The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/tsec/if_tsec.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (C) 2007-2008 Semihalf, Rafal Jaworowski
    5  * Copyright (C) 2006-2007 Semihalf, Piotr Kruszynski
    6  * All rights reserved.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
   20  * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
   22  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
   23  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
   24  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
   25  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
   26  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   27  */
   28 
   29 /*
   30  * Freescale integrated Three-Speed Ethernet Controller (TSEC) driver.
   31  */
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD$");
   34 
   35 #ifdef HAVE_KERNEL_OPTION_HEADERS
   36 #include "opt_device_polling.h"
   37 #endif
   38 
   39 #include <sys/param.h>
   40 #include <sys/systm.h>
   41 #include <sys/bus.h>
   42 #include <sys/endian.h>
   43 #include <sys/mbuf.h>
   44 #include <sys/kernel.h>
   45 #include <sys/module.h>
   46 #include <sys/socket.h>
   47 #include <sys/sockio.h>
   48 #include <sys/sysctl.h>
   49 
   50 #include <net/bpf.h>
   51 #include <net/ethernet.h>
   52 #include <net/if.h>
   53 #include <net/if_var.h>
   54 #include <net/if_arp.h>
   55 #include <net/if_dl.h>
   56 #include <net/if_media.h>
   57 #include <net/if_types.h>
   58 #include <net/if_vlan_var.h>
   59 
   60 #include <netinet/in_systm.h>
   61 #include <netinet/in.h>
   62 #include <netinet/ip.h>
   63 
   64 #include <machine/bus.h>
   65 
   66 #include <dev/mii/mii.h>
   67 #include <dev/mii/miivar.h>
   68 
   69 #include <dev/tsec/if_tsec.h>
   70 #include <dev/tsec/if_tsecreg.h>
   71 
   72 static int      tsec_alloc_dma_desc(device_t dev, bus_dma_tag_t *dtag,
   73     bus_dmamap_t *dmap, bus_size_t dsize, void **vaddr, void *raddr,
   74     const char *dname);
   75 static void     tsec_dma_ctl(struct tsec_softc *sc, int state);
   76 static void      tsec_encap(struct ifnet *ifp, struct tsec_softc *sc,
   77     struct mbuf *m0, uint16_t fcb_flags, int *start_tx);
   78 static void     tsec_free_dma(struct tsec_softc *sc);
   79 static void     tsec_free_dma_desc(bus_dma_tag_t dtag, bus_dmamap_t dmap, void *vaddr);
   80 static int      tsec_ifmedia_upd(struct ifnet *ifp);
   81 static void     tsec_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
   82 static int      tsec_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map,
   83     struct mbuf **mbufp, uint32_t *paddr);
   84 static void     tsec_map_dma_addr(void *arg, bus_dma_segment_t *segs,
   85     int nseg, int error);
   86 static void     tsec_intrs_ctl(struct tsec_softc *sc, int state);
   87 static void     tsec_init(void *xsc);
   88 static void     tsec_init_locked(struct tsec_softc *sc);
   89 static int      tsec_ioctl(struct ifnet *ifp, u_long command, caddr_t data);
   90 static void     tsec_reset_mac(struct tsec_softc *sc);
   91 static void     tsec_setfilter(struct tsec_softc *sc);
   92 static void     tsec_set_mac_address(struct tsec_softc *sc);
   93 static void     tsec_start(struct ifnet *ifp);
   94 static void     tsec_start_locked(struct ifnet *ifp);
   95 static void     tsec_stop(struct tsec_softc *sc);
   96 static void     tsec_tick(void *arg);
   97 static void     tsec_watchdog(struct tsec_softc *sc);
   98 static void     tsec_add_sysctls(struct tsec_softc *sc);
   99 static int      tsec_sysctl_ic_time(SYSCTL_HANDLER_ARGS);
  100 static int      tsec_sysctl_ic_count(SYSCTL_HANDLER_ARGS);
  101 static void     tsec_set_rxic(struct tsec_softc *sc);
  102 static void     tsec_set_txic(struct tsec_softc *sc);
  103 static int      tsec_receive_intr_locked(struct tsec_softc *sc, int count);
  104 static void     tsec_transmit_intr_locked(struct tsec_softc *sc);
  105 static void     tsec_error_intr_locked(struct tsec_softc *sc, int count);
  106 static void     tsec_offload_setup(struct tsec_softc *sc);
  107 static void     tsec_offload_process_frame(struct tsec_softc *sc,
  108     struct mbuf *m);
  109 static void     tsec_setup_multicast(struct tsec_softc *sc);
  110 static int      tsec_set_mtu(struct tsec_softc *sc, unsigned int mtu);
  111 
  112 DRIVER_MODULE(miibus, tsec, miibus_driver, 0, 0);
  113 MODULE_DEPEND(tsec, ether, 1, 1, 1);
  114 MODULE_DEPEND(tsec, miibus, 1, 1, 1);
  115 
  116 struct mtx tsec_phy_mtx;
  117 
  118 int
  119 tsec_attach(struct tsec_softc *sc)
  120 {
  121         uint8_t hwaddr[ETHER_ADDR_LEN];
  122         struct ifnet *ifp;
  123         int error = 0;
  124         int i;
  125 
  126         /* Initialize global (because potentially shared) MII lock */
  127         if (!mtx_initialized(&tsec_phy_mtx))
  128                 mtx_init(&tsec_phy_mtx, "tsec mii", NULL, MTX_DEF);
  129 
  130         /* Reset all TSEC counters */
  131         TSEC_TX_RX_COUNTERS_INIT(sc);
  132 
  133         /* Stop DMA engine if enabled by firmware */
  134         tsec_dma_ctl(sc, 0);
  135 
  136         /* Reset MAC */
  137         tsec_reset_mac(sc);
  138 
  139         /* Disable interrupts for now */
  140         tsec_intrs_ctl(sc, 0);
  141 
  142         /* Configure defaults for interrupts coalescing */
  143         sc->rx_ic_time = 768;
  144         sc->rx_ic_count = 16;
  145         sc->tx_ic_time = 768;
  146         sc->tx_ic_count = 16;
  147         tsec_set_rxic(sc);
  148         tsec_set_txic(sc);
  149         tsec_add_sysctls(sc);
  150 
  151         /* Allocate a busdma tag and DMA safe memory for TX descriptors. */
  152         error = tsec_alloc_dma_desc(sc->dev, &sc->tsec_tx_dtag,
  153             &sc->tsec_tx_dmap, sizeof(*sc->tsec_tx_vaddr) * TSEC_TX_NUM_DESC,
  154             (void **)&sc->tsec_tx_vaddr, &sc->tsec_tx_raddr, "TX");
  155 
  156         if (error) {
  157                 tsec_detach(sc);
  158                 return (ENXIO);
  159         }
  160 
  161         /* Allocate a busdma tag and DMA safe memory for RX descriptors. */
  162         error = tsec_alloc_dma_desc(sc->dev, &sc->tsec_rx_dtag,
  163             &sc->tsec_rx_dmap, sizeof(*sc->tsec_rx_vaddr) * TSEC_RX_NUM_DESC,
  164             (void **)&sc->tsec_rx_vaddr, &sc->tsec_rx_raddr, "RX");
  165         if (error) {
  166                 tsec_detach(sc);
  167                 return (ENXIO);
  168         }
  169 
  170         /* Allocate a busdma tag for TX mbufs. */
  171         error = bus_dma_tag_create(NULL,        /* parent */
  172             TSEC_TXBUFFER_ALIGNMENT, 0,         /* alignment, boundary */
  173             BUS_SPACE_MAXADDR_32BIT,            /* lowaddr */
  174             BUS_SPACE_MAXADDR,                  /* highaddr */
  175             NULL, NULL,                         /* filtfunc, filtfuncarg */
  176             MCLBYTES * (TSEC_TX_NUM_DESC - 1),  /* maxsize */
  177             TSEC_TX_MAX_DMA_SEGS,               /* nsegments */
  178             MCLBYTES, 0,                        /* maxsegsz, flags */
  179             NULL, NULL,                         /* lockfunc, lockfuncarg */
  180             &sc->tsec_tx_mtag);                 /* dmat */
  181         if (error) {
  182                 device_printf(sc->dev, "failed to allocate busdma tag "
  183                     "(tx mbufs)\n");
  184                 tsec_detach(sc);
  185                 return (ENXIO);
  186         }
  187 
  188         /* Allocate a busdma tag for RX mbufs. */
  189         error = bus_dma_tag_create(NULL,        /* parent */
  190             TSEC_RXBUFFER_ALIGNMENT, 0,         /* alignment, boundary */
  191             BUS_SPACE_MAXADDR_32BIT,            /* lowaddr */
  192             BUS_SPACE_MAXADDR,                  /* highaddr */
  193             NULL, NULL,                         /* filtfunc, filtfuncarg */
  194             MCLBYTES,                           /* maxsize */
  195             1,                                  /* nsegments */
  196             MCLBYTES, 0,                        /* maxsegsz, flags */
  197             NULL, NULL,                         /* lockfunc, lockfuncarg */
  198             &sc->tsec_rx_mtag);                 /* dmat */
  199         if (error) {
  200                 device_printf(sc->dev, "failed to allocate busdma tag "
  201                     "(rx mbufs)\n");
  202                 tsec_detach(sc);
  203                 return (ENXIO);
  204         }
  205 
  206         /* Create TX busdma maps */
  207         for (i = 0; i < TSEC_TX_NUM_DESC; i++) {
  208                 error = bus_dmamap_create(sc->tsec_tx_mtag, 0,
  209                    &sc->tx_bufmap[i].map);
  210                 if (error) {
  211                         device_printf(sc->dev, "failed to init TX ring\n");
  212                         tsec_detach(sc);
  213                         return (ENXIO);
  214                 }
  215                 sc->tx_bufmap[i].map_initialized = 1;
  216         }
  217 
  218         /* Create RX busdma maps and zero mbuf handlers */
  219         for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
  220                 error = bus_dmamap_create(sc->tsec_rx_mtag, 0,
  221                     &sc->rx_data[i].map);
  222                 if (error) {
  223                         device_printf(sc->dev, "failed to init RX ring\n");
  224                         tsec_detach(sc);
  225                         return (ENXIO);
  226                 }
  227                 sc->rx_data[i].mbuf = NULL;
  228         }
  229 
  230         /* Create mbufs for RX buffers */
  231         for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
  232                 error = tsec_new_rxbuf(sc->tsec_rx_mtag, sc->rx_data[i].map,
  233                     &sc->rx_data[i].mbuf, &sc->rx_data[i].paddr);
  234                 if (error) {
  235                         device_printf(sc->dev, "can't load rx DMA map %d, "
  236                             "error = %d\n", i, error);
  237                         tsec_detach(sc);
  238                         return (error);
  239                 }
  240         }
  241 
  242         /* Create network interface for upper layers */
  243         ifp = sc->tsec_ifp = if_alloc(IFT_ETHER);
  244         if (ifp == NULL) {
  245                 device_printf(sc->dev, "if_alloc() failed\n");
  246                 tsec_detach(sc);
  247                 return (ENOMEM);
  248         }
  249 
  250         ifp->if_softc = sc;
  251         if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
  252         ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST;
  253         ifp->if_init = tsec_init;
  254         ifp->if_start = tsec_start;
  255         ifp->if_ioctl = tsec_ioctl;
  256 
  257         IFQ_SET_MAXLEN(&ifp->if_snd, TSEC_TX_NUM_DESC - 1);
  258         ifp->if_snd.ifq_drv_maxlen = TSEC_TX_NUM_DESC - 1;
  259         IFQ_SET_READY(&ifp->if_snd);
  260 
  261         ifp->if_capabilities = IFCAP_VLAN_MTU;
  262         if (sc->is_etsec)
  263                 ifp->if_capabilities |= IFCAP_HWCSUM;
  264 
  265         ifp->if_capenable = ifp->if_capabilities;
  266 
  267 #ifdef DEVICE_POLLING
  268         /* Advertise that polling is supported */
  269         ifp->if_capabilities |= IFCAP_POLLING;
  270 #endif
  271 
  272         /* Attach PHY(s) */
  273         error = mii_attach(sc->dev, &sc->tsec_miibus, ifp, tsec_ifmedia_upd,
  274             tsec_ifmedia_sts, BMSR_DEFCAPMASK, sc->phyaddr, MII_OFFSET_ANY,
  275             0);
  276         if (error) {
  277                 device_printf(sc->dev, "attaching PHYs failed\n");
  278                 if_free(ifp);
  279                 sc->tsec_ifp = NULL;
  280                 tsec_detach(sc);
  281                 return (error);
  282         }
  283         sc->tsec_mii = device_get_softc(sc->tsec_miibus);
  284 
  285         /* Set MAC address */
  286         tsec_get_hwaddr(sc, hwaddr);
  287         ether_ifattach(ifp, hwaddr);
  288 
  289         return (0);
  290 }
  291 
  292 int
  293 tsec_detach(struct tsec_softc *sc)
  294 {
  295 
  296         if (sc->tsec_ifp != NULL) {
  297 #ifdef DEVICE_POLLING
  298                 if (sc->tsec_ifp->if_capenable & IFCAP_POLLING)
  299                         ether_poll_deregister(sc->tsec_ifp);
  300 #endif
  301 
  302                 /* Stop TSEC controller and free TX queue */
  303                 if (sc->sc_rres)
  304                         tsec_shutdown(sc->dev);
  305 
  306                 /* Detach network interface */
  307                 ether_ifdetach(sc->tsec_ifp);
  308                 if_free(sc->tsec_ifp);
  309                 sc->tsec_ifp = NULL;
  310         }
  311 
  312         /* Free DMA resources */
  313         tsec_free_dma(sc);
  314 
  315         return (0);
  316 }
  317 
  318 int
  319 tsec_shutdown(device_t dev)
  320 {
  321         struct tsec_softc *sc;
  322 
  323         sc = device_get_softc(dev);
  324 
  325         TSEC_GLOBAL_LOCK(sc);
  326         tsec_stop(sc);
  327         TSEC_GLOBAL_UNLOCK(sc);
  328         return (0);
  329 }
  330 
  331 int
  332 tsec_suspend(device_t dev)
  333 {
  334 
  335         /* TODO not implemented! */
  336         return (0);
  337 }
  338 
  339 int
  340 tsec_resume(device_t dev)
  341 {
  342 
  343         /* TODO not implemented! */
  344         return (0);
  345 }
  346 
  347 static void
  348 tsec_init(void *xsc)
  349 {
  350         struct tsec_softc *sc = xsc;
  351 
  352         TSEC_GLOBAL_LOCK(sc);
  353         tsec_init_locked(sc);
  354         TSEC_GLOBAL_UNLOCK(sc);
  355 }
  356 
  357 static int
  358 tsec_mii_wait(struct tsec_softc *sc, uint32_t flags)
  359 {
  360         int timeout;
  361 
  362         /*
  363          * The status indicators are not set immediately after a command.
  364          * Discard the first value.
  365          */
  366         TSEC_PHY_READ(sc, TSEC_REG_MIIMIND);
  367 
  368         timeout = TSEC_READ_RETRY;
  369         while ((TSEC_PHY_READ(sc, TSEC_REG_MIIMIND) & flags) && --timeout)
  370                 DELAY(TSEC_READ_DELAY);
  371 
  372         return (timeout == 0);
  373 }
  374 
  375 static void
  376 tsec_init_locked(struct tsec_softc *sc)
  377 {
  378         struct tsec_desc *tx_desc = sc->tsec_tx_vaddr;
  379         struct tsec_desc *rx_desc = sc->tsec_rx_vaddr;
  380         struct ifnet *ifp = sc->tsec_ifp;
  381         uint32_t val, i;
  382         int timeout;
  383 
  384         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
  385                 return;
  386 
  387         TSEC_GLOBAL_LOCK_ASSERT(sc);
  388         tsec_stop(sc);
  389 
  390         /*
  391          * These steps are according to the MPC8555E PowerQUICCIII RM:
  392          * 14.7 Initialization/Application Information
  393          */
  394 
  395         /* Step 1: soft reset MAC */
  396         tsec_reset_mac(sc);
  397 
  398         /* Step 2: Initialize MACCFG2 */
  399         TSEC_WRITE(sc, TSEC_REG_MACCFG2,
  400             TSEC_MACCFG2_FULLDUPLEX |   /* Full Duplex = 1 */
  401             TSEC_MACCFG2_PADCRC |       /* PAD/CRC append */
  402             TSEC_MACCFG2_GMII |         /* I/F Mode bit */
  403             TSEC_MACCFG2_PRECNT         /* Preamble count = 7 */
  404         );
  405 
  406         /* Step 3: Initialize ECNTRL
  407          * While the documentation states that R100M is ignored if RPM is
  408          * not set, it does seem to be needed to get the orange boxes to
  409          * work (which have a Marvell 88E1111 PHY). Go figure.
  410          */
  411 
  412         /*
  413          * XXX kludge - use circumstancial evidence to program ECNTRL
  414          * correctly. Ideally we need some board information to guide
  415          * us here.
  416          */
  417         i = TSEC_READ(sc, TSEC_REG_ID2);
  418         val = (i & 0xffff)
  419             ? (TSEC_ECNTRL_TBIM | TSEC_ECNTRL_SGMIIM)   /* Sumatra */
  420             : TSEC_ECNTRL_R100M;                        /* Orange + CDS */
  421         TSEC_WRITE(sc, TSEC_REG_ECNTRL, TSEC_ECNTRL_STEN | val);
  422 
  423         /* Step 4: Initialize MAC station address */
  424         tsec_set_mac_address(sc);
  425 
  426         /*
  427          * Step 5: Assign a Physical address to the TBI so as to not conflict
  428          * with the external PHY physical address
  429          */
  430         TSEC_WRITE(sc, TSEC_REG_TBIPA, 5);
  431 
  432         TSEC_PHY_LOCK(sc);
  433 
  434         /* Step 6: Reset the management interface */
  435         TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCFG, TSEC_MIIMCFG_RESETMGMT);
  436 
  437         /* Step 7: Setup the MII Mgmt clock speed */
  438         TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCFG, TSEC_MIIMCFG_CLKDIV28);
  439 
  440         /* Step 8: Read MII Mgmt indicator register and check for Busy = 0 */
  441         timeout = tsec_mii_wait(sc, TSEC_MIIMIND_BUSY);
  442 
  443         TSEC_PHY_UNLOCK(sc);
  444         if (timeout) {
  445                 if_printf(ifp, "tsec_init_locked(): Mgmt busy timeout\n");
  446                 return;
  447         }
  448 
  449         /* Step 9: Setup the MII Mgmt */
  450         mii_mediachg(sc->tsec_mii);
  451 
  452         /* Step 10: Clear IEVENT register */
  453         TSEC_WRITE(sc, TSEC_REG_IEVENT, 0xffffffff);
  454 
  455         /* Step 11: Enable interrupts */
  456 #ifdef DEVICE_POLLING
  457         /*
  458          * ...only if polling is not turned on. Disable interrupts explicitly
  459          * if polling is enabled.
  460          */
  461         if (ifp->if_capenable & IFCAP_POLLING )
  462                 tsec_intrs_ctl(sc, 0);
  463         else
  464 #endif /* DEVICE_POLLING */
  465         tsec_intrs_ctl(sc, 1);
  466 
  467         /* Step 12: Initialize IADDRn */
  468         TSEC_WRITE(sc, TSEC_REG_IADDR0, 0);
  469         TSEC_WRITE(sc, TSEC_REG_IADDR1, 0);
  470         TSEC_WRITE(sc, TSEC_REG_IADDR2, 0);
  471         TSEC_WRITE(sc, TSEC_REG_IADDR3, 0);
  472         TSEC_WRITE(sc, TSEC_REG_IADDR4, 0);
  473         TSEC_WRITE(sc, TSEC_REG_IADDR5, 0);
  474         TSEC_WRITE(sc, TSEC_REG_IADDR6, 0);
  475         TSEC_WRITE(sc, TSEC_REG_IADDR7, 0);
  476 
  477         /* Step 13: Initialize GADDRn */
  478         TSEC_WRITE(sc, TSEC_REG_GADDR0, 0);
  479         TSEC_WRITE(sc, TSEC_REG_GADDR1, 0);
  480         TSEC_WRITE(sc, TSEC_REG_GADDR2, 0);
  481         TSEC_WRITE(sc, TSEC_REG_GADDR3, 0);
  482         TSEC_WRITE(sc, TSEC_REG_GADDR4, 0);
  483         TSEC_WRITE(sc, TSEC_REG_GADDR5, 0);
  484         TSEC_WRITE(sc, TSEC_REG_GADDR6, 0);
  485         TSEC_WRITE(sc, TSEC_REG_GADDR7, 0);
  486 
  487         /* Step 14: Initialize RCTRL */
  488         TSEC_WRITE(sc, TSEC_REG_RCTRL, 0);
  489 
  490         /* Step 15: Initialize DMACTRL */
  491         tsec_dma_ctl(sc, 1);
  492 
  493         /* Step 16: Initialize FIFO_PAUSE_CTRL */
  494         TSEC_WRITE(sc, TSEC_REG_FIFO_PAUSE_CTRL, TSEC_FIFO_PAUSE_CTRL_EN);
  495 
  496         /*
  497          * Step 17: Initialize transmit/receive descriptor rings.
  498          * Initialize TBASE and RBASE.
  499          */
  500         TSEC_WRITE(sc, TSEC_REG_TBASE, sc->tsec_tx_raddr);
  501         TSEC_WRITE(sc, TSEC_REG_RBASE, sc->tsec_rx_raddr);
  502 
  503         for (i = 0; i < TSEC_TX_NUM_DESC; i++) {
  504                 tx_desc[i].bufptr = 0;
  505                 tx_desc[i].length = 0;
  506                 tx_desc[i].flags = ((i == TSEC_TX_NUM_DESC - 1) ?
  507                     TSEC_TXBD_W : 0);
  508         }
  509         bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
  510             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
  511 
  512         for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
  513                 rx_desc[i].bufptr = sc->rx_data[i].paddr;
  514                 rx_desc[i].length = 0;
  515                 rx_desc[i].flags = TSEC_RXBD_E | TSEC_RXBD_I |
  516                     ((i == TSEC_RX_NUM_DESC - 1) ? TSEC_RXBD_W : 0);
  517         }
  518         bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
  519             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
  520 
  521         /* Step 18: Initialize the maximum receive buffer length */
  522         TSEC_WRITE(sc, TSEC_REG_MRBLR, MCLBYTES);
  523 
  524         /* Step 19: Configure ethernet frame sizes */
  525         TSEC_WRITE(sc, TSEC_REG_MINFLR, TSEC_MIN_FRAME_SIZE);
  526         tsec_set_mtu(sc, ifp->if_mtu);
  527 
  528         /* Step 20: Enable Rx and RxBD sdata snooping */
  529         TSEC_WRITE(sc, TSEC_REG_ATTR, TSEC_ATTR_RDSEN | TSEC_ATTR_RBDSEN);
  530         TSEC_WRITE(sc, TSEC_REG_ATTRELI, 0);
  531 
  532         /* Step 21: Reset collision counters in hardware */
  533         TSEC_WRITE(sc, TSEC_REG_MON_TSCL, 0);
  534         TSEC_WRITE(sc, TSEC_REG_MON_TMCL, 0);
  535         TSEC_WRITE(sc, TSEC_REG_MON_TLCL, 0);
  536         TSEC_WRITE(sc, TSEC_REG_MON_TXCL, 0);
  537         TSEC_WRITE(sc, TSEC_REG_MON_TNCL, 0);
  538 
  539         /* Step 22: Mask all CAM interrupts */
  540         TSEC_WRITE(sc, TSEC_REG_MON_CAM1, 0xffffffff);
  541         TSEC_WRITE(sc, TSEC_REG_MON_CAM2, 0xffffffff);
  542 
  543         /* Step 23: Enable Rx and Tx */
  544         val = TSEC_READ(sc, TSEC_REG_MACCFG1);
  545         val |= (TSEC_MACCFG1_RX_EN | TSEC_MACCFG1_TX_EN);
  546         TSEC_WRITE(sc, TSEC_REG_MACCFG1, val);
  547 
  548         /* Step 24: Reset TSEC counters for Tx and Rx rings */
  549         TSEC_TX_RX_COUNTERS_INIT(sc);
  550 
  551         /* Step 25: Setup TCP/IP Off-Load engine */
  552         if (sc->is_etsec)
  553                 tsec_offload_setup(sc);
  554 
  555         /* Step 26: Setup multicast filters */
  556         tsec_setup_multicast(sc);
  557 
  558         /* Step 27: Activate network interface */
  559         ifp->if_drv_flags |= IFF_DRV_RUNNING;
  560         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
  561         sc->tsec_if_flags = ifp->if_flags;
  562         sc->tsec_watchdog = 0;
  563 
  564         /* Schedule watchdog timeout */
  565         callout_reset(&sc->tsec_callout, hz, tsec_tick, sc);
  566 }
  567 
  568 static void
  569 tsec_set_mac_address(struct tsec_softc *sc)
  570 {
  571         uint32_t macbuf[2] = { 0, 0 };
  572         char *macbufp, *curmac;
  573         int i;
  574 
  575         TSEC_GLOBAL_LOCK_ASSERT(sc);
  576 
  577         KASSERT((ETHER_ADDR_LEN <= sizeof(macbuf)),
  578             ("tsec_set_mac_address: (%d <= %zd", ETHER_ADDR_LEN,
  579             sizeof(macbuf)));
  580 
  581         macbufp = (char *)macbuf;
  582         curmac = (char *)IF_LLADDR(sc->tsec_ifp);
  583 
  584         /* Correct order of MAC address bytes */
  585         for (i = 1; i <= ETHER_ADDR_LEN; i++)
  586                 macbufp[ETHER_ADDR_LEN-i] = curmac[i-1];
  587 
  588         /* Initialize MAC station address MACSTNADDR2 and MACSTNADDR1 */
  589         TSEC_WRITE(sc, TSEC_REG_MACSTNADDR2, macbuf[1]);
  590         TSEC_WRITE(sc, TSEC_REG_MACSTNADDR1, macbuf[0]);
  591 }
  592 
  593 /*
  594  * DMA control function, if argument state is:
  595  * 0 - DMA engine will be disabled
  596  * 1 - DMA engine will be enabled
  597  */
  598 static void
  599 tsec_dma_ctl(struct tsec_softc *sc, int state)
  600 {
  601         device_t dev;
  602         uint32_t dma_flags, timeout;
  603 
  604         dev = sc->dev;
  605 
  606         dma_flags = TSEC_READ(sc, TSEC_REG_DMACTRL);
  607 
  608         switch (state) {
  609         case 0:
  610                 /* Temporarily clear stop graceful stop bits. */
  611                 tsec_dma_ctl(sc, 1000);
  612 
  613                 /* Set it again */
  614                 dma_flags |= (TSEC_DMACTRL_GRS | TSEC_DMACTRL_GTS);
  615                 break;
  616         case 1000:
  617         case 1:
  618                 /* Set write with response (WWR), wait (WOP) and snoop bits */
  619                 dma_flags |= (TSEC_DMACTRL_TDSEN | TSEC_DMACTRL_TBDSEN |
  620                     DMACTRL_WWR | DMACTRL_WOP);
  621 
  622                 /* Clear graceful stop bits */
  623                 dma_flags &= ~(TSEC_DMACTRL_GRS | TSEC_DMACTRL_GTS);
  624                 break;
  625         default:
  626                 device_printf(dev, "tsec_dma_ctl(): unknown state value: %d\n",
  627                     state);
  628         }
  629 
  630         TSEC_WRITE(sc, TSEC_REG_DMACTRL, dma_flags);
  631 
  632         switch (state) {
  633         case 0:
  634                 /* Wait for DMA stop */
  635                 timeout = TSEC_READ_RETRY;
  636                 while (--timeout && (!(TSEC_READ(sc, TSEC_REG_IEVENT) &
  637                     (TSEC_IEVENT_GRSC | TSEC_IEVENT_GTSC))))
  638                         DELAY(TSEC_READ_DELAY);
  639 
  640                 if (timeout == 0)
  641                         device_printf(dev, "tsec_dma_ctl(): timeout!\n");
  642                 break;
  643         case 1:
  644                 /* Restart transmission function */
  645                 TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
  646         }
  647 }
  648 
  649 /*
  650  * Interrupts control function, if argument state is:
  651  * 0 - all TSEC interrupts will be masked
  652  * 1 - all TSEC interrupts will be unmasked
  653  */
  654 static void
  655 tsec_intrs_ctl(struct tsec_softc *sc, int state)
  656 {
  657         device_t dev;
  658 
  659         dev = sc->dev;
  660 
  661         switch (state) {
  662         case 0:
  663                 TSEC_WRITE(sc, TSEC_REG_IMASK, 0);
  664                 break;
  665         case 1:
  666                 TSEC_WRITE(sc, TSEC_REG_IMASK, TSEC_IMASK_BREN |
  667                     TSEC_IMASK_RXCEN | TSEC_IMASK_BSYEN | TSEC_IMASK_EBERREN |
  668                     TSEC_IMASK_BTEN | TSEC_IMASK_TXEEN | TSEC_IMASK_TXBEN |
  669                     TSEC_IMASK_TXFEN | TSEC_IMASK_XFUNEN | TSEC_IMASK_RXFEN);
  670                 break;
  671         default:
  672                 device_printf(dev, "tsec_intrs_ctl(): unknown state value: %d\n",
  673                     state);
  674         }
  675 }
  676 
  677 static void
  678 tsec_reset_mac(struct tsec_softc *sc)
  679 {
  680         uint32_t maccfg1_flags;
  681 
  682         /* Set soft reset bit */
  683         maccfg1_flags = TSEC_READ(sc, TSEC_REG_MACCFG1);
  684         maccfg1_flags |= TSEC_MACCFG1_SOFT_RESET;
  685         TSEC_WRITE(sc, TSEC_REG_MACCFG1, maccfg1_flags);
  686 
  687         /* Clear soft reset bit */
  688         maccfg1_flags = TSEC_READ(sc, TSEC_REG_MACCFG1);
  689         maccfg1_flags &= ~TSEC_MACCFG1_SOFT_RESET;
  690         TSEC_WRITE(sc, TSEC_REG_MACCFG1, maccfg1_flags);
  691 }
  692 
  693 static void
  694 tsec_watchdog(struct tsec_softc *sc)
  695 {
  696         struct ifnet *ifp;
  697 
  698         TSEC_GLOBAL_LOCK_ASSERT(sc);
  699 
  700         if (sc->tsec_watchdog == 0 || --sc->tsec_watchdog > 0)
  701                 return;
  702 
  703         ifp = sc->tsec_ifp;
  704         if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
  705         if_printf(ifp, "watchdog timeout\n");
  706 
  707         tsec_stop(sc);
  708         tsec_init_locked(sc);
  709 }
  710 
  711 static void
  712 tsec_start(struct ifnet *ifp)
  713 {
  714         struct tsec_softc *sc = ifp->if_softc;
  715 
  716         TSEC_TRANSMIT_LOCK(sc);
  717         tsec_start_locked(ifp);
  718         TSEC_TRANSMIT_UNLOCK(sc);
  719 }
  720 
  721 static void
  722 tsec_start_locked(struct ifnet *ifp)
  723 {
  724         struct tsec_softc *sc;
  725         struct mbuf *m0;
  726         struct tsec_tx_fcb *tx_fcb;
  727         int csum_flags;
  728         int start_tx;
  729         uint16_t fcb_flags;
  730 
  731         sc = ifp->if_softc;
  732         start_tx = 0;
  733 
  734         TSEC_TRANSMIT_LOCK_ASSERT(sc);
  735 
  736         if (sc->tsec_link == 0)
  737                 return;
  738 
  739         bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
  740             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
  741 
  742         for (;;) {
  743                 if (TSEC_FREE_TX_DESC(sc) < TSEC_TX_MAX_DMA_SEGS) {
  744                         /* No free descriptors */
  745                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
  746                         break;
  747                 }
  748 
  749                 /* Get packet from the queue */
  750                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
  751                 if (m0 == NULL)
  752                         break;
  753 
  754                 /* Insert TCP/IP Off-load frame control block */
  755                 fcb_flags = 0;
  756                 csum_flags = m0->m_pkthdr.csum_flags;
  757                 if (csum_flags) {
  758                         M_PREPEND(m0, sizeof(struct tsec_tx_fcb), M_NOWAIT);
  759                         if (m0 == NULL)
  760                                 break;
  761 
  762                         if (csum_flags & CSUM_IP)
  763                                 fcb_flags |= TSEC_TX_FCB_IP4 |
  764                                     TSEC_TX_FCB_CSUM_IP;
  765 
  766                         if (csum_flags & CSUM_TCP)
  767                                 fcb_flags |= TSEC_TX_FCB_TCP |
  768                                     TSEC_TX_FCB_CSUM_TCP_UDP;
  769 
  770                         if (csum_flags & CSUM_UDP)
  771                                 fcb_flags |= TSEC_TX_FCB_UDP |
  772                                     TSEC_TX_FCB_CSUM_TCP_UDP;
  773 
  774                         tx_fcb = mtod(m0, struct tsec_tx_fcb *);
  775                         tx_fcb->flags = fcb_flags;
  776                         tx_fcb->l3_offset = ETHER_HDR_LEN;
  777                         tx_fcb->l4_offset = sizeof(struct ip);
  778                 }
  779 
  780                 tsec_encap(ifp, sc, m0, fcb_flags, &start_tx);
  781         }
  782         bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
  783             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
  784 
  785         if (start_tx) {
  786                 /* Enable transmitter and watchdog timer */
  787                 TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
  788                 sc->tsec_watchdog = 5;
  789         }
  790 }
  791 
  792 static void
  793 tsec_encap(struct ifnet *ifp, struct tsec_softc *sc, struct mbuf *m0,
  794     uint16_t fcb_flags, int *start_tx)
  795 {
  796         bus_dma_segment_t segs[TSEC_TX_MAX_DMA_SEGS];
  797         int error, i, nsegs;
  798         struct tsec_bufmap *tx_bufmap;
  799         uint32_t tx_idx;
  800         uint16_t flags;
  801 
  802         TSEC_TRANSMIT_LOCK_ASSERT(sc);
  803 
  804         tx_idx = sc->tx_idx_head;
  805         tx_bufmap = &sc->tx_bufmap[tx_idx];
  806 
  807         /* Create mapping in DMA memory */
  808         error = bus_dmamap_load_mbuf_sg(sc->tsec_tx_mtag, tx_bufmap->map, m0,
  809             segs, &nsegs, BUS_DMA_NOWAIT);
  810         if (error == EFBIG) {
  811                 /* Too many segments!  Defrag and try again. */
  812                 struct mbuf *m = m_defrag(m0, M_NOWAIT);
  813 
  814                 if (m == NULL) {
  815                         m_freem(m0);
  816                         return;
  817                 }
  818                 m0 = m;
  819                 error = bus_dmamap_load_mbuf_sg(sc->tsec_tx_mtag,
  820                     tx_bufmap->map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
  821         }
  822         if (error != 0) {
  823                 /* Give up. */
  824                 m_freem(m0);
  825                 return;
  826         }
  827 
  828         bus_dmamap_sync(sc->tsec_tx_mtag, tx_bufmap->map,
  829             BUS_DMASYNC_PREWRITE);
  830         tx_bufmap->mbuf = m0;
  831 
  832         /*
  833          * Fill in the TX descriptors back to front so that READY bit in first
  834          * descriptor is set last.
  835          */
  836         tx_idx = (tx_idx + (uint32_t)nsegs) & (TSEC_TX_NUM_DESC - 1);
  837         sc->tx_idx_head = tx_idx;
  838         flags = TSEC_TXBD_L | TSEC_TXBD_I | TSEC_TXBD_R | TSEC_TXBD_TC;
  839         for (i = nsegs - 1; i >= 0; i--) {
  840                 struct tsec_desc *tx_desc;
  841 
  842                 tx_idx = (tx_idx - 1) & (TSEC_TX_NUM_DESC - 1);
  843                 tx_desc = &sc->tsec_tx_vaddr[tx_idx];
  844                 tx_desc->length = segs[i].ds_len;
  845                 tx_desc->bufptr = segs[i].ds_addr;
  846 
  847                 if (i == 0) {
  848                         wmb();
  849 
  850                         if (fcb_flags != 0)
  851                                 flags |= TSEC_TXBD_TOE;
  852                 }
  853 
  854                 /*
  855                  * Set flags:
  856                  *   - wrap
  857                  *   - checksum
  858                  *   - ready to send
  859                  *   - transmit the CRC sequence after the last data byte
  860                  *   - interrupt after the last buffer
  861                  */
  862                 tx_desc->flags = (tx_idx == (TSEC_TX_NUM_DESC - 1) ?
  863                     TSEC_TXBD_W : 0) | flags;
  864 
  865                 flags &= ~(TSEC_TXBD_L | TSEC_TXBD_I);
  866         }
  867 
  868         BPF_MTAP(ifp, m0);
  869         *start_tx = 1;
  870 }
  871 
  872 static void
  873 tsec_setfilter(struct tsec_softc *sc)
  874 {
  875         struct ifnet *ifp;
  876         uint32_t flags;
  877 
  878         ifp = sc->tsec_ifp;
  879         flags = TSEC_READ(sc, TSEC_REG_RCTRL);
  880 
  881         /* Promiscuous mode */
  882         if (ifp->if_flags & IFF_PROMISC)
  883                 flags |= TSEC_RCTRL_PROM;
  884         else
  885                 flags &= ~TSEC_RCTRL_PROM;
  886 
  887         TSEC_WRITE(sc, TSEC_REG_RCTRL, flags);
  888 }
  889 
  890 #ifdef DEVICE_POLLING
  891 static poll_handler_t tsec_poll;
  892 
  893 static int
  894 tsec_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
  895 {
  896         uint32_t ie;
  897         struct tsec_softc *sc = ifp->if_softc;
  898         int rx_npkts;
  899 
  900         rx_npkts = 0;
  901 
  902         TSEC_GLOBAL_LOCK(sc);
  903         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
  904                 TSEC_GLOBAL_UNLOCK(sc);
  905                 return (rx_npkts);
  906         }
  907 
  908         if (cmd == POLL_AND_CHECK_STATUS) {
  909                 tsec_error_intr_locked(sc, count);
  910 
  911                 /* Clear all events reported */
  912                 ie = TSEC_READ(sc, TSEC_REG_IEVENT);
  913                 TSEC_WRITE(sc, TSEC_REG_IEVENT, ie);
  914         }
  915 
  916         tsec_transmit_intr_locked(sc);
  917 
  918         TSEC_GLOBAL_TO_RECEIVE_LOCK(sc);
  919 
  920         rx_npkts = tsec_receive_intr_locked(sc, count);
  921 
  922         TSEC_RECEIVE_UNLOCK(sc);
  923 
  924         return (rx_npkts);
  925 }
  926 #endif /* DEVICE_POLLING */
  927 
  928 static int
  929 tsec_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
  930 {
  931         struct tsec_softc *sc = ifp->if_softc;
  932         struct ifreq *ifr = (struct ifreq *)data;
  933         int mask, error = 0;
  934 
  935         switch (command) {
  936         case SIOCSIFMTU:
  937                 TSEC_GLOBAL_LOCK(sc);
  938                 if (tsec_set_mtu(sc, ifr->ifr_mtu))
  939                         ifp->if_mtu = ifr->ifr_mtu;
  940                 else
  941                         error = EINVAL;
  942                 TSEC_GLOBAL_UNLOCK(sc);
  943                 break;
  944         case SIOCSIFFLAGS:
  945                 TSEC_GLOBAL_LOCK(sc);
  946                 if (ifp->if_flags & IFF_UP) {
  947                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
  948                                 if ((sc->tsec_if_flags ^ ifp->if_flags) &
  949                                     IFF_PROMISC)
  950                                         tsec_setfilter(sc);
  951 
  952                                 if ((sc->tsec_if_flags ^ ifp->if_flags) &
  953                                     IFF_ALLMULTI)
  954                                         tsec_setup_multicast(sc);
  955                         } else
  956                                 tsec_init_locked(sc);
  957                 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
  958                         tsec_stop(sc);
  959 
  960                 sc->tsec_if_flags = ifp->if_flags;
  961                 TSEC_GLOBAL_UNLOCK(sc);
  962                 break;
  963         case SIOCADDMULTI:
  964         case SIOCDELMULTI:
  965                 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
  966                         TSEC_GLOBAL_LOCK(sc);
  967                         tsec_setup_multicast(sc);
  968                         TSEC_GLOBAL_UNLOCK(sc);
  969                 }
  970         case SIOCGIFMEDIA:
  971         case SIOCSIFMEDIA:
  972                 error = ifmedia_ioctl(ifp, ifr, &sc->tsec_mii->mii_media,
  973                     command);
  974                 break;
  975         case SIOCSIFCAP:
  976                 mask = ifp->if_capenable ^ ifr->ifr_reqcap;
  977                 if ((mask & IFCAP_HWCSUM) && sc->is_etsec) {
  978                         TSEC_GLOBAL_LOCK(sc);
  979                         ifp->if_capenable &= ~IFCAP_HWCSUM;
  980                         ifp->if_capenable |= IFCAP_HWCSUM & ifr->ifr_reqcap;
  981                         tsec_offload_setup(sc);
  982                         TSEC_GLOBAL_UNLOCK(sc);
  983                 }
  984 #ifdef DEVICE_POLLING
  985                 if (mask & IFCAP_POLLING) {
  986                         if (ifr->ifr_reqcap & IFCAP_POLLING) {
  987                                 error = ether_poll_register(tsec_poll, ifp);
  988                                 if (error)
  989                                         return (error);
  990 
  991                                 TSEC_GLOBAL_LOCK(sc);
  992                                 /* Disable interrupts */
  993                                 tsec_intrs_ctl(sc, 0);
  994                                 ifp->if_capenable |= IFCAP_POLLING;
  995                                 TSEC_GLOBAL_UNLOCK(sc);
  996                         } else {
  997                                 error = ether_poll_deregister(ifp);
  998                                 TSEC_GLOBAL_LOCK(sc);
  999                                 /* Enable interrupts */
 1000                                 tsec_intrs_ctl(sc, 1);
 1001                                 ifp->if_capenable &= ~IFCAP_POLLING;
 1002                                 TSEC_GLOBAL_UNLOCK(sc);
 1003                         }
 1004                 }
 1005 #endif
 1006                 break;
 1007 
 1008         default:
 1009                 error = ether_ioctl(ifp, command, data);
 1010         }
 1011 
 1012         /* Flush buffers if not empty */
 1013         if (ifp->if_flags & IFF_UP)
 1014                 tsec_start(ifp);
 1015         return (error);
 1016 }
 1017 
 1018 static int
 1019 tsec_ifmedia_upd(struct ifnet *ifp)
 1020 {
 1021         struct tsec_softc *sc = ifp->if_softc;
 1022         struct mii_data *mii;
 1023 
 1024         TSEC_TRANSMIT_LOCK(sc);
 1025 
 1026         mii = sc->tsec_mii;
 1027         mii_mediachg(mii);
 1028 
 1029         TSEC_TRANSMIT_UNLOCK(sc);
 1030         return (0);
 1031 }
 1032 
 1033 static void
 1034 tsec_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
 1035 {
 1036         struct tsec_softc *sc = ifp->if_softc;
 1037         struct mii_data *mii;
 1038 
 1039         TSEC_TRANSMIT_LOCK(sc);
 1040 
 1041         mii = sc->tsec_mii;
 1042         mii_pollstat(mii);
 1043 
 1044         ifmr->ifm_active = mii->mii_media_active;
 1045         ifmr->ifm_status = mii->mii_media_status;
 1046 
 1047         TSEC_TRANSMIT_UNLOCK(sc);
 1048 }
 1049 
 1050 static int
 1051 tsec_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map, struct mbuf **mbufp,
 1052     uint32_t *paddr)
 1053 {
 1054         struct mbuf *new_mbuf;
 1055         bus_dma_segment_t seg[1];
 1056         int error, nsegs;
 1057 
 1058         KASSERT(mbufp != NULL, ("NULL mbuf pointer!"));
 1059 
 1060         new_mbuf = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MCLBYTES);
 1061         if (new_mbuf == NULL)
 1062                 return (ENOBUFS);
 1063         new_mbuf->m_len = new_mbuf->m_pkthdr.len = new_mbuf->m_ext.ext_size;
 1064 
 1065         if (*mbufp) {
 1066                 bus_dmamap_sync(tag, map, BUS_DMASYNC_POSTREAD);
 1067                 bus_dmamap_unload(tag, map);
 1068         }
 1069 
 1070         error = bus_dmamap_load_mbuf_sg(tag, map, new_mbuf, seg, &nsegs,
 1071             BUS_DMA_NOWAIT);
 1072         KASSERT(nsegs == 1, ("Too many segments returned!"));
 1073         if (nsegs != 1 || error)
 1074                 panic("tsec_new_rxbuf(): nsegs(%d), error(%d)", nsegs, error);
 1075 
 1076 #if 0
 1077         if (error) {
 1078                 printf("tsec: bus_dmamap_load_mbuf_sg() returned: %d!\n",
 1079                         error);
 1080                 m_freem(new_mbuf);
 1081                 return (ENOBUFS);
 1082         }
 1083 #endif
 1084 
 1085 #if 0
 1086         KASSERT(((seg->ds_addr) & (TSEC_RXBUFFER_ALIGNMENT-1)) == 0,
 1087                 ("Wrong alignment of RX buffer!"));
 1088 #endif
 1089         bus_dmamap_sync(tag, map, BUS_DMASYNC_PREREAD);
 1090 
 1091         (*mbufp) = new_mbuf;
 1092         (*paddr) = seg->ds_addr;
 1093         return (0);
 1094 }
 1095 
 1096 static void
 1097 tsec_map_dma_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
 1098 {
 1099         u_int32_t *paddr;
 1100 
 1101         KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
 1102         paddr = arg;
 1103         *paddr = segs->ds_addr;
 1104 }
 1105 
 1106 static int
 1107 tsec_alloc_dma_desc(device_t dev, bus_dma_tag_t *dtag, bus_dmamap_t *dmap,
 1108     bus_size_t dsize, void **vaddr, void *raddr, const char *dname)
 1109 {
 1110         int error;
 1111 
 1112         /* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
 1113         error = bus_dma_tag_create(NULL,        /* parent */
 1114             PAGE_SIZE, 0,                       /* alignment, boundary */
 1115             BUS_SPACE_MAXADDR_32BIT,            /* lowaddr */
 1116             BUS_SPACE_MAXADDR,                  /* highaddr */
 1117             NULL, NULL,                         /* filtfunc, filtfuncarg */
 1118             dsize, 1,                           /* maxsize, nsegments */
 1119             dsize, 0,                           /* maxsegsz, flags */
 1120             NULL, NULL,                         /* lockfunc, lockfuncarg */
 1121             dtag);                              /* dmat */
 1122 
 1123         if (error) {
 1124                 device_printf(dev, "failed to allocate busdma %s tag\n",
 1125                     dname);
 1126                 (*vaddr) = NULL;
 1127                 return (ENXIO);
 1128         }
 1129 
 1130         error = bus_dmamem_alloc(*dtag, vaddr, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
 1131             dmap);
 1132         if (error) {
 1133                 device_printf(dev, "failed to allocate %s DMA safe memory\n",
 1134                     dname);
 1135                 bus_dma_tag_destroy(*dtag);
 1136                 (*vaddr) = NULL;
 1137                 return (ENXIO);
 1138         }
 1139 
 1140         error = bus_dmamap_load(*dtag, *dmap, *vaddr, dsize,
 1141             tsec_map_dma_addr, raddr, BUS_DMA_NOWAIT);
 1142         if (error) {
 1143                 device_printf(dev, "cannot get address of the %s "
 1144                     "descriptors\n", dname);
 1145                 bus_dmamem_free(*dtag, *vaddr, *dmap);
 1146                 bus_dma_tag_destroy(*dtag);
 1147                 (*vaddr) = NULL;
 1148                 return (ENXIO);
 1149         }
 1150 
 1151         return (0);
 1152 }
 1153 
 1154 static void
 1155 tsec_free_dma_desc(bus_dma_tag_t dtag, bus_dmamap_t dmap, void *vaddr)
 1156 {
 1157 
 1158         if (vaddr == NULL)
 1159                 return;
 1160 
 1161         /* Unmap descriptors from DMA memory */
 1162         bus_dmamap_sync(dtag, dmap, BUS_DMASYNC_POSTREAD |
 1163             BUS_DMASYNC_POSTWRITE);
 1164         bus_dmamap_unload(dtag, dmap);
 1165 
 1166         /* Free descriptors memory */
 1167         bus_dmamem_free(dtag, vaddr, dmap);
 1168 
 1169         /* Destroy descriptors tag */
 1170         bus_dma_tag_destroy(dtag);
 1171 }
 1172 
 1173 static void
 1174 tsec_free_dma(struct tsec_softc *sc)
 1175 {
 1176         int i;
 1177 
 1178         /* Free TX maps */
 1179         for (i = 0; i < TSEC_TX_NUM_DESC; i++)
 1180                 if (sc->tx_bufmap[i].map_initialized)
 1181                         bus_dmamap_destroy(sc->tsec_tx_mtag,
 1182                             sc->tx_bufmap[i].map);
 1183         /* Destroy tag for TX mbufs */
 1184         bus_dma_tag_destroy(sc->tsec_tx_mtag);
 1185 
 1186         /* Free RX mbufs and maps */
 1187         for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
 1188                 if (sc->rx_data[i].mbuf) {
 1189                         /* Unload buffer from DMA */
 1190                         bus_dmamap_sync(sc->tsec_rx_mtag, sc->rx_data[i].map,
 1191                             BUS_DMASYNC_POSTREAD);
 1192                         bus_dmamap_unload(sc->tsec_rx_mtag,
 1193                             sc->rx_data[i].map);
 1194 
 1195                         /* Free buffer */
 1196                         m_freem(sc->rx_data[i].mbuf);
 1197                 }
 1198                 /* Destroy map for this buffer */
 1199                 if (sc->rx_data[i].map != NULL)
 1200                         bus_dmamap_destroy(sc->tsec_rx_mtag,
 1201                             sc->rx_data[i].map);
 1202         }
 1203         /* Destroy tag for RX mbufs */
 1204         bus_dma_tag_destroy(sc->tsec_rx_mtag);
 1205 
 1206         /* Unload TX/RX descriptors */
 1207         tsec_free_dma_desc(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
 1208             sc->tsec_tx_vaddr);
 1209         tsec_free_dma_desc(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
 1210             sc->tsec_rx_vaddr);
 1211 }
 1212 
 1213 static void
 1214 tsec_stop(struct tsec_softc *sc)
 1215 {
 1216         struct ifnet *ifp;
 1217         uint32_t tmpval;
 1218 
 1219         TSEC_GLOBAL_LOCK_ASSERT(sc);
 1220 
 1221         ifp = sc->tsec_ifp;
 1222 
 1223         /* Disable interface and watchdog timer */
 1224         callout_stop(&sc->tsec_callout);
 1225         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 1226         sc->tsec_watchdog = 0;
 1227 
 1228         /* Disable all interrupts and stop DMA */
 1229         tsec_intrs_ctl(sc, 0);
 1230         tsec_dma_ctl(sc, 0);
 1231 
 1232         /* Remove pending data from TX queue */
 1233         while (sc->tx_idx_tail != sc->tx_idx_head) {
 1234                 bus_dmamap_sync(sc->tsec_tx_mtag,
 1235                     sc->tx_bufmap[sc->tx_idx_tail].map,
 1236                     BUS_DMASYNC_POSTWRITE);
 1237                 bus_dmamap_unload(sc->tsec_tx_mtag,
 1238                     sc->tx_bufmap[sc->tx_idx_tail].map);
 1239                 m_freem(sc->tx_bufmap[sc->tx_idx_tail].mbuf);
 1240                 sc->tx_idx_tail = (sc->tx_idx_tail + 1)
 1241                     & (TSEC_TX_NUM_DESC - 1);
 1242         }
 1243 
 1244         /* Disable RX and TX */
 1245         tmpval = TSEC_READ(sc, TSEC_REG_MACCFG1);
 1246         tmpval &= ~(TSEC_MACCFG1_RX_EN | TSEC_MACCFG1_TX_EN);
 1247         TSEC_WRITE(sc, TSEC_REG_MACCFG1, tmpval);
 1248         DELAY(10);
 1249 }
 1250 
 1251 static void
 1252 tsec_tick(void *arg)
 1253 {
 1254         struct tsec_softc *sc = arg;
 1255         struct ifnet *ifp;
 1256         int link;
 1257 
 1258         TSEC_GLOBAL_LOCK(sc);
 1259 
 1260         tsec_watchdog(sc);
 1261 
 1262         ifp = sc->tsec_ifp;
 1263         link = sc->tsec_link;
 1264 
 1265         mii_tick(sc->tsec_mii);
 1266 
 1267         if (link == 0 && sc->tsec_link == 1 &&
 1268             (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)))
 1269                 tsec_start_locked(ifp);
 1270 
 1271         /* Schedule another timeout one second from now. */
 1272         callout_reset(&sc->tsec_callout, hz, tsec_tick, sc);
 1273 
 1274         TSEC_GLOBAL_UNLOCK(sc);
 1275 }
 1276 
 1277 /*
 1278  *  This is the core RX routine. It replenishes mbufs in the descriptor and
 1279  *  sends data which have been dma'ed into host memory to upper layer.
 1280  *
 1281  *  Loops at most count times if count is > 0, or until done if count < 0.
 1282  */
 1283 static int
 1284 tsec_receive_intr_locked(struct tsec_softc *sc, int count)
 1285 {
 1286         struct tsec_desc *rx_desc;
 1287         struct ifnet *ifp;
 1288         struct rx_data_type *rx_data;
 1289         struct mbuf *m;
 1290         uint32_t i;
 1291         int c, rx_npkts;
 1292         uint16_t flags;
 1293 
 1294         TSEC_RECEIVE_LOCK_ASSERT(sc);
 1295 
 1296         ifp = sc->tsec_ifp;
 1297         rx_data = sc->rx_data;
 1298         rx_npkts = 0;
 1299 
 1300         bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
 1301             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 1302 
 1303         for (c = 0; ; c++) {
 1304                 if (count >= 0 && count-- == 0)
 1305                         break;
 1306 
 1307                 rx_desc = TSEC_GET_CUR_RX_DESC(sc);
 1308                 flags = rx_desc->flags;
 1309 
 1310                 /* Check if there is anything to receive */
 1311                 if ((flags & TSEC_RXBD_E) || (c >= TSEC_RX_NUM_DESC)) {
 1312                         /*
 1313                          * Avoid generating another interrupt
 1314                          */
 1315                         if (flags & TSEC_RXBD_E)
 1316                                 TSEC_WRITE(sc, TSEC_REG_IEVENT,
 1317                                     TSEC_IEVENT_RXB | TSEC_IEVENT_RXF);
 1318                         /*
 1319                          * We didn't consume current descriptor and have to
 1320                          * return it to the queue
 1321                          */
 1322                         TSEC_BACK_CUR_RX_DESC(sc);
 1323                         break;
 1324                 }
 1325 
 1326                 if (flags & (TSEC_RXBD_LG | TSEC_RXBD_SH | TSEC_RXBD_NO |
 1327                     TSEC_RXBD_CR | TSEC_RXBD_OV | TSEC_RXBD_TR)) {
 1328                         rx_desc->length = 0;
 1329                         rx_desc->flags = (rx_desc->flags &
 1330                             ~TSEC_RXBD_ZEROONINIT) | TSEC_RXBD_E | TSEC_RXBD_I;
 1331 
 1332                         if (sc->frame != NULL) {
 1333                                 m_free(sc->frame);
 1334                                 sc->frame = NULL;
 1335                         }
 1336 
 1337                         continue;
 1338                 }
 1339 
 1340                 /* Ok... process frame */
 1341                 i = TSEC_GET_CUR_RX_DESC_CNT(sc);
 1342                 m = rx_data[i].mbuf;
 1343                 m->m_len = rx_desc->length;
 1344 
 1345                 if (sc->frame != NULL) {
 1346                         if ((flags & TSEC_RXBD_L) != 0)
 1347                                 m->m_len -= m_length(sc->frame, NULL);
 1348 
 1349                         m->m_flags &= ~M_PKTHDR;
 1350                         m_cat(sc->frame, m);
 1351                 } else {
 1352                         sc->frame = m;
 1353                 }
 1354 
 1355                 m = NULL;
 1356 
 1357                 if ((flags & TSEC_RXBD_L) != 0) {
 1358                         m = sc->frame;
 1359                         sc->frame = NULL;
 1360                 }
 1361 
 1362                 if (tsec_new_rxbuf(sc->tsec_rx_mtag, rx_data[i].map,
 1363                     &rx_data[i].mbuf, &rx_data[i].paddr)) {
 1364                         if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
 1365                         /*
 1366                          * We ran out of mbufs; didn't consume current
 1367                          * descriptor and have to return it to the queue.
 1368                          */
 1369                         TSEC_BACK_CUR_RX_DESC(sc);
 1370                         break;
 1371                 }
 1372 
 1373                 /* Attach new buffer to descriptor and clear flags */
 1374                 rx_desc->bufptr = rx_data[i].paddr;
 1375                 rx_desc->length = 0;
 1376                 rx_desc->flags = (rx_desc->flags & ~TSEC_RXBD_ZEROONINIT) |
 1377                     TSEC_RXBD_E | TSEC_RXBD_I;
 1378 
 1379                 if (m != NULL) {
 1380                         m->m_pkthdr.rcvif = ifp;
 1381 
 1382                         m_fixhdr(m);
 1383                         m_adj(m, -ETHER_CRC_LEN);
 1384 
 1385                         if (sc->is_etsec)
 1386                                 tsec_offload_process_frame(sc, m);
 1387 
 1388                         TSEC_RECEIVE_UNLOCK(sc);
 1389                         (*ifp->if_input)(ifp, m);
 1390                         TSEC_RECEIVE_LOCK(sc);
 1391                         rx_npkts++;
 1392                 }
 1393         }
 1394 
 1395         bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
 1396             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1397 
 1398         /*
 1399          * Make sure TSEC receiver is not halted.
 1400          *
 1401          * Various conditions can stop the TSEC receiver, but not all are
 1402          * signaled and handled by error interrupt, so make sure the receiver
 1403          * is running. Writing to TSEC_REG_RSTAT restarts the receiver when
 1404          * halted, and is harmless if already running.
 1405          */
 1406         TSEC_WRITE(sc, TSEC_REG_RSTAT, TSEC_RSTAT_QHLT);
 1407         return (rx_npkts);
 1408 }
 1409 
 1410 void
 1411 tsec_receive_intr(void *arg)
 1412 {
 1413         struct tsec_softc *sc = arg;
 1414 
 1415         TSEC_RECEIVE_LOCK(sc);
 1416 
 1417 #ifdef DEVICE_POLLING
 1418         if (sc->tsec_ifp->if_capenable & IFCAP_POLLING) {
 1419                 TSEC_RECEIVE_UNLOCK(sc);
 1420                 return;
 1421         }
 1422 #endif
 1423 
 1424         /* Confirm the interrupt was received by driver */
 1425         TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXB | TSEC_IEVENT_RXF);
 1426         tsec_receive_intr_locked(sc, -1);
 1427 
 1428         TSEC_RECEIVE_UNLOCK(sc);
 1429 }
 1430 
 1431 static void
 1432 tsec_transmit_intr_locked(struct tsec_softc *sc)
 1433 {
 1434         struct ifnet *ifp;
 1435         uint32_t tx_idx;
 1436 
 1437         TSEC_TRANSMIT_LOCK_ASSERT(sc);
 1438 
 1439         ifp = sc->tsec_ifp;
 1440 
 1441         /* Update collision statistics */
 1442         if_inc_counter(ifp, IFCOUNTER_COLLISIONS, TSEC_READ(sc, TSEC_REG_MON_TNCL));
 1443 
 1444         /* Reset collision counters in hardware */
 1445         TSEC_WRITE(sc, TSEC_REG_MON_TSCL, 0);
 1446         TSEC_WRITE(sc, TSEC_REG_MON_TMCL, 0);
 1447         TSEC_WRITE(sc, TSEC_REG_MON_TLCL, 0);
 1448         TSEC_WRITE(sc, TSEC_REG_MON_TXCL, 0);
 1449         TSEC_WRITE(sc, TSEC_REG_MON_TNCL, 0);
 1450 
 1451         bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
 1452             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 1453 
 1454         tx_idx = sc->tx_idx_tail;
 1455         while (tx_idx != sc->tx_idx_head) {
 1456                 struct tsec_desc *tx_desc;
 1457                 struct tsec_bufmap *tx_bufmap;
 1458 
 1459                 tx_desc = &sc->tsec_tx_vaddr[tx_idx];
 1460                 if (tx_desc->flags & TSEC_TXBD_R) {
 1461                         break;
 1462                 }
 1463 
 1464                 tx_bufmap = &sc->tx_bufmap[tx_idx];
 1465                 tx_idx = (tx_idx + 1) & (TSEC_TX_NUM_DESC - 1);
 1466                 if (tx_bufmap->mbuf == NULL)
 1467                         continue;
 1468 
 1469                 /*
 1470                  * This is the last buf in this packet, so unmap and free it.
 1471                  */
 1472                 bus_dmamap_sync(sc->tsec_tx_mtag, tx_bufmap->map,
 1473                     BUS_DMASYNC_POSTWRITE);
 1474                 bus_dmamap_unload(sc->tsec_tx_mtag, tx_bufmap->map);
 1475                 m_freem(tx_bufmap->mbuf);
 1476                 tx_bufmap->mbuf = NULL;
 1477 
 1478                 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
 1479         }
 1480         sc->tx_idx_tail = tx_idx;
 1481         bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
 1482             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1483 
 1484         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 1485         tsec_start_locked(ifp);
 1486 
 1487         if (sc->tx_idx_tail == sc->tx_idx_head)
 1488                 sc->tsec_watchdog = 0;
 1489 }
 1490 
 1491 void
 1492 tsec_transmit_intr(void *arg)
 1493 {
 1494         struct tsec_softc *sc = arg;
 1495 
 1496         TSEC_TRANSMIT_LOCK(sc);
 1497 
 1498 #ifdef DEVICE_POLLING
 1499         if (sc->tsec_ifp->if_capenable & IFCAP_POLLING) {
 1500                 TSEC_TRANSMIT_UNLOCK(sc);
 1501                 return;
 1502         }
 1503 #endif
 1504         /* Confirm the interrupt was received by driver */
 1505         TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_TXB | TSEC_IEVENT_TXF);
 1506         tsec_transmit_intr_locked(sc);
 1507 
 1508         TSEC_TRANSMIT_UNLOCK(sc);
 1509 }
 1510 
 1511 static void
 1512 tsec_error_intr_locked(struct tsec_softc *sc, int count)
 1513 {
 1514         struct ifnet *ifp;
 1515         uint32_t eflags;
 1516 
 1517         TSEC_GLOBAL_LOCK_ASSERT(sc);
 1518 
 1519         ifp = sc->tsec_ifp;
 1520 
 1521         eflags = TSEC_READ(sc, TSEC_REG_IEVENT);
 1522 
 1523         /* Clear events bits in hardware */
 1524         TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXC | TSEC_IEVENT_BSY |
 1525             TSEC_IEVENT_EBERR | TSEC_IEVENT_MSRO | TSEC_IEVENT_BABT |
 1526             TSEC_IEVENT_TXC | TSEC_IEVENT_TXE | TSEC_IEVENT_LC |
 1527             TSEC_IEVENT_CRL | TSEC_IEVENT_XFUN);
 1528 
 1529         /* Check transmitter errors */
 1530         if (eflags & TSEC_IEVENT_TXE) {
 1531                 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
 1532 
 1533                 if (eflags & TSEC_IEVENT_LC)
 1534                         if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
 1535 
 1536                 TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
 1537         }
 1538 
 1539         /* Check for discarded frame due to a lack of buffers */
 1540         if (eflags & TSEC_IEVENT_BSY) {
 1541                 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
 1542         }
 1543 
 1544         if (ifp->if_flags & IFF_DEBUG)
 1545                 if_printf(ifp, "tsec_error_intr(): event flags: 0x%x\n",
 1546                     eflags);
 1547 
 1548         if (eflags & TSEC_IEVENT_EBERR) {
 1549                 if_printf(ifp, "System bus error occurred during"
 1550                     "DMA transaction (flags: 0x%x)\n", eflags);
 1551                 tsec_init_locked(sc);
 1552         }
 1553 
 1554         if (eflags & TSEC_IEVENT_BABT)
 1555                 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
 1556 
 1557         if (eflags & TSEC_IEVENT_BABR)
 1558                 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
 1559 }
 1560 
 1561 void
 1562 tsec_error_intr(void *arg)
 1563 {
 1564         struct tsec_softc *sc = arg;
 1565 
 1566         TSEC_GLOBAL_LOCK(sc);
 1567         tsec_error_intr_locked(sc, -1);
 1568         TSEC_GLOBAL_UNLOCK(sc);
 1569 }
 1570 
 1571 int
 1572 tsec_miibus_readreg(device_t dev, int phy, int reg)
 1573 {
 1574         struct tsec_softc *sc;
 1575         int timeout;
 1576         int rv;
 1577 
 1578         sc = device_get_softc(dev);
 1579 
 1580         TSEC_PHY_LOCK();
 1581         TSEC_PHY_WRITE(sc, TSEC_REG_MIIMADD, (phy << 8) | reg);
 1582         TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCOM, 0);
 1583         TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCOM, TSEC_MIIMCOM_READCYCLE);
 1584 
 1585         timeout = tsec_mii_wait(sc, TSEC_MIIMIND_NOTVALID | TSEC_MIIMIND_BUSY);
 1586         rv = TSEC_PHY_READ(sc, TSEC_REG_MIIMSTAT);
 1587         TSEC_PHY_UNLOCK();
 1588 
 1589         if (timeout)
 1590                 device_printf(dev, "Timeout while reading from PHY!\n");
 1591 
 1592         return (rv);
 1593 }
 1594 
 1595 int
 1596 tsec_miibus_writereg(device_t dev, int phy, int reg, int value)
 1597 {
 1598         struct tsec_softc *sc;
 1599         int timeout;
 1600 
 1601         sc = device_get_softc(dev);
 1602 
 1603         TSEC_PHY_LOCK();
 1604         TSEC_PHY_WRITE(sc, TSEC_REG_MIIMADD, (phy << 8) | reg);
 1605         TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCON, value);
 1606         timeout = tsec_mii_wait(sc, TSEC_MIIMIND_BUSY);
 1607         TSEC_PHY_UNLOCK();
 1608 
 1609         if (timeout)
 1610                 device_printf(dev, "Timeout while writing to PHY!\n");
 1611 
 1612         return (0);
 1613 }
 1614 
 1615 void
 1616 tsec_miibus_statchg(device_t dev)
 1617 {
 1618         struct tsec_softc *sc;
 1619         struct mii_data *mii;
 1620         uint32_t ecntrl, id, tmp;
 1621         int link;
 1622 
 1623         sc = device_get_softc(dev);
 1624         mii = sc->tsec_mii;
 1625         link = ((mii->mii_media_status & IFM_ACTIVE) ? 1 : 0);
 1626 
 1627         tmp = TSEC_READ(sc, TSEC_REG_MACCFG2) & ~TSEC_MACCFG2_IF;
 1628 
 1629         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
 1630                 tmp |= TSEC_MACCFG2_FULLDUPLEX;
 1631         else
 1632                 tmp &= ~TSEC_MACCFG2_FULLDUPLEX;
 1633 
 1634         switch (IFM_SUBTYPE(mii->mii_media_active)) {
 1635         case IFM_1000_T:
 1636         case IFM_1000_SX:
 1637                 tmp |= TSEC_MACCFG2_GMII;
 1638                 sc->tsec_link = link;
 1639                 break;
 1640         case IFM_100_TX:
 1641         case IFM_10_T:
 1642                 tmp |= TSEC_MACCFG2_MII;
 1643                 sc->tsec_link = link;
 1644                 break;
 1645         case IFM_NONE:
 1646                 if (link)
 1647                         device_printf(dev, "No speed selected but link "
 1648                             "active!\n");
 1649                 sc->tsec_link = 0;
 1650                 return;
 1651         default:
 1652                 sc->tsec_link = 0;
 1653                 device_printf(dev, "Unknown speed (%d), link %s!\n",
 1654                     IFM_SUBTYPE(mii->mii_media_active),
 1655                         ((link) ? "up" : "down"));
 1656                 return;
 1657         }
 1658         TSEC_WRITE(sc, TSEC_REG_MACCFG2, tmp);
 1659 
 1660         /* XXX kludge - use circumstantial evidence for reduced mode. */
 1661         id = TSEC_READ(sc, TSEC_REG_ID2);
 1662         if (id & 0xffff) {
 1663                 ecntrl = TSEC_READ(sc, TSEC_REG_ECNTRL) & ~TSEC_ECNTRL_R100M;
 1664                 ecntrl |= (tmp & TSEC_MACCFG2_MII) ? TSEC_ECNTRL_R100M : 0;
 1665                 TSEC_WRITE(sc, TSEC_REG_ECNTRL, ecntrl);
 1666         }
 1667 }
 1668 
 1669 static void
 1670 tsec_add_sysctls(struct tsec_softc *sc)
 1671 {
 1672         struct sysctl_ctx_list *ctx;
 1673         struct sysctl_oid_list *children;
 1674         struct sysctl_oid *tree;
 1675 
 1676         ctx = device_get_sysctl_ctx(sc->dev);
 1677         children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
 1678         tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "int_coal",
 1679             CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "TSEC Interrupts coalescing");
 1680         children = SYSCTL_CHILDREN(tree);
 1681 
 1682         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_time",
 1683             CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, TSEC_IC_RX,
 1684             tsec_sysctl_ic_time, "I", "IC RX time threshold (0-65535)");
 1685         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_count",
 1686             CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, TSEC_IC_RX,
 1687             tsec_sysctl_ic_count, "I", "IC RX frame count threshold (0-255)");
 1688 
 1689         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_time",
 1690             CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, TSEC_IC_TX,
 1691             tsec_sysctl_ic_time, "I", "IC TX time threshold (0-65535)");
 1692         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_count",
 1693             CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, TSEC_IC_TX,
 1694             tsec_sysctl_ic_count, "I", "IC TX frame count threshold (0-255)");
 1695 }
 1696 
 1697 /*
 1698  * With Interrupt Coalescing (IC) active, a transmit/receive frame
 1699  * interrupt is raised either upon:
 1700  *
 1701  * - threshold-defined period of time elapsed, or
 1702  * - threshold-defined number of frames is received/transmitted,
 1703  *   whichever occurs first.
 1704  *
 1705  * The following sysctls regulate IC behaviour (for TX/RX separately):
 1706  *
 1707  * dev.tsec.<unit>.int_coal.rx_time
 1708  * dev.tsec.<unit>.int_coal.rx_count
 1709  * dev.tsec.<unit>.int_coal.tx_time
 1710  * dev.tsec.<unit>.int_coal.tx_count
 1711  *
 1712  * Values:
 1713  *
 1714  * - 0 for either time or count disables IC on the given TX/RX path
 1715  *
 1716  * - count: 1-255 (expresses frame count number; note that value of 1 is
 1717  *   effectively IC off)
 1718  *
 1719  * - time: 1-65535 (value corresponds to a real time period and is
 1720  *   expressed in units equivalent to 64 TSEC interface clocks, i.e. one timer
 1721  *   threshold unit is 26.5 us, 2.56 us, or 512 ns, corresponding to 10 Mbps,
 1722  *   100 Mbps, or 1Gbps, respectively. For detailed discussion consult the
 1723  *   TSEC reference manual.
 1724  */
 1725 static int
 1726 tsec_sysctl_ic_time(SYSCTL_HANDLER_ARGS)
 1727 {
 1728         int error;
 1729         uint32_t time;
 1730         struct tsec_softc *sc = (struct tsec_softc *)arg1;
 1731 
 1732         time = (arg2 == TSEC_IC_RX) ? sc->rx_ic_time : sc->tx_ic_time;
 1733 
 1734         error = sysctl_handle_int(oidp, &time, 0, req);
 1735         if (error != 0)
 1736                 return (error);
 1737 
 1738         if (time > 65535)
 1739                 return (EINVAL);
 1740 
 1741         TSEC_IC_LOCK(sc);
 1742         if (arg2 == TSEC_IC_RX) {
 1743                 sc->rx_ic_time = time;
 1744                 tsec_set_rxic(sc);
 1745         } else {
 1746                 sc->tx_ic_time = time;
 1747                 tsec_set_txic(sc);
 1748         }
 1749         TSEC_IC_UNLOCK(sc);
 1750 
 1751         return (0);
 1752 }
 1753 
 1754 static int
 1755 tsec_sysctl_ic_count(SYSCTL_HANDLER_ARGS)
 1756 {
 1757         int error;
 1758         uint32_t count;
 1759         struct tsec_softc *sc = (struct tsec_softc *)arg1;
 1760 
 1761         count = (arg2 == TSEC_IC_RX) ? sc->rx_ic_count : sc->tx_ic_count;
 1762 
 1763         error = sysctl_handle_int(oidp, &count, 0, req);
 1764         if (error != 0)
 1765                 return (error);
 1766 
 1767         if (count > 255)
 1768                 return (EINVAL);
 1769 
 1770         TSEC_IC_LOCK(sc);
 1771         if (arg2 == TSEC_IC_RX) {
 1772                 sc->rx_ic_count = count;
 1773                 tsec_set_rxic(sc);
 1774         } else {
 1775                 sc->tx_ic_count = count;
 1776                 tsec_set_txic(sc);
 1777         }
 1778         TSEC_IC_UNLOCK(sc);
 1779 
 1780         return (0);
 1781 }
 1782 
 1783 static void
 1784 tsec_set_rxic(struct tsec_softc *sc)
 1785 {
 1786         uint32_t rxic_val;
 1787 
 1788         if (sc->rx_ic_count == 0 || sc->rx_ic_time == 0)
 1789                 /* Disable RX IC */
 1790                 rxic_val = 0;
 1791         else {
 1792                 rxic_val = 0x80000000;
 1793                 rxic_val |= (sc->rx_ic_count << 21);
 1794                 rxic_val |= sc->rx_ic_time;
 1795         }
 1796 
 1797         TSEC_WRITE(sc, TSEC_REG_RXIC, rxic_val);
 1798 }
 1799 
 1800 static void
 1801 tsec_set_txic(struct tsec_softc *sc)
 1802 {
 1803         uint32_t txic_val;
 1804 
 1805         if (sc->tx_ic_count == 0 || sc->tx_ic_time == 0)
 1806                 /* Disable TX IC */
 1807                 txic_val = 0;
 1808         else {
 1809                 txic_val = 0x80000000;
 1810                 txic_val |= (sc->tx_ic_count << 21);
 1811                 txic_val |= sc->tx_ic_time;
 1812         }
 1813 
 1814         TSEC_WRITE(sc, TSEC_REG_TXIC, txic_val);
 1815 }
 1816 
 1817 static void
 1818 tsec_offload_setup(struct tsec_softc *sc)
 1819 {
 1820         struct ifnet *ifp = sc->tsec_ifp;
 1821         uint32_t reg;
 1822 
 1823         TSEC_GLOBAL_LOCK_ASSERT(sc);
 1824 
 1825         reg = TSEC_READ(sc, TSEC_REG_TCTRL);
 1826         reg |= TSEC_TCTRL_IPCSEN | TSEC_TCTRL_TUCSEN;
 1827 
 1828         if (ifp->if_capenable & IFCAP_TXCSUM)
 1829                 ifp->if_hwassist = TSEC_CHECKSUM_FEATURES;
 1830         else
 1831                 ifp->if_hwassist = 0;
 1832 
 1833         TSEC_WRITE(sc, TSEC_REG_TCTRL, reg);
 1834 
 1835         reg = TSEC_READ(sc, TSEC_REG_RCTRL);
 1836         reg &= ~(TSEC_RCTRL_IPCSEN | TSEC_RCTRL_TUCSEN | TSEC_RCTRL_PRSDEP);
 1837         reg |= TSEC_RCTRL_PRSDEP_PARSE_L2 | TSEC_RCTRL_VLEX;
 1838 
 1839         if (ifp->if_capenable & IFCAP_RXCSUM)
 1840                 reg |= TSEC_RCTRL_IPCSEN | TSEC_RCTRL_TUCSEN |
 1841                     TSEC_RCTRL_PRSDEP_PARSE_L234;
 1842 
 1843         TSEC_WRITE(sc, TSEC_REG_RCTRL, reg);
 1844 }
 1845 
 1846 static void
 1847 tsec_offload_process_frame(struct tsec_softc *sc, struct mbuf *m)
 1848 {
 1849         struct tsec_rx_fcb rx_fcb;
 1850         int csum_flags = 0;
 1851         int protocol, flags;
 1852 
 1853         TSEC_RECEIVE_LOCK_ASSERT(sc);
 1854 
 1855         m_copydata(m, 0, sizeof(struct tsec_rx_fcb), (caddr_t)(&rx_fcb));
 1856         flags = rx_fcb.flags;
 1857         protocol = rx_fcb.protocol;
 1858 
 1859         if (TSEC_RX_FCB_IP_CSUM_CHECKED(flags)) {
 1860                 csum_flags |= CSUM_IP_CHECKED;
 1861 
 1862                 if ((flags & TSEC_RX_FCB_IP_CSUM_ERROR) == 0)
 1863                         csum_flags |= CSUM_IP_VALID;
 1864         }
 1865 
 1866         if ((protocol == IPPROTO_TCP || protocol == IPPROTO_UDP) &&
 1867             TSEC_RX_FCB_TCP_UDP_CSUM_CHECKED(flags) &&
 1868             (flags & TSEC_RX_FCB_TCP_UDP_CSUM_ERROR) == 0) {
 1869                 csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
 1870                 m->m_pkthdr.csum_data = 0xFFFF;
 1871         }
 1872 
 1873         m->m_pkthdr.csum_flags = csum_flags;
 1874 
 1875         if (flags & TSEC_RX_FCB_VLAN) {
 1876                 m->m_pkthdr.ether_vtag = rx_fcb.vlan;
 1877                 m->m_flags |= M_VLANTAG;
 1878         }
 1879 
 1880         m_adj(m, sizeof(struct tsec_rx_fcb));
 1881 }
 1882 
 1883 static u_int
 1884 tsec_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
 1885 {
 1886         uint32_t h, *hashtable = arg;
 1887 
 1888         h = (ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 24) & 0xFF;
 1889         hashtable[(h >> 5)] |= 1 << (0x1F - (h & 0x1F));
 1890 
 1891         return (1);
 1892 }
 1893 
 1894 static void
 1895 tsec_setup_multicast(struct tsec_softc *sc)
 1896 {
 1897         uint32_t hashtable[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
 1898         struct ifnet *ifp = sc->tsec_ifp;
 1899         int i;
 1900 
 1901         TSEC_GLOBAL_LOCK_ASSERT(sc);
 1902 
 1903         if (ifp->if_flags & IFF_ALLMULTI) {
 1904                 for (i = 0; i < 8; i++)
 1905                         TSEC_WRITE(sc, TSEC_REG_GADDR(i), 0xFFFFFFFF);
 1906 
 1907                 return;
 1908         }
 1909 
 1910         if_foreach_llmaddr(ifp, tsec_hash_maddr, &hashtable);
 1911 
 1912         for (i = 0; i < 8; i++)
 1913                 TSEC_WRITE(sc, TSEC_REG_GADDR(i), hashtable[i]);
 1914 }
 1915 
 1916 static int
 1917 tsec_set_mtu(struct tsec_softc *sc, unsigned int mtu)
 1918 {
 1919 
 1920         mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
 1921 
 1922         TSEC_GLOBAL_LOCK_ASSERT(sc);
 1923 
 1924         if (mtu >= TSEC_MIN_FRAME_SIZE && mtu <= TSEC_MAX_FRAME_SIZE) {
 1925                 TSEC_WRITE(sc, TSEC_REG_MAXFRM, mtu);
 1926                 return (mtu);
 1927         }
 1928 
 1929         return (0);
 1930 }

Cache object: c0a1a33c2da22586d8098369b1114a85


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.