DATA_OVRUN >-----------------------*/,{
1450 /*
1451 * Use scratcha to count the extra bytes.
1452 */
1453 SCR_LOAD_ABS (scratcha, 4),
1454 PADDR_B (zero),
1455 }/*-------------------------< DATA_OVRUN1 >----------------------*/,{
1456 /*
1457 * The target may want to transfer too much data.
1458 *
1459 * If phase is DATA OUT write 1 byte and count it.
1460 */
1461 SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)),
1462 16,
1463 SCR_CHMOV_ABS (1) ^ SCR_DATA_OUT,
1464 HADDR_1 (scratch),
1465 SCR_JUMP,
1466 PADDR_B (data_ovrun2),
1467 /*
1468 * If WSR is set, clear this condition, and
1469 * count this byte.
1470 */
1471 SCR_FROM_REG (scntl2),
1472 0,
1473 SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)),
1474 16,
1475 SCR_REG_REG (scntl2, SCR_OR, WSR),
1476 0,
1477 SCR_JUMP,
1478 PADDR_B (data_ovrun2),
1479 /*
1480 * Finally check against DATA IN phase.
1481 * Signal data overrun to the C code
1482 * and jump to dispatcher if not so.
1483 * Read 1 byte otherwise and count it.
1484 */
1485 SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_IN)),
1486 16,
1487 SCR_INT,
1488 SIR_DATA_OVERRUN,
1489 SCR_JUMP,
1490 PADDR_A (dispatch),
1491 SCR_CHMOV_ABS (1) ^ SCR_DATA_IN,
1492 HADDR_1 (scratch),
1493 }/*-------------------------< DATA_OVRUN2 >----------------------*/,{
1494 /*
1495 * Count this byte.
1496 * This will allow to return a negative
1497 * residual to user.
1498 */
1499 SCR_REG_REG (scratcha, SCR_ADD, 0x01),
1500 0,
1501 SCR_REG_REG (scratcha1, SCR_ADDC, 0),
1502 0,
1503 SCR_REG_REG (scratcha2, SCR_ADDC, 0),
1504 0,
1505 /*
1506 * .. and repeat as required.
1507 */
1508 SCR_JUMP,
1509 PADDR_B (data_ovrun1),
1510 }/*-------------------------< ABORT_RESEL >----------------------*/,{
1511 SCR_SET (SCR_ATN),
1512 0,
1513 SCR_CLR (SCR_ACK),
1514 0,
1515 /*
1516 * send the abort/abortag/reset message
1517 * we expect an immediate disconnect
1518 */
1519 SCR_REG_REG (scntl2, SCR_AND, 0x7f),
1520 0,
1521 SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
1522 HADDR_1 (msgout),
1523 SCR_CLR (SCR_ACK|SCR_ATN),
1524 0,
1525 SCR_WAIT_DISC,
1526 0,
1527 SCR_INT,
1528 SIR_RESEL_ABORTED,
1529 SCR_JUMP,
1530 PADDR_A (start),
1531 }/*-------------------------< RESEND_IDENT >---------------------*/,{
1532 /*
1533 * The target stays in MSG OUT phase after having acked
1534 * Identify [+ Tag [+ Extended message ]]. Targets shall
1535 * behave this way on parity error.
1536 * We must send it again all the messages.
1537 */
1538 SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the */
1539 0, /* 1rst ACK = 90 ns. Hope the chip isn't too fast */
1540 SCR_JUMP,
1541 PADDR_A (send_ident),
1542 }/*-------------------------< IDENT_BREAK >----------------------*/,{
1543 SCR_CLR (SCR_ATN),
1544 0,
1545 SCR_JUMP,
1546 PADDR_A (select2),
1547 }/*-------------------------< IDENT_BREAK_ATN >------------------*/,{
1548 SCR_SET (SCR_ATN),
1549 0,
1550 SCR_JUMP,
1551 PADDR_A (select2),
1552 }/*-------------------------< SDATA_IN >-------------------------*/,{
1553 SCR_CHMOV_TBL ^ SCR_DATA_IN,
1554 offsetof (struct sym_dsb, sense),
1555 SCR_CALL,
1556 PADDR_A (datai_done),
1557 SCR_JUMP,
1558 PADDR_B (data_ovrun),
1559 }/*-------------------------< RESEL_BAD_LUN >--------------------*/,{
1560 /*
1561 * Message is an IDENTIFY, but lun is unknown.
1562 * Signal problem to C code for logging the event.
1563 * Send a M_ABORT to clear all pending tasks.
1564 */
1565 SCR_INT,
1566 SIR_RESEL_BAD_LUN,
1567 SCR_JUMP,
1568 PADDR_B (abort_resel),
1569 }/*-------------------------< BAD_I_T_L >------------------------*/,{
1570 /*
1571 * We donnot have a task for that I_T_L.
1572 * Signal problem to C code for logging the event.
1573 * Send a M_ABORT message.
1574 */
1575 SCR_INT,
1576 SIR_RESEL_BAD_I_T_L,
1577 SCR_JUMP,
1578 PADDR_B (abort_resel),
1579 }/*-------------------------< BAD_I_T_L_Q >----------------------*/,{
1580 /*
1581 * We donnot have a task that matches the tag.
1582 * Signal problem to C code for logging the event.
1583 * Send a M_ABORTTAG message.
1584 */
1585 SCR_INT,
1586 SIR_RESEL_BAD_I_T_L_Q,
1587 SCR_JUMP,
1588 PADDR_B (abort_resel),
1589 }/*-------------------------< BAD_STATUS >-----------------------*/,{
1590 /*
1591 * Anything different from INTERMEDIATE
1592 * CONDITION MET should be a bad SCSI status,
1593 * given that GOOD status has already been tested.
1594 * Call the C code.
1595 */
1596 SCR_LOAD_ABS (scratcha, 4),
1597 PADDR_B (startpos),
1598 SCR_INT ^ IFFALSE (DATA (S_COND_MET)),
1599 SIR_BAD_SCSI_STATUS,
1600 SCR_RETURN,
1601 0,
1602 }/*-------------------------< PM_HANDLE >------------------------*/,{
1603 /*
1604 * Phase mismatch handling.
1605 *
1606 * Since we have to deal with 2 SCSI data pointers
1607 * (current and saved), we need at least 2 contexts.
1608 * Each context (pm0 and pm1) has a saved area, a
1609 * SAVE mini-script and a DATA phase mini-script.
1610 */
1611 /*
1612 * Get the PM handling flags.
1613 */
1614 SCR_FROM_REG (HF_REG),
1615 0,
1616 /*
1617 * If no flags (1rst PM for example), avoid
1618 * all the below heavy flags testing.
1619 * This makes the normal case a bit faster.
1620 */
1621 SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED))),
1622 PADDR_B (pm_handle1),
1623 /*
1624 * If we received a SAVE DP, switch to the
1625 * other PM context since the savep may point
1626 * to the current PM context.
1627 */
1628 SCR_JUMPR ^ IFFALSE (MASK (HF_DP_SAVED, HF_DP_SAVED)),
1629 8,
1630 SCR_REG_REG (sfbr, SCR_XOR, HF_ACT_PM),
1631 0,
1632 /*
1633 * If we have been interrupt in a PM DATA mini-script,
1634 * we take the return address from the corresponding
1635 * saved area.
1636 * This ensure the return address always points to the
1637 * main DATA script for this transfer.
1638 */
1639 SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1))),
1640 PADDR_B (pm_handle1),
1641 SCR_JUMPR ^ IFFALSE (MASK (HF_IN_PM0, HF_IN_PM0)),
1642 16,
1643 SCR_LOAD_REL (ia, 4),
1644 offsetof(struct sym_ccb, phys.pm0.ret),
1645 SCR_JUMP,
1646 PADDR_B (pm_save),
1647 SCR_LOAD_REL (ia, 4),
1648 offsetof(struct sym_ccb, phys.pm1.ret),
1649 SCR_JUMP,
1650 PADDR_B (pm_save),
1651 }/*-------------------------< PM_HANDLE1 >-----------------------*/,{
1652 /*
1653 * Normal case.
1654 * Update the return address so that it
1655 * will point after the interrupted MOVE.
1656 */
1657 SCR_REG_REG (ia, SCR_ADD, 8),
1658 0,
1659 SCR_REG_REG (ia1, SCR_ADDC, 0),
1660 0,
1661 }/*-------------------------< PM_SAVE >--------------------------*/,{
1662 /*
1663 * Clear all the flags that told us if we were
1664 * interrupted in a PM DATA mini-script and/or
1665 * we received a SAVE DP.
1666 */
1667 SCR_SFBR_REG (HF_REG, SCR_AND, (~(HF_IN_PM0|HF_IN_PM1|HF_DP_SAVED))),
1668 0,
1669 /*
1670 * Choose the current PM context.
1671 */
1672 SCR_JUMP ^ IFTRUE (MASK (HF_ACT_PM, HF_ACT_PM)),
1673 PADDR_B (pm1_save),
1674 }/*-------------------------< PM0_SAVE >-------------------------*/,{
1675 SCR_STORE_REL (ia, 4),
1676 offsetof(struct sym_ccb, phys.pm0.ret),
1677 /*
1678 * If WSR bit is set, either UA and RBC may
1679 * have to be changed whether the device wants
1680 * to ignore this residue or not.
1681 */
1682 SCR_FROM_REG (scntl2),
1683 0,
1684 SCR_CALL ^ IFTRUE (MASK (WSR, WSR)),
1685 PADDR_B (pm_wsr_handle),
1686 /*
1687 * Save the remaining byte count, the updated
1688 * address and the return address.
1689 */
1690 SCR_STORE_REL (rbc, 4),
1691 offsetof(struct sym_ccb, phys.pm0.sg.size),
1692 SCR_STORE_REL (ua, 4),
1693 offsetof(struct sym_ccb, phys.pm0.sg.addr),
1694 /*
1695 * Set the current pointer at the PM0 DATA mini-script.
1696 */
1697 SCR_LOAD_ABS (temp, 4),
1698 PADDR_B (pm0_data_addr),
1699 SCR_JUMP,
1700 PADDR_A (dispatch),
1701 }/*-------------------------< PM1_SAVE >-------------------------*/,{
1702 SCR_STORE_REL (ia, 4),
1703 offsetof(struct sym_ccb, phys.pm1.ret),
1704 /*
1705 * If WSR bit is set, either UA and RBC may
1706 * have to be changed whether the device wants
1707 * to ignore this residue or not.
1708 */
1709 SCR_FROM_REG (scntl2),
1710 0,
1711 SCR_CALL ^ IFTRUE (MASK (WSR, WSR)),
1712 PADDR_B (pm_wsr_handle),
1713 /*
1714 * Save the remaining byte count, the updated
1715 * address and the return address.
1716 */
1717 SCR_STORE_REL (rbc, 4),
1718 offsetof(struct sym_ccb, phys.pm1.sg.size),
1719 SCR_STORE_REL (ua, 4),
1720 offsetof(struct sym_ccb, phys.pm1.sg.addr),
1721 /*
1722 * Set the current pointer at the PM1 DATA mini-script.
1723 */
1724 SCR_LOAD_ABS (temp, 4),
1725 PADDR_B (pm1_data_addr),
1726 SCR_JUMP,
1727 PADDR_A (dispatch),
1728 }/*-------------------------< PM_WSR_HANDLE >--------------------*/,{
1729 /*
1730 * Phase mismatch handling from SCRIPT with WSR set.
1731 * Such a condition can occur if the chip wants to
1732 * execute a CHMOV(size > 1) when the WSR bit is
1733 * set and the target changes PHASE.
1734 *
1735 * We must move the residual byte to memory.
1736 *
1737 * UA contains bit 0..31 of the address to
1738 * move the residual byte.
1739 * Move it to the table indirect.
1740 */
1741 SCR_STORE_REL (ua, 4),
1742 offsetof (struct sym_ccb, phys.wresid.addr),
1743 /*
1744 * Increment UA (move address to next position).
1745 */
1746 SCR_REG_REG (ua, SCR_ADD, 1),
1747 0,
1748 SCR_REG_REG (ua1, SCR_ADDC, 0),
1749 0,
1750 SCR_REG_REG (ua2, SCR_ADDC, 0),
1751 0,
1752 SCR_REG_REG (ua3, SCR_ADDC, 0),
1753 0,
1754 /*
1755 * Compute SCRATCHA as:
1756 * - size to transfer = 1 byte.
1757 * - bit 24..31 = high address bit [32...39].
1758 */
1759 SCR_LOAD_ABS (scratcha, 4),
1760 PADDR_B (zero),
1761 SCR_REG_REG (scratcha, SCR_OR, 1),
1762 0,
1763 SCR_FROM_REG (rbc3),
1764 0,
1765 SCR_TO_REG (scratcha3),
1766 0,
1767 /*
1768 * Move this value to the table indirect.
1769 */
1770 SCR_STORE_REL (scratcha, 4),
1771 offsetof (struct sym_ccb, phys.wresid.size),
1772 /*
1773 * Wait for a valid phase.
1774 * While testing with bogus QUANTUM drives, the C1010
1775 * sometimes raised a spurious phase mismatch with
1776 * WSR and the CHMOV(1) triggered another PM.
1777 * Waiting explicitly for the PHASE seemed to avoid
1778 * the nested phase mismatch. Btw, this didn't happen
1779 * using my IBM drives.
1780 */
1781 SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_IN)),
1782 0,
1783 /*
1784 * Perform the move of the residual byte.
1785 */
1786 SCR_CHMOV_TBL ^ SCR_DATA_IN,
1787 offsetof (struct sym_ccb, phys.wresid),
1788 /*
1789 * We can now handle the phase mismatch with UA fixed.
1790 * RBC[0..23]=0 is a special case that does not require
1791 * a PM context. The C code also checks against this.
1792 */
1793 SCR_FROM_REG (rbc),
1794 0,
1795 SCR_RETURN ^ IFFALSE (DATA (0)),
1796 0,
1797 SCR_FROM_REG (rbc1),
1798 0,
1799 SCR_RETURN ^ IFFALSE (DATA (0)),
1800 0,
1801 SCR_FROM_REG (rbc2),
1802 0,
1803 SCR_RETURN ^ IFFALSE (DATA (0)),
1804 0,
1805 /*
1806 * RBC[0..23]=0.
1807 * Not only we donnot need a PM context, but this would
1808 * lead to a bogus CHMOV(0). This condition means that
1809 * the residual was the last byte to move from this CHMOV.
1810 * So, we just have to move the current data script pointer
1811 * (i.e. TEMP) to the SCRIPTS address following the
1812 * interrupted CHMOV and jump to dispatcher.
1813 */
1814 SCR_STORE_ABS (ia, 4),
1815 PADDR_B (scratch),
1816 SCR_LOAD_ABS (temp, 4),
1817 PADDR_B (scratch),
1818 SCR_JUMP,
1819 PADDR_A (dispatch),
1820 }/*-------------------------< WSR_MA_HELPER >--------------------*/,{
1821 /*
1822 * Helper for the C code when WSR bit is set.
1823 * Perform the move of the residual byte.
1824 */
1825 SCR_CHMOV_TBL ^ SCR_DATA_IN,
1826 offsetof (struct sym_ccb, phys.wresid),
1827 SCR_JUMP,
1828 PADDR_A (dispatch),
1829 }/*-------------------------< ZERO >-----------------------------*/,{
1830 SCR_DATA_ZERO,
1831 }/*-------------------------< SCRATCH >--------------------------*/,{
1832 SCR_DATA_ZERO,
1833 }/*-------------------------< PM0_DATA_ADDR >--------------------*/,{
1834 SCR_DATA_ZERO,
1835 }/*-------------------------< PM1_DATA_ADDR >--------------------*/,{
1836 SCR_DATA_ZERO,
1837 }/*-------------------------< SAVED_DSA >------------------------*/,{
1838 SCR_DATA_ZERO,
1839 }/*-------------------------< SAVED_DRS >------------------------*/,{
1840 SCR_DATA_ZERO,
1841 }/*-------------------------< DONE_POS >-------------------------*/,{
1842 SCR_DATA_ZERO,
1843 }/*-------------------------< STARTPOS >-------------------------*/,{
1844 SCR_DATA_ZERO,
1845 }/*-------------------------< TARGTBL >--------------------------*/,{
1846 SCR_DATA_ZERO,
1847
1848 }/*-------------------------< SNOOPTEST >------------------------*/,{
1849 /*
1850 * Read the variable from memory.
1851 */
1852 SCR_LOAD_REL (scratcha, 4),
1853 offsetof(struct sym_hcb, cache),
1854 /*
1855 * Write the variable to memory.
1856 */
1857 SCR_STORE_REL (temp, 4),
1858 offsetof(struct sym_hcb, cache),
1859 /*
1860 * Read back the variable from memory.
1861 */
1862 SCR_LOAD_REL (temp, 4),
1863 offsetof(struct sym_hcb, cache),
1864 }/*-------------------------< SNOOPEND >-------------------------*/,{
1865 /*
1866 * And stop.
1867 */
1868 SCR_INT,
1869 99,
1870 }/*-------------------------<>-----------------------------------*/
1871 };
Cache object: 9c76ad7b58e05e23ce66048fddd4f630
|