The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/uart/uart_dev_ns8250.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2003 Marcel Moolenaar
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  *
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   27  */
   28 
   29 #include "opt_acpi.h"
   30 #include "opt_platform.h"
   31 #include "opt_uart.h"
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD$");
   35 
   36 #include <sys/param.h>
   37 #include <sys/systm.h>
   38 #include <sys/bus.h>
   39 #include <sys/conf.h>
   40 #include <sys/kernel.h>
   41 #include <sys/sysctl.h>
   42 #include <machine/bus.h>
   43 
   44 #ifdef FDT
   45 #include <dev/fdt/fdt_common.h>
   46 #include <dev/ofw/ofw_bus.h>
   47 #include <dev/ofw/ofw_bus_subr.h>
   48 #endif
   49 
   50 #include <dev/uart/uart.h>
   51 #include <dev/uart/uart_cpu.h>
   52 #ifdef FDT
   53 #include <dev/uart/uart_cpu_fdt.h>
   54 #endif
   55 #include <dev/uart/uart_bus.h>
   56 #include <dev/uart/uart_dev_ns8250.h>
   57 #include <dev/uart/uart_ppstypes.h>
   58 #ifdef DEV_ACPI
   59 #include <dev/uart/uart_cpu_acpi.h>
   60 #include <contrib/dev/acpica/include/acpi.h>
   61 #endif
   62 
   63 #include <dev/ic/ns16550.h>
   64 
   65 #include "uart_if.h"
   66 
   67 #define DEFAULT_RCLK    1843200
   68 
   69 /*
   70  * Set the default baudrate tolerance to 3.0%.
   71  *
   72  * Some embedded boards have odd reference clocks (eg 25MHz)
   73  * and we need to handle higher variances in the target baud rate.
   74  */
   75 #ifndef UART_DEV_TOLERANCE_PCT
   76 #define UART_DEV_TOLERANCE_PCT  30
   77 #endif  /* UART_DEV_TOLERANCE_PCT */
   78 
   79 static int broken_txfifo = 0;
   80 SYSCTL_INT(_hw, OID_AUTO, broken_txfifo, CTLFLAG_RWTUN,
   81         &broken_txfifo, 0, "UART FIFO has QEMU emulation bug");
   82 
   83 /*
   84  * Clear pending interrupts. THRE is cleared by reading IIR. Data
   85  * that may have been received gets lost here.
   86  */
   87 static void
   88 ns8250_clrint(struct uart_bas *bas)
   89 {
   90         uint8_t iir, lsr;
   91 
   92         iir = uart_getreg(bas, REG_IIR);
   93         while ((iir & IIR_NOPEND) == 0) {
   94                 iir &= IIR_IMASK;
   95                 if (iir == IIR_RLS) {
   96                         lsr = uart_getreg(bas, REG_LSR);
   97                         if (lsr & (LSR_BI|LSR_FE|LSR_PE))
   98                                 (void)uart_getreg(bas, REG_DATA);
   99                 } else if (iir == IIR_RXRDY || iir == IIR_RXTOUT)
  100                         (void)uart_getreg(bas, REG_DATA);
  101                 else if (iir == IIR_MLSC)
  102                         (void)uart_getreg(bas, REG_MSR);
  103                 uart_barrier(bas);
  104                 iir = uart_getreg(bas, REG_IIR);
  105         }
  106 }
  107 
  108 static int
  109 ns8250_delay(struct uart_bas *bas)
  110 {
  111         int divisor;
  112         u_char lcr;
  113 
  114         lcr = uart_getreg(bas, REG_LCR);
  115         uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
  116         uart_barrier(bas);
  117         divisor = uart_getreg(bas, REG_DLL) | (uart_getreg(bas, REG_DLH) << 8);
  118         uart_barrier(bas);
  119         uart_setreg(bas, REG_LCR, lcr);
  120         uart_barrier(bas);
  121 
  122         /* 1/10th the time to transmit 1 character (estimate). */
  123         if (divisor <= 134)
  124                 return (16000000 * divisor / bas->rclk);
  125         return (16000 * divisor / (bas->rclk / 1000));
  126 }
  127 
  128 static int
  129 ns8250_divisor(int rclk, int baudrate)
  130 {
  131         int actual_baud, divisor;
  132         int error;
  133 
  134         if (baudrate == 0)
  135                 return (0);
  136 
  137         divisor = (rclk / (baudrate << 3) + 1) >> 1;
  138         if (divisor == 0 || divisor >= 65536)
  139                 return (0);
  140         actual_baud = rclk / (divisor << 4);
  141 
  142         /* 10 times error in percent: */
  143         error = ((actual_baud - baudrate) * 2000 / baudrate + 1) / 2;
  144 
  145         /* enforce maximum error tolerance: */
  146         if (error < -UART_DEV_TOLERANCE_PCT || error > UART_DEV_TOLERANCE_PCT)
  147                 return (0);
  148 
  149         return (divisor);
  150 }
  151 
  152 static int
  153 ns8250_drain(struct uart_bas *bas, int what)
  154 {
  155         int delay, limit;
  156 
  157         delay = ns8250_delay(bas);
  158 
  159         if (what & UART_DRAIN_TRANSMITTER) {
  160                 /*
  161                  * Pick an arbitrary high limit to avoid getting stuck in
  162                  * an infinite loop when the hardware is broken. Make the
  163                  * limit high enough to handle large FIFOs.
  164                  */
  165                 limit = 10*1024;
  166                 while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
  167                         DELAY(delay);
  168                 if (limit == 0) {
  169                         /* printf("ns8250: transmitter appears stuck... "); */
  170                         return (EIO);
  171                 }
  172         }
  173 
  174         if (what & UART_DRAIN_RECEIVER) {
  175                 /*
  176                  * Pick an arbitrary high limit to avoid getting stuck in
  177                  * an infinite loop when the hardware is broken. Make the
  178                  * limit high enough to handle large FIFOs and integrated
  179                  * UARTs. The HP rx2600 for example has 3 UARTs on the
  180                  * management board that tend to get a lot of data send
  181                  * to it when the UART is first activated.  Assume that we
  182                  * have finished draining if LSR_RXRDY is not asserted both
  183                  * prior to and after a DELAY; but as long as LSR_RXRDY is
  184                  * asserted, read (and discard) characters as quickly as
  185                  * possible.
  186                  */
  187                 limit=10*4096;
  188                 while (limit && (uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) {
  189                         do {
  190                                 (void)uart_getreg(bas, REG_DATA);
  191                                 uart_barrier(bas);
  192                         } while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit);
  193                         uart_barrier(bas);
  194                         DELAY(delay << 2);
  195                 }
  196                 if (limit == 0) {
  197                         /* printf("ns8250: receiver appears broken... "); */
  198                         return (EIO);
  199                 }
  200         }
  201 
  202         return (0);
  203 }
  204 
  205 /*
  206  * We can only flush UARTs with FIFOs. UARTs without FIFOs should be
  207  * drained. WARNING: this function clobbers the FIFO setting!
  208  */
  209 static void
  210 ns8250_flush(struct uart_bas *bas, int what)
  211 {
  212         uint8_t fcr;
  213         uint8_t lsr;
  214         int drain = 0;
  215 
  216         fcr = FCR_ENABLE;
  217 #ifdef CPU_XBURST
  218         fcr |= FCR_UART_ON;
  219 #endif
  220         if (what & UART_FLUSH_TRANSMITTER)
  221                 fcr |= FCR_XMT_RST;
  222         if (what & UART_FLUSH_RECEIVER)
  223                 fcr |= FCR_RCV_RST;
  224         uart_setreg(bas, REG_FCR, fcr);
  225         uart_barrier(bas);
  226 
  227         /*
  228          * Detect and work around emulated UARTs which don't implement the
  229          * FCR register; on these systems we need to drain the FIFO since
  230          * the flush we request doesn't happen.  One such system is the
  231          * Firecracker VMM, aka. the rust-vmm/vm-superio emulation code:
  232          * https://github.com/rust-vmm/vm-superio/issues/83
  233          */
  234         lsr = uart_getreg(bas, REG_LSR);
  235         if (((lsr & LSR_TEMT) == 0) && (what & UART_FLUSH_TRANSMITTER))
  236                 drain |= UART_DRAIN_TRANSMITTER;
  237         if ((lsr & LSR_RXRDY) && (what & UART_FLUSH_RECEIVER))
  238                 drain |= UART_DRAIN_RECEIVER;
  239         if (drain != 0) {
  240                 printf("ns8250: UART FCR is broken\n");
  241                 ns8250_drain(bas, drain);
  242         }
  243 }
  244 
  245 static int
  246 ns8250_param(struct uart_bas *bas, int baudrate, int databits, int stopbits,
  247     int parity)
  248 {
  249         int divisor;
  250         uint8_t lcr;
  251 
  252         lcr = 0;
  253         if (databits >= 8)
  254                 lcr |= LCR_8BITS;
  255         else if (databits == 7)
  256                 lcr |= LCR_7BITS;
  257         else if (databits == 6)
  258                 lcr |= LCR_6BITS;
  259         else
  260                 lcr |= LCR_5BITS;
  261         if (stopbits > 1)
  262                 lcr |= LCR_STOPB;
  263         lcr |= parity << 3;
  264 
  265         /* Set baudrate. */
  266         if (baudrate > 0) {
  267                 divisor = ns8250_divisor(bas->rclk, baudrate);
  268                 if (divisor == 0)
  269                         return (EINVAL);
  270                 uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
  271                 uart_barrier(bas);
  272                 uart_setreg(bas, REG_DLL, divisor & 0xff);
  273                 uart_setreg(bas, REG_DLH, (divisor >> 8) & 0xff);
  274                 uart_barrier(bas);
  275         }
  276 
  277         /* Set LCR and clear DLAB. */
  278         uart_setreg(bas, REG_LCR, lcr);
  279         uart_barrier(bas);
  280         return (0);
  281 }
  282 
  283 /*
  284  * Low-level UART interface.
  285  */
  286 static int ns8250_probe(struct uart_bas *bas);
  287 static void ns8250_init(struct uart_bas *bas, int, int, int, int);
  288 static void ns8250_term(struct uart_bas *bas);
  289 static void ns8250_putc(struct uart_bas *bas, int);
  290 static int ns8250_rxready(struct uart_bas *bas);
  291 static int ns8250_getc(struct uart_bas *bas, struct mtx *);
  292 
  293 struct uart_ops uart_ns8250_ops = {
  294         .probe = ns8250_probe,
  295         .init = ns8250_init,
  296         .term = ns8250_term,
  297         .putc = ns8250_putc,
  298         .rxready = ns8250_rxready,
  299         .getc = ns8250_getc,
  300 };
  301 
  302 static int
  303 ns8250_probe(struct uart_bas *bas)
  304 {
  305         u_char val;
  306 
  307 #ifdef CPU_XBURST
  308         uart_setreg(bas, REG_FCR, FCR_UART_ON);
  309 #endif
  310 
  311         /* Check known 0 bits that don't depend on DLAB. */
  312         val = uart_getreg(bas, REG_IIR);
  313         if (val & 0x30)
  314                 return (ENXIO);
  315         /*
  316          * Bit 6 of the MCR (= 0x40) appears to be 1 for the Sun1699
  317          * chip, but otherwise doesn't seem to have a function. In
  318          * other words, uart(4) works regardless. Ignore that bit so
  319          * the probe succeeds.
  320          */
  321         val = uart_getreg(bas, REG_MCR);
  322         if (val & 0xa0)
  323                 return (ENXIO);
  324 
  325         return (0);
  326 }
  327 
  328 static void
  329 ns8250_init(struct uart_bas *bas, int baudrate, int databits, int stopbits,
  330     int parity)
  331 {
  332         u_char ier, val;
  333 
  334         if (bas->rclk == 0)
  335                 bas->rclk = DEFAULT_RCLK;
  336         ns8250_param(bas, baudrate, databits, stopbits, parity);
  337 
  338         /* Disable all interrupt sources. */
  339         /*
  340          * We use 0xe0 instead of 0xf0 as the mask because the XScale PXA
  341          * UARTs split the receive time-out interrupt bit out separately as
  342          * 0x10.  This gets handled by ier_mask and ier_rxbits below.
  343          */
  344         ier = uart_getreg(bas, REG_IER) & 0xe0;
  345         uart_setreg(bas, REG_IER, ier);
  346         uart_barrier(bas);
  347 
  348         /* Disable the FIFO (if present). */
  349         val = 0;
  350 #ifdef CPU_XBURST
  351         val |= FCR_UART_ON;
  352 #endif
  353         uart_setreg(bas, REG_FCR, val);
  354         uart_barrier(bas);
  355 
  356         /* Set RTS & DTR. */
  357         uart_setreg(bas, REG_MCR, MCR_IE | MCR_RTS | MCR_DTR);
  358         uart_barrier(bas);
  359 
  360         ns8250_clrint(bas);
  361 }
  362 
  363 static void
  364 ns8250_term(struct uart_bas *bas)
  365 {
  366 
  367         /* Clear RTS & DTR. */
  368         uart_setreg(bas, REG_MCR, MCR_IE);
  369         uart_barrier(bas);
  370 }
  371 
  372 static void
  373 ns8250_putc(struct uart_bas *bas, int c)
  374 {
  375         int limit;
  376 
  377         limit = 250000;
  378         while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0 && --limit)
  379                 DELAY(4);
  380         uart_setreg(bas, REG_DATA, c);
  381         uart_barrier(bas);
  382 }
  383 
  384 static int
  385 ns8250_rxready(struct uart_bas *bas)
  386 {
  387 
  388         return ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) != 0 ? 1 : 0);
  389 }
  390 
  391 static int
  392 ns8250_getc(struct uart_bas *bas, struct mtx *hwmtx)
  393 {
  394         int c;
  395 
  396         uart_lock(hwmtx);
  397 
  398         while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) {
  399                 uart_unlock(hwmtx);
  400                 DELAY(4);
  401                 uart_lock(hwmtx);
  402         }
  403 
  404         c = uart_getreg(bas, REG_DATA);
  405 
  406         uart_unlock(hwmtx);
  407 
  408         return (c);
  409 }
  410 
  411 static kobj_method_t ns8250_methods[] = {
  412         KOBJMETHOD(uart_attach,         ns8250_bus_attach),
  413         KOBJMETHOD(uart_detach,         ns8250_bus_detach),
  414         KOBJMETHOD(uart_flush,          ns8250_bus_flush),
  415         KOBJMETHOD(uart_getsig,         ns8250_bus_getsig),
  416         KOBJMETHOD(uart_ioctl,          ns8250_bus_ioctl),
  417         KOBJMETHOD(uart_ipend,          ns8250_bus_ipend),
  418         KOBJMETHOD(uart_param,          ns8250_bus_param),
  419         KOBJMETHOD(uart_probe,          ns8250_bus_probe),
  420         KOBJMETHOD(uart_receive,        ns8250_bus_receive),
  421         KOBJMETHOD(uart_setsig,         ns8250_bus_setsig),
  422         KOBJMETHOD(uart_transmit,       ns8250_bus_transmit),
  423         KOBJMETHOD(uart_grab,           ns8250_bus_grab),
  424         KOBJMETHOD(uart_ungrab,         ns8250_bus_ungrab),
  425         { 0, 0 }
  426 };
  427 
  428 struct uart_class uart_ns8250_class = {
  429         "ns8250",
  430         ns8250_methods,
  431         sizeof(struct ns8250_softc),
  432         .uc_ops = &uart_ns8250_ops,
  433         .uc_range = 8,
  434         .uc_rclk = DEFAULT_RCLK,
  435         .uc_rshift = 0
  436 };
  437 
  438 /*
  439  * XXX -- refactor out ACPI and FDT ifdefs
  440  */
  441 #ifdef DEV_ACPI
  442 static struct acpi_uart_compat_data acpi_compat_data[] = {
  443         {"AMD0020",     &uart_ns8250_class, 0, 2, 0, 48000000, UART_F_BUSY_DETECT, "AMD / Synopsys Designware UART"},
  444         {"AMDI0020", &uart_ns8250_class, 0, 2, 0, 48000000, UART_F_BUSY_DETECT, "AMD / Synopsys Designware UART"},
  445         {"MRVL0001", &uart_ns8250_class, ACPI_DBG2_16550_SUBSET, 2, 0, 200000000, UART_F_BUSY_DETECT, "Marvell / Synopsys Designware UART"},
  446         {"SCX0006",  &uart_ns8250_class, 0, 2, 0, 62500000, UART_F_BUSY_DETECT, "SynQuacer / Synopsys Designware UART"},
  447         {"HISI0031", &uart_ns8250_class, 0, 2, 0, 200000000, UART_F_BUSY_DETECT, "HiSilicon / Synopsys Designware UART"},
  448         {"NXP0018", &uart_ns8250_class, 0, 0, 0, 350000000, UART_F_BUSY_DETECT, "NXP / Synopsys Designware UART"},
  449         {"PNP0500", &uart_ns8250_class, 0, 0, 0, 0, 0, "Standard PC COM port"},
  450         {"PNP0501", &uart_ns8250_class, 0, 0, 0, 0, 0, "16550A-compatible COM port"},
  451         {"PNP0502", &uart_ns8250_class, 0, 0, 0, 0, 0, "Multiport serial device (non-intelligent 16550)"},
  452         {"PNP0510", &uart_ns8250_class, 0, 0, 0, 0, 0, "Generic IRDA-compatible device"},
  453         {"PNP0511", &uart_ns8250_class, 0, 0, 0, 0, 0, "Generic IRDA-compatible device"},
  454         {"WACF004", &uart_ns8250_class, 0, 0, 0, 0, 0, "Wacom Tablet PC Screen"},
  455         {"WACF00E", &uart_ns8250_class, 0, 0, 0, 0, 0, "Wacom Tablet PC Screen 00e"},
  456         {"FUJ02E5", &uart_ns8250_class, 0, 0, 0, 0, 0, "Wacom Tablet at FuS Lifebook T"},
  457         {NULL,                  NULL, 0, 0 , 0, 0, 0, NULL},
  458 };
  459 UART_ACPI_CLASS_AND_DEVICE(acpi_compat_data);
  460 #endif
  461 
  462 #ifdef FDT
  463 static struct ofw_compat_data compat_data[] = {
  464         {"ns16550",             (uintptr_t)&uart_ns8250_class},
  465         {"ns16550a",            (uintptr_t)&uart_ns8250_class},
  466         {NULL,                  (uintptr_t)NULL},
  467 };
  468 UART_FDT_CLASS_AND_DEVICE(compat_data);
  469 #endif
  470 
  471 /* Use token-pasting to form SER_ and MSR_ named constants. */
  472 #define SER(sig)        SER_##sig
  473 #define SERD(sig)       SER_D##sig
  474 #define MSR(sig)        MSR_##sig
  475 #define MSRD(sig)       MSR_D##sig
  476 
  477 /*
  478  * Detect signal changes using software delta detection.  The previous state of
  479  * the signals is in 'var' the new hardware state is in 'msr', and 'sig' is the
  480  * short name (DCD, CTS, etc) of the signal bit being processed; 'var' gets the
  481  * new state of both the signal and the delta bits.
  482  */
  483 #define SIGCHGSW(var, msr, sig)                                 \
  484         if ((msr) & MSR(sig)) {                                 \
  485                 if ((var & SER(sig)) == 0)                      \
  486                         var |= SERD(sig) | SER(sig);            \
  487         } else {                                                \
  488                 if ((var & SER(sig)) != 0)                      \
  489                         var = SERD(sig) | (var & ~SER(sig));    \
  490         }
  491 
  492 /*
  493  * Detect signal changes using the hardware msr delta bits.  This is currently
  494  * used only when PPS timing information is being captured using the "narrow
  495  * pulse" option.  With a narrow PPS pulse the signal may not still be asserted
  496  * by time the interrupt handler is invoked.  The hardware will latch the fact
  497  * that it changed in the delta bits.
  498  */
  499 #define SIGCHGHW(var, msr, sig)                                 \
  500         if ((msr) & MSRD(sig)) {                                \
  501                 if (((msr) & MSR(sig)) != 0)                    \
  502                         var |= SERD(sig) | SER(sig);            \
  503                 else                                            \
  504                         var = SERD(sig) | (var & ~SER(sig));    \
  505         }
  506 
  507 int
  508 ns8250_bus_attach(struct uart_softc *sc)
  509 {
  510         struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
  511         struct uart_bas *bas;
  512         unsigned int ivar;
  513 #ifdef FDT
  514         phandle_t node;
  515         pcell_t cell;
  516 #endif
  517 
  518 #ifdef FDT
  519         /* Check whether uart has a broken txfifo. */
  520         node = ofw_bus_get_node(sc->sc_dev);
  521         if ((OF_getencprop(node, "broken-txfifo", &cell, sizeof(cell))) > 0)
  522                 broken_txfifo =  cell ? 1 : 0;
  523 #endif
  524 
  525         bas = &sc->sc_bas;
  526 
  527         ns8250->busy_detect = bas->busy_detect;
  528         ns8250->mcr = uart_getreg(bas, REG_MCR);
  529         ns8250->fcr = FCR_ENABLE;
  530 #ifdef CPU_XBURST
  531         ns8250->fcr |= FCR_UART_ON;
  532 #endif
  533         if (!resource_int_value("uart", device_get_unit(sc->sc_dev), "flags",
  534             &ivar)) {
  535                 if (UART_FLAGS_FCR_RX_LOW(ivar)) 
  536                         ns8250->fcr |= FCR_RX_LOW;
  537                 else if (UART_FLAGS_FCR_RX_MEDL(ivar)) 
  538                         ns8250->fcr |= FCR_RX_MEDL;
  539                 else if (UART_FLAGS_FCR_RX_HIGH(ivar)) 
  540                         ns8250->fcr |= FCR_RX_HIGH;
  541                 else
  542                         ns8250->fcr |= FCR_RX_MEDH;
  543         } else 
  544                 ns8250->fcr |= FCR_RX_MEDH;
  545 
  546         /* Get IER mask */
  547         ivar = 0xf0;
  548         resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_mask",
  549             &ivar);
  550         ns8250->ier_mask = (uint8_t)(ivar & 0xff);
  551 
  552         /* Get IER RX interrupt bits */
  553         ivar = IER_EMSC | IER_ERLS | IER_ERXRDY;
  554         resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_rxbits",
  555             &ivar);
  556         ns8250->ier_rxbits = (uint8_t)(ivar & 0xff);
  557 
  558         uart_setreg(bas, REG_FCR, ns8250->fcr);
  559         uart_barrier(bas);
  560         ns8250_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
  561 
  562         if (ns8250->mcr & MCR_DTR)
  563                 sc->sc_hwsig |= SER_DTR;
  564         if (ns8250->mcr & MCR_RTS)
  565                 sc->sc_hwsig |= SER_RTS;
  566         ns8250_bus_getsig(sc);
  567 
  568         ns8250_clrint(bas);
  569         ns8250->ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
  570         ns8250->ier |= ns8250->ier_rxbits;
  571         uart_setreg(bas, REG_IER, ns8250->ier);
  572         uart_barrier(bas);
  573 
  574         /*
  575          * Timing of the H/W access was changed with r253161 of uart_core.c
  576          * It has been observed that an ITE IT8513E would signal a break
  577          * condition with pretty much every character it received, unless
  578          * it had enough time to settle between ns8250_bus_attach() and
  579          * ns8250_bus_ipend() -- which it accidentally had before r253161.
  580          * It's not understood why the UART chip behaves this way and it
  581          * could very well be that the DELAY make the H/W work in the same
  582          * accidental manner as before. More analysis is warranted, but
  583          * at least now we fixed a known regression.
  584          */
  585         DELAY(200);
  586         return (0);
  587 }
  588 
  589 int
  590 ns8250_bus_detach(struct uart_softc *sc)
  591 {
  592         struct ns8250_softc *ns8250;
  593         struct uart_bas *bas;
  594         u_char ier;
  595 
  596         ns8250 = (struct ns8250_softc *)sc;
  597         bas = &sc->sc_bas;
  598         ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
  599         uart_setreg(bas, REG_IER, ier);
  600         uart_barrier(bas);
  601         ns8250_clrint(bas);
  602         return (0);
  603 }
  604 
  605 int
  606 ns8250_bus_flush(struct uart_softc *sc, int what)
  607 {
  608         struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
  609         struct uart_bas *bas;
  610         int error;
  611 
  612         bas = &sc->sc_bas;
  613         uart_lock(sc->sc_hwmtx);
  614         if (sc->sc_rxfifosz > 1) {
  615                 ns8250_flush(bas, what);
  616                 uart_setreg(bas, REG_FCR, ns8250->fcr);
  617                 uart_barrier(bas);
  618                 error = 0;
  619         } else
  620                 error = ns8250_drain(bas, what);
  621         uart_unlock(sc->sc_hwmtx);
  622         return (error);
  623 }
  624 
  625 int
  626 ns8250_bus_getsig(struct uart_softc *sc)
  627 {
  628         uint32_t old, sig;
  629         uint8_t msr;
  630 
  631         /*
  632          * The delta bits are reputed to be broken on some hardware, so use
  633          * software delta detection by default.  Use the hardware delta bits
  634          * when capturing PPS pulses which are too narrow for software detection
  635          * to see the edges.  Hardware delta for RI doesn't work like the
  636          * others, so always use software for it.  Other threads may be changing
  637          * other (non-MSR) bits in sc_hwsig, so loop until it can successfully
  638          * update without other changes happening.  Note that the SIGCHGxx()
  639          * macros carefully preserve the delta bits when we have to loop several
  640          * times and a signal transitions between iterations.
  641          */
  642         do {
  643                 old = sc->sc_hwsig;
  644                 sig = old;
  645                 uart_lock(sc->sc_hwmtx);
  646                 msr = uart_getreg(&sc->sc_bas, REG_MSR);
  647                 uart_unlock(sc->sc_hwmtx);
  648                 if (sc->sc_pps_mode & UART_PPS_NARROW_PULSE) {
  649                         SIGCHGHW(sig, msr, DSR);
  650                         SIGCHGHW(sig, msr, CTS);
  651                         SIGCHGHW(sig, msr, DCD);
  652                 } else {
  653                         SIGCHGSW(sig, msr, DSR);
  654                         SIGCHGSW(sig, msr, CTS);
  655                         SIGCHGSW(sig, msr, DCD);
  656                 }
  657                 SIGCHGSW(sig, msr, RI);
  658         } while (!atomic_cmpset_32(&sc->sc_hwsig, old, sig & ~SER_MASK_DELTA));
  659         return (sig);
  660 }
  661 
  662 int
  663 ns8250_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
  664 {
  665         struct uart_bas *bas;
  666         int baudrate, divisor, error;
  667         uint8_t efr, lcr;
  668 
  669         bas = &sc->sc_bas;
  670         error = 0;
  671         uart_lock(sc->sc_hwmtx);
  672         switch (request) {
  673         case UART_IOCTL_BREAK:
  674                 lcr = uart_getreg(bas, REG_LCR);
  675                 if (data)
  676                         lcr |= LCR_SBREAK;
  677                 else
  678                         lcr &= ~LCR_SBREAK;
  679                 uart_setreg(bas, REG_LCR, lcr);
  680                 uart_barrier(bas);
  681                 break;
  682         case UART_IOCTL_IFLOW:
  683                 lcr = uart_getreg(bas, REG_LCR);
  684                 uart_barrier(bas);
  685                 uart_setreg(bas, REG_LCR, 0xbf);
  686                 uart_barrier(bas);
  687                 efr = uart_getreg(bas, REG_EFR);
  688                 if (data)
  689                         efr |= EFR_RTS;
  690                 else
  691                         efr &= ~EFR_RTS;
  692                 uart_setreg(bas, REG_EFR, efr);
  693                 uart_barrier(bas);
  694                 uart_setreg(bas, REG_LCR, lcr);
  695                 uart_barrier(bas);
  696                 break;
  697         case UART_IOCTL_OFLOW:
  698                 lcr = uart_getreg(bas, REG_LCR);
  699                 uart_barrier(bas);
  700                 uart_setreg(bas, REG_LCR, 0xbf);
  701                 uart_barrier(bas);
  702                 efr = uart_getreg(bas, REG_EFR);
  703                 if (data)
  704                         efr |= EFR_CTS;
  705                 else
  706                         efr &= ~EFR_CTS;
  707                 uart_setreg(bas, REG_EFR, efr);
  708                 uart_barrier(bas);
  709                 uart_setreg(bas, REG_LCR, lcr);
  710                 uart_barrier(bas);
  711                 break;
  712         case UART_IOCTL_BAUD:
  713                 lcr = uart_getreg(bas, REG_LCR);
  714                 uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
  715                 uart_barrier(bas);
  716                 divisor = uart_getreg(bas, REG_DLL) |
  717                     (uart_getreg(bas, REG_DLH) << 8);
  718                 uart_barrier(bas);
  719                 uart_setreg(bas, REG_LCR, lcr);
  720                 uart_barrier(bas);
  721                 baudrate = (divisor > 0) ? bas->rclk / divisor / 16 : 0;
  722                 if (baudrate > 0)
  723                         *(int*)data = baudrate;
  724                 else
  725                         error = ENXIO;
  726                 break;
  727         default:
  728                 error = EINVAL;
  729                 break;
  730         }
  731         uart_unlock(sc->sc_hwmtx);
  732         return (error);
  733 }
  734 
  735 int
  736 ns8250_bus_ipend(struct uart_softc *sc)
  737 {
  738         struct uart_bas *bas;
  739         struct ns8250_softc *ns8250;
  740         int ipend;
  741         uint8_t iir, lsr;
  742 
  743         ns8250 = (struct ns8250_softc *)sc;
  744         bas = &sc->sc_bas;
  745         uart_lock(sc->sc_hwmtx);
  746         iir = uart_getreg(bas, REG_IIR);
  747 
  748         if (ns8250->busy_detect && (iir & IIR_BUSY) == IIR_BUSY) {
  749                 (void)uart_getreg(bas, DW_REG_USR);
  750                 uart_unlock(sc->sc_hwmtx);
  751                 return (0);
  752         }
  753         if (iir & IIR_NOPEND) {
  754                 uart_unlock(sc->sc_hwmtx);
  755                 return (0);
  756         }
  757         ipend = 0;
  758         if (iir & IIR_RXRDY) {
  759                 lsr = uart_getreg(bas, REG_LSR);
  760                 if (lsr & LSR_OE)
  761                         ipend |= SER_INT_OVERRUN;
  762                 if (lsr & LSR_BI)
  763                         ipend |= SER_INT_BREAK;
  764                 if (lsr & LSR_RXRDY)
  765                         ipend |= SER_INT_RXREADY;
  766         } else {
  767                 if (iir & IIR_TXRDY) {
  768                         ipend |= SER_INT_TXIDLE;
  769                         ns8250->ier &= ~IER_ETXRDY;
  770                         uart_setreg(bas, REG_IER, ns8250->ier);
  771                         uart_barrier(bas);
  772                 } else
  773                         ipend |= SER_INT_SIGCHG;
  774         }
  775         if (ipend == 0)
  776                 ns8250_clrint(bas);
  777         uart_unlock(sc->sc_hwmtx);
  778         return (ipend);
  779 }
  780 
  781 int
  782 ns8250_bus_param(struct uart_softc *sc, int baudrate, int databits,
  783     int stopbits, int parity)
  784 {
  785         struct ns8250_softc *ns8250;
  786         struct uart_bas *bas;
  787         int error, limit;
  788 
  789         ns8250 = (struct ns8250_softc*)sc;
  790         bas = &sc->sc_bas;
  791         uart_lock(sc->sc_hwmtx);
  792         /*
  793          * When using DW UART with BUSY detection it is necessary to wait
  794          * until all serial transfers are finished before manipulating the
  795          * line control. LCR will not be affected when UART is busy.
  796          */
  797         if (ns8250->busy_detect != 0) {
  798                 /*
  799                  * Pick an arbitrary high limit to avoid getting stuck in
  800                  * an infinite loop in case when the hardware is broken.
  801                  */
  802                 limit = 10 * 1024;
  803                 while (((uart_getreg(bas, DW_REG_USR) & USR_BUSY) != 0) &&
  804                     --limit)
  805                         DELAY(4);
  806 
  807                 if (limit <= 0) {
  808                         /* UART appears to be stuck */
  809                         uart_unlock(sc->sc_hwmtx);
  810                         return (EIO);
  811                 }
  812         }
  813 
  814         error = ns8250_param(bas, baudrate, databits, stopbits, parity);
  815         uart_unlock(sc->sc_hwmtx);
  816         return (error);
  817 }
  818 
  819 int
  820 ns8250_bus_probe(struct uart_softc *sc)
  821 {
  822         struct uart_bas *bas;
  823         int count, delay, error, limit;
  824         uint8_t lsr, mcr, ier;
  825         uint8_t val;
  826 
  827         bas = &sc->sc_bas;
  828 
  829         error = ns8250_probe(bas);
  830         if (error)
  831                 return (error);
  832 
  833         mcr = MCR_IE;
  834         if (sc->sc_sysdev == NULL) {
  835                 /* By using ns8250_init() we also set DTR and RTS. */
  836                 ns8250_init(bas, 115200, 8, 1, UART_PARITY_NONE);
  837         } else
  838                 mcr |= MCR_DTR | MCR_RTS;
  839 
  840         error = ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
  841         if (error)
  842                 return (error);
  843 
  844         /*
  845          * Set loopback mode. This avoids having garbage on the wire and
  846          * also allows us send and receive data. We set DTR and RTS to
  847          * avoid the possibility that automatic flow-control prevents
  848          * any data from being sent.
  849          */
  850         uart_setreg(bas, REG_MCR, MCR_LOOPBACK | MCR_IE | MCR_DTR | MCR_RTS);
  851         uart_barrier(bas);
  852 
  853         /*
  854          * Enable FIFOs. And check that the UART has them. If not, we're
  855          * done. Since this is the first time we enable the FIFOs, we reset
  856          * them.
  857          */
  858         val = FCR_ENABLE;
  859 #ifdef CPU_XBURST
  860         val |= FCR_UART_ON;
  861 #endif
  862         uart_setreg(bas, REG_FCR, val);
  863         uart_barrier(bas);
  864         if (!(uart_getreg(bas, REG_IIR) & IIR_FIFO_MASK)) {
  865                 /*
  866                  * NS16450 or INS8250. We don't bother to differentiate
  867                  * between them. They're too old to be interesting.
  868                  */
  869                 uart_setreg(bas, REG_MCR, mcr);
  870                 uart_barrier(bas);
  871                 sc->sc_rxfifosz = sc->sc_txfifosz = 1;
  872                 device_set_desc(sc->sc_dev, "8250 or 16450 or compatible");
  873                 return (0);
  874         }
  875 
  876         val = FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST;
  877 #ifdef CPU_XBURST
  878         val |= FCR_UART_ON;
  879 #endif
  880         uart_setreg(bas, REG_FCR, val);
  881         uart_barrier(bas);
  882 
  883         count = 0;
  884         delay = ns8250_delay(bas);
  885 
  886         /* We have FIFOs. Drain the transmitter and receiver. */
  887         error = ns8250_drain(bas, UART_DRAIN_RECEIVER|UART_DRAIN_TRANSMITTER);
  888         if (error) {
  889                 uart_setreg(bas, REG_MCR, mcr);
  890                 val = 0;
  891 #ifdef CPU_XBURST
  892                 val |= FCR_UART_ON;
  893 #endif
  894                 uart_setreg(bas, REG_FCR, val);
  895                 uart_barrier(bas);
  896                 goto describe;
  897         }
  898 
  899         /*
  900          * We should have a sufficiently clean "pipe" to determine the
  901          * size of the FIFOs. We send as much characters as is reasonable
  902          * and wait for the overflow bit in the LSR register to be
  903          * asserted, counting the characters as we send them. Based on
  904          * that count we know the FIFO size.
  905          */
  906         do {
  907                 uart_setreg(bas, REG_DATA, 0);
  908                 uart_barrier(bas);
  909                 count++;
  910 
  911                 limit = 30;
  912                 lsr = 0;
  913                 /*
  914                  * LSR bits are cleared upon read, so we must accumulate
  915                  * them to be able to test LSR_OE below.
  916                  */
  917                 while (((lsr |= uart_getreg(bas, REG_LSR)) & LSR_TEMT) == 0 &&
  918                     --limit)
  919                         DELAY(delay);
  920                 if (limit == 0) {
  921                         /* See the comment in ns8250_init(). */
  922                         ier = uart_getreg(bas, REG_IER) & 0xe0;
  923                         uart_setreg(bas, REG_IER, ier);
  924                         uart_setreg(bas, REG_MCR, mcr);
  925                         val = 0;
  926 #ifdef CPU_XBURST
  927                         val |= FCR_UART_ON;
  928 #endif
  929                         uart_setreg(bas, REG_FCR, val);
  930                         uart_barrier(bas);
  931                         count = 0;
  932                         goto describe;
  933                 }
  934         } while ((lsr & LSR_OE) == 0 && count < 260);
  935         count--;
  936 
  937         uart_setreg(bas, REG_MCR, mcr);
  938 
  939         /* Reset FIFOs. */
  940         ns8250_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
  941 
  942  describe:
  943         if (count >= 14 && count <= 16) {
  944                 sc->sc_rxfifosz = 16;
  945                 device_set_desc(sc->sc_dev, "16550 or compatible");
  946         } else if (count >= 28 && count <= 32) {
  947                 sc->sc_rxfifosz = 32;
  948                 device_set_desc(sc->sc_dev, "16650 or compatible");
  949         } else if (count >= 56 && count <= 64) {
  950                 sc->sc_rxfifosz = 64;
  951                 device_set_desc(sc->sc_dev, "16750 or compatible");
  952         } else if (count >= 112 && count <= 128) {
  953                 sc->sc_rxfifosz = 128;
  954                 device_set_desc(sc->sc_dev, "16950 or compatible");
  955         } else if (count >= 224 && count <= 256) {
  956                 sc->sc_rxfifosz = 256;
  957                 device_set_desc(sc->sc_dev, "16x50 with 256 byte FIFO");
  958         } else {
  959                 sc->sc_rxfifosz = 16;
  960                 device_set_desc(sc->sc_dev,
  961                     "Non-standard ns8250 class UART with FIFOs");
  962         }
  963 
  964         /*
  965          * Force the Tx FIFO size to 16 bytes for now. We don't program the
  966          * Tx trigger. Also, we assume that all data has been sent when the
  967          * interrupt happens.
  968          */
  969         sc->sc_txfifosz = 16;
  970 
  971 #if 0
  972         /*
  973          * XXX there are some issues related to hardware flow control and
  974          * it's likely that uart(4) is the cause. This basically needs more
  975          * investigation, but we avoid using for hardware flow control
  976          * until then.
  977          */
  978         /* 16650s or higher have automatic flow control. */
  979         if (sc->sc_rxfifosz > 16) {
  980                 sc->sc_hwiflow = 1;
  981                 sc->sc_hwoflow = 1;
  982         }
  983 #endif
  984 
  985         return (0);
  986 }
  987 
  988 int
  989 ns8250_bus_receive(struct uart_softc *sc)
  990 {
  991         struct uart_bas *bas;
  992         int xc;
  993         uint8_t lsr;
  994 
  995         bas = &sc->sc_bas;
  996         uart_lock(sc->sc_hwmtx);
  997         lsr = uart_getreg(bas, REG_LSR);
  998         while (lsr & LSR_RXRDY) {
  999                 if (uart_rx_full(sc)) {
 1000                         sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
 1001                         break;
 1002                 }
 1003                 xc = uart_getreg(bas, REG_DATA);
 1004                 if (lsr & LSR_FE)
 1005                         xc |= UART_STAT_FRAMERR;
 1006                 if (lsr & LSR_PE)
 1007                         xc |= UART_STAT_PARERR;
 1008                 uart_rx_put(sc, xc);
 1009                 lsr = uart_getreg(bas, REG_LSR);
 1010         }
 1011         /* Discard everything left in the Rx FIFO. */
 1012         while (lsr & LSR_RXRDY) {
 1013                 (void)uart_getreg(bas, REG_DATA);
 1014                 uart_barrier(bas);
 1015                 lsr = uart_getreg(bas, REG_LSR);
 1016         }
 1017         uart_unlock(sc->sc_hwmtx);
 1018         return (0);
 1019 }
 1020 
 1021 int
 1022 ns8250_bus_setsig(struct uart_softc *sc, int sig)
 1023 {
 1024         struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
 1025         struct uart_bas *bas;
 1026         uint32_t new, old;
 1027 
 1028         bas = &sc->sc_bas;
 1029         do {
 1030                 old = sc->sc_hwsig;
 1031                 new = old;
 1032                 if (sig & SER_DDTR) {
 1033                         new = (new & ~SER_DTR) | (sig & (SER_DTR | SER_DDTR));
 1034                 }
 1035                 if (sig & SER_DRTS) {
 1036                         new = (new & ~SER_RTS) | (sig & (SER_RTS | SER_DRTS));
 1037                 }
 1038         } while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
 1039         uart_lock(sc->sc_hwmtx);
 1040         ns8250->mcr &= ~(MCR_DTR|MCR_RTS);
 1041         if (new & SER_DTR)
 1042                 ns8250->mcr |= MCR_DTR;
 1043         if (new & SER_RTS)
 1044                 ns8250->mcr |= MCR_RTS;
 1045         uart_setreg(bas, REG_MCR, ns8250->mcr);
 1046         uart_barrier(bas);
 1047         uart_unlock(sc->sc_hwmtx);
 1048         return (0);
 1049 }
 1050 
 1051 int
 1052 ns8250_bus_transmit(struct uart_softc *sc)
 1053 {
 1054         struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
 1055         struct uart_bas *bas;
 1056         int i;
 1057 
 1058         bas = &sc->sc_bas;
 1059         uart_lock(sc->sc_hwmtx);
 1060         while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0)
 1061                 DELAY(4);
 1062         for (i = 0; i < sc->sc_txdatasz; i++) {
 1063                 uart_setreg(bas, REG_DATA, sc->sc_txbuf[i]);
 1064                 uart_barrier(bas);
 1065         }
 1066         if (!broken_txfifo)
 1067                 ns8250->ier |= IER_ETXRDY;
 1068         uart_setreg(bas, REG_IER, ns8250->ier);
 1069         uart_barrier(bas);
 1070         if (broken_txfifo)
 1071                 ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
 1072         else
 1073                 sc->sc_txbusy = 1;
 1074         uart_unlock(sc->sc_hwmtx);
 1075         if (broken_txfifo)
 1076                 uart_sched_softih(sc, SER_INT_TXIDLE);
 1077         return (0);
 1078 }
 1079 
 1080 void
 1081 ns8250_bus_grab(struct uart_softc *sc)
 1082 {
 1083         struct uart_bas *bas = &sc->sc_bas;
 1084         struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
 1085         u_char ier;
 1086 
 1087         /*
 1088          * turn off all interrupts to enter polling mode. Leave the
 1089          * saved mask alone. We'll restore whatever it was in ungrab.
 1090          * All pending interrupt signals are reset when IER is set to 0.
 1091          */
 1092         uart_lock(sc->sc_hwmtx);
 1093         ier = uart_getreg(bas, REG_IER);
 1094         uart_setreg(bas, REG_IER, ier & ns8250->ier_mask);
 1095         uart_barrier(bas);
 1096         uart_unlock(sc->sc_hwmtx);
 1097 }
 1098 
 1099 void
 1100 ns8250_bus_ungrab(struct uart_softc *sc)
 1101 {
 1102         struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
 1103         struct uart_bas *bas = &sc->sc_bas;
 1104 
 1105         /*
 1106          * Restore previous interrupt mask
 1107          */
 1108         uart_lock(sc->sc_hwmtx);
 1109         uart_setreg(bas, REG_IER, ns8250->ier);
 1110         uart_barrier(bas);
 1111         uart_unlock(sc->sc_hwmtx);
 1112 }

Cache object: 82f33c6afe9e5c923ac4b9bd0681e8db


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.