The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/usb/if_zyd.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */
    2 /*      $NetBSD: if_zyd.c,v 1.7 2007/06/21 04:04:29 kiyohara Exp $      */
    3 /*      $FreeBSD: releng/7.3/sys/dev/usb/if_zyd.c 184009 2008-10-18 04:11:25Z weongyo $ */
    4 
    5 /*-
    6  * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr>
    7  * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de>
    8  *
    9  * Permission to use, copy, modify, and distribute this software for any
   10  * purpose with or without fee is hereby granted, provided that the above
   11  * copyright notice and this permission notice appear in all copies.
   12  *
   13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
   15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
   16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
   17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
   18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
   19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
   20  */
   21 
   22 /*
   23  * ZyDAS ZD1211/ZD1211B USB WLAN driver.
   24  */
   25 
   26 #include <sys/param.h>
   27 #include <sys/systm.h>
   28 #include <sys/sockio.h>
   29 #include <sys/mbuf.h>
   30 #include <sys/malloc.h>
   31 #include <sys/kernel.h>
   32 #include <sys/module.h>
   33 #include <sys/socket.h>
   34 #include <sys/sysctl.h>
   35 #include <sys/endian.h>
   36 #include <sys/linker.h>
   37 
   38 #include <net/if.h>
   39 #include <net/if_arp.h>
   40 #include <net/ethernet.h>
   41 #include <net/if_dl.h>
   42 #include <net/if_media.h>
   43 #include <net/if_types.h>
   44 
   45 #include <sys/bus.h>
   46 #include <machine/bus.h>
   47 
   48 #include <net80211/ieee80211_var.h>
   49 #include <net80211/ieee80211_amrr.h>
   50 #include <net80211/ieee80211_radiotap.h>
   51 #include <net80211/ieee80211_proto.h>
   52 #include <net80211/ieee80211_node.h>
   53 #include <net80211/ieee80211_regdomain.h>
   54 
   55 #include <net/bpf.h>
   56 
   57 #include <dev/usb/usb.h>
   58 #include <dev/usb/usbdi.h>
   59 #include <dev/usb/usbdi_util.h>
   60 #include <dev/usb/usbdivar.h>
   61 #include "usbdevs.h"
   62 #include <dev/usb/usb_ethersubr.h>
   63 
   64 #include <dev/mii/mii.h>
   65 #include <dev/mii/miivar.h>
   66 
   67 #include <dev/usb/if_zydreg.h>
   68 #include <dev/usb/if_zydfw.h>
   69 
   70 #ifdef USB_DEBUG
   71 #define ZYD_DEBUG
   72 #endif
   73 
   74 #ifdef ZYD_DEBUG
   75 #define DPRINTF(x)      do { if (zyddebug > 0) printf x; } while (0)
   76 #define DPRINTFN(n, x)  do { if (zyddebug > (n)) printf x; } while (0)
   77 int zyddebug = 0;
   78 #else
   79 #define DPRINTF(x)
   80 #define DPRINTFN(n, x)
   81 #endif
   82 
   83 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
   84 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
   85 
   86 /* various supported device vendors/products */
   87 #define ZYD_ZD1211_DEV(v, p)    \
   88         { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 }
   89 #define ZYD_ZD1211B_DEV(v, p)   \
   90         { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B }
   91 static const struct zyd_type {
   92         struct usb_devno        dev;
   93         uint8_t                 rev;
   94 #define ZYD_ZD1211      0
   95 #define ZYD_ZD1211B     1
   96 } zyd_devs[] = {
   97         ZYD_ZD1211_DEV(3COM2,           3CRUSB10075),
   98         ZYD_ZD1211_DEV(ABOCOM,          WL54),
   99         ZYD_ZD1211_DEV(ASUS,            WL159G),
  100         ZYD_ZD1211_DEV(CYBERTAN,        TG54USB),
  101         ZYD_ZD1211_DEV(DRAYTEK,         VIGOR550),
  102         ZYD_ZD1211_DEV(PLANEX2,         GWUS54GZL),
  103         ZYD_ZD1211_DEV(PLANEX3,         GWUS54GZ),
  104         ZYD_ZD1211_DEV(PLANEX3,         GWUS54MINI),
  105         ZYD_ZD1211_DEV(SAGEM,           XG760A),
  106         ZYD_ZD1211_DEV(SENAO,           NUB8301),
  107         ZYD_ZD1211_DEV(SITECOMEU,       WL113),
  108         ZYD_ZD1211_DEV(SWEEX,           ZD1211),
  109         ZYD_ZD1211_DEV(TEKRAM,          QUICKWLAN),
  110         ZYD_ZD1211_DEV(TEKRAM,          ZD1211_1),
  111         ZYD_ZD1211_DEV(TEKRAM,          ZD1211_2),
  112         ZYD_ZD1211_DEV(TWINMOS,         G240),
  113         ZYD_ZD1211_DEV(UMEDIA,          ALL0298V2),
  114         ZYD_ZD1211_DEV(UMEDIA,          TEW429UB_A),
  115         ZYD_ZD1211_DEV(UMEDIA,          TEW429UB),
  116         ZYD_ZD1211_DEV(WISTRONNEWEB,    UR055G),
  117         ZYD_ZD1211_DEV(ZCOM,            ZD1211),
  118         ZYD_ZD1211_DEV(ZYDAS,           ZD1211),
  119         ZYD_ZD1211_DEV(ZYXEL,           AG225H),
  120         ZYD_ZD1211_DEV(ZYXEL,           ZYAIRG220),
  121         ZYD_ZD1211_DEV(ZYXEL,           G200V2),
  122         ZYD_ZD1211_DEV(ZYXEL,           G202),
  123 
  124         ZYD_ZD1211B_DEV(ACCTON,         SMCWUSBG),
  125         ZYD_ZD1211B_DEV(ACCTON,         ZD1211B),
  126         ZYD_ZD1211B_DEV(ASUS,           A9T_WIFI),
  127         ZYD_ZD1211B_DEV(BELKIN,         F5D7050_V4000),
  128         ZYD_ZD1211B_DEV(BELKIN,         ZD1211B),
  129         ZYD_ZD1211B_DEV(CISCOLINKSYS,   WUSBF54G),
  130         ZYD_ZD1211B_DEV(FIBERLINE,      WL430U),
  131         ZYD_ZD1211B_DEV(MELCO,          KG54L),
  132         ZYD_ZD1211B_DEV(PHILIPS,        SNU5600),
  133         ZYD_ZD1211B_DEV(PLANEX2,        GW_US54GXS),
  134         ZYD_ZD1211B_DEV(SAGEM,          XG76NA),
  135         ZYD_ZD1211B_DEV(SITECOMEU,      ZD1211B),
  136         ZYD_ZD1211B_DEV(UMEDIA,         TEW429UBC1),
  137 #if 0   /* Shall we needs? */
  138         ZYD_ZD1211B_DEV(UNKNOWN1,       ZD1211B_1),
  139         ZYD_ZD1211B_DEV(UNKNOWN1,       ZD1211B_2),
  140         ZYD_ZD1211B_DEV(UNKNOWN2,       ZD1211B),
  141         ZYD_ZD1211B_DEV(UNKNOWN3,       ZD1211B),
  142 #endif
  143         ZYD_ZD1211B_DEV(USR,            USR5423),
  144         ZYD_ZD1211B_DEV(VTECH,          ZD1211B),
  145         ZYD_ZD1211B_DEV(ZCOM,           ZD1211B),
  146         ZYD_ZD1211B_DEV(ZYDAS,          ZD1211B),
  147         ZYD_ZD1211B_DEV(ZYXEL,          M202),
  148         ZYD_ZD1211B_DEV(ZYXEL,          G220V2),
  149 };
  150 #define zyd_lookup(v, p)        \
  151         ((const struct zyd_type *)usb_lookup(zyd_devs, v, p))
  152 
  153 static device_probe_t zyd_match;
  154 static device_attach_t zyd_attach;
  155 static device_detach_t zyd_detach;
  156 
  157 static int      zyd_attachhook(struct zyd_softc *);
  158 static int      zyd_complete_attach(struct zyd_softc *);
  159 static int      zyd_open_pipes(struct zyd_softc *);
  160 static void     zyd_close_pipes(struct zyd_softc *);
  161 static int      zyd_alloc_tx_list(struct zyd_softc *);
  162 static void     zyd_free_tx_list(struct zyd_softc *);
  163 static int      zyd_alloc_rx_list(struct zyd_softc *);
  164 static void     zyd_free_rx_list(struct zyd_softc *);
  165 static struct   ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *);
  166 static int      zyd_media_change(struct ifnet *);
  167 static void     zyd_task(void *);
  168 static int      zyd_newstate(struct ieee80211com *, enum ieee80211_state, int);
  169 static int      zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
  170                     void *, int, u_int);
  171 static int      zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
  172 static int      zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
  173 static int      zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
  174 static int      zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
  175 static int      zyd_rfwrite(struct zyd_softc *, uint32_t);
  176 static void     zyd_lock_phy(struct zyd_softc *);
  177 static void     zyd_unlock_phy(struct zyd_softc *);
  178 static int      zyd_rfmd_init(struct zyd_rf *);
  179 static int      zyd_rfmd_switch_radio(struct zyd_rf *, int);
  180 static int      zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
  181 static int      zyd_al2230_init(struct zyd_rf *);
  182 static int      zyd_al2230_switch_radio(struct zyd_rf *, int);
  183 static int      zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
  184 static int      zyd_al2230_init_b(struct zyd_rf *);
  185 static int      zyd_al7230B_init(struct zyd_rf *);
  186 static int      zyd_al7230B_switch_radio(struct zyd_rf *, int);
  187 static int      zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
  188 static int      zyd_al2210_init(struct zyd_rf *);
  189 static int      zyd_al2210_switch_radio(struct zyd_rf *, int);
  190 static int      zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
  191 static int      zyd_gct_init(struct zyd_rf *);
  192 static int      zyd_gct_switch_radio(struct zyd_rf *, int);
  193 static int      zyd_gct_set_channel(struct zyd_rf *, uint8_t);
  194 static int      zyd_maxim_init(struct zyd_rf *);
  195 static int      zyd_maxim_switch_radio(struct zyd_rf *, int);
  196 static int      zyd_maxim_set_channel(struct zyd_rf *, uint8_t);
  197 static int      zyd_maxim2_init(struct zyd_rf *);
  198 static int      zyd_maxim2_switch_radio(struct zyd_rf *, int);
  199 static int      zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
  200 static int      zyd_rf_attach(struct zyd_softc *, uint8_t);
  201 static const char *zyd_rf_name(uint8_t);
  202 static int      zyd_hw_init(struct zyd_softc *);
  203 static int      zyd_read_eeprom(struct zyd_softc *);
  204 static int      zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
  205 static int      zyd_set_bssid(struct zyd_softc *, const uint8_t *);
  206 static int      zyd_switch_radio(struct zyd_softc *, int);
  207 static void     zyd_set_led(struct zyd_softc *, int, int);
  208 static void     zyd_set_multi(struct zyd_softc *);
  209 static int      zyd_set_rxfilter(struct zyd_softc *);
  210 static void     zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
  211 static int      zyd_set_beacon_interval(struct zyd_softc *, int);
  212 static uint8_t  zyd_plcp_signal(int);
  213 static void     zyd_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
  214 static void     zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t);
  215 static void     zyd_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
  216 static void     zyd_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
  217 static int      zyd_tx_mgt(struct zyd_softc *, struct mbuf *,
  218                     struct ieee80211_node *);
  219 static int      zyd_tx_data(struct zyd_softc *, struct mbuf *,
  220                     struct ieee80211_node *);
  221 static void     zyd_start(struct ifnet *);
  222 static void     zyd_watchdog(void *);
  223 static int      zyd_ioctl(struct ifnet *, u_long, caddr_t);
  224 static void     zyd_init(void *);
  225 static void     zyd_stop(struct zyd_softc *, int);
  226 static int      zyd_loadfirmware(struct zyd_softc *, u_char *, size_t);
  227 static void     zyd_iter_func(void *, struct ieee80211_node *);
  228 static void     zyd_amrr_timeout(void *);
  229 static void     zyd_newassoc(struct ieee80211_node *, int);
  230 static void     zyd_scantask(void *);
  231 static void     zyd_scan_start(struct ieee80211com *);
  232 static void     zyd_scan_end(struct ieee80211com *);
  233 static void     zyd_set_channel(struct ieee80211com *);
  234 
  235 static int
  236 zyd_match(device_t dev)
  237 {
  238         struct usb_attach_arg *uaa = device_get_ivars(dev);
  239 
  240         if (!uaa->iface)
  241                 return UMATCH_NONE;
  242 
  243         return (zyd_lookup(uaa->vendor, uaa->product) != NULL) ?
  244             UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
  245 }
  246 
  247 static int
  248 zyd_attachhook(struct zyd_softc *sc)
  249 {
  250         u_char *firmware;
  251         int len, error;
  252 
  253         if (sc->mac_rev == ZYD_ZD1211) {
  254                 firmware = (u_char *)zd1211_firmware;
  255                 len = sizeof(zd1211_firmware);
  256         } else {
  257                 firmware = (u_char *)zd1211b_firmware;
  258                 len = sizeof(zd1211b_firmware);
  259         }
  260 
  261         error = zyd_loadfirmware(sc, firmware, len);
  262         if (error != 0) {
  263                 device_printf(sc->sc_dev,
  264                     "could not load firmware (error=%d)\n", error);
  265                 return error;
  266         }
  267 
  268         sc->sc_flags |= ZD1211_FWLOADED;
  269 
  270         /* complete the attach process */
  271         return zyd_complete_attach(sc);
  272 }
  273 
  274 static int
  275 zyd_attach(device_t dev)
  276 {
  277         int error = ENXIO;
  278         struct zyd_softc *sc = device_get_softc(dev);
  279         struct usb_attach_arg *uaa = device_get_ivars(dev);
  280         usb_device_descriptor_t* ddesc;
  281         struct ifnet *ifp;
  282 
  283         sc->sc_dev = dev;
  284 
  285         ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
  286         if (ifp == NULL) {
  287                 device_printf(dev, "can not if_alloc()\n");
  288                 return ENXIO;
  289         }
  290 
  291         sc->sc_udev = uaa->device;
  292         sc->sc_flags = 0;
  293         sc->mac_rev = zyd_lookup(uaa->vendor, uaa->product)->rev;
  294 
  295         ddesc = usbd_get_device_descriptor(sc->sc_udev);
  296         if (UGETW(ddesc->bcdDevice) < 0x4330) {
  297                 device_printf(dev, "device version mismatch: 0x%x "
  298                     "(only >= 43.30 supported)\n",
  299                     UGETW(ddesc->bcdDevice));
  300                 goto bad;
  301         }
  302 
  303         ifp->if_softc = sc;
  304         if_initname(ifp, "zyd", device_get_unit(sc->sc_dev));
  305         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST |
  306             IFF_NEEDSGIANT; /* USB stack is still under Giant lock */
  307         ifp->if_init = zyd_init;
  308         ifp->if_ioctl = zyd_ioctl;
  309         ifp->if_start = zyd_start;
  310         IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
  311         IFQ_SET_READY(&ifp->if_snd);
  312 
  313         STAILQ_INIT(&sc->sc_rqh);
  314 
  315         error = zyd_attachhook(sc);
  316         if (error != 0) {
  317 bad:
  318                 if_free(ifp);
  319                 return error;
  320         }
  321 
  322         return 0;
  323 }
  324 
  325 static int
  326 zyd_complete_attach(struct zyd_softc *sc)
  327 {
  328         struct ieee80211com *ic = &sc->sc_ic;
  329         struct ifnet *ifp = sc->sc_ifp;
  330         usbd_status error;
  331         int bands;
  332 
  333         mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), MTX_NETWORK_LOCK,
  334             MTX_DEF | MTX_RECURSE);
  335 
  336         usb_init_task(&sc->sc_scantask, zyd_scantask, sc);
  337         usb_init_task(&sc->sc_task, zyd_task, sc);
  338 
  339         callout_init(&sc->sc_amrr_ch, 0);
  340         callout_init(&sc->sc_watchdog_ch, 0);
  341 
  342         error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1);
  343         if (error != 0) {
  344                 device_printf(sc->sc_dev, "setting config no failed\n");
  345                 error = ENXIO;
  346                 goto fail;
  347         }
  348 
  349         error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX,
  350             &sc->sc_iface);
  351         if (error != 0) {
  352                 device_printf(sc->sc_dev, "getting interface handle failed\n");
  353                 error = ENXIO;
  354                 goto fail;
  355         }
  356 
  357         if ((error = zyd_open_pipes(sc)) != 0) {
  358                 device_printf(sc->sc_dev, "could not open pipes\n");
  359                 goto fail;
  360         }
  361 
  362         if ((error = zyd_read_eeprom(sc)) != 0) {
  363                 device_printf(sc->sc_dev, "could not read EEPROM\n");
  364                 goto fail;
  365         }
  366 
  367         if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) {
  368                 device_printf(sc->sc_dev, "could not attach RF, rev 0x%x\n",
  369                     sc->rf_rev);
  370                 goto fail;
  371         }
  372 
  373         if ((error = zyd_hw_init(sc)) != 0) {
  374                 device_printf(sc->sc_dev, "hardware initialization failed\n");
  375                 goto fail;
  376         }
  377 
  378         device_printf(sc->sc_dev,
  379             "HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n",
  380             (sc->mac_rev == ZYD_ZD1211) ? "": "B",
  381             sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev),
  382             sc->pa_rev, ether_sprintf(ic->ic_myaddr));
  383 
  384         ic->ic_ifp = ifp;
  385         ic->ic_phytype = IEEE80211_T_OFDM;      /* not only, but not used */
  386         ic->ic_opmode = IEEE80211_M_STA;        /* default to BSS mode */
  387         ic->ic_state = IEEE80211_S_INIT;
  388 
  389         /* set device capabilities */
  390         ic->ic_caps =
  391                   IEEE80211_C_MONITOR           /* monitor mode */
  392                 | IEEE80211_C_SHPREAMBLE        /* short preamble supported */
  393                 | IEEE80211_C_SHSLOT    /* short slot time supported */
  394                 | IEEE80211_C_BGSCAN            /* capable of bg scanning */
  395                 | IEEE80211_C_WPA               /* 802.11i */
  396                 ;
  397 
  398         bands = 0;
  399         setbit(&bands, IEEE80211_MODE_11B);
  400         setbit(&bands, IEEE80211_MODE_11G);
  401         ieee80211_init_channels(ic, 0, CTRY_DEFAULT, bands, 0, 1);
  402 
  403         ieee80211_ifattach(ic);
  404         ic->ic_node_alloc = zyd_node_alloc;
  405         ic->ic_newassoc = zyd_newassoc;
  406 
  407         /* enable s/w bmiss handling in sta mode */
  408         ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS;
  409         ic->ic_scan_start = zyd_scan_start;
  410         ic->ic_scan_end = zyd_scan_end;
  411         ic->ic_set_channel = zyd_set_channel;
  412 
  413         /* override state transition machine */
  414         sc->sc_newstate = ic->ic_newstate;
  415         ic->ic_newstate = zyd_newstate;
  416         ieee80211_media_init(ic, zyd_media_change, ieee80211_media_status);
  417         ieee80211_amrr_init(&sc->amrr, ic,
  418             IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
  419             IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD);
  420 
  421         bpfattach2(ifp, DLT_IEEE802_11_RADIO,
  422             sizeof(struct ieee80211_frame) + sizeof(sc->sc_txtap),
  423             &sc->sc_drvbpf);
  424 
  425         sc->sc_rxtap_len = sizeof(sc->sc_rxtap);
  426         sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
  427         sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT);
  428 
  429         sc->sc_txtap_len = sizeof(sc->sc_txtap);
  430         sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
  431         sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT);
  432 
  433         if (bootverbose)
  434                 ieee80211_announce(ic);
  435 
  436         usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
  437 
  438         return error;
  439 
  440 fail:
  441         mtx_destroy(&sc->sc_mtx);
  442 
  443         return error;
  444 }
  445 
  446 static int
  447 zyd_detach(device_t dev)
  448 {
  449         struct zyd_softc *sc = device_get_softc(dev);
  450         struct ieee80211com *ic = &sc->sc_ic;
  451         struct ifnet *ifp = sc->sc_ifp;
  452 
  453         if (!device_is_attached(dev))
  454                 return 0;
  455 
  456         /* protect a race when we have listeners related with the driver.  */
  457         ifp->if_flags &= ~IFF_UP;
  458 
  459         zyd_stop(sc, 1);
  460         usb_rem_task(sc->sc_udev, &sc->sc_scantask);
  461         usb_rem_task(sc->sc_udev, &sc->sc_task);
  462         callout_stop(&sc->sc_amrr_ch);
  463         callout_stop(&sc->sc_watchdog_ch);
  464 
  465         zyd_close_pipes(sc);
  466 
  467         bpfdetach(ifp);
  468         ieee80211_ifdetach(ic);
  469         if_free(ifp);
  470 
  471         mtx_destroy(&sc->sc_mtx);
  472 
  473         usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
  474 
  475         return 0;
  476 }
  477 
  478 static int
  479 zyd_open_pipes(struct zyd_softc *sc)
  480 {
  481         usb_endpoint_descriptor_t *edesc;
  482         int isize;
  483         usbd_status error;
  484 
  485         /* interrupt in */
  486         edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83);
  487         if (edesc == NULL)
  488                 return EINVAL;
  489 
  490         isize = UGETW(edesc->wMaxPacketSize);
  491         if (isize == 0) /* should not happen */
  492                 return EINVAL;
  493 
  494         sc->ibuf = malloc(isize, M_USBDEV, M_NOWAIT);
  495         if (sc->ibuf == NULL)
  496                 return ENOMEM;
  497 
  498         error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK,
  499             &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, isize, zyd_intr,
  500             USBD_DEFAULT_INTERVAL);
  501         if (error != 0) {
  502                 device_printf(sc->sc_dev, "open rx intr pipe failed: %s\n",
  503                     usbd_errstr(error));
  504                 goto fail;
  505         }
  506 
  507         /* interrupt out (not necessarily an interrupt pipe) */
  508         error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE,
  509             &sc->zyd_ep[ZYD_ENDPT_IOUT]);
  510         if (error != 0) {
  511                 device_printf(sc->sc_dev, "open tx intr pipe failed: %s\n",
  512                     usbd_errstr(error));
  513                 goto fail;
  514         }
  515 
  516         /* bulk in */
  517         error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE,
  518             &sc->zyd_ep[ZYD_ENDPT_BIN]);
  519         if (error != 0) {
  520                 device_printf(sc->sc_dev, "open rx pipe failed: %s\n",
  521                     usbd_errstr(error));
  522                 goto fail;
  523         }
  524 
  525         /* bulk out */
  526         error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE,
  527             &sc->zyd_ep[ZYD_ENDPT_BOUT]);
  528         if (error != 0) {
  529                 device_printf(sc->sc_dev, "open tx pipe failed: %s\n",
  530                     usbd_errstr(error));
  531                 goto fail;
  532         }
  533 
  534         return 0;
  535 
  536 fail:   zyd_close_pipes(sc);
  537         return ENXIO;
  538 }
  539 
  540 static void
  541 zyd_close_pipes(struct zyd_softc *sc)
  542 {
  543         int i;
  544 
  545         for (i = 0; i < ZYD_ENDPT_CNT; i++) {
  546                 if (sc->zyd_ep[i] != NULL) {
  547                         usbd_abort_pipe(sc->zyd_ep[i]);
  548                         usbd_close_pipe(sc->zyd_ep[i]);
  549                         sc->zyd_ep[i] = NULL;
  550                 }
  551         }
  552         if (sc->ibuf != NULL) {
  553                 free(sc->ibuf, M_USBDEV);
  554                 sc->ibuf = NULL;
  555         }
  556 }
  557 
  558 static int
  559 zyd_alloc_tx_list(struct zyd_softc *sc)
  560 {
  561         int i, error;
  562 
  563         sc->tx_queued = 0;
  564 
  565         for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
  566                 struct zyd_tx_data *data = &sc->tx_data[i];
  567 
  568                 data->sc = sc;  /* backpointer for callbacks */
  569 
  570                 data->xfer = usbd_alloc_xfer(sc->sc_udev);
  571                 if (data->xfer == NULL) {
  572                         device_printf(sc->sc_dev,
  573                             "could not allocate tx xfer\n");
  574                         error = ENOMEM;
  575                         goto fail;
  576                 }
  577                 data->buf = usbd_alloc_buffer(data->xfer, ZYD_MAX_TXBUFSZ);
  578                 if (data->buf == NULL) {
  579                         device_printf(sc->sc_dev,
  580                             "could not allocate tx buffer\n");
  581                         error = ENOMEM;
  582                         goto fail;
  583                 }
  584 
  585                 /* clear Tx descriptor */
  586                 bzero(data->buf, sizeof(struct zyd_tx_desc));
  587         }
  588         return 0;
  589 
  590 fail:   zyd_free_tx_list(sc);
  591         return error;
  592 }
  593 
  594 static void
  595 zyd_free_tx_list(struct zyd_softc *sc)
  596 {
  597         int i;
  598 
  599         for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
  600                 struct zyd_tx_data *data = &sc->tx_data[i];
  601 
  602                 if (data->xfer != NULL) {
  603                         usbd_free_xfer(data->xfer);
  604                         data->xfer = NULL;
  605                 }
  606                 if (data->ni != NULL) {
  607                         ieee80211_free_node(data->ni);
  608                         data->ni = NULL;
  609                 }
  610         }
  611 }
  612 
  613 static int
  614 zyd_alloc_rx_list(struct zyd_softc *sc)
  615 {
  616         int i, error;
  617 
  618         for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
  619                 struct zyd_rx_data *data = &sc->rx_data[i];
  620 
  621                 data->sc = sc;  /* backpointer for callbacks */
  622 
  623                 data->xfer = usbd_alloc_xfer(sc->sc_udev);
  624                 if (data->xfer == NULL) {
  625                         device_printf(sc->sc_dev,
  626                             "could not allocate rx xfer\n");
  627                         error = ENOMEM;
  628                         goto fail;
  629                 }
  630                 data->buf = usbd_alloc_buffer(data->xfer, ZYX_MAX_RXBUFSZ);
  631                 if (data->buf == NULL) {
  632                         device_printf(sc->sc_dev,
  633                             "could not allocate rx buffer\n");
  634                         error = ENOMEM;
  635                         goto fail;
  636                 }
  637         }
  638         return 0;
  639 
  640 fail:   zyd_free_rx_list(sc);
  641         return error;
  642 }
  643 
  644 static void
  645 zyd_free_rx_list(struct zyd_softc *sc)
  646 {
  647         int i;
  648 
  649         for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
  650                 struct zyd_rx_data *data = &sc->rx_data[i];
  651 
  652                 if (data->xfer != NULL) {
  653                         usbd_free_xfer(data->xfer);
  654                         data->xfer = NULL;
  655                 }
  656         }
  657 }
  658 
  659 /* ARGUSED */
  660 static struct ieee80211_node *
  661 zyd_node_alloc(struct ieee80211_node_table *nt __unused)
  662 {
  663         struct zyd_node *zn;
  664 
  665         zn = malloc(sizeof(struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO);
  666         return zn != NULL ? &zn->ni : NULL;
  667 }
  668 
  669 static int
  670 zyd_media_change(struct ifnet *ifp)
  671 {
  672         struct zyd_softc *sc = ifp->if_softc;
  673         int error;
  674 
  675         error = ieee80211_media_change(ifp);
  676         if (error != ENETRESET)
  677                 return error;
  678 
  679         if ((ifp->if_flags & IFF_UP) == IFF_UP &&
  680             (ifp->if_drv_flags & IFF_DRV_RUNNING) == IFF_DRV_RUNNING)
  681                 zyd_init(sc);
  682 
  683         return 0;
  684 }
  685 
  686 static void
  687 zyd_task(void *arg)
  688 {
  689         struct zyd_softc *sc = arg;
  690         struct ieee80211com *ic = &sc->sc_ic;
  691         enum ieee80211_state ostate;
  692 
  693         ostate = ic->ic_state;
  694 
  695         switch (sc->sc_state) {
  696         case IEEE80211_S_RUN:
  697         {
  698                 struct ieee80211_node *ni = ic->ic_bss;
  699 
  700                 zyd_set_chan(sc, ic->ic_curchan);
  701 
  702                 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
  703                         /* turn link LED on */
  704                         zyd_set_led(sc, ZYD_LED1, 1);
  705 
  706                         /* make data LED blink upon Tx */
  707                         zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1);
  708 
  709                         zyd_set_bssid(sc, ni->ni_bssid);
  710                 }
  711 
  712                 if (ic->ic_opmode == IEEE80211_M_STA) {
  713                         /* fake a join to init the tx rate */
  714                         zyd_newassoc(ni, 1);
  715                 }
  716 
  717                 /* start automatic rate control timer */
  718                 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
  719                         callout_reset(&sc->sc_amrr_ch, hz,
  720                             zyd_amrr_timeout, sc);
  721 
  722                 break;
  723         }
  724         default:
  725                 break;
  726         }
  727 
  728         sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
  729 }
  730 
  731 static int
  732 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
  733 {
  734         struct zyd_softc *sc = ic->ic_ifp->if_softc;
  735 
  736         usb_rem_task(sc->sc_udev, &sc->sc_task);
  737         callout_stop(&sc->sc_amrr_ch);
  738 
  739         /* do it in a process context */
  740         sc->sc_state = nstate;
  741         sc->sc_arg = arg;
  742 
  743         if (nstate == IEEE80211_S_INIT)
  744                 sc->sc_newstate(ic, nstate, arg);
  745         else
  746                 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
  747 
  748         return 0;
  749 }
  750 
  751 static int
  752 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
  753     void *odata, int olen, u_int flags)
  754 {
  755         usbd_xfer_handle xfer;
  756         struct zyd_cmd cmd;
  757         struct rq rq;
  758         uint16_t xferflags;
  759         usbd_status error;
  760 
  761         if ((xfer = usbd_alloc_xfer(sc->sc_udev)) == NULL)
  762                 return ENOMEM;
  763 
  764         cmd.code = htole16(code);
  765         bcopy(idata, cmd.data, ilen);
  766 
  767         xferflags = USBD_FORCE_SHORT_XFER;
  768         if (!(flags & ZYD_CMD_FLAG_READ))
  769                 xferflags |= USBD_SYNCHRONOUS;
  770         else {
  771                 rq.idata = idata;
  772                 rq.odata = odata;
  773                 rq.len = olen / sizeof(struct zyd_pair);
  774                 STAILQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
  775         }
  776 
  777         usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_IOUT], 0, &cmd,
  778             sizeof(uint16_t) + ilen, xferflags, ZYD_INTR_TIMEOUT, NULL);
  779         error = usbd_transfer(xfer);
  780         if (error != USBD_IN_PROGRESS && error != 0) {
  781                 device_printf(sc->sc_dev, "could not send command (error=%s)\n",
  782                     usbd_errstr(error));
  783                 (void)usbd_free_xfer(xfer);
  784                 return EIO;
  785         }
  786         if (!(flags & ZYD_CMD_FLAG_READ)) {
  787                 (void)usbd_free_xfer(xfer);
  788                 return 0;       /* write: don't wait for reply */
  789         }
  790         /* wait at most one second for command reply */
  791         error = tsleep(odata, PCATCH, "zydcmd", hz);
  792         if (error == EWOULDBLOCK)
  793                 device_printf(sc->sc_dev, "zyd_read sleep timeout\n");
  794         STAILQ_REMOVE(&sc->sc_rqh, &rq, rq, rq);
  795 
  796         (void)usbd_free_xfer(xfer);
  797         return error;
  798 }
  799 
  800 static int
  801 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
  802 {
  803         struct zyd_pair tmp;
  804         int error;
  805 
  806         reg = htole16(reg);
  807         error = zyd_cmd(sc, ZYD_CMD_IORD, &reg, sizeof(reg), &tmp, sizeof(tmp),
  808             ZYD_CMD_FLAG_READ);
  809         if (error == 0)
  810                 *val = le16toh(tmp.val);
  811         return error;
  812 }
  813 
  814 static int
  815 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
  816 {
  817         struct zyd_pair tmp[2];
  818         uint16_t regs[2];
  819         int error;
  820 
  821         regs[0] = htole16(ZYD_REG32_HI(reg));
  822         regs[1] = htole16(ZYD_REG32_LO(reg));
  823         error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp),
  824             ZYD_CMD_FLAG_READ);
  825         if (error == 0)
  826                 *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
  827         return error;
  828 }
  829 
  830 static int
  831 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
  832 {
  833         struct zyd_pair pair;
  834 
  835         pair.reg = htole16(reg);
  836         pair.val = htole16(val);
  837 
  838         return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0);
  839 }
  840 
  841 static int
  842 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
  843 {
  844         struct zyd_pair pair[2];
  845 
  846         pair[0].reg = htole16(ZYD_REG32_HI(reg));
  847         pair[0].val = htole16(val >> 16);
  848         pair[1].reg = htole16(ZYD_REG32_LO(reg));
  849         pair[1].val = htole16(val & 0xffff);
  850 
  851         return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0);
  852 }
  853 
  854 static int
  855 zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
  856 {
  857         struct zyd_rf *rf = &sc->sc_rf;
  858         struct zyd_rfwrite req;
  859         uint16_t cr203;
  860         int i;
  861 
  862         (void)zyd_read16(sc, ZYD_CR203, &cr203);
  863         cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
  864 
  865         req.code  = htole16(2);
  866         req.width = htole16(rf->width);
  867         for (i = 0; i < rf->width; i++) {
  868                 req.bit[i] = htole16(cr203);
  869                 if (val & (1 << (rf->width - 1 - i)))
  870                         req.bit[i] |= htole16(ZYD_RF_DATA);
  871         }
  872         return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
  873 }
  874 
  875 static void
  876 zyd_lock_phy(struct zyd_softc *sc)
  877 {
  878         uint32_t tmp;
  879 
  880         (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
  881         tmp &= ~ZYD_UNLOCK_PHY_REGS;
  882         (void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
  883 }
  884 
  885 static void
  886 zyd_unlock_phy(struct zyd_softc *sc)
  887 {
  888         uint32_t tmp;
  889 
  890         (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
  891         tmp |= ZYD_UNLOCK_PHY_REGS;
  892         (void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
  893 }
  894 
  895 /*
  896  * RFMD RF methods.
  897  */
  898 static int
  899 zyd_rfmd_init(struct zyd_rf *rf)
  900 {
  901 #define N(a)    (sizeof(a) / sizeof((a)[0]))
  902         struct zyd_softc *sc = rf->rf_sc;
  903         static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
  904         static const uint32_t rfini[] = ZYD_RFMD_RF;
  905         int i, error;
  906 
  907         /* init RF-dependent PHY registers */
  908         for (i = 0; i < N(phyini); i++) {
  909                 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
  910                 if (error != 0)
  911                         return error;
  912         }
  913 
  914         /* init RFMD radio */
  915         for (i = 0; i < N(rfini); i++) {
  916                 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
  917                         return error;
  918         }
  919         return 0;
  920 #undef N
  921 }
  922 
  923 static int
  924 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
  925 {
  926         struct zyd_softc *sc = rf->rf_sc;
  927 
  928         (void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15);
  929         (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81);
  930 
  931         return 0;
  932 }
  933 
  934 static int
  935 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
  936 {
  937         struct zyd_softc *sc = rf->rf_sc;
  938         static const struct {
  939                 uint32_t        r1, r2;
  940         } rfprog[] = ZYD_RFMD_CHANTABLE;
  941 
  942         (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
  943         (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
  944 
  945         return 0;
  946 }
  947 
  948 /*
  949  * AL2230 RF methods.
  950  */
  951 static int
  952 zyd_al2230_init(struct zyd_rf *rf)
  953 {
  954 #define N(a)    (sizeof(a) / sizeof((a)[0]))
  955         struct zyd_softc *sc = rf->rf_sc;
  956         static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
  957         static const uint32_t rfini[] = ZYD_AL2230_RF;
  958         int i, error;
  959 
  960         /* init RF-dependent PHY registers */
  961         for (i = 0; i < N(phyini); i++) {
  962                 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
  963                 if (error != 0)
  964                         return error;
  965         }
  966 
  967         /* init AL2230 radio */
  968         for (i = 0; i < N(rfini); i++) {
  969                 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
  970                         return error;
  971         }
  972         return 0;
  973 #undef N
  974 }
  975 
  976 static int
  977 zyd_al2230_init_b(struct zyd_rf *rf)
  978 {
  979 #define N(a)    (sizeof(a) / sizeof((a)[0]))
  980         struct zyd_softc *sc = rf->rf_sc;
  981         static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
  982         static const uint32_t rfini[] = ZYD_AL2230_RF_B;
  983         int i, error;
  984 
  985         /* init RF-dependent PHY registers */
  986         for (i = 0; i < N(phyini); i++) {
  987                 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
  988                 if (error != 0)
  989                         return error;
  990         }
  991 
  992         /* init AL2230 radio */
  993         for (i = 0; i < N(rfini); i++) {
  994                 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
  995                         return error;
  996         }
  997         return 0;
  998 #undef N
  999 }
 1000 
 1001 static int
 1002 zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
 1003 {
 1004         struct zyd_softc *sc = rf->rf_sc;
 1005         int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f;
 1006 
 1007         (void)zyd_write16(sc, ZYD_CR11,  on ? 0x00 : 0x04);
 1008         (void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f);
 1009 
 1010         return 0;
 1011 }
 1012 
 1013 static int
 1014 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
 1015 {
 1016         struct zyd_softc *sc = rf->rf_sc;
 1017         static const struct {
 1018                 uint32_t        r1, r2, r3;
 1019         } rfprog[] = ZYD_AL2230_CHANTABLE;
 1020 
 1021         (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
 1022         (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
 1023         (void)zyd_rfwrite(sc, rfprog[chan - 1].r3);
 1024 
 1025         (void)zyd_write16(sc, ZYD_CR138, 0x28);
 1026         (void)zyd_write16(sc, ZYD_CR203, 0x06);
 1027 
 1028         return 0;
 1029 }
 1030 
 1031 /*
 1032  * AL7230B RF methods.
 1033  */
 1034 static int
 1035 zyd_al7230B_init(struct zyd_rf *rf)
 1036 {
 1037 #define N(a)    (sizeof(a) / sizeof((a)[0]))
 1038         struct zyd_softc *sc = rf->rf_sc;
 1039         static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
 1040         static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
 1041         static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
 1042         static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
 1043         static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
 1044         int i, error;
 1045 
 1046         /* for AL7230B, PHY and RF need to be initialized in "phases" */
 1047 
 1048         /* init RF-dependent PHY registers, part one */
 1049         for (i = 0; i < N(phyini_1); i++) {
 1050                 error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val);
 1051                 if (error != 0)
 1052                         return error;
 1053         }
 1054         /* init AL7230B radio, part one */
 1055         for (i = 0; i < N(rfini_1); i++) {
 1056                 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
 1057                         return error;
 1058         }
 1059         /* init RF-dependent PHY registers, part two */
 1060         for (i = 0; i < N(phyini_2); i++) {
 1061                 error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val);
 1062                 if (error != 0)
 1063                         return error;
 1064         }
 1065         /* init AL7230B radio, part two */
 1066         for (i = 0; i < N(rfini_2); i++) {
 1067                 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
 1068                         return error;
 1069         }
 1070         /* init RF-dependent PHY registers, part three */
 1071         for (i = 0; i < N(phyini_3); i++) {
 1072                 error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val);
 1073                 if (error != 0)
 1074                         return error;
 1075         }
 1076 
 1077         return 0;
 1078 #undef N
 1079 }
 1080 
 1081 static int
 1082 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
 1083 {
 1084         struct zyd_softc *sc = rf->rf_sc;
 1085 
 1086         (void)zyd_write16(sc, ZYD_CR11,  on ? 0x00 : 0x04);
 1087         (void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f);
 1088 
 1089         return 0;
 1090 }
 1091 
 1092 static int
 1093 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
 1094 {
 1095 #define N(a)    (sizeof(a) / sizeof((a)[0]))
 1096         struct zyd_softc *sc = rf->rf_sc;
 1097         static const struct {
 1098                 uint32_t        r1, r2;
 1099         } rfprog[] = ZYD_AL7230B_CHANTABLE;
 1100         static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
 1101         int i, error;
 1102 
 1103         (void)zyd_write16(sc, ZYD_CR240, 0x57);
 1104         (void)zyd_write16(sc, ZYD_CR251, 0x2f);
 1105 
 1106         for (i = 0; i < N(rfsc); i++) {
 1107                 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
 1108                         return error;
 1109         }
 1110 
 1111         (void)zyd_write16(sc, ZYD_CR128, 0x14);
 1112         (void)zyd_write16(sc, ZYD_CR129, 0x12);
 1113         (void)zyd_write16(sc, ZYD_CR130, 0x10);
 1114         (void)zyd_write16(sc, ZYD_CR38,  0x38);
 1115         (void)zyd_write16(sc, ZYD_CR136, 0xdf);
 1116 
 1117         (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
 1118         (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
 1119         (void)zyd_rfwrite(sc, 0x3c9000);
 1120 
 1121         (void)zyd_write16(sc, ZYD_CR251, 0x3f);
 1122         (void)zyd_write16(sc, ZYD_CR203, 0x06);
 1123         (void)zyd_write16(sc, ZYD_CR240, 0x08);
 1124 
 1125         return 0;
 1126 #undef N
 1127 }
 1128 
 1129 /*
 1130  * AL2210 RF methods.
 1131  */
 1132 static int
 1133 zyd_al2210_init(struct zyd_rf *rf)
 1134 {
 1135 #define N(a)    (sizeof(a) / sizeof((a)[0]))
 1136         struct zyd_softc *sc = rf->rf_sc;
 1137         static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
 1138         static const uint32_t rfini[] = ZYD_AL2210_RF;
 1139         uint32_t tmp;
 1140         int i, error;
 1141 
 1142         (void)zyd_write32(sc, ZYD_CR18, 2);
 1143 
 1144         /* init RF-dependent PHY registers */
 1145         for (i = 0; i < N(phyini); i++) {
 1146                 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
 1147                 if (error != 0)
 1148                         return error;
 1149         }
 1150         /* init AL2210 radio */
 1151         for (i = 0; i < N(rfini); i++) {
 1152                 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
 1153                         return error;
 1154         }
 1155         (void)zyd_write16(sc, ZYD_CR47, 0x1e);
 1156         (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
 1157         (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
 1158         (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
 1159         (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
 1160         (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
 1161         (void)zyd_write16(sc, ZYD_CR47, 0x1e);
 1162         (void)zyd_write32(sc, ZYD_CR18, 3);
 1163 
 1164         return 0;
 1165 #undef N
 1166 }
 1167 
 1168 static int
 1169 zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
 1170 {
 1171         /* vendor driver does nothing for this RF chip */
 1172 
 1173         return 0;
 1174 }
 1175 
 1176 static int
 1177 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
 1178 {
 1179         struct zyd_softc *sc = rf->rf_sc;
 1180         static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
 1181         uint32_t tmp;
 1182 
 1183         (void)zyd_write32(sc, ZYD_CR18, 2);
 1184         (void)zyd_write16(sc, ZYD_CR47, 0x1e);
 1185         (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
 1186         (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
 1187         (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
 1188         (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
 1189 
 1190         (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
 1191         (void)zyd_write16(sc, ZYD_CR47, 0x1e);
 1192 
 1193         /* actually set the channel */
 1194         (void)zyd_rfwrite(sc, rfprog[chan - 1]);
 1195 
 1196         (void)zyd_write32(sc, ZYD_CR18, 3);
 1197 
 1198         return 0;
 1199 }
 1200 
 1201 /*
 1202  * GCT RF methods.
 1203  */
 1204 static int
 1205 zyd_gct_init(struct zyd_rf *rf)
 1206 {
 1207 #define N(a)    (sizeof(a) / sizeof((a)[0]))
 1208         struct zyd_softc *sc = rf->rf_sc;
 1209         static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
 1210         static const uint32_t rfini[] = ZYD_GCT_RF;
 1211         int i, error;
 1212 
 1213         /* init RF-dependent PHY registers */
 1214         for (i = 0; i < N(phyini); i++) {
 1215                 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
 1216                 if (error != 0)
 1217                         return error;
 1218         }
 1219         /* init cgt radio */
 1220         for (i = 0; i < N(rfini); i++) {
 1221                 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
 1222                         return error;
 1223         }
 1224         return 0;
 1225 #undef N
 1226 }
 1227 
 1228 static int
 1229 zyd_gct_switch_radio(struct zyd_rf *rf, int on)
 1230 {
 1231         /* vendor driver does nothing for this RF chip */
 1232 
 1233         return 0;
 1234 }
 1235 
 1236 static int
 1237 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
 1238 {
 1239         struct zyd_softc *sc = rf->rf_sc;
 1240         static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE;
 1241 
 1242         (void)zyd_rfwrite(sc, 0x1c0000);
 1243         (void)zyd_rfwrite(sc, rfprog[chan - 1]);
 1244         (void)zyd_rfwrite(sc, 0x1c0008);
 1245 
 1246         return 0;
 1247 }
 1248 
 1249 /*
 1250  * Maxim RF methods.
 1251  */
 1252 static int
 1253 zyd_maxim_init(struct zyd_rf *rf)
 1254 {
 1255 #define N(a)    (sizeof(a) / sizeof((a)[0]))
 1256         struct zyd_softc *sc = rf->rf_sc;
 1257         static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
 1258         static const uint32_t rfini[] = ZYD_MAXIM_RF;
 1259         uint16_t tmp;
 1260         int i, error;
 1261 
 1262         /* init RF-dependent PHY registers */
 1263         for (i = 0; i < N(phyini); i++) {
 1264                 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
 1265                 if (error != 0)
 1266                         return error;
 1267         }
 1268         (void)zyd_read16(sc, ZYD_CR203, &tmp);
 1269         (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
 1270 
 1271         /* init maxim radio */
 1272         for (i = 0; i < N(rfini); i++) {
 1273                 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
 1274                         return error;
 1275         }
 1276         (void)zyd_read16(sc, ZYD_CR203, &tmp);
 1277         (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
 1278 
 1279         return 0;
 1280 #undef N
 1281 }
 1282 
 1283 static int
 1284 zyd_maxim_switch_radio(struct zyd_rf *rf, int on)
 1285 {
 1286         /* vendor driver does nothing for this RF chip */
 1287 
 1288         return 0;
 1289 }
 1290 
 1291 static int
 1292 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan)
 1293 {
 1294 #define N(a)    (sizeof(a) / sizeof((a)[0]))
 1295         struct zyd_softc *sc = rf->rf_sc;
 1296         static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
 1297         static const uint32_t rfini[] = ZYD_MAXIM_RF;
 1298         static const struct {
 1299                 uint32_t        r1, r2;
 1300         } rfprog[] = ZYD_MAXIM_CHANTABLE;
 1301         uint16_t tmp;
 1302         int i, error;
 1303 
 1304         /*
 1305          * Do the same as we do when initializing it, except for the channel
 1306          * values coming from the two channel tables.
 1307          */
 1308 
 1309         /* init RF-dependent PHY registers */
 1310         for (i = 0; i < N(phyini); i++) {
 1311                 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
 1312                 if (error != 0)
 1313                         return error;
 1314         }
 1315         (void)zyd_read16(sc, ZYD_CR203, &tmp);
 1316         (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
 1317 
 1318         /* first two values taken from the chantables */
 1319         (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
 1320         (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
 1321 
 1322         /* init maxim radio - skipping the two first values */
 1323         for (i = 2; i < N(rfini); i++) {
 1324                 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
 1325                         return error;
 1326         }
 1327         (void)zyd_read16(sc, ZYD_CR203, &tmp);
 1328         (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
 1329 
 1330         return 0;
 1331 #undef N
 1332 }
 1333 
 1334 /*
 1335  * Maxim2 RF methods.
 1336  */
 1337 static int
 1338 zyd_maxim2_init(struct zyd_rf *rf)
 1339 {
 1340 #define N(a)    (sizeof(a) / sizeof((a)[0]))
 1341         struct zyd_softc *sc = rf->rf_sc;
 1342         static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
 1343         static const uint32_t rfini[] = ZYD_MAXIM2_RF;
 1344         uint16_t tmp;
 1345         int i, error;
 1346 
 1347         /* init RF-dependent PHY registers */
 1348         for (i = 0; i < N(phyini); i++) {
 1349                 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
 1350                 if (error != 0)
 1351                         return error;
 1352         }
 1353         (void)zyd_read16(sc, ZYD_CR203, &tmp);
 1354         (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
 1355 
 1356         /* init maxim2 radio */
 1357         for (i = 0; i < N(rfini); i++) {
 1358                 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
 1359                         return error;
 1360         }
 1361         (void)zyd_read16(sc, ZYD_CR203, &tmp);
 1362         (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
 1363 
 1364         return 0;
 1365 #undef N
 1366 }
 1367 
 1368 static int
 1369 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
 1370 {
 1371         /* vendor driver does nothing for this RF chip */
 1372 
 1373         return 0;
 1374 }
 1375 
 1376 static int
 1377 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
 1378 {
 1379 #define N(a)    (sizeof(a) / sizeof((a)[0]))
 1380         struct zyd_softc *sc = rf->rf_sc;
 1381         static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
 1382         static const uint32_t rfini[] = ZYD_MAXIM2_RF;
 1383         static const struct {
 1384                 uint32_t        r1, r2;
 1385         } rfprog[] = ZYD_MAXIM2_CHANTABLE;
 1386         uint16_t tmp;
 1387         int i, error;
 1388 
 1389         /*
 1390          * Do the same as we do when initializing it, except for the channel
 1391          * values coming from the two channel tables.
 1392          */
 1393 
 1394         /* init RF-dependent PHY registers */
 1395         for (i = 0; i < N(phyini); i++) {
 1396                 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
 1397                 if (error != 0)
 1398                         return error;
 1399         }
 1400         (void)zyd_read16(sc, ZYD_CR203, &tmp);
 1401         (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
 1402 
 1403         /* first two values taken from the chantables */
 1404         (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
 1405         (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
 1406 
 1407         /* init maxim2 radio - skipping the two first values */
 1408         for (i = 2; i < N(rfini); i++) {
 1409                 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
 1410                         return error;
 1411         }
 1412         (void)zyd_read16(sc, ZYD_CR203, &tmp);
 1413         (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
 1414 
 1415         return 0;
 1416 #undef N
 1417 }
 1418 
 1419 static int
 1420 zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
 1421 {
 1422         struct zyd_rf *rf = &sc->sc_rf;
 1423 
 1424         rf->rf_sc = sc;
 1425 
 1426         switch (type) {
 1427         case ZYD_RF_RFMD:
 1428                 rf->init         = zyd_rfmd_init;
 1429                 rf->switch_radio = zyd_rfmd_switch_radio;
 1430                 rf->set_channel  = zyd_rfmd_set_channel;
 1431                 rf->width        = 24;  /* 24-bit RF values */
 1432                 break;
 1433         case ZYD_RF_AL2230:
 1434                 if (sc->mac_rev == ZYD_ZD1211B)
 1435                         rf->init = zyd_al2230_init_b;
 1436                 else
 1437                         rf->init = zyd_al2230_init;
 1438                 rf->switch_radio = zyd_al2230_switch_radio;
 1439                 rf->set_channel  = zyd_al2230_set_channel;
 1440                 rf->width        = 24;  /* 24-bit RF values */
 1441                 break;
 1442         case ZYD_RF_AL7230B:
 1443                 rf->init         = zyd_al7230B_init;
 1444                 rf->switch_radio = zyd_al7230B_switch_radio;
 1445                 rf->set_channel  = zyd_al7230B_set_channel;
 1446                 rf->width        = 24;  /* 24-bit RF values */
 1447                 break;
 1448         case ZYD_RF_AL2210:
 1449                 rf->init         = zyd_al2210_init;
 1450                 rf->switch_radio = zyd_al2210_switch_radio;
 1451                 rf->set_channel  = zyd_al2210_set_channel;
 1452                 rf->width        = 24;  /* 24-bit RF values */
 1453                 break;
 1454         case ZYD_RF_GCT:
 1455                 rf->init         = zyd_gct_init;
 1456                 rf->switch_radio = zyd_gct_switch_radio;
 1457                 rf->set_channel  = zyd_gct_set_channel;
 1458                 rf->width        = 21;  /* 21-bit RF values */
 1459                 break;
 1460         case ZYD_RF_MAXIM_NEW:
 1461                 rf->init         = zyd_maxim_init;
 1462                 rf->switch_radio = zyd_maxim_switch_radio;
 1463                 rf->set_channel  = zyd_maxim_set_channel;
 1464                 rf->width        = 18;  /* 18-bit RF values */
 1465                 break;
 1466         case ZYD_RF_MAXIM_NEW2:
 1467                 rf->init         = zyd_maxim2_init;
 1468                 rf->switch_radio = zyd_maxim2_switch_radio;
 1469                 rf->set_channel  = zyd_maxim2_set_channel;
 1470                 rf->width        = 18;  /* 18-bit RF values */
 1471                 break;
 1472         default:
 1473                 device_printf(sc->sc_dev,
 1474                     "sorry, radio \"%s\" is not supported yet\n",
 1475                     zyd_rf_name(type));
 1476                 return EINVAL;
 1477         }
 1478         return 0;
 1479 }
 1480 
 1481 static const char *
 1482 zyd_rf_name(uint8_t type)
 1483 {
 1484         static const char * const zyd_rfs[] = {
 1485                 "unknown", "unknown", "UW2451",   "UCHIP",     "AL2230",
 1486                 "AL7230B", "THETA",   "AL2210",   "MAXIM_NEW", "GCT",
 1487                 "PV2000",  "RALINK",  "INTERSIL", "RFMD",      "MAXIM_NEW2",
 1488                 "PHILIPS"
 1489         };
 1490 
 1491         return zyd_rfs[(type > 15) ? 0 : type];
 1492 }
 1493 
 1494 static int
 1495 zyd_hw_init(struct zyd_softc *sc)
 1496 {
 1497         struct zyd_rf *rf = &sc->sc_rf;
 1498         const struct zyd_phy_pair *phyp;
 1499         uint32_t tmp;
 1500         int error;
 1501 
 1502         /* specify that the plug and play is finished */
 1503         (void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1);
 1504 
 1505         (void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase);
 1506         DPRINTF(("firmware base address=0x%04x\n", sc->fwbase));
 1507 
 1508         /* retrieve firmware revision number */
 1509         (void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev);
 1510 
 1511         (void)zyd_write32(sc, ZYD_CR_GPI_EN, 0);
 1512         (void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
 1513 
 1514         /* disable interrupts */
 1515         (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
 1516 
 1517         /* PHY init */
 1518         zyd_lock_phy(sc);
 1519         phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
 1520         for (; phyp->reg != 0; phyp++) {
 1521                 if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0)
 1522                         goto fail;
 1523         }
 1524         if (sc->fix_cr157) {
 1525                 if (zyd_read32(sc, ZYD_EEPROM_PHY_REG, &tmp) == 0)
 1526                         (void)zyd_write32(sc, ZYD_CR157, tmp >> 8);
 1527         }
 1528         zyd_unlock_phy(sc);
 1529 
 1530         /* HMAC init */
 1531         zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020);
 1532         zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
 1533 
 1534         if (sc->mac_rev == ZYD_ZD1211) {
 1535                 zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002);
 1536         } else {
 1537                 zyd_write32(sc, ZYD_MACB_MAX_RETRY, 0x02020202);
 1538                 zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
 1539                 zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
 1540                 zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
 1541                 zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
 1542                 zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
 1543                 zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
 1544                 zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824);
 1545         }
 1546 
 1547         zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000);
 1548         zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000);
 1549         zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000);
 1550         zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000);
 1551         zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4);
 1552         zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
 1553         zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401);
 1554         zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
 1555         zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080);
 1556         zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
 1557         zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
 1558         zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032);
 1559         zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
 1560         zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000);
 1561         zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
 1562         zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
 1563         zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
 1564 
 1565         /* RF chip init */
 1566         zyd_lock_phy(sc);
 1567         error = (*rf->init)(rf);
 1568         zyd_unlock_phy(sc);
 1569         if (error != 0) {
 1570                 device_printf(sc->sc_dev,
 1571                     "radio initialization failed, error %d\n", error);
 1572                 goto fail;
 1573         }
 1574 
 1575         /* init beacon interval to 100ms */
 1576         if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
 1577                 goto fail;
 1578 
 1579 fail:   return error;
 1580 }
 1581 
 1582 static int
 1583 zyd_read_eeprom(struct zyd_softc *sc)
 1584 {
 1585         struct ieee80211com *ic = &sc->sc_ic;
 1586         uint32_t tmp;
 1587         uint16_t val;
 1588         int i;
 1589 
 1590         /* read MAC address */
 1591         (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp);
 1592         ic->ic_myaddr[0] = tmp & 0xff;
 1593         ic->ic_myaddr[1] = tmp >>  8;
 1594         ic->ic_myaddr[2] = tmp >> 16;
 1595         ic->ic_myaddr[3] = tmp >> 24;
 1596         (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp);
 1597         ic->ic_myaddr[4] = tmp & 0xff;
 1598         ic->ic_myaddr[5] = tmp >>  8;
 1599 
 1600         (void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp);
 1601         sc->rf_rev    = tmp & 0x0f;
 1602         sc->fix_cr47  = (tmp >> 8 ) & 0x01;
 1603         sc->fix_cr157 = (tmp >> 13) & 0x01;
 1604         sc->pa_rev    = (tmp >> 16) & 0x0f;
 1605 
 1606         /* read regulatory domain (currently unused) */
 1607         (void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp);
 1608         sc->regdomain = tmp >> 16;
 1609         DPRINTF(("regulatory domain %x\n", sc->regdomain));
 1610 
 1611         /* read Tx power calibration tables */
 1612         for (i = 0; i < 7; i++) {
 1613                 (void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val);
 1614                 sc->pwr_cal[i * 2] = val >> 8;
 1615                 sc->pwr_cal[i * 2 + 1] = val & 0xff;
 1616 
 1617                 (void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val);
 1618                 sc->pwr_int[i * 2] = val >> 8;
 1619                 sc->pwr_int[i * 2 + 1] = val & 0xff;
 1620 
 1621                 (void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val);
 1622                 sc->ofdm36_cal[i * 2] = val >> 8;
 1623                 sc->ofdm36_cal[i * 2 + 1] = val & 0xff;
 1624 
 1625                 (void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val);
 1626                 sc->ofdm48_cal[i * 2] = val >> 8;
 1627                 sc->ofdm48_cal[i * 2 + 1] = val & 0xff;
 1628 
 1629                 (void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val);
 1630                 sc->ofdm54_cal[i * 2] = val >> 8;
 1631                 sc->ofdm54_cal[i * 2 + 1] = val & 0xff;
 1632         }
 1633         return 0;
 1634 }
 1635 
 1636 static int
 1637 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
 1638 {
 1639         uint32_t tmp;
 1640 
 1641         tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
 1642         (void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp);
 1643 
 1644         tmp = addr[5] << 8 | addr[4];
 1645         (void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp);
 1646 
 1647         return 0;
 1648 }
 1649 
 1650 static int
 1651 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
 1652 {
 1653         uint32_t tmp;
 1654 
 1655         tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
 1656         (void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp);
 1657 
 1658         tmp = addr[5] << 8 | addr[4];
 1659         (void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp);
 1660 
 1661         return 0;
 1662 }
 1663 
 1664 static int
 1665 zyd_switch_radio(struct zyd_softc *sc, int on)
 1666 {
 1667         struct zyd_rf *rf = &sc->sc_rf;
 1668         int error;
 1669 
 1670         zyd_lock_phy(sc);
 1671         error = (*rf->switch_radio)(rf, on);
 1672         zyd_unlock_phy(sc);
 1673 
 1674         return error;
 1675 }
 1676 
 1677 static void
 1678 zyd_set_led(struct zyd_softc *sc, int which, int on)
 1679 {
 1680         uint32_t tmp;
 1681 
 1682         (void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
 1683         tmp &= ~which;
 1684         if (on)
 1685                 tmp |= which;
 1686         (void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
 1687 }
 1688 
 1689 static void
 1690 zyd_set_multi(struct zyd_softc *sc)
 1691 {
 1692         struct ieee80211com *ic = &sc->sc_ic;
 1693         struct ifnet *ifp = ic->ic_ifp;
 1694         struct ifmultiaddr *ifma;
 1695         uint32_t low, high;
 1696         uint8_t v;
 1697 
 1698         if (!(ifp->if_flags & IFF_UP))
 1699                 return;
 1700 
 1701         low = 0x00000000;
 1702         high = 0x80000000;
 1703 
 1704         if (ic->ic_opmode == IEEE80211_M_MONITOR ||
 1705             (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC))) {
 1706                 low = 0xffffffff;
 1707                 high = 0xffffffff;
 1708         } else {
 1709                 IF_ADDR_LOCK(ifp);
 1710                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 1711                         if (ifma->ifma_addr->sa_family != AF_LINK)
 1712                                 continue;
 1713                         v = ((uint8_t *)LLADDR((struct sockaddr_dl *)
 1714                             ifma->ifma_addr))[5] >> 2;
 1715                         if (v < 32)
 1716                                 low |= 1 << v;
 1717                         else
 1718                                 high |= 1 << (v - 32);
 1719                 }
 1720                 IF_ADDR_UNLOCK(ifp);
 1721         }
 1722 
 1723         /* reprogram multicast global hash table */
 1724         zyd_write32(sc, ZYD_MAC_GHTBL, low);
 1725         zyd_write32(sc, ZYD_MAC_GHTBH, high);
 1726 }
 1727 
 1728 static int
 1729 zyd_set_rxfilter(struct zyd_softc *sc)
 1730 {
 1731         uint32_t rxfilter;
 1732 
 1733         switch (sc->sc_ic.ic_opmode) {
 1734         case IEEE80211_M_STA:
 1735                 rxfilter = ZYD_FILTER_BSS;
 1736                 break;
 1737         case IEEE80211_M_IBSS:
 1738         case IEEE80211_M_HOSTAP:
 1739                 rxfilter = ZYD_FILTER_HOSTAP;
 1740                 break;
 1741         case IEEE80211_M_MONITOR:
 1742                 rxfilter = ZYD_FILTER_MONITOR;
 1743                 break;
 1744         default:
 1745                 /* should not get there */
 1746                 return EINVAL;
 1747         }
 1748         return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
 1749 }
 1750 
 1751 static void
 1752 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
 1753 {
 1754         struct ieee80211com *ic = &sc->sc_ic;
 1755         struct zyd_rf *rf = &sc->sc_rf;
 1756         uint32_t tmp;
 1757         u_int chan;
 1758 
 1759         chan = ieee80211_chan2ieee(ic, c);
 1760         if (chan == 0 || chan == IEEE80211_CHAN_ANY) {
 1761                 /* XXX should NEVER happen */
 1762                 device_printf(sc->sc_dev,
 1763                     "%s: invalid channel %x\n", __func__, chan);
 1764                 return;
 1765         }
 1766 
 1767         zyd_lock_phy(sc);
 1768 
 1769         (*rf->set_channel)(rf, chan);
 1770 
 1771         /* update Tx power */
 1772         (void)zyd_write16(sc, ZYD_CR31, sc->pwr_int[chan - 1]);
 1773 
 1774         if (sc->mac_rev == ZYD_ZD1211B) {
 1775                 (void)zyd_write16(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]);
 1776                 (void)zyd_write16(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]);
 1777                 (void)zyd_write16(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]);
 1778 
 1779                 (void)zyd_write16(sc, ZYD_CR68, sc->pwr_cal[chan - 1]);
 1780 
 1781                 (void)zyd_write16(sc, ZYD_CR69, 0x28);
 1782                 (void)zyd_write16(sc, ZYD_CR69, 0x2a);
 1783         }
 1784 
 1785         if (sc->fix_cr47) {
 1786                 /* set CCK baseband gain from EEPROM */
 1787                 if (zyd_read32(sc, ZYD_EEPROM_PHY_REG, &tmp) == 0)
 1788                         (void)zyd_write16(sc, ZYD_CR47, tmp & 0xff);
 1789         }
 1790 
 1791         (void)zyd_write32(sc, ZYD_CR_CONFIG_PHILIPS, 0);
 1792 
 1793         zyd_unlock_phy(sc);
 1794 
 1795         sc->sc_rxtap.wr_chan_freq = sc->sc_txtap.wt_chan_freq =
 1796             htole16(c->ic_freq);
 1797         sc->sc_rxtap.wr_chan_flags = sc->sc_txtap.wt_chan_flags =
 1798             htole16(c->ic_flags);
 1799 }
 1800 
 1801 static int
 1802 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
 1803 {
 1804         /* XXX this is probably broken.. */
 1805         (void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2);
 1806         (void)zyd_write32(sc, ZYD_CR_PRE_TBTT,        bintval - 1);
 1807         (void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL,    bintval);
 1808 
 1809         return 0;
 1810 }
 1811 
 1812 static uint8_t
 1813 zyd_plcp_signal(int rate)
 1814 {
 1815         switch (rate) {
 1816         /* CCK rates (returned values are device-dependent) */
 1817         case 2:         return 0x0;
 1818         case 4:         return 0x1;
 1819         case 11:        return 0x2;
 1820         case 22:        return 0x3;
 1821 
 1822         /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
 1823         case 12:        return 0xb;
 1824         case 18:        return 0xf;
 1825         case 24:        return 0xa;
 1826         case 36:        return 0xe;
 1827         case 48:        return 0x9;
 1828         case 72:        return 0xd;
 1829         case 96:        return 0x8;
 1830         case 108:       return 0xc;
 1831 
 1832         /* unsupported rates (should not get there) */
 1833         default:        return 0xff;
 1834         }
 1835 }
 1836 
 1837 static void
 1838 zyd_intr(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
 1839 {
 1840         struct zyd_softc *sc = (struct zyd_softc *)priv;
 1841         struct zyd_cmd *cmd;
 1842         uint32_t datalen;
 1843 
 1844         if (status != USBD_NORMAL_COMPLETION) {
 1845                 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
 1846                         return;
 1847 
 1848                 if (status == USBD_STALLED) {
 1849                         usbd_clear_endpoint_stall_async(
 1850                             sc->zyd_ep[ZYD_ENDPT_IIN]);
 1851                 }
 1852                 return;
 1853         }
 1854 
 1855         cmd = (struct zyd_cmd *)sc->ibuf;
 1856 
 1857         if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) {
 1858                 struct zyd_notif_retry *retry =
 1859                     (struct zyd_notif_retry *)cmd->data;
 1860                 struct ieee80211com *ic = &sc->sc_ic;
 1861                 struct ifnet *ifp = sc->sc_ifp;
 1862                 struct ieee80211_node *ni;
 1863 
 1864                 DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n",
 1865                     le16toh(retry->rate), ether_sprintf(retry->macaddr),
 1866                     le16toh(retry->count) & 0xff, le16toh(retry->count)));
 1867 
 1868                 /*
 1869                  * Find the node to which the packet was sent and update its
 1870                  * retry statistics.  In BSS mode, this node is the AP we're
 1871                  * associated to so no lookup is actually needed.
 1872                  */
 1873                 if (ic->ic_opmode != IEEE80211_M_STA) {
 1874                         ni = ieee80211_find_node(&ic->ic_sta, retry->macaddr);
 1875                         if (ni == NULL)
 1876                                 return; /* just ignore */
 1877                 } else
 1878                         ni = ic->ic_bss;
 1879 
 1880                 ((struct zyd_node *)ni)->amn.amn_retrycnt++;
 1881 
 1882                 if (le16toh(retry->count) & 0x100)
 1883                         ifp->if_oerrors++;      /* too many retries */
 1884         } else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) {
 1885                 struct rq *rqp;
 1886 
 1887                 if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
 1888                         return; /* HMAC interrupt */
 1889 
 1890                 usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL);
 1891                 datalen -= sizeof(cmd->code);
 1892                 datalen -= 2;   /* XXX: padding? */
 1893 
 1894                 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) {
 1895                         int i;
 1896 
 1897                         if (sizeof(struct zyd_pair) * rqp->len != datalen)
 1898                                 continue;
 1899                         for (i = 0; i < rqp->len; i++) {
 1900                                 if (*(((const uint16_t *)rqp->idata) + i) !=
 1901                                     (((struct zyd_pair *)cmd->data) + i)->reg)
 1902                                         break;
 1903                         }
 1904                         if (i != rqp->len)
 1905                                 continue;
 1906 
 1907                         /* copy answer into caller-supplied buffer */
 1908                         bcopy(cmd->data, rqp->odata,
 1909                             sizeof(struct zyd_pair) * rqp->len);
 1910                         wakeup(rqp->odata);     /* wakeup caller */
 1911 
 1912                         return;
 1913                 }
 1914                 return; /* unexpected IORD notification */
 1915         } else {
 1916                 device_printf(sc->sc_dev, "unknown notification %x\n",
 1917                     le16toh(cmd->code));
 1918         }
 1919 }
 1920 
 1921 static __inline uint8_t
 1922 zyd_plcp2ieee(int signal, int isofdm)
 1923 {
 1924        if (isofdm) {
 1925                static const uint8_t ofdmrates[16] =
 1926                    { 0, 0, 0, 0, 0, 0, 0, 96, 48, 24, 12, 108, 72, 36, 18 };
 1927                return ofdmrates[signal & 0xf];
 1928        } else {
 1929                static const uint8_t cckrates[16] =
 1930                    { 0, 0, 0, 0, 4, 0, 0, 11, 0, 0, 2, 0, 0, 0, 22, 0 };
 1931                return cckrates[signal & 0xf];
 1932        }
 1933 }
 1934 
 1935 static void
 1936 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len)
 1937 {
 1938         struct ieee80211com *ic = &sc->sc_ic;
 1939         struct ifnet *ifp = sc->sc_ifp;
 1940         struct ieee80211_node *ni;
 1941         const struct zyd_plcphdr *plcp;
 1942         const struct zyd_rx_stat *stat;
 1943         struct mbuf *m;
 1944         int rlen;
 1945 
 1946         if (len < ZYD_MIN_FRAGSZ) {
 1947                 DPRINTF(("%s: frame too short (length=%d)\n",
 1948                     device_get_nameunit(sc->sc_dev), len));
 1949                 ifp->if_ierrors++;
 1950                 return;
 1951         }
 1952 
 1953         plcp = (const struct zyd_plcphdr *)buf;
 1954         stat = (const struct zyd_rx_stat *)
 1955             (buf + len - sizeof(struct zyd_rx_stat));
 1956 
 1957         if (stat->flags & ZYD_RX_ERROR) {
 1958                 DPRINTF(("%s: RX status indicated error (%x)\n",
 1959                     device_get_nameunit(sc->sc_dev), stat->flags));
 1960                 ifp->if_ierrors++;
 1961                 return;
 1962         }
 1963 
 1964         /* compute actual frame length */
 1965         rlen = len - sizeof(struct zyd_plcphdr) -
 1966             sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN;
 1967 
 1968         /* allocate a mbuf to store the frame */
 1969         if (rlen > MHLEN)
 1970                 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
 1971         else
 1972                 m = m_gethdr(M_DONTWAIT, MT_DATA);
 1973         if (m == NULL) {
 1974                 DPRINTF(("%s: could not allocate rx mbuf\n",
 1975                     device_get_nameunit(sc->sc_dev)));
 1976                 ifp->if_ierrors++;
 1977                 return;
 1978         }
 1979         m->m_pkthdr.rcvif = ifp;
 1980         m->m_pkthdr.len = m->m_len = rlen;
 1981         bcopy((const uint8_t *)(plcp + 1), mtod(m, uint8_t *), rlen);
 1982 
 1983         if (bpf_peers_present(sc->sc_drvbpf)) {
 1984                 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
 1985 
 1986                 tap->wr_flags = 0;
 1987                 if (stat->flags & (ZYD_RX_BADCRC16 | ZYD_RX_BADCRC32))
 1988                         tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
 1989                 /* XXX toss, no way to express errors */
 1990                 if (stat->flags & ZYD_RX_DECRYPTERR)
 1991                         tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
 1992                 tap->wr_rate =
 1993                     zyd_plcp2ieee(plcp->signal, stat->flags & ZYD_RX_OFDM);
 1994                 tap->wr_antsignal = stat->rssi + -95;
 1995                 tap->wr_antnoise = -95;         /* XXX */
 1996                 
 1997                 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
 1998         }
 1999 
 2000         ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
 2001         ieee80211_input(ic, m, ni,
 2002             stat->rssi > 63 ? 127 : 2 * stat->rssi, -95/*XXX*/, 0);
 2003 
 2004         /* node is no longer needed */
 2005         ieee80211_free_node(ni);
 2006 }
 2007 
 2008 static void
 2009 zyd_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
 2010 {
 2011         struct zyd_rx_data *data = priv;
 2012         struct zyd_softc *sc = data->sc;
 2013         struct ifnet *ifp = sc->sc_ifp;
 2014         const struct zyd_rx_desc *desc;
 2015         int len;
 2016 
 2017         if (status != USBD_NORMAL_COMPLETION) {
 2018                 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
 2019                         return;
 2020 
 2021                 if (status == USBD_STALLED)
 2022                         usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]);
 2023 
 2024                 goto skip;
 2025         }
 2026         usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
 2027 
 2028         if (len < ZYD_MIN_RXBUFSZ) {
 2029                 DPRINTFN(3, ("%s: xfer too short (length=%d)\n",
 2030                     device_get_nameunit(sc->sc_dev), len));
 2031                 ifp->if_ierrors++;              /* XXX not really errors */
 2032                 goto skip;
 2033         }
 2034 
 2035         desc = (const struct zyd_rx_desc *)
 2036             (data->buf + len - sizeof(struct zyd_rx_desc));
 2037 
 2038         if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) {
 2039                 const uint8_t *p = data->buf, *end = p + len;
 2040                 int i;
 2041 
 2042                 DPRINTFN(3, ("received multi-frame transfer\n"));
 2043 
 2044                 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
 2045                         const uint16_t len16 = UGETW(desc->len[i]);
 2046 
 2047                         if (len16 == 0 || p + len16 > end)
 2048                                 break;
 2049 
 2050                         zyd_rx_data(sc, p, len16);
 2051                         /* next frame is aligned on a 32-bit boundary */
 2052                         p += (len16 + 3) & ~3;
 2053                 }
 2054         } else {
 2055                 DPRINTFN(3, ("received single-frame transfer\n"));
 2056 
 2057                 zyd_rx_data(sc, data->buf, len);
 2058         }
 2059 
 2060 skip:   /* setup a new transfer */
 2061         usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data, NULL,
 2062             ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK,
 2063             USBD_NO_TIMEOUT, zyd_rxeof);
 2064         (void)usbd_transfer(xfer);
 2065 }
 2066 
 2067 static int
 2068 zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
 2069 {
 2070         struct ieee80211com *ic = &sc->sc_ic;
 2071         struct ifnet *ifp = sc->sc_ifp;
 2072         struct zyd_tx_desc *desc;
 2073         struct zyd_tx_data *data;
 2074         struct ieee80211_frame *wh;
 2075         int xferlen, totlen, rate;
 2076         uint16_t pktlen;
 2077         usbd_status error;
 2078 
 2079         data = &sc->tx_data[0];
 2080         desc = (struct zyd_tx_desc *)data->buf;
 2081 
 2082         rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
 2083 
 2084         data->ni = ni;
 2085         data->m = m0;
 2086 
 2087         wh = mtod(m0, struct ieee80211_frame *);
 2088 
 2089         xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len;
 2090         totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
 2091 
 2092         /* fill Tx descriptor */
 2093         desc->len = htole16(totlen);
 2094 
 2095         desc->flags = ZYD_TX_FLAG_BACKOFF;
 2096         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
 2097                 /* multicast frames are not sent at OFDM rates in 802.11b/g */
 2098                 if (totlen > ic->ic_rtsthreshold) {
 2099                         desc->flags |= ZYD_TX_FLAG_RTS;
 2100                 } else if (ZYD_RATE_IS_OFDM(rate) &&
 2101                     (ic->ic_flags & IEEE80211_F_USEPROT)) {
 2102                         if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
 2103                                 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
 2104                         else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
 2105                                 desc->flags |= ZYD_TX_FLAG_RTS;
 2106                 }
 2107         } else
 2108                 desc->flags |= ZYD_TX_FLAG_MULTICAST;
 2109 
 2110         if ((wh->i_fc[0] &
 2111             (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
 2112             (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
 2113                 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
 2114 
 2115         desc->phy = zyd_plcp_signal(rate);
 2116         if (ZYD_RATE_IS_OFDM(rate)) {
 2117                 desc->phy |= ZYD_TX_PHY_OFDM;
 2118                 if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
 2119                         desc->phy |= ZYD_TX_PHY_5GHZ;
 2120         } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
 2121                 desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
 2122 
 2123         /* actual transmit length (XXX why +10?) */
 2124         pktlen = sizeof(struct zyd_tx_desc) + 10;
 2125         if (sc->mac_rev == ZYD_ZD1211)
 2126                 pktlen += totlen;
 2127         desc->pktlen = htole16(pktlen);
 2128 
 2129         desc->plcp_length = (16 * totlen + rate - 1) / rate;
 2130         desc->plcp_service = 0;
 2131         if (rate == 22) {
 2132                 const int remainder = (16 * totlen) % 22;
 2133                 if (remainder != 0 && remainder < 7)
 2134                         desc->plcp_service |= ZYD_PLCP_LENGEXT;
 2135         }
 2136 
 2137         if (bpf_peers_present(sc->sc_drvbpf)) {
 2138                 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
 2139 
 2140                 tap->wt_flags = 0;
 2141                 tap->wt_rate = rate;
 2142 
 2143                 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
 2144         }
 2145 
 2146         m_copydata(m0, 0, m0->m_pkthdr.len,
 2147             data->buf + sizeof(struct zyd_tx_desc));
 2148 
 2149         DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n",
 2150             device_get_nameunit(sc->sc_dev), (size_t)m0->m_pkthdr.len,
 2151                 rate, xferlen));
 2152 
 2153         usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data,
 2154             data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
 2155             ZYD_TX_TIMEOUT, zyd_txeof);
 2156         error = usbd_transfer(data->xfer);
 2157         if (error != USBD_IN_PROGRESS && error != 0) {
 2158                 ifp->if_oerrors++;
 2159                 return EIO;
 2160         }
 2161         sc->tx_queued++;
 2162 
 2163         return 0;
 2164 }
 2165 
 2166 static void
 2167 zyd_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
 2168 {
 2169         struct zyd_tx_data *data = priv;
 2170         struct zyd_softc *sc = data->sc;
 2171         struct ifnet *ifp = sc->sc_ifp;
 2172         struct ieee80211_node *ni;
 2173         struct mbuf *m;
 2174 
 2175         if (status != USBD_NORMAL_COMPLETION) {
 2176                 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
 2177                         return;
 2178 
 2179                 device_printf(sc->sc_dev, "could not transmit buffer: %s\n",
 2180                     usbd_errstr(status));
 2181 
 2182                 if (status == USBD_STALLED) {
 2183                         usbd_clear_endpoint_stall_async(
 2184                             sc->zyd_ep[ZYD_ENDPT_BOUT]);
 2185                 }
 2186                 ifp->if_oerrors++;
 2187                 return;
 2188         }
 2189 
 2190         ni = data->ni;
 2191         /* update rate control statistics */
 2192         ((struct zyd_node *)ni)->amn.amn_txcnt++;
 2193 
 2194         /*
 2195          * Do any tx complete callback.  Note this must
 2196          * be done before releasing the node reference.
 2197          */
 2198         m = data->m;
 2199         if (m != NULL && m->m_flags & M_TXCB) {
 2200                 ieee80211_process_callback(ni, m, 0);   /* XXX status? */
 2201                 m_freem(m);
 2202                 data->m = NULL;
 2203         }
 2204 
 2205         ieee80211_free_node(ni);
 2206         data->ni = NULL;
 2207 
 2208         sc->tx_queued--;
 2209         ifp->if_opackets++;
 2210 
 2211         sc->tx_timer = 0;
 2212         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 2213         zyd_start(ifp);
 2214 }
 2215 
 2216 static int
 2217 zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
 2218 {
 2219         struct ieee80211com *ic = &sc->sc_ic;
 2220         struct ifnet *ifp = sc->sc_ifp;
 2221         struct zyd_tx_desc *desc;
 2222         struct zyd_tx_data *data;
 2223         struct ieee80211_frame *wh;
 2224         struct ieee80211_key *k;
 2225         int xferlen, totlen, rate;
 2226         uint16_t pktlen;
 2227         usbd_status error;
 2228 
 2229         wh = mtod(m0, struct ieee80211_frame *);
 2230         data = &sc->tx_data[0];
 2231         desc = (struct zyd_tx_desc *)data->buf;
 2232 
 2233         desc->flags = ZYD_TX_FLAG_BACKOFF;
 2234         if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
 2235                 rate = ic->ic_mcast_rate;
 2236                 desc->flags |= ZYD_TX_FLAG_MULTICAST;
 2237         } else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
 2238                 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
 2239         else
 2240                 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
 2241         rate &= IEEE80211_RATE_VAL;
 2242 
 2243         if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
 2244                 k = ieee80211_crypto_encap(ic, ni, m0);
 2245                 if (k == NULL) {
 2246                         m_freem(m0);
 2247                         return ENOBUFS;
 2248                 }
 2249 
 2250                 /* packet header may have moved, reset our local pointer */
 2251                 wh = mtod(m0, struct ieee80211_frame *);
 2252         }
 2253 
 2254         data->ni = ni;
 2255         data->m = NULL;
 2256 
 2257         xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len;
 2258         totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
 2259 
 2260         /* fill Tx descriptor */
 2261         desc->len = htole16(totlen);
 2262 
 2263         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
 2264                 /* multicast frames are not sent at OFDM rates in 802.11b/g */
 2265                 if (totlen > ic->ic_rtsthreshold) {
 2266                         desc->flags |= ZYD_TX_FLAG_RTS;
 2267                 } else if (ZYD_RATE_IS_OFDM(rate) &&
 2268                     (ic->ic_flags & IEEE80211_F_USEPROT)) {
 2269                         if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
 2270                                 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
 2271                         else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
 2272                                 desc->flags |= ZYD_TX_FLAG_RTS;
 2273                 }
 2274         }
 2275 
 2276         if ((wh->i_fc[0] &
 2277             (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
 2278             (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
 2279                 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
 2280 
 2281         desc->phy = zyd_plcp_signal(rate);
 2282         if (ZYD_RATE_IS_OFDM(rate)) {
 2283                 desc->phy |= ZYD_TX_PHY_OFDM;
 2284                 if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
 2285                         desc->phy |= ZYD_TX_PHY_5GHZ;
 2286         } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
 2287                 desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
 2288 
 2289         /* actual transmit length (XXX why +10?) */
 2290         pktlen = sizeof(struct zyd_tx_desc) + 10;
 2291         if (sc->mac_rev == ZYD_ZD1211)
 2292                 pktlen += totlen;
 2293         desc->pktlen = htole16(pktlen);
 2294 
 2295         desc->plcp_length = (16 * totlen + rate - 1) / rate;
 2296         desc->plcp_service = 0;
 2297         if (rate == 22) {
 2298                 const int remainder = (16 * totlen) % 22;
 2299                 if (remainder != 0 && remainder < 7)
 2300                         desc->plcp_service |= ZYD_PLCP_LENGEXT;
 2301         }
 2302 
 2303         if (bpf_peers_present(sc->sc_drvbpf)) {
 2304                 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
 2305 
 2306                 tap->wt_flags = 0;
 2307                 tap->wt_rate = rate;
 2308                 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
 2309                 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
 2310 
 2311                 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
 2312         }
 2313 
 2314         m_copydata(m0, 0, m0->m_pkthdr.len,
 2315             data->buf + sizeof(struct zyd_tx_desc));
 2316 
 2317         DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n",
 2318             device_get_nameunit(sc->sc_dev), (size_t)m0->m_pkthdr.len,
 2319                 rate, xferlen));
 2320 
 2321         m_freem(m0);    /* mbuf no longer needed */
 2322 
 2323         usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data,
 2324             data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
 2325             ZYD_TX_TIMEOUT, zyd_txeof);
 2326         error = usbd_transfer(data->xfer);
 2327         if (error != USBD_IN_PROGRESS && error != 0) {
 2328                 ifp->if_oerrors++;
 2329                 return EIO;
 2330         }
 2331         sc->tx_queued++;
 2332 
 2333         return 0;
 2334 }
 2335 
 2336 static void
 2337 zyd_start(struct ifnet *ifp)
 2338 {
 2339         struct zyd_softc *sc = ifp->if_softc;
 2340         struct ieee80211com *ic = &sc->sc_ic;
 2341         struct ether_header *eh;
 2342         struct ieee80211_node *ni;
 2343         struct mbuf *m0;
 2344 
 2345         for (;;) {
 2346                 IF_POLL(&ic->ic_mgtq, m0);
 2347                 if (m0 != NULL) {
 2348                         if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
 2349                                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 2350                                 break;
 2351                         }
 2352                         IF_DEQUEUE(&ic->ic_mgtq, m0);
 2353 
 2354                         ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
 2355                         m0->m_pkthdr.rcvif = NULL;
 2356                         if (bpf_peers_present(ic->ic_rawbpf))
 2357                                 bpf_mtap(ic->ic_rawbpf, m0);
 2358                         if (zyd_tx_mgt(sc, m0, ni) != 0)
 2359                                 break;
 2360                 } else {
 2361                         if (ic->ic_state != IEEE80211_S_RUN)
 2362                                 break;
 2363                         IFQ_POLL(&ifp->if_snd, m0);
 2364                         if (m0 == NULL)
 2365                                 break;
 2366                         if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
 2367                                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 2368                                 break;
 2369                         }
 2370                         IFQ_DEQUEUE(&ifp->if_snd, m0);
 2371                         /*
 2372                          * Cancel any background scan.
 2373                          */
 2374                         if (ic->ic_flags & IEEE80211_F_SCAN)
 2375                                 ieee80211_cancel_scan(ic);
 2376 
 2377                         if (m0->m_len < sizeof(struct ether_header) &&
 2378                             !(m0 = m_pullup(m0, sizeof(struct ether_header))))
 2379                                 continue;
 2380 
 2381                         eh = mtod(m0, struct ether_header *);
 2382                         ni = ieee80211_find_txnode(ic, eh->ether_dhost);
 2383                         if (ni == NULL) {
 2384                                 m_freem(m0);
 2385                                 continue;
 2386                         }
 2387                         if (bpf_peers_present(ifp->if_bpf))
 2388                                 bpf_mtap(ifp->if_bpf, m0);
 2389                         if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
 2390                                 ieee80211_free_node(ni);
 2391                                 ifp->if_oerrors++;
 2392                                 continue;
 2393                         }
 2394                         if (bpf_peers_present(ic->ic_rawbpf))
 2395                                 bpf_mtap(ic->ic_rawbpf, m0);
 2396                         if (zyd_tx_data(sc, m0, ni) != 0) {
 2397                                 ieee80211_free_node(ni);
 2398                                 ifp->if_oerrors++;
 2399                                 break;
 2400                         }
 2401                 }
 2402 
 2403                 sc->tx_timer = 5;
 2404                 ic->ic_lastdata = ticks;
 2405                 callout_reset(&sc->sc_watchdog_ch, hz, zyd_watchdog, sc);
 2406         }
 2407 }
 2408 
 2409 static void
 2410 zyd_watchdog(void *arg)
 2411 {
 2412         struct zyd_softc *sc = arg;
 2413         struct ieee80211com *ic = &sc->sc_ic;
 2414         struct ifnet *ifp = ic->ic_ifp;
 2415 
 2416         if (sc->tx_timer > 0) {
 2417                 if (--sc->tx_timer == 0) {
 2418                         device_printf(sc->sc_dev, "device timeout\n");
 2419                         /* zyd_init(ifp); XXX needs a process context ? */
 2420                         ifp->if_oerrors++;
 2421                         return;
 2422                 }
 2423                 callout_reset(&sc->sc_watchdog_ch, hz, zyd_watchdog, sc);
 2424         }
 2425 }
 2426 
 2427 static int
 2428 zyd_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
 2429 {
 2430         struct zyd_softc *sc = ifp->if_softc;
 2431         struct ieee80211com *ic = &sc->sc_ic;
 2432         int error = 0;
 2433 
 2434         ZYD_LOCK(sc);
 2435 
 2436         switch (cmd) {
 2437         case SIOCSIFFLAGS:
 2438                 if (ifp->if_flags & IFF_UP) {
 2439                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 2440                                 if ((ifp->if_flags ^ sc->sc_if_flags) &
 2441                                     (IFF_ALLMULTI | IFF_PROMISC))
 2442                                         zyd_set_multi(sc);
 2443                         } else
 2444                                 zyd_init(sc);
 2445                 } else {
 2446                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 2447                                 zyd_stop(sc, 1);
 2448                 }
 2449                 sc->sc_if_flags = ifp->if_flags;
 2450                 break;
 2451 
 2452         case SIOCADDMULTI:
 2453         case SIOCDELMULTI:
 2454                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 2455                         zyd_set_multi(sc);
 2456                 break;
 2457 
 2458         default:
 2459                 error = ieee80211_ioctl(ic, cmd, data);
 2460         }
 2461 
 2462         if (error == ENETRESET) {
 2463                 if ((ifp->if_flags & IFF_UP) == IFF_UP && 
 2464                     (ifp->if_drv_flags & IFF_DRV_RUNNING) == IFF_DRV_RUNNING)
 2465                         zyd_init(sc);
 2466                 error = 0;
 2467         }
 2468 
 2469         ZYD_UNLOCK(sc);
 2470 
 2471         return error;
 2472 }
 2473 
 2474 static void
 2475 zyd_init(void *priv)
 2476 {
 2477         struct zyd_softc *sc = priv;
 2478         struct ieee80211com *ic = &sc->sc_ic;
 2479         struct ifnet *ifp = ic->ic_ifp;
 2480         int i, error;
 2481 
 2482         zyd_stop(sc, 0);
 2483 
 2484         IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
 2485         DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr)));
 2486         error = zyd_set_macaddr(sc, ic->ic_myaddr);
 2487         if (error != 0)
 2488                 return;
 2489 
 2490         /* we'll do software WEP decryption for now */
 2491         DPRINTF(("setting encryption type\n"));
 2492         error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
 2493         if (error != 0)
 2494                 return;
 2495 
 2496         /* promiscuous mode */
 2497         (void)zyd_write32(sc, ZYD_MAC_SNIFFER, 0);
 2498 
 2499         /* multicast setup */
 2500         (void)zyd_set_multi(sc);
 2501 
 2502         (void)zyd_set_rxfilter(sc);
 2503 
 2504         /* switch radio transmitter ON */
 2505         (void)zyd_switch_radio(sc, 1);
 2506 
 2507         /* XXX wrong, can't set here */
 2508         /* set basic rates */
 2509         if (ic->ic_curmode == IEEE80211_MODE_11B)
 2510                 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003);
 2511         else if (ic->ic_curmode == IEEE80211_MODE_11A)
 2512                 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500);
 2513         else    /* assumes 802.11b/g */
 2514                 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f);
 2515 
 2516         /* set mandatory rates */
 2517         if (ic->ic_curmode == IEEE80211_MODE_11B)
 2518                 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f);
 2519         else if (ic->ic_curmode == IEEE80211_MODE_11A)
 2520                 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500);
 2521         else    /* assumes 802.11b/g */
 2522                 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f);
 2523 
 2524         /* set default BSS channel */
 2525         zyd_set_chan(sc, ic->ic_curchan);
 2526 
 2527         /* enable interrupts */
 2528         (void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
 2529 
 2530         /*
 2531          * Allocate Tx and Rx xfer queues.
 2532          */
 2533         if ((error = zyd_alloc_tx_list(sc)) != 0) {
 2534                 device_printf(sc->sc_dev, "could not allocate Tx list\n");
 2535                 goto fail;
 2536         }
 2537         if ((error = zyd_alloc_rx_list(sc)) != 0) {
 2538                 device_printf(sc->sc_dev, "could not allocate Rx list\n");
 2539                 goto fail;
 2540         }
 2541 
 2542         /*
 2543          * Start up the receive pipe.
 2544          */
 2545         for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
 2546                 struct zyd_rx_data *data = &sc->rx_data[i];
 2547 
 2548                 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data,
 2549                     NULL, ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK,
 2550                     USBD_NO_TIMEOUT, zyd_rxeof);
 2551                 error = usbd_transfer(data->xfer);
 2552                 if (error != USBD_IN_PROGRESS && error != 0) {
 2553                         device_printf(sc->sc_dev,
 2554                             "could not queue Rx transfer\n");
 2555                         goto fail;
 2556                 }
 2557         }
 2558 
 2559         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 2560         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 2561 
 2562         if (ic->ic_opmode != IEEE80211_M_MONITOR) {
 2563                 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
 2564                         ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
 2565         } else
 2566                 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
 2567 
 2568         return;
 2569 
 2570 fail:   zyd_stop(sc, 1);
 2571         return;
 2572 }
 2573 
 2574 static void
 2575 zyd_stop(struct zyd_softc *sc, int disable)
 2576 {
 2577         struct ifnet *ifp = sc->sc_ifp;
 2578         struct ieee80211com *ic = &sc->sc_ic;
 2579 
 2580         ieee80211_new_state(ic, IEEE80211_S_INIT, -1);  /* free all nodes */
 2581 
 2582         sc->tx_timer = 0;
 2583         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 2584 
 2585         /* switch radio transmitter OFF */
 2586         (void)zyd_switch_radio(sc, 0);
 2587 
 2588         /* disable Rx */
 2589         (void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0);
 2590 
 2591         /* disable interrupts */
 2592         (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
 2593 
 2594         usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]);
 2595         usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]);
 2596 
 2597         zyd_free_rx_list(sc);
 2598         zyd_free_tx_list(sc);
 2599 }
 2600 
 2601 static int
 2602 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size)
 2603 {
 2604         usb_device_request_t req;
 2605         uint16_t addr;
 2606         uint8_t stat;
 2607 
 2608         DPRINTF(("firmware size=%zu\n", size));
 2609 
 2610         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
 2611         req.bRequest = ZYD_DOWNLOADREQ;
 2612         USETW(req.wIndex, 0);
 2613 
 2614         addr = ZYD_FIRMWARE_START_ADDR;
 2615         while (size > 0) {
 2616 #if 0
 2617                 const int mlen = min(size, 4096);
 2618 #else
 2619                 /*
 2620                  * XXXX: When the transfer size is 4096 bytes, it is not
 2621                  * likely to be able to transfer it.
 2622                  * The cause is port or machine or chip?
 2623                  */
 2624                 const int mlen = min(size, 64);
 2625 #endif
 2626 
 2627                 DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen,
 2628                     addr));
 2629 
 2630                 USETW(req.wValue, addr);
 2631                 USETW(req.wLength, mlen);
 2632                 if (usbd_do_request(sc->sc_udev, &req, fw) != 0)
 2633                         return EIO;
 2634 
 2635                 addr += mlen / 2;
 2636                 fw   += mlen;
 2637                 size -= mlen;
 2638         }
 2639 
 2640         /* check whether the upload succeeded */
 2641         req.bmRequestType = UT_READ_VENDOR_DEVICE;
 2642         req.bRequest = ZYD_DOWNLOADSTS;
 2643         USETW(req.wValue, 0);
 2644         USETW(req.wIndex, 0);
 2645         USETW(req.wLength, sizeof(stat));
 2646         if (usbd_do_request(sc->sc_udev, &req, &stat) != 0)
 2647                 return EIO;
 2648 
 2649         return (stat & 0x80) ? EIO : 0;
 2650 }
 2651 
 2652 static void
 2653 zyd_iter_func(void *arg, struct ieee80211_node *ni)
 2654 {
 2655         struct zyd_softc *sc = arg;
 2656         struct zyd_node *zn = (struct zyd_node *)ni;
 2657 
 2658         ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn);
 2659 }
 2660 
 2661 static void
 2662 zyd_amrr_timeout(void *arg)
 2663 {
 2664         struct zyd_softc *sc = arg;
 2665         struct ieee80211com *ic = &sc->sc_ic;
 2666 
 2667         ZYD_LOCK(sc);
 2668         if (ic->ic_opmode == IEEE80211_M_STA)
 2669                 zyd_iter_func(sc, ic->ic_bss);
 2670         else
 2671                 ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc);
 2672         ZYD_UNLOCK(sc);
 2673 
 2674         callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
 2675 }
 2676 
 2677 static void
 2678 zyd_newassoc(struct ieee80211_node *ni, int isnew)
 2679 {
 2680         struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc;
 2681         int i;
 2682 
 2683         ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn);
 2684 
 2685         /* set rate to some reasonable initial value */
 2686         for (i = ni->ni_rates.rs_nrates - 1;
 2687              i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
 2688              i--);
 2689         ni->ni_txrate = i;
 2690 }
 2691 
 2692 static void
 2693 zyd_scan_start(struct ieee80211com *ic)
 2694 {
 2695         struct zyd_softc *sc = ic->ic_ifp->if_softc;
 2696 
 2697         usb_rem_task(sc->sc_udev, &sc->sc_scantask);
 2698 
 2699         /* do it in a process context */
 2700         sc->sc_scan_action = ZYD_SCAN_START;
 2701         usb_add_task(sc->sc_udev, &sc->sc_scantask, USB_TASKQ_DRIVER);
 2702 }
 2703 
 2704 static void
 2705 zyd_scan_end(struct ieee80211com *ic)
 2706 {
 2707         struct zyd_softc *sc = ic->ic_ifp->if_softc;
 2708 
 2709         usb_rem_task(sc->sc_udev, &sc->sc_scantask);
 2710 
 2711         /* do it in a process context */
 2712         sc->sc_scan_action = ZYD_SCAN_END;
 2713         usb_add_task(sc->sc_udev, &sc->sc_scantask, USB_TASKQ_DRIVER);
 2714 }
 2715 
 2716 static void
 2717 zyd_set_channel(struct ieee80211com *ic)
 2718 {
 2719         struct zyd_softc *sc = ic->ic_ifp->if_softc;
 2720 
 2721         usb_rem_task(sc->sc_udev, &sc->sc_scantask);
 2722 
 2723         /* do it in a process context */
 2724         sc->sc_scan_action = ZYD_SET_CHANNEL;
 2725         usb_add_task(sc->sc_udev, &sc->sc_scantask, USB_TASKQ_DRIVER);
 2726 }
 2727 
 2728 static void
 2729 zyd_scantask(void *arg)
 2730 {
 2731         struct zyd_softc *sc = arg;
 2732         struct ieee80211com *ic = &sc->sc_ic;
 2733         struct ifnet *ifp = ic->ic_ifp;
 2734 
 2735         ZYD_LOCK(sc);
 2736 
 2737         switch (sc->sc_scan_action) {
 2738         case ZYD_SCAN_START:
 2739                 zyd_set_bssid(sc, ifp->if_broadcastaddr);
 2740                 break;
 2741 
 2742         case ZYD_SCAN_END:
 2743                 zyd_set_bssid(sc, ic->ic_bss->ni_bssid);
 2744                 break;
 2745 
 2746         case ZYD_SET_CHANNEL:
 2747                 mtx_lock(&Giant);
 2748                 zyd_set_chan(sc, ic->ic_curchan);
 2749                 mtx_unlock(&Giant);
 2750                 break;
 2751 
 2752         default:
 2753                 device_printf(sc->sc_dev, "unknown scan action %d\n",
 2754                     sc->sc_scan_action);
 2755                 break;
 2756         }
 2757 
 2758         ZYD_UNLOCK(sc);
 2759 }
 2760 
 2761 static device_method_t zyd_methods[] = {
 2762         /* Device interface */
 2763         DEVMETHOD(device_probe, zyd_match),
 2764         DEVMETHOD(device_attach, zyd_attach),
 2765         DEVMETHOD(device_detach, zyd_detach),
 2766         
 2767         { 0, 0 }
 2768 };
 2769 
 2770 static driver_t zyd_driver = {
 2771         "zyd",
 2772         zyd_methods,
 2773         sizeof(struct zyd_softc)
 2774 };
 2775 
 2776 static devclass_t zyd_devclass;
 2777 
 2778 DRIVER_MODULE(zyd, uhub, zyd_driver, zyd_devclass, usbd_driver_load, 0);
 2779 MODULE_DEPEND(zyd, wlan, 1, 1, 1);
 2780 MODULE_DEPEND(zyd, wlan_amrr, 1, 1, 1);
 2781 MODULE_DEPEND(zyd, usb, 1, 1, 1);

Cache object: 50eb50b410edb00a53c742d999254830


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.