The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/ti/if_ti.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-4-Clause
    3  *
    4  * Copyright (c) 1997, 1998, 1999
    5  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 3. All advertising materials mentioning features or use of this software
   16  *    must display the following acknowledgement:
   17  *      This product includes software developed by Bill Paul.
   18  * 4. Neither the name of the author nor the names of any co-contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   32  * THE POSSIBILITY OF SUCH DAMAGE.
   33  */
   34 
   35 /*
   36  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
   37  * Manuals, sample driver and firmware source kits are available
   38  * from http://www.alteon.com/support/openkits.
   39  *
   40  * Written by Bill Paul <wpaul@ctr.columbia.edu>
   41  * Electrical Engineering Department
   42  * Columbia University, New York City
   43  */
   44 
   45 /*
   46  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
   47  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
   48  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
   49  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
   50  * filtering and jumbo (9014 byte) frames. The hardware is largely
   51  * controlled by firmware, which must be loaded into the NIC during
   52  * initialization.
   53  *
   54  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
   55  * revision, which supports new features such as extended commands,
   56  * extended jumbo receive ring desciptors and a mini receive ring.
   57  *
   58  * Alteon Networks is to be commended for releasing such a vast amount
   59  * of development material for the Tigon NIC without requiring an NDA
   60  * (although they really should have done it a long time ago). With
   61  * any luck, the other vendors will finally wise up and follow Alteon's
   62  * stellar example.
   63  *
   64  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
   65  * this driver by #including it as a C header file. This bloats the
   66  * driver somewhat, but it's the easiest method considering that the
   67  * driver code and firmware code need to be kept in sync. The source
   68  * for the firmware is not provided with the FreeBSD distribution since
   69  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
   70  *
   71  * The following people deserve special thanks:
   72  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
   73  *   for testing
   74  * - Raymond Lee of Netgear, for providing a pair of Netgear
   75  *   GA620 Tigon 2 boards for testing
   76  * - Ulf Zimmermann, for bringing the GA260 to my attention and
   77  *   convincing me to write this driver.
   78  * - Andrew Gallatin for providing FreeBSD/Alpha support.
   79  */
   80 
   81 #include <sys/cdefs.h>
   82 __FBSDID("$FreeBSD: releng/12.0/sys/dev/ti/if_ti.c 333813 2018-05-18 20:13:34Z mmacy $");
   83 
   84 #include "opt_ti.h"
   85 
   86 #include <sys/param.h>
   87 #include <sys/systm.h>
   88 #include <sys/sockio.h>
   89 #include <sys/mbuf.h>
   90 #include <sys/malloc.h>
   91 #include <sys/kernel.h>
   92 #include <sys/module.h>
   93 #include <sys/socket.h>
   94 #include <sys/queue.h>
   95 #include <sys/conf.h>
   96 #include <sys/sf_buf.h>
   97 
   98 #include <net/if.h>
   99 #include <net/if_var.h>
  100 #include <net/if_arp.h>
  101 #include <net/ethernet.h>
  102 #include <net/if_dl.h>
  103 #include <net/if_media.h>
  104 #include <net/if_types.h>
  105 #include <net/if_vlan_var.h>
  106 
  107 #include <net/bpf.h>
  108 
  109 #include <netinet/in_systm.h>
  110 #include <netinet/in.h>
  111 #include <netinet/ip.h>
  112 
  113 #include <machine/bus.h>
  114 #include <machine/resource.h>
  115 #include <sys/bus.h>
  116 #include <sys/rman.h>
  117 
  118 #ifdef TI_SF_BUF_JUMBO
  119 #include <vm/vm.h>
  120 #include <vm/vm_page.h>
  121 #endif
  122 
  123 #include <dev/pci/pcireg.h>
  124 #include <dev/pci/pcivar.h>
  125 
  126 #include <sys/tiio.h>
  127 #include <dev/ti/if_tireg.h>
  128 #include <dev/ti/ti_fw.h>
  129 #include <dev/ti/ti_fw2.h>
  130 
  131 #include <sys/sysctl.h>
  132 
  133 #define TI_CSUM_FEATURES        (CSUM_IP | CSUM_TCP | CSUM_UDP)
  134 /*
  135  * We can only turn on header splitting if we're using extended receive
  136  * BDs.
  137  */
  138 #if defined(TI_JUMBO_HDRSPLIT) && !defined(TI_SF_BUF_JUMBO)
  139 #error "options TI_JUMBO_HDRSPLIT requires TI_SF_BUF_JUMBO"
  140 #endif /* TI_JUMBO_HDRSPLIT && !TI_SF_BUF_JUMBO */
  141 
  142 typedef enum {
  143         TI_SWAP_HTON,
  144         TI_SWAP_NTOH
  145 } ti_swap_type;
  146 
  147 /*
  148  * Various supported device vendors/types and their names.
  149  */
  150 
  151 static const struct ti_type ti_devs[] = {
  152         { ALT_VENDORID, ALT_DEVICEID_ACENIC,
  153                 "Alteon AceNIC 1000baseSX Gigabit Ethernet" },
  154         { ALT_VENDORID, ALT_DEVICEID_ACENIC_COPPER,
  155                 "Alteon AceNIC 1000baseT Gigabit Ethernet" },
  156         { TC_VENDORID,  TC_DEVICEID_3C985,
  157                 "3Com 3c985-SX Gigabit Ethernet" },
  158         { NG_VENDORID, NG_DEVICEID_GA620,
  159                 "Netgear GA620 1000baseSX Gigabit Ethernet" },
  160         { NG_VENDORID, NG_DEVICEID_GA620T,
  161                 "Netgear GA620 1000baseT Gigabit Ethernet" },
  162         { SGI_VENDORID, SGI_DEVICEID_TIGON,
  163                 "Silicon Graphics Gigabit Ethernet" },
  164         { DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
  165                 "Farallon PN9000SX Gigabit Ethernet" },
  166         { 0, 0, NULL }
  167 };
  168 
  169 
  170 static  d_open_t        ti_open;
  171 static  d_close_t       ti_close;
  172 static  d_ioctl_t       ti_ioctl2;
  173 
  174 static struct cdevsw ti_cdevsw = {
  175         .d_version =    D_VERSION,
  176         .d_flags =      0,
  177         .d_open =       ti_open,
  178         .d_close =      ti_close,
  179         .d_ioctl =      ti_ioctl2,
  180         .d_name =       "ti",
  181 };
  182 
  183 static int ti_probe(device_t);
  184 static int ti_attach(device_t);
  185 static int ti_detach(device_t);
  186 static void ti_txeof(struct ti_softc *);
  187 static void ti_rxeof(struct ti_softc *);
  188 
  189 static int ti_encap(struct ti_softc *, struct mbuf **);
  190 
  191 static void ti_intr(void *);
  192 static void ti_start(struct ifnet *);
  193 static void ti_start_locked(struct ifnet *);
  194 static int ti_ioctl(struct ifnet *, u_long, caddr_t);
  195 static uint64_t ti_get_counter(struct ifnet *, ift_counter);
  196 static void ti_init(void *);
  197 static void ti_init_locked(void *);
  198 static void ti_init2(struct ti_softc *);
  199 static void ti_stop(struct ti_softc *);
  200 static void ti_watchdog(void *);
  201 static int ti_shutdown(device_t);
  202 static int ti_ifmedia_upd(struct ifnet *);
  203 static int ti_ifmedia_upd_locked(struct ti_softc *);
  204 static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
  205 
  206 static uint32_t ti_eeprom_putbyte(struct ti_softc *, int);
  207 static uint8_t  ti_eeprom_getbyte(struct ti_softc *, int, uint8_t *);
  208 static int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
  209 
  210 static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
  211 static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
  212 static void ti_setmulti(struct ti_softc *);
  213 
  214 static void ti_mem_read(struct ti_softc *, uint32_t, uint32_t, void *);
  215 static void ti_mem_write(struct ti_softc *, uint32_t, uint32_t, void *);
  216 static void ti_mem_zero(struct ti_softc *, uint32_t, uint32_t);
  217 static int ti_copy_mem(struct ti_softc *, uint32_t, uint32_t, caddr_t, int,
  218     int);
  219 static int ti_copy_scratch(struct ti_softc *, uint32_t, uint32_t, caddr_t,
  220     int, int, int);
  221 static int ti_bcopy_swap(const void *, void *, size_t, ti_swap_type);
  222 static void ti_loadfw(struct ti_softc *);
  223 static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
  224 static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, caddr_t, int);
  225 static void ti_handle_events(struct ti_softc *);
  226 static void ti_dma_map_addr(void *, bus_dma_segment_t *, int, int);
  227 static int ti_dma_alloc(struct ti_softc *);
  228 static void ti_dma_free(struct ti_softc *);
  229 static int ti_dma_ring_alloc(struct ti_softc *, bus_size_t, bus_size_t,
  230     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
  231 static void ti_dma_ring_free(struct ti_softc *, bus_dma_tag_t *, uint8_t **,
  232     bus_dmamap_t, bus_addr_t *);
  233 static int ti_newbuf_std(struct ti_softc *, int);
  234 static int ti_newbuf_mini(struct ti_softc *, int);
  235 static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
  236 static int ti_init_rx_ring_std(struct ti_softc *);
  237 static void ti_free_rx_ring_std(struct ti_softc *);
  238 static int ti_init_rx_ring_jumbo(struct ti_softc *);
  239 static void ti_free_rx_ring_jumbo(struct ti_softc *);
  240 static int ti_init_rx_ring_mini(struct ti_softc *);
  241 static void ti_free_rx_ring_mini(struct ti_softc *);
  242 static void ti_free_tx_ring(struct ti_softc *);
  243 static int ti_init_tx_ring(struct ti_softc *);
  244 static void ti_discard_std(struct ti_softc *, int);
  245 #ifndef TI_SF_BUF_JUMBO
  246 static void ti_discard_jumbo(struct ti_softc *, int);
  247 #endif
  248 static void ti_discard_mini(struct ti_softc *, int);
  249 
  250 static int ti_64bitslot_war(struct ti_softc *);
  251 static int ti_chipinit(struct ti_softc *);
  252 static int ti_gibinit(struct ti_softc *);
  253 
  254 #ifdef TI_JUMBO_HDRSPLIT
  255 static __inline void ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len,
  256     int idx);
  257 #endif /* TI_JUMBO_HDRSPLIT */
  258 
  259 static void ti_sysctl_node(struct ti_softc *);
  260 
  261 static device_method_t ti_methods[] = {
  262         /* Device interface */
  263         DEVMETHOD(device_probe,         ti_probe),
  264         DEVMETHOD(device_attach,        ti_attach),
  265         DEVMETHOD(device_detach,        ti_detach),
  266         DEVMETHOD(device_shutdown,      ti_shutdown),
  267         { 0, 0 }
  268 };
  269 
  270 static driver_t ti_driver = {
  271         "ti",
  272         ti_methods,
  273         sizeof(struct ti_softc)
  274 };
  275 
  276 static devclass_t ti_devclass;
  277 
  278 DRIVER_MODULE(ti, pci, ti_driver, ti_devclass, 0, 0);
  279 MODULE_DEPEND(ti, pci, 1, 1, 1);
  280 MODULE_DEPEND(ti, ether, 1, 1, 1);
  281 
  282 /*
  283  * Send an instruction or address to the EEPROM, check for ACK.
  284  */
  285 static uint32_t
  286 ti_eeprom_putbyte(struct ti_softc *sc, int byte)
  287 {
  288         int i, ack = 0;
  289 
  290         /*
  291          * Make sure we're in TX mode.
  292          */
  293         TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
  294 
  295         /*
  296          * Feed in each bit and stobe the clock.
  297          */
  298         for (i = 0x80; i; i >>= 1) {
  299                 if (byte & i) {
  300                         TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
  301                 } else {
  302                         TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
  303                 }
  304                 DELAY(1);
  305                 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
  306                 DELAY(1);
  307                 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
  308         }
  309 
  310         /*
  311          * Turn off TX mode.
  312          */
  313         TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
  314 
  315         /*
  316          * Check for ack.
  317          */
  318         TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
  319         ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
  320         TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
  321 
  322         return (ack);
  323 }
  324 
  325 /*
  326  * Read a byte of data stored in the EEPROM at address 'addr.'
  327  * We have to send two address bytes since the EEPROM can hold
  328  * more than 256 bytes of data.
  329  */
  330 static uint8_t
  331 ti_eeprom_getbyte(struct ti_softc *sc, int addr, uint8_t *dest)
  332 {
  333         int i;
  334         uint8_t byte = 0;
  335 
  336         EEPROM_START;
  337 
  338         /*
  339          * Send write control code to EEPROM.
  340          */
  341         if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
  342                 device_printf(sc->ti_dev,
  343                     "failed to send write command, status: %x\n",
  344                     CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
  345                 return (1);
  346         }
  347 
  348         /*
  349          * Send first byte of address of byte we want to read.
  350          */
  351         if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
  352                 device_printf(sc->ti_dev, "failed to send address, status: %x\n",
  353                     CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
  354                 return (1);
  355         }
  356         /*
  357          * Send second byte address of byte we want to read.
  358          */
  359         if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
  360                 device_printf(sc->ti_dev, "failed to send address, status: %x\n",
  361                     CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
  362                 return (1);
  363         }
  364 
  365         EEPROM_STOP;
  366         EEPROM_START;
  367         /*
  368          * Send read control code to EEPROM.
  369          */
  370         if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
  371                 device_printf(sc->ti_dev,
  372                     "failed to send read command, status: %x\n",
  373                     CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
  374                 return (1);
  375         }
  376 
  377         /*
  378          * Start reading bits from EEPROM.
  379          */
  380         TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
  381         for (i = 0x80; i; i >>= 1) {
  382                 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
  383                 DELAY(1);
  384                 if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
  385                         byte |= i;
  386                 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
  387                 DELAY(1);
  388         }
  389 
  390         EEPROM_STOP;
  391 
  392         /*
  393          * No ACK generated for read, so just return byte.
  394          */
  395 
  396         *dest = byte;
  397 
  398         return (0);
  399 }
  400 
  401 /*
  402  * Read a sequence of bytes from the EEPROM.
  403  */
  404 static int
  405 ti_read_eeprom(struct ti_softc *sc, caddr_t dest, int off, int cnt)
  406 {
  407         int err = 0, i;
  408         uint8_t byte = 0;
  409 
  410         for (i = 0; i < cnt; i++) {
  411                 err = ti_eeprom_getbyte(sc, off + i, &byte);
  412                 if (err)
  413                         break;
  414                 *(dest + i) = byte;
  415         }
  416 
  417         return (err ? 1 : 0);
  418 }
  419 
  420 /*
  421  * NIC memory read function.
  422  * Can be used to copy data from NIC local memory.
  423  */
  424 static void
  425 ti_mem_read(struct ti_softc *sc, uint32_t addr, uint32_t len, void *buf)
  426 {
  427         int segptr, segsize, cnt;
  428         char *ptr;
  429 
  430         segptr = addr;
  431         cnt = len;
  432         ptr = buf;
  433 
  434         while (cnt) {
  435                 if (cnt < TI_WINLEN)
  436                         segsize = cnt;
  437                 else
  438                         segsize = TI_WINLEN - (segptr % TI_WINLEN);
  439                 CSR_WRITE_4(sc, TI_WINBASE, rounddown2(segptr, TI_WINLEN));
  440                 bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
  441                     TI_WINDOW + (segptr & (TI_WINLEN - 1)), (uint32_t *)ptr,
  442                     segsize / 4);
  443                 ptr += segsize;
  444                 segptr += segsize;
  445                 cnt -= segsize;
  446         }
  447 }
  448 
  449 
  450 /*
  451  * NIC memory write function.
  452  * Can be used to copy data into NIC local memory.
  453  */
  454 static void
  455 ti_mem_write(struct ti_softc *sc, uint32_t addr, uint32_t len, void *buf)
  456 {
  457         int segptr, segsize, cnt;
  458         char *ptr;
  459 
  460         segptr = addr;
  461         cnt = len;
  462         ptr = buf;
  463 
  464         while (cnt) {
  465                 if (cnt < TI_WINLEN)
  466                         segsize = cnt;
  467                 else
  468                         segsize = TI_WINLEN - (segptr % TI_WINLEN);
  469                 CSR_WRITE_4(sc, TI_WINBASE, rounddown2(segptr, TI_WINLEN));
  470                 bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
  471                     TI_WINDOW + (segptr & (TI_WINLEN - 1)), (uint32_t *)ptr,
  472                     segsize / 4);
  473                 ptr += segsize;
  474                 segptr += segsize;
  475                 cnt -= segsize;
  476         }
  477 }
  478 
  479 /*
  480  * NIC memory read function.
  481  * Can be used to clear a section of NIC local memory.
  482  */
  483 static void
  484 ti_mem_zero(struct ti_softc *sc, uint32_t addr, uint32_t len)
  485 {
  486         int segptr, segsize, cnt;
  487 
  488         segptr = addr;
  489         cnt = len;
  490 
  491         while (cnt) {
  492                 if (cnt < TI_WINLEN)
  493                         segsize = cnt;
  494                 else
  495                         segsize = TI_WINLEN - (segptr % TI_WINLEN);
  496                 CSR_WRITE_4(sc, TI_WINBASE, rounddown2(segptr, TI_WINLEN));
  497                 bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
  498                     TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0, segsize / 4);
  499                 segptr += segsize;
  500                 cnt -= segsize;
  501         }
  502 }
  503 
  504 static int
  505 ti_copy_mem(struct ti_softc *sc, uint32_t tigon_addr, uint32_t len,
  506     caddr_t buf, int useraddr, int readdata)
  507 {
  508         int segptr, segsize, cnt;
  509         caddr_t ptr;
  510         uint32_t origwin;
  511         int resid, segresid;
  512         int first_pass;
  513 
  514         TI_LOCK_ASSERT(sc);
  515 
  516         /*
  517          * At the moment, we don't handle non-aligned cases, we just bail.
  518          * If this proves to be a problem, it will be fixed.
  519          */
  520         if (readdata == 0 && (tigon_addr & 0x3) != 0) {
  521                 device_printf(sc->ti_dev, "%s: tigon address %#x isn't "
  522                     "word-aligned\n", __func__, tigon_addr);
  523                 device_printf(sc->ti_dev, "%s: unaligned writes aren't "
  524                     "yet supported\n", __func__);
  525                 return (EINVAL);
  526         }
  527 
  528         segptr = tigon_addr & ~0x3;
  529         segresid = tigon_addr - segptr;
  530 
  531         /*
  532          * This is the non-aligned amount left over that we'll need to
  533          * copy.
  534          */
  535         resid = len & 0x3;
  536 
  537         /* Add in the left over amount at the front of the buffer */
  538         resid += segresid;
  539 
  540         cnt = len & ~0x3;
  541         /*
  542          * If resid + segresid is >= 4, add multiples of 4 to the count and
  543          * decrease the residual by that much.
  544          */
  545         cnt += resid & ~0x3;
  546         resid -= resid & ~0x3;
  547 
  548         ptr = buf;
  549 
  550         first_pass = 1;
  551 
  552         /*
  553          * Save the old window base value.
  554          */
  555         origwin = CSR_READ_4(sc, TI_WINBASE);
  556 
  557         while (cnt) {
  558                 bus_size_t ti_offset;
  559 
  560                 if (cnt < TI_WINLEN)
  561                         segsize = cnt;
  562                 else
  563                         segsize = TI_WINLEN - (segptr % TI_WINLEN);
  564                 CSR_WRITE_4(sc, TI_WINBASE, rounddown2(segptr, TI_WINLEN));
  565 
  566                 ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1));
  567 
  568                 if (readdata) {
  569                         bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
  570                             ti_offset, (uint32_t *)sc->ti_membuf, segsize >> 2);
  571                         if (useraddr) {
  572                                 /*
  573                                  * Yeah, this is a little on the kludgy
  574                                  * side, but at least this code is only
  575                                  * used for debugging.
  576                                  */
  577                                 ti_bcopy_swap(sc->ti_membuf, sc->ti_membuf2,
  578                                     segsize, TI_SWAP_NTOH);
  579 
  580                                 TI_UNLOCK(sc);
  581                                 if (first_pass) {
  582                                         copyout(&sc->ti_membuf2[segresid], ptr,
  583                                             segsize - segresid);
  584                                         first_pass = 0;
  585                                 } else
  586                                         copyout(sc->ti_membuf2, ptr, segsize);
  587                                 TI_LOCK(sc);
  588                         } else {
  589                                 if (first_pass) {
  590 
  591                                         ti_bcopy_swap(sc->ti_membuf,
  592                                             sc->ti_membuf2, segsize,
  593                                             TI_SWAP_NTOH);
  594                                         TI_UNLOCK(sc);
  595                                         bcopy(&sc->ti_membuf2[segresid], ptr,
  596                                             segsize - segresid);
  597                                         TI_LOCK(sc);
  598                                         first_pass = 0;
  599                                 } else
  600                                         ti_bcopy_swap(sc->ti_membuf, ptr,
  601                                             segsize, TI_SWAP_NTOH);
  602                         }
  603 
  604                 } else {
  605                         if (useraddr) {
  606                                 TI_UNLOCK(sc);
  607                                 copyin(ptr, sc->ti_membuf2, segsize);
  608                                 TI_LOCK(sc);
  609                                 ti_bcopy_swap(sc->ti_membuf2, sc->ti_membuf,
  610                                     segsize, TI_SWAP_HTON);
  611                         } else
  612                                 ti_bcopy_swap(ptr, sc->ti_membuf, segsize,
  613                                     TI_SWAP_HTON);
  614 
  615                         bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
  616                             ti_offset, (uint32_t *)sc->ti_membuf, segsize >> 2);
  617                 }
  618                 segptr += segsize;
  619                 ptr += segsize;
  620                 cnt -= segsize;
  621         }
  622 
  623         /*
  624          * Handle leftover, non-word-aligned bytes.
  625          */
  626         if (resid != 0) {
  627                 uint32_t tmpval, tmpval2;
  628                 bus_size_t ti_offset;
  629 
  630                 /*
  631                  * Set the segment pointer.
  632                  */
  633                 CSR_WRITE_4(sc, TI_WINBASE, rounddown2(segptr, TI_WINLEN));
  634 
  635                 ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1));
  636 
  637                 /*
  638                  * First, grab whatever is in our source/destination.
  639                  * We'll obviously need this for reads, but also for
  640                  * writes, since we'll be doing read/modify/write.
  641                  */
  642                 bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
  643                     ti_offset, &tmpval, 1);
  644 
  645                 /*
  646                  * Next, translate this from little-endian to big-endian
  647                  * (at least on i386 boxes).
  648                  */
  649                 tmpval2 = ntohl(tmpval);
  650 
  651                 if (readdata) {
  652                         /*
  653                          * If we're reading, just copy the leftover number
  654                          * of bytes from the host byte order buffer to
  655                          * the user's buffer.
  656                          */
  657                         if (useraddr) {
  658                                 TI_UNLOCK(sc);
  659                                 copyout(&tmpval2, ptr, resid);
  660                                 TI_LOCK(sc);
  661                         } else
  662                                 bcopy(&tmpval2, ptr, resid);
  663                 } else {
  664                         /*
  665                          * If we're writing, first copy the bytes to be
  666                          * written into the network byte order buffer,
  667                          * leaving the rest of the buffer with whatever was
  668                          * originally in there.  Then, swap the bytes
  669                          * around into host order and write them out.
  670                          *
  671                          * XXX KDM the read side of this has been verified
  672                          * to work, but the write side of it has not been
  673                          * verified.  So user beware.
  674                          */
  675                         if (useraddr) {
  676                                 TI_UNLOCK(sc);
  677                                 copyin(ptr, &tmpval2, resid);
  678                                 TI_LOCK(sc);
  679                         } else
  680                                 bcopy(ptr, &tmpval2, resid);
  681 
  682                         tmpval = htonl(tmpval2);
  683 
  684                         bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
  685                             ti_offset, &tmpval, 1);
  686                 }
  687         }
  688 
  689         CSR_WRITE_4(sc, TI_WINBASE, origwin);
  690 
  691         return (0);
  692 }
  693 
  694 static int
  695 ti_copy_scratch(struct ti_softc *sc, uint32_t tigon_addr, uint32_t len,
  696     caddr_t buf, int useraddr, int readdata, int cpu)
  697 {
  698         uint32_t segptr;
  699         int cnt;
  700         uint32_t tmpval, tmpval2;
  701         caddr_t ptr;
  702 
  703         TI_LOCK_ASSERT(sc);
  704 
  705         /*
  706          * At the moment, we don't handle non-aligned cases, we just bail.
  707          * If this proves to be a problem, it will be fixed.
  708          */
  709         if (tigon_addr & 0x3) {
  710                 device_printf(sc->ti_dev, "%s: tigon address %#x "
  711                     "isn't word-aligned\n", __func__, tigon_addr);
  712                 return (EINVAL);
  713         }
  714 
  715         if (len & 0x3) {
  716                 device_printf(sc->ti_dev, "%s: transfer length %d "
  717                     "isn't word-aligned\n", __func__, len);
  718                 return (EINVAL);
  719         }
  720 
  721         segptr = tigon_addr;
  722         cnt = len;
  723         ptr = buf;
  724 
  725         while (cnt) {
  726                 CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr);
  727 
  728                 if (readdata) {
  729                         tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu));
  730 
  731                         tmpval = ntohl(tmpval2);
  732 
  733                         /*
  734                          * Note:  I've used this debugging interface
  735                          * extensively with Alteon's 12.3.15 firmware,
  736                          * compiled with GCC 2.7.2.1 and binutils 2.9.1.
  737                          *
  738                          * When you compile the firmware without
  739                          * optimization, which is necessary sometimes in
  740                          * order to properly step through it, you sometimes
  741                          * read out a bogus value of 0xc0017c instead of
  742                          * whatever was supposed to be in that scratchpad
  743                          * location.  That value is on the stack somewhere,
  744                          * but I've never been able to figure out what was
  745                          * causing the problem.
  746                          *
  747                          * The address seems to pop up in random places,
  748                          * often not in the same place on two subsequent
  749                          * reads.
  750                          *
  751                          * In any case, the underlying data doesn't seem
  752                          * to be affected, just the value read out.
  753                          *
  754                          * KDM, 3/7/2000
  755                          */
  756 
  757                         if (tmpval2 == 0xc0017c)
  758                                 device_printf(sc->ti_dev, "found 0xc0017c at "
  759                                     "%#x (tmpval2)\n", segptr);
  760 
  761                         if (tmpval == 0xc0017c)
  762                                 device_printf(sc->ti_dev, "found 0xc0017c at "
  763                                     "%#x (tmpval)\n", segptr);
  764 
  765                         if (useraddr)
  766                                 copyout(&tmpval, ptr, 4);
  767                         else
  768                                 bcopy(&tmpval, ptr, 4);
  769                 } else {
  770                         if (useraddr)
  771                                 copyin(ptr, &tmpval2, 4);
  772                         else
  773                                 bcopy(ptr, &tmpval2, 4);
  774 
  775                         tmpval = htonl(tmpval2);
  776 
  777                         CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu), tmpval);
  778                 }
  779 
  780                 cnt -= 4;
  781                 segptr += 4;
  782                 ptr += 4;
  783         }
  784 
  785         return (0);
  786 }
  787 
  788 static int
  789 ti_bcopy_swap(const void *src, void *dst, size_t len, ti_swap_type swap_type)
  790 {
  791         const uint8_t *tmpsrc;
  792         uint8_t *tmpdst;
  793         size_t tmplen;
  794 
  795         if (len & 0x3) {
  796                 printf("ti_bcopy_swap: length %zd isn't 32-bit aligned\n", len);
  797                 return (-1);
  798         }
  799 
  800         tmpsrc = src;
  801         tmpdst = dst;
  802         tmplen = len;
  803 
  804         while (tmplen) {
  805                 if (swap_type == TI_SWAP_NTOH)
  806                         *(uint32_t *)tmpdst = ntohl(*(const uint32_t *)tmpsrc);
  807                 else
  808                         *(uint32_t *)tmpdst = htonl(*(const uint32_t *)tmpsrc);
  809                 tmpsrc += 4;
  810                 tmpdst += 4;
  811                 tmplen -= 4;
  812         }
  813 
  814         return (0);
  815 }
  816 
  817 /*
  818  * Load firmware image into the NIC. Check that the firmware revision
  819  * is acceptable and see if we want the firmware for the Tigon 1 or
  820  * Tigon 2.
  821  */
  822 static void
  823 ti_loadfw(struct ti_softc *sc)
  824 {
  825 
  826         TI_LOCK_ASSERT(sc);
  827 
  828         switch (sc->ti_hwrev) {
  829         case TI_HWREV_TIGON:
  830                 if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
  831                     tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
  832                     tigonFwReleaseFix != TI_FIRMWARE_FIX) {
  833                         device_printf(sc->ti_dev, "firmware revision mismatch; "
  834                             "want %d.%d.%d, got %d.%d.%d\n",
  835                             TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
  836                             TI_FIRMWARE_FIX, tigonFwReleaseMajor,
  837                             tigonFwReleaseMinor, tigonFwReleaseFix);
  838                         return;
  839                 }
  840                 ti_mem_write(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
  841                 ti_mem_write(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
  842                 ti_mem_write(sc, tigonFwRodataAddr, tigonFwRodataLen,
  843                     tigonFwRodata);
  844                 ti_mem_zero(sc, tigonFwBssAddr, tigonFwBssLen);
  845                 ti_mem_zero(sc, tigonFwSbssAddr, tigonFwSbssLen);
  846                 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
  847                 break;
  848         case TI_HWREV_TIGON_II:
  849                 if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
  850                     tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
  851                     tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
  852                         device_printf(sc->ti_dev, "firmware revision mismatch; "
  853                             "want %d.%d.%d, got %d.%d.%d\n",
  854                             TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
  855                             TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
  856                             tigon2FwReleaseMinor, tigon2FwReleaseFix);
  857                         return;
  858                 }
  859                 ti_mem_write(sc, tigon2FwTextAddr, tigon2FwTextLen,
  860                     tigon2FwText);
  861                 ti_mem_write(sc, tigon2FwDataAddr, tigon2FwDataLen,
  862                     tigon2FwData);
  863                 ti_mem_write(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
  864                     tigon2FwRodata);
  865                 ti_mem_zero(sc, tigon2FwBssAddr, tigon2FwBssLen);
  866                 ti_mem_zero(sc, tigon2FwSbssAddr, tigon2FwSbssLen);
  867                 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
  868                 break;
  869         default:
  870                 device_printf(sc->ti_dev,
  871                     "can't load firmware: unknown hardware rev\n");
  872                 break;
  873         }
  874 }
  875 
  876 /*
  877  * Send the NIC a command via the command ring.
  878  */
  879 static void
  880 ti_cmd(struct ti_softc *sc, struct ti_cmd_desc *cmd)
  881 {
  882         int index;
  883 
  884         index = sc->ti_cmd_saved_prodidx;
  885         CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
  886         TI_INC(index, TI_CMD_RING_CNT);
  887         CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
  888         sc->ti_cmd_saved_prodidx = index;
  889 }
  890 
  891 /*
  892  * Send the NIC an extended command. The 'len' parameter specifies the
  893  * number of command slots to include after the initial command.
  894  */
  895 static void
  896 ti_cmd_ext(struct ti_softc *sc, struct ti_cmd_desc *cmd, caddr_t arg, int len)
  897 {
  898         int index;
  899         int i;
  900 
  901         index = sc->ti_cmd_saved_prodidx;
  902         CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
  903         TI_INC(index, TI_CMD_RING_CNT);
  904         for (i = 0; i < len; i++) {
  905                 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
  906                     *(uint32_t *)(&arg[i * 4]));
  907                 TI_INC(index, TI_CMD_RING_CNT);
  908         }
  909         CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
  910         sc->ti_cmd_saved_prodidx = index;
  911 }
  912 
  913 /*
  914  * Handle events that have triggered interrupts.
  915  */
  916 static void
  917 ti_handle_events(struct ti_softc *sc)
  918 {
  919         struct ti_event_desc *e;
  920 
  921         if (sc->ti_rdata.ti_event_ring == NULL)
  922                 return;
  923 
  924         bus_dmamap_sync(sc->ti_cdata.ti_event_ring_tag,
  925             sc->ti_cdata.ti_event_ring_map, BUS_DMASYNC_POSTREAD);
  926         while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
  927                 e = &sc->ti_rdata.ti_event_ring[sc->ti_ev_saved_considx];
  928                 switch (TI_EVENT_EVENT(e)) {
  929                 case TI_EV_LINKSTAT_CHANGED:
  930                         sc->ti_linkstat = TI_EVENT_CODE(e);
  931                         if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
  932                                 if_link_state_change(sc->ti_ifp, LINK_STATE_UP);
  933                                 sc->ti_ifp->if_baudrate = IF_Mbps(100);
  934                                 if (bootverbose)
  935                                         device_printf(sc->ti_dev,
  936                                             "10/100 link up\n");
  937                         } else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
  938                                 if_link_state_change(sc->ti_ifp, LINK_STATE_UP);
  939                                 sc->ti_ifp->if_baudrate = IF_Gbps(1UL);
  940                                 if (bootverbose)
  941                                         device_printf(sc->ti_dev,
  942                                             "gigabit link up\n");
  943                         } else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) {
  944                                 if_link_state_change(sc->ti_ifp,
  945                                     LINK_STATE_DOWN);
  946                                 sc->ti_ifp->if_baudrate = 0;
  947                                 if (bootverbose)
  948                                         device_printf(sc->ti_dev,
  949                                             "link down\n");
  950                         }
  951                         break;
  952                 case TI_EV_ERROR:
  953                         if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
  954                                 device_printf(sc->ti_dev, "invalid command\n");
  955                         else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
  956                                 device_printf(sc->ti_dev, "unknown command\n");
  957                         else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
  958                                 device_printf(sc->ti_dev, "bad config data\n");
  959                         break;
  960                 case TI_EV_FIRMWARE_UP:
  961                         ti_init2(sc);
  962                         break;
  963                 case TI_EV_STATS_UPDATED:
  964                 case TI_EV_RESET_JUMBO_RING:
  965                 case TI_EV_MCAST_UPDATED:
  966                         /* Who cares. */
  967                         break;
  968                 default:
  969                         device_printf(sc->ti_dev, "unknown event: %d\n",
  970                             TI_EVENT_EVENT(e));
  971                         break;
  972                 }
  973                 /* Advance the consumer index. */
  974                 TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
  975                 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
  976         }
  977         bus_dmamap_sync(sc->ti_cdata.ti_event_ring_tag,
  978             sc->ti_cdata.ti_event_ring_map, BUS_DMASYNC_PREREAD);
  979 }
  980 
  981 struct ti_dmamap_arg {
  982         bus_addr_t      ti_busaddr;
  983 };
  984 
  985 static void
  986 ti_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
  987 {
  988         struct ti_dmamap_arg *ctx;
  989 
  990         if (error)
  991                 return;
  992 
  993         KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
  994 
  995         ctx = arg;
  996         ctx->ti_busaddr = segs->ds_addr;
  997 }
  998 
  999 static int
 1000 ti_dma_ring_alloc(struct ti_softc *sc, bus_size_t alignment, bus_size_t maxsize,
 1001     bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map, bus_addr_t *paddr,
 1002     const char *msg)
 1003 {
 1004         struct ti_dmamap_arg ctx;
 1005         int error;
 1006 
 1007         error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag,
 1008             alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
 1009             NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
 1010         if (error != 0) {
 1011                 device_printf(sc->ti_dev,
 1012                     "could not create %s dma tag\n", msg);
 1013                 return (error);
 1014         }
 1015         /* Allocate DMA'able memory for ring. */
 1016         error = bus_dmamem_alloc(*tag, (void **)ring,
 1017             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
 1018         if (error != 0) {
 1019                 device_printf(sc->ti_dev,
 1020                     "could not allocate DMA'able memory for %s\n", msg);
 1021                 return (error);
 1022         }
 1023         /* Load the address of the ring. */
 1024         ctx.ti_busaddr = 0;
 1025         error = bus_dmamap_load(*tag, *map, *ring, maxsize, ti_dma_map_addr,
 1026             &ctx, BUS_DMA_NOWAIT);
 1027         if (error != 0) {
 1028                 device_printf(sc->ti_dev,
 1029                     "could not load DMA'able memory for %s\n", msg);
 1030                 return (error);
 1031         }
 1032         *paddr = ctx.ti_busaddr;
 1033         return (0);
 1034 }
 1035 
 1036 static void
 1037 ti_dma_ring_free(struct ti_softc *sc, bus_dma_tag_t *tag, uint8_t **ring,
 1038     bus_dmamap_t map, bus_addr_t *paddr)
 1039 {
 1040 
 1041         if (*paddr != 0) {
 1042                 bus_dmamap_unload(*tag, map);
 1043                 *paddr = 0;
 1044         }
 1045         if (*ring != NULL) {
 1046                 bus_dmamem_free(*tag, *ring, map);
 1047                 *ring = NULL;
 1048         }
 1049         if (*tag) {
 1050                 bus_dma_tag_destroy(*tag);
 1051                 *tag = NULL;
 1052         }
 1053 }
 1054 
 1055 static int
 1056 ti_dma_alloc(struct ti_softc *sc)
 1057 {
 1058         bus_addr_t lowaddr;
 1059         int i, error;
 1060 
 1061         lowaddr = BUS_SPACE_MAXADDR;
 1062         if (sc->ti_dac == 0)
 1063                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
 1064 
 1065         error = bus_dma_tag_create(bus_get_dma_tag(sc->ti_dev), 1, 0, lowaddr,
 1066             BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
 1067             BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
 1068             &sc->ti_cdata.ti_parent_tag);
 1069         if (error != 0) {
 1070                 device_printf(sc->ti_dev,
 1071                     "could not allocate parent dma tag\n");
 1072                 return (ENOMEM);
 1073         }
 1074 
 1075         error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, sizeof(struct ti_gib),
 1076             &sc->ti_cdata.ti_gib_tag, (uint8_t **)&sc->ti_rdata.ti_info,
 1077             &sc->ti_cdata.ti_gib_map, &sc->ti_rdata.ti_info_paddr, "GIB");
 1078         if (error)
 1079                 return (error);
 1080 
 1081         /* Producer/consumer status */
 1082         error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, sizeof(struct ti_status),
 1083             &sc->ti_cdata.ti_status_tag, (uint8_t **)&sc->ti_rdata.ti_status,
 1084             &sc->ti_cdata.ti_status_map, &sc->ti_rdata.ti_status_paddr,
 1085             "event ring");
 1086         if (error)
 1087                 return (error);
 1088 
 1089         /* Event ring */
 1090         error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_EVENT_RING_SZ,
 1091             &sc->ti_cdata.ti_event_ring_tag,
 1092             (uint8_t **)&sc->ti_rdata.ti_event_ring,
 1093             &sc->ti_cdata.ti_event_ring_map, &sc->ti_rdata.ti_event_ring_paddr,
 1094             "event ring");
 1095         if (error)
 1096                 return (error);
 1097 
 1098         /* Command ring lives in shared memory so no need to create DMA area. */
 1099 
 1100         /* Standard RX ring */
 1101         error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_STD_RX_RING_SZ,
 1102             &sc->ti_cdata.ti_rx_std_ring_tag,
 1103             (uint8_t **)&sc->ti_rdata.ti_rx_std_ring,
 1104             &sc->ti_cdata.ti_rx_std_ring_map,
 1105             &sc->ti_rdata.ti_rx_std_ring_paddr, "RX ring");
 1106         if (error)
 1107                 return (error);
 1108 
 1109         /* Jumbo RX ring */
 1110         error = ti_dma_ring_alloc(sc, TI_JUMBO_RING_ALIGN, TI_JUMBO_RX_RING_SZ,
 1111             &sc->ti_cdata.ti_rx_jumbo_ring_tag,
 1112             (uint8_t **)&sc->ti_rdata.ti_rx_jumbo_ring,
 1113             &sc->ti_cdata.ti_rx_jumbo_ring_map,
 1114             &sc->ti_rdata.ti_rx_jumbo_ring_paddr, "jumbo RX ring");
 1115         if (error)
 1116                 return (error);
 1117 
 1118         /* RX return ring */
 1119         error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_RX_RETURN_RING_SZ,
 1120             &sc->ti_cdata.ti_rx_return_ring_tag,
 1121             (uint8_t **)&sc->ti_rdata.ti_rx_return_ring,
 1122             &sc->ti_cdata.ti_rx_return_ring_map,
 1123             &sc->ti_rdata.ti_rx_return_ring_paddr, "RX return ring");
 1124         if (error)
 1125                 return (error);
 1126 
 1127         /* Create DMA tag for standard RX mbufs. */
 1128         error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
 1129             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
 1130             MCLBYTES, 0, NULL, NULL, &sc->ti_cdata.ti_rx_std_tag);
 1131         if (error) {
 1132                 device_printf(sc->ti_dev, "could not allocate RX dma tag\n");
 1133                 return (error);
 1134         }
 1135 
 1136         /* Create DMA tag for jumbo RX mbufs. */
 1137 #ifdef TI_SF_BUF_JUMBO
 1138         /*
 1139          * The VM system will take care of providing aligned pages.  Alignment
 1140          * is set to 1 here so that busdma resources won't be wasted.
 1141          */
 1142         error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
 1143             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, PAGE_SIZE * 4, 4,
 1144             PAGE_SIZE, 0, NULL, NULL, &sc->ti_cdata.ti_rx_jumbo_tag);
 1145 #else
 1146         error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
 1147             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MJUM9BYTES, 1,
 1148             MJUM9BYTES, 0, NULL, NULL, &sc->ti_cdata.ti_rx_jumbo_tag);
 1149 #endif
 1150         if (error) {
 1151                 device_printf(sc->ti_dev,
 1152                     "could not allocate jumbo RX dma tag\n");
 1153                 return (error);
 1154         }
 1155 
 1156         /* Create DMA tag for TX mbufs. */
 1157         error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1,
 1158             0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
 1159             MCLBYTES * TI_MAXTXSEGS, TI_MAXTXSEGS, MCLBYTES, 0, NULL, NULL,
 1160             &sc->ti_cdata.ti_tx_tag);
 1161         if (error) {
 1162                 device_printf(sc->ti_dev, "could not allocate TX dma tag\n");
 1163                 return (ENOMEM);
 1164         }
 1165 
 1166         /* Create DMA maps for RX buffers. */
 1167         for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
 1168                 error = bus_dmamap_create(sc->ti_cdata.ti_rx_std_tag, 0,
 1169                     &sc->ti_cdata.ti_rx_std_maps[i]);
 1170                 if (error) {
 1171                         device_printf(sc->ti_dev,
 1172                             "could not create DMA map for RX\n");
 1173                         return (error);
 1174                 }
 1175         }
 1176         error = bus_dmamap_create(sc->ti_cdata.ti_rx_std_tag, 0,
 1177             &sc->ti_cdata.ti_rx_std_sparemap);
 1178         if (error) {
 1179                 device_printf(sc->ti_dev,
 1180                     "could not create spare DMA map for RX\n");
 1181                 return (error);
 1182         }
 1183 
 1184         /* Create DMA maps for jumbo RX buffers. */
 1185         for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
 1186                 error = bus_dmamap_create(sc->ti_cdata.ti_rx_jumbo_tag, 0,
 1187                     &sc->ti_cdata.ti_rx_jumbo_maps[i]);
 1188                 if (error) {
 1189                         device_printf(sc->ti_dev,
 1190                             "could not create DMA map for jumbo RX\n");
 1191                         return (error);
 1192                 }
 1193         }
 1194         error = bus_dmamap_create(sc->ti_cdata.ti_rx_jumbo_tag, 0,
 1195             &sc->ti_cdata.ti_rx_jumbo_sparemap);
 1196         if (error) {
 1197                 device_printf(sc->ti_dev,
 1198                     "could not create spare DMA map for jumbo RX\n");
 1199                 return (error);
 1200         }
 1201 
 1202         /* Create DMA maps for TX buffers. */
 1203         for (i = 0; i < TI_TX_RING_CNT; i++) {
 1204                 error = bus_dmamap_create(sc->ti_cdata.ti_tx_tag, 0,
 1205                     &sc->ti_cdata.ti_txdesc[i].tx_dmamap);
 1206                 if (error) {
 1207                         device_printf(sc->ti_dev,
 1208                             "could not create DMA map for TX\n");
 1209                         return (ENOMEM);
 1210                 }
 1211         }
 1212 
 1213         /* Mini ring and TX ring is not available on Tigon 1. */
 1214         if (sc->ti_hwrev == TI_HWREV_TIGON)
 1215                 return (0);
 1216 
 1217         /* TX ring */
 1218         error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_TX_RING_SZ,
 1219             &sc->ti_cdata.ti_tx_ring_tag, (uint8_t **)&sc->ti_rdata.ti_tx_ring,
 1220             &sc->ti_cdata.ti_tx_ring_map, &sc->ti_rdata.ti_tx_ring_paddr,
 1221             "TX ring");
 1222         if (error)
 1223                 return (error);
 1224 
 1225         /* Mini RX ring */
 1226         error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_MINI_RX_RING_SZ,
 1227             &sc->ti_cdata.ti_rx_mini_ring_tag,
 1228             (uint8_t **)&sc->ti_rdata.ti_rx_mini_ring,
 1229             &sc->ti_cdata.ti_rx_mini_ring_map,
 1230             &sc->ti_rdata.ti_rx_mini_ring_paddr, "mini RX ring");
 1231         if (error)
 1232                 return (error);
 1233 
 1234         /* Create DMA tag for mini RX mbufs. */
 1235         error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
 1236             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MHLEN, 1,
 1237             MHLEN, 0, NULL, NULL, &sc->ti_cdata.ti_rx_mini_tag);
 1238         if (error) {
 1239                 device_printf(sc->ti_dev,
 1240                     "could not allocate mini RX dma tag\n");
 1241                 return (error);
 1242         }
 1243 
 1244         /* Create DMA maps for mini RX buffers. */
 1245         for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
 1246                 error = bus_dmamap_create(sc->ti_cdata.ti_rx_mini_tag, 0,
 1247                     &sc->ti_cdata.ti_rx_mini_maps[i]);
 1248                 if (error) {
 1249                         device_printf(sc->ti_dev,
 1250                             "could not create DMA map for mini RX\n");
 1251                         return (error);
 1252                 }
 1253         }
 1254         error = bus_dmamap_create(sc->ti_cdata.ti_rx_mini_tag, 0,
 1255             &sc->ti_cdata.ti_rx_mini_sparemap);
 1256         if (error) {
 1257                 device_printf(sc->ti_dev,
 1258                     "could not create spare DMA map for mini RX\n");
 1259                 return (error);
 1260         }
 1261 
 1262         return (0);
 1263 }
 1264 
 1265 static void
 1266 ti_dma_free(struct ti_softc *sc)
 1267 {
 1268         int i;
 1269 
 1270         /* Destroy DMA maps for RX buffers. */
 1271         for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
 1272                 if (sc->ti_cdata.ti_rx_std_maps[i]) {
 1273                         bus_dmamap_destroy(sc->ti_cdata.ti_rx_std_tag,
 1274                             sc->ti_cdata.ti_rx_std_maps[i]);
 1275                         sc->ti_cdata.ti_rx_std_maps[i] = NULL;
 1276                 }
 1277         }
 1278         if (sc->ti_cdata.ti_rx_std_sparemap) {
 1279                 bus_dmamap_destroy(sc->ti_cdata.ti_rx_std_tag,
 1280                     sc->ti_cdata.ti_rx_std_sparemap);
 1281                 sc->ti_cdata.ti_rx_std_sparemap = NULL;
 1282         }
 1283         if (sc->ti_cdata.ti_rx_std_tag) {
 1284                 bus_dma_tag_destroy(sc->ti_cdata.ti_rx_std_tag);
 1285                 sc->ti_cdata.ti_rx_std_tag = NULL;
 1286         }
 1287 
 1288         /* Destroy DMA maps for jumbo RX buffers. */
 1289         for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
 1290                 if (sc->ti_cdata.ti_rx_jumbo_maps[i]) {
 1291                         bus_dmamap_destroy(sc->ti_cdata.ti_rx_jumbo_tag,
 1292                             sc->ti_cdata.ti_rx_jumbo_maps[i]);
 1293                         sc->ti_cdata.ti_rx_jumbo_maps[i] = NULL;
 1294                 }
 1295         }
 1296         if (sc->ti_cdata.ti_rx_jumbo_sparemap) {
 1297                 bus_dmamap_destroy(sc->ti_cdata.ti_rx_jumbo_tag,
 1298                     sc->ti_cdata.ti_rx_jumbo_sparemap);
 1299                 sc->ti_cdata.ti_rx_jumbo_sparemap = NULL;
 1300         }
 1301         if (sc->ti_cdata.ti_rx_jumbo_tag) {
 1302                 bus_dma_tag_destroy(sc->ti_cdata.ti_rx_jumbo_tag);
 1303                 sc->ti_cdata.ti_rx_jumbo_tag = NULL;
 1304         }
 1305 
 1306         /* Destroy DMA maps for mini RX buffers. */
 1307         for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
 1308                 if (sc->ti_cdata.ti_rx_mini_maps[i]) {
 1309                         bus_dmamap_destroy(sc->ti_cdata.ti_rx_mini_tag,
 1310                             sc->ti_cdata.ti_rx_mini_maps[i]);
 1311                         sc->ti_cdata.ti_rx_mini_maps[i] = NULL;
 1312                 }
 1313         }
 1314         if (sc->ti_cdata.ti_rx_mini_sparemap) {
 1315                 bus_dmamap_destroy(sc->ti_cdata.ti_rx_mini_tag,
 1316                     sc->ti_cdata.ti_rx_mini_sparemap);
 1317                 sc->ti_cdata.ti_rx_mini_sparemap = NULL;
 1318         }
 1319         if (sc->ti_cdata.ti_rx_mini_tag) {
 1320                 bus_dma_tag_destroy(sc->ti_cdata.ti_rx_mini_tag);
 1321                 sc->ti_cdata.ti_rx_mini_tag = NULL;
 1322         }
 1323 
 1324         /* Destroy DMA maps for TX buffers. */
 1325         for (i = 0; i < TI_TX_RING_CNT; i++) {
 1326                 if (sc->ti_cdata.ti_txdesc[i].tx_dmamap) {
 1327                         bus_dmamap_destroy(sc->ti_cdata.ti_tx_tag,
 1328                             sc->ti_cdata.ti_txdesc[i].tx_dmamap);
 1329                         sc->ti_cdata.ti_txdesc[i].tx_dmamap = NULL;
 1330                 }
 1331         }
 1332         if (sc->ti_cdata.ti_tx_tag) {
 1333                 bus_dma_tag_destroy(sc->ti_cdata.ti_tx_tag);
 1334                 sc->ti_cdata.ti_tx_tag = NULL;
 1335         }
 1336 
 1337         /* Destroy standard RX ring. */
 1338         ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_std_ring_tag,
 1339             (void *)&sc->ti_rdata.ti_rx_std_ring,
 1340             sc->ti_cdata.ti_rx_std_ring_map,
 1341             &sc->ti_rdata.ti_rx_std_ring_paddr);
 1342         /* Destroy jumbo RX ring. */
 1343         ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_jumbo_ring_tag,
 1344             (void *)&sc->ti_rdata.ti_rx_jumbo_ring,
 1345             sc->ti_cdata.ti_rx_jumbo_ring_map,
 1346             &sc->ti_rdata.ti_rx_jumbo_ring_paddr);
 1347         /* Destroy mini RX ring. */
 1348         ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_mini_ring_tag,
 1349             (void *)&sc->ti_rdata.ti_rx_mini_ring,
 1350             sc->ti_cdata.ti_rx_mini_ring_map,
 1351             &sc->ti_rdata.ti_rx_mini_ring_paddr);
 1352         /* Destroy RX return ring. */
 1353         ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_return_ring_tag,
 1354             (void *)&sc->ti_rdata.ti_rx_return_ring,
 1355             sc->ti_cdata.ti_rx_return_ring_map,
 1356             &sc->ti_rdata.ti_rx_return_ring_paddr);
 1357         /* Destroy TX ring. */
 1358         ti_dma_ring_free(sc, &sc->ti_cdata.ti_tx_ring_tag,
 1359             (void *)&sc->ti_rdata.ti_tx_ring, sc->ti_cdata.ti_tx_ring_map,
 1360             &sc->ti_rdata.ti_tx_ring_paddr);
 1361         /* Destroy status block. */
 1362         ti_dma_ring_free(sc, &sc->ti_cdata.ti_status_tag,
 1363             (void *)&sc->ti_rdata.ti_status, sc->ti_cdata.ti_status_map,
 1364             &sc->ti_rdata.ti_status_paddr);
 1365         /* Destroy event ring. */
 1366         ti_dma_ring_free(sc, &sc->ti_cdata.ti_event_ring_tag,
 1367             (void *)&sc->ti_rdata.ti_event_ring,
 1368             sc->ti_cdata.ti_event_ring_map, &sc->ti_rdata.ti_event_ring_paddr);
 1369         /* Destroy GIB */
 1370         ti_dma_ring_free(sc, &sc->ti_cdata.ti_gib_tag,
 1371             (void *)&sc->ti_rdata.ti_info, sc->ti_cdata.ti_gib_map,
 1372             &sc->ti_rdata.ti_info_paddr);
 1373 
 1374         /* Destroy the parent tag. */
 1375         if (sc->ti_cdata.ti_parent_tag) {
 1376                 bus_dma_tag_destroy(sc->ti_cdata.ti_parent_tag);
 1377                 sc->ti_cdata.ti_parent_tag = NULL;
 1378         }
 1379 }
 1380 
 1381 /*
 1382  * Intialize a standard receive ring descriptor.
 1383  */
 1384 static int
 1385 ti_newbuf_std(struct ti_softc *sc, int i)
 1386 {
 1387         bus_dmamap_t map;
 1388         bus_dma_segment_t segs[1];
 1389         struct mbuf *m;
 1390         struct ti_rx_desc *r;
 1391         int error, nsegs;
 1392 
 1393         m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
 1394         if (m == NULL)
 1395                 return (ENOBUFS);
 1396         m->m_len = m->m_pkthdr.len = MCLBYTES;
 1397         m_adj(m, ETHER_ALIGN);
 1398 
 1399         error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_std_tag,
 1400             sc->ti_cdata.ti_rx_std_sparemap, m, segs, &nsegs, 0);
 1401         if (error != 0) {
 1402                 m_freem(m);
 1403                 return (error);
 1404         }
 1405         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
 1406 
 1407         if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
 1408                 bus_dmamap_sync(sc->ti_cdata.ti_rx_std_tag,
 1409                     sc->ti_cdata.ti_rx_std_maps[i], BUS_DMASYNC_POSTREAD);
 1410                 bus_dmamap_unload(sc->ti_cdata.ti_rx_std_tag,
 1411                     sc->ti_cdata.ti_rx_std_maps[i]);
 1412         }
 1413 
 1414         map = sc->ti_cdata.ti_rx_std_maps[i];
 1415         sc->ti_cdata.ti_rx_std_maps[i] = sc->ti_cdata.ti_rx_std_sparemap;
 1416         sc->ti_cdata.ti_rx_std_sparemap = map;
 1417         sc->ti_cdata.ti_rx_std_chain[i] = m;
 1418 
 1419         r = &sc->ti_rdata.ti_rx_std_ring[i];
 1420         ti_hostaddr64(&r->ti_addr, segs[0].ds_addr);
 1421         r->ti_len = segs[0].ds_len;
 1422         r->ti_type = TI_BDTYPE_RECV_BD;
 1423         r->ti_flags = 0;
 1424         r->ti_vlan_tag = 0;
 1425         r->ti_tcp_udp_cksum = 0;
 1426         if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
 1427                 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
 1428         r->ti_idx = i;
 1429 
 1430         bus_dmamap_sync(sc->ti_cdata.ti_rx_std_tag,
 1431             sc->ti_cdata.ti_rx_std_maps[i], BUS_DMASYNC_PREREAD);
 1432         return (0);
 1433 }
 1434 
 1435 /*
 1436  * Intialize a mini receive ring descriptor. This only applies to
 1437  * the Tigon 2.
 1438  */
 1439 static int
 1440 ti_newbuf_mini(struct ti_softc *sc, int i)
 1441 {
 1442         bus_dmamap_t map;
 1443         bus_dma_segment_t segs[1];
 1444         struct mbuf *m;
 1445         struct ti_rx_desc *r;
 1446         int error, nsegs;
 1447 
 1448         MGETHDR(m, M_NOWAIT, MT_DATA);
 1449         if (m == NULL)
 1450                 return (ENOBUFS);
 1451         m->m_len = m->m_pkthdr.len = MHLEN;
 1452         m_adj(m, ETHER_ALIGN);
 1453 
 1454         error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_mini_tag,
 1455             sc->ti_cdata.ti_rx_mini_sparemap, m, segs, &nsegs, 0);
 1456         if (error != 0) {
 1457                 m_freem(m);
 1458                 return (error);
 1459         }
 1460         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
 1461 
 1462         if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
 1463                 bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_tag,
 1464                     sc->ti_cdata.ti_rx_mini_maps[i], BUS_DMASYNC_POSTREAD);
 1465                 bus_dmamap_unload(sc->ti_cdata.ti_rx_mini_tag,
 1466                     sc->ti_cdata.ti_rx_mini_maps[i]);
 1467         }
 1468 
 1469         map = sc->ti_cdata.ti_rx_mini_maps[i];
 1470         sc->ti_cdata.ti_rx_mini_maps[i] = sc->ti_cdata.ti_rx_mini_sparemap;
 1471         sc->ti_cdata.ti_rx_mini_sparemap = map;
 1472         sc->ti_cdata.ti_rx_mini_chain[i] = m;
 1473 
 1474         r = &sc->ti_rdata.ti_rx_mini_ring[i];
 1475         ti_hostaddr64(&r->ti_addr, segs[0].ds_addr);
 1476         r->ti_len = segs[0].ds_len;
 1477         r->ti_type = TI_BDTYPE_RECV_BD;
 1478         r->ti_flags = TI_BDFLAG_MINI_RING;
 1479         r->ti_vlan_tag = 0;
 1480         r->ti_tcp_udp_cksum = 0;
 1481         if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
 1482                 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
 1483         r->ti_idx = i;
 1484 
 1485         bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_tag,
 1486             sc->ti_cdata.ti_rx_mini_maps[i], BUS_DMASYNC_PREREAD);
 1487         return (0);
 1488 }
 1489 
 1490 #ifndef TI_SF_BUF_JUMBO
 1491 
 1492 /*
 1493  * Initialize a jumbo receive ring descriptor. This allocates
 1494  * a jumbo buffer from the pool managed internally by the driver.
 1495  */
 1496 static int
 1497 ti_newbuf_jumbo(struct ti_softc *sc, int i, struct mbuf *dummy)
 1498 {
 1499         bus_dmamap_t map;
 1500         bus_dma_segment_t segs[1];
 1501         struct mbuf *m;
 1502         struct ti_rx_desc *r;
 1503         int error, nsegs;
 1504 
 1505         (void)dummy;
 1506 
 1507         m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
 1508         if (m == NULL)
 1509                 return (ENOBUFS);
 1510         m->m_len = m->m_pkthdr.len = MJUM9BYTES;
 1511         m_adj(m, ETHER_ALIGN);
 1512 
 1513         error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_jumbo_tag,
 1514             sc->ti_cdata.ti_rx_jumbo_sparemap, m, segs, &nsegs, 0);
 1515         if (error != 0) {
 1516                 m_freem(m);
 1517                 return (error);
 1518         }
 1519         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
 1520 
 1521         if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
 1522                 bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag,
 1523                     sc->ti_cdata.ti_rx_jumbo_maps[i], BUS_DMASYNC_POSTREAD);
 1524                 bus_dmamap_unload(sc->ti_cdata.ti_rx_jumbo_tag,
 1525                     sc->ti_cdata.ti_rx_jumbo_maps[i]);
 1526         }
 1527 
 1528         map = sc->ti_cdata.ti_rx_jumbo_maps[i];
 1529         sc->ti_cdata.ti_rx_jumbo_maps[i] = sc->ti_cdata.ti_rx_jumbo_sparemap;
 1530         sc->ti_cdata.ti_rx_jumbo_sparemap = map;
 1531         sc->ti_cdata.ti_rx_jumbo_chain[i] = m;
 1532 
 1533         r = &sc->ti_rdata.ti_rx_jumbo_ring[i];
 1534         ti_hostaddr64(&r->ti_addr, segs[0].ds_addr);
 1535         r->ti_len = segs[0].ds_len;
 1536         r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
 1537         r->ti_flags = TI_BDFLAG_JUMBO_RING;
 1538         r->ti_vlan_tag = 0;
 1539         r->ti_tcp_udp_cksum = 0;
 1540         if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
 1541                 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
 1542         r->ti_idx = i;
 1543 
 1544         bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag,
 1545             sc->ti_cdata.ti_rx_jumbo_maps[i], BUS_DMASYNC_PREREAD);
 1546         return (0);
 1547 }
 1548 
 1549 #else
 1550 
 1551 #if (PAGE_SIZE == 4096)
 1552 #define NPAYLOAD 2
 1553 #else
 1554 #define NPAYLOAD 1
 1555 #endif
 1556 
 1557 #define TCP_HDR_LEN (52 + sizeof(struct ether_header))
 1558 #define UDP_HDR_LEN (28 + sizeof(struct ether_header))
 1559 #define NFS_HDR_LEN (UDP_HDR_LEN)
 1560 static int HDR_LEN = TCP_HDR_LEN;
 1561 
 1562 /*
 1563  * Initialize a jumbo receive ring descriptor. This allocates
 1564  * a jumbo buffer from the pool managed internally by the driver.
 1565  */
 1566 static int
 1567 ti_newbuf_jumbo(struct ti_softc *sc, int idx, struct mbuf *m_old)
 1568 {
 1569         bus_dmamap_t map;
 1570         struct mbuf *cur, *m_new = NULL;
 1571         struct mbuf *m[3] = {NULL, NULL, NULL};
 1572         struct ti_rx_desc_ext *r;
 1573         vm_page_t frame;
 1574         /* 1 extra buf to make nobufs easy*/
 1575         struct sf_buf *sf[3] = {NULL, NULL, NULL};
 1576         int i;
 1577         bus_dma_segment_t segs[4];
 1578         int nsegs;
 1579 
 1580         if (m_old != NULL) {
 1581                 m_new = m_old;
 1582                 cur = m_old->m_next;
 1583                 for (i = 0; i <= NPAYLOAD; i++){
 1584                         m[i] = cur;
 1585                         cur = cur->m_next;
 1586                 }
 1587         } else {
 1588                 /* Allocate the mbufs. */
 1589                 MGETHDR(m_new, M_NOWAIT, MT_DATA);
 1590                 if (m_new == NULL) {
 1591                         device_printf(sc->ti_dev, "mbuf allocation failed "
 1592                             "-- packet dropped!\n");
 1593                         goto nobufs;
 1594                 }
 1595                 MGET(m[NPAYLOAD], M_NOWAIT, MT_DATA);
 1596                 if (m[NPAYLOAD] == NULL) {
 1597                         device_printf(sc->ti_dev, "cluster mbuf allocation "
 1598                             "failed -- packet dropped!\n");
 1599                         goto nobufs;
 1600                 }
 1601                 if (!(MCLGET(m[NPAYLOAD], M_NOWAIT))) {
 1602                         device_printf(sc->ti_dev, "mbuf allocation failed "
 1603                             "-- packet dropped!\n");
 1604                         goto nobufs;
 1605                 }
 1606                 m[NPAYLOAD]->m_len = MCLBYTES;
 1607 
 1608                 for (i = 0; i < NPAYLOAD; i++){
 1609                         MGET(m[i], M_NOWAIT, MT_DATA);
 1610                         if (m[i] == NULL) {
 1611                                 device_printf(sc->ti_dev, "mbuf allocation "
 1612                                     "failed -- packet dropped!\n");
 1613                                 goto nobufs;
 1614                         }
 1615                         frame = vm_page_alloc(NULL, 0,
 1616                             VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
 1617                             VM_ALLOC_WIRED);
 1618                         if (frame == NULL) {
 1619                                 device_printf(sc->ti_dev, "buffer allocation "
 1620                                     "failed -- packet dropped!\n");
 1621                                 printf("      index %d page %d\n", idx, i);
 1622                                 goto nobufs;
 1623                         }
 1624                         sf[i] = sf_buf_alloc(frame, SFB_NOWAIT);
 1625                         if (sf[i] == NULL) {
 1626                                 vm_page_unwire(frame, PQ_NONE);
 1627                                 vm_page_free(frame);
 1628                                 device_printf(sc->ti_dev, "buffer allocation "
 1629                                     "failed -- packet dropped!\n");
 1630                                 printf("      index %d page %d\n", idx, i);
 1631                                 goto nobufs;
 1632                         }
 1633                 }
 1634                 for (i = 0; i < NPAYLOAD; i++){
 1635                 /* Attach the buffer to the mbuf. */
 1636                         m[i]->m_data = (void *)sf_buf_kva(sf[i]);
 1637                         m[i]->m_len = PAGE_SIZE;
 1638                         MEXTADD(m[i], sf_buf_kva(sf[i]), PAGE_SIZE,
 1639                             sf_mext_free, (void*)sf_buf_kva(sf[i]), sf[i],
 1640                             0, EXT_DISPOSABLE);
 1641                         m[i]->m_next = m[i+1];
 1642                 }
 1643                 /* link the buffers to the header */
 1644                 m_new->m_next = m[0];
 1645                 m_new->m_data += ETHER_ALIGN;
 1646                 if (sc->ti_hdrsplit)
 1647                         m_new->m_len = MHLEN - ETHER_ALIGN;
 1648                 else
 1649                         m_new->m_len = HDR_LEN;
 1650                 m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len;
 1651         }
 1652 
 1653         /* Set up the descriptor. */
 1654         r = &sc->ti_rdata.ti_rx_jumbo_ring[idx];
 1655         sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new;
 1656         map = sc->ti_cdata.ti_rx_jumbo_maps[i];
 1657         if (bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_jumbo_tag, map, m_new,
 1658             segs, &nsegs, 0))
 1659                 return (ENOBUFS);
 1660         if ((nsegs < 1) || (nsegs > 4))
 1661                 return (ENOBUFS);
 1662         ti_hostaddr64(&r->ti_addr0, segs[0].ds_addr);
 1663         r->ti_len0 = m_new->m_len;
 1664 
 1665         ti_hostaddr64(&r->ti_addr1, segs[1].ds_addr);
 1666         r->ti_len1 = PAGE_SIZE;
 1667 
 1668         ti_hostaddr64(&r->ti_addr2, segs[2].ds_addr);
 1669         r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */
 1670 
 1671         if (PAGE_SIZE == 4096) {
 1672                 ti_hostaddr64(&r->ti_addr3, segs[3].ds_addr);
 1673                 r->ti_len3 = MCLBYTES;
 1674         } else {
 1675                 r->ti_len3 = 0;
 1676         }
 1677         r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
 1678 
 1679         r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD;
 1680 
 1681         if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
 1682                 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
 1683 
 1684         r->ti_idx = idx;
 1685 
 1686         bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag, map, BUS_DMASYNC_PREREAD);
 1687         return (0);
 1688 
 1689 nobufs:
 1690 
 1691         /*
 1692          * Warning! :
 1693          * This can only be called before the mbufs are strung together.
 1694          * If the mbufs are strung together, m_freem() will free the chain,
 1695          * so that the later mbufs will be freed multiple times.
 1696          */
 1697         if (m_new)
 1698                 m_freem(m_new);
 1699 
 1700         for (i = 0; i < 3; i++) {
 1701                 if (m[i])
 1702                         m_freem(m[i]);
 1703                 if (sf[i])
 1704                         sf_mext_free((void *)sf_buf_kva(sf[i]), sf[i]);
 1705         }
 1706         return (ENOBUFS);
 1707 }
 1708 #endif
 1709 
 1710 /*
 1711  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
 1712  * that's 1MB or memory, which is a lot. For now, we fill only the first
 1713  * 256 ring entries and hope that our CPU is fast enough to keep up with
 1714  * the NIC.
 1715  */
 1716 static int
 1717 ti_init_rx_ring_std(struct ti_softc *sc)
 1718 {
 1719         int i;
 1720         struct ti_cmd_desc cmd;
 1721 
 1722         for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
 1723                 if (ti_newbuf_std(sc, i) != 0)
 1724                         return (ENOBUFS);
 1725         }
 1726 
 1727         sc->ti_std = TI_STD_RX_RING_CNT - 1;
 1728         TI_UPDATE_STDPROD(sc, TI_STD_RX_RING_CNT - 1);
 1729 
 1730         return (0);
 1731 }
 1732 
 1733 static void
 1734 ti_free_rx_ring_std(struct ti_softc *sc)
 1735 {
 1736         bus_dmamap_t map;
 1737         int i;
 1738 
 1739         for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
 1740                 if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
 1741                         map = sc->ti_cdata.ti_rx_std_maps[i];
 1742                         bus_dmamap_sync(sc->ti_cdata.ti_rx_std_tag, map,
 1743                             BUS_DMASYNC_POSTREAD);
 1744                         bus_dmamap_unload(sc->ti_cdata.ti_rx_std_tag, map);
 1745                         m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
 1746                         sc->ti_cdata.ti_rx_std_chain[i] = NULL;
 1747                 }
 1748         }
 1749         bzero(sc->ti_rdata.ti_rx_std_ring, TI_STD_RX_RING_SZ);
 1750         bus_dmamap_sync(sc->ti_cdata.ti_rx_std_ring_tag,
 1751             sc->ti_cdata.ti_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
 1752 }
 1753 
 1754 static int
 1755 ti_init_rx_ring_jumbo(struct ti_softc *sc)
 1756 {
 1757         struct ti_cmd_desc cmd;
 1758         int i;
 1759 
 1760         for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
 1761                 if (ti_newbuf_jumbo(sc, i, NULL) != 0)
 1762                         return (ENOBUFS);
 1763         }
 1764 
 1765         sc->ti_jumbo = TI_JUMBO_RX_RING_CNT - 1;
 1766         TI_UPDATE_JUMBOPROD(sc, TI_JUMBO_RX_RING_CNT - 1);
 1767 
 1768         return (0);
 1769 }
 1770 
 1771 static void
 1772 ti_free_rx_ring_jumbo(struct ti_softc *sc)
 1773 {
 1774         bus_dmamap_t map;
 1775         int i;
 1776 
 1777         for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
 1778                 if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
 1779                         map = sc->ti_cdata.ti_rx_jumbo_maps[i];
 1780                         bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag, map,
 1781                             BUS_DMASYNC_POSTREAD);
 1782                         bus_dmamap_unload(sc->ti_cdata.ti_rx_jumbo_tag, map);
 1783                         m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
 1784                         sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
 1785                 }
 1786         }
 1787         bzero(sc->ti_rdata.ti_rx_jumbo_ring, TI_JUMBO_RX_RING_SZ);
 1788         bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_ring_tag,
 1789             sc->ti_cdata.ti_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
 1790 }
 1791 
 1792 static int
 1793 ti_init_rx_ring_mini(struct ti_softc *sc)
 1794 {
 1795         int i;
 1796 
 1797         for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
 1798                 if (ti_newbuf_mini(sc, i) != 0)
 1799                         return (ENOBUFS);
 1800         }
 1801 
 1802         sc->ti_mini = TI_MINI_RX_RING_CNT - 1;
 1803         TI_UPDATE_MINIPROD(sc, TI_MINI_RX_RING_CNT - 1);
 1804 
 1805         return (0);
 1806 }
 1807 
 1808 static void
 1809 ti_free_rx_ring_mini(struct ti_softc *sc)
 1810 {
 1811         bus_dmamap_t map;
 1812         int i;
 1813 
 1814         if (sc->ti_rdata.ti_rx_mini_ring == NULL)
 1815                 return;
 1816 
 1817         for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
 1818                 if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
 1819                         map = sc->ti_cdata.ti_rx_mini_maps[i];
 1820                         bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_tag, map,
 1821                             BUS_DMASYNC_POSTREAD);
 1822                         bus_dmamap_unload(sc->ti_cdata.ti_rx_mini_tag, map);
 1823                         m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
 1824                         sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
 1825                 }
 1826         }
 1827         bzero(sc->ti_rdata.ti_rx_mini_ring, TI_MINI_RX_RING_SZ);
 1828         bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_ring_tag,
 1829             sc->ti_cdata.ti_rx_mini_ring_map, BUS_DMASYNC_PREWRITE);
 1830 }
 1831 
 1832 static void
 1833 ti_free_tx_ring(struct ti_softc *sc)
 1834 {
 1835         struct ti_txdesc *txd;
 1836         int i;
 1837 
 1838         if (sc->ti_rdata.ti_tx_ring == NULL)
 1839                 return;
 1840 
 1841         for (i = 0; i < TI_TX_RING_CNT; i++) {
 1842                 txd = &sc->ti_cdata.ti_txdesc[i];
 1843                 if (txd->tx_m != NULL) {
 1844                         bus_dmamap_sync(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
 1845                             BUS_DMASYNC_POSTWRITE);
 1846                         bus_dmamap_unload(sc->ti_cdata.ti_tx_tag,
 1847                             txd->tx_dmamap);
 1848                         m_freem(txd->tx_m);
 1849                         txd->tx_m = NULL;
 1850                 }
 1851         }
 1852         bzero(sc->ti_rdata.ti_tx_ring, TI_TX_RING_SZ);
 1853         bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
 1854             sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_PREWRITE);
 1855 }
 1856 
 1857 static int
 1858 ti_init_tx_ring(struct ti_softc *sc)
 1859 {
 1860         struct ti_txdesc *txd;
 1861         int i;
 1862 
 1863         STAILQ_INIT(&sc->ti_cdata.ti_txfreeq);
 1864         STAILQ_INIT(&sc->ti_cdata.ti_txbusyq);
 1865         for (i = 0; i < TI_TX_RING_CNT; i++) {
 1866                 txd = &sc->ti_cdata.ti_txdesc[i];
 1867                 STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
 1868         }
 1869         sc->ti_txcnt = 0;
 1870         sc->ti_tx_saved_considx = 0;
 1871         sc->ti_tx_saved_prodidx = 0;
 1872         CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
 1873         return (0);
 1874 }
 1875 
 1876 /*
 1877  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
 1878  * but we have to support the old way too so that Tigon 1 cards will
 1879  * work.
 1880  */
 1881 static void
 1882 ti_add_mcast(struct ti_softc *sc, struct ether_addr *addr)
 1883 {
 1884         struct ti_cmd_desc cmd;
 1885         uint16_t *m;
 1886         uint32_t ext[2] = {0, 0};
 1887 
 1888         m = (uint16_t *)&addr->octet[0];
 1889 
 1890         switch (sc->ti_hwrev) {
 1891         case TI_HWREV_TIGON:
 1892                 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
 1893                 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
 1894                 TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
 1895                 break;
 1896         case TI_HWREV_TIGON_II:
 1897                 ext[0] = htons(m[0]);
 1898                 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
 1899                 TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
 1900                 break;
 1901         default:
 1902                 device_printf(sc->ti_dev, "unknown hwrev\n");
 1903                 break;
 1904         }
 1905 }
 1906 
 1907 static void
 1908 ti_del_mcast(struct ti_softc *sc, struct ether_addr *addr)
 1909 {
 1910         struct ti_cmd_desc cmd;
 1911         uint16_t *m;
 1912         uint32_t ext[2] = {0, 0};
 1913 
 1914         m = (uint16_t *)&addr->octet[0];
 1915 
 1916         switch (sc->ti_hwrev) {
 1917         case TI_HWREV_TIGON:
 1918                 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
 1919                 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
 1920                 TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
 1921                 break;
 1922         case TI_HWREV_TIGON_II:
 1923                 ext[0] = htons(m[0]);
 1924                 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
 1925                 TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
 1926                 break;
 1927         default:
 1928                 device_printf(sc->ti_dev, "unknown hwrev\n");
 1929                 break;
 1930         }
 1931 }
 1932 
 1933 /*
 1934  * Configure the Tigon's multicast address filter.
 1935  *
 1936  * The actual multicast table management is a bit of a pain, thanks to
 1937  * slight brain damage on the part of both Alteon and us. With our
 1938  * multicast code, we are only alerted when the multicast address table
 1939  * changes and at that point we only have the current list of addresses:
 1940  * we only know the current state, not the previous state, so we don't
 1941  * actually know what addresses were removed or added. The firmware has
 1942  * state, but we can't get our grubby mits on it, and there is no 'delete
 1943  * all multicast addresses' command. Hence, we have to maintain our own
 1944  * state so we know what addresses have been programmed into the NIC at
 1945  * any given time.
 1946  */
 1947 static void
 1948 ti_setmulti(struct ti_softc *sc)
 1949 {
 1950         struct ifnet *ifp;
 1951         struct ifmultiaddr *ifma;
 1952         struct ti_cmd_desc cmd;
 1953         struct ti_mc_entry *mc;
 1954         uint32_t intrs;
 1955 
 1956         TI_LOCK_ASSERT(sc);
 1957 
 1958         ifp = sc->ti_ifp;
 1959 
 1960         if (ifp->if_flags & IFF_ALLMULTI) {
 1961                 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
 1962                 return;
 1963         } else {
 1964                 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
 1965         }
 1966 
 1967         /* Disable interrupts. */
 1968         intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
 1969         CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
 1970 
 1971         /* First, zot all the existing filters. */
 1972         while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
 1973                 mc = SLIST_FIRST(&sc->ti_mc_listhead);
 1974                 ti_del_mcast(sc, &mc->mc_addr);
 1975                 SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
 1976                 free(mc, M_DEVBUF);
 1977         }
 1978 
 1979         /* Now program new ones. */
 1980         if_maddr_rlock(ifp);
 1981         CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 1982                 if (ifma->ifma_addr->sa_family != AF_LINK)
 1983                         continue;
 1984                 mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
 1985                 if (mc == NULL) {
 1986                         device_printf(sc->ti_dev,
 1987                             "no memory for mcast filter entry\n");
 1988                         continue;
 1989                 }
 1990                 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
 1991                     (char *)&mc->mc_addr, ETHER_ADDR_LEN);
 1992                 SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
 1993                 ti_add_mcast(sc, &mc->mc_addr);
 1994         }
 1995         if_maddr_runlock(ifp);
 1996 
 1997         /* Re-enable interrupts. */
 1998         CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
 1999 }
 2000 
 2001 /*
 2002  * Check to see if the BIOS has configured us for a 64 bit slot when
 2003  * we aren't actually in one. If we detect this condition, we can work
 2004  * around it on the Tigon 2 by setting a bit in the PCI state register,
 2005  * but for the Tigon 1 we must give up and abort the interface attach.
 2006  */
 2007 static int
 2008 ti_64bitslot_war(struct ti_softc *sc)
 2009 {
 2010 
 2011         if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
 2012                 CSR_WRITE_4(sc, 0x600, 0);
 2013                 CSR_WRITE_4(sc, 0x604, 0);
 2014                 CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
 2015                 if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
 2016                         if (sc->ti_hwrev == TI_HWREV_TIGON)
 2017                                 return (EINVAL);
 2018                         else {
 2019                                 TI_SETBIT(sc, TI_PCI_STATE,
 2020                                     TI_PCISTATE_32BIT_BUS);
 2021                                 return (0);
 2022                         }
 2023                 }
 2024         }
 2025 
 2026         return (0);
 2027 }
 2028 
 2029 /*
 2030  * Do endian, PCI and DMA initialization. Also check the on-board ROM
 2031  * self-test results.
 2032  */
 2033 static int
 2034 ti_chipinit(struct ti_softc *sc)
 2035 {
 2036         uint32_t cacheline;
 2037         uint32_t pci_writemax = 0;
 2038         uint32_t hdrsplit;
 2039 
 2040         /* Initialize link to down state. */
 2041         sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
 2042 
 2043         /* Set endianness before we access any non-PCI registers. */
 2044 #if 0 && BYTE_ORDER == BIG_ENDIAN
 2045         CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
 2046             TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
 2047 #else
 2048         CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
 2049             TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
 2050 #endif
 2051 
 2052         /* Check the ROM failed bit to see if self-tests passed. */
 2053         if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
 2054                 device_printf(sc->ti_dev, "board self-diagnostics failed!\n");
 2055                 return (ENODEV);
 2056         }
 2057 
 2058         /* Halt the CPU. */
 2059         TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
 2060 
 2061         /* Figure out the hardware revision. */
 2062         switch (CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
 2063         case TI_REV_TIGON_I:
 2064                 sc->ti_hwrev = TI_HWREV_TIGON;
 2065                 break;
 2066         case TI_REV_TIGON_II:
 2067                 sc->ti_hwrev = TI_HWREV_TIGON_II;
 2068                 break;
 2069         default:
 2070                 device_printf(sc->ti_dev, "unsupported chip revision\n");
 2071                 return (ENODEV);
 2072         }
 2073 
 2074         /* Do special setup for Tigon 2. */
 2075         if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
 2076                 TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
 2077                 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
 2078                 TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
 2079         }
 2080 
 2081         /*
 2082          * We don't have firmware source for the Tigon 1, so Tigon 1 boards
 2083          * can't do header splitting.
 2084          */
 2085 #ifdef TI_JUMBO_HDRSPLIT
 2086         if (sc->ti_hwrev != TI_HWREV_TIGON)
 2087                 sc->ti_hdrsplit = 1;
 2088         else
 2089                 device_printf(sc->ti_dev,
 2090                     "can't do header splitting on a Tigon I board\n");
 2091 #endif /* TI_JUMBO_HDRSPLIT */
 2092 
 2093         /* Set up the PCI state register. */
 2094         CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
 2095         if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
 2096                 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
 2097         }
 2098 
 2099         /* Clear the read/write max DMA parameters. */
 2100         TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
 2101             TI_PCISTATE_READ_MAXDMA));
 2102 
 2103         /* Get cache line size. */
 2104         cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
 2105 
 2106         /*
 2107          * If the system has set enabled the PCI memory write
 2108          * and invalidate command in the command register, set
 2109          * the write max parameter accordingly. This is necessary
 2110          * to use MWI with the Tigon 2.
 2111          */
 2112         if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
 2113                 switch (cacheline) {
 2114                 case 1:
 2115                 case 4:
 2116                 case 8:
 2117                 case 16:
 2118                 case 32:
 2119                 case 64:
 2120                         break;
 2121                 default:
 2122                 /* Disable PCI memory write and invalidate. */
 2123                         if (bootverbose)
 2124                                 device_printf(sc->ti_dev, "cache line size %d"
 2125                                     " not supported; disabling PCI MWI\n",
 2126                                     cacheline);
 2127                         CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
 2128                             TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
 2129                         break;
 2130                 }
 2131         }
 2132 
 2133         TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
 2134 
 2135         /* This sets the min dma param all the way up (0xff). */
 2136         TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
 2137 
 2138         if (sc->ti_hdrsplit)
 2139                 hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT;
 2140         else
 2141                 hdrsplit = 0;
 2142 
 2143         /* Configure DMA variables. */
 2144 #if BYTE_ORDER == BIG_ENDIAN
 2145         CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
 2146             TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
 2147             TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
 2148             TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit);
 2149 #else /* BYTE_ORDER */
 2150         CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
 2151             TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
 2152             TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit);
 2153 #endif /* BYTE_ORDER */
 2154 
 2155         /*
 2156          * Only allow 1 DMA channel to be active at a time.
 2157          * I don't think this is a good idea, but without it
 2158          * the firmware racks up lots of nicDmaReadRingFull
 2159          * errors.  This is not compatible with hardware checksums.
 2160          */
 2161         if ((sc->ti_ifp->if_capenable & (IFCAP_TXCSUM | IFCAP_RXCSUM)) == 0)
 2162                 TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
 2163 
 2164         /* Recommended settings from Tigon manual. */
 2165         CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
 2166         CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
 2167 
 2168         if (ti_64bitslot_war(sc)) {
 2169                 device_printf(sc->ti_dev, "bios thinks we're in a 64 bit slot, "
 2170                     "but we aren't");
 2171                 return (EINVAL);
 2172         }
 2173 
 2174         return (0);
 2175 }
 2176 
 2177 /*
 2178  * Initialize the general information block and firmware, and
 2179  * start the CPU(s) running.
 2180  */
 2181 static int
 2182 ti_gibinit(struct ti_softc *sc)
 2183 {
 2184         struct ifnet *ifp;
 2185         struct ti_rcb *rcb;
 2186         int i;
 2187 
 2188         TI_LOCK_ASSERT(sc);
 2189 
 2190         ifp = sc->ti_ifp;
 2191 
 2192         /* Disable interrupts for now. */
 2193         CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
 2194 
 2195         /* Tell the chip where to find the general information block. */
 2196         CSR_WRITE_4(sc, TI_GCR_GENINFO_HI,
 2197             (uint64_t)sc->ti_rdata.ti_info_paddr >> 32);
 2198         CSR_WRITE_4(sc, TI_GCR_GENINFO_LO,
 2199             sc->ti_rdata.ti_info_paddr & 0xFFFFFFFF);
 2200 
 2201         /* Load the firmware into SRAM. */
 2202         ti_loadfw(sc);
 2203 
 2204         /* Set up the contents of the general info and ring control blocks. */
 2205 
 2206         /* Set up the event ring and producer pointer. */
 2207         bzero(sc->ti_rdata.ti_event_ring, TI_EVENT_RING_SZ);
 2208         rcb = &sc->ti_rdata.ti_info->ti_ev_rcb;
 2209         ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_event_ring_paddr);
 2210         rcb->ti_flags = 0;
 2211         ti_hostaddr64(&sc->ti_rdata.ti_info->ti_ev_prodidx_ptr,
 2212             sc->ti_rdata.ti_status_paddr +
 2213             offsetof(struct ti_status, ti_ev_prodidx_r));
 2214         sc->ti_ev_prodidx.ti_idx = 0;
 2215         CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
 2216         sc->ti_ev_saved_considx = 0;
 2217 
 2218         /* Set up the command ring and producer mailbox. */
 2219         rcb = &sc->ti_rdata.ti_info->ti_cmd_rcb;
 2220         ti_hostaddr64(&rcb->ti_hostaddr, TI_GCR_NIC_ADDR(TI_GCR_CMDRING));
 2221         rcb->ti_flags = 0;
 2222         rcb->ti_max_len = 0;
 2223         for (i = 0; i < TI_CMD_RING_CNT; i++) {
 2224                 CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
 2225         }
 2226         CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
 2227         CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
 2228         sc->ti_cmd_saved_prodidx = 0;
 2229 
 2230         /*
 2231          * Assign the address of the stats refresh buffer.
 2232          * We re-use the current stats buffer for this to
 2233          * conserve memory.
 2234          */
 2235         bzero(&sc->ti_rdata.ti_info->ti_stats, sizeof(struct ti_stats));
 2236         ti_hostaddr64(&sc->ti_rdata.ti_info->ti_refresh_stats_ptr,
 2237             sc->ti_rdata.ti_info_paddr + offsetof(struct ti_gib, ti_stats));
 2238 
 2239         /* Set up the standard receive ring. */
 2240         rcb = &sc->ti_rdata.ti_info->ti_std_rx_rcb;
 2241         ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_std_ring_paddr);
 2242         rcb->ti_max_len = TI_FRAMELEN;
 2243         rcb->ti_flags = 0;
 2244         if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
 2245                 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
 2246                      TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
 2247         if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
 2248                 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
 2249 
 2250         /* Set up the jumbo receive ring. */
 2251         rcb = &sc->ti_rdata.ti_info->ti_jumbo_rx_rcb;
 2252         ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_jumbo_ring_paddr);
 2253 
 2254 #ifndef TI_SF_BUF_JUMBO
 2255         rcb->ti_max_len = MJUM9BYTES - ETHER_ALIGN;
 2256         rcb->ti_flags = 0;
 2257 #else
 2258         rcb->ti_max_len = PAGE_SIZE;
 2259         rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD;
 2260 #endif
 2261         if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
 2262                 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
 2263                      TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
 2264         if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
 2265                 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
 2266 
 2267         /*
 2268          * Set up the mini ring. Only activated on the
 2269          * Tigon 2 but the slot in the config block is
 2270          * still there on the Tigon 1.
 2271          */
 2272         rcb = &sc->ti_rdata.ti_info->ti_mini_rx_rcb;
 2273         ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_mini_ring_paddr);
 2274         rcb->ti_max_len = MHLEN - ETHER_ALIGN;
 2275         if (sc->ti_hwrev == TI_HWREV_TIGON)
 2276                 rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
 2277         else
 2278                 rcb->ti_flags = 0;
 2279         if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
 2280                 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
 2281                      TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
 2282         if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
 2283                 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
 2284 
 2285         /*
 2286          * Set up the receive return ring.
 2287          */
 2288         rcb = &sc->ti_rdata.ti_info->ti_return_rcb;
 2289         ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_return_ring_paddr);
 2290         rcb->ti_flags = 0;
 2291         rcb->ti_max_len = TI_RETURN_RING_CNT;
 2292         ti_hostaddr64(&sc->ti_rdata.ti_info->ti_return_prodidx_ptr,
 2293             sc->ti_rdata.ti_status_paddr +
 2294             offsetof(struct ti_status, ti_return_prodidx_r));
 2295 
 2296         /*
 2297          * Set up the tx ring. Note: for the Tigon 2, we have the option
 2298          * of putting the transmit ring in the host's address space and
 2299          * letting the chip DMA it instead of leaving the ring in the NIC's
 2300          * memory and accessing it through the shared memory region. We
 2301          * do this for the Tigon 2, but it doesn't work on the Tigon 1,
 2302          * so we have to revert to the shared memory scheme if we detect
 2303          * a Tigon 1 chip.
 2304          */
 2305         CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
 2306         if (sc->ti_rdata.ti_tx_ring != NULL)
 2307                 bzero(sc->ti_rdata.ti_tx_ring, TI_TX_RING_SZ);
 2308         rcb = &sc->ti_rdata.ti_info->ti_tx_rcb;
 2309         if (sc->ti_hwrev == TI_HWREV_TIGON)
 2310                 rcb->ti_flags = 0;
 2311         else
 2312                 rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
 2313         if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
 2314                 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
 2315         if (sc->ti_ifp->if_capenable & IFCAP_TXCSUM)
 2316                 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
 2317                      TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
 2318         rcb->ti_max_len = TI_TX_RING_CNT;
 2319         if (sc->ti_hwrev == TI_HWREV_TIGON)
 2320                 ti_hostaddr64(&rcb->ti_hostaddr, TI_TX_RING_BASE);
 2321         else
 2322                 ti_hostaddr64(&rcb->ti_hostaddr,
 2323                     sc->ti_rdata.ti_tx_ring_paddr);
 2324         ti_hostaddr64(&sc->ti_rdata.ti_info->ti_tx_considx_ptr,
 2325             sc->ti_rdata.ti_status_paddr +
 2326             offsetof(struct ti_status, ti_tx_considx_r));
 2327 
 2328         bus_dmamap_sync(sc->ti_cdata.ti_gib_tag, sc->ti_cdata.ti_gib_map,
 2329             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 2330         bus_dmamap_sync(sc->ti_cdata.ti_status_tag, sc->ti_cdata.ti_status_map,
 2331             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 2332         bus_dmamap_sync(sc->ti_cdata.ti_event_ring_tag,
 2333             sc->ti_cdata.ti_event_ring_map,
 2334             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 2335         if (sc->ti_rdata.ti_tx_ring != NULL)
 2336                 bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
 2337                     sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_PREWRITE);
 2338 
 2339         /* Set up tunables */
 2340 #if 0
 2341         if (ifp->if_mtu > ETHERMTU + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)
 2342                 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
 2343                     (sc->ti_rx_coal_ticks / 10));
 2344         else
 2345 #endif
 2346                 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
 2347         CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
 2348         CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
 2349         CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
 2350         CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
 2351         CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
 2352 
 2353         /* Turn interrupts on. */
 2354         CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
 2355         CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
 2356 
 2357         /* Start CPU. */
 2358         TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
 2359 
 2360         return (0);
 2361 }
 2362 
 2363 /*
 2364  * Probe for a Tigon chip. Check the PCI vendor and device IDs
 2365  * against our list and return its name if we find a match.
 2366  */
 2367 static int
 2368 ti_probe(device_t dev)
 2369 {
 2370         const struct ti_type *t;
 2371 
 2372         t = ti_devs;
 2373 
 2374         while (t->ti_name != NULL) {
 2375                 if ((pci_get_vendor(dev) == t->ti_vid) &&
 2376                     (pci_get_device(dev) == t->ti_did)) {
 2377                         device_set_desc(dev, t->ti_name);
 2378                         return (BUS_PROBE_DEFAULT);
 2379                 }
 2380                 t++;
 2381         }
 2382 
 2383         return (ENXIO);
 2384 }
 2385 
 2386 static int
 2387 ti_attach(device_t dev)
 2388 {
 2389         struct ifnet *ifp;
 2390         struct ti_softc *sc;
 2391         int error = 0, rid;
 2392         u_char eaddr[6];
 2393 
 2394         sc = device_get_softc(dev);
 2395         sc->ti_dev = dev;
 2396 
 2397         mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
 2398             MTX_DEF);
 2399         callout_init_mtx(&sc->ti_watchdog, &sc->ti_mtx, 0);
 2400         ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
 2401         ifp = sc->ti_ifp = if_alloc(IFT_ETHER);
 2402         if (ifp == NULL) {
 2403                 device_printf(dev, "can not if_alloc()\n");
 2404                 error = ENOSPC;
 2405                 goto fail;
 2406         }
 2407         sc->ti_ifp->if_hwassist = TI_CSUM_FEATURES;
 2408         sc->ti_ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM;
 2409         sc->ti_ifp->if_capenable = sc->ti_ifp->if_capabilities;
 2410 
 2411         /*
 2412          * Map control/status registers.
 2413          */
 2414         pci_enable_busmaster(dev);
 2415 
 2416         rid = PCIR_BAR(0);
 2417         sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
 2418             RF_ACTIVE);
 2419 
 2420         if (sc->ti_res == NULL) {
 2421                 device_printf(dev, "couldn't map memory\n");
 2422                 error = ENXIO;
 2423                 goto fail;
 2424         }
 2425 
 2426         sc->ti_btag = rman_get_bustag(sc->ti_res);
 2427         sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
 2428 
 2429         /* Allocate interrupt */
 2430         rid = 0;
 2431 
 2432         sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
 2433             RF_SHAREABLE | RF_ACTIVE);
 2434 
 2435         if (sc->ti_irq == NULL) {
 2436                 device_printf(dev, "couldn't map interrupt\n");
 2437                 error = ENXIO;
 2438                 goto fail;
 2439         }
 2440 
 2441         if (ti_chipinit(sc)) {
 2442                 device_printf(dev, "chip initialization failed\n");
 2443                 error = ENXIO;
 2444                 goto fail;
 2445         }
 2446 
 2447         /* Zero out the NIC's on-board SRAM. */
 2448         ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
 2449 
 2450         /* Init again -- zeroing memory may have clobbered some registers. */
 2451         if (ti_chipinit(sc)) {
 2452                 device_printf(dev, "chip initialization failed\n");
 2453                 error = ENXIO;
 2454                 goto fail;
 2455         }
 2456 
 2457         /*
 2458          * Get station address from the EEPROM. Note: the manual states
 2459          * that the MAC address is at offset 0x8c, however the data is
 2460          * stored as two longwords (since that's how it's loaded into
 2461          * the NIC). This means the MAC address is actually preceded
 2462          * by two zero bytes. We need to skip over those.
 2463          */
 2464         if (ti_read_eeprom(sc, eaddr, TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
 2465                 device_printf(dev, "failed to read station address\n");
 2466                 error = ENXIO;
 2467                 goto fail;
 2468         }
 2469 
 2470         /* Allocate working area for memory dump. */
 2471         sc->ti_membuf = malloc(sizeof(uint8_t) * TI_WINLEN, M_DEVBUF, M_NOWAIT);
 2472         sc->ti_membuf2 = malloc(sizeof(uint8_t) * TI_WINLEN, M_DEVBUF,
 2473             M_NOWAIT);
 2474         if (sc->ti_membuf == NULL || sc->ti_membuf2 == NULL) {
 2475                 device_printf(dev, "cannot allocate memory buffer\n");
 2476                 error = ENOMEM;
 2477                 goto fail;
 2478         }
 2479         if ((error = ti_dma_alloc(sc)) != 0)
 2480                 goto fail;
 2481 
 2482         /*
 2483          * We really need a better way to tell a 1000baseTX card
 2484          * from a 1000baseSX one, since in theory there could be
 2485          * OEMed 1000baseTX cards from lame vendors who aren't
 2486          * clever enough to change the PCI ID. For the moment
 2487          * though, the AceNIC is the only copper card available.
 2488          */
 2489         if (pci_get_vendor(dev) == ALT_VENDORID &&
 2490             pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
 2491                 sc->ti_copper = 1;
 2492         /* Ok, it's not the only copper card available. */
 2493         if (pci_get_vendor(dev) == NG_VENDORID &&
 2494             pci_get_device(dev) == NG_DEVICEID_GA620T)
 2495                 sc->ti_copper = 1;
 2496 
 2497         /* Set default tunable values. */
 2498         ti_sysctl_node(sc);
 2499 
 2500         /* Set up ifnet structure */
 2501         ifp->if_softc = sc;
 2502         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
 2503         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
 2504         ifp->if_ioctl = ti_ioctl;
 2505         ifp->if_start = ti_start;
 2506         ifp->if_init = ti_init;
 2507         ifp->if_get_counter = ti_get_counter;
 2508         ifp->if_baudrate = IF_Gbps(1UL);
 2509         ifp->if_snd.ifq_drv_maxlen = TI_TX_RING_CNT - 1;
 2510         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
 2511         IFQ_SET_READY(&ifp->if_snd);
 2512 
 2513         /* Set up ifmedia support. */
 2514         if (sc->ti_copper) {
 2515                 /*
 2516                  * Copper cards allow manual 10/100 mode selection,
 2517                  * but not manual 1000baseTX mode selection. Why?
 2518                  * Because currently there's no way to specify the
 2519                  * master/slave setting through the firmware interface,
 2520                  * so Alteon decided to just bag it and handle it
 2521                  * via autonegotiation.
 2522                  */
 2523                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
 2524                 ifmedia_add(&sc->ifmedia,
 2525                     IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
 2526                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
 2527                 ifmedia_add(&sc->ifmedia,
 2528                     IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
 2529                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
 2530                 ifmedia_add(&sc->ifmedia,
 2531                     IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
 2532         } else {
 2533                 /* Fiber cards don't support 10/100 modes. */
 2534                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
 2535                 ifmedia_add(&sc->ifmedia,
 2536                     IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
 2537         }
 2538         ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
 2539         ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
 2540 
 2541         /*
 2542          * We're assuming here that card initialization is a sequential
 2543          * thing.  If it isn't, multiple cards probing at the same time
 2544          * could stomp on the list of softcs here.
 2545          */
 2546 
 2547         /* Register the device */
 2548         sc->dev = make_dev(&ti_cdevsw, device_get_unit(dev), UID_ROOT,
 2549             GID_OPERATOR, 0600, "ti%d", device_get_unit(dev));
 2550         sc->dev->si_drv1 = sc;
 2551 
 2552         /*
 2553          * Call MI attach routine.
 2554          */
 2555         ether_ifattach(ifp, eaddr);
 2556 
 2557         /* VLAN capability setup. */
 2558         ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWCSUM |
 2559             IFCAP_VLAN_HWTAGGING;
 2560         ifp->if_capenable = ifp->if_capabilities;
 2561         /* Tell the upper layer we support VLAN over-sized frames. */
 2562         ifp->if_hdrlen = sizeof(struct ether_vlan_header);
 2563 
 2564         /* Driver supports link state tracking. */
 2565         ifp->if_capabilities |= IFCAP_LINKSTATE;
 2566         ifp->if_capenable |= IFCAP_LINKSTATE;
 2567 
 2568         /* Hook interrupt last to avoid having to lock softc */
 2569         error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET|INTR_MPSAFE,
 2570            NULL, ti_intr, sc, &sc->ti_intrhand);
 2571 
 2572         if (error) {
 2573                 device_printf(dev, "couldn't set up irq\n");
 2574                 goto fail;
 2575         }
 2576 
 2577 fail:
 2578         if (error)
 2579                 ti_detach(dev);
 2580 
 2581         return (error);
 2582 }
 2583 
 2584 /*
 2585  * Shutdown hardware and free up resources. This can be called any
 2586  * time after the mutex has been initialized. It is called in both
 2587  * the error case in attach and the normal detach case so it needs
 2588  * to be careful about only freeing resources that have actually been
 2589  * allocated.
 2590  */
 2591 static int
 2592 ti_detach(device_t dev)
 2593 {
 2594         struct ti_softc *sc;
 2595         struct ifnet *ifp;
 2596 
 2597         sc = device_get_softc(dev);
 2598         if (sc->dev)
 2599                 destroy_dev(sc->dev);
 2600         KASSERT(mtx_initialized(&sc->ti_mtx), ("ti mutex not initialized"));
 2601         ifp = sc->ti_ifp;
 2602         if (device_is_attached(dev)) {
 2603                 ether_ifdetach(ifp);
 2604                 TI_LOCK(sc);
 2605                 ti_stop(sc);
 2606                 TI_UNLOCK(sc);
 2607         }
 2608 
 2609         /* These should only be active if attach succeeded */
 2610         callout_drain(&sc->ti_watchdog);
 2611         bus_generic_detach(dev);
 2612         ti_dma_free(sc);
 2613         ifmedia_removeall(&sc->ifmedia);
 2614 
 2615         if (sc->ti_intrhand)
 2616                 bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
 2617         if (sc->ti_irq)
 2618                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
 2619         if (sc->ti_res) {
 2620                 bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
 2621                     sc->ti_res);
 2622         }
 2623         if (ifp)
 2624                 if_free(ifp);
 2625         if (sc->ti_membuf)
 2626                 free(sc->ti_membuf, M_DEVBUF);
 2627         if (sc->ti_membuf2)
 2628                 free(sc->ti_membuf2, M_DEVBUF);
 2629 
 2630         mtx_destroy(&sc->ti_mtx);
 2631 
 2632         return (0);
 2633 }
 2634 
 2635 #ifdef TI_JUMBO_HDRSPLIT
 2636 /*
 2637  * If hdr_len is 0, that means that header splitting wasn't done on
 2638  * this packet for some reason.  The two most likely reasons are that
 2639  * the protocol isn't a supported protocol for splitting, or this
 2640  * packet had a fragment offset that wasn't 0.
 2641  *
 2642  * The header length, if it is non-zero, will always be the length of
 2643  * the headers on the packet, but that length could be longer than the
 2644  * first mbuf.  So we take the minimum of the two as the actual
 2645  * length.
 2646  */
 2647 static __inline void
 2648 ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx)
 2649 {
 2650         int i = 0;
 2651         int lengths[4] = {0, 0, 0, 0};
 2652         struct mbuf *m, *mp;
 2653 
 2654         if (hdr_len != 0)
 2655                 top->m_len = min(hdr_len, top->m_len);
 2656         pkt_len -= top->m_len;
 2657         lengths[i++] = top->m_len;
 2658 
 2659         mp = top;
 2660         for (m = top->m_next; m && pkt_len; m = m->m_next) {
 2661                 m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len);
 2662                 pkt_len -= m->m_len;
 2663                 lengths[i++] = m->m_len;
 2664                 mp = m;
 2665         }
 2666 
 2667 #if 0
 2668         if (hdr_len != 0)
 2669                 printf("got split packet: ");
 2670         else
 2671                 printf("got non-split packet: ");
 2672 
 2673         printf("%d,%d,%d,%d = %d\n", lengths[0],
 2674             lengths[1], lengths[2], lengths[3],
 2675             lengths[0] + lengths[1] + lengths[2] +
 2676             lengths[3]);
 2677 #endif
 2678 
 2679         if (pkt_len)
 2680                 panic("header splitting didn't");
 2681 
 2682         if (m) {
 2683                 m_freem(m);
 2684                 mp->m_next = NULL;
 2685 
 2686         }
 2687         if (mp->m_next != NULL)
 2688                 panic("ti_hdr_split: last mbuf in chain should be null");
 2689 }
 2690 #endif /* TI_JUMBO_HDRSPLIT */
 2691 
 2692 static void
 2693 ti_discard_std(struct ti_softc *sc, int i)
 2694 {
 2695 
 2696         struct ti_rx_desc *r;
 2697 
 2698         r = &sc->ti_rdata.ti_rx_std_ring[i];
 2699         r->ti_len = MCLBYTES - ETHER_ALIGN;
 2700         r->ti_type = TI_BDTYPE_RECV_BD;
 2701         r->ti_flags = 0;
 2702         r->ti_vlan_tag = 0;
 2703         r->ti_tcp_udp_cksum = 0;
 2704         if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
 2705                 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
 2706         r->ti_idx = i;
 2707 }
 2708 
 2709 static void
 2710 ti_discard_mini(struct ti_softc *sc, int i)
 2711 {
 2712 
 2713         struct ti_rx_desc *r;
 2714 
 2715         r = &sc->ti_rdata.ti_rx_mini_ring[i];
 2716         r->ti_len = MHLEN - ETHER_ALIGN;
 2717         r->ti_type = TI_BDTYPE_RECV_BD;
 2718         r->ti_flags = TI_BDFLAG_MINI_RING;
 2719         r->ti_vlan_tag = 0;
 2720         r->ti_tcp_udp_cksum = 0;
 2721         if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
 2722                 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
 2723         r->ti_idx = i;
 2724 }
 2725 
 2726 #ifndef TI_SF_BUF_JUMBO
 2727 static void
 2728 ti_discard_jumbo(struct ti_softc *sc, int i)
 2729 {
 2730 
 2731         struct ti_rx_desc *r;
 2732 
 2733         r = &sc->ti_rdata.ti_rx_jumbo_ring[i];
 2734         r->ti_len = MJUM9BYTES - ETHER_ALIGN;
 2735         r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
 2736         r->ti_flags = TI_BDFLAG_JUMBO_RING;
 2737         r->ti_vlan_tag = 0;
 2738         r->ti_tcp_udp_cksum = 0;
 2739         if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
 2740                 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
 2741         r->ti_idx = i;
 2742 }
 2743 #endif
 2744 
 2745 /*
 2746  * Frame reception handling. This is called if there's a frame
 2747  * on the receive return list.
 2748  *
 2749  * Note: we have to be able to handle three possibilities here:
 2750  * 1) the frame is from the mini receive ring (can only happen)
 2751  *    on Tigon 2 boards)
 2752  * 2) the frame is from the jumbo receive ring
 2753  * 3) the frame is from the standard receive ring
 2754  */
 2755 
 2756 static void
 2757 ti_rxeof(struct ti_softc *sc)
 2758 {
 2759         struct ifnet *ifp;
 2760 #ifdef TI_SF_BUF_JUMBO
 2761         bus_dmamap_t map;
 2762 #endif
 2763         struct ti_cmd_desc cmd;
 2764         int jumbocnt, minicnt, stdcnt, ti_len;
 2765 
 2766         TI_LOCK_ASSERT(sc);
 2767 
 2768         ifp = sc->ti_ifp;
 2769 
 2770         bus_dmamap_sync(sc->ti_cdata.ti_rx_std_ring_tag,
 2771             sc->ti_cdata.ti_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
 2772         if (ifp->if_mtu > ETHERMTU + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)
 2773                 bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_ring_tag,
 2774                     sc->ti_cdata.ti_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
 2775         if (sc->ti_rdata.ti_rx_mini_ring != NULL)
 2776                 bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_ring_tag,
 2777                     sc->ti_cdata.ti_rx_mini_ring_map, BUS_DMASYNC_POSTWRITE);
 2778         bus_dmamap_sync(sc->ti_cdata.ti_rx_return_ring_tag,
 2779             sc->ti_cdata.ti_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
 2780 
 2781         jumbocnt = minicnt = stdcnt = 0;
 2782         while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
 2783                 struct ti_rx_desc *cur_rx;
 2784                 uint32_t rxidx;
 2785                 struct mbuf *m = NULL;
 2786                 uint16_t vlan_tag = 0;
 2787                 int have_tag = 0;
 2788 
 2789                 cur_rx =
 2790                     &sc->ti_rdata.ti_rx_return_ring[sc->ti_rx_saved_considx];
 2791                 rxidx = cur_rx->ti_idx;
 2792                 ti_len = cur_rx->ti_len;
 2793                 TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
 2794 
 2795                 if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
 2796                         have_tag = 1;
 2797                         vlan_tag = cur_rx->ti_vlan_tag;
 2798                 }
 2799 
 2800                 if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
 2801                         jumbocnt++;
 2802                         TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
 2803                         m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
 2804 #ifndef TI_SF_BUF_JUMBO
 2805                         if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
 2806                                 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
 2807                                 ti_discard_jumbo(sc, rxidx);
 2808                                 continue;
 2809                         }
 2810                         if (ti_newbuf_jumbo(sc, rxidx, NULL) != 0) {
 2811                                 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
 2812                                 ti_discard_jumbo(sc, rxidx);
 2813                                 continue;
 2814                         }
 2815                         m->m_len = ti_len;
 2816 #else /* !TI_SF_BUF_JUMBO */
 2817                         sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
 2818                         map = sc->ti_cdata.ti_rx_jumbo_maps[rxidx];
 2819                         bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag, map,
 2820                             BUS_DMASYNC_POSTREAD);
 2821                         bus_dmamap_unload(sc->ti_cdata.ti_rx_jumbo_tag, map);
 2822                         if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
 2823                                 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
 2824                                 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
 2825                                 continue;
 2826                         }
 2827                         if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
 2828                                 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
 2829                                 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
 2830                                 continue;
 2831                         }
 2832 #ifdef TI_JUMBO_HDRSPLIT
 2833                         if (sc->ti_hdrsplit)
 2834                                 ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr),
 2835                                              ti_len, rxidx);
 2836                         else
 2837 #endif /* TI_JUMBO_HDRSPLIT */
 2838                         m_adj(m, ti_len - m->m_pkthdr.len);
 2839 #endif /* TI_SF_BUF_JUMBO */
 2840                 } else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
 2841                         minicnt++;
 2842                         TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
 2843                         m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
 2844                         if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
 2845                                 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
 2846                                 ti_discard_mini(sc, rxidx);
 2847                                 continue;
 2848                         }
 2849                         if (ti_newbuf_mini(sc, rxidx) != 0) {
 2850                                 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
 2851                                 ti_discard_mini(sc, rxidx);
 2852                                 continue;
 2853                         }
 2854                         m->m_len = ti_len;
 2855                 } else {
 2856                         stdcnt++;
 2857                         TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
 2858                         m = sc->ti_cdata.ti_rx_std_chain[rxidx];
 2859                         if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
 2860                                 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
 2861                                 ti_discard_std(sc, rxidx);
 2862                                 continue;
 2863                         }
 2864                         if (ti_newbuf_std(sc, rxidx) != 0) {
 2865                                 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
 2866                                 ti_discard_std(sc, rxidx);
 2867                                 continue;
 2868                         }
 2869                         m->m_len = ti_len;
 2870                 }
 2871 
 2872                 m->m_pkthdr.len = ti_len;
 2873                 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
 2874                 m->m_pkthdr.rcvif = ifp;
 2875 
 2876                 if (ifp->if_capenable & IFCAP_RXCSUM) {
 2877                         if (cur_rx->ti_flags & TI_BDFLAG_IP_CKSUM) {
 2878                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
 2879                                 if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
 2880                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
 2881                         }
 2882                         if (cur_rx->ti_flags & TI_BDFLAG_TCP_UDP_CKSUM) {
 2883                                 m->m_pkthdr.csum_data =
 2884                                     cur_rx->ti_tcp_udp_cksum;
 2885                                 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
 2886                         }
 2887                 }
 2888 
 2889                 /*
 2890                  * If we received a packet with a vlan tag,
 2891                  * tag it before passing the packet upward.
 2892                  */
 2893                 if (have_tag) {
 2894                         m->m_pkthdr.ether_vtag = vlan_tag;
 2895                         m->m_flags |= M_VLANTAG;
 2896                 }
 2897                 TI_UNLOCK(sc);
 2898                 (*ifp->if_input)(ifp, m);
 2899                 TI_LOCK(sc);
 2900         }
 2901 
 2902         bus_dmamap_sync(sc->ti_cdata.ti_rx_return_ring_tag,
 2903             sc->ti_cdata.ti_rx_return_ring_map, BUS_DMASYNC_PREREAD);
 2904         /* Only necessary on the Tigon 1. */
 2905         if (sc->ti_hwrev == TI_HWREV_TIGON)
 2906                 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
 2907                     sc->ti_rx_saved_considx);
 2908 
 2909         if (stdcnt > 0) {
 2910                 bus_dmamap_sync(sc->ti_cdata.ti_rx_std_ring_tag,
 2911                     sc->ti_cdata.ti_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
 2912                 TI_UPDATE_STDPROD(sc, sc->ti_std);
 2913         }
 2914         if (minicnt > 0) {
 2915                 bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_ring_tag,
 2916                     sc->ti_cdata.ti_rx_mini_ring_map, BUS_DMASYNC_PREWRITE);
 2917                 TI_UPDATE_MINIPROD(sc, sc->ti_mini);
 2918         }
 2919         if (jumbocnt > 0) {
 2920                 bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_ring_tag,
 2921                     sc->ti_cdata.ti_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
 2922                 TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
 2923         }
 2924 }
 2925 
 2926 static void
 2927 ti_txeof(struct ti_softc *sc)
 2928 {
 2929         struct ti_txdesc *txd;
 2930         struct ti_tx_desc txdesc;
 2931         struct ti_tx_desc *cur_tx = NULL;
 2932         struct ifnet *ifp;
 2933         int idx;
 2934 
 2935         ifp = sc->ti_ifp;
 2936 
 2937         txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
 2938         if (txd == NULL)
 2939                 return;
 2940 
 2941         if (sc->ti_rdata.ti_tx_ring != NULL)
 2942                 bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
 2943                     sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_POSTWRITE);
 2944         /*
 2945          * Go through our tx ring and free mbufs for those
 2946          * frames that have been sent.
 2947          */
 2948         for (idx = sc->ti_tx_saved_considx; idx != sc->ti_tx_considx.ti_idx;
 2949             TI_INC(idx, TI_TX_RING_CNT)) {
 2950                 if (sc->ti_hwrev == TI_HWREV_TIGON) {
 2951                         ti_mem_read(sc, TI_TX_RING_BASE + idx * sizeof(txdesc),
 2952                             sizeof(txdesc), &txdesc);
 2953                         cur_tx = &txdesc;
 2954                 } else
 2955                         cur_tx = &sc->ti_rdata.ti_tx_ring[idx];
 2956                 sc->ti_txcnt--;
 2957                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 2958                 if ((cur_tx->ti_flags & TI_BDFLAG_END) == 0)
 2959                         continue;
 2960                 bus_dmamap_sync(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
 2961                     BUS_DMASYNC_POSTWRITE);
 2962                 bus_dmamap_unload(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap);
 2963 
 2964                 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
 2965                 m_freem(txd->tx_m);
 2966                 txd->tx_m = NULL;
 2967                 STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txbusyq, tx_q);
 2968                 STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
 2969                 txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
 2970         }
 2971         sc->ti_tx_saved_considx = idx;
 2972         if (sc->ti_txcnt == 0)
 2973                 sc->ti_timer = 0;
 2974 }
 2975 
 2976 static void
 2977 ti_intr(void *xsc)
 2978 {
 2979         struct ti_softc *sc;
 2980         struct ifnet *ifp;
 2981 
 2982         sc = xsc;
 2983         TI_LOCK(sc);
 2984         ifp = sc->ti_ifp;
 2985 
 2986         /* Make sure this is really our interrupt. */
 2987         if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
 2988                 TI_UNLOCK(sc);
 2989                 return;
 2990         }
 2991 
 2992         /* Ack interrupt and stop others from occurring. */
 2993         CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
 2994 
 2995         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 2996                 bus_dmamap_sync(sc->ti_cdata.ti_status_tag,
 2997                     sc->ti_cdata.ti_status_map, BUS_DMASYNC_POSTREAD);
 2998                 /* Check RX return ring producer/consumer */
 2999                 ti_rxeof(sc);
 3000 
 3001                 /* Check TX ring producer/consumer */
 3002                 ti_txeof(sc);
 3003                 bus_dmamap_sync(sc->ti_cdata.ti_status_tag,
 3004                     sc->ti_cdata.ti_status_map, BUS_DMASYNC_PREREAD);
 3005         }
 3006 
 3007         ti_handle_events(sc);
 3008 
 3009         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 3010                 /* Re-enable interrupts. */
 3011                 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
 3012                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 3013                         ti_start_locked(ifp);
 3014         }
 3015 
 3016         TI_UNLOCK(sc);
 3017 }
 3018 
 3019 static uint64_t
 3020 ti_get_counter(struct ifnet *ifp, ift_counter cnt)
 3021 {
 3022 
 3023         switch (cnt) {
 3024         case IFCOUNTER_COLLISIONS:
 3025             {
 3026                 struct ti_softc *sc;
 3027                 struct ti_stats *s;
 3028                 uint64_t rv;
 3029 
 3030                 sc = if_getsoftc(ifp);
 3031                 s = &sc->ti_rdata.ti_info->ti_stats;
 3032 
 3033                 TI_LOCK(sc);
 3034                 bus_dmamap_sync(sc->ti_cdata.ti_gib_tag,
 3035                     sc->ti_cdata.ti_gib_map, BUS_DMASYNC_POSTREAD);
 3036                 rv = s->dot3StatsSingleCollisionFrames +
 3037                     s->dot3StatsMultipleCollisionFrames +
 3038                     s->dot3StatsExcessiveCollisions +
 3039                     s->dot3StatsLateCollisions;
 3040                 bus_dmamap_sync(sc->ti_cdata.ti_gib_tag,
 3041                     sc->ti_cdata.ti_gib_map, BUS_DMASYNC_PREREAD);
 3042                 TI_UNLOCK(sc);
 3043                 return (rv);
 3044             }
 3045         default:
 3046                 return (if_get_counter_default(ifp, cnt));
 3047         }
 3048 }
 3049 
 3050 /*
 3051  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
 3052  * pointers to descriptors.
 3053  */
 3054 static int
 3055 ti_encap(struct ti_softc *sc, struct mbuf **m_head)
 3056 {
 3057         struct ti_txdesc *txd;
 3058         struct ti_tx_desc *f;
 3059         struct ti_tx_desc txdesc;
 3060         struct mbuf *m;
 3061         bus_dma_segment_t txsegs[TI_MAXTXSEGS];
 3062         uint16_t csum_flags;
 3063         int error, frag, i, nseg;
 3064 
 3065         if ((txd = STAILQ_FIRST(&sc->ti_cdata.ti_txfreeq)) == NULL)
 3066                 return (ENOBUFS);
 3067 
 3068         error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
 3069             *m_head, txsegs, &nseg, 0);
 3070         if (error == EFBIG) {
 3071                 m = m_defrag(*m_head, M_NOWAIT);
 3072                 if (m == NULL) {
 3073                         m_freem(*m_head);
 3074                         *m_head = NULL;
 3075                         return (ENOMEM);
 3076                 }
 3077                 *m_head = m;
 3078                 error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_tx_tag,
 3079                     txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
 3080                 if (error) {
 3081                         m_freem(*m_head);
 3082                         *m_head = NULL;
 3083                         return (error);
 3084                 }
 3085         } else if (error != 0)
 3086                 return (error);
 3087         if (nseg == 0) {
 3088                 m_freem(*m_head);
 3089                 *m_head = NULL;
 3090                 return (EIO);
 3091         }
 3092 
 3093         if (sc->ti_txcnt + nseg >= TI_TX_RING_CNT) {
 3094                 bus_dmamap_unload(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap);
 3095                 return (ENOBUFS);
 3096         }
 3097         bus_dmamap_sync(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
 3098             BUS_DMASYNC_PREWRITE);
 3099 
 3100         m = *m_head;
 3101         csum_flags = 0;
 3102         if (m->m_pkthdr.csum_flags & CSUM_IP)
 3103                 csum_flags |= TI_BDFLAG_IP_CKSUM;
 3104         if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
 3105                 csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
 3106 
 3107         frag = sc->ti_tx_saved_prodidx;
 3108         for (i = 0; i < nseg; i++) {
 3109                 if (sc->ti_hwrev == TI_HWREV_TIGON) {
 3110                         bzero(&txdesc, sizeof(txdesc));
 3111                         f = &txdesc;
 3112                 } else
 3113                         f = &sc->ti_rdata.ti_tx_ring[frag];
 3114                 ti_hostaddr64(&f->ti_addr, txsegs[i].ds_addr);
 3115                 f->ti_len = txsegs[i].ds_len;
 3116                 f->ti_flags = csum_flags;
 3117                 if (m->m_flags & M_VLANTAG) {
 3118                         f->ti_flags |= TI_BDFLAG_VLAN_TAG;
 3119                         f->ti_vlan_tag = m->m_pkthdr.ether_vtag;
 3120                 } else {
 3121                         f->ti_vlan_tag = 0;
 3122                 }
 3123 
 3124                 if (sc->ti_hwrev == TI_HWREV_TIGON)
 3125                         ti_mem_write(sc, TI_TX_RING_BASE + frag *
 3126                             sizeof(txdesc), sizeof(txdesc), &txdesc);
 3127                 TI_INC(frag, TI_TX_RING_CNT);
 3128         }
 3129 
 3130         sc->ti_tx_saved_prodidx = frag;
 3131         /* set TI_BDFLAG_END on the last descriptor */
 3132         frag = (frag + TI_TX_RING_CNT - 1) % TI_TX_RING_CNT;
 3133         if (sc->ti_hwrev == TI_HWREV_TIGON) {
 3134                 txdesc.ti_flags |= TI_BDFLAG_END;
 3135                 ti_mem_write(sc, TI_TX_RING_BASE + frag * sizeof(txdesc),
 3136                     sizeof(txdesc), &txdesc);
 3137         } else
 3138                 sc->ti_rdata.ti_tx_ring[frag].ti_flags |= TI_BDFLAG_END;
 3139 
 3140         STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txfreeq, tx_q);
 3141         STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txbusyq, txd, tx_q);
 3142         txd->tx_m = m;
 3143         sc->ti_txcnt += nseg;
 3144 
 3145         return (0);
 3146 }
 3147 
 3148 static void
 3149 ti_start(struct ifnet *ifp)
 3150 {
 3151         struct ti_softc *sc;
 3152 
 3153         sc = ifp->if_softc;
 3154         TI_LOCK(sc);
 3155         ti_start_locked(ifp);
 3156         TI_UNLOCK(sc);
 3157 }
 3158 
 3159 /*
 3160  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
 3161  * to the mbuf data regions directly in the transmit descriptors.
 3162  */
 3163 static void
 3164 ti_start_locked(struct ifnet *ifp)
 3165 {
 3166         struct ti_softc *sc;
 3167         struct mbuf *m_head = NULL;
 3168         int enq = 0;
 3169 
 3170         sc = ifp->if_softc;
 3171 
 3172         for (; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
 3173             sc->ti_txcnt < (TI_TX_RING_CNT - 16);) {
 3174                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
 3175                 if (m_head == NULL)
 3176                         break;
 3177 
 3178                 /*
 3179                  * Pack the data into the transmit ring. If we
 3180                  * don't have room, set the OACTIVE flag and wait
 3181                  * for the NIC to drain the ring.
 3182                  */
 3183                 if (ti_encap(sc, &m_head)) {
 3184                         if (m_head == NULL)
 3185                                 break;
 3186                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
 3187                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 3188                         break;
 3189                 }
 3190 
 3191                 enq++;
 3192                 /*
 3193                  * If there's a BPF listener, bounce a copy of this frame
 3194                  * to him.
 3195                  */
 3196                 ETHER_BPF_MTAP(ifp, m_head);
 3197         }
 3198 
 3199         if (enq > 0) {
 3200                 if (sc->ti_rdata.ti_tx_ring != NULL)
 3201                         bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
 3202                             sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_PREWRITE);
 3203                 /* Transmit */
 3204                 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, sc->ti_tx_saved_prodidx);
 3205 
 3206                 /*
 3207                  * Set a timeout in case the chip goes out to lunch.
 3208                  */
 3209                 sc->ti_timer = 5;
 3210         }
 3211 }
 3212 
 3213 static void
 3214 ti_init(void *xsc)
 3215 {
 3216         struct ti_softc *sc;
 3217 
 3218         sc = xsc;
 3219         TI_LOCK(sc);
 3220         ti_init_locked(sc);
 3221         TI_UNLOCK(sc);
 3222 }
 3223 
 3224 static void
 3225 ti_init_locked(void *xsc)
 3226 {
 3227         struct ti_softc *sc = xsc;
 3228 
 3229         if (sc->ti_ifp->if_drv_flags & IFF_DRV_RUNNING)
 3230                 return;
 3231 
 3232         /* Cancel pending I/O and flush buffers. */
 3233         ti_stop(sc);
 3234 
 3235         /* Init the gen info block, ring control blocks and firmware. */
 3236         if (ti_gibinit(sc)) {
 3237                 device_printf(sc->ti_dev, "initialization failure\n");
 3238                 return;
 3239         }
 3240 }
 3241 
 3242 static void ti_init2(struct ti_softc *sc)
 3243 {
 3244         struct ti_cmd_desc cmd;
 3245         struct ifnet *ifp;
 3246         uint8_t *ea;
 3247         struct ifmedia *ifm;
 3248         int tmp;
 3249 
 3250         TI_LOCK_ASSERT(sc);
 3251 
 3252         ifp = sc->ti_ifp;
 3253 
 3254         /* Specify MTU and interface index. */
 3255         CSR_WRITE_4(sc, TI_GCR_IFINDEX, device_get_unit(sc->ti_dev));
 3256         CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
 3257             ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
 3258         TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
 3259 
 3260         /* Load our MAC address. */
 3261         ea = IF_LLADDR(sc->ti_ifp);
 3262         CSR_WRITE_4(sc, TI_GCR_PAR0, (ea[0] << 8) | ea[1]);
 3263         CSR_WRITE_4(sc, TI_GCR_PAR1,
 3264             (ea[2] << 24) | (ea[3] << 16) | (ea[4] << 8) | ea[5]);
 3265         TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
 3266 
 3267         /* Enable or disable promiscuous mode as needed. */
 3268         if (ifp->if_flags & IFF_PROMISC) {
 3269                 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
 3270         } else {
 3271                 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
 3272         }
 3273 
 3274         /* Program multicast filter. */
 3275         ti_setmulti(sc);
 3276 
 3277         /*
 3278          * If this is a Tigon 1, we should tell the
 3279          * firmware to use software packet filtering.
 3280          */
 3281         if (sc->ti_hwrev == TI_HWREV_TIGON) {
 3282                 TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
 3283         }
 3284 
 3285         /* Init RX ring. */
 3286         if (ti_init_rx_ring_std(sc) != 0) {
 3287                 /* XXX */
 3288                 device_printf(sc->ti_dev, "no memory for std Rx buffers.\n");
 3289                 return;
 3290         }
 3291 
 3292         /* Init jumbo RX ring. */
 3293         if (ifp->if_mtu > ETHERMTU + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) {
 3294                 if (ti_init_rx_ring_jumbo(sc) != 0) {
 3295                         /* XXX */
 3296                         device_printf(sc->ti_dev,
 3297                             "no memory for jumbo Rx buffers.\n");
 3298                         return;
 3299                 }
 3300         }
 3301 
 3302         /*
 3303          * If this is a Tigon 2, we can also configure the
 3304          * mini ring.
 3305          */
 3306         if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
 3307                 if (ti_init_rx_ring_mini(sc) != 0) {
 3308                         /* XXX */
 3309                         device_printf(sc->ti_dev,
 3310                             "no memory for mini Rx buffers.\n");
 3311                         return;
 3312                 }
 3313         }
 3314 
 3315         CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
 3316         sc->ti_rx_saved_considx = 0;
 3317 
 3318         /* Init TX ring. */
 3319         ti_init_tx_ring(sc);
 3320 
 3321         /* Tell firmware we're alive. */
 3322         TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
 3323 
 3324         /* Enable host interrupts. */
 3325         CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
 3326 
 3327         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 3328         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 3329         callout_reset(&sc->ti_watchdog, hz, ti_watchdog, sc);
 3330 
 3331         /*
 3332          * Make sure to set media properly. We have to do this
 3333          * here since we have to issue commands in order to set
 3334          * the link negotiation and we can't issue commands until
 3335          * the firmware is running.
 3336          */
 3337         ifm = &sc->ifmedia;
 3338         tmp = ifm->ifm_media;
 3339         ifm->ifm_media = ifm->ifm_cur->ifm_media;
 3340         ti_ifmedia_upd_locked(sc);
 3341         ifm->ifm_media = tmp;
 3342 }
 3343 
 3344 /*
 3345  * Set media options.
 3346  */
 3347 static int
 3348 ti_ifmedia_upd(struct ifnet *ifp)
 3349 {
 3350         struct ti_softc *sc;
 3351         int error;
 3352 
 3353         sc = ifp->if_softc;
 3354         TI_LOCK(sc);
 3355         error = ti_ifmedia_upd_locked(sc);
 3356         TI_UNLOCK(sc);
 3357 
 3358         return (error);
 3359 }
 3360 
 3361 static int
 3362 ti_ifmedia_upd_locked(struct ti_softc *sc)
 3363 {
 3364         struct ifmedia *ifm;
 3365         struct ti_cmd_desc cmd;
 3366         uint32_t flowctl;
 3367 
 3368         ifm = &sc->ifmedia;
 3369 
 3370         if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
 3371                 return (EINVAL);
 3372 
 3373         flowctl = 0;
 3374 
 3375         switch (IFM_SUBTYPE(ifm->ifm_media)) {
 3376         case IFM_AUTO:
 3377                 /*
 3378                  * Transmit flow control doesn't work on the Tigon 1.
 3379                  */
 3380                 flowctl = TI_GLNK_RX_FLOWCTL_Y;
 3381 
 3382                 /*
 3383                  * Transmit flow control can also cause problems on the
 3384                  * Tigon 2, apparently with both the copper and fiber
 3385                  * boards.  The symptom is that the interface will just
 3386                  * hang.  This was reproduced with Alteon 180 switches.
 3387                  */
 3388 #if 0
 3389                 if (sc->ti_hwrev != TI_HWREV_TIGON)
 3390                         flowctl |= TI_GLNK_TX_FLOWCTL_Y;
 3391 #endif
 3392 
 3393                 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
 3394                     TI_GLNK_FULL_DUPLEX| flowctl |
 3395                     TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
 3396 
 3397                 flowctl = TI_LNK_RX_FLOWCTL_Y;
 3398 #if 0
 3399                 if (sc->ti_hwrev != TI_HWREV_TIGON)
 3400                         flowctl |= TI_LNK_TX_FLOWCTL_Y;
 3401 #endif
 3402 
 3403                 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
 3404                     TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl |
 3405                     TI_LNK_AUTONEGENB|TI_LNK_ENB);
 3406                 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
 3407                     TI_CMD_CODE_NEGOTIATE_BOTH, 0);
 3408                 break;
 3409         case IFM_1000_SX:
 3410         case IFM_1000_T:
 3411                 flowctl = TI_GLNK_RX_FLOWCTL_Y;
 3412 #if 0
 3413                 if (sc->ti_hwrev != TI_HWREV_TIGON)
 3414                         flowctl |= TI_GLNK_TX_FLOWCTL_Y;
 3415 #endif
 3416 
 3417                 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
 3418                     flowctl |TI_GLNK_ENB);
 3419                 CSR_WRITE_4(sc, TI_GCR_LINK, 0);
 3420                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
 3421                         TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
 3422                 }
 3423                 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
 3424                     TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
 3425                 break;
 3426         case IFM_100_FX:
 3427         case IFM_10_FL:
 3428         case IFM_100_TX:
 3429         case IFM_10_T:
 3430                 flowctl = TI_LNK_RX_FLOWCTL_Y;
 3431 #if 0
 3432                 if (sc->ti_hwrev != TI_HWREV_TIGON)
 3433                         flowctl |= TI_LNK_TX_FLOWCTL_Y;
 3434 #endif
 3435 
 3436                 CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
 3437                 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl);
 3438                 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
 3439                     IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
 3440                         TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
 3441                 } else {
 3442                         TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
 3443                 }
 3444                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
 3445                         TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
 3446                 } else {
 3447                         TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
 3448                 }
 3449                 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
 3450                     TI_CMD_CODE_NEGOTIATE_10_100, 0);
 3451                 break;
 3452         }
 3453 
 3454         return (0);
 3455 }
 3456 
 3457 /*
 3458  * Report current media status.
 3459  */
 3460 static void
 3461 ti_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
 3462 {
 3463         struct ti_softc *sc;
 3464         uint32_t media = 0;
 3465 
 3466         sc = ifp->if_softc;
 3467 
 3468         TI_LOCK(sc);
 3469 
 3470         ifmr->ifm_status = IFM_AVALID;
 3471         ifmr->ifm_active = IFM_ETHER;
 3472 
 3473         if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) {
 3474                 TI_UNLOCK(sc);
 3475                 return;
 3476         }
 3477 
 3478         ifmr->ifm_status |= IFM_ACTIVE;
 3479 
 3480         if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
 3481                 media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
 3482                 if (sc->ti_copper)
 3483                         ifmr->ifm_active |= IFM_1000_T;
 3484                 else
 3485                         ifmr->ifm_active |= IFM_1000_SX;
 3486                 if (media & TI_GLNK_FULL_DUPLEX)
 3487                         ifmr->ifm_active |= IFM_FDX;
 3488                 else
 3489                         ifmr->ifm_active |= IFM_HDX;
 3490         } else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
 3491                 media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
 3492                 if (sc->ti_copper) {
 3493                         if (media & TI_LNK_100MB)
 3494                                 ifmr->ifm_active |= IFM_100_TX;
 3495                         if (media & TI_LNK_10MB)
 3496                                 ifmr->ifm_active |= IFM_10_T;
 3497                 } else {
 3498                         if (media & TI_LNK_100MB)
 3499                                 ifmr->ifm_active |= IFM_100_FX;
 3500                         if (media & TI_LNK_10MB)
 3501                                 ifmr->ifm_active |= IFM_10_FL;
 3502                 }
 3503                 if (media & TI_LNK_FULL_DUPLEX)
 3504                         ifmr->ifm_active |= IFM_FDX;
 3505                 if (media & TI_LNK_HALF_DUPLEX)
 3506                         ifmr->ifm_active |= IFM_HDX;
 3507         }
 3508         TI_UNLOCK(sc);
 3509 }
 3510 
 3511 static int
 3512 ti_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
 3513 {
 3514         struct ti_softc *sc = ifp->if_softc;
 3515         struct ifreq *ifr = (struct ifreq *) data;
 3516         struct ti_cmd_desc cmd;
 3517         int mask, error = 0;
 3518 
 3519         switch (command) {
 3520         case SIOCSIFMTU:
 3521                 TI_LOCK(sc);
 3522                 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > TI_JUMBO_MTU)
 3523                         error = EINVAL;
 3524                 else {
 3525                         ifp->if_mtu = ifr->ifr_mtu;
 3526                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 3527                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 3528                                 ti_init_locked(sc);
 3529                         }
 3530                 }
 3531                 TI_UNLOCK(sc);
 3532                 break;
 3533         case SIOCSIFFLAGS:
 3534                 TI_LOCK(sc);
 3535                 if (ifp->if_flags & IFF_UP) {
 3536                         /*
 3537                          * If only the state of the PROMISC flag changed,
 3538                          * then just use the 'set promisc mode' command
 3539                          * instead of reinitializing the entire NIC. Doing
 3540                          * a full re-init means reloading the firmware and
 3541                          * waiting for it to start up, which may take a
 3542                          * second or two.
 3543                          */
 3544                         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
 3545                             ifp->if_flags & IFF_PROMISC &&
 3546                             !(sc->ti_if_flags & IFF_PROMISC)) {
 3547                                 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
 3548                                     TI_CMD_CODE_PROMISC_ENB, 0);
 3549                         } else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
 3550                             !(ifp->if_flags & IFF_PROMISC) &&
 3551                             sc->ti_if_flags & IFF_PROMISC) {
 3552                                 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
 3553                                     TI_CMD_CODE_PROMISC_DIS, 0);
 3554                         } else
 3555                                 ti_init_locked(sc);
 3556                 } else {
 3557                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 3558                                 ti_stop(sc);
 3559                         }
 3560                 }
 3561                 sc->ti_if_flags = ifp->if_flags;
 3562                 TI_UNLOCK(sc);
 3563                 break;
 3564         case SIOCADDMULTI:
 3565         case SIOCDELMULTI:
 3566                 TI_LOCK(sc);
 3567                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 3568                         ti_setmulti(sc);
 3569                 TI_UNLOCK(sc);
 3570                 break;
 3571         case SIOCSIFMEDIA:
 3572         case SIOCGIFMEDIA:
 3573                 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
 3574                 break;
 3575         case SIOCSIFCAP:
 3576                 TI_LOCK(sc);
 3577                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
 3578                 if ((mask & IFCAP_TXCSUM) != 0 &&
 3579                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
 3580                         ifp->if_capenable ^= IFCAP_TXCSUM;
 3581                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
 3582                                 ifp->if_hwassist |= TI_CSUM_FEATURES;
 3583                         else
 3584                                 ifp->if_hwassist &= ~TI_CSUM_FEATURES;
 3585                 }
 3586                 if ((mask & IFCAP_RXCSUM) != 0 &&
 3587                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
 3588                         ifp->if_capenable ^= IFCAP_RXCSUM;
 3589                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
 3590                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0)
 3591                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
 3592                 if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
 3593                     (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
 3594                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
 3595                 if ((mask & (IFCAP_TXCSUM | IFCAP_RXCSUM |
 3596                     IFCAP_VLAN_HWTAGGING)) != 0) {
 3597                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 3598                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 3599                                 ti_init_locked(sc);
 3600                         }
 3601                 }
 3602                 TI_UNLOCK(sc);
 3603                 VLAN_CAPABILITIES(ifp);
 3604                 break;
 3605         default:
 3606                 error = ether_ioctl(ifp, command, data);
 3607                 break;
 3608         }
 3609 
 3610         return (error);
 3611 }
 3612 
 3613 static int
 3614 ti_open(struct cdev *dev, int flags, int fmt, struct thread *td)
 3615 {
 3616         struct ti_softc *sc;
 3617 
 3618         sc = dev->si_drv1;
 3619         if (sc == NULL)
 3620                 return (ENODEV);
 3621 
 3622         TI_LOCK(sc);
 3623         sc->ti_flags |= TI_FLAG_DEBUGING;
 3624         TI_UNLOCK(sc);
 3625 
 3626         return (0);
 3627 }
 3628 
 3629 static int
 3630 ti_close(struct cdev *dev, int flag, int fmt, struct thread *td)
 3631 {
 3632         struct ti_softc *sc;
 3633 
 3634         sc = dev->si_drv1;
 3635         if (sc == NULL)
 3636                 return (ENODEV);
 3637 
 3638         TI_LOCK(sc);
 3639         sc->ti_flags &= ~TI_FLAG_DEBUGING;
 3640         TI_UNLOCK(sc);
 3641 
 3642         return (0);
 3643 }
 3644 
 3645 /*
 3646  * This ioctl routine goes along with the Tigon character device.
 3647  */
 3648 static int
 3649 ti_ioctl2(struct cdev *dev, u_long cmd, caddr_t addr, int flag,
 3650     struct thread *td)
 3651 {
 3652         struct ti_softc *sc;
 3653         int error;
 3654 
 3655         sc = dev->si_drv1;
 3656         if (sc == NULL)
 3657                 return (ENODEV);
 3658 
 3659         error = 0;
 3660 
 3661         switch (cmd) {
 3662         case TIIOCGETSTATS:
 3663         {
 3664                 struct ti_stats *outstats;
 3665 
 3666                 outstats = (struct ti_stats *)addr;
 3667 
 3668                 TI_LOCK(sc);
 3669                 bus_dmamap_sync(sc->ti_cdata.ti_gib_tag,
 3670                     sc->ti_cdata.ti_gib_map, BUS_DMASYNC_POSTREAD);
 3671                 bcopy(&sc->ti_rdata.ti_info->ti_stats, outstats,
 3672                     sizeof(struct ti_stats));
 3673                 bus_dmamap_sync(sc->ti_cdata.ti_gib_tag,
 3674                     sc->ti_cdata.ti_gib_map, BUS_DMASYNC_PREREAD);
 3675                 TI_UNLOCK(sc);
 3676                 break;
 3677         }
 3678         case TIIOCGETPARAMS:
 3679         {
 3680                 struct ti_params *params;
 3681 
 3682                 params = (struct ti_params *)addr;
 3683 
 3684                 TI_LOCK(sc);
 3685                 params->ti_stat_ticks = sc->ti_stat_ticks;
 3686                 params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks;
 3687                 params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks;
 3688                 params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds;
 3689                 params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds;
 3690                 params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio;
 3691                 params->param_mask = TI_PARAM_ALL;
 3692                 TI_UNLOCK(sc);
 3693                 break;
 3694         }
 3695         case TIIOCSETPARAMS:
 3696         {
 3697                 struct ti_params *params;
 3698 
 3699                 params = (struct ti_params *)addr;
 3700 
 3701                 TI_LOCK(sc);
 3702                 if (params->param_mask & TI_PARAM_STAT_TICKS) {
 3703                         sc->ti_stat_ticks = params->ti_stat_ticks;
 3704                         CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
 3705                 }
 3706 
 3707                 if (params->param_mask & TI_PARAM_RX_COAL_TICKS) {
 3708                         sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks;
 3709                         CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
 3710                                     sc->ti_rx_coal_ticks);
 3711                 }
 3712 
 3713                 if (params->param_mask & TI_PARAM_TX_COAL_TICKS) {
 3714                         sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks;
 3715                         CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS,
 3716                                     sc->ti_tx_coal_ticks);
 3717                 }
 3718 
 3719                 if (params->param_mask & TI_PARAM_RX_COAL_BDS) {
 3720                         sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds;
 3721                         CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD,
 3722                                     sc->ti_rx_max_coal_bds);
 3723                 }
 3724 
 3725                 if (params->param_mask & TI_PARAM_TX_COAL_BDS) {
 3726                         sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds;
 3727                         CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD,
 3728                                     sc->ti_tx_max_coal_bds);
 3729                 }
 3730 
 3731                 if (params->param_mask & TI_PARAM_TX_BUF_RATIO) {
 3732                         sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio;
 3733                         CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO,
 3734                                     sc->ti_tx_buf_ratio);
 3735                 }
 3736                 TI_UNLOCK(sc);
 3737                 break;
 3738         }
 3739         case TIIOCSETTRACE: {
 3740                 ti_trace_type trace_type;
 3741 
 3742                 trace_type = *(ti_trace_type *)addr;
 3743 
 3744                 /*
 3745                  * Set tracing to whatever the user asked for.  Setting
 3746                  * this register to 0 should have the effect of disabling
 3747                  * tracing.
 3748                  */
 3749                 TI_LOCK(sc);
 3750                 CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type);
 3751                 TI_UNLOCK(sc);
 3752                 break;
 3753         }
 3754         case TIIOCGETTRACE: {
 3755                 struct ti_trace_buf *trace_buf;
 3756                 uint32_t trace_start, cur_trace_ptr, trace_len;
 3757 
 3758                 trace_buf = (struct ti_trace_buf *)addr;
 3759 
 3760                 TI_LOCK(sc);
 3761                 trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START);
 3762                 cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR);
 3763                 trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN);
 3764 #if 0
 3765                 if_printf(sc->ti_ifp, "trace_start = %#x, cur_trace_ptr = %#x, "
 3766                        "trace_len = %d\n", trace_start,
 3767                        cur_trace_ptr, trace_len);
 3768                 if_printf(sc->ti_ifp, "trace_buf->buf_len = %d\n",
 3769                        trace_buf->buf_len);
 3770 #endif
 3771                 error = ti_copy_mem(sc, trace_start, min(trace_len,
 3772                     trace_buf->buf_len), (caddr_t)trace_buf->buf, 1, 1);
 3773                 if (error == 0) {
 3774                         trace_buf->fill_len = min(trace_len,
 3775                             trace_buf->buf_len);
 3776                         if (cur_trace_ptr < trace_start)
 3777                                 trace_buf->cur_trace_ptr =
 3778                                     trace_start - cur_trace_ptr;
 3779                         else
 3780                                 trace_buf->cur_trace_ptr =
 3781                                     cur_trace_ptr - trace_start;
 3782                 } else
 3783                         trace_buf->fill_len = 0;
 3784                 TI_UNLOCK(sc);
 3785                 break;
 3786         }
 3787 
 3788         /*
 3789          * For debugging, five ioctls are needed:
 3790          * ALT_ATTACH
 3791          * ALT_READ_TG_REG
 3792          * ALT_WRITE_TG_REG
 3793          * ALT_READ_TG_MEM
 3794          * ALT_WRITE_TG_MEM
 3795          */
 3796         case ALT_ATTACH:
 3797                 /*
 3798                  * From what I can tell, Alteon's Solaris Tigon driver
 3799                  * only has one character device, so you have to attach
 3800                  * to the Tigon board you're interested in.  This seems
 3801                  * like a not-so-good way to do things, since unless you
 3802                  * subsequently specify the unit number of the device
 3803                  * you're interested in every ioctl, you'll only be
 3804                  * able to debug one board at a time.
 3805                  */
 3806                 break;
 3807         case ALT_READ_TG_MEM:
 3808         case ALT_WRITE_TG_MEM:
 3809         {
 3810                 struct tg_mem *mem_param;
 3811                 uint32_t sram_end, scratch_end;
 3812 
 3813                 mem_param = (struct tg_mem *)addr;
 3814 
 3815                 if (sc->ti_hwrev == TI_HWREV_TIGON) {
 3816                         sram_end = TI_END_SRAM_I;
 3817                         scratch_end = TI_END_SCRATCH_I;
 3818                 } else {
 3819                         sram_end = TI_END_SRAM_II;
 3820                         scratch_end = TI_END_SCRATCH_II;
 3821                 }
 3822 
 3823                 /*
 3824                  * For now, we'll only handle accessing regular SRAM,
 3825                  * nothing else.
 3826                  */
 3827                 TI_LOCK(sc);
 3828                 if (mem_param->tgAddr >= TI_BEG_SRAM &&
 3829                     mem_param->tgAddr + mem_param->len <= sram_end) {
 3830                         /*
 3831                          * In this instance, we always copy to/from user
 3832                          * space, so the user space argument is set to 1.
 3833                          */
 3834                         error = ti_copy_mem(sc, mem_param->tgAddr,
 3835                             mem_param->len, mem_param->userAddr, 1,
 3836                             cmd == ALT_READ_TG_MEM ? 1 : 0);
 3837                 } else if (mem_param->tgAddr >= TI_BEG_SCRATCH &&
 3838                     mem_param->tgAddr <= scratch_end) {
 3839                         error = ti_copy_scratch(sc, mem_param->tgAddr,
 3840                             mem_param->len, mem_param->userAddr, 1,
 3841                             cmd == ALT_READ_TG_MEM ?  1 : 0, TI_PROCESSOR_A);
 3842                 } else if (mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG &&
 3843                     mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG) {
 3844                         if (sc->ti_hwrev == TI_HWREV_TIGON) {
 3845                                 if_printf(sc->ti_ifp,
 3846                                     "invalid memory range for Tigon I\n");
 3847                                 error = EINVAL;
 3848                                 break;
 3849                         }
 3850                         error = ti_copy_scratch(sc, mem_param->tgAddr -
 3851                             TI_SCRATCH_DEBUG_OFF, mem_param->len,
 3852                             mem_param->userAddr, 1,
 3853                             cmd == ALT_READ_TG_MEM ? 1 : 0, TI_PROCESSOR_B);
 3854                 } else {
 3855                         if_printf(sc->ti_ifp, "memory address %#x len %d is "
 3856                                 "out of supported range\n",
 3857                                 mem_param->tgAddr, mem_param->len);
 3858                         error = EINVAL;
 3859                 }
 3860                 TI_UNLOCK(sc);
 3861                 break;
 3862         }
 3863         case ALT_READ_TG_REG:
 3864         case ALT_WRITE_TG_REG:
 3865         {
 3866                 struct tg_reg *regs;
 3867                 uint32_t tmpval;
 3868 
 3869                 regs = (struct tg_reg *)addr;
 3870 
 3871                 /*
 3872                  * Make sure the address in question isn't out of range.
 3873                  */
 3874                 if (regs->addr > TI_REG_MAX) {
 3875                         error = EINVAL;
 3876                         break;
 3877                 }
 3878                 TI_LOCK(sc);
 3879                 if (cmd == ALT_READ_TG_REG) {
 3880                         bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
 3881                             regs->addr, &tmpval, 1);
 3882                         regs->data = ntohl(tmpval);
 3883 #if 0
 3884                         if ((regs->addr == TI_CPU_STATE)
 3885                          || (regs->addr == TI_CPU_CTL_B)) {
 3886                                 if_printf(sc->ti_ifp, "register %#x = %#x\n",
 3887                                        regs->addr, tmpval);
 3888                         }
 3889 #endif
 3890                 } else {
 3891                         tmpval = htonl(regs->data);
 3892                         bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
 3893                             regs->addr, &tmpval, 1);
 3894                 }
 3895                 TI_UNLOCK(sc);
 3896                 break;
 3897         }
 3898         default:
 3899                 error = ENOTTY;
 3900                 break;
 3901         }
 3902         return (error);
 3903 }
 3904 
 3905 static void
 3906 ti_watchdog(void *arg)
 3907 {
 3908         struct ti_softc *sc;
 3909         struct ifnet *ifp;
 3910 
 3911         sc = arg;
 3912         TI_LOCK_ASSERT(sc);
 3913         callout_reset(&sc->ti_watchdog, hz, ti_watchdog, sc);
 3914         if (sc->ti_timer == 0 || --sc->ti_timer > 0)
 3915                 return;
 3916 
 3917         /*
 3918          * When we're debugging, the chip is often stopped for long periods
 3919          * of time, and that would normally cause the watchdog timer to fire.
 3920          * Since that impedes debugging, we don't want to do that.
 3921          */
 3922         if (sc->ti_flags & TI_FLAG_DEBUGING)
 3923                 return;
 3924 
 3925         ifp = sc->ti_ifp;
 3926         if_printf(ifp, "watchdog timeout -- resetting\n");
 3927         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 3928         ti_init_locked(sc);
 3929 
 3930         if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
 3931 }
 3932 
 3933 /*
 3934  * Stop the adapter and free any mbufs allocated to the
 3935  * RX and TX lists.
 3936  */
 3937 static void
 3938 ti_stop(struct ti_softc *sc)
 3939 {
 3940         struct ifnet *ifp;
 3941         struct ti_cmd_desc cmd;
 3942 
 3943         TI_LOCK_ASSERT(sc);
 3944 
 3945         ifp = sc->ti_ifp;
 3946 
 3947         /* Disable host interrupts. */
 3948         CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
 3949         /*
 3950          * Tell firmware we're shutting down.
 3951          */
 3952         TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
 3953 
 3954         /* Halt and reinitialize. */
 3955         if (ti_chipinit(sc) == 0) {
 3956                 ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
 3957                 /* XXX ignore init errors. */
 3958                 ti_chipinit(sc);
 3959         }
 3960 
 3961         /* Free the RX lists. */
 3962         ti_free_rx_ring_std(sc);
 3963 
 3964         /* Free jumbo RX list. */
 3965         ti_free_rx_ring_jumbo(sc);
 3966 
 3967         /* Free mini RX list. */
 3968         ti_free_rx_ring_mini(sc);
 3969 
 3970         /* Free TX buffers. */
 3971         ti_free_tx_ring(sc);
 3972 
 3973         sc->ti_ev_prodidx.ti_idx = 0;
 3974         sc->ti_return_prodidx.ti_idx = 0;
 3975         sc->ti_tx_considx.ti_idx = 0;
 3976         sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
 3977 
 3978         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 3979         callout_stop(&sc->ti_watchdog);
 3980 }
 3981 
 3982 /*
 3983  * Stop all chip I/O so that the kernel's probe routines don't
 3984  * get confused by errant DMAs when rebooting.
 3985  */
 3986 static int
 3987 ti_shutdown(device_t dev)
 3988 {
 3989         struct ti_softc *sc;
 3990 
 3991         sc = device_get_softc(dev);
 3992         TI_LOCK(sc);
 3993         ti_chipinit(sc);
 3994         TI_UNLOCK(sc);
 3995 
 3996         return (0);
 3997 }
 3998 
 3999 static void
 4000 ti_sysctl_node(struct ti_softc *sc)
 4001 {
 4002         struct sysctl_ctx_list *ctx;
 4003         struct sysctl_oid_list *child;
 4004         char tname[32];
 4005 
 4006         ctx = device_get_sysctl_ctx(sc->ti_dev);
 4007         child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ti_dev));
 4008 
 4009         /* Use DAC */
 4010         sc->ti_dac = 1;
 4011         snprintf(tname, sizeof(tname), "dev.ti.%d.dac",
 4012             device_get_unit(sc->ti_dev));
 4013         TUNABLE_INT_FETCH(tname, &sc->ti_dac);
 4014 
 4015         SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_coal_ticks", CTLFLAG_RW,
 4016             &sc->ti_rx_coal_ticks, 0, "Receive coalcesced ticks");
 4017         SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_max_coal_bds", CTLFLAG_RW,
 4018             &sc->ti_rx_max_coal_bds, 0, "Receive max coalcesced BDs");
 4019 
 4020         SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_coal_ticks", CTLFLAG_RW,
 4021             &sc->ti_tx_coal_ticks, 0, "Send coalcesced ticks");
 4022         SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_max_coal_bds", CTLFLAG_RW,
 4023             &sc->ti_tx_max_coal_bds, 0, "Send max coalcesced BDs");
 4024         SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_buf_ratio", CTLFLAG_RW,
 4025             &sc->ti_tx_buf_ratio, 0,
 4026             "Ratio of NIC memory devoted to TX buffer");
 4027 
 4028         SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "stat_ticks", CTLFLAG_RW,
 4029             &sc->ti_stat_ticks, 0,
 4030             "Number of clock ticks for statistics update interval");
 4031 
 4032         /* Pull in device tunables. */
 4033         sc->ti_rx_coal_ticks = 170;
 4034         resource_int_value(device_get_name(sc->ti_dev),
 4035             device_get_unit(sc->ti_dev), "rx_coal_ticks",
 4036             &sc->ti_rx_coal_ticks);
 4037         sc->ti_rx_max_coal_bds = 64;
 4038         resource_int_value(device_get_name(sc->ti_dev),
 4039             device_get_unit(sc->ti_dev), "rx_max_coal_bds",
 4040             &sc->ti_rx_max_coal_bds);
 4041 
 4042         sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
 4043         resource_int_value(device_get_name(sc->ti_dev),
 4044             device_get_unit(sc->ti_dev), "tx_coal_ticks",
 4045             &sc->ti_tx_coal_ticks);
 4046         sc->ti_tx_max_coal_bds = 32;
 4047         resource_int_value(device_get_name(sc->ti_dev),
 4048             device_get_unit(sc->ti_dev), "tx_max_coal_bds",
 4049             &sc->ti_tx_max_coal_bds);
 4050         sc->ti_tx_buf_ratio = 21;
 4051         resource_int_value(device_get_name(sc->ti_dev),
 4052             device_get_unit(sc->ti_dev), "tx_buf_ratio",
 4053             &sc->ti_tx_buf_ratio);
 4054 
 4055         sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
 4056         resource_int_value(device_get_name(sc->ti_dev),
 4057             device_get_unit(sc->ti_dev), "stat_ticks",
 4058             &sc->ti_stat_ticks);
 4059 }

Cache object: 2a6c970365e7d51e02cf31920df22d94


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.