FreeBSD/Linux Kernel Cross Reference
sys/dev/tsec/if_tsec.c
1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (C) 2007-2008 Semihalf, Rafal Jaworowski
5 * Copyright (C) 2006-2007 Semihalf, Piotr Kruszynski
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
20 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
22 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
23 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
24 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
25 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
26 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * Freescale integrated Three-Speed Ethernet Controller (TSEC) driver.
31 */
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #ifdef HAVE_KERNEL_OPTION_HEADERS
36 #include "opt_device_polling.h"
37 #endif
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/bus.h>
42 #include <sys/endian.h>
43 #include <sys/mbuf.h>
44 #include <sys/kernel.h>
45 #include <sys/module.h>
46 #include <sys/socket.h>
47 #include <sys/sockio.h>
48 #include <sys/sysctl.h>
49
50 #include <net/bpf.h>
51 #include <net/ethernet.h>
52 #include <net/if.h>
53 #include <net/if_var.h>
54 #include <net/if_arp.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58 #include <net/if_vlan_var.h>
59
60 #include <netinet/in_systm.h>
61 #include <netinet/in.h>
62 #include <netinet/ip.h>
63
64 #include <machine/bus.h>
65
66 #include <dev/mii/mii.h>
67 #include <dev/mii/miivar.h>
68
69 #include <dev/tsec/if_tsec.h>
70 #include <dev/tsec/if_tsecreg.h>
71
72 static int tsec_alloc_dma_desc(device_t dev, bus_dma_tag_t *dtag,
73 bus_dmamap_t *dmap, bus_size_t dsize, void **vaddr, void *raddr,
74 const char *dname);
75 static void tsec_dma_ctl(struct tsec_softc *sc, int state);
76 static void tsec_encap(struct ifnet *ifp, struct tsec_softc *sc,
77 struct mbuf *m0, uint16_t fcb_flags, int *start_tx);
78 static void tsec_free_dma(struct tsec_softc *sc);
79 static void tsec_free_dma_desc(bus_dma_tag_t dtag, bus_dmamap_t dmap, void *vaddr);
80 static int tsec_ifmedia_upd(struct ifnet *ifp);
81 static void tsec_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
82 static int tsec_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map,
83 struct mbuf **mbufp, uint32_t *paddr);
84 static void tsec_map_dma_addr(void *arg, bus_dma_segment_t *segs,
85 int nseg, int error);
86 static void tsec_intrs_ctl(struct tsec_softc *sc, int state);
87 static void tsec_init(void *xsc);
88 static void tsec_init_locked(struct tsec_softc *sc);
89 static int tsec_ioctl(struct ifnet *ifp, u_long command, caddr_t data);
90 static void tsec_reset_mac(struct tsec_softc *sc);
91 static void tsec_setfilter(struct tsec_softc *sc);
92 static void tsec_set_mac_address(struct tsec_softc *sc);
93 static void tsec_start(struct ifnet *ifp);
94 static void tsec_start_locked(struct ifnet *ifp);
95 static void tsec_stop(struct tsec_softc *sc);
96 static void tsec_tick(void *arg);
97 static void tsec_watchdog(struct tsec_softc *sc);
98 static void tsec_add_sysctls(struct tsec_softc *sc);
99 static int tsec_sysctl_ic_time(SYSCTL_HANDLER_ARGS);
100 static int tsec_sysctl_ic_count(SYSCTL_HANDLER_ARGS);
101 static void tsec_set_rxic(struct tsec_softc *sc);
102 static void tsec_set_txic(struct tsec_softc *sc);
103 static int tsec_receive_intr_locked(struct tsec_softc *sc, int count);
104 static void tsec_transmit_intr_locked(struct tsec_softc *sc);
105 static void tsec_error_intr_locked(struct tsec_softc *sc, int count);
106 static void tsec_offload_setup(struct tsec_softc *sc);
107 static void tsec_offload_process_frame(struct tsec_softc *sc,
108 struct mbuf *m);
109 static void tsec_setup_multicast(struct tsec_softc *sc);
110 static int tsec_set_mtu(struct tsec_softc *sc, unsigned int mtu);
111
112 DRIVER_MODULE(miibus, tsec, miibus_driver, 0, 0);
113 MODULE_DEPEND(tsec, ether, 1, 1, 1);
114 MODULE_DEPEND(tsec, miibus, 1, 1, 1);
115
116 struct mtx tsec_phy_mtx;
117
118 int
119 tsec_attach(struct tsec_softc *sc)
120 {
121 uint8_t hwaddr[ETHER_ADDR_LEN];
122 struct ifnet *ifp;
123 int error = 0;
124 int i;
125
126 /* Initialize global (because potentially shared) MII lock */
127 if (!mtx_initialized(&tsec_phy_mtx))
128 mtx_init(&tsec_phy_mtx, "tsec mii", NULL, MTX_DEF);
129
130 /* Reset all TSEC counters */
131 TSEC_TX_RX_COUNTERS_INIT(sc);
132
133 /* Stop DMA engine if enabled by firmware */
134 tsec_dma_ctl(sc, 0);
135
136 /* Reset MAC */
137 tsec_reset_mac(sc);
138
139 /* Disable interrupts for now */
140 tsec_intrs_ctl(sc, 0);
141
142 /* Configure defaults for interrupts coalescing */
143 sc->rx_ic_time = 768;
144 sc->rx_ic_count = 16;
145 sc->tx_ic_time = 768;
146 sc->tx_ic_count = 16;
147 tsec_set_rxic(sc);
148 tsec_set_txic(sc);
149 tsec_add_sysctls(sc);
150
151 /* Allocate a busdma tag and DMA safe memory for TX descriptors. */
152 error = tsec_alloc_dma_desc(sc->dev, &sc->tsec_tx_dtag,
153 &sc->tsec_tx_dmap, sizeof(*sc->tsec_tx_vaddr) * TSEC_TX_NUM_DESC,
154 (void **)&sc->tsec_tx_vaddr, &sc->tsec_tx_raddr, "TX");
155
156 if (error) {
157 tsec_detach(sc);
158 return (ENXIO);
159 }
160
161 /* Allocate a busdma tag and DMA safe memory for RX descriptors. */
162 error = tsec_alloc_dma_desc(sc->dev, &sc->tsec_rx_dtag,
163 &sc->tsec_rx_dmap, sizeof(*sc->tsec_rx_vaddr) * TSEC_RX_NUM_DESC,
164 (void **)&sc->tsec_rx_vaddr, &sc->tsec_rx_raddr, "RX");
165 if (error) {
166 tsec_detach(sc);
167 return (ENXIO);
168 }
169
170 /* Allocate a busdma tag for TX mbufs. */
171 error = bus_dma_tag_create(NULL, /* parent */
172 TSEC_TXBUFFER_ALIGNMENT, 0, /* alignment, boundary */
173 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
174 BUS_SPACE_MAXADDR, /* highaddr */
175 NULL, NULL, /* filtfunc, filtfuncarg */
176 MCLBYTES * (TSEC_TX_NUM_DESC - 1), /* maxsize */
177 TSEC_TX_MAX_DMA_SEGS, /* nsegments */
178 MCLBYTES, 0, /* maxsegsz, flags */
179 NULL, NULL, /* lockfunc, lockfuncarg */
180 &sc->tsec_tx_mtag); /* dmat */
181 if (error) {
182 device_printf(sc->dev, "failed to allocate busdma tag "
183 "(tx mbufs)\n");
184 tsec_detach(sc);
185 return (ENXIO);
186 }
187
188 /* Allocate a busdma tag for RX mbufs. */
189 error = bus_dma_tag_create(NULL, /* parent */
190 TSEC_RXBUFFER_ALIGNMENT, 0, /* alignment, boundary */
191 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
192 BUS_SPACE_MAXADDR, /* highaddr */
193 NULL, NULL, /* filtfunc, filtfuncarg */
194 MCLBYTES, /* maxsize */
195 1, /* nsegments */
196 MCLBYTES, 0, /* maxsegsz, flags */
197 NULL, NULL, /* lockfunc, lockfuncarg */
198 &sc->tsec_rx_mtag); /* dmat */
199 if (error) {
200 device_printf(sc->dev, "failed to allocate busdma tag "
201 "(rx mbufs)\n");
202 tsec_detach(sc);
203 return (ENXIO);
204 }
205
206 /* Create TX busdma maps */
207 for (i = 0; i < TSEC_TX_NUM_DESC; i++) {
208 error = bus_dmamap_create(sc->tsec_tx_mtag, 0,
209 &sc->tx_bufmap[i].map);
210 if (error) {
211 device_printf(sc->dev, "failed to init TX ring\n");
212 tsec_detach(sc);
213 return (ENXIO);
214 }
215 sc->tx_bufmap[i].map_initialized = 1;
216 }
217
218 /* Create RX busdma maps and zero mbuf handlers */
219 for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
220 error = bus_dmamap_create(sc->tsec_rx_mtag, 0,
221 &sc->rx_data[i].map);
222 if (error) {
223 device_printf(sc->dev, "failed to init RX ring\n");
224 tsec_detach(sc);
225 return (ENXIO);
226 }
227 sc->rx_data[i].mbuf = NULL;
228 }
229
230 /* Create mbufs for RX buffers */
231 for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
232 error = tsec_new_rxbuf(sc->tsec_rx_mtag, sc->rx_data[i].map,
233 &sc->rx_data[i].mbuf, &sc->rx_data[i].paddr);
234 if (error) {
235 device_printf(sc->dev, "can't load rx DMA map %d, "
236 "error = %d\n", i, error);
237 tsec_detach(sc);
238 return (error);
239 }
240 }
241
242 /* Create network interface for upper layers */
243 ifp = sc->tsec_ifp = if_alloc(IFT_ETHER);
244 if (ifp == NULL) {
245 device_printf(sc->dev, "if_alloc() failed\n");
246 tsec_detach(sc);
247 return (ENOMEM);
248 }
249
250 ifp->if_softc = sc;
251 if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
252 ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST;
253 ifp->if_init = tsec_init;
254 ifp->if_start = tsec_start;
255 ifp->if_ioctl = tsec_ioctl;
256
257 IFQ_SET_MAXLEN(&ifp->if_snd, TSEC_TX_NUM_DESC - 1);
258 ifp->if_snd.ifq_drv_maxlen = TSEC_TX_NUM_DESC - 1;
259 IFQ_SET_READY(&ifp->if_snd);
260
261 ifp->if_capabilities = IFCAP_VLAN_MTU;
262 if (sc->is_etsec)
263 ifp->if_capabilities |= IFCAP_HWCSUM;
264
265 ifp->if_capenable = ifp->if_capabilities;
266
267 #ifdef DEVICE_POLLING
268 /* Advertise that polling is supported */
269 ifp->if_capabilities |= IFCAP_POLLING;
270 #endif
271
272 /* Attach PHY(s) */
273 error = mii_attach(sc->dev, &sc->tsec_miibus, ifp, tsec_ifmedia_upd,
274 tsec_ifmedia_sts, BMSR_DEFCAPMASK, sc->phyaddr, MII_OFFSET_ANY,
275 0);
276 if (error) {
277 device_printf(sc->dev, "attaching PHYs failed\n");
278 if_free(ifp);
279 sc->tsec_ifp = NULL;
280 tsec_detach(sc);
281 return (error);
282 }
283 sc->tsec_mii = device_get_softc(sc->tsec_miibus);
284
285 /* Set MAC address */
286 tsec_get_hwaddr(sc, hwaddr);
287 ether_ifattach(ifp, hwaddr);
288
289 return (0);
290 }
291
292 int
293 tsec_detach(struct tsec_softc *sc)
294 {
295
296 if (sc->tsec_ifp != NULL) {
297 #ifdef DEVICE_POLLING
298 if (sc->tsec_ifp->if_capenable & IFCAP_POLLING)
299 ether_poll_deregister(sc->tsec_ifp);
300 #endif
301
302 /* Stop TSEC controller and free TX queue */
303 if (sc->sc_rres)
304 tsec_shutdown(sc->dev);
305
306 /* Detach network interface */
307 ether_ifdetach(sc->tsec_ifp);
308 if_free(sc->tsec_ifp);
309 sc->tsec_ifp = NULL;
310 }
311
312 /* Free DMA resources */
313 tsec_free_dma(sc);
314
315 return (0);
316 }
317
318 int
319 tsec_shutdown(device_t dev)
320 {
321 struct tsec_softc *sc;
322
323 sc = device_get_softc(dev);
324
325 TSEC_GLOBAL_LOCK(sc);
326 tsec_stop(sc);
327 TSEC_GLOBAL_UNLOCK(sc);
328 return (0);
329 }
330
331 int
332 tsec_suspend(device_t dev)
333 {
334
335 /* TODO not implemented! */
336 return (0);
337 }
338
339 int
340 tsec_resume(device_t dev)
341 {
342
343 /* TODO not implemented! */
344 return (0);
345 }
346
347 static void
348 tsec_init(void *xsc)
349 {
350 struct tsec_softc *sc = xsc;
351
352 TSEC_GLOBAL_LOCK(sc);
353 tsec_init_locked(sc);
354 TSEC_GLOBAL_UNLOCK(sc);
355 }
356
357 static int
358 tsec_mii_wait(struct tsec_softc *sc, uint32_t flags)
359 {
360 int timeout;
361
362 /*
363 * The status indicators are not set immediately after a command.
364 * Discard the first value.
365 */
366 TSEC_PHY_READ(sc, TSEC_REG_MIIMIND);
367
368 timeout = TSEC_READ_RETRY;
369 while ((TSEC_PHY_READ(sc, TSEC_REG_MIIMIND) & flags) && --timeout)
370 DELAY(TSEC_READ_DELAY);
371
372 return (timeout == 0);
373 }
374
375 static void
376 tsec_init_locked(struct tsec_softc *sc)
377 {
378 struct tsec_desc *tx_desc = sc->tsec_tx_vaddr;
379 struct tsec_desc *rx_desc = sc->tsec_rx_vaddr;
380 struct ifnet *ifp = sc->tsec_ifp;
381 uint32_t val, i;
382 int timeout;
383
384 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
385 return;
386
387 TSEC_GLOBAL_LOCK_ASSERT(sc);
388 tsec_stop(sc);
389
390 /*
391 * These steps are according to the MPC8555E PowerQUICCIII RM:
392 * 14.7 Initialization/Application Information
393 */
394
395 /* Step 1: soft reset MAC */
396 tsec_reset_mac(sc);
397
398 /* Step 2: Initialize MACCFG2 */
399 TSEC_WRITE(sc, TSEC_REG_MACCFG2,
400 TSEC_MACCFG2_FULLDUPLEX | /* Full Duplex = 1 */
401 TSEC_MACCFG2_PADCRC | /* PAD/CRC append */
402 TSEC_MACCFG2_GMII | /* I/F Mode bit */
403 TSEC_MACCFG2_PRECNT /* Preamble count = 7 */
404 );
405
406 /* Step 3: Initialize ECNTRL
407 * While the documentation states that R100M is ignored if RPM is
408 * not set, it does seem to be needed to get the orange boxes to
409 * work (which have a Marvell 88E1111 PHY). Go figure.
410 */
411
412 /*
413 * XXX kludge - use circumstancial evidence to program ECNTRL
414 * correctly. Ideally we need some board information to guide
415 * us here.
416 */
417 i = TSEC_READ(sc, TSEC_REG_ID2);
418 val = (i & 0xffff)
419 ? (TSEC_ECNTRL_TBIM | TSEC_ECNTRL_SGMIIM) /* Sumatra */
420 : TSEC_ECNTRL_R100M; /* Orange + CDS */
421 TSEC_WRITE(sc, TSEC_REG_ECNTRL, TSEC_ECNTRL_STEN | val);
422
423 /* Step 4: Initialize MAC station address */
424 tsec_set_mac_address(sc);
425
426 /*
427 * Step 5: Assign a Physical address to the TBI so as to not conflict
428 * with the external PHY physical address
429 */
430 TSEC_WRITE(sc, TSEC_REG_TBIPA, 5);
431
432 TSEC_PHY_LOCK(sc);
433
434 /* Step 6: Reset the management interface */
435 TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCFG, TSEC_MIIMCFG_RESETMGMT);
436
437 /* Step 7: Setup the MII Mgmt clock speed */
438 TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCFG, TSEC_MIIMCFG_CLKDIV28);
439
440 /* Step 8: Read MII Mgmt indicator register and check for Busy = 0 */
441 timeout = tsec_mii_wait(sc, TSEC_MIIMIND_BUSY);
442
443 TSEC_PHY_UNLOCK(sc);
444 if (timeout) {
445 if_printf(ifp, "tsec_init_locked(): Mgmt busy timeout\n");
446 return;
447 }
448
449 /* Step 9: Setup the MII Mgmt */
450 mii_mediachg(sc->tsec_mii);
451
452 /* Step 10: Clear IEVENT register */
453 TSEC_WRITE(sc, TSEC_REG_IEVENT, 0xffffffff);
454
455 /* Step 11: Enable interrupts */
456 #ifdef DEVICE_POLLING
457 /*
458 * ...only if polling is not turned on. Disable interrupts explicitly
459 * if polling is enabled.
460 */
461 if (ifp->if_capenable & IFCAP_POLLING )
462 tsec_intrs_ctl(sc, 0);
463 else
464 #endif /* DEVICE_POLLING */
465 tsec_intrs_ctl(sc, 1);
466
467 /* Step 12: Initialize IADDRn */
468 TSEC_WRITE(sc, TSEC_REG_IADDR0, 0);
469 TSEC_WRITE(sc, TSEC_REG_IADDR1, 0);
470 TSEC_WRITE(sc, TSEC_REG_IADDR2, 0);
471 TSEC_WRITE(sc, TSEC_REG_IADDR3, 0);
472 TSEC_WRITE(sc, TSEC_REG_IADDR4, 0);
473 TSEC_WRITE(sc, TSEC_REG_IADDR5, 0);
474 TSEC_WRITE(sc, TSEC_REG_IADDR6, 0);
475 TSEC_WRITE(sc, TSEC_REG_IADDR7, 0);
476
477 /* Step 13: Initialize GADDRn */
478 TSEC_WRITE(sc, TSEC_REG_GADDR0, 0);
479 TSEC_WRITE(sc, TSEC_REG_GADDR1, 0);
480 TSEC_WRITE(sc, TSEC_REG_GADDR2, 0);
481 TSEC_WRITE(sc, TSEC_REG_GADDR3, 0);
482 TSEC_WRITE(sc, TSEC_REG_GADDR4, 0);
483 TSEC_WRITE(sc, TSEC_REG_GADDR5, 0);
484 TSEC_WRITE(sc, TSEC_REG_GADDR6, 0);
485 TSEC_WRITE(sc, TSEC_REG_GADDR7, 0);
486
487 /* Step 14: Initialize RCTRL */
488 TSEC_WRITE(sc, TSEC_REG_RCTRL, 0);
489
490 /* Step 15: Initialize DMACTRL */
491 tsec_dma_ctl(sc, 1);
492
493 /* Step 16: Initialize FIFO_PAUSE_CTRL */
494 TSEC_WRITE(sc, TSEC_REG_FIFO_PAUSE_CTRL, TSEC_FIFO_PAUSE_CTRL_EN);
495
496 /*
497 * Step 17: Initialize transmit/receive descriptor rings.
498 * Initialize TBASE and RBASE.
499 */
500 TSEC_WRITE(sc, TSEC_REG_TBASE, sc->tsec_tx_raddr);
501 TSEC_WRITE(sc, TSEC_REG_RBASE, sc->tsec_rx_raddr);
502
503 for (i = 0; i < TSEC_TX_NUM_DESC; i++) {
504 tx_desc[i].bufptr = 0;
505 tx_desc[i].length = 0;
506 tx_desc[i].flags = ((i == TSEC_TX_NUM_DESC - 1) ?
507 TSEC_TXBD_W : 0);
508 }
509 bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
510 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
511
512 for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
513 rx_desc[i].bufptr = sc->rx_data[i].paddr;
514 rx_desc[i].length = 0;
515 rx_desc[i].flags = TSEC_RXBD_E | TSEC_RXBD_I |
516 ((i == TSEC_RX_NUM_DESC - 1) ? TSEC_RXBD_W : 0);
517 }
518 bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
519 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
520
521 /* Step 18: Initialize the maximum receive buffer length */
522 TSEC_WRITE(sc, TSEC_REG_MRBLR, MCLBYTES);
523
524 /* Step 19: Configure ethernet frame sizes */
525 TSEC_WRITE(sc, TSEC_REG_MINFLR, TSEC_MIN_FRAME_SIZE);
526 tsec_set_mtu(sc, ifp->if_mtu);
527
528 /* Step 20: Enable Rx and RxBD sdata snooping */
529 TSEC_WRITE(sc, TSEC_REG_ATTR, TSEC_ATTR_RDSEN | TSEC_ATTR_RBDSEN);
530 TSEC_WRITE(sc, TSEC_REG_ATTRELI, 0);
531
532 /* Step 21: Reset collision counters in hardware */
533 TSEC_WRITE(sc, TSEC_REG_MON_TSCL, 0);
534 TSEC_WRITE(sc, TSEC_REG_MON_TMCL, 0);
535 TSEC_WRITE(sc, TSEC_REG_MON_TLCL, 0);
536 TSEC_WRITE(sc, TSEC_REG_MON_TXCL, 0);
537 TSEC_WRITE(sc, TSEC_REG_MON_TNCL, 0);
538
539 /* Step 22: Mask all CAM interrupts */
540 TSEC_WRITE(sc, TSEC_REG_MON_CAM1, 0xffffffff);
541 TSEC_WRITE(sc, TSEC_REG_MON_CAM2, 0xffffffff);
542
543 /* Step 23: Enable Rx and Tx */
544 val = TSEC_READ(sc, TSEC_REG_MACCFG1);
545 val |= (TSEC_MACCFG1_RX_EN | TSEC_MACCFG1_TX_EN);
546 TSEC_WRITE(sc, TSEC_REG_MACCFG1, val);
547
548 /* Step 24: Reset TSEC counters for Tx and Rx rings */
549 TSEC_TX_RX_COUNTERS_INIT(sc);
550
551 /* Step 25: Setup TCP/IP Off-Load engine */
552 if (sc->is_etsec)
553 tsec_offload_setup(sc);
554
555 /* Step 26: Setup multicast filters */
556 tsec_setup_multicast(sc);
557
558 /* Step 27: Activate network interface */
559 ifp->if_drv_flags |= IFF_DRV_RUNNING;
560 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
561 sc->tsec_if_flags = ifp->if_flags;
562 sc->tsec_watchdog = 0;
563
564 /* Schedule watchdog timeout */
565 callout_reset(&sc->tsec_callout, hz, tsec_tick, sc);
566 }
567
568 static void
569 tsec_set_mac_address(struct tsec_softc *sc)
570 {
571 uint32_t macbuf[2] = { 0, 0 };
572 char *macbufp, *curmac;
573 int i;
574
575 TSEC_GLOBAL_LOCK_ASSERT(sc);
576
577 KASSERT((ETHER_ADDR_LEN <= sizeof(macbuf)),
578 ("tsec_set_mac_address: (%d <= %zd", ETHER_ADDR_LEN,
579 sizeof(macbuf)));
580
581 macbufp = (char *)macbuf;
582 curmac = (char *)IF_LLADDR(sc->tsec_ifp);
583
584 /* Correct order of MAC address bytes */
585 for (i = 1; i <= ETHER_ADDR_LEN; i++)
586 macbufp[ETHER_ADDR_LEN-i] = curmac[i-1];
587
588 /* Initialize MAC station address MACSTNADDR2 and MACSTNADDR1 */
589 TSEC_WRITE(sc, TSEC_REG_MACSTNADDR2, macbuf[1]);
590 TSEC_WRITE(sc, TSEC_REG_MACSTNADDR1, macbuf[0]);
591 }
592
593 /*
594 * DMA control function, if argument state is:
595 * 0 - DMA engine will be disabled
596 * 1 - DMA engine will be enabled
597 */
598 static void
599 tsec_dma_ctl(struct tsec_softc *sc, int state)
600 {
601 device_t dev;
602 uint32_t dma_flags, timeout;
603
604 dev = sc->dev;
605
606 dma_flags = TSEC_READ(sc, TSEC_REG_DMACTRL);
607
608 switch (state) {
609 case 0:
610 /* Temporarily clear stop graceful stop bits. */
611 tsec_dma_ctl(sc, 1000);
612
613 /* Set it again */
614 dma_flags |= (TSEC_DMACTRL_GRS | TSEC_DMACTRL_GTS);
615 break;
616 case 1000:
617 case 1:
618 /* Set write with response (WWR), wait (WOP) and snoop bits */
619 dma_flags |= (TSEC_DMACTRL_TDSEN | TSEC_DMACTRL_TBDSEN |
620 DMACTRL_WWR | DMACTRL_WOP);
621
622 /* Clear graceful stop bits */
623 dma_flags &= ~(TSEC_DMACTRL_GRS | TSEC_DMACTRL_GTS);
624 break;
625 default:
626 device_printf(dev, "tsec_dma_ctl(): unknown state value: %d\n",
627 state);
628 }
629
630 TSEC_WRITE(sc, TSEC_REG_DMACTRL, dma_flags);
631
632 switch (state) {
633 case 0:
634 /* Wait for DMA stop */
635 timeout = TSEC_READ_RETRY;
636 while (--timeout && (!(TSEC_READ(sc, TSEC_REG_IEVENT) &
637 (TSEC_IEVENT_GRSC | TSEC_IEVENT_GTSC))))
638 DELAY(TSEC_READ_DELAY);
639
640 if (timeout == 0)
641 device_printf(dev, "tsec_dma_ctl(): timeout!\n");
642 break;
643 case 1:
644 /* Restart transmission function */
645 TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
646 }
647 }
648
649 /*
650 * Interrupts control function, if argument state is:
651 * 0 - all TSEC interrupts will be masked
652 * 1 - all TSEC interrupts will be unmasked
653 */
654 static void
655 tsec_intrs_ctl(struct tsec_softc *sc, int state)
656 {
657 device_t dev;
658
659 dev = sc->dev;
660
661 switch (state) {
662 case 0:
663 TSEC_WRITE(sc, TSEC_REG_IMASK, 0);
664 break;
665 case 1:
666 TSEC_WRITE(sc, TSEC_REG_IMASK, TSEC_IMASK_BREN |
667 TSEC_IMASK_RXCEN | TSEC_IMASK_BSYEN | TSEC_IMASK_EBERREN |
668 TSEC_IMASK_BTEN | TSEC_IMASK_TXEEN | TSEC_IMASK_TXBEN |
669 TSEC_IMASK_TXFEN | TSEC_IMASK_XFUNEN | TSEC_IMASK_RXFEN);
670 break;
671 default:
672 device_printf(dev, "tsec_intrs_ctl(): unknown state value: %d\n",
673 state);
674 }
675 }
676
677 static void
678 tsec_reset_mac(struct tsec_softc *sc)
679 {
680 uint32_t maccfg1_flags;
681
682 /* Set soft reset bit */
683 maccfg1_flags = TSEC_READ(sc, TSEC_REG_MACCFG1);
684 maccfg1_flags |= TSEC_MACCFG1_SOFT_RESET;
685 TSEC_WRITE(sc, TSEC_REG_MACCFG1, maccfg1_flags);
686
687 /* Clear soft reset bit */
688 maccfg1_flags = TSEC_READ(sc, TSEC_REG_MACCFG1);
689 maccfg1_flags &= ~TSEC_MACCFG1_SOFT_RESET;
690 TSEC_WRITE(sc, TSEC_REG_MACCFG1, maccfg1_flags);
691 }
692
693 static void
694 tsec_watchdog(struct tsec_softc *sc)
695 {
696 struct ifnet *ifp;
697
698 TSEC_GLOBAL_LOCK_ASSERT(sc);
699
700 if (sc->tsec_watchdog == 0 || --sc->tsec_watchdog > 0)
701 return;
702
703 ifp = sc->tsec_ifp;
704 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
705 if_printf(ifp, "watchdog timeout\n");
706
707 tsec_stop(sc);
708 tsec_init_locked(sc);
709 }
710
711 static void
712 tsec_start(struct ifnet *ifp)
713 {
714 struct tsec_softc *sc = ifp->if_softc;
715
716 TSEC_TRANSMIT_LOCK(sc);
717 tsec_start_locked(ifp);
718 TSEC_TRANSMIT_UNLOCK(sc);
719 }
720
721 static void
722 tsec_start_locked(struct ifnet *ifp)
723 {
724 struct tsec_softc *sc;
725 struct mbuf *m0;
726 struct tsec_tx_fcb *tx_fcb;
727 int csum_flags;
728 int start_tx;
729 uint16_t fcb_flags;
730
731 sc = ifp->if_softc;
732 start_tx = 0;
733
734 TSEC_TRANSMIT_LOCK_ASSERT(sc);
735
736 if (sc->tsec_link == 0)
737 return;
738
739 bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
740 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
741
742 for (;;) {
743 if (TSEC_FREE_TX_DESC(sc) < TSEC_TX_MAX_DMA_SEGS) {
744 /* No free descriptors */
745 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
746 break;
747 }
748
749 /* Get packet from the queue */
750 IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
751 if (m0 == NULL)
752 break;
753
754 /* Insert TCP/IP Off-load frame control block */
755 fcb_flags = 0;
756 csum_flags = m0->m_pkthdr.csum_flags;
757 if (csum_flags) {
758 M_PREPEND(m0, sizeof(struct tsec_tx_fcb), M_NOWAIT);
759 if (m0 == NULL)
760 break;
761
762 if (csum_flags & CSUM_IP)
763 fcb_flags |= TSEC_TX_FCB_IP4 |
764 TSEC_TX_FCB_CSUM_IP;
765
766 if (csum_flags & CSUM_TCP)
767 fcb_flags |= TSEC_TX_FCB_TCP |
768 TSEC_TX_FCB_CSUM_TCP_UDP;
769
770 if (csum_flags & CSUM_UDP)
771 fcb_flags |= TSEC_TX_FCB_UDP |
772 TSEC_TX_FCB_CSUM_TCP_UDP;
773
774 tx_fcb = mtod(m0, struct tsec_tx_fcb *);
775 tx_fcb->flags = fcb_flags;
776 tx_fcb->l3_offset = ETHER_HDR_LEN;
777 tx_fcb->l4_offset = sizeof(struct ip);
778 }
779
780 tsec_encap(ifp, sc, m0, fcb_flags, &start_tx);
781 }
782 bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
783 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
784
785 if (start_tx) {
786 /* Enable transmitter and watchdog timer */
787 TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
788 sc->tsec_watchdog = 5;
789 }
790 }
791
792 static void
793 tsec_encap(struct ifnet *ifp, struct tsec_softc *sc, struct mbuf *m0,
794 uint16_t fcb_flags, int *start_tx)
795 {
796 bus_dma_segment_t segs[TSEC_TX_MAX_DMA_SEGS];
797 int error, i, nsegs;
798 struct tsec_bufmap *tx_bufmap;
799 uint32_t tx_idx;
800 uint16_t flags;
801
802 TSEC_TRANSMIT_LOCK_ASSERT(sc);
803
804 tx_idx = sc->tx_idx_head;
805 tx_bufmap = &sc->tx_bufmap[tx_idx];
806
807 /* Create mapping in DMA memory */
808 error = bus_dmamap_load_mbuf_sg(sc->tsec_tx_mtag, tx_bufmap->map, m0,
809 segs, &nsegs, BUS_DMA_NOWAIT);
810 if (error == EFBIG) {
811 /* Too many segments! Defrag and try again. */
812 struct mbuf *m = m_defrag(m0, M_NOWAIT);
813
814 if (m == NULL) {
815 m_freem(m0);
816 return;
817 }
818 m0 = m;
819 error = bus_dmamap_load_mbuf_sg(sc->tsec_tx_mtag,
820 tx_bufmap->map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
821 }
822 if (error != 0) {
823 /* Give up. */
824 m_freem(m0);
825 return;
826 }
827
828 bus_dmamap_sync(sc->tsec_tx_mtag, tx_bufmap->map,
829 BUS_DMASYNC_PREWRITE);
830 tx_bufmap->mbuf = m0;
831
832 /*
833 * Fill in the TX descriptors back to front so that READY bit in first
834 * descriptor is set last.
835 */
836 tx_idx = (tx_idx + (uint32_t)nsegs) & (TSEC_TX_NUM_DESC - 1);
837 sc->tx_idx_head = tx_idx;
838 flags = TSEC_TXBD_L | TSEC_TXBD_I | TSEC_TXBD_R | TSEC_TXBD_TC;
839 for (i = nsegs - 1; i >= 0; i--) {
840 struct tsec_desc *tx_desc;
841
842 tx_idx = (tx_idx - 1) & (TSEC_TX_NUM_DESC - 1);
843 tx_desc = &sc->tsec_tx_vaddr[tx_idx];
844 tx_desc->length = segs[i].ds_len;
845 tx_desc->bufptr = segs[i].ds_addr;
846
847 if (i == 0) {
848 wmb();
849
850 if (fcb_flags != 0)
851 flags |= TSEC_TXBD_TOE;
852 }
853
854 /*
855 * Set flags:
856 * - wrap
857 * - checksum
858 * - ready to send
859 * - transmit the CRC sequence after the last data byte
860 * - interrupt after the last buffer
861 */
862 tx_desc->flags = (tx_idx == (TSEC_TX_NUM_DESC - 1) ?
863 TSEC_TXBD_W : 0) | flags;
864
865 flags &= ~(TSEC_TXBD_L | TSEC_TXBD_I);
866 }
867
868 BPF_MTAP(ifp, m0);
869 *start_tx = 1;
870 }
871
872 static void
873 tsec_setfilter(struct tsec_softc *sc)
874 {
875 struct ifnet *ifp;
876 uint32_t flags;
877
878 ifp = sc->tsec_ifp;
879 flags = TSEC_READ(sc, TSEC_REG_RCTRL);
880
881 /* Promiscuous mode */
882 if (ifp->if_flags & IFF_PROMISC)
883 flags |= TSEC_RCTRL_PROM;
884 else
885 flags &= ~TSEC_RCTRL_PROM;
886
887 TSEC_WRITE(sc, TSEC_REG_RCTRL, flags);
888 }
889
890 #ifdef DEVICE_POLLING
891 static poll_handler_t tsec_poll;
892
893 static int
894 tsec_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
895 {
896 uint32_t ie;
897 struct tsec_softc *sc = ifp->if_softc;
898 int rx_npkts;
899
900 rx_npkts = 0;
901
902 TSEC_GLOBAL_LOCK(sc);
903 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
904 TSEC_GLOBAL_UNLOCK(sc);
905 return (rx_npkts);
906 }
907
908 if (cmd == POLL_AND_CHECK_STATUS) {
909 tsec_error_intr_locked(sc, count);
910
911 /* Clear all events reported */
912 ie = TSEC_READ(sc, TSEC_REG_IEVENT);
913 TSEC_WRITE(sc, TSEC_REG_IEVENT, ie);
914 }
915
916 tsec_transmit_intr_locked(sc);
917
918 TSEC_GLOBAL_TO_RECEIVE_LOCK(sc);
919
920 rx_npkts = tsec_receive_intr_locked(sc, count);
921
922 TSEC_RECEIVE_UNLOCK(sc);
923
924 return (rx_npkts);
925 }
926 #endif /* DEVICE_POLLING */
927
928 static int
929 tsec_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
930 {
931 struct tsec_softc *sc = ifp->if_softc;
932 struct ifreq *ifr = (struct ifreq *)data;
933 int mask, error = 0;
934
935 switch (command) {
936 case SIOCSIFMTU:
937 TSEC_GLOBAL_LOCK(sc);
938 if (tsec_set_mtu(sc, ifr->ifr_mtu))
939 ifp->if_mtu = ifr->ifr_mtu;
940 else
941 error = EINVAL;
942 TSEC_GLOBAL_UNLOCK(sc);
943 break;
944 case SIOCSIFFLAGS:
945 TSEC_GLOBAL_LOCK(sc);
946 if (ifp->if_flags & IFF_UP) {
947 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
948 if ((sc->tsec_if_flags ^ ifp->if_flags) &
949 IFF_PROMISC)
950 tsec_setfilter(sc);
951
952 if ((sc->tsec_if_flags ^ ifp->if_flags) &
953 IFF_ALLMULTI)
954 tsec_setup_multicast(sc);
955 } else
956 tsec_init_locked(sc);
957 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
958 tsec_stop(sc);
959
960 sc->tsec_if_flags = ifp->if_flags;
961 TSEC_GLOBAL_UNLOCK(sc);
962 break;
963 case SIOCADDMULTI:
964 case SIOCDELMULTI:
965 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
966 TSEC_GLOBAL_LOCK(sc);
967 tsec_setup_multicast(sc);
968 TSEC_GLOBAL_UNLOCK(sc);
969 }
970 case SIOCGIFMEDIA:
971 case SIOCSIFMEDIA:
972 error = ifmedia_ioctl(ifp, ifr, &sc->tsec_mii->mii_media,
973 command);
974 break;
975 case SIOCSIFCAP:
976 mask = ifp->if_capenable ^ ifr->ifr_reqcap;
977 if ((mask & IFCAP_HWCSUM) && sc->is_etsec) {
978 TSEC_GLOBAL_LOCK(sc);
979 ifp->if_capenable &= ~IFCAP_HWCSUM;
980 ifp->if_capenable |= IFCAP_HWCSUM & ifr->ifr_reqcap;
981 tsec_offload_setup(sc);
982 TSEC_GLOBAL_UNLOCK(sc);
983 }
984 #ifdef DEVICE_POLLING
985 if (mask & IFCAP_POLLING) {
986 if (ifr->ifr_reqcap & IFCAP_POLLING) {
987 error = ether_poll_register(tsec_poll, ifp);
988 if (error)
989 return (error);
990
991 TSEC_GLOBAL_LOCK(sc);
992 /* Disable interrupts */
993 tsec_intrs_ctl(sc, 0);
994 ifp->if_capenable |= IFCAP_POLLING;
995 TSEC_GLOBAL_UNLOCK(sc);
996 } else {
997 error = ether_poll_deregister(ifp);
998 TSEC_GLOBAL_LOCK(sc);
999 /* Enable interrupts */
1000 tsec_intrs_ctl(sc, 1);
1001 ifp->if_capenable &= ~IFCAP_POLLING;
1002 TSEC_GLOBAL_UNLOCK(sc);
1003 }
1004 }
1005 #endif
1006 break;
1007
1008 default:
1009 error = ether_ioctl(ifp, command, data);
1010 }
1011
1012 /* Flush buffers if not empty */
1013 if (ifp->if_flags & IFF_UP)
1014 tsec_start(ifp);
1015 return (error);
1016 }
1017
1018 static int
1019 tsec_ifmedia_upd(struct ifnet *ifp)
1020 {
1021 struct tsec_softc *sc = ifp->if_softc;
1022 struct mii_data *mii;
1023
1024 TSEC_TRANSMIT_LOCK(sc);
1025
1026 mii = sc->tsec_mii;
1027 mii_mediachg(mii);
1028
1029 TSEC_TRANSMIT_UNLOCK(sc);
1030 return (0);
1031 }
1032
1033 static void
1034 tsec_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1035 {
1036 struct tsec_softc *sc = ifp->if_softc;
1037 struct mii_data *mii;
1038
1039 TSEC_TRANSMIT_LOCK(sc);
1040
1041 mii = sc->tsec_mii;
1042 mii_pollstat(mii);
1043
1044 ifmr->ifm_active = mii->mii_media_active;
1045 ifmr->ifm_status = mii->mii_media_status;
1046
1047 TSEC_TRANSMIT_UNLOCK(sc);
1048 }
1049
1050 static int
1051 tsec_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map, struct mbuf **mbufp,
1052 uint32_t *paddr)
1053 {
1054 struct mbuf *new_mbuf;
1055 bus_dma_segment_t seg[1];
1056 int error, nsegs;
1057
1058 KASSERT(mbufp != NULL, ("NULL mbuf pointer!"));
1059
1060 new_mbuf = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MCLBYTES);
1061 if (new_mbuf == NULL)
1062 return (ENOBUFS);
1063 new_mbuf->m_len = new_mbuf->m_pkthdr.len = new_mbuf->m_ext.ext_size;
1064
1065 if (*mbufp) {
1066 bus_dmamap_sync(tag, map, BUS_DMASYNC_POSTREAD);
1067 bus_dmamap_unload(tag, map);
1068 }
1069
1070 error = bus_dmamap_load_mbuf_sg(tag, map, new_mbuf, seg, &nsegs,
1071 BUS_DMA_NOWAIT);
1072 KASSERT(nsegs == 1, ("Too many segments returned!"));
1073 if (nsegs != 1 || error)
1074 panic("tsec_new_rxbuf(): nsegs(%d), error(%d)", nsegs, error);
1075
1076 #if 0
1077 if (error) {
1078 printf("tsec: bus_dmamap_load_mbuf_sg() returned: %d!\n",
1079 error);
1080 m_freem(new_mbuf);
1081 return (ENOBUFS);
1082 }
1083 #endif
1084
1085 #if 0
1086 KASSERT(((seg->ds_addr) & (TSEC_RXBUFFER_ALIGNMENT-1)) == 0,
1087 ("Wrong alignment of RX buffer!"));
1088 #endif
1089 bus_dmamap_sync(tag, map, BUS_DMASYNC_PREREAD);
1090
1091 (*mbufp) = new_mbuf;
1092 (*paddr) = seg->ds_addr;
1093 return (0);
1094 }
1095
1096 static void
1097 tsec_map_dma_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1098 {
1099 u_int32_t *paddr;
1100
1101 KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
1102 paddr = arg;
1103 *paddr = segs->ds_addr;
1104 }
1105
1106 static int
1107 tsec_alloc_dma_desc(device_t dev, bus_dma_tag_t *dtag, bus_dmamap_t *dmap,
1108 bus_size_t dsize, void **vaddr, void *raddr, const char *dname)
1109 {
1110 int error;
1111
1112 /* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
1113 error = bus_dma_tag_create(NULL, /* parent */
1114 PAGE_SIZE, 0, /* alignment, boundary */
1115 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
1116 BUS_SPACE_MAXADDR, /* highaddr */
1117 NULL, NULL, /* filtfunc, filtfuncarg */
1118 dsize, 1, /* maxsize, nsegments */
1119 dsize, 0, /* maxsegsz, flags */
1120 NULL, NULL, /* lockfunc, lockfuncarg */
1121 dtag); /* dmat */
1122
1123 if (error) {
1124 device_printf(dev, "failed to allocate busdma %s tag\n",
1125 dname);
1126 (*vaddr) = NULL;
1127 return (ENXIO);
1128 }
1129
1130 error = bus_dmamem_alloc(*dtag, vaddr, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1131 dmap);
1132 if (error) {
1133 device_printf(dev, "failed to allocate %s DMA safe memory\n",
1134 dname);
1135 bus_dma_tag_destroy(*dtag);
1136 (*vaddr) = NULL;
1137 return (ENXIO);
1138 }
1139
1140 error = bus_dmamap_load(*dtag, *dmap, *vaddr, dsize,
1141 tsec_map_dma_addr, raddr, BUS_DMA_NOWAIT);
1142 if (error) {
1143 device_printf(dev, "cannot get address of the %s "
1144 "descriptors\n", dname);
1145 bus_dmamem_free(*dtag, *vaddr, *dmap);
1146 bus_dma_tag_destroy(*dtag);
1147 (*vaddr) = NULL;
1148 return (ENXIO);
1149 }
1150
1151 return (0);
1152 }
1153
1154 static void
1155 tsec_free_dma_desc(bus_dma_tag_t dtag, bus_dmamap_t dmap, void *vaddr)
1156 {
1157
1158 if (vaddr == NULL)
1159 return;
1160
1161 /* Unmap descriptors from DMA memory */
1162 bus_dmamap_sync(dtag, dmap, BUS_DMASYNC_POSTREAD |
1163 BUS_DMASYNC_POSTWRITE);
1164 bus_dmamap_unload(dtag, dmap);
1165
1166 /* Free descriptors memory */
1167 bus_dmamem_free(dtag, vaddr, dmap);
1168
1169 /* Destroy descriptors tag */
1170 bus_dma_tag_destroy(dtag);
1171 }
1172
1173 static void
1174 tsec_free_dma(struct tsec_softc *sc)
1175 {
1176 int i;
1177
1178 /* Free TX maps */
1179 for (i = 0; i < TSEC_TX_NUM_DESC; i++)
1180 if (sc->tx_bufmap[i].map_initialized)
1181 bus_dmamap_destroy(sc->tsec_tx_mtag,
1182 sc->tx_bufmap[i].map);
1183 /* Destroy tag for TX mbufs */
1184 bus_dma_tag_destroy(sc->tsec_tx_mtag);
1185
1186 /* Free RX mbufs and maps */
1187 for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
1188 if (sc->rx_data[i].mbuf) {
1189 /* Unload buffer from DMA */
1190 bus_dmamap_sync(sc->tsec_rx_mtag, sc->rx_data[i].map,
1191 BUS_DMASYNC_POSTREAD);
1192 bus_dmamap_unload(sc->tsec_rx_mtag,
1193 sc->rx_data[i].map);
1194
1195 /* Free buffer */
1196 m_freem(sc->rx_data[i].mbuf);
1197 }
1198 /* Destroy map for this buffer */
1199 if (sc->rx_data[i].map != NULL)
1200 bus_dmamap_destroy(sc->tsec_rx_mtag,
1201 sc->rx_data[i].map);
1202 }
1203 /* Destroy tag for RX mbufs */
1204 bus_dma_tag_destroy(sc->tsec_rx_mtag);
1205
1206 /* Unload TX/RX descriptors */
1207 tsec_free_dma_desc(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
1208 sc->tsec_tx_vaddr);
1209 tsec_free_dma_desc(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
1210 sc->tsec_rx_vaddr);
1211 }
1212
1213 static void
1214 tsec_stop(struct tsec_softc *sc)
1215 {
1216 struct ifnet *ifp;
1217 uint32_t tmpval;
1218
1219 TSEC_GLOBAL_LOCK_ASSERT(sc);
1220
1221 ifp = sc->tsec_ifp;
1222
1223 /* Disable interface and watchdog timer */
1224 callout_stop(&sc->tsec_callout);
1225 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1226 sc->tsec_watchdog = 0;
1227
1228 /* Disable all interrupts and stop DMA */
1229 tsec_intrs_ctl(sc, 0);
1230 tsec_dma_ctl(sc, 0);
1231
1232 /* Remove pending data from TX queue */
1233 while (sc->tx_idx_tail != sc->tx_idx_head) {
1234 bus_dmamap_sync(sc->tsec_tx_mtag,
1235 sc->tx_bufmap[sc->tx_idx_tail].map,
1236 BUS_DMASYNC_POSTWRITE);
1237 bus_dmamap_unload(sc->tsec_tx_mtag,
1238 sc->tx_bufmap[sc->tx_idx_tail].map);
1239 m_freem(sc->tx_bufmap[sc->tx_idx_tail].mbuf);
1240 sc->tx_idx_tail = (sc->tx_idx_tail + 1)
1241 & (TSEC_TX_NUM_DESC - 1);
1242 }
1243
1244 /* Disable RX and TX */
1245 tmpval = TSEC_READ(sc, TSEC_REG_MACCFG1);
1246 tmpval &= ~(TSEC_MACCFG1_RX_EN | TSEC_MACCFG1_TX_EN);
1247 TSEC_WRITE(sc, TSEC_REG_MACCFG1, tmpval);
1248 DELAY(10);
1249 }
1250
1251 static void
1252 tsec_tick(void *arg)
1253 {
1254 struct tsec_softc *sc = arg;
1255 struct ifnet *ifp;
1256 int link;
1257
1258 TSEC_GLOBAL_LOCK(sc);
1259
1260 tsec_watchdog(sc);
1261
1262 ifp = sc->tsec_ifp;
1263 link = sc->tsec_link;
1264
1265 mii_tick(sc->tsec_mii);
1266
1267 if (link == 0 && sc->tsec_link == 1 &&
1268 (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)))
1269 tsec_start_locked(ifp);
1270
1271 /* Schedule another timeout one second from now. */
1272 callout_reset(&sc->tsec_callout, hz, tsec_tick, sc);
1273
1274 TSEC_GLOBAL_UNLOCK(sc);
1275 }
1276
1277 /*
1278 * This is the core RX routine. It replenishes mbufs in the descriptor and
1279 * sends data which have been dma'ed into host memory to upper layer.
1280 *
1281 * Loops at most count times if count is > 0, or until done if count < 0.
1282 */
1283 static int
1284 tsec_receive_intr_locked(struct tsec_softc *sc, int count)
1285 {
1286 struct tsec_desc *rx_desc;
1287 struct ifnet *ifp;
1288 struct rx_data_type *rx_data;
1289 struct mbuf *m;
1290 uint32_t i;
1291 int c, rx_npkts;
1292 uint16_t flags;
1293
1294 TSEC_RECEIVE_LOCK_ASSERT(sc);
1295
1296 ifp = sc->tsec_ifp;
1297 rx_data = sc->rx_data;
1298 rx_npkts = 0;
1299
1300 bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
1301 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1302
1303 for (c = 0; ; c++) {
1304 if (count >= 0 && count-- == 0)
1305 break;
1306
1307 rx_desc = TSEC_GET_CUR_RX_DESC(sc);
1308 flags = rx_desc->flags;
1309
1310 /* Check if there is anything to receive */
1311 if ((flags & TSEC_RXBD_E) || (c >= TSEC_RX_NUM_DESC)) {
1312 /*
1313 * Avoid generating another interrupt
1314 */
1315 if (flags & TSEC_RXBD_E)
1316 TSEC_WRITE(sc, TSEC_REG_IEVENT,
1317 TSEC_IEVENT_RXB | TSEC_IEVENT_RXF);
1318 /*
1319 * We didn't consume current descriptor and have to
1320 * return it to the queue
1321 */
1322 TSEC_BACK_CUR_RX_DESC(sc);
1323 break;
1324 }
1325
1326 if (flags & (TSEC_RXBD_LG | TSEC_RXBD_SH | TSEC_RXBD_NO |
1327 TSEC_RXBD_CR | TSEC_RXBD_OV | TSEC_RXBD_TR)) {
1328 rx_desc->length = 0;
1329 rx_desc->flags = (rx_desc->flags &
1330 ~TSEC_RXBD_ZEROONINIT) | TSEC_RXBD_E | TSEC_RXBD_I;
1331
1332 if (sc->frame != NULL) {
1333 m_free(sc->frame);
1334 sc->frame = NULL;
1335 }
1336
1337 continue;
1338 }
1339
1340 /* Ok... process frame */
1341 i = TSEC_GET_CUR_RX_DESC_CNT(sc);
1342 m = rx_data[i].mbuf;
1343 m->m_len = rx_desc->length;
1344
1345 if (sc->frame != NULL) {
1346 if ((flags & TSEC_RXBD_L) != 0)
1347 m->m_len -= m_length(sc->frame, NULL);
1348
1349 m->m_flags &= ~M_PKTHDR;
1350 m_cat(sc->frame, m);
1351 } else {
1352 sc->frame = m;
1353 }
1354
1355 m = NULL;
1356
1357 if ((flags & TSEC_RXBD_L) != 0) {
1358 m = sc->frame;
1359 sc->frame = NULL;
1360 }
1361
1362 if (tsec_new_rxbuf(sc->tsec_rx_mtag, rx_data[i].map,
1363 &rx_data[i].mbuf, &rx_data[i].paddr)) {
1364 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1365 /*
1366 * We ran out of mbufs; didn't consume current
1367 * descriptor and have to return it to the queue.
1368 */
1369 TSEC_BACK_CUR_RX_DESC(sc);
1370 break;
1371 }
1372
1373 /* Attach new buffer to descriptor and clear flags */
1374 rx_desc->bufptr = rx_data[i].paddr;
1375 rx_desc->length = 0;
1376 rx_desc->flags = (rx_desc->flags & ~TSEC_RXBD_ZEROONINIT) |
1377 TSEC_RXBD_E | TSEC_RXBD_I;
1378
1379 if (m != NULL) {
1380 m->m_pkthdr.rcvif = ifp;
1381
1382 m_fixhdr(m);
1383 m_adj(m, -ETHER_CRC_LEN);
1384
1385 if (sc->is_etsec)
1386 tsec_offload_process_frame(sc, m);
1387
1388 TSEC_RECEIVE_UNLOCK(sc);
1389 (*ifp->if_input)(ifp, m);
1390 TSEC_RECEIVE_LOCK(sc);
1391 rx_npkts++;
1392 }
1393 }
1394
1395 bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
1396 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1397
1398 /*
1399 * Make sure TSEC receiver is not halted.
1400 *
1401 * Various conditions can stop the TSEC receiver, but not all are
1402 * signaled and handled by error interrupt, so make sure the receiver
1403 * is running. Writing to TSEC_REG_RSTAT restarts the receiver when
1404 * halted, and is harmless if already running.
1405 */
1406 TSEC_WRITE(sc, TSEC_REG_RSTAT, TSEC_RSTAT_QHLT);
1407 return (rx_npkts);
1408 }
1409
1410 void
1411 tsec_receive_intr(void *arg)
1412 {
1413 struct tsec_softc *sc = arg;
1414
1415 TSEC_RECEIVE_LOCK(sc);
1416
1417 #ifdef DEVICE_POLLING
1418 if (sc->tsec_ifp->if_capenable & IFCAP_POLLING) {
1419 TSEC_RECEIVE_UNLOCK(sc);
1420 return;
1421 }
1422 #endif
1423
1424 /* Confirm the interrupt was received by driver */
1425 TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXB | TSEC_IEVENT_RXF);
1426 tsec_receive_intr_locked(sc, -1);
1427
1428 TSEC_RECEIVE_UNLOCK(sc);
1429 }
1430
1431 static void
1432 tsec_transmit_intr_locked(struct tsec_softc *sc)
1433 {
1434 struct ifnet *ifp;
1435 uint32_t tx_idx;
1436
1437 TSEC_TRANSMIT_LOCK_ASSERT(sc);
1438
1439 ifp = sc->tsec_ifp;
1440
1441 /* Update collision statistics */
1442 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, TSEC_READ(sc, TSEC_REG_MON_TNCL));
1443
1444 /* Reset collision counters in hardware */
1445 TSEC_WRITE(sc, TSEC_REG_MON_TSCL, 0);
1446 TSEC_WRITE(sc, TSEC_REG_MON_TMCL, 0);
1447 TSEC_WRITE(sc, TSEC_REG_MON_TLCL, 0);
1448 TSEC_WRITE(sc, TSEC_REG_MON_TXCL, 0);
1449 TSEC_WRITE(sc, TSEC_REG_MON_TNCL, 0);
1450
1451 bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
1452 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1453
1454 tx_idx = sc->tx_idx_tail;
1455 while (tx_idx != sc->tx_idx_head) {
1456 struct tsec_desc *tx_desc;
1457 struct tsec_bufmap *tx_bufmap;
1458
1459 tx_desc = &sc->tsec_tx_vaddr[tx_idx];
1460 if (tx_desc->flags & TSEC_TXBD_R) {
1461 break;
1462 }
1463
1464 tx_bufmap = &sc->tx_bufmap[tx_idx];
1465 tx_idx = (tx_idx + 1) & (TSEC_TX_NUM_DESC - 1);
1466 if (tx_bufmap->mbuf == NULL)
1467 continue;
1468
1469 /*
1470 * This is the last buf in this packet, so unmap and free it.
1471 */
1472 bus_dmamap_sync(sc->tsec_tx_mtag, tx_bufmap->map,
1473 BUS_DMASYNC_POSTWRITE);
1474 bus_dmamap_unload(sc->tsec_tx_mtag, tx_bufmap->map);
1475 m_freem(tx_bufmap->mbuf);
1476 tx_bufmap->mbuf = NULL;
1477
1478 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1479 }
1480 sc->tx_idx_tail = tx_idx;
1481 bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
1482 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1483
1484 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1485 tsec_start_locked(ifp);
1486
1487 if (sc->tx_idx_tail == sc->tx_idx_head)
1488 sc->tsec_watchdog = 0;
1489 }
1490
1491 void
1492 tsec_transmit_intr(void *arg)
1493 {
1494 struct tsec_softc *sc = arg;
1495
1496 TSEC_TRANSMIT_LOCK(sc);
1497
1498 #ifdef DEVICE_POLLING
1499 if (sc->tsec_ifp->if_capenable & IFCAP_POLLING) {
1500 TSEC_TRANSMIT_UNLOCK(sc);
1501 return;
1502 }
1503 #endif
1504 /* Confirm the interrupt was received by driver */
1505 TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_TXB | TSEC_IEVENT_TXF);
1506 tsec_transmit_intr_locked(sc);
1507
1508 TSEC_TRANSMIT_UNLOCK(sc);
1509 }
1510
1511 static void
1512 tsec_error_intr_locked(struct tsec_softc *sc, int count)
1513 {
1514 struct ifnet *ifp;
1515 uint32_t eflags;
1516
1517 TSEC_GLOBAL_LOCK_ASSERT(sc);
1518
1519 ifp = sc->tsec_ifp;
1520
1521 eflags = TSEC_READ(sc, TSEC_REG_IEVENT);
1522
1523 /* Clear events bits in hardware */
1524 TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXC | TSEC_IEVENT_BSY |
1525 TSEC_IEVENT_EBERR | TSEC_IEVENT_MSRO | TSEC_IEVENT_BABT |
1526 TSEC_IEVENT_TXC | TSEC_IEVENT_TXE | TSEC_IEVENT_LC |
1527 TSEC_IEVENT_CRL | TSEC_IEVENT_XFUN);
1528
1529 /* Check transmitter errors */
1530 if (eflags & TSEC_IEVENT_TXE) {
1531 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1532
1533 if (eflags & TSEC_IEVENT_LC)
1534 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1535
1536 TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
1537 }
1538
1539 /* Check for discarded frame due to a lack of buffers */
1540 if (eflags & TSEC_IEVENT_BSY) {
1541 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1542 }
1543
1544 if (ifp->if_flags & IFF_DEBUG)
1545 if_printf(ifp, "tsec_error_intr(): event flags: 0x%x\n",
1546 eflags);
1547
1548 if (eflags & TSEC_IEVENT_EBERR) {
1549 if_printf(ifp, "System bus error occurred during"
1550 "DMA transaction (flags: 0x%x)\n", eflags);
1551 tsec_init_locked(sc);
1552 }
1553
1554 if (eflags & TSEC_IEVENT_BABT)
1555 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1556
1557 if (eflags & TSEC_IEVENT_BABR)
1558 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1559 }
1560
1561 void
1562 tsec_error_intr(void *arg)
1563 {
1564 struct tsec_softc *sc = arg;
1565
1566 TSEC_GLOBAL_LOCK(sc);
1567 tsec_error_intr_locked(sc, -1);
1568 TSEC_GLOBAL_UNLOCK(sc);
1569 }
1570
1571 int
1572 tsec_miibus_readreg(device_t dev, int phy, int reg)
1573 {
1574 struct tsec_softc *sc;
1575 int timeout;
1576 int rv;
1577
1578 sc = device_get_softc(dev);
1579
1580 TSEC_PHY_LOCK();
1581 TSEC_PHY_WRITE(sc, TSEC_REG_MIIMADD, (phy << 8) | reg);
1582 TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCOM, 0);
1583 TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCOM, TSEC_MIIMCOM_READCYCLE);
1584
1585 timeout = tsec_mii_wait(sc, TSEC_MIIMIND_NOTVALID | TSEC_MIIMIND_BUSY);
1586 rv = TSEC_PHY_READ(sc, TSEC_REG_MIIMSTAT);
1587 TSEC_PHY_UNLOCK();
1588
1589 if (timeout)
1590 device_printf(dev, "Timeout while reading from PHY!\n");
1591
1592 return (rv);
1593 }
1594
1595 int
1596 tsec_miibus_writereg(device_t dev, int phy, int reg, int value)
1597 {
1598 struct tsec_softc *sc;
1599 int timeout;
1600
1601 sc = device_get_softc(dev);
1602
1603 TSEC_PHY_LOCK();
1604 TSEC_PHY_WRITE(sc, TSEC_REG_MIIMADD, (phy << 8) | reg);
1605 TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCON, value);
1606 timeout = tsec_mii_wait(sc, TSEC_MIIMIND_BUSY);
1607 TSEC_PHY_UNLOCK();
1608
1609 if (timeout)
1610 device_printf(dev, "Timeout while writing to PHY!\n");
1611
1612 return (0);
1613 }
1614
1615 void
1616 tsec_miibus_statchg(device_t dev)
1617 {
1618 struct tsec_softc *sc;
1619 struct mii_data *mii;
1620 uint32_t ecntrl, id, tmp;
1621 int link;
1622
1623 sc = device_get_softc(dev);
1624 mii = sc->tsec_mii;
1625 link = ((mii->mii_media_status & IFM_ACTIVE) ? 1 : 0);
1626
1627 tmp = TSEC_READ(sc, TSEC_REG_MACCFG2) & ~TSEC_MACCFG2_IF;
1628
1629 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
1630 tmp |= TSEC_MACCFG2_FULLDUPLEX;
1631 else
1632 tmp &= ~TSEC_MACCFG2_FULLDUPLEX;
1633
1634 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1635 case IFM_1000_T:
1636 case IFM_1000_SX:
1637 tmp |= TSEC_MACCFG2_GMII;
1638 sc->tsec_link = link;
1639 break;
1640 case IFM_100_TX:
1641 case IFM_10_T:
1642 tmp |= TSEC_MACCFG2_MII;
1643 sc->tsec_link = link;
1644 break;
1645 case IFM_NONE:
1646 if (link)
1647 device_printf(dev, "No speed selected but link "
1648 "active!\n");
1649 sc->tsec_link = 0;
1650 return;
1651 default:
1652 sc->tsec_link = 0;
1653 device_printf(dev, "Unknown speed (%d), link %s!\n",
1654 IFM_SUBTYPE(mii->mii_media_active),
1655 ((link) ? "up" : "down"));
1656 return;
1657 }
1658 TSEC_WRITE(sc, TSEC_REG_MACCFG2, tmp);
1659
1660 /* XXX kludge - use circumstantial evidence for reduced mode. */
1661 id = TSEC_READ(sc, TSEC_REG_ID2);
1662 if (id & 0xffff) {
1663 ecntrl = TSEC_READ(sc, TSEC_REG_ECNTRL) & ~TSEC_ECNTRL_R100M;
1664 ecntrl |= (tmp & TSEC_MACCFG2_MII) ? TSEC_ECNTRL_R100M : 0;
1665 TSEC_WRITE(sc, TSEC_REG_ECNTRL, ecntrl);
1666 }
1667 }
1668
1669 static void
1670 tsec_add_sysctls(struct tsec_softc *sc)
1671 {
1672 struct sysctl_ctx_list *ctx;
1673 struct sysctl_oid_list *children;
1674 struct sysctl_oid *tree;
1675
1676 ctx = device_get_sysctl_ctx(sc->dev);
1677 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
1678 tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "int_coal",
1679 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "TSEC Interrupts coalescing");
1680 children = SYSCTL_CHILDREN(tree);
1681
1682 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_time",
1683 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, TSEC_IC_RX,
1684 tsec_sysctl_ic_time, "I", "IC RX time threshold (0-65535)");
1685 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_count",
1686 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, TSEC_IC_RX,
1687 tsec_sysctl_ic_count, "I", "IC RX frame count threshold (0-255)");
1688
1689 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_time",
1690 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, TSEC_IC_TX,
1691 tsec_sysctl_ic_time, "I", "IC TX time threshold (0-65535)");
1692 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_count",
1693 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, TSEC_IC_TX,
1694 tsec_sysctl_ic_count, "I", "IC TX frame count threshold (0-255)");
1695 }
1696
1697 /*
1698 * With Interrupt Coalescing (IC) active, a transmit/receive frame
1699 * interrupt is raised either upon:
1700 *
1701 * - threshold-defined period of time elapsed, or
1702 * - threshold-defined number of frames is received/transmitted,
1703 * whichever occurs first.
1704 *
1705 * The following sysctls regulate IC behaviour (for TX/RX separately):
1706 *
1707 * dev.tsec.<unit>.int_coal.rx_time
1708 * dev.tsec.<unit>.int_coal.rx_count
1709 * dev.tsec.<unit>.int_coal.tx_time
1710 * dev.tsec.<unit>.int_coal.tx_count
1711 *
1712 * Values:
1713 *
1714 * - 0 for either time or count disables IC on the given TX/RX path
1715 *
1716 * - count: 1-255 (expresses frame count number; note that value of 1 is
1717 * effectively IC off)
1718 *
1719 * - time: 1-65535 (value corresponds to a real time period and is
1720 * expressed in units equivalent to 64 TSEC interface clocks, i.e. one timer
1721 * threshold unit is 26.5 us, 2.56 us, or 512 ns, corresponding to 10 Mbps,
1722 * 100 Mbps, or 1Gbps, respectively. For detailed discussion consult the
1723 * TSEC reference manual.
1724 */
1725 static int
1726 tsec_sysctl_ic_time(SYSCTL_HANDLER_ARGS)
1727 {
1728 int error;
1729 uint32_t time;
1730 struct tsec_softc *sc = (struct tsec_softc *)arg1;
1731
1732 time = (arg2 == TSEC_IC_RX) ? sc->rx_ic_time : sc->tx_ic_time;
1733
1734 error = sysctl_handle_int(oidp, &time, 0, req);
1735 if (error != 0)
1736 return (error);
1737
1738 if (time > 65535)
1739 return (EINVAL);
1740
1741 TSEC_IC_LOCK(sc);
1742 if (arg2 == TSEC_IC_RX) {
1743 sc->rx_ic_time = time;
1744 tsec_set_rxic(sc);
1745 } else {
1746 sc->tx_ic_time = time;
1747 tsec_set_txic(sc);
1748 }
1749 TSEC_IC_UNLOCK(sc);
1750
1751 return (0);
1752 }
1753
1754 static int
1755 tsec_sysctl_ic_count(SYSCTL_HANDLER_ARGS)
1756 {
1757 int error;
1758 uint32_t count;
1759 struct tsec_softc *sc = (struct tsec_softc *)arg1;
1760
1761 count = (arg2 == TSEC_IC_RX) ? sc->rx_ic_count : sc->tx_ic_count;
1762
1763 error = sysctl_handle_int(oidp, &count, 0, req);
1764 if (error != 0)
1765 return (error);
1766
1767 if (count > 255)
1768 return (EINVAL);
1769
1770 TSEC_IC_LOCK(sc);
1771 if (arg2 == TSEC_IC_RX) {
1772 sc->rx_ic_count = count;
1773 tsec_set_rxic(sc);
1774 } else {
1775 sc->tx_ic_count = count;
1776 tsec_set_txic(sc);
1777 }
1778 TSEC_IC_UNLOCK(sc);
1779
1780 return (0);
1781 }
1782
1783 static void
1784 tsec_set_rxic(struct tsec_softc *sc)
1785 {
1786 uint32_t rxic_val;
1787
1788 if (sc->rx_ic_count == 0 || sc->rx_ic_time == 0)
1789 /* Disable RX IC */
1790 rxic_val = 0;
1791 else {
1792 rxic_val = 0x80000000;
1793 rxic_val |= (sc->rx_ic_count << 21);
1794 rxic_val |= sc->rx_ic_time;
1795 }
1796
1797 TSEC_WRITE(sc, TSEC_REG_RXIC, rxic_val);
1798 }
1799
1800 static void
1801 tsec_set_txic(struct tsec_softc *sc)
1802 {
1803 uint32_t txic_val;
1804
1805 if (sc->tx_ic_count == 0 || sc->tx_ic_time == 0)
1806 /* Disable TX IC */
1807 txic_val = 0;
1808 else {
1809 txic_val = 0x80000000;
1810 txic_val |= (sc->tx_ic_count << 21);
1811 txic_val |= sc->tx_ic_time;
1812 }
1813
1814 TSEC_WRITE(sc, TSEC_REG_TXIC, txic_val);
1815 }
1816
1817 static void
1818 tsec_offload_setup(struct tsec_softc *sc)
1819 {
1820 struct ifnet *ifp = sc->tsec_ifp;
1821 uint32_t reg;
1822
1823 TSEC_GLOBAL_LOCK_ASSERT(sc);
1824
1825 reg = TSEC_READ(sc, TSEC_REG_TCTRL);
1826 reg |= TSEC_TCTRL_IPCSEN | TSEC_TCTRL_TUCSEN;
1827
1828 if (ifp->if_capenable & IFCAP_TXCSUM)
1829 ifp->if_hwassist = TSEC_CHECKSUM_FEATURES;
1830 else
1831 ifp->if_hwassist = 0;
1832
1833 TSEC_WRITE(sc, TSEC_REG_TCTRL, reg);
1834
1835 reg = TSEC_READ(sc, TSEC_REG_RCTRL);
1836 reg &= ~(TSEC_RCTRL_IPCSEN | TSEC_RCTRL_TUCSEN | TSEC_RCTRL_PRSDEP);
1837 reg |= TSEC_RCTRL_PRSDEP_PARSE_L2 | TSEC_RCTRL_VLEX;
1838
1839 if (ifp->if_capenable & IFCAP_RXCSUM)
1840 reg |= TSEC_RCTRL_IPCSEN | TSEC_RCTRL_TUCSEN |
1841 TSEC_RCTRL_PRSDEP_PARSE_L234;
1842
1843 TSEC_WRITE(sc, TSEC_REG_RCTRL, reg);
1844 }
1845
1846 static void
1847 tsec_offload_process_frame(struct tsec_softc *sc, struct mbuf *m)
1848 {
1849 struct tsec_rx_fcb rx_fcb;
1850 int csum_flags = 0;
1851 int protocol, flags;
1852
1853 TSEC_RECEIVE_LOCK_ASSERT(sc);
1854
1855 m_copydata(m, 0, sizeof(struct tsec_rx_fcb), (caddr_t)(&rx_fcb));
1856 flags = rx_fcb.flags;
1857 protocol = rx_fcb.protocol;
1858
1859 if (TSEC_RX_FCB_IP_CSUM_CHECKED(flags)) {
1860 csum_flags |= CSUM_IP_CHECKED;
1861
1862 if ((flags & TSEC_RX_FCB_IP_CSUM_ERROR) == 0)
1863 csum_flags |= CSUM_IP_VALID;
1864 }
1865
1866 if ((protocol == IPPROTO_TCP || protocol == IPPROTO_UDP) &&
1867 TSEC_RX_FCB_TCP_UDP_CSUM_CHECKED(flags) &&
1868 (flags & TSEC_RX_FCB_TCP_UDP_CSUM_ERROR) == 0) {
1869 csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1870 m->m_pkthdr.csum_data = 0xFFFF;
1871 }
1872
1873 m->m_pkthdr.csum_flags = csum_flags;
1874
1875 if (flags & TSEC_RX_FCB_VLAN) {
1876 m->m_pkthdr.ether_vtag = rx_fcb.vlan;
1877 m->m_flags |= M_VLANTAG;
1878 }
1879
1880 m_adj(m, sizeof(struct tsec_rx_fcb));
1881 }
1882
1883 static u_int
1884 tsec_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
1885 {
1886 uint32_t h, *hashtable = arg;
1887
1888 h = (ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 24) & 0xFF;
1889 hashtable[(h >> 5)] |= 1 << (0x1F - (h & 0x1F));
1890
1891 return (1);
1892 }
1893
1894 static void
1895 tsec_setup_multicast(struct tsec_softc *sc)
1896 {
1897 uint32_t hashtable[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
1898 struct ifnet *ifp = sc->tsec_ifp;
1899 int i;
1900
1901 TSEC_GLOBAL_LOCK_ASSERT(sc);
1902
1903 if (ifp->if_flags & IFF_ALLMULTI) {
1904 for (i = 0; i < 8; i++)
1905 TSEC_WRITE(sc, TSEC_REG_GADDR(i), 0xFFFFFFFF);
1906
1907 return;
1908 }
1909
1910 if_foreach_llmaddr(ifp, tsec_hash_maddr, &hashtable);
1911
1912 for (i = 0; i < 8; i++)
1913 TSEC_WRITE(sc, TSEC_REG_GADDR(i), hashtable[i]);
1914 }
1915
1916 static int
1917 tsec_set_mtu(struct tsec_softc *sc, unsigned int mtu)
1918 {
1919
1920 mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
1921
1922 TSEC_GLOBAL_LOCK_ASSERT(sc);
1923
1924 if (mtu >= TSEC_MIN_FRAME_SIZE && mtu <= TSEC_MAX_FRAME_SIZE) {
1925 TSEC_WRITE(sc, TSEC_REG_MAXFRM, mtu);
1926 return (mtu);
1927 }
1928
1929 return (0);
1930 }
Cache object: c0a1a33c2da22586d8098369b1114a85
|