1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2003 Marcel Moolenaar
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #include "opt_acpi.h"
30 #include "opt_platform.h"
31 #include "opt_uart.h"
32
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/bus.h>
39 #include <sys/conf.h>
40 #include <sys/kernel.h>
41 #include <sys/sysctl.h>
42 #include <machine/bus.h>
43
44 #ifdef FDT
45 #include <dev/fdt/fdt_common.h>
46 #include <dev/ofw/ofw_bus.h>
47 #include <dev/ofw/ofw_bus_subr.h>
48 #endif
49
50 #include <dev/uart/uart.h>
51 #include <dev/uart/uart_cpu.h>
52 #ifdef FDT
53 #include <dev/uart/uart_cpu_fdt.h>
54 #endif
55 #include <dev/uart/uart_bus.h>
56 #include <dev/uart/uart_dev_ns8250.h>
57 #include <dev/uart/uart_ppstypes.h>
58 #ifdef DEV_ACPI
59 #include <dev/uart/uart_cpu_acpi.h>
60 #include <contrib/dev/acpica/include/acpi.h>
61 #endif
62
63 #include <dev/ic/ns16550.h>
64
65 #include "uart_if.h"
66
67 #define DEFAULT_RCLK 1843200
68
69 /*
70 * Set the default baudrate tolerance to 3.0%.
71 *
72 * Some embedded boards have odd reference clocks (eg 25MHz)
73 * and we need to handle higher variances in the target baud rate.
74 */
75 #ifndef UART_DEV_TOLERANCE_PCT
76 #define UART_DEV_TOLERANCE_PCT 30
77 #endif /* UART_DEV_TOLERANCE_PCT */
78
79 static int broken_txfifo = 0;
80 SYSCTL_INT(_hw, OID_AUTO, broken_txfifo, CTLFLAG_RWTUN,
81 &broken_txfifo, 0, "UART FIFO has QEMU emulation bug");
82
83 /*
84 * Clear pending interrupts. THRE is cleared by reading IIR. Data
85 * that may have been received gets lost here.
86 */
87 static void
88 ns8250_clrint(struct uart_bas *bas)
89 {
90 uint8_t iir, lsr;
91
92 iir = uart_getreg(bas, REG_IIR);
93 while ((iir & IIR_NOPEND) == 0) {
94 iir &= IIR_IMASK;
95 if (iir == IIR_RLS) {
96 lsr = uart_getreg(bas, REG_LSR);
97 if (lsr & (LSR_BI|LSR_FE|LSR_PE))
98 (void)uart_getreg(bas, REG_DATA);
99 } else if (iir == IIR_RXRDY || iir == IIR_RXTOUT)
100 (void)uart_getreg(bas, REG_DATA);
101 else if (iir == IIR_MLSC)
102 (void)uart_getreg(bas, REG_MSR);
103 uart_barrier(bas);
104 iir = uart_getreg(bas, REG_IIR);
105 }
106 }
107
108 static int
109 ns8250_delay(struct uart_bas *bas)
110 {
111 int divisor;
112 u_char lcr;
113
114 lcr = uart_getreg(bas, REG_LCR);
115 uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
116 uart_barrier(bas);
117 divisor = uart_getreg(bas, REG_DLL) | (uart_getreg(bas, REG_DLH) << 8);
118 uart_barrier(bas);
119 uart_setreg(bas, REG_LCR, lcr);
120 uart_barrier(bas);
121
122 /* 1/10th the time to transmit 1 character (estimate). */
123 if (divisor <= 134)
124 return (16000000 * divisor / bas->rclk);
125 return (16000 * divisor / (bas->rclk / 1000));
126 }
127
128 static int
129 ns8250_divisor(int rclk, int baudrate)
130 {
131 int actual_baud, divisor;
132 int error;
133
134 if (baudrate == 0)
135 return (0);
136
137 divisor = (rclk / (baudrate << 3) + 1) >> 1;
138 if (divisor == 0 || divisor >= 65536)
139 return (0);
140 actual_baud = rclk / (divisor << 4);
141
142 /* 10 times error in percent: */
143 error = ((actual_baud - baudrate) * 2000 / baudrate + 1) / 2;
144
145 /* enforce maximum error tolerance: */
146 if (error < -UART_DEV_TOLERANCE_PCT || error > UART_DEV_TOLERANCE_PCT)
147 return (0);
148
149 return (divisor);
150 }
151
152 static int
153 ns8250_drain(struct uart_bas *bas, int what)
154 {
155 int delay, limit;
156
157 delay = ns8250_delay(bas);
158
159 if (what & UART_DRAIN_TRANSMITTER) {
160 /*
161 * Pick an arbitrary high limit to avoid getting stuck in
162 * an infinite loop when the hardware is broken. Make the
163 * limit high enough to handle large FIFOs.
164 */
165 limit = 10*1024;
166 while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
167 DELAY(delay);
168 if (limit == 0) {
169 /* printf("ns8250: transmitter appears stuck... "); */
170 return (EIO);
171 }
172 }
173
174 if (what & UART_DRAIN_RECEIVER) {
175 /*
176 * Pick an arbitrary high limit to avoid getting stuck in
177 * an infinite loop when the hardware is broken. Make the
178 * limit high enough to handle large FIFOs and integrated
179 * UARTs. The HP rx2600 for example has 3 UARTs on the
180 * management board that tend to get a lot of data send
181 * to it when the UART is first activated. Assume that we
182 * have finished draining if LSR_RXRDY is not asserted both
183 * prior to and after a DELAY; but as long as LSR_RXRDY is
184 * asserted, read (and discard) characters as quickly as
185 * possible.
186 */
187 limit=10*4096;
188 while (limit && (uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) {
189 do {
190 (void)uart_getreg(bas, REG_DATA);
191 uart_barrier(bas);
192 } while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit);
193 uart_barrier(bas);
194 DELAY(delay << 2);
195 }
196 if (limit == 0) {
197 /* printf("ns8250: receiver appears broken... "); */
198 return (EIO);
199 }
200 }
201
202 return (0);
203 }
204
205 /*
206 * We can only flush UARTs with FIFOs. UARTs without FIFOs should be
207 * drained. WARNING: this function clobbers the FIFO setting!
208 */
209 static void
210 ns8250_flush(struct uart_bas *bas, int what)
211 {
212 uint8_t fcr;
213 uint8_t lsr;
214 int drain = 0;
215
216 fcr = FCR_ENABLE;
217 #ifdef CPU_XBURST
218 fcr |= FCR_UART_ON;
219 #endif
220 if (what & UART_FLUSH_TRANSMITTER)
221 fcr |= FCR_XMT_RST;
222 if (what & UART_FLUSH_RECEIVER)
223 fcr |= FCR_RCV_RST;
224 uart_setreg(bas, REG_FCR, fcr);
225 uart_barrier(bas);
226
227 /*
228 * Detect and work around emulated UARTs which don't implement the
229 * FCR register; on these systems we need to drain the FIFO since
230 * the flush we request doesn't happen. One such system is the
231 * Firecracker VMM, aka. the rust-vmm/vm-superio emulation code:
232 * https://github.com/rust-vmm/vm-superio/issues/83
233 */
234 lsr = uart_getreg(bas, REG_LSR);
235 if (((lsr & LSR_TEMT) == 0) && (what & UART_FLUSH_TRANSMITTER))
236 drain |= UART_DRAIN_TRANSMITTER;
237 if ((lsr & LSR_RXRDY) && (what & UART_FLUSH_RECEIVER))
238 drain |= UART_DRAIN_RECEIVER;
239 if (drain != 0) {
240 printf("ns8250: UART FCR is broken\n");
241 ns8250_drain(bas, drain);
242 }
243 }
244
245 static int
246 ns8250_param(struct uart_bas *bas, int baudrate, int databits, int stopbits,
247 int parity)
248 {
249 int divisor;
250 uint8_t lcr;
251
252 lcr = 0;
253 if (databits >= 8)
254 lcr |= LCR_8BITS;
255 else if (databits == 7)
256 lcr |= LCR_7BITS;
257 else if (databits == 6)
258 lcr |= LCR_6BITS;
259 else
260 lcr |= LCR_5BITS;
261 if (stopbits > 1)
262 lcr |= LCR_STOPB;
263 lcr |= parity << 3;
264
265 /* Set baudrate. */
266 if (baudrate > 0) {
267 divisor = ns8250_divisor(bas->rclk, baudrate);
268 if (divisor == 0)
269 return (EINVAL);
270 uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
271 uart_barrier(bas);
272 uart_setreg(bas, REG_DLL, divisor & 0xff);
273 uart_setreg(bas, REG_DLH, (divisor >> 8) & 0xff);
274 uart_barrier(bas);
275 }
276
277 /* Set LCR and clear DLAB. */
278 uart_setreg(bas, REG_LCR, lcr);
279 uart_barrier(bas);
280 return (0);
281 }
282
283 /*
284 * Low-level UART interface.
285 */
286 static int ns8250_probe(struct uart_bas *bas);
287 static void ns8250_init(struct uart_bas *bas, int, int, int, int);
288 static void ns8250_term(struct uart_bas *bas);
289 static void ns8250_putc(struct uart_bas *bas, int);
290 static int ns8250_rxready(struct uart_bas *bas);
291 static int ns8250_getc(struct uart_bas *bas, struct mtx *);
292
293 struct uart_ops uart_ns8250_ops = {
294 .probe = ns8250_probe,
295 .init = ns8250_init,
296 .term = ns8250_term,
297 .putc = ns8250_putc,
298 .rxready = ns8250_rxready,
299 .getc = ns8250_getc,
300 };
301
302 static int
303 ns8250_probe(struct uart_bas *bas)
304 {
305 u_char val;
306
307 #ifdef CPU_XBURST
308 uart_setreg(bas, REG_FCR, FCR_UART_ON);
309 #endif
310
311 /* Check known 0 bits that don't depend on DLAB. */
312 val = uart_getreg(bas, REG_IIR);
313 if (val & 0x30)
314 return (ENXIO);
315 /*
316 * Bit 6 of the MCR (= 0x40) appears to be 1 for the Sun1699
317 * chip, but otherwise doesn't seem to have a function. In
318 * other words, uart(4) works regardless. Ignore that bit so
319 * the probe succeeds.
320 */
321 val = uart_getreg(bas, REG_MCR);
322 if (val & 0xa0)
323 return (ENXIO);
324
325 return (0);
326 }
327
328 static void
329 ns8250_init(struct uart_bas *bas, int baudrate, int databits, int stopbits,
330 int parity)
331 {
332 u_char ier, val;
333
334 if (bas->rclk == 0)
335 bas->rclk = DEFAULT_RCLK;
336 ns8250_param(bas, baudrate, databits, stopbits, parity);
337
338 /* Disable all interrupt sources. */
339 /*
340 * We use 0xe0 instead of 0xf0 as the mask because the XScale PXA
341 * UARTs split the receive time-out interrupt bit out separately as
342 * 0x10. This gets handled by ier_mask and ier_rxbits below.
343 */
344 ier = uart_getreg(bas, REG_IER) & 0xe0;
345 uart_setreg(bas, REG_IER, ier);
346 uart_barrier(bas);
347
348 /* Disable the FIFO (if present). */
349 val = 0;
350 #ifdef CPU_XBURST
351 val |= FCR_UART_ON;
352 #endif
353 uart_setreg(bas, REG_FCR, val);
354 uart_barrier(bas);
355
356 /* Set RTS & DTR. */
357 uart_setreg(bas, REG_MCR, MCR_IE | MCR_RTS | MCR_DTR);
358 uart_barrier(bas);
359
360 ns8250_clrint(bas);
361 }
362
363 static void
364 ns8250_term(struct uart_bas *bas)
365 {
366
367 /* Clear RTS & DTR. */
368 uart_setreg(bas, REG_MCR, MCR_IE);
369 uart_barrier(bas);
370 }
371
372 static void
373 ns8250_putc(struct uart_bas *bas, int c)
374 {
375 int limit;
376
377 limit = 250000;
378 while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0 && --limit)
379 DELAY(4);
380 uart_setreg(bas, REG_DATA, c);
381 uart_barrier(bas);
382 }
383
384 static int
385 ns8250_rxready(struct uart_bas *bas)
386 {
387
388 return ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) != 0 ? 1 : 0);
389 }
390
391 static int
392 ns8250_getc(struct uart_bas *bas, struct mtx *hwmtx)
393 {
394 int c;
395
396 uart_lock(hwmtx);
397
398 while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) {
399 uart_unlock(hwmtx);
400 DELAY(4);
401 uart_lock(hwmtx);
402 }
403
404 c = uart_getreg(bas, REG_DATA);
405
406 uart_unlock(hwmtx);
407
408 return (c);
409 }
410
411 static kobj_method_t ns8250_methods[] = {
412 KOBJMETHOD(uart_attach, ns8250_bus_attach),
413 KOBJMETHOD(uart_detach, ns8250_bus_detach),
414 KOBJMETHOD(uart_flush, ns8250_bus_flush),
415 KOBJMETHOD(uart_getsig, ns8250_bus_getsig),
416 KOBJMETHOD(uart_ioctl, ns8250_bus_ioctl),
417 KOBJMETHOD(uart_ipend, ns8250_bus_ipend),
418 KOBJMETHOD(uart_param, ns8250_bus_param),
419 KOBJMETHOD(uart_probe, ns8250_bus_probe),
420 KOBJMETHOD(uart_receive, ns8250_bus_receive),
421 KOBJMETHOD(uart_setsig, ns8250_bus_setsig),
422 KOBJMETHOD(uart_transmit, ns8250_bus_transmit),
423 KOBJMETHOD(uart_grab, ns8250_bus_grab),
424 KOBJMETHOD(uart_ungrab, ns8250_bus_ungrab),
425 { 0, 0 }
426 };
427
428 struct uart_class uart_ns8250_class = {
429 "ns8250",
430 ns8250_methods,
431 sizeof(struct ns8250_softc),
432 .uc_ops = &uart_ns8250_ops,
433 .uc_range = 8,
434 .uc_rclk = DEFAULT_RCLK,
435 .uc_rshift = 0
436 };
437
438 /*
439 * XXX -- refactor out ACPI and FDT ifdefs
440 */
441 #ifdef DEV_ACPI
442 static struct acpi_uart_compat_data acpi_compat_data[] = {
443 {"AMD0020", &uart_ns8250_class, 0, 2, 0, 48000000, UART_F_BUSY_DETECT, "AMD / Synopsys Designware UART"},
444 {"AMDI0020", &uart_ns8250_class, 0, 2, 0, 48000000, UART_F_BUSY_DETECT, "AMD / Synopsys Designware UART"},
445 {"MRVL0001", &uart_ns8250_class, ACPI_DBG2_16550_SUBSET, 2, 0, 200000000, UART_F_BUSY_DETECT, "Marvell / Synopsys Designware UART"},
446 {"SCX0006", &uart_ns8250_class, 0, 2, 0, 62500000, UART_F_BUSY_DETECT, "SynQuacer / Synopsys Designware UART"},
447 {"HISI0031", &uart_ns8250_class, 0, 2, 0, 200000000, UART_F_BUSY_DETECT, "HiSilicon / Synopsys Designware UART"},
448 {"NXP0018", &uart_ns8250_class, 0, 0, 0, 350000000, UART_F_BUSY_DETECT, "NXP / Synopsys Designware UART"},
449 {"PNP0500", &uart_ns8250_class, 0, 0, 0, 0, 0, "Standard PC COM port"},
450 {"PNP0501", &uart_ns8250_class, 0, 0, 0, 0, 0, "16550A-compatible COM port"},
451 {"PNP0502", &uart_ns8250_class, 0, 0, 0, 0, 0, "Multiport serial device (non-intelligent 16550)"},
452 {"PNP0510", &uart_ns8250_class, 0, 0, 0, 0, 0, "Generic IRDA-compatible device"},
453 {"PNP0511", &uart_ns8250_class, 0, 0, 0, 0, 0, "Generic IRDA-compatible device"},
454 {"WACF004", &uart_ns8250_class, 0, 0, 0, 0, 0, "Wacom Tablet PC Screen"},
455 {"WACF00E", &uart_ns8250_class, 0, 0, 0, 0, 0, "Wacom Tablet PC Screen 00e"},
456 {"FUJ02E5", &uart_ns8250_class, 0, 0, 0, 0, 0, "Wacom Tablet at FuS Lifebook T"},
457 {NULL, NULL, 0, 0 , 0, 0, 0, NULL},
458 };
459 UART_ACPI_CLASS_AND_DEVICE(acpi_compat_data);
460 #endif
461
462 #ifdef FDT
463 static struct ofw_compat_data compat_data[] = {
464 {"ns16550", (uintptr_t)&uart_ns8250_class},
465 {"ns16550a", (uintptr_t)&uart_ns8250_class},
466 {NULL, (uintptr_t)NULL},
467 };
468 UART_FDT_CLASS_AND_DEVICE(compat_data);
469 #endif
470
471 /* Use token-pasting to form SER_ and MSR_ named constants. */
472 #define SER(sig) SER_##sig
473 #define SERD(sig) SER_D##sig
474 #define MSR(sig) MSR_##sig
475 #define MSRD(sig) MSR_D##sig
476
477 /*
478 * Detect signal changes using software delta detection. The previous state of
479 * the signals is in 'var' the new hardware state is in 'msr', and 'sig' is the
480 * short name (DCD, CTS, etc) of the signal bit being processed; 'var' gets the
481 * new state of both the signal and the delta bits.
482 */
483 #define SIGCHGSW(var, msr, sig) \
484 if ((msr) & MSR(sig)) { \
485 if ((var & SER(sig)) == 0) \
486 var |= SERD(sig) | SER(sig); \
487 } else { \
488 if ((var & SER(sig)) != 0) \
489 var = SERD(sig) | (var & ~SER(sig)); \
490 }
491
492 /*
493 * Detect signal changes using the hardware msr delta bits. This is currently
494 * used only when PPS timing information is being captured using the "narrow
495 * pulse" option. With a narrow PPS pulse the signal may not still be asserted
496 * by time the interrupt handler is invoked. The hardware will latch the fact
497 * that it changed in the delta bits.
498 */
499 #define SIGCHGHW(var, msr, sig) \
500 if ((msr) & MSRD(sig)) { \
501 if (((msr) & MSR(sig)) != 0) \
502 var |= SERD(sig) | SER(sig); \
503 else \
504 var = SERD(sig) | (var & ~SER(sig)); \
505 }
506
507 int
508 ns8250_bus_attach(struct uart_softc *sc)
509 {
510 struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
511 struct uart_bas *bas;
512 unsigned int ivar;
513 #ifdef FDT
514 phandle_t node;
515 pcell_t cell;
516 #endif
517
518 #ifdef FDT
519 /* Check whether uart has a broken txfifo. */
520 node = ofw_bus_get_node(sc->sc_dev);
521 if ((OF_getencprop(node, "broken-txfifo", &cell, sizeof(cell))) > 0)
522 broken_txfifo = cell ? 1 : 0;
523 #endif
524
525 bas = &sc->sc_bas;
526
527 ns8250->busy_detect = bas->busy_detect;
528 ns8250->mcr = uart_getreg(bas, REG_MCR);
529 ns8250->fcr = FCR_ENABLE;
530 #ifdef CPU_XBURST
531 ns8250->fcr |= FCR_UART_ON;
532 #endif
533 if (!resource_int_value("uart", device_get_unit(sc->sc_dev), "flags",
534 &ivar)) {
535 if (UART_FLAGS_FCR_RX_LOW(ivar))
536 ns8250->fcr |= FCR_RX_LOW;
537 else if (UART_FLAGS_FCR_RX_MEDL(ivar))
538 ns8250->fcr |= FCR_RX_MEDL;
539 else if (UART_FLAGS_FCR_RX_HIGH(ivar))
540 ns8250->fcr |= FCR_RX_HIGH;
541 else
542 ns8250->fcr |= FCR_RX_MEDH;
543 } else
544 ns8250->fcr |= FCR_RX_MEDH;
545
546 /* Get IER mask */
547 ivar = 0xf0;
548 resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_mask",
549 &ivar);
550 ns8250->ier_mask = (uint8_t)(ivar & 0xff);
551
552 /* Get IER RX interrupt bits */
553 ivar = IER_EMSC | IER_ERLS | IER_ERXRDY;
554 resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_rxbits",
555 &ivar);
556 ns8250->ier_rxbits = (uint8_t)(ivar & 0xff);
557
558 uart_setreg(bas, REG_FCR, ns8250->fcr);
559 uart_barrier(bas);
560 ns8250_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
561
562 if (ns8250->mcr & MCR_DTR)
563 sc->sc_hwsig |= SER_DTR;
564 if (ns8250->mcr & MCR_RTS)
565 sc->sc_hwsig |= SER_RTS;
566 ns8250_bus_getsig(sc);
567
568 ns8250_clrint(bas);
569 ns8250->ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
570 ns8250->ier |= ns8250->ier_rxbits;
571 uart_setreg(bas, REG_IER, ns8250->ier);
572 uart_barrier(bas);
573
574 /*
575 * Timing of the H/W access was changed with r253161 of uart_core.c
576 * It has been observed that an ITE IT8513E would signal a break
577 * condition with pretty much every character it received, unless
578 * it had enough time to settle between ns8250_bus_attach() and
579 * ns8250_bus_ipend() -- which it accidentally had before r253161.
580 * It's not understood why the UART chip behaves this way and it
581 * could very well be that the DELAY make the H/W work in the same
582 * accidental manner as before. More analysis is warranted, but
583 * at least now we fixed a known regression.
584 */
585 DELAY(200);
586 return (0);
587 }
588
589 int
590 ns8250_bus_detach(struct uart_softc *sc)
591 {
592 struct ns8250_softc *ns8250;
593 struct uart_bas *bas;
594 u_char ier;
595
596 ns8250 = (struct ns8250_softc *)sc;
597 bas = &sc->sc_bas;
598 ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
599 uart_setreg(bas, REG_IER, ier);
600 uart_barrier(bas);
601 ns8250_clrint(bas);
602 return (0);
603 }
604
605 int
606 ns8250_bus_flush(struct uart_softc *sc, int what)
607 {
608 struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
609 struct uart_bas *bas;
610 int error;
611
612 bas = &sc->sc_bas;
613 uart_lock(sc->sc_hwmtx);
614 if (sc->sc_rxfifosz > 1) {
615 ns8250_flush(bas, what);
616 uart_setreg(bas, REG_FCR, ns8250->fcr);
617 uart_barrier(bas);
618 error = 0;
619 } else
620 error = ns8250_drain(bas, what);
621 uart_unlock(sc->sc_hwmtx);
622 return (error);
623 }
624
625 int
626 ns8250_bus_getsig(struct uart_softc *sc)
627 {
628 uint32_t old, sig;
629 uint8_t msr;
630
631 /*
632 * The delta bits are reputed to be broken on some hardware, so use
633 * software delta detection by default. Use the hardware delta bits
634 * when capturing PPS pulses which are too narrow for software detection
635 * to see the edges. Hardware delta for RI doesn't work like the
636 * others, so always use software for it. Other threads may be changing
637 * other (non-MSR) bits in sc_hwsig, so loop until it can successfully
638 * update without other changes happening. Note that the SIGCHGxx()
639 * macros carefully preserve the delta bits when we have to loop several
640 * times and a signal transitions between iterations.
641 */
642 do {
643 old = sc->sc_hwsig;
644 sig = old;
645 uart_lock(sc->sc_hwmtx);
646 msr = uart_getreg(&sc->sc_bas, REG_MSR);
647 uart_unlock(sc->sc_hwmtx);
648 if (sc->sc_pps_mode & UART_PPS_NARROW_PULSE) {
649 SIGCHGHW(sig, msr, DSR);
650 SIGCHGHW(sig, msr, CTS);
651 SIGCHGHW(sig, msr, DCD);
652 } else {
653 SIGCHGSW(sig, msr, DSR);
654 SIGCHGSW(sig, msr, CTS);
655 SIGCHGSW(sig, msr, DCD);
656 }
657 SIGCHGSW(sig, msr, RI);
658 } while (!atomic_cmpset_32(&sc->sc_hwsig, old, sig & ~SER_MASK_DELTA));
659 return (sig);
660 }
661
662 int
663 ns8250_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
664 {
665 struct uart_bas *bas;
666 int baudrate, divisor, error;
667 uint8_t efr, lcr;
668
669 bas = &sc->sc_bas;
670 error = 0;
671 uart_lock(sc->sc_hwmtx);
672 switch (request) {
673 case UART_IOCTL_BREAK:
674 lcr = uart_getreg(bas, REG_LCR);
675 if (data)
676 lcr |= LCR_SBREAK;
677 else
678 lcr &= ~LCR_SBREAK;
679 uart_setreg(bas, REG_LCR, lcr);
680 uart_barrier(bas);
681 break;
682 case UART_IOCTL_IFLOW:
683 lcr = uart_getreg(bas, REG_LCR);
684 uart_barrier(bas);
685 uart_setreg(bas, REG_LCR, 0xbf);
686 uart_barrier(bas);
687 efr = uart_getreg(bas, REG_EFR);
688 if (data)
689 efr |= EFR_RTS;
690 else
691 efr &= ~EFR_RTS;
692 uart_setreg(bas, REG_EFR, efr);
693 uart_barrier(bas);
694 uart_setreg(bas, REG_LCR, lcr);
695 uart_barrier(bas);
696 break;
697 case UART_IOCTL_OFLOW:
698 lcr = uart_getreg(bas, REG_LCR);
699 uart_barrier(bas);
700 uart_setreg(bas, REG_LCR, 0xbf);
701 uart_barrier(bas);
702 efr = uart_getreg(bas, REG_EFR);
703 if (data)
704 efr |= EFR_CTS;
705 else
706 efr &= ~EFR_CTS;
707 uart_setreg(bas, REG_EFR, efr);
708 uart_barrier(bas);
709 uart_setreg(bas, REG_LCR, lcr);
710 uart_barrier(bas);
711 break;
712 case UART_IOCTL_BAUD:
713 lcr = uart_getreg(bas, REG_LCR);
714 uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
715 uart_barrier(bas);
716 divisor = uart_getreg(bas, REG_DLL) |
717 (uart_getreg(bas, REG_DLH) << 8);
718 uart_barrier(bas);
719 uart_setreg(bas, REG_LCR, lcr);
720 uart_barrier(bas);
721 baudrate = (divisor > 0) ? bas->rclk / divisor / 16 : 0;
722 if (baudrate > 0)
723 *(int*)data = baudrate;
724 else
725 error = ENXIO;
726 break;
727 default:
728 error = EINVAL;
729 break;
730 }
731 uart_unlock(sc->sc_hwmtx);
732 return (error);
733 }
734
735 int
736 ns8250_bus_ipend(struct uart_softc *sc)
737 {
738 struct uart_bas *bas;
739 struct ns8250_softc *ns8250;
740 int ipend;
741 uint8_t iir, lsr;
742
743 ns8250 = (struct ns8250_softc *)sc;
744 bas = &sc->sc_bas;
745 uart_lock(sc->sc_hwmtx);
746 iir = uart_getreg(bas, REG_IIR);
747
748 if (ns8250->busy_detect && (iir & IIR_BUSY) == IIR_BUSY) {
749 (void)uart_getreg(bas, DW_REG_USR);
750 uart_unlock(sc->sc_hwmtx);
751 return (0);
752 }
753 if (iir & IIR_NOPEND) {
754 uart_unlock(sc->sc_hwmtx);
755 return (0);
756 }
757 ipend = 0;
758 if (iir & IIR_RXRDY) {
759 lsr = uart_getreg(bas, REG_LSR);
760 if (lsr & LSR_OE)
761 ipend |= SER_INT_OVERRUN;
762 if (lsr & LSR_BI)
763 ipend |= SER_INT_BREAK;
764 if (lsr & LSR_RXRDY)
765 ipend |= SER_INT_RXREADY;
766 } else {
767 if (iir & IIR_TXRDY) {
768 ipend |= SER_INT_TXIDLE;
769 ns8250->ier &= ~IER_ETXRDY;
770 uart_setreg(bas, REG_IER, ns8250->ier);
771 uart_barrier(bas);
772 } else
773 ipend |= SER_INT_SIGCHG;
774 }
775 if (ipend == 0)
776 ns8250_clrint(bas);
777 uart_unlock(sc->sc_hwmtx);
778 return (ipend);
779 }
780
781 int
782 ns8250_bus_param(struct uart_softc *sc, int baudrate, int databits,
783 int stopbits, int parity)
784 {
785 struct ns8250_softc *ns8250;
786 struct uart_bas *bas;
787 int error, limit;
788
789 ns8250 = (struct ns8250_softc*)sc;
790 bas = &sc->sc_bas;
791 uart_lock(sc->sc_hwmtx);
792 /*
793 * When using DW UART with BUSY detection it is necessary to wait
794 * until all serial transfers are finished before manipulating the
795 * line control. LCR will not be affected when UART is busy.
796 */
797 if (ns8250->busy_detect != 0) {
798 /*
799 * Pick an arbitrary high limit to avoid getting stuck in
800 * an infinite loop in case when the hardware is broken.
801 */
802 limit = 10 * 1024;
803 while (((uart_getreg(bas, DW_REG_USR) & USR_BUSY) != 0) &&
804 --limit)
805 DELAY(4);
806
807 if (limit <= 0) {
808 /* UART appears to be stuck */
809 uart_unlock(sc->sc_hwmtx);
810 return (EIO);
811 }
812 }
813
814 error = ns8250_param(bas, baudrate, databits, stopbits, parity);
815 uart_unlock(sc->sc_hwmtx);
816 return (error);
817 }
818
819 int
820 ns8250_bus_probe(struct uart_softc *sc)
821 {
822 struct uart_bas *bas;
823 int count, delay, error, limit;
824 uint8_t lsr, mcr, ier;
825 uint8_t val;
826
827 bas = &sc->sc_bas;
828
829 error = ns8250_probe(bas);
830 if (error)
831 return (error);
832
833 mcr = MCR_IE;
834 if (sc->sc_sysdev == NULL) {
835 /* By using ns8250_init() we also set DTR and RTS. */
836 ns8250_init(bas, 115200, 8, 1, UART_PARITY_NONE);
837 } else
838 mcr |= MCR_DTR | MCR_RTS;
839
840 error = ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
841 if (error)
842 return (error);
843
844 /*
845 * Set loopback mode. This avoids having garbage on the wire and
846 * also allows us send and receive data. We set DTR and RTS to
847 * avoid the possibility that automatic flow-control prevents
848 * any data from being sent.
849 */
850 uart_setreg(bas, REG_MCR, MCR_LOOPBACK | MCR_IE | MCR_DTR | MCR_RTS);
851 uart_barrier(bas);
852
853 /*
854 * Enable FIFOs. And check that the UART has them. If not, we're
855 * done. Since this is the first time we enable the FIFOs, we reset
856 * them.
857 */
858 val = FCR_ENABLE;
859 #ifdef CPU_XBURST
860 val |= FCR_UART_ON;
861 #endif
862 uart_setreg(bas, REG_FCR, val);
863 uart_barrier(bas);
864 if (!(uart_getreg(bas, REG_IIR) & IIR_FIFO_MASK)) {
865 /*
866 * NS16450 or INS8250. We don't bother to differentiate
867 * between them. They're too old to be interesting.
868 */
869 uart_setreg(bas, REG_MCR, mcr);
870 uart_barrier(bas);
871 sc->sc_rxfifosz = sc->sc_txfifosz = 1;
872 device_set_desc(sc->sc_dev, "8250 or 16450 or compatible");
873 return (0);
874 }
875
876 val = FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST;
877 #ifdef CPU_XBURST
878 val |= FCR_UART_ON;
879 #endif
880 uart_setreg(bas, REG_FCR, val);
881 uart_barrier(bas);
882
883 count = 0;
884 delay = ns8250_delay(bas);
885
886 /* We have FIFOs. Drain the transmitter and receiver. */
887 error = ns8250_drain(bas, UART_DRAIN_RECEIVER|UART_DRAIN_TRANSMITTER);
888 if (error) {
889 uart_setreg(bas, REG_MCR, mcr);
890 val = 0;
891 #ifdef CPU_XBURST
892 val |= FCR_UART_ON;
893 #endif
894 uart_setreg(bas, REG_FCR, val);
895 uart_barrier(bas);
896 goto describe;
897 }
898
899 /*
900 * We should have a sufficiently clean "pipe" to determine the
901 * size of the FIFOs. We send as much characters as is reasonable
902 * and wait for the overflow bit in the LSR register to be
903 * asserted, counting the characters as we send them. Based on
904 * that count we know the FIFO size.
905 */
906 do {
907 uart_setreg(bas, REG_DATA, 0);
908 uart_barrier(bas);
909 count++;
910
911 limit = 30;
912 lsr = 0;
913 /*
914 * LSR bits are cleared upon read, so we must accumulate
915 * them to be able to test LSR_OE below.
916 */
917 while (((lsr |= uart_getreg(bas, REG_LSR)) & LSR_TEMT) == 0 &&
918 --limit)
919 DELAY(delay);
920 if (limit == 0) {
921 /* See the comment in ns8250_init(). */
922 ier = uart_getreg(bas, REG_IER) & 0xe0;
923 uart_setreg(bas, REG_IER, ier);
924 uart_setreg(bas, REG_MCR, mcr);
925 val = 0;
926 #ifdef CPU_XBURST
927 val |= FCR_UART_ON;
928 #endif
929 uart_setreg(bas, REG_FCR, val);
930 uart_barrier(bas);
931 count = 0;
932 goto describe;
933 }
934 } while ((lsr & LSR_OE) == 0 && count < 260);
935 count--;
936
937 uart_setreg(bas, REG_MCR, mcr);
938
939 /* Reset FIFOs. */
940 ns8250_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
941
942 describe:
943 if (count >= 14 && count <= 16) {
944 sc->sc_rxfifosz = 16;
945 device_set_desc(sc->sc_dev, "16550 or compatible");
946 } else if (count >= 28 && count <= 32) {
947 sc->sc_rxfifosz = 32;
948 device_set_desc(sc->sc_dev, "16650 or compatible");
949 } else if (count >= 56 && count <= 64) {
950 sc->sc_rxfifosz = 64;
951 device_set_desc(sc->sc_dev, "16750 or compatible");
952 } else if (count >= 112 && count <= 128) {
953 sc->sc_rxfifosz = 128;
954 device_set_desc(sc->sc_dev, "16950 or compatible");
955 } else if (count >= 224 && count <= 256) {
956 sc->sc_rxfifosz = 256;
957 device_set_desc(sc->sc_dev, "16x50 with 256 byte FIFO");
958 } else {
959 sc->sc_rxfifosz = 16;
960 device_set_desc(sc->sc_dev,
961 "Non-standard ns8250 class UART with FIFOs");
962 }
963
964 /*
965 * Force the Tx FIFO size to 16 bytes for now. We don't program the
966 * Tx trigger. Also, we assume that all data has been sent when the
967 * interrupt happens.
968 */
969 sc->sc_txfifosz = 16;
970
971 #if 0
972 /*
973 * XXX there are some issues related to hardware flow control and
974 * it's likely that uart(4) is the cause. This basically needs more
975 * investigation, but we avoid using for hardware flow control
976 * until then.
977 */
978 /* 16650s or higher have automatic flow control. */
979 if (sc->sc_rxfifosz > 16) {
980 sc->sc_hwiflow = 1;
981 sc->sc_hwoflow = 1;
982 }
983 #endif
984
985 return (0);
986 }
987
988 int
989 ns8250_bus_receive(struct uart_softc *sc)
990 {
991 struct uart_bas *bas;
992 int xc;
993 uint8_t lsr;
994
995 bas = &sc->sc_bas;
996 uart_lock(sc->sc_hwmtx);
997 lsr = uart_getreg(bas, REG_LSR);
998 while (lsr & LSR_RXRDY) {
999 if (uart_rx_full(sc)) {
1000 sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
1001 break;
1002 }
1003 xc = uart_getreg(bas, REG_DATA);
1004 if (lsr & LSR_FE)
1005 xc |= UART_STAT_FRAMERR;
1006 if (lsr & LSR_PE)
1007 xc |= UART_STAT_PARERR;
1008 uart_rx_put(sc, xc);
1009 lsr = uart_getreg(bas, REG_LSR);
1010 }
1011 /* Discard everything left in the Rx FIFO. */
1012 while (lsr & LSR_RXRDY) {
1013 (void)uart_getreg(bas, REG_DATA);
1014 uart_barrier(bas);
1015 lsr = uart_getreg(bas, REG_LSR);
1016 }
1017 uart_unlock(sc->sc_hwmtx);
1018 return (0);
1019 }
1020
1021 int
1022 ns8250_bus_setsig(struct uart_softc *sc, int sig)
1023 {
1024 struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1025 struct uart_bas *bas;
1026 uint32_t new, old;
1027
1028 bas = &sc->sc_bas;
1029 do {
1030 old = sc->sc_hwsig;
1031 new = old;
1032 if (sig & SER_DDTR) {
1033 new = (new & ~SER_DTR) | (sig & (SER_DTR | SER_DDTR));
1034 }
1035 if (sig & SER_DRTS) {
1036 new = (new & ~SER_RTS) | (sig & (SER_RTS | SER_DRTS));
1037 }
1038 } while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
1039 uart_lock(sc->sc_hwmtx);
1040 ns8250->mcr &= ~(MCR_DTR|MCR_RTS);
1041 if (new & SER_DTR)
1042 ns8250->mcr |= MCR_DTR;
1043 if (new & SER_RTS)
1044 ns8250->mcr |= MCR_RTS;
1045 uart_setreg(bas, REG_MCR, ns8250->mcr);
1046 uart_barrier(bas);
1047 uart_unlock(sc->sc_hwmtx);
1048 return (0);
1049 }
1050
1051 int
1052 ns8250_bus_transmit(struct uart_softc *sc)
1053 {
1054 struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1055 struct uart_bas *bas;
1056 int i;
1057
1058 bas = &sc->sc_bas;
1059 uart_lock(sc->sc_hwmtx);
1060 while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0)
1061 DELAY(4);
1062 for (i = 0; i < sc->sc_txdatasz; i++) {
1063 uart_setreg(bas, REG_DATA, sc->sc_txbuf[i]);
1064 uart_barrier(bas);
1065 }
1066 if (!broken_txfifo)
1067 ns8250->ier |= IER_ETXRDY;
1068 uart_setreg(bas, REG_IER, ns8250->ier);
1069 uart_barrier(bas);
1070 if (broken_txfifo)
1071 ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
1072 else
1073 sc->sc_txbusy = 1;
1074 uart_unlock(sc->sc_hwmtx);
1075 if (broken_txfifo)
1076 uart_sched_softih(sc, SER_INT_TXIDLE);
1077 return (0);
1078 }
1079
1080 void
1081 ns8250_bus_grab(struct uart_softc *sc)
1082 {
1083 struct uart_bas *bas = &sc->sc_bas;
1084 struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1085 u_char ier;
1086
1087 /*
1088 * turn off all interrupts to enter polling mode. Leave the
1089 * saved mask alone. We'll restore whatever it was in ungrab.
1090 * All pending interrupt signals are reset when IER is set to 0.
1091 */
1092 uart_lock(sc->sc_hwmtx);
1093 ier = uart_getreg(bas, REG_IER);
1094 uart_setreg(bas, REG_IER, ier & ns8250->ier_mask);
1095 uart_barrier(bas);
1096 uart_unlock(sc->sc_hwmtx);
1097 }
1098
1099 void
1100 ns8250_bus_ungrab(struct uart_softc *sc)
1101 {
1102 struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1103 struct uart_bas *bas = &sc->sc_bas;
1104
1105 /*
1106 * Restore previous interrupt mask
1107 */
1108 uart_lock(sc->sc_hwmtx);
1109 uart_setreg(bas, REG_IER, ns8250->ier);
1110 uart_barrier(bas);
1111 uart_unlock(sc->sc_hwmtx);
1112 }
Cache object: 82f33c6afe9e5c923ac4b9bd0681e8db
|