1 /*-
2 * Copyright (c) 2003 Marcel Moolenaar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/bus.h>
33 #include <sys/conf.h>
34 #include <sys/cons.h>
35 #include <sys/fcntl.h>
36 #include <sys/interrupt.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/reboot.h>
40 #include <machine/bus.h>
41 #include <sys/rman.h>
42 #include <sys/termios.h>
43 #include <sys/tty.h>
44 #include <machine/resource.h>
45 #include <machine/stdarg.h>
46
47 #include <dev/uart/uart.h>
48 #include <dev/uart/uart_bus.h>
49 #include <dev/uart/uart_cpu.h>
50
51 #include "uart_if.h"
52
53 #define UART_MINOR_CALLOUT 0x10000
54
55 static cn_probe_t uart_cnprobe;
56 static cn_init_t uart_cninit;
57 static cn_term_t uart_cnterm;
58 static cn_getc_t uart_cngetc;
59 static cn_checkc_t uart_cncheckc;
60 static cn_putc_t uart_cnputc;
61
62 CONS_DRIVER(uart, uart_cnprobe, uart_cninit, uart_cnterm, uart_cngetc,
63 uart_cncheckc, uart_cnputc, NULL);
64
65 static d_open_t uart_tty_open;
66 static d_close_t uart_tty_close;
67 static d_ioctl_t uart_tty_ioctl;
68
69 static struct cdevsw uart_cdevsw = {
70 .d_version = D_VERSION,
71 .d_open = uart_tty_open,
72 .d_close = uart_tty_close,
73 .d_ioctl = uart_tty_ioctl,
74 .d_name = uart_driver_name,
75 .d_flags = D_TTY | D_NEEDGIANT,
76 };
77
78 static struct uart_devinfo uart_console;
79
80 static void
81 uart_cnprobe(struct consdev *cp)
82 {
83
84 cp->cn_pri = CN_DEAD;
85
86 KASSERT(uart_console.cookie == NULL, ("foo"));
87
88 if (uart_cpu_getdev(UART_DEV_CONSOLE, &uart_console))
89 return;
90
91 if (uart_probe(&uart_console))
92 return;
93
94 strlcpy(cp->cn_name, uart_driver_name, sizeof(cp->cn_name));
95 cp->cn_pri = (boothowto & RB_SERIAL) ? CN_REMOTE : CN_NORMAL;
96 cp->cn_arg = &uart_console;
97 }
98
99 static void
100 uart_cninit(struct consdev *cp)
101 {
102 struct uart_devinfo *di;
103
104 /*
105 * Yedi trick: we need to be able to define cn_dev before we go
106 * single- or multi-user. The problem is that we don't know at
107 * this time what the device will be. Hence, we need to link from
108 * the uart_devinfo to the consdev that corresponds to it so that
109 * we can define cn_dev in uart_bus_attach() when we find the
110 * device during bus enumeration. That's when we'll know what the
111 * the unit number will be.
112 */
113 di = cp->cn_arg;
114 KASSERT(di->cookie == NULL, ("foo"));
115 di->cookie = cp;
116 di->type = UART_DEV_CONSOLE;
117 uart_add_sysdev(di);
118 uart_init(di);
119 }
120
121 static void
122 uart_cnterm(struct consdev *cp)
123 {
124
125 uart_term(cp->cn_arg);
126 }
127
128 static void
129 uart_cnputc(struct consdev *cp, int c)
130 {
131
132 uart_putc(cp->cn_arg, c);
133 }
134
135 static int
136 uart_cncheckc(struct consdev *cp)
137 {
138
139 return (uart_poll(cp->cn_arg));
140 }
141
142 static int
143 uart_cngetc(struct consdev *cp)
144 {
145
146 return (uart_getc(cp->cn_arg));
147 }
148
149 static void
150 uart_tty_oproc(struct tty *tp)
151 {
152 struct uart_softc *sc;
153
154 KASSERT(tp->t_dev != NULL, ("foo"));
155 sc = tp->t_dev->si_drv1;
156 if (sc == NULL || sc->sc_leaving)
157 return;
158
159 /*
160 * Handle input flow control. Note that if we have hardware support,
161 * we don't do anything here. We continue to receive until our buffer
162 * is full. At that time we cannot empty the UART itself and it will
163 * de-assert RTS for us. In that situation we're completely stuffed.
164 * Without hardware support, we need to toggle RTS ourselves.
165 */
166 if ((tp->t_cflag & CRTS_IFLOW) && !sc->sc_hwiflow) {
167 if ((tp->t_state & TS_TBLOCK) &&
168 (sc->sc_hwsig & SER_RTS))
169 UART_SETSIG(sc, SER_DRTS);
170 else if (!(tp->t_state & TS_TBLOCK) &&
171 !(sc->sc_hwsig & SER_RTS))
172 UART_SETSIG(sc, SER_DRTS|SER_RTS);
173 }
174
175 if (tp->t_state & TS_TTSTOP)
176 return;
177
178 if ((tp->t_state & TS_BUSY) || sc->sc_txbusy)
179 return;
180
181 if (tp->t_outq.c_cc == 0) {
182 ttwwakeup(tp);
183 return;
184 }
185
186 sc->sc_txdatasz = q_to_b(&tp->t_outq, sc->sc_txbuf, sc->sc_txfifosz);
187 tp->t_state |= TS_BUSY;
188 UART_TRANSMIT(sc);
189 ttwwakeup(tp);
190 }
191
192 static int
193 uart_tty_param(struct tty *tp, struct termios *t)
194 {
195 struct uart_softc *sc;
196 int databits, parity, stopbits;
197
198 KASSERT(tp->t_dev != NULL, ("foo"));
199 sc = tp->t_dev->si_drv1;
200 if (sc == NULL || sc->sc_leaving)
201 return (ENODEV);
202 if (t->c_ispeed != t->c_ospeed && t->c_ospeed != 0)
203 return (EINVAL);
204 /* Fixate certain parameters for system devices. */
205 if (sc->sc_sysdev != NULL) {
206 t->c_ispeed = t->c_ospeed = sc->sc_sysdev->baudrate;
207 t->c_cflag |= CLOCAL;
208 t->c_cflag &= ~HUPCL;
209 }
210 if (t->c_ospeed == 0) {
211 UART_SETSIG(sc, SER_DDTR | SER_DRTS);
212 return (0);
213 }
214 switch (t->c_cflag & CSIZE) {
215 case CS5: databits = 5; break;
216 case CS6: databits = 6; break;
217 case CS7: databits = 7; break;
218 default: databits = 8; break;
219 }
220 stopbits = (t->c_cflag & CSTOPB) ? 2 : 1;
221 if (t->c_cflag & PARENB)
222 parity = (t->c_cflag & PARODD) ? UART_PARITY_ODD
223 : UART_PARITY_EVEN;
224 else
225 parity = UART_PARITY_NONE;
226 if (UART_PARAM(sc, t->c_ospeed, databits, stopbits, parity) != 0)
227 return (EINVAL);
228 UART_SETSIG(sc, SER_DDTR | SER_DTR);
229 /* Set input flow control state. */
230 if (!sc->sc_hwiflow) {
231 if ((t->c_cflag & CRTS_IFLOW) && (tp->t_state & TS_TBLOCK))
232 UART_SETSIG(sc, SER_DRTS);
233 else
234 UART_SETSIG(sc, SER_DRTS | SER_RTS);
235 } else
236 UART_IOCTL(sc, UART_IOCTL_IFLOW, (t->c_cflag & CRTS_IFLOW));
237 /* Set output flow control state. */
238 if (sc->sc_hwoflow)
239 UART_IOCTL(sc, UART_IOCTL_OFLOW, (t->c_cflag & CCTS_OFLOW));
240 ttsetwater(tp);
241 return (0);
242 }
243
244 static int
245 uart_tty_modem(struct tty *tp, int biton, int bitoff)
246 {
247 struct uart_softc *sc;
248
249 sc = tp->t_dev->si_drv1;
250 if (biton != 0 || bitoff != 0)
251 UART_SETSIG(sc, SER_DELTA(bitoff|biton) | biton);
252 return (sc->sc_hwsig);
253 }
254
255 static void
256 uart_tty_break(struct tty *tp, int state)
257 {
258 struct uart_softc *sc;
259
260 sc = tp->t_dev->si_drv1;
261 UART_IOCTL(sc, UART_IOCTL_BREAK, state);
262 }
263
264 static void
265 uart_tty_stop(struct tty *tp, int rw)
266 {
267 struct uart_softc *sc;
268
269 KASSERT(tp->t_dev != NULL, ("foo"));
270 sc = tp->t_dev->si_drv1;
271 if (sc == NULL || sc->sc_leaving)
272 return;
273 if (rw & FWRITE) {
274 if (sc->sc_txbusy) {
275 sc->sc_txbusy = 0;
276 UART_FLUSH(sc, UART_FLUSH_TRANSMITTER);
277 }
278 tp->t_state &= ~TS_BUSY;
279 }
280 if (rw & FREAD) {
281 UART_FLUSH(sc, UART_FLUSH_RECEIVER);
282 sc->sc_rxget = sc->sc_rxput = 0;
283 }
284 }
285
286 void
287 uart_tty_intr(void *arg)
288 {
289 struct uart_softc *sc = arg;
290 struct tty *tp;
291 int c, pend, sig, xc;
292
293 if (sc->sc_leaving)
294 return;
295
296 pend = atomic_readandclear_32(&sc->sc_ttypend);
297 if (!(pend & UART_IPEND_MASK))
298 return;
299
300 tp = sc->sc_u.u_tty.tp;
301
302 if (pend & UART_IPEND_RXREADY) {
303 while (!uart_rx_empty(sc) && !(tp->t_state & TS_TBLOCK)) {
304 xc = uart_rx_get(sc);
305 c = xc & 0xff;
306 if (xc & UART_STAT_FRAMERR)
307 c |= TTY_FE;
308 if (xc & UART_STAT_PARERR)
309 c |= TTY_PE;
310 ttyld_rint(tp, c);
311 }
312 }
313
314 if (pend & UART_IPEND_BREAK) {
315 if (tp != NULL && !(tp->t_iflag & IGNBRK))
316 ttyld_rint(tp, 0);
317 }
318
319 if (pend & UART_IPEND_SIGCHG) {
320 sig = pend & UART_IPEND_SIGMASK;
321 if (sig & SER_DDCD)
322 ttyld_modem(tp, sig & SER_DCD);
323 if ((sig & SER_DCTS) && (tp->t_cflag & CCTS_OFLOW) &&
324 !sc->sc_hwoflow) {
325 if (sig & SER_CTS) {
326 tp->t_state &= ~TS_TTSTOP;
327 ttyld_start(tp);
328 } else
329 tp->t_state |= TS_TTSTOP;
330 }
331 }
332
333 if (pend & UART_IPEND_TXIDLE) {
334 tp->t_state &= ~TS_BUSY;
335 ttyld_start(tp);
336 }
337 }
338
339 int
340 uart_tty_attach(struct uart_softc *sc)
341 {
342 struct tty *tp;
343
344 tp = ttymalloc(NULL);
345 sc->sc_u.u_tty.tp = tp;
346
347 sc->sc_u.u_tty.si[0] = make_dev(&uart_cdevsw,
348 device_get_unit(sc->sc_dev), UID_ROOT, GID_WHEEL, 0600, "ttyu%r",
349 device_get_unit(sc->sc_dev));
350 sc->sc_u.u_tty.si[0]->si_drv1 = sc;
351 sc->sc_u.u_tty.si[0]->si_tty = tp;
352 sc->sc_u.u_tty.si[1] = make_dev(&uart_cdevsw,
353 device_get_unit(sc->sc_dev) | UART_MINOR_CALLOUT, UID_UUCP,
354 GID_DIALER, 0660, "uart%r", device_get_unit(sc->sc_dev));
355 sc->sc_u.u_tty.si[1]->si_drv1 = sc;
356 sc->sc_u.u_tty.si[1]->si_tty = tp;
357
358 tp->t_oproc = uart_tty_oproc;
359 tp->t_param = uart_tty_param;
360 tp->t_stop = uart_tty_stop;
361 tp->t_modem = uart_tty_modem;
362 tp->t_break = uart_tty_break;
363
364 if (sc->sc_sysdev != NULL && sc->sc_sysdev->type == UART_DEV_CONSOLE) {
365 sprintf(((struct consdev *)sc->sc_sysdev->cookie)->cn_name,
366 "ttyu%r", device_get_unit(sc->sc_dev));
367 }
368
369 swi_add(&tty_ithd, uart_driver_name, uart_tty_intr, sc, SWI_TTY,
370 INTR_TYPE_TTY, &sc->sc_softih);
371
372 return (0);
373 }
374
375 int uart_tty_detach(struct uart_softc *sc)
376 {
377
378 ithread_remove_handler(sc->sc_softih);
379 destroy_dev(sc->sc_u.u_tty.si[0]);
380 destroy_dev(sc->sc_u.u_tty.si[1]);
381 /* ttyfree(sc->sc_u.u_tty.tp); */
382
383 return (0);
384 }
385
386 static int
387 uart_tty_open(struct cdev *dev, int flags, int mode, struct thread *td)
388 {
389 struct uart_softc *sc;
390 struct tty *tp;
391 int error;
392
393 loop:
394 sc = dev->si_drv1;
395 if (sc == NULL || sc->sc_leaving)
396 return (ENODEV);
397
398 tp = dev->si_tty;
399
400 if (sc->sc_opened) {
401 KASSERT(tp->t_state & TS_ISOPEN, ("foo"));
402 /*
403 * The device is open, so everything has been initialized.
404 * Handle conflicts.
405 */
406 if (minor(dev) & UART_MINOR_CALLOUT) {
407 if (!sc->sc_callout)
408 return (EBUSY);
409 } else {
410 if (sc->sc_callout) {
411 if (flags & O_NONBLOCK)
412 return (EBUSY);
413 error = tsleep(sc, TTIPRI|PCATCH, "uartbi", 0);
414 if (error)
415 return (error);
416 goto loop;
417 }
418 }
419 if (tp->t_state & TS_XCLUDE && suser(td) != 0)
420 return (EBUSY);
421 } else {
422 KASSERT(!(tp->t_state & TS_ISOPEN), ("foo"));
423 /*
424 * The device isn't open, so there are no conflicts.
425 * Initialize it. Initialization is done twice in many
426 * cases: to preempt sleeping callin opens if we are
427 * callout, and to complete a callin open after DCD rises.
428 */
429 sc->sc_callout = (minor(dev) & UART_MINOR_CALLOUT) ? 1 : 0;
430 tp->t_dev = dev;
431
432 tp->t_cflag = TTYDEF_CFLAG;
433 tp->t_iflag = TTYDEF_IFLAG;
434 tp->t_lflag = TTYDEF_LFLAG;
435 tp->t_oflag = TTYDEF_OFLAG;
436 tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
437 ttychars(tp);
438 error = uart_tty_param(tp, &tp->t_termios);
439 if (error)
440 return (error);
441 /*
442 * Handle initial DCD.
443 */
444 if ((sc->sc_hwsig & SER_DCD) || sc->sc_callout)
445 ttyld_modem(tp, 1);
446 }
447 /*
448 * Wait for DCD if necessary.
449 */
450 if (!(tp->t_state & TS_CARR_ON) && !sc->sc_callout &&
451 !(tp->t_cflag & CLOCAL) && !(flags & O_NONBLOCK)) {
452 error = tsleep(TSA_CARR_ON(tp), TTIPRI|PCATCH, "uartdcd", 0);
453 if (error)
454 return (error);
455 goto loop;
456 }
457 error = tty_open(dev, tp);
458 if (error)
459 return (error);
460 error = ttyld_open(tp, dev);
461 if (error)
462 return (error);
463
464 KASSERT(tp->t_state & TS_ISOPEN, ("foo"));
465 sc->sc_opened = 1;
466 return (0);
467 }
468
469 static int
470 uart_tty_close(struct cdev *dev, int flags, int mode, struct thread *td)
471 {
472 struct uart_softc *sc;
473 struct tty *tp;
474
475 sc = dev->si_drv1;
476 if (sc == NULL || sc->sc_leaving)
477 return (ENODEV);
478 tp = dev->si_tty;
479 if (!sc->sc_opened) {
480 KASSERT(!(tp->t_state & TS_ISOPEN), ("foo"));
481 return (0);
482 }
483 KASSERT(tp->t_state & TS_ISOPEN, ("foo"));
484
485 if (sc->sc_hwiflow)
486 UART_IOCTL(sc, UART_IOCTL_IFLOW, 0);
487 if (sc->sc_hwoflow)
488 UART_IOCTL(sc, UART_IOCTL_OFLOW, 0);
489 if (sc->sc_sysdev == NULL)
490 UART_SETSIG(sc, SER_DDTR | SER_DRTS);
491
492 /* Disable pulse capturing. */
493 sc->sc_pps.ppsparam.mode = 0;
494
495 ttyld_close(tp, flags);
496 tty_close(tp);
497 wakeup(sc);
498 wakeup(TSA_CARR_ON(tp));
499 KASSERT(!(tp->t_state & TS_ISOPEN), ("foo"));
500 sc->sc_opened = 0;
501 return (0);
502 }
503
504 static int
505 uart_tty_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int flags,
506 struct thread *td)
507 {
508 struct uart_softc *sc;
509 struct tty *tp;
510 int error;
511
512 sc = dev->si_drv1;
513 if (sc == NULL || sc->sc_leaving)
514 return (ENODEV);
515
516 tp = dev->si_tty;
517 error = ttyioctl(dev, cmd, data, flags, td);
518 if (error != ENOTTY)
519 return (error);
520
521 error = pps_ioctl(cmd, data, &sc->sc_pps);
522 if (error == ENODEV)
523 error = ENOTTY;
524 return (error);
525 }
Cache object: 2bd99da0a61576f8931fcad954325746
|