The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/tsec/if_tsec.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (C) 2007-2008 Semihalf, Rafal Jaworowski <raj@semihalf.com>
    3  * Copyright (C) 2006-2007 Semihalf, Piotr Kruszynski <ppk@semihalf.com>
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
   18  * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   19  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
   20  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
   21  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
   22  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
   23  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
   24  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   25  */
   26 
   27 /*
   28  * Freescale integrated Three-Speed Ethernet Controller (TSEC) driver.
   29  */
   30 #include <sys/cdefs.h>
   31 __FBSDID("$FreeBSD: releng/8.4/sys/dev/tsec/if_tsec.c 214909 2010-11-07 11:12:29Z marius $");
   32 
   33 #ifdef HAVE_KERNEL_OPTION_HEADERS
   34 #include "opt_device_polling.h"
   35 #endif
   36 
   37 #include <sys/param.h>
   38 #include <sys/systm.h>
   39 #include <sys/bus.h>
   40 #include <sys/endian.h>
   41 #include <sys/mbuf.h>
   42 #include <sys/kernel.h>
   43 #include <sys/module.h>
   44 #include <sys/socket.h>
   45 #include <sys/sockio.h>
   46 #include <sys/sysctl.h>
   47 
   48 #include <net/bpf.h>
   49 #include <net/ethernet.h>
   50 #include <net/if.h>
   51 #include <net/if_arp.h>
   52 #include <net/if_dl.h>
   53 #include <net/if_media.h>
   54 #include <net/if_types.h>
   55 #include <net/if_vlan_var.h>
   56 
   57 #include <netinet/in_systm.h>
   58 #include <netinet/in.h>
   59 #include <netinet/ip.h>
   60 
   61 #include <machine/bus.h>
   62 
   63 #include <dev/mii/mii.h>
   64 #include <dev/mii/miivar.h>
   65 
   66 #include <dev/tsec/if_tsec.h>
   67 #include <dev/tsec/if_tsecreg.h>
   68 
   69 static int      tsec_alloc_dma_desc(device_t dev, bus_dma_tag_t *dtag,
   70     bus_dmamap_t *dmap, bus_size_t dsize, void **vaddr, void *raddr,
   71     const char *dname);
   72 static void     tsec_dma_ctl(struct tsec_softc *sc, int state);
   73 static int      tsec_encap(struct tsec_softc *sc, struct mbuf *m_head,
   74     int fcb_inserted);
   75 static void     tsec_free_dma(struct tsec_softc *sc);
   76 static void     tsec_free_dma_desc(bus_dma_tag_t dtag, bus_dmamap_t dmap, void *vaddr);
   77 static int      tsec_ifmedia_upd(struct ifnet *ifp);
   78 static void     tsec_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
   79 static int      tsec_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map,
   80     struct mbuf **mbufp, uint32_t *paddr);
   81 static void     tsec_map_dma_addr(void *arg, bus_dma_segment_t *segs,
   82     int nseg, int error);
   83 static void     tsec_intrs_ctl(struct tsec_softc *sc, int state);
   84 static void     tsec_init(void *xsc);
   85 static void     tsec_init_locked(struct tsec_softc *sc);
   86 static int      tsec_ioctl(struct ifnet *ifp, u_long command, caddr_t data);
   87 static void     tsec_reset_mac(struct tsec_softc *sc);
   88 static void     tsec_setfilter(struct tsec_softc *sc);
   89 static void     tsec_set_mac_address(struct tsec_softc *sc);
   90 static void     tsec_start(struct ifnet *ifp);
   91 static void     tsec_start_locked(struct ifnet *ifp);
   92 static void     tsec_stop(struct tsec_softc *sc);
   93 static void     tsec_tick(void *arg);
   94 static void     tsec_watchdog(struct tsec_softc *sc);
   95 static void     tsec_add_sysctls(struct tsec_softc *sc);
   96 static int      tsec_sysctl_ic_time(SYSCTL_HANDLER_ARGS);
   97 static int      tsec_sysctl_ic_count(SYSCTL_HANDLER_ARGS);
   98 static void     tsec_set_rxic(struct tsec_softc *sc);
   99 static void     tsec_set_txic(struct tsec_softc *sc);
  100 static int      tsec_receive_intr_locked(struct tsec_softc *sc, int count);
  101 static void     tsec_transmit_intr_locked(struct tsec_softc *sc);
  102 static void     tsec_error_intr_locked(struct tsec_softc *sc, int count);
  103 static void     tsec_offload_setup(struct tsec_softc *sc);
  104 static void     tsec_offload_process_frame(struct tsec_softc *sc,
  105     struct mbuf *m);
  106 static void     tsec_setup_multicast(struct tsec_softc *sc);
  107 static int      tsec_set_mtu(struct tsec_softc *sc, unsigned int mtu);
  108 
  109 struct tsec_softc *tsec0_sc = NULL; /* XXX ugly hack! */
  110 
  111 devclass_t tsec_devclass;
  112 DRIVER_MODULE(miibus, tsec, miibus_driver, miibus_devclass, 0, 0);
  113 MODULE_DEPEND(tsec, ether, 1, 1, 1);
  114 MODULE_DEPEND(tsec, miibus, 1, 1, 1);
  115 
  116 int
  117 tsec_attach(struct tsec_softc *sc)
  118 {
  119         uint8_t hwaddr[ETHER_ADDR_LEN];
  120         struct ifnet *ifp;
  121         bus_dmamap_t *map_ptr;
  122         bus_dmamap_t **map_pptr;
  123         int error = 0;
  124         int i;
  125 
  126         /* Reset all TSEC counters */
  127         TSEC_TX_RX_COUNTERS_INIT(sc);
  128 
  129         /* Stop DMA engine if enabled by firmware */
  130         tsec_dma_ctl(sc, 0);
  131 
  132         /* Reset MAC */
  133         tsec_reset_mac(sc);
  134 
  135         /* Disable interrupts for now */
  136         tsec_intrs_ctl(sc, 0);
  137 
  138         /* Configure defaults for interrupts coalescing */
  139         sc->rx_ic_time = 768;
  140         sc->rx_ic_count = 16;
  141         sc->tx_ic_time = 768;
  142         sc->tx_ic_count = 16;
  143         tsec_set_rxic(sc);
  144         tsec_set_txic(sc);
  145         tsec_add_sysctls(sc);
  146 
  147         /* Allocate a busdma tag and DMA safe memory for TX descriptors. */
  148         error = tsec_alloc_dma_desc(sc->dev, &sc->tsec_tx_dtag,
  149             &sc->tsec_tx_dmap, sizeof(*sc->tsec_tx_vaddr) * TSEC_TX_NUM_DESC,
  150             (void **)&sc->tsec_tx_vaddr, &sc->tsec_tx_raddr, "TX");
  151 
  152         if (error) {
  153                 tsec_detach(sc);
  154                 return (ENXIO);
  155         }
  156 
  157         /* Allocate a busdma tag and DMA safe memory for RX descriptors. */
  158         error = tsec_alloc_dma_desc(sc->dev, &sc->tsec_rx_dtag,
  159             &sc->tsec_rx_dmap, sizeof(*sc->tsec_rx_vaddr) * TSEC_RX_NUM_DESC,
  160             (void **)&sc->tsec_rx_vaddr, &sc->tsec_rx_raddr, "RX");
  161         if (error) {
  162                 tsec_detach(sc);
  163                 return (ENXIO);
  164         }
  165 
  166         /* Allocate a busdma tag for TX mbufs. */
  167         error = bus_dma_tag_create(NULL,        /* parent */
  168             TSEC_TXBUFFER_ALIGNMENT, 0,         /* alignment, boundary */
  169             BUS_SPACE_MAXADDR_32BIT,            /* lowaddr */
  170             BUS_SPACE_MAXADDR,                  /* highaddr */
  171             NULL, NULL,                         /* filtfunc, filtfuncarg */
  172             MCLBYTES * (TSEC_TX_NUM_DESC - 1),  /* maxsize */
  173             TSEC_TX_NUM_DESC - 1,               /* nsegments */
  174             MCLBYTES, 0,                        /* maxsegsz, flags */
  175             NULL, NULL,                         /* lockfunc, lockfuncarg */
  176             &sc->tsec_tx_mtag);                 /* dmat */
  177         if (error) {
  178                 device_printf(sc->dev, "failed to allocate busdma tag "
  179                     "(tx mbufs)\n");
  180                 tsec_detach(sc);
  181                 return (ENXIO);
  182         }
  183 
  184         /* Allocate a busdma tag for RX mbufs. */
  185         error = bus_dma_tag_create(NULL,        /* parent */
  186             TSEC_RXBUFFER_ALIGNMENT, 0,         /* alignment, boundary */
  187             BUS_SPACE_MAXADDR_32BIT,            /* lowaddr */
  188             BUS_SPACE_MAXADDR,                  /* highaddr */
  189             NULL, NULL,                         /* filtfunc, filtfuncarg */
  190             MCLBYTES,                           /* maxsize */
  191             1,                                  /* nsegments */
  192             MCLBYTES, 0,                        /* maxsegsz, flags */
  193             NULL, NULL,                         /* lockfunc, lockfuncarg */
  194             &sc->tsec_rx_mtag);                 /* dmat */
  195         if (error) {
  196                 device_printf(sc->dev, "failed to allocate busdma tag "
  197                     "(rx mbufs)\n");
  198                 tsec_detach(sc);
  199                 return (ENXIO);
  200         }
  201 
  202         /* Create TX busdma maps */
  203         map_ptr = sc->tx_map_data;
  204         map_pptr = sc->tx_map_unused_data;
  205 
  206         for (i = 0; i < TSEC_TX_NUM_DESC; i++) {
  207                 map_pptr[i] = &map_ptr[i];
  208                 error = bus_dmamap_create(sc->tsec_tx_mtag, 0, map_pptr[i]);
  209                 if (error) {
  210                         device_printf(sc->dev, "failed to init TX ring\n");
  211                         tsec_detach(sc);
  212                         return (ENXIO);
  213                 }
  214         }
  215 
  216         /* Create RX busdma maps and zero mbuf handlers */
  217         for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
  218                 error = bus_dmamap_create(sc->tsec_rx_mtag, 0,
  219                     &sc->rx_data[i].map);
  220                 if (error) {
  221                         device_printf(sc->dev, "failed to init RX ring\n");
  222                         tsec_detach(sc);
  223                         return (ENXIO);
  224                 }
  225                 sc->rx_data[i].mbuf = NULL;
  226         }
  227 
  228         /* Create mbufs for RX buffers */
  229         for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
  230                 error = tsec_new_rxbuf(sc->tsec_rx_mtag, sc->rx_data[i].map,
  231                     &sc->rx_data[i].mbuf, &sc->rx_data[i].paddr);
  232                 if (error) {
  233                         device_printf(sc->dev, "can't load rx DMA map %d, "
  234                             "error = %d\n", i, error);
  235                         tsec_detach(sc);
  236                         return (error);
  237                 }
  238         }
  239 
  240         /* Create network interface for upper layers */
  241         ifp = sc->tsec_ifp = if_alloc(IFT_ETHER);
  242         if (ifp == NULL) {
  243                 device_printf(sc->dev, "if_alloc() failed\n");
  244                 tsec_detach(sc);
  245                 return (ENOMEM);
  246         }
  247 
  248         ifp->if_softc = sc;
  249         if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
  250         ifp->if_mtu = ETHERMTU;
  251         ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST;
  252         ifp->if_init = tsec_init;
  253         ifp->if_start = tsec_start;
  254         ifp->if_ioctl = tsec_ioctl;
  255 
  256         IFQ_SET_MAXLEN(&ifp->if_snd, TSEC_TX_NUM_DESC - 1);
  257         ifp->if_snd.ifq_drv_maxlen = TSEC_TX_NUM_DESC - 1;
  258         IFQ_SET_READY(&ifp->if_snd);
  259 
  260         ifp->if_capabilities = IFCAP_VLAN_MTU;
  261         if (sc->is_etsec)
  262                 ifp->if_capabilities |= IFCAP_HWCSUM;
  263 
  264         ifp->if_capenable = ifp->if_capabilities;
  265 
  266 #ifdef DEVICE_POLLING
  267         /* Advertise that polling is supported */
  268         ifp->if_capabilities |= IFCAP_POLLING;
  269 #endif
  270         
  271         /* Attach PHY(s) */
  272         error = mii_attach(sc->dev, &sc->tsec_miibus, ifp, tsec_ifmedia_upd,
  273             tsec_ifmedia_sts, BMSR_DEFCAPMASK, device_get_unit(sc->dev),
  274             MII_OFFSET_ANY, 0);
  275         if (error) {
  276                 device_printf(sc->dev, "attaching PHYs failed\n");
  277                 if_free(ifp);
  278                 sc->tsec_ifp = NULL;
  279                 tsec_detach(sc);
  280                 return (error);
  281         }
  282         sc->tsec_mii = device_get_softc(sc->tsec_miibus);
  283 
  284         /* Set MAC address */
  285         tsec_get_hwaddr(sc, hwaddr);
  286         ether_ifattach(ifp, hwaddr);
  287 
  288         return (0);
  289 }
  290 
  291 int
  292 tsec_detach(struct tsec_softc *sc)
  293 {
  294 
  295 #ifdef DEVICE_POLLING
  296         if (sc->tsec_ifp->if_capenable & IFCAP_POLLING)
  297                 ether_poll_deregister(sc->tsec_ifp);
  298 #endif
  299 
  300         /* Stop TSEC controller and free TX queue */
  301         if (sc->sc_rres && sc->tsec_ifp)
  302                 tsec_shutdown(sc->dev);
  303 
  304         /* Detach network interface */
  305         if (sc->tsec_ifp) {
  306                 ether_ifdetach(sc->tsec_ifp);
  307                 if_free(sc->tsec_ifp);
  308                 sc->tsec_ifp = NULL;
  309         }
  310 
  311         /* Free DMA resources */
  312         tsec_free_dma(sc);
  313 
  314         return (0);
  315 }
  316 
  317 int
  318 tsec_shutdown(device_t dev)
  319 {
  320         struct tsec_softc *sc;
  321 
  322         sc = device_get_softc(dev);
  323 
  324         TSEC_GLOBAL_LOCK(sc);
  325         tsec_stop(sc);
  326         TSEC_GLOBAL_UNLOCK(sc);
  327         return (0);
  328 }
  329 
  330 int
  331 tsec_suspend(device_t dev)
  332 {
  333 
  334         /* TODO not implemented! */
  335         return (0);
  336 }
  337 
  338 int
  339 tsec_resume(device_t dev)
  340 {
  341 
  342         /* TODO not implemented! */
  343         return (0);
  344 }
  345 
  346 static void
  347 tsec_init(void *xsc)
  348 {
  349         struct tsec_softc *sc = xsc;
  350 
  351         TSEC_GLOBAL_LOCK(sc);
  352         tsec_init_locked(sc);
  353         TSEC_GLOBAL_UNLOCK(sc);
  354 }
  355 
  356 static void
  357 tsec_init_locked(struct tsec_softc *sc)
  358 {
  359         struct tsec_desc *tx_desc = sc->tsec_tx_vaddr;
  360         struct tsec_desc *rx_desc = sc->tsec_rx_vaddr;
  361         struct ifnet *ifp = sc->tsec_ifp;
  362         uint32_t timeout, val, i;
  363 
  364         TSEC_GLOBAL_LOCK_ASSERT(sc);
  365         tsec_stop(sc);
  366 
  367         /*
  368          * These steps are according to the MPC8555E PowerQUICCIII RM:
  369          * 14.7 Initialization/Application Information
  370          */
  371 
  372         /* Step 1: soft reset MAC */
  373         tsec_reset_mac(sc);
  374 
  375         /* Step 2: Initialize MACCFG2 */
  376         TSEC_WRITE(sc, TSEC_REG_MACCFG2,
  377             TSEC_MACCFG2_FULLDUPLEX |   /* Full Duplex = 1 */
  378             TSEC_MACCFG2_PADCRC |       /* PAD/CRC append */
  379             TSEC_MACCFG2_GMII |         /* I/F Mode bit */
  380             TSEC_MACCFG2_PRECNT         /* Preamble count = 7 */
  381         );
  382 
  383         /* Step 3: Initialize ECNTRL
  384          * While the documentation states that R100M is ignored if RPM is
  385          * not set, it does seem to be needed to get the orange boxes to
  386          * work (which have a Marvell 88E1111 PHY). Go figure.
  387          */
  388 
  389         /*
  390          * XXX kludge - use circumstancial evidence to program ECNTRL
  391          * correctly. Ideally we need some board information to guide
  392          * us here.
  393          */
  394         i = TSEC_READ(sc, TSEC_REG_ID2);
  395         val = (i & 0xffff)
  396             ? (TSEC_ECNTRL_TBIM | TSEC_ECNTRL_SGMIIM)   /* Sumatra */
  397             : TSEC_ECNTRL_R100M;                        /* Orange + CDS */
  398         TSEC_WRITE(sc, TSEC_REG_ECNTRL, TSEC_ECNTRL_STEN | val);
  399 
  400         /* Step 4: Initialize MAC station address */
  401         tsec_set_mac_address(sc);
  402 
  403         /*
  404          * Step 5: Assign a Physical address to the TBI so as to not conflict
  405          * with the external PHY physical address
  406          */
  407         TSEC_WRITE(sc, TSEC_REG_TBIPA, 5);
  408 
  409         /* Step 6: Reset the management interface */
  410         TSEC_WRITE(tsec0_sc, TSEC_REG_MIIMCFG, TSEC_MIIMCFG_RESETMGMT);
  411 
  412         /* Step 7: Setup the MII Mgmt clock speed */
  413         TSEC_WRITE(tsec0_sc, TSEC_REG_MIIMCFG, TSEC_MIIMCFG_CLKDIV28);
  414 
  415         /* Step 8: Read MII Mgmt indicator register and check for Busy = 0 */
  416         timeout = TSEC_READ_RETRY;
  417         while (--timeout && (TSEC_READ(tsec0_sc, TSEC_REG_MIIMIND) &
  418             TSEC_MIIMIND_BUSY))
  419                 DELAY(TSEC_READ_DELAY);
  420         if (timeout == 0) {
  421                 if_printf(ifp, "tsec_init_locked(): Mgmt busy timeout\n");
  422                 return;
  423         }
  424 
  425         /* Step 9: Setup the MII Mgmt */
  426         mii_mediachg(sc->tsec_mii);
  427 
  428         /* Step 10: Clear IEVENT register */
  429         TSEC_WRITE(sc, TSEC_REG_IEVENT, 0xffffffff);
  430 
  431         /* Step 11: Enable interrupts */
  432 #ifdef DEVICE_POLLING
  433         /*
  434          * ...only if polling is not turned on. Disable interrupts explicitly
  435          * if polling is enabled.
  436          */
  437         if (ifp->if_capenable & IFCAP_POLLING )
  438                 tsec_intrs_ctl(sc, 0);
  439         else
  440 #endif /* DEVICE_POLLING */
  441         tsec_intrs_ctl(sc, 1);
  442 
  443         /* Step 12: Initialize IADDRn */
  444         TSEC_WRITE(sc, TSEC_REG_IADDR0, 0);
  445         TSEC_WRITE(sc, TSEC_REG_IADDR1, 0);
  446         TSEC_WRITE(sc, TSEC_REG_IADDR2, 0);
  447         TSEC_WRITE(sc, TSEC_REG_IADDR3, 0);
  448         TSEC_WRITE(sc, TSEC_REG_IADDR4, 0);
  449         TSEC_WRITE(sc, TSEC_REG_IADDR5, 0);
  450         TSEC_WRITE(sc, TSEC_REG_IADDR6, 0);
  451         TSEC_WRITE(sc, TSEC_REG_IADDR7, 0);
  452 
  453         /* Step 13: Initialize GADDRn */
  454         TSEC_WRITE(sc, TSEC_REG_GADDR0, 0);
  455         TSEC_WRITE(sc, TSEC_REG_GADDR1, 0);
  456         TSEC_WRITE(sc, TSEC_REG_GADDR2, 0);
  457         TSEC_WRITE(sc, TSEC_REG_GADDR3, 0);
  458         TSEC_WRITE(sc, TSEC_REG_GADDR4, 0);
  459         TSEC_WRITE(sc, TSEC_REG_GADDR5, 0);
  460         TSEC_WRITE(sc, TSEC_REG_GADDR6, 0);
  461         TSEC_WRITE(sc, TSEC_REG_GADDR7, 0);
  462 
  463         /* Step 14: Initialize RCTRL */
  464         TSEC_WRITE(sc, TSEC_REG_RCTRL, 0);
  465 
  466         /* Step 15: Initialize DMACTRL */
  467         tsec_dma_ctl(sc, 1);
  468 
  469         /* Step 16: Initialize FIFO_PAUSE_CTRL */
  470         TSEC_WRITE(sc, TSEC_REG_FIFO_PAUSE_CTRL, TSEC_FIFO_PAUSE_CTRL_EN);
  471 
  472         /*
  473          * Step 17: Initialize transmit/receive descriptor rings.
  474          * Initialize TBASE and RBASE.
  475          */
  476         TSEC_WRITE(sc, TSEC_REG_TBASE, sc->tsec_tx_raddr);
  477         TSEC_WRITE(sc, TSEC_REG_RBASE, sc->tsec_rx_raddr);
  478 
  479         for (i = 0; i < TSEC_TX_NUM_DESC; i++) {
  480                 tx_desc[i].bufptr = 0;
  481                 tx_desc[i].length = 0;
  482                 tx_desc[i].flags = ((i == TSEC_TX_NUM_DESC - 1) ?
  483                     TSEC_TXBD_W : 0);
  484         }
  485         bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
  486             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
  487 
  488         for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
  489                 rx_desc[i].bufptr = sc->rx_data[i].paddr;
  490                 rx_desc[i].length = 0;
  491                 rx_desc[i].flags = TSEC_RXBD_E | TSEC_RXBD_I |
  492                     ((i == TSEC_RX_NUM_DESC - 1) ? TSEC_RXBD_W : 0);
  493         }
  494         bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
  495             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
  496 
  497         /* Step 18: Initialize the maximum receive buffer length */
  498         TSEC_WRITE(sc, TSEC_REG_MRBLR, MCLBYTES);
  499 
  500         /* Step 19: Configure ethernet frame sizes */
  501         TSEC_WRITE(sc, TSEC_REG_MINFLR, TSEC_MIN_FRAME_SIZE);
  502         tsec_set_mtu(sc, ifp->if_mtu);
  503 
  504         /* Step 20: Enable Rx and RxBD sdata snooping */
  505         TSEC_WRITE(sc, TSEC_REG_ATTR, TSEC_ATTR_RDSEN | TSEC_ATTR_RBDSEN);
  506         TSEC_WRITE(sc, TSEC_REG_ATTRELI, 0);
  507 
  508         /* Step 21: Reset collision counters in hardware */
  509         TSEC_WRITE(sc, TSEC_REG_MON_TSCL, 0);
  510         TSEC_WRITE(sc, TSEC_REG_MON_TMCL, 0);
  511         TSEC_WRITE(sc, TSEC_REG_MON_TLCL, 0);
  512         TSEC_WRITE(sc, TSEC_REG_MON_TXCL, 0);
  513         TSEC_WRITE(sc, TSEC_REG_MON_TNCL, 0);
  514 
  515         /* Step 22: Mask all CAM interrupts */
  516         TSEC_WRITE(sc, TSEC_REG_MON_CAM1, 0xffffffff);
  517         TSEC_WRITE(sc, TSEC_REG_MON_CAM2, 0xffffffff);
  518 
  519         /* Step 23: Enable Rx and Tx */
  520         val = TSEC_READ(sc, TSEC_REG_MACCFG1);
  521         val |= (TSEC_MACCFG1_RX_EN | TSEC_MACCFG1_TX_EN);
  522         TSEC_WRITE(sc, TSEC_REG_MACCFG1, val);
  523 
  524         /* Step 24: Reset TSEC counters for Tx and Rx rings */
  525         TSEC_TX_RX_COUNTERS_INIT(sc);
  526 
  527         /* Step 25: Setup TCP/IP Off-Load engine */
  528         if (sc->is_etsec)
  529                 tsec_offload_setup(sc);
  530 
  531         /* Step 26: Setup multicast filters */
  532         tsec_setup_multicast(sc);
  533         
  534         /* Step 27: Activate network interface */
  535         ifp->if_drv_flags |= IFF_DRV_RUNNING;
  536         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
  537         sc->tsec_if_flags = ifp->if_flags;
  538         sc->tsec_watchdog = 0;
  539 
  540         /* Schedule watchdog timeout */
  541         callout_reset(&sc->tsec_callout, hz, tsec_tick, sc);
  542 }
  543 
  544 static void
  545 tsec_set_mac_address(struct tsec_softc *sc)
  546 {
  547         uint32_t macbuf[2] = { 0, 0 };
  548         char *macbufp, *curmac;
  549         int i;
  550 
  551         TSEC_GLOBAL_LOCK_ASSERT(sc);
  552 
  553         KASSERT((ETHER_ADDR_LEN <= sizeof(macbuf)),
  554             ("tsec_set_mac_address: (%d <= %d", ETHER_ADDR_LEN,
  555             sizeof(macbuf)));
  556 
  557         macbufp = (char *)macbuf;
  558         curmac = (char *)IF_LLADDR(sc->tsec_ifp);
  559 
  560         /* Correct order of MAC address bytes */
  561         for (i = 1; i <= ETHER_ADDR_LEN; i++)
  562                 macbufp[ETHER_ADDR_LEN-i] = curmac[i-1];
  563 
  564         /* Initialize MAC station address MACSTNADDR2 and MACSTNADDR1 */
  565         TSEC_WRITE(sc, TSEC_REG_MACSTNADDR2, macbuf[1]);
  566         TSEC_WRITE(sc, TSEC_REG_MACSTNADDR1, macbuf[0]);
  567 }
  568 
  569 /*
  570  * DMA control function, if argument state is:
  571  * 0 - DMA engine will be disabled
  572  * 1 - DMA engine will be enabled
  573  */
  574 static void
  575 tsec_dma_ctl(struct tsec_softc *sc, int state)
  576 {
  577         device_t dev;
  578         uint32_t dma_flags, timeout;
  579 
  580         dev = sc->dev;
  581 
  582         dma_flags = TSEC_READ(sc, TSEC_REG_DMACTRL);
  583 
  584         switch (state) {
  585         case 0:
  586                 /* Temporarily clear stop graceful stop bits. */
  587                 tsec_dma_ctl(sc, 1000);
  588 
  589                 /* Set it again */
  590                 dma_flags |= (TSEC_DMACTRL_GRS | TSEC_DMACTRL_GTS);
  591                 break;
  592         case 1000:
  593         case 1:
  594                 /* Set write with response (WWR), wait (WOP) and snoop bits */
  595                 dma_flags |= (TSEC_DMACTRL_TDSEN | TSEC_DMACTRL_TBDSEN |
  596                     DMACTRL_WWR | DMACTRL_WOP);
  597 
  598                 /* Clear graceful stop bits */
  599                 dma_flags &= ~(TSEC_DMACTRL_GRS | TSEC_DMACTRL_GTS);
  600                 break;
  601         default:
  602                 device_printf(dev, "tsec_dma_ctl(): unknown state value: %d\n",
  603                     state);
  604         }
  605 
  606         TSEC_WRITE(sc, TSEC_REG_DMACTRL, dma_flags);
  607 
  608         switch (state) {
  609         case 0:
  610                 /* Wait for DMA stop */
  611                 timeout = TSEC_READ_RETRY;
  612                 while (--timeout && (!(TSEC_READ(sc, TSEC_REG_IEVENT) &
  613                     (TSEC_IEVENT_GRSC | TSEC_IEVENT_GTSC))))
  614                         DELAY(TSEC_READ_DELAY);
  615 
  616                 if (timeout == 0)
  617                         device_printf(dev, "tsec_dma_ctl(): timeout!\n");
  618                 break;
  619         case 1:
  620                 /* Restart transmission function */
  621                 TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
  622         }
  623 }
  624 
  625 /*
  626  * Interrupts control function, if argument state is:
  627  * 0 - all TSEC interrupts will be masked
  628  * 1 - all TSEC interrupts will be unmasked
  629  */
  630 static void
  631 tsec_intrs_ctl(struct tsec_softc *sc, int state)
  632 {
  633         device_t dev;
  634 
  635         dev = sc->dev;
  636 
  637         switch (state) {
  638         case 0:
  639                 TSEC_WRITE(sc, TSEC_REG_IMASK, 0);
  640                 break;
  641         case 1:
  642                 TSEC_WRITE(sc, TSEC_REG_IMASK, TSEC_IMASK_BREN |
  643                     TSEC_IMASK_RXCEN | TSEC_IMASK_BSYEN | TSEC_IMASK_EBERREN |
  644                     TSEC_IMASK_BTEN | TSEC_IMASK_TXEEN | TSEC_IMASK_TXBEN |
  645                     TSEC_IMASK_TXFEN | TSEC_IMASK_XFUNEN | TSEC_IMASK_RXFEN);
  646                 break;
  647         default:
  648                 device_printf(dev, "tsec_intrs_ctl(): unknown state value: %d\n",
  649                     state);
  650         }
  651 }
  652 
  653 static void
  654 tsec_reset_mac(struct tsec_softc *sc)
  655 {
  656         uint32_t maccfg1_flags;
  657 
  658         /* Set soft reset bit */
  659         maccfg1_flags = TSEC_READ(sc, TSEC_REG_MACCFG1);
  660         maccfg1_flags |= TSEC_MACCFG1_SOFT_RESET;
  661         TSEC_WRITE(sc, TSEC_REG_MACCFG1, maccfg1_flags);
  662 
  663         /* Clear soft reset bit */
  664         maccfg1_flags = TSEC_READ(sc, TSEC_REG_MACCFG1);
  665         maccfg1_flags &= ~TSEC_MACCFG1_SOFT_RESET;
  666         TSEC_WRITE(sc, TSEC_REG_MACCFG1, maccfg1_flags);
  667 }
  668 
  669 static void
  670 tsec_watchdog(struct tsec_softc *sc)
  671 {
  672         struct ifnet *ifp;
  673 
  674         TSEC_GLOBAL_LOCK_ASSERT(sc);
  675 
  676         if (sc->tsec_watchdog == 0 || --sc->tsec_watchdog > 0)
  677                 return;
  678 
  679         ifp = sc->tsec_ifp;
  680         ifp->if_oerrors++;
  681         if_printf(ifp, "watchdog timeout\n");
  682 
  683         tsec_stop(sc);
  684         tsec_init_locked(sc);
  685 }
  686 
  687 static void
  688 tsec_start(struct ifnet *ifp)
  689 {
  690         struct tsec_softc *sc = ifp->if_softc;
  691 
  692         TSEC_TRANSMIT_LOCK(sc);
  693         tsec_start_locked(ifp);
  694         TSEC_TRANSMIT_UNLOCK(sc);
  695 }
  696 
  697 static void
  698 tsec_start_locked(struct ifnet *ifp)
  699 {
  700         struct tsec_softc *sc;
  701         struct mbuf *m0, *mtmp;
  702         struct tsec_tx_fcb *tx_fcb;
  703         unsigned int queued = 0;
  704         int csum_flags, fcb_inserted = 0;
  705 
  706         sc = ifp->if_softc;
  707 
  708         TSEC_TRANSMIT_LOCK_ASSERT(sc);
  709 
  710         if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
  711             IFF_DRV_RUNNING)
  712                 return;
  713 
  714         if (sc->tsec_link == 0)
  715                 return;
  716 
  717         bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
  718             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
  719 
  720         while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
  721                 /* Get packet from the queue */
  722                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
  723                 if (m0 == NULL)
  724                         break;
  725 
  726                 /* Insert TCP/IP Off-load frame control block */
  727                 csum_flags = m0->m_pkthdr.csum_flags;
  728                 if (csum_flags) {
  729 
  730                         M_PREPEND(m0, sizeof(struct tsec_tx_fcb), M_DONTWAIT);
  731                         if (m0 == NULL)
  732                                 break;
  733 
  734                         tx_fcb = mtod(m0, struct tsec_tx_fcb *);
  735                         tx_fcb->flags = 0;
  736                         tx_fcb->l3_offset = ETHER_HDR_LEN;
  737                         tx_fcb->l4_offset = sizeof(struct ip);
  738 
  739                         if (csum_flags & CSUM_IP)
  740                                 tx_fcb->flags |= TSEC_TX_FCB_IP4 |
  741                                     TSEC_TX_FCB_CSUM_IP;
  742 
  743                         if (csum_flags & CSUM_TCP)
  744                                 tx_fcb->flags |= TSEC_TX_FCB_TCP |
  745                                     TSEC_TX_FCB_CSUM_TCP_UDP;
  746 
  747                         if (csum_flags & CSUM_UDP)
  748                                 tx_fcb->flags |= TSEC_TX_FCB_UDP |
  749                                     TSEC_TX_FCB_CSUM_TCP_UDP;
  750 
  751                         fcb_inserted = 1;
  752                 }
  753 
  754                 mtmp = m_defrag(m0, M_DONTWAIT);
  755                 if (mtmp)
  756                         m0 = mtmp;
  757 
  758                 if (tsec_encap(sc, m0, fcb_inserted)) {
  759                         IFQ_DRV_PREPEND(&ifp->if_snd, m0);
  760                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
  761                         break;
  762                 }
  763                 queued++;
  764                 BPF_MTAP(ifp, m0);
  765         }
  766         bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
  767             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
  768 
  769         if (queued) {
  770                 /* Enable transmitter and watchdog timer */
  771                 TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
  772                 sc->tsec_watchdog = 5;
  773         }
  774 }
  775 
  776 static int
  777 tsec_encap(struct tsec_softc *sc, struct mbuf *m0, int fcb_inserted)
  778 {
  779         struct tsec_desc *tx_desc = NULL;
  780         struct ifnet *ifp;
  781         bus_dma_segment_t segs[TSEC_TX_NUM_DESC];
  782         bus_dmamap_t *mapp;
  783         int csum_flag = 0, error, seg, nsegs;
  784 
  785         TSEC_TRANSMIT_LOCK_ASSERT(sc);
  786 
  787         ifp = sc->tsec_ifp;
  788 
  789         if (TSEC_FREE_TX_DESC(sc) == 0) {
  790                 /* No free descriptors */
  791                 return (-1);
  792         }
  793 
  794         /* Fetch unused map */
  795         mapp = TSEC_ALLOC_TX_MAP(sc);
  796 
  797         /* Create mapping in DMA memory */
  798         error = bus_dmamap_load_mbuf_sg(sc->tsec_tx_mtag,
  799             *mapp, m0, segs, &nsegs, BUS_DMA_NOWAIT);
  800         if (error != 0 || nsegs > TSEC_FREE_TX_DESC(sc) || nsegs <= 0) {
  801                 bus_dmamap_unload(sc->tsec_tx_mtag, *mapp);
  802                 TSEC_FREE_TX_MAP(sc, mapp);
  803                 return ((error != 0) ? error : -1);
  804         }
  805         bus_dmamap_sync(sc->tsec_tx_mtag, *mapp, BUS_DMASYNC_PREWRITE);
  806 
  807         if ((ifp->if_flags & IFF_DEBUG) && (nsegs > 1))
  808                 if_printf(ifp, "TX buffer has %d segments\n", nsegs);
  809 
  810         if (fcb_inserted)
  811                 csum_flag = TSEC_TXBD_TOE;
  812 
  813         /* Everything is ok, now we can send buffers */
  814         for (seg = 0; seg < nsegs; seg++) {
  815                 tx_desc = TSEC_GET_CUR_TX_DESC(sc);
  816 
  817                 tx_desc->length = segs[seg].ds_len;
  818                 tx_desc->bufptr = segs[seg].ds_addr;
  819 
  820                 /*
  821                  * Set flags:
  822                  *   - wrap
  823                  *   - checksum
  824                  *   - ready to send
  825                  *   - transmit the CRC sequence after the last data byte
  826                  *   - interrupt after the last buffer
  827                  */
  828                 tx_desc->flags =
  829                     (tx_desc->flags & TSEC_TXBD_W) |
  830                     ((seg == 0) ? csum_flag : 0) | TSEC_TXBD_R | TSEC_TXBD_TC |
  831                     ((seg == nsegs - 1) ? TSEC_TXBD_L | TSEC_TXBD_I : 0);
  832         }
  833 
  834         /* Save mbuf and DMA mapping for release at later stage */
  835         TSEC_PUT_TX_MBUF(sc, m0);
  836         TSEC_PUT_TX_MAP(sc, mapp);
  837 
  838         return (0);
  839 }
  840 
  841 static void
  842 tsec_setfilter(struct tsec_softc *sc)
  843 {
  844         struct ifnet *ifp;
  845         uint32_t flags;
  846 
  847         ifp = sc->tsec_ifp;
  848         flags = TSEC_READ(sc, TSEC_REG_RCTRL);
  849 
  850         /* Promiscuous mode */
  851         if (ifp->if_flags & IFF_PROMISC)
  852                 flags |= TSEC_RCTRL_PROM;
  853         else
  854                 flags &= ~TSEC_RCTRL_PROM;
  855 
  856         TSEC_WRITE(sc, TSEC_REG_RCTRL, flags);
  857 }
  858 
  859 #ifdef DEVICE_POLLING
  860 static poll_handler_t tsec_poll;
  861 
  862 static int
  863 tsec_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
  864 {
  865         uint32_t ie;
  866         struct tsec_softc *sc = ifp->if_softc;
  867         int rx_npkts;
  868 
  869         rx_npkts = 0;
  870 
  871         TSEC_GLOBAL_LOCK(sc);
  872         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
  873                 TSEC_GLOBAL_UNLOCK(sc);
  874                 return (rx_npkts);
  875         }
  876 
  877         if (cmd == POLL_AND_CHECK_STATUS) {
  878                 tsec_error_intr_locked(sc, count);
  879 
  880                 /* Clear all events reported */
  881                 ie = TSEC_READ(sc, TSEC_REG_IEVENT);
  882                 TSEC_WRITE(sc, TSEC_REG_IEVENT, ie);
  883         }
  884 
  885         tsec_transmit_intr_locked(sc);
  886 
  887         TSEC_GLOBAL_TO_RECEIVE_LOCK(sc);
  888 
  889         rx_npkts = tsec_receive_intr_locked(sc, count);
  890 
  891         TSEC_RECEIVE_UNLOCK(sc);
  892 
  893         return (rx_npkts);
  894 }
  895 #endif /* DEVICE_POLLING */
  896 
  897 static int
  898 tsec_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
  899 {
  900         struct tsec_softc *sc = ifp->if_softc;
  901         struct ifreq *ifr = (struct ifreq *)data;
  902         device_t dev;
  903         int mask, error = 0;
  904 
  905         dev = sc->dev;
  906 
  907         switch (command) {
  908         case SIOCSIFMTU:
  909                 TSEC_GLOBAL_LOCK(sc);
  910                 if (tsec_set_mtu(sc, ifr->ifr_mtu))
  911                         ifp->if_mtu = ifr->ifr_mtu;
  912                 else
  913                         error = EINVAL;
  914                 TSEC_GLOBAL_UNLOCK(sc);
  915                 break;
  916         case SIOCSIFFLAGS:
  917                 TSEC_GLOBAL_LOCK(sc);
  918                 if (ifp->if_flags & IFF_UP) {
  919                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
  920                                 if ((sc->tsec_if_flags ^ ifp->if_flags) &
  921                                     IFF_PROMISC)
  922                                         tsec_setfilter(sc);
  923 
  924                                 if ((sc->tsec_if_flags ^ ifp->if_flags) &
  925                                     IFF_ALLMULTI)
  926                                         tsec_setup_multicast(sc);
  927                         } else
  928                                 tsec_init_locked(sc);
  929                 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
  930                         tsec_stop(sc);
  931 
  932                 sc->tsec_if_flags = ifp->if_flags;
  933                 TSEC_GLOBAL_UNLOCK(sc);
  934                 break;
  935         case SIOCADDMULTI:
  936         case SIOCDELMULTI:
  937                 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
  938                         TSEC_GLOBAL_LOCK(sc);
  939                         tsec_setup_multicast(sc);
  940                         TSEC_GLOBAL_UNLOCK(sc);
  941                 }
  942         case SIOCGIFMEDIA:
  943         case SIOCSIFMEDIA:
  944                 error = ifmedia_ioctl(ifp, ifr, &sc->tsec_mii->mii_media,
  945                     command);
  946                 break;
  947         case SIOCSIFCAP:
  948                 mask = ifp->if_capenable ^ ifr->ifr_reqcap;
  949                 if ((mask & IFCAP_HWCSUM) && sc->is_etsec) {
  950                         TSEC_GLOBAL_LOCK(sc);
  951                         ifp->if_capenable &= ~IFCAP_HWCSUM;
  952                         ifp->if_capenable |= IFCAP_HWCSUM & ifr->ifr_reqcap;
  953                         tsec_offload_setup(sc);
  954                         TSEC_GLOBAL_UNLOCK(sc);
  955                 }
  956 #ifdef DEVICE_POLLING
  957                 if (mask & IFCAP_POLLING) {
  958                         if (ifr->ifr_reqcap & IFCAP_POLLING) {
  959                                 error = ether_poll_register(tsec_poll, ifp);
  960                                 if (error)
  961                                         return (error);
  962 
  963                                 TSEC_GLOBAL_LOCK(sc);
  964                                 /* Disable interrupts */
  965                                 tsec_intrs_ctl(sc, 0);
  966                                 ifp->if_capenable |= IFCAP_POLLING;
  967                                 TSEC_GLOBAL_UNLOCK(sc);
  968                         } else {
  969                                 error = ether_poll_deregister(ifp);
  970                                 TSEC_GLOBAL_LOCK(sc);
  971                                 /* Enable interrupts */
  972                                 tsec_intrs_ctl(sc, 1);
  973                                 ifp->if_capenable &= ~IFCAP_POLLING;
  974                                 TSEC_GLOBAL_UNLOCK(sc);
  975                         }
  976                 }
  977 #endif
  978                 break;
  979 
  980         default:
  981                 error = ether_ioctl(ifp, command, data);
  982         }
  983 
  984         /* Flush buffers if not empty */
  985         if (ifp->if_flags & IFF_UP)
  986                 tsec_start(ifp);
  987         return (error);
  988 }
  989 
  990 static int
  991 tsec_ifmedia_upd(struct ifnet *ifp)
  992 {
  993         struct tsec_softc *sc = ifp->if_softc;
  994         struct mii_data *mii;
  995 
  996         TSEC_TRANSMIT_LOCK(sc);
  997 
  998         mii = sc->tsec_mii;
  999         mii_mediachg(mii);
 1000 
 1001         TSEC_TRANSMIT_UNLOCK(sc);
 1002         return (0);
 1003 }
 1004 
 1005 static void
 1006 tsec_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
 1007 {
 1008         struct tsec_softc *sc = ifp->if_softc;
 1009         struct mii_data *mii;
 1010 
 1011         TSEC_TRANSMIT_LOCK(sc);
 1012 
 1013         mii = sc->tsec_mii;
 1014         mii_pollstat(mii);
 1015 
 1016         ifmr->ifm_active = mii->mii_media_active;
 1017         ifmr->ifm_status = mii->mii_media_status;
 1018 
 1019         TSEC_TRANSMIT_UNLOCK(sc);
 1020 }
 1021 
 1022 static int
 1023 tsec_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map, struct mbuf **mbufp,
 1024     uint32_t *paddr)
 1025 {
 1026         struct mbuf *new_mbuf;
 1027         bus_dma_segment_t seg[1];
 1028         int error, nsegs;
 1029 
 1030         KASSERT(mbufp != NULL, ("NULL mbuf pointer!"));
 1031 
 1032         new_mbuf = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MCLBYTES);
 1033         if (new_mbuf == NULL)
 1034                 return (ENOBUFS);
 1035         new_mbuf->m_len = new_mbuf->m_pkthdr.len = new_mbuf->m_ext.ext_size;
 1036 
 1037         if (*mbufp) {
 1038                 bus_dmamap_sync(tag, map, BUS_DMASYNC_POSTREAD);
 1039                 bus_dmamap_unload(tag, map);
 1040         }
 1041 
 1042         error = bus_dmamap_load_mbuf_sg(tag, map, new_mbuf, seg, &nsegs,
 1043             BUS_DMA_NOWAIT);
 1044         KASSERT(nsegs == 1, ("Too many segments returned!"));
 1045         if (nsegs != 1 || error)
 1046                 panic("tsec_new_rxbuf(): nsegs(%d), error(%d)", nsegs, error);
 1047 
 1048 #if 0
 1049         if (error) {
 1050                 printf("tsec: bus_dmamap_load_mbuf_sg() returned: %d!\n",
 1051                         error);
 1052                 m_freem(new_mbuf);
 1053                 return (ENOBUFS);
 1054         }
 1055 #endif
 1056 
 1057 #if 0
 1058         KASSERT(((seg->ds_addr) & (TSEC_RXBUFFER_ALIGNMENT-1)) == 0,
 1059                 ("Wrong alignment of RX buffer!"));
 1060 #endif
 1061         bus_dmamap_sync(tag, map, BUS_DMASYNC_PREREAD);
 1062 
 1063         (*mbufp) = new_mbuf;
 1064         (*paddr) = seg->ds_addr;
 1065         return (0);
 1066 }
 1067 
 1068 static void
 1069 tsec_map_dma_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
 1070 {
 1071         u_int32_t *paddr;
 1072 
 1073         KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
 1074         paddr = arg;
 1075         *paddr = segs->ds_addr;
 1076 }
 1077 
 1078 static int
 1079 tsec_alloc_dma_desc(device_t dev, bus_dma_tag_t *dtag, bus_dmamap_t *dmap,
 1080     bus_size_t dsize, void **vaddr, void *raddr, const char *dname)
 1081 {
 1082         int error;
 1083 
 1084         /* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
 1085         error = bus_dma_tag_create(NULL,        /* parent */
 1086             PAGE_SIZE, 0,                       /* alignment, boundary */
 1087             BUS_SPACE_MAXADDR_32BIT,            /* lowaddr */
 1088             BUS_SPACE_MAXADDR,                  /* highaddr */
 1089             NULL, NULL,                         /* filtfunc, filtfuncarg */
 1090             dsize, 1,                           /* maxsize, nsegments */
 1091             dsize, 0,                           /* maxsegsz, flags */
 1092             NULL, NULL,                         /* lockfunc, lockfuncarg */
 1093             dtag);                              /* dmat */
 1094 
 1095         if (error) {
 1096                 device_printf(dev, "failed to allocate busdma %s tag\n",
 1097                     dname);
 1098                 (*vaddr) = NULL;
 1099                 return (ENXIO);
 1100         }
 1101 
 1102         error = bus_dmamem_alloc(*dtag, vaddr, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
 1103             dmap);
 1104         if (error) {
 1105                 device_printf(dev, "failed to allocate %s DMA safe memory\n",
 1106                     dname);
 1107                 bus_dma_tag_destroy(*dtag);
 1108                 (*vaddr) = NULL;
 1109                 return (ENXIO);
 1110         }
 1111 
 1112         error = bus_dmamap_load(*dtag, *dmap, *vaddr, dsize,
 1113             tsec_map_dma_addr, raddr, BUS_DMA_NOWAIT);
 1114         if (error) {
 1115                 device_printf(dev, "cannot get address of the %s "
 1116                     "descriptors\n", dname);
 1117                 bus_dmamem_free(*dtag, *vaddr, *dmap);
 1118                 bus_dma_tag_destroy(*dtag);
 1119                 (*vaddr) = NULL;
 1120                 return (ENXIO);
 1121         }
 1122 
 1123         return (0);
 1124 }
 1125 
 1126 static void
 1127 tsec_free_dma_desc(bus_dma_tag_t dtag, bus_dmamap_t dmap, void *vaddr)
 1128 {
 1129 
 1130         if (vaddr == NULL)
 1131                 return;
 1132 
 1133         /* Unmap descriptors from DMA memory */
 1134         bus_dmamap_sync(dtag, dmap, BUS_DMASYNC_POSTREAD |
 1135             BUS_DMASYNC_POSTWRITE);
 1136         bus_dmamap_unload(dtag, dmap);
 1137 
 1138         /* Free descriptors memory */
 1139         bus_dmamem_free(dtag, vaddr, dmap);
 1140 
 1141         /* Destroy descriptors tag */
 1142         bus_dma_tag_destroy(dtag);
 1143 }
 1144 
 1145 static void
 1146 tsec_free_dma(struct tsec_softc *sc)
 1147 {
 1148         int i;
 1149 
 1150         /* Free TX maps */
 1151         for (i = 0; i < TSEC_TX_NUM_DESC; i++)
 1152                 if (sc->tx_map_data[i] != NULL)
 1153                         bus_dmamap_destroy(sc->tsec_tx_mtag,
 1154                             sc->tx_map_data[i]);
 1155         /* Destroy tag for TX mbufs */
 1156         bus_dma_tag_destroy(sc->tsec_tx_mtag);
 1157 
 1158         /* Free RX mbufs and maps */
 1159         for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
 1160                 if (sc->rx_data[i].mbuf) {
 1161                         /* Unload buffer from DMA */
 1162                         bus_dmamap_sync(sc->tsec_rx_mtag, sc->rx_data[i].map,
 1163                             BUS_DMASYNC_POSTREAD);
 1164                         bus_dmamap_unload(sc->tsec_rx_mtag,
 1165                             sc->rx_data[i].map);
 1166 
 1167                         /* Free buffer */
 1168                         m_freem(sc->rx_data[i].mbuf);
 1169                 }
 1170                 /* Destroy map for this buffer */
 1171                 if (sc->rx_data[i].map != NULL)
 1172                         bus_dmamap_destroy(sc->tsec_rx_mtag,
 1173                             sc->rx_data[i].map);
 1174         }
 1175         /* Destroy tag for RX mbufs */
 1176         bus_dma_tag_destroy(sc->tsec_rx_mtag);
 1177 
 1178         /* Unload TX/RX descriptors */
 1179         tsec_free_dma_desc(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
 1180             sc->tsec_tx_vaddr);
 1181         tsec_free_dma_desc(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
 1182             sc->tsec_rx_vaddr);
 1183 }
 1184 
 1185 static void
 1186 tsec_stop(struct tsec_softc *sc)
 1187 {
 1188         struct ifnet *ifp;
 1189         struct mbuf *m0;
 1190         bus_dmamap_t *mapp;
 1191         uint32_t tmpval;
 1192 
 1193         TSEC_GLOBAL_LOCK_ASSERT(sc);
 1194 
 1195         ifp = sc->tsec_ifp;
 1196 
 1197         /* Disable interface and watchdog timer */
 1198         callout_stop(&sc->tsec_callout);
 1199         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 1200         sc->tsec_watchdog = 0;
 1201 
 1202         /* Disable all interrupts and stop DMA */
 1203         tsec_intrs_ctl(sc, 0);
 1204         tsec_dma_ctl(sc, 0);
 1205 
 1206         /* Remove pending data from TX queue */
 1207         while (!TSEC_EMPTYQ_TX_MBUF(sc)) {
 1208                 m0 = TSEC_GET_TX_MBUF(sc);
 1209                 mapp = TSEC_GET_TX_MAP(sc);
 1210 
 1211                 bus_dmamap_sync(sc->tsec_tx_mtag, *mapp,
 1212                     BUS_DMASYNC_POSTWRITE);
 1213                 bus_dmamap_unload(sc->tsec_tx_mtag, *mapp);
 1214 
 1215                 TSEC_FREE_TX_MAP(sc, mapp);
 1216                 m_freem(m0);
 1217         }
 1218 
 1219         /* Disable RX and TX */
 1220         tmpval = TSEC_READ(sc, TSEC_REG_MACCFG1);
 1221         tmpval &= ~(TSEC_MACCFG1_RX_EN | TSEC_MACCFG1_TX_EN);
 1222         TSEC_WRITE(sc, TSEC_REG_MACCFG1, tmpval);
 1223         DELAY(10);
 1224 }
 1225 
 1226 static void
 1227 tsec_tick(void *arg)
 1228 {
 1229         struct tsec_softc *sc = arg;
 1230         struct ifnet *ifp;
 1231         int link;
 1232 
 1233         TSEC_GLOBAL_LOCK(sc);
 1234 
 1235         tsec_watchdog(sc);
 1236 
 1237         ifp = sc->tsec_ifp;
 1238         link = sc->tsec_link;
 1239 
 1240         mii_tick(sc->tsec_mii);
 1241 
 1242         if (link == 0 && sc->tsec_link == 1 &&
 1243             (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)))
 1244                 tsec_start_locked(ifp);
 1245 
 1246         /* Schedule another timeout one second from now. */
 1247         callout_reset(&sc->tsec_callout, hz, tsec_tick, sc);
 1248 
 1249         TSEC_GLOBAL_UNLOCK(sc);
 1250 }
 1251 
 1252 /*
 1253  *  This is the core RX routine. It replenishes mbufs in the descriptor and
 1254  *  sends data which have been dma'ed into host memory to upper layer.
 1255  *
 1256  *  Loops at most count times if count is > 0, or until done if count < 0.
 1257  */
 1258 static int
 1259 tsec_receive_intr_locked(struct tsec_softc *sc, int count)
 1260 {
 1261         struct tsec_desc *rx_desc;
 1262         struct ifnet *ifp;
 1263         struct rx_data_type *rx_data;
 1264         struct mbuf *m;
 1265         device_t dev;
 1266         uint32_t i;
 1267         int c, rx_npkts;
 1268         uint16_t flags;
 1269 
 1270         TSEC_RECEIVE_LOCK_ASSERT(sc);
 1271 
 1272         ifp = sc->tsec_ifp;
 1273         rx_data = sc->rx_data;
 1274         dev = sc->dev;
 1275         rx_npkts = 0;
 1276 
 1277         bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
 1278             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 1279 
 1280         for (c = 0; ; c++) {
 1281                 if (count >= 0 && count-- == 0)
 1282                         break;
 1283 
 1284                 rx_desc = TSEC_GET_CUR_RX_DESC(sc);
 1285                 flags = rx_desc->flags;
 1286 
 1287                 /* Check if there is anything to receive */
 1288                 if ((flags & TSEC_RXBD_E) || (c >= TSEC_RX_NUM_DESC)) {
 1289                         /*
 1290                          * Avoid generating another interrupt
 1291                          */
 1292                         if (flags & TSEC_RXBD_E)
 1293                                 TSEC_WRITE(sc, TSEC_REG_IEVENT,
 1294                                     TSEC_IEVENT_RXB | TSEC_IEVENT_RXF);
 1295                         /*
 1296                          * We didn't consume current descriptor and have to
 1297                          * return it to the queue
 1298                          */
 1299                         TSEC_BACK_CUR_RX_DESC(sc);
 1300                         break;
 1301                 }
 1302 
 1303                 if (flags & (TSEC_RXBD_LG | TSEC_RXBD_SH | TSEC_RXBD_NO |
 1304                     TSEC_RXBD_CR | TSEC_RXBD_OV | TSEC_RXBD_TR)) {
 1305 
 1306                         rx_desc->length = 0;
 1307                         rx_desc->flags = (rx_desc->flags &
 1308                             ~TSEC_RXBD_ZEROONINIT) | TSEC_RXBD_E | TSEC_RXBD_I;
 1309 
 1310                         if (sc->frame != NULL) {
 1311                                 m_free(sc->frame);
 1312                                 sc->frame = NULL;
 1313                         }
 1314 
 1315                         continue;
 1316                 }
 1317 
 1318                 /* Ok... process frame */
 1319                 i = TSEC_GET_CUR_RX_DESC_CNT(sc);
 1320                 m = rx_data[i].mbuf;
 1321                 m->m_len = rx_desc->length;
 1322 
 1323                 if (sc->frame != NULL) {
 1324                         if ((flags & TSEC_RXBD_L) != 0)
 1325                                 m->m_len -= m_length(sc->frame, NULL);
 1326 
 1327                         m->m_flags &= ~M_PKTHDR;
 1328                         m_cat(sc->frame, m);
 1329                 } else {
 1330                         sc->frame = m;
 1331                 }
 1332 
 1333                 m = NULL;
 1334 
 1335                 if ((flags & TSEC_RXBD_L) != 0) {
 1336                         m = sc->frame;
 1337                         sc->frame = NULL;
 1338                 }
 1339 
 1340                 if (tsec_new_rxbuf(sc->tsec_rx_mtag, rx_data[i].map,
 1341                     &rx_data[i].mbuf, &rx_data[i].paddr)) {
 1342                         ifp->if_ierrors++;
 1343                         /*
 1344                          * We ran out of mbufs; didn't consume current
 1345                          * descriptor and have to return it to the queue.
 1346                          */
 1347                         TSEC_BACK_CUR_RX_DESC(sc);
 1348                         break;
 1349                 }
 1350 
 1351                 /* Attach new buffer to descriptor and clear flags */
 1352                 rx_desc->bufptr = rx_data[i].paddr;
 1353                 rx_desc->length = 0;
 1354                 rx_desc->flags = (rx_desc->flags & ~TSEC_RXBD_ZEROONINIT) |
 1355                     TSEC_RXBD_E | TSEC_RXBD_I;
 1356 
 1357                 if (m != NULL) {
 1358                         m->m_pkthdr.rcvif = ifp;
 1359 
 1360                         m_fixhdr(m);
 1361                         m_adj(m, -ETHER_CRC_LEN);
 1362 
 1363                         if (sc->is_etsec)
 1364                                 tsec_offload_process_frame(sc, m);
 1365 
 1366                         TSEC_RECEIVE_UNLOCK(sc);
 1367                         (*ifp->if_input)(ifp, m);
 1368                         TSEC_RECEIVE_LOCK(sc);
 1369                         rx_npkts++;
 1370                 }
 1371         }
 1372 
 1373         bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
 1374             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1375 
 1376         /*
 1377          * Make sure TSEC receiver is not halted.
 1378          *
 1379          * Various conditions can stop the TSEC receiver, but not all are
 1380          * signaled and handled by error interrupt, so make sure the receiver
 1381          * is running. Writing to TSEC_REG_RSTAT restarts the receiver when
 1382          * halted, and is harmless if already running.
 1383          */
 1384         TSEC_WRITE(sc, TSEC_REG_RSTAT, TSEC_RSTAT_QHLT);
 1385         return (rx_npkts);
 1386 }
 1387 
 1388 void
 1389 tsec_receive_intr(void *arg)
 1390 {
 1391         struct tsec_softc *sc = arg;
 1392 
 1393         TSEC_RECEIVE_LOCK(sc);
 1394 
 1395 #ifdef DEVICE_POLLING
 1396         if (sc->tsec_ifp->if_capenable & IFCAP_POLLING) {
 1397                 TSEC_RECEIVE_UNLOCK(sc);
 1398                 return;
 1399         }
 1400 #endif
 1401 
 1402         /* Confirm the interrupt was received by driver */
 1403         TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXB | TSEC_IEVENT_RXF);
 1404         tsec_receive_intr_locked(sc, -1);
 1405 
 1406         TSEC_RECEIVE_UNLOCK(sc);
 1407 }
 1408 
 1409 static void
 1410 tsec_transmit_intr_locked(struct tsec_softc *sc)
 1411 {
 1412         struct tsec_desc *tx_desc;
 1413         struct ifnet *ifp;
 1414         struct mbuf *m0;
 1415         bus_dmamap_t *mapp;
 1416         int send = 0;
 1417 
 1418         TSEC_TRANSMIT_LOCK_ASSERT(sc);
 1419 
 1420         ifp = sc->tsec_ifp;
 1421 
 1422         /* Update collision statistics */
 1423         ifp->if_collisions += TSEC_READ(sc, TSEC_REG_MON_TNCL);
 1424 
 1425         /* Reset collision counters in hardware */
 1426         TSEC_WRITE(sc, TSEC_REG_MON_TSCL, 0);
 1427         TSEC_WRITE(sc, TSEC_REG_MON_TMCL, 0);
 1428         TSEC_WRITE(sc, TSEC_REG_MON_TLCL, 0);
 1429         TSEC_WRITE(sc, TSEC_REG_MON_TXCL, 0);
 1430         TSEC_WRITE(sc, TSEC_REG_MON_TNCL, 0);
 1431 
 1432         bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
 1433             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 1434 
 1435         while (TSEC_CUR_DIFF_DIRTY_TX_DESC(sc)) {
 1436                 tx_desc = TSEC_GET_DIRTY_TX_DESC(sc);
 1437                 if (tx_desc->flags & TSEC_TXBD_R) {
 1438                         TSEC_BACK_DIRTY_TX_DESC(sc);
 1439                         break;
 1440                 }
 1441 
 1442                 if ((tx_desc->flags & TSEC_TXBD_L) == 0)
 1443                         continue;
 1444 
 1445                 /*
 1446                  * This is the last buf in this packet, so unmap and free it.
 1447                  */
 1448                 m0 = TSEC_GET_TX_MBUF(sc);
 1449                 mapp = TSEC_GET_TX_MAP(sc);
 1450 
 1451                 bus_dmamap_sync(sc->tsec_tx_mtag, *mapp,
 1452                     BUS_DMASYNC_POSTWRITE);
 1453                 bus_dmamap_unload(sc->tsec_tx_mtag, *mapp);
 1454 
 1455                 TSEC_FREE_TX_MAP(sc, mapp);
 1456                 m_freem(m0);
 1457 
 1458                 ifp->if_opackets++;
 1459                 send = 1;
 1460         }
 1461         bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
 1462             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1463 
 1464         if (send) {
 1465                 /* Now send anything that was pending */
 1466                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 1467                 tsec_start_locked(ifp);
 1468 
 1469                 /* Stop wathdog if all sent */
 1470                 if (TSEC_EMPTYQ_TX_MBUF(sc))
 1471                         sc->tsec_watchdog = 0;
 1472         }
 1473 }
 1474 
 1475 void
 1476 tsec_transmit_intr(void *arg)
 1477 {
 1478         struct tsec_softc *sc = arg;
 1479 
 1480         TSEC_TRANSMIT_LOCK(sc);
 1481 
 1482 #ifdef DEVICE_POLLING
 1483         if (sc->tsec_ifp->if_capenable & IFCAP_POLLING) {
 1484                 TSEC_TRANSMIT_UNLOCK(sc);
 1485                 return;
 1486         }
 1487 #endif
 1488         /* Confirm the interrupt was received by driver */
 1489         TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_TXB | TSEC_IEVENT_TXF);
 1490         tsec_transmit_intr_locked(sc);
 1491 
 1492         TSEC_TRANSMIT_UNLOCK(sc);
 1493 }
 1494 
 1495 static void
 1496 tsec_error_intr_locked(struct tsec_softc *sc, int count)
 1497 {
 1498         struct ifnet *ifp;
 1499         uint32_t eflags;
 1500 
 1501         TSEC_GLOBAL_LOCK_ASSERT(sc);
 1502 
 1503         ifp = sc->tsec_ifp;
 1504 
 1505         eflags = TSEC_READ(sc, TSEC_REG_IEVENT);
 1506 
 1507         /* Clear events bits in hardware */
 1508         TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXC | TSEC_IEVENT_BSY |
 1509             TSEC_IEVENT_EBERR | TSEC_IEVENT_MSRO | TSEC_IEVENT_BABT |
 1510             TSEC_IEVENT_TXC | TSEC_IEVENT_TXE | TSEC_IEVENT_LC |
 1511             TSEC_IEVENT_CRL | TSEC_IEVENT_XFUN);
 1512 
 1513         /* Check transmitter errors */
 1514         if (eflags & TSEC_IEVENT_TXE) {
 1515                 ifp->if_oerrors++;
 1516 
 1517                 if (eflags & TSEC_IEVENT_LC)
 1518                         ifp->if_collisions++;
 1519 
 1520                 TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
 1521         }
 1522 
 1523         /* Check receiver errors */
 1524         if (eflags & TSEC_IEVENT_BSY) {
 1525                 ifp->if_ierrors++;
 1526                 ifp->if_iqdrops++;
 1527 
 1528                 /* Get data from RX buffers */
 1529                 tsec_receive_intr_locked(sc, count);
 1530         }
 1531 
 1532         if (ifp->if_flags & IFF_DEBUG)
 1533                 if_printf(ifp, "tsec_error_intr(): event flags: 0x%x\n",
 1534                     eflags);
 1535 
 1536         if (eflags & TSEC_IEVENT_EBERR) {
 1537                 if_printf(ifp, "System bus error occurred during"
 1538                     "DMA transaction (flags: 0x%x)\n", eflags);
 1539                 tsec_init_locked(sc);
 1540         }
 1541 
 1542         if (eflags & TSEC_IEVENT_BABT)
 1543                 ifp->if_oerrors++;
 1544 
 1545         if (eflags & TSEC_IEVENT_BABR)
 1546                 ifp->if_ierrors++;
 1547 }
 1548 
 1549 void
 1550 tsec_error_intr(void *arg)
 1551 {
 1552         struct tsec_softc *sc = arg;
 1553 
 1554         TSEC_GLOBAL_LOCK(sc);
 1555         tsec_error_intr_locked(sc, -1);
 1556         TSEC_GLOBAL_UNLOCK(sc);
 1557 }
 1558 
 1559 int
 1560 tsec_miibus_readreg(device_t dev, int phy, int reg)
 1561 {
 1562         struct tsec_softc *sc;
 1563         uint32_t timeout;
 1564 
 1565         sc = tsec0_sc;
 1566 
 1567         TSEC_WRITE(sc, TSEC_REG_MIIMADD, (phy << 8) | reg);
 1568         TSEC_WRITE(sc, TSEC_REG_MIIMCOM, 0);
 1569         TSEC_WRITE(sc, TSEC_REG_MIIMCOM, TSEC_MIIMCOM_READCYCLE);
 1570 
 1571         timeout = TSEC_READ_RETRY;
 1572         while (--timeout && TSEC_READ(sc, TSEC_REG_MIIMIND) &
 1573             (TSEC_MIIMIND_NOTVALID | TSEC_MIIMIND_BUSY))
 1574                 DELAY(TSEC_READ_DELAY);
 1575 
 1576         if (timeout == 0)
 1577                 device_printf(dev, "Timeout while reading from PHY!\n");
 1578 
 1579         return (TSEC_READ(sc, TSEC_REG_MIIMSTAT));
 1580 }
 1581 
 1582 int
 1583 tsec_miibus_writereg(device_t dev, int phy, int reg, int value)
 1584 {
 1585         struct tsec_softc *sc;
 1586         uint32_t timeout;
 1587 
 1588         sc = tsec0_sc;
 1589 
 1590         TSEC_WRITE(sc, TSEC_REG_MIIMADD, (phy << 8) | reg);
 1591         TSEC_WRITE(sc, TSEC_REG_MIIMCON, value);
 1592 
 1593         timeout = TSEC_READ_RETRY;
 1594         while (--timeout && (TSEC_READ(sc, TSEC_REG_MIIMIND) &
 1595             TSEC_MIIMIND_BUSY))
 1596                 DELAY(TSEC_READ_DELAY);
 1597 
 1598         if (timeout == 0)
 1599                 device_printf(dev, "Timeout while writing to PHY!\n");
 1600 
 1601         return (0);
 1602 }
 1603 
 1604 void
 1605 tsec_miibus_statchg(device_t dev)
 1606 {
 1607         struct tsec_softc *sc;
 1608         struct mii_data *mii;
 1609         uint32_t ecntrl, id, tmp;
 1610         int link;
 1611 
 1612         sc = device_get_softc(dev);
 1613         mii = sc->tsec_mii;
 1614         link = ((mii->mii_media_status & IFM_ACTIVE) ? 1 : 0);
 1615 
 1616         tmp = TSEC_READ(sc, TSEC_REG_MACCFG2) & ~TSEC_MACCFG2_IF;
 1617 
 1618         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
 1619                 tmp |= TSEC_MACCFG2_FULLDUPLEX;
 1620         else
 1621                 tmp &= ~TSEC_MACCFG2_FULLDUPLEX;
 1622 
 1623         switch (IFM_SUBTYPE(mii->mii_media_active)) {
 1624         case IFM_1000_T:
 1625         case IFM_1000_SX:
 1626                 tmp |= TSEC_MACCFG2_GMII;
 1627                 sc->tsec_link = link;
 1628                 break;
 1629         case IFM_100_TX:
 1630         case IFM_10_T:
 1631                 tmp |= TSEC_MACCFG2_MII;
 1632                 sc->tsec_link = link;
 1633                 break;
 1634         case IFM_NONE:
 1635                 if (link)
 1636                         device_printf(dev, "No speed selected but link "
 1637                             "active!\n");
 1638                 sc->tsec_link = 0;
 1639                 return;
 1640         default:
 1641                 sc->tsec_link = 0;
 1642                 device_printf(dev, "Unknown speed (%d), link %s!\n",
 1643                     IFM_SUBTYPE(mii->mii_media_active),
 1644                         ((link) ? "up" : "down"));
 1645                 return;
 1646         }
 1647         TSEC_WRITE(sc, TSEC_REG_MACCFG2, tmp);
 1648 
 1649         /* XXX kludge - use circumstantial evidence for reduced mode. */
 1650         id = TSEC_READ(sc, TSEC_REG_ID2);
 1651         if (id & 0xffff) {
 1652                 ecntrl = TSEC_READ(sc, TSEC_REG_ECNTRL) & ~TSEC_ECNTRL_R100M;
 1653                 ecntrl |= (tmp & TSEC_MACCFG2_MII) ? TSEC_ECNTRL_R100M : 0;
 1654                 TSEC_WRITE(sc, TSEC_REG_ECNTRL, ecntrl);
 1655         }
 1656 }
 1657 
 1658 static void
 1659 tsec_add_sysctls(struct tsec_softc *sc)
 1660 {
 1661         struct sysctl_ctx_list *ctx;
 1662         struct sysctl_oid_list *children;
 1663         struct sysctl_oid *tree;
 1664 
 1665         ctx = device_get_sysctl_ctx(sc->dev);
 1666         children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
 1667         tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "int_coal",
 1668             CTLFLAG_RD, 0, "TSEC Interrupts coalescing");
 1669         children = SYSCTL_CHILDREN(tree);
 1670 
 1671         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_time",
 1672             CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_RX, tsec_sysctl_ic_time,
 1673             "I", "IC RX time threshold (0-65535)");
 1674         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_count",
 1675             CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_RX, tsec_sysctl_ic_count,
 1676             "I", "IC RX frame count threshold (0-255)");
 1677 
 1678         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_time",
 1679             CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_TX, tsec_sysctl_ic_time,
 1680             "I", "IC TX time threshold (0-65535)");
 1681         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_count",
 1682             CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_TX, tsec_sysctl_ic_count,
 1683             "I", "IC TX frame count threshold (0-255)");
 1684 }
 1685 
 1686 /*
 1687  * With Interrupt Coalescing (IC) active, a transmit/receive frame
 1688  * interrupt is raised either upon:
 1689  *
 1690  * - threshold-defined period of time elapsed, or
 1691  * - threshold-defined number of frames is received/transmitted,
 1692  *   whichever occurs first.
 1693  *
 1694  * The following sysctls regulate IC behaviour (for TX/RX separately):
 1695  *
 1696  * dev.tsec.<unit>.int_coal.rx_time
 1697  * dev.tsec.<unit>.int_coal.rx_count
 1698  * dev.tsec.<unit>.int_coal.tx_time
 1699  * dev.tsec.<unit>.int_coal.tx_count
 1700  *
 1701  * Values:
 1702  *
 1703  * - 0 for either time or count disables IC on the given TX/RX path
 1704  *
 1705  * - count: 1-255 (expresses frame count number; note that value of 1 is
 1706  *   effectively IC off)
 1707  *
 1708  * - time: 1-65535 (value corresponds to a real time period and is
 1709  *   expressed in units equivalent to 64 TSEC interface clocks, i.e. one timer
 1710  *   threshold unit is 26.5 us, 2.56 us, or 512 ns, corresponding to 10 Mbps,
 1711  *   100 Mbps, or 1Gbps, respectively. For detailed discussion consult the
 1712  *   TSEC reference manual.
 1713  */
 1714 static int
 1715 tsec_sysctl_ic_time(SYSCTL_HANDLER_ARGS)
 1716 {
 1717         int error;
 1718         uint32_t time;
 1719         struct tsec_softc *sc = (struct tsec_softc *)arg1;
 1720 
 1721         time = (arg2 == TSEC_IC_RX) ? sc->rx_ic_time : sc->tx_ic_time;
 1722 
 1723         error = sysctl_handle_int(oidp, &time, 0, req);
 1724         if (error != 0)
 1725                 return (error);
 1726 
 1727         if (time > 65535)
 1728                 return (EINVAL);
 1729 
 1730         TSEC_IC_LOCK(sc);
 1731         if (arg2 == TSEC_IC_RX) {
 1732                 sc->rx_ic_time = time;
 1733                 tsec_set_rxic(sc);
 1734         } else {
 1735                 sc->tx_ic_time = time;
 1736                 tsec_set_txic(sc);
 1737         }
 1738         TSEC_IC_UNLOCK(sc);
 1739 
 1740         return (0);
 1741 }
 1742 
 1743 static int
 1744 tsec_sysctl_ic_count(SYSCTL_HANDLER_ARGS)
 1745 {
 1746         int error;
 1747         uint32_t count;
 1748         struct tsec_softc *sc = (struct tsec_softc *)arg1;
 1749 
 1750         count = (arg2 == TSEC_IC_RX) ? sc->rx_ic_count : sc->tx_ic_count;
 1751 
 1752         error = sysctl_handle_int(oidp, &count, 0, req);
 1753         if (error != 0)
 1754                 return (error);
 1755 
 1756         if (count > 255)
 1757                 return (EINVAL);
 1758 
 1759         TSEC_IC_LOCK(sc);
 1760         if (arg2 == TSEC_IC_RX) {
 1761                 sc->rx_ic_count = count;
 1762                 tsec_set_rxic(sc);
 1763         } else {
 1764                 sc->tx_ic_count = count;
 1765                 tsec_set_txic(sc);
 1766         }
 1767         TSEC_IC_UNLOCK(sc);
 1768 
 1769         return (0);
 1770 }
 1771 
 1772 static void
 1773 tsec_set_rxic(struct tsec_softc *sc)
 1774 {
 1775         uint32_t rxic_val;
 1776 
 1777         if (sc->rx_ic_count == 0 || sc->rx_ic_time == 0)
 1778                 /* Disable RX IC */
 1779                 rxic_val = 0;
 1780         else {
 1781                 rxic_val = 0x80000000;
 1782                 rxic_val |= (sc->rx_ic_count << 21);
 1783                 rxic_val |= sc->rx_ic_time;
 1784         }
 1785 
 1786         TSEC_WRITE(sc, TSEC_REG_RXIC, rxic_val);
 1787 }
 1788 
 1789 static void
 1790 tsec_set_txic(struct tsec_softc *sc)
 1791 {
 1792         uint32_t txic_val;
 1793 
 1794         if (sc->tx_ic_count == 0 || sc->tx_ic_time == 0)
 1795                 /* Disable TX IC */
 1796                 txic_val = 0;
 1797         else {
 1798                 txic_val = 0x80000000;
 1799                 txic_val |= (sc->tx_ic_count << 21);
 1800                 txic_val |= sc->tx_ic_time;
 1801         }
 1802 
 1803         TSEC_WRITE(sc, TSEC_REG_TXIC, txic_val);
 1804 }
 1805 
 1806 static void
 1807 tsec_offload_setup(struct tsec_softc *sc)
 1808 {
 1809         struct ifnet *ifp = sc->tsec_ifp;
 1810         uint32_t reg;
 1811 
 1812         TSEC_GLOBAL_LOCK_ASSERT(sc);
 1813 
 1814         reg = TSEC_READ(sc, TSEC_REG_TCTRL);
 1815         reg |= TSEC_TCTRL_IPCSEN | TSEC_TCTRL_TUCSEN;
 1816 
 1817         if (ifp->if_capenable & IFCAP_TXCSUM)
 1818                 ifp->if_hwassist = TSEC_CHECKSUM_FEATURES;
 1819         else
 1820                 ifp->if_hwassist = 0;
 1821 
 1822         TSEC_WRITE(sc, TSEC_REG_TCTRL, reg);
 1823 
 1824         reg = TSEC_READ(sc, TSEC_REG_RCTRL);
 1825         reg &= ~(TSEC_RCTRL_IPCSEN | TSEC_RCTRL_TUCSEN | TSEC_RCTRL_PRSDEP);
 1826         reg |= TSEC_RCTRL_PRSDEP_PARSE_L2 | TSEC_RCTRL_VLEX;
 1827 
 1828         if (ifp->if_capenable & IFCAP_RXCSUM)
 1829                 reg |= TSEC_RCTRL_IPCSEN | TSEC_RCTRL_TUCSEN |
 1830                     TSEC_RCTRL_PRSDEP_PARSE_L234;
 1831 
 1832         TSEC_WRITE(sc, TSEC_REG_RCTRL, reg);
 1833 }
 1834 
 1835 
 1836 static void
 1837 tsec_offload_process_frame(struct tsec_softc *sc, struct mbuf *m)
 1838 {
 1839         struct tsec_rx_fcb rx_fcb;
 1840         int csum_flags = 0;
 1841         int protocol, flags;
 1842 
 1843         TSEC_RECEIVE_LOCK_ASSERT(sc);
 1844 
 1845         m_copydata(m, 0, sizeof(struct tsec_rx_fcb), (caddr_t)(&rx_fcb));
 1846         flags = rx_fcb.flags;
 1847         protocol = rx_fcb.protocol;
 1848 
 1849         if (TSEC_RX_FCB_IP_CSUM_CHECKED(flags)) {
 1850                 csum_flags |= CSUM_IP_CHECKED;
 1851 
 1852                 if ((flags & TSEC_RX_FCB_IP_CSUM_ERROR) == 0)
 1853                         csum_flags |= CSUM_IP_VALID;
 1854         }
 1855 
 1856         if ((protocol == IPPROTO_TCP || protocol == IPPROTO_UDP) &&
 1857             TSEC_RX_FCB_TCP_UDP_CSUM_CHECKED(flags) &&
 1858             (flags & TSEC_RX_FCB_TCP_UDP_CSUM_ERROR) == 0) {
 1859 
 1860                 csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
 1861                 m->m_pkthdr.csum_data = 0xFFFF;
 1862         }
 1863 
 1864         m->m_pkthdr.csum_flags = csum_flags;
 1865 
 1866         if (flags & TSEC_RX_FCB_VLAN) {
 1867                 m->m_pkthdr.ether_vtag = rx_fcb.vlan;
 1868                 m->m_flags |= M_VLANTAG;
 1869         }
 1870 
 1871         m_adj(m, sizeof(struct tsec_rx_fcb));
 1872 }
 1873 
 1874 static void
 1875 tsec_setup_multicast(struct tsec_softc *sc)
 1876 {
 1877         uint32_t hashtable[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
 1878         struct ifnet *ifp = sc->tsec_ifp;
 1879         struct ifmultiaddr *ifma;
 1880         uint32_t h;
 1881         int i;
 1882 
 1883         TSEC_GLOBAL_LOCK_ASSERT(sc);
 1884 
 1885         if (ifp->if_flags & IFF_ALLMULTI) {
 1886                 for (i = 0; i < 8; i++)
 1887                         TSEC_WRITE(sc, TSEC_REG_GADDR(i), 0xFFFFFFFF);
 1888 
 1889                 return;
 1890         }
 1891 
 1892         if_maddr_rlock(ifp);
 1893         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 1894 
 1895                 if (ifma->ifma_addr->sa_family != AF_LINK)
 1896                         continue;
 1897 
 1898                 h = (ether_crc32_be(LLADDR((struct sockaddr_dl *)
 1899                     ifma->ifma_addr), ETHER_ADDR_LEN) >> 24) & 0xFF;
 1900 
 1901                 hashtable[(h >> 5)] |= 1 << (0x1F - (h & 0x1F));
 1902         }
 1903         if_maddr_runlock(ifp);
 1904 
 1905         for (i = 0; i < 8; i++)
 1906                 TSEC_WRITE(sc, TSEC_REG_GADDR(i), hashtable[i]);
 1907 }
 1908 
 1909 static int
 1910 tsec_set_mtu(struct tsec_softc *sc, unsigned int mtu)
 1911 {
 1912 
 1913         mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
 1914 
 1915         TSEC_GLOBAL_LOCK_ASSERT(sc);
 1916 
 1917         if (mtu >= TSEC_MIN_FRAME_SIZE && mtu <= TSEC_MAX_FRAME_SIZE) {
 1918                 TSEC_WRITE(sc, TSEC_REG_MAXFRM, mtu);
 1919                 return (mtu);
 1920         }
 1921 
 1922         return (0);
 1923 }

Cache object: 40eba51863de31f4c0a3579c636bf9fa


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.