FreeBSD/Linux Kernel Cross Reference
sys/dev/usb/input/atp.c
1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2014 Rohit Grover
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * Some tables, structures, definitions and constant values for the
31 * touchpad protocol has been copied from Linux's
32 * "drivers/input/mouse/bcm5974.c" which has the following copyright
33 * holders under GPLv2. All device specific code in this driver has
34 * been written from scratch. The decoding algorithm is based on
35 * output from FreeBSD's usbdump.
36 *
37 * Copyright (C) 2008 Henrik Rydberg (rydberg@euromail.se)
38 * Copyright (C) 2008 Scott Shawcroft (scott.shawcroft@gmail.com)
39 * Copyright (C) 2001-2004 Greg Kroah-Hartman (greg@kroah.com)
40 * Copyright (C) 2005 Johannes Berg (johannes@sipsolutions.net)
41 * Copyright (C) 2005 Stelian Pop (stelian@popies.net)
42 * Copyright (C) 2005 Frank Arnold (frank@scirocco-5v-turbo.de)
43 * Copyright (C) 2005 Peter Osterlund (petero2@telia.com)
44 * Copyright (C) 2005 Michael Hanselmann (linux-kernel@hansmi.ch)
45 * Copyright (C) 2006 Nicolas Boichat (nicolas@boichat.ch)
46 */
47
48 /*
49 * Author's note: 'atp' supports two distinct families of Apple trackpad
50 * products: the older Fountain/Geyser and the latest Wellspring trackpads.
51 * The first version made its appearance with FreeBSD 8 and worked only with
52 * the Fountain/Geyser hardware. A fork of this driver for Wellspring was
53 * contributed by Huang Wen Hui. This driver unifies the Wellspring effort
54 * and also improves upon the original work.
55 *
56 * I'm grateful to Stephan Scheunig, Angela Naegele, and Nokia IT-support
57 * for helping me with access to hardware. Thanks also go to Nokia for
58 * giving me an opportunity to do this work.
59 */
60
61 #include <sys/cdefs.h>
62 __FBSDID("$FreeBSD$");
63
64 #include <sys/stdint.h>
65 #include <sys/stddef.h>
66 #include <sys/param.h>
67 #include <sys/types.h>
68 #include <sys/systm.h>
69 #include <sys/kernel.h>
70 #include <sys/bus.h>
71 #include <sys/module.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/sysctl.h>
75 #include <sys/malloc.h>
76 #include <sys/conf.h>
77 #include <sys/fcntl.h>
78 #include <sys/file.h>
79 #include <sys/selinfo.h>
80 #include <sys/poll.h>
81
82 #include <dev/hid/hid.h>
83
84 #include <dev/usb/usb.h>
85 #include <dev/usb/usbdi.h>
86 #include <dev/usb/usbdi_util.h>
87 #include <dev/usb/usbhid.h>
88
89 #include "usbdevs.h"
90
91 #define USB_DEBUG_VAR atp_debug
92 #include <dev/usb/usb_debug.h>
93
94 #include <sys/mouse.h>
95
96 #define ATP_DRIVER_NAME "atp"
97
98 /*
99 * Driver specific options: the following options may be set by
100 * `options' statements in the kernel configuration file.
101 */
102
103 /* The divisor used to translate sensor reported positions to mickeys. */
104 #ifndef ATP_SCALE_FACTOR
105 #define ATP_SCALE_FACTOR 16
106 #endif
107
108 /* Threshold for small movement noise (in mickeys) */
109 #ifndef ATP_SMALL_MOVEMENT_THRESHOLD
110 #define ATP_SMALL_MOVEMENT_THRESHOLD 30
111 #endif
112
113 /* Threshold of instantaneous deltas beyond which movement is considered fast.*/
114 #ifndef ATP_FAST_MOVEMENT_TRESHOLD
115 #define ATP_FAST_MOVEMENT_TRESHOLD 150
116 #endif
117
118 /*
119 * This is the age in microseconds beyond which a touch is considered
120 * to be a slide; and therefore a tap event isn't registered.
121 */
122 #ifndef ATP_TOUCH_TIMEOUT
123 #define ATP_TOUCH_TIMEOUT 125000
124 #endif
125
126 #ifndef ATP_IDLENESS_THRESHOLD
127 #define ATP_IDLENESS_THRESHOLD 10
128 #endif
129
130 #ifndef FG_SENSOR_NOISE_THRESHOLD
131 #define FG_SENSOR_NOISE_THRESHOLD 2
132 #endif
133
134 /*
135 * A double-tap followed by a single-finger slide is treated as a
136 * special gesture. The driver responds to this gesture by assuming a
137 * virtual button-press for the lifetime of the slide. The following
138 * threshold is the maximum time gap (in microseconds) between the two
139 * tap events preceding the slide for such a gesture.
140 */
141 #ifndef ATP_DOUBLE_TAP_N_DRAG_THRESHOLD
142 #define ATP_DOUBLE_TAP_N_DRAG_THRESHOLD 200000
143 #endif
144
145 /*
146 * The wait duration in ticks after losing a touch contact before
147 * zombied strokes are reaped and turned into button events.
148 */
149 #define ATP_ZOMBIE_STROKE_REAP_INTERVAL (hz / 20) /* 50 ms */
150
151 /* The multiplier used to translate sensor reported positions to mickeys. */
152 #define FG_SCALE_FACTOR 380
153
154 /*
155 * The movement threshold for a stroke; this is the maximum difference
156 * in position which will be resolved as a continuation of a stroke
157 * component.
158 */
159 #define FG_MAX_DELTA_MICKEYS ((3 * (FG_SCALE_FACTOR)) >> 1)
160
161 /* Distance-squared threshold for matching a finger with a known stroke */
162 #ifndef WSP_MAX_ALLOWED_MATCH_DISTANCE_SQ
163 #define WSP_MAX_ALLOWED_MATCH_DISTANCE_SQ 1000000
164 #endif
165
166 /* Ignore pressure spans with cumulative press. below this value. */
167 #define FG_PSPAN_MIN_CUM_PRESSURE 10
168
169 /* Maximum allowed width for pressure-spans.*/
170 #define FG_PSPAN_MAX_WIDTH 4
171
172 /* end of driver specific options */
173
174 /* Tunables */
175 static SYSCTL_NODE(_hw_usb, OID_AUTO, atp, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
176 "USB ATP");
177
178 #ifdef USB_DEBUG
179 enum atp_log_level {
180 ATP_LLEVEL_DISABLED = 0,
181 ATP_LLEVEL_ERROR,
182 ATP_LLEVEL_DEBUG, /* for troubleshooting */
183 ATP_LLEVEL_INFO, /* for diagnostics */
184 };
185 static int atp_debug = ATP_LLEVEL_ERROR; /* the default is to only log errors */
186 SYSCTL_INT(_hw_usb_atp, OID_AUTO, debug, CTLFLAG_RWTUN,
187 &atp_debug, ATP_LLEVEL_ERROR, "ATP debug level");
188 #endif /* USB_DEBUG */
189
190 static u_int atp_touch_timeout = ATP_TOUCH_TIMEOUT;
191 SYSCTL_UINT(_hw_usb_atp, OID_AUTO, touch_timeout, CTLFLAG_RWTUN,
192 &atp_touch_timeout, 125000, "age threshold in microseconds for a touch");
193
194 static u_int atp_double_tap_threshold = ATP_DOUBLE_TAP_N_DRAG_THRESHOLD;
195 SYSCTL_UINT(_hw_usb_atp, OID_AUTO, double_tap_threshold, CTLFLAG_RWTUN,
196 &atp_double_tap_threshold, ATP_DOUBLE_TAP_N_DRAG_THRESHOLD,
197 "maximum time in microseconds to allow association between a double-tap and "
198 "drag gesture");
199
200 static u_int atp_mickeys_scale_factor = ATP_SCALE_FACTOR;
201 static int atp_sysctl_scale_factor_handler(SYSCTL_HANDLER_ARGS);
202 SYSCTL_PROC(_hw_usb_atp, OID_AUTO, scale_factor,
203 CTLTYPE_UINT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE,
204 &atp_mickeys_scale_factor, sizeof(atp_mickeys_scale_factor),
205 atp_sysctl_scale_factor_handler, "IU",
206 "movement scale factor");
207
208 static u_int atp_small_movement_threshold = ATP_SMALL_MOVEMENT_THRESHOLD;
209 SYSCTL_UINT(_hw_usb_atp, OID_AUTO, small_movement, CTLFLAG_RWTUN,
210 &atp_small_movement_threshold, ATP_SMALL_MOVEMENT_THRESHOLD,
211 "the small movement black-hole for filtering noise");
212
213 static u_int atp_tap_minimum = 1;
214 SYSCTL_UINT(_hw_usb_atp, OID_AUTO, tap_minimum, CTLFLAG_RWTUN,
215 &atp_tap_minimum, 1, "Minimum number of taps before detection");
216
217 /*
218 * Strokes which accumulate at least this amount of absolute movement
219 * from the aggregate of their components are considered as
220 * slides. Unit: mickeys.
221 */
222 static u_int atp_slide_min_movement = 2 * ATP_SMALL_MOVEMENT_THRESHOLD;
223 SYSCTL_UINT(_hw_usb_atp, OID_AUTO, slide_min_movement, CTLFLAG_RWTUN,
224 &atp_slide_min_movement, 2 * ATP_SMALL_MOVEMENT_THRESHOLD,
225 "strokes with at least this amt. of movement are considered slides");
226
227 /*
228 * The minimum age of a stroke for it to be considered mature; this
229 * helps filter movements (noise) from immature strokes. Units: interrupts.
230 */
231 static u_int atp_stroke_maturity_threshold = 4;
232 SYSCTL_UINT(_hw_usb_atp, OID_AUTO, stroke_maturity_threshold, CTLFLAG_RWTUN,
233 &atp_stroke_maturity_threshold, 4,
234 "the minimum age of a stroke for it to be considered mature");
235
236 typedef enum atp_trackpad_family {
237 TRACKPAD_FAMILY_FOUNTAIN_GEYSER,
238 TRACKPAD_FAMILY_WELLSPRING,
239 TRACKPAD_FAMILY_MAX /* keep this at the tail end of the enumeration */
240 } trackpad_family_t;
241
242 enum fountain_geyser_product {
243 FOUNTAIN,
244 GEYSER1,
245 GEYSER1_17inch,
246 GEYSER2,
247 GEYSER3,
248 GEYSER4,
249 FOUNTAIN_GEYSER_PRODUCT_MAX /* keep this at the end */
250 };
251
252 enum wellspring_product {
253 WELLSPRING1,
254 WELLSPRING2,
255 WELLSPRING3,
256 WELLSPRING4,
257 WELLSPRING4A,
258 WELLSPRING5,
259 WELLSPRING6A,
260 WELLSPRING6,
261 WELLSPRING5A,
262 WELLSPRING7,
263 WELLSPRING7A,
264 WELLSPRING8,
265 WELLSPRING_PRODUCT_MAX /* keep this at the end of the enumeration */
266 };
267
268 /* trackpad header types */
269 enum fountain_geyser_trackpad_type {
270 FG_TRACKPAD_TYPE_GEYSER1,
271 FG_TRACKPAD_TYPE_GEYSER2,
272 FG_TRACKPAD_TYPE_GEYSER3,
273 FG_TRACKPAD_TYPE_GEYSER4,
274 };
275 enum wellspring_trackpad_type {
276 WSP_TRACKPAD_TYPE1, /* plain trackpad */
277 WSP_TRACKPAD_TYPE2, /* button integrated in trackpad */
278 WSP_TRACKPAD_TYPE3 /* additional header fields since June 2013 */
279 };
280
281 /*
282 * Trackpad family and product and family are encoded together in the
283 * driver_info value associated with a trackpad product.
284 */
285 #define N_PROD_BITS 8 /* Number of bits used to encode product */
286 #define ENCODE_DRIVER_INFO(FAMILY, PROD) \
287 (((FAMILY) << N_PROD_BITS) | (PROD))
288 #define DECODE_FAMILY_FROM_DRIVER_INFO(INFO) ((INFO) >> N_PROD_BITS)
289 #define DECODE_PRODUCT_FROM_DRIVER_INFO(INFO) \
290 ((INFO) & ((1 << N_PROD_BITS) - 1))
291
292 #define FG_DRIVER_INFO(PRODUCT) \
293 ENCODE_DRIVER_INFO(TRACKPAD_FAMILY_FOUNTAIN_GEYSER, PRODUCT)
294 #define WELLSPRING_DRIVER_INFO(PRODUCT) \
295 ENCODE_DRIVER_INFO(TRACKPAD_FAMILY_WELLSPRING, PRODUCT)
296
297 /*
298 * The following structure captures the state of a pressure span along
299 * an axis. Each contact with the touchpad results in separate
300 * pressure spans along the two axes.
301 */
302 typedef struct fg_pspan {
303 u_int width; /* in units of sensors */
304 u_int cum; /* cumulative compression (from all sensors) */
305 u_int cog; /* center of gravity */
306 u_int loc; /* location (scaled using the mickeys factor) */
307 boolean_t matched; /* to track pspans as they match against strokes. */
308 } fg_pspan;
309
310 #define FG_MAX_PSPANS_PER_AXIS 3
311 #define FG_MAX_STROKES (2 * FG_MAX_PSPANS_PER_AXIS)
312
313 #define WELLSPRING_INTERFACE_INDEX 1
314
315 /* trackpad finger data offsets, le16-aligned */
316 #define WSP_TYPE1_FINGER_DATA_OFFSET (13 * 2)
317 #define WSP_TYPE2_FINGER_DATA_OFFSET (15 * 2)
318 #define WSP_TYPE3_FINGER_DATA_OFFSET (19 * 2)
319
320 /* trackpad button data offsets */
321 #define WSP_TYPE2_BUTTON_DATA_OFFSET 15
322 #define WSP_TYPE3_BUTTON_DATA_OFFSET 23
323
324 /* list of device capability bits */
325 #define HAS_INTEGRATED_BUTTON 1
326
327 /* trackpad finger structure - little endian */
328 struct wsp_finger_sensor_data {
329 int16_t origin; /* zero when switching track finger */
330 int16_t abs_x; /* absolute x coordinate */
331 int16_t abs_y; /* absolute y coordinate */
332 int16_t rel_x; /* relative x coordinate */
333 int16_t rel_y; /* relative y coordinate */
334 int16_t tool_major; /* tool area, major axis */
335 int16_t tool_minor; /* tool area, minor axis */
336 int16_t orientation; /* 16384 when point, else 15 bit angle */
337 int16_t touch_major; /* touch area, major axis */
338 int16_t touch_minor; /* touch area, minor axis */
339 int16_t unused[3]; /* zeros */
340 int16_t multi; /* one finger: varies, more fingers: constant */
341 } __packed;
342
343 typedef struct wsp_finger {
344 /* to track fingers as they match against strokes. */
345 boolean_t matched;
346
347 /* location (scaled using the mickeys factor) */
348 int x;
349 int y;
350 } wsp_finger_t;
351
352 #define WSP_MAX_FINGERS 16
353 #define WSP_SIZEOF_FINGER_SENSOR_DATA sizeof(struct wsp_finger_sensor_data)
354 #define WSP_SIZEOF_ALL_FINGER_DATA (WSP_MAX_FINGERS * \
355 WSP_SIZEOF_FINGER_SENSOR_DATA)
356 #define WSP_MAX_FINGER_ORIENTATION 16384
357
358 #define ATP_SENSOR_DATA_BUF_MAX 1024
359 #if (ATP_SENSOR_DATA_BUF_MAX < ((WSP_MAX_FINGERS * 14 * 2) + \
360 WSP_TYPE3_FINGER_DATA_OFFSET))
361 /* note: 14 * 2 in the above is based on sizeof(struct wsp_finger_sensor_data)*/
362 #error "ATP_SENSOR_DATA_BUF_MAX is too small"
363 #endif
364
365 #define ATP_MAX_STROKES MAX(WSP_MAX_FINGERS, FG_MAX_STROKES)
366
367 #define FG_MAX_XSENSORS 26
368 #define FG_MAX_YSENSORS 16
369
370 /* device-specific configuration */
371 struct fg_dev_params {
372 u_int data_len; /* for sensor data */
373 u_int n_xsensors;
374 u_int n_ysensors;
375 enum fountain_geyser_trackpad_type prot;
376 };
377 struct wsp_dev_params {
378 uint8_t caps; /* device capability bitmask */
379 uint8_t tp_type; /* type of trackpad interface */
380 uint8_t finger_data_offset; /* offset to trackpad finger data */
381 };
382
383 static const struct fg_dev_params fg_dev_params[FOUNTAIN_GEYSER_PRODUCT_MAX] = {
384 [FOUNTAIN] = {
385 .data_len = 81,
386 .n_xsensors = 16,
387 .n_ysensors = 16,
388 .prot = FG_TRACKPAD_TYPE_GEYSER1
389 },
390 [GEYSER1] = {
391 .data_len = 81,
392 .n_xsensors = 16,
393 .n_ysensors = 16,
394 .prot = FG_TRACKPAD_TYPE_GEYSER1
395 },
396 [GEYSER1_17inch] = {
397 .data_len = 81,
398 .n_xsensors = 26,
399 .n_ysensors = 16,
400 .prot = FG_TRACKPAD_TYPE_GEYSER1
401 },
402 [GEYSER2] = {
403 .data_len = 64,
404 .n_xsensors = 15,
405 .n_ysensors = 9,
406 .prot = FG_TRACKPAD_TYPE_GEYSER2
407 },
408 [GEYSER3] = {
409 .data_len = 64,
410 .n_xsensors = 20,
411 .n_ysensors = 10,
412 .prot = FG_TRACKPAD_TYPE_GEYSER3
413 },
414 [GEYSER4] = {
415 .data_len = 64,
416 .n_xsensors = 20,
417 .n_ysensors = 10,
418 .prot = FG_TRACKPAD_TYPE_GEYSER4
419 }
420 };
421
422 static const STRUCT_USB_HOST_ID fg_devs[] = {
423 /* PowerBooks Feb 2005, iBooks G4 */
424 { USB_VPI(USB_VENDOR_APPLE, 0x020e, FG_DRIVER_INFO(FOUNTAIN)) },
425 { USB_VPI(USB_VENDOR_APPLE, 0x020f, FG_DRIVER_INFO(FOUNTAIN)) },
426 { USB_VPI(USB_VENDOR_APPLE, 0x0210, FG_DRIVER_INFO(FOUNTAIN)) },
427 { USB_VPI(USB_VENDOR_APPLE, 0x030a, FG_DRIVER_INFO(FOUNTAIN)) },
428 { USB_VPI(USB_VENDOR_APPLE, 0x030b, FG_DRIVER_INFO(GEYSER1)) },
429
430 /* PowerBooks Oct 2005 */
431 { USB_VPI(USB_VENDOR_APPLE, 0x0214, FG_DRIVER_INFO(GEYSER2)) },
432 { USB_VPI(USB_VENDOR_APPLE, 0x0215, FG_DRIVER_INFO(GEYSER2)) },
433 { USB_VPI(USB_VENDOR_APPLE, 0x0216, FG_DRIVER_INFO(GEYSER2)) },
434
435 /* Core Duo MacBook & MacBook Pro */
436 { USB_VPI(USB_VENDOR_APPLE, 0x0217, FG_DRIVER_INFO(GEYSER3)) },
437 { USB_VPI(USB_VENDOR_APPLE, 0x0218, FG_DRIVER_INFO(GEYSER3)) },
438 { USB_VPI(USB_VENDOR_APPLE, 0x0219, FG_DRIVER_INFO(GEYSER3)) },
439
440 /* Core2 Duo MacBook & MacBook Pro */
441 { USB_VPI(USB_VENDOR_APPLE, 0x021a, FG_DRIVER_INFO(GEYSER4)) },
442 { USB_VPI(USB_VENDOR_APPLE, 0x021b, FG_DRIVER_INFO(GEYSER4)) },
443 { USB_VPI(USB_VENDOR_APPLE, 0x021c, FG_DRIVER_INFO(GEYSER4)) },
444
445 /* Core2 Duo MacBook3,1 */
446 { USB_VPI(USB_VENDOR_APPLE, 0x0229, FG_DRIVER_INFO(GEYSER4)) },
447 { USB_VPI(USB_VENDOR_APPLE, 0x022a, FG_DRIVER_INFO(GEYSER4)) },
448 { USB_VPI(USB_VENDOR_APPLE, 0x022b, FG_DRIVER_INFO(GEYSER4)) },
449
450 /* 17 inch PowerBook */
451 { USB_VPI(USB_VENDOR_APPLE, 0x020d, FG_DRIVER_INFO(GEYSER1_17inch)) },
452 };
453
454 static const struct wsp_dev_params wsp_dev_params[WELLSPRING_PRODUCT_MAX] = {
455 [WELLSPRING1] = {
456 .caps = 0,
457 .tp_type = WSP_TRACKPAD_TYPE1,
458 .finger_data_offset = WSP_TYPE1_FINGER_DATA_OFFSET,
459 },
460 [WELLSPRING2] = {
461 .caps = 0,
462 .tp_type = WSP_TRACKPAD_TYPE1,
463 .finger_data_offset = WSP_TYPE1_FINGER_DATA_OFFSET,
464 },
465 [WELLSPRING3] = {
466 .caps = HAS_INTEGRATED_BUTTON,
467 .tp_type = WSP_TRACKPAD_TYPE2,
468 .finger_data_offset = WSP_TYPE2_FINGER_DATA_OFFSET,
469 },
470 [WELLSPRING4] = {
471 .caps = HAS_INTEGRATED_BUTTON,
472 .tp_type = WSP_TRACKPAD_TYPE2,
473 .finger_data_offset = WSP_TYPE2_FINGER_DATA_OFFSET,
474 },
475 [WELLSPRING4A] = {
476 .caps = HAS_INTEGRATED_BUTTON,
477 .tp_type = WSP_TRACKPAD_TYPE2,
478 .finger_data_offset = WSP_TYPE2_FINGER_DATA_OFFSET,
479 },
480 [WELLSPRING5] = {
481 .caps = HAS_INTEGRATED_BUTTON,
482 .tp_type = WSP_TRACKPAD_TYPE2,
483 .finger_data_offset = WSP_TYPE2_FINGER_DATA_OFFSET,
484 },
485 [WELLSPRING6] = {
486 .caps = HAS_INTEGRATED_BUTTON,
487 .tp_type = WSP_TRACKPAD_TYPE2,
488 .finger_data_offset = WSP_TYPE2_FINGER_DATA_OFFSET,
489 },
490 [WELLSPRING5A] = {
491 .caps = HAS_INTEGRATED_BUTTON,
492 .tp_type = WSP_TRACKPAD_TYPE2,
493 .finger_data_offset = WSP_TYPE2_FINGER_DATA_OFFSET,
494 },
495 [WELLSPRING6A] = {
496 .caps = HAS_INTEGRATED_BUTTON,
497 .tp_type = WSP_TRACKPAD_TYPE2,
498 .finger_data_offset = WSP_TYPE2_FINGER_DATA_OFFSET,
499 },
500 [WELLSPRING7] = {
501 .caps = HAS_INTEGRATED_BUTTON,
502 .tp_type = WSP_TRACKPAD_TYPE2,
503 .finger_data_offset = WSP_TYPE2_FINGER_DATA_OFFSET,
504 },
505 [WELLSPRING7A] = {
506 .caps = HAS_INTEGRATED_BUTTON,
507 .tp_type = WSP_TRACKPAD_TYPE2,
508 .finger_data_offset = WSP_TYPE2_FINGER_DATA_OFFSET,
509 },
510 [WELLSPRING8] = {
511 .caps = HAS_INTEGRATED_BUTTON,
512 .tp_type = WSP_TRACKPAD_TYPE3,
513 .finger_data_offset = WSP_TYPE3_FINGER_DATA_OFFSET,
514 },
515 };
516 #define ATP_DEV(v,p,i) { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, i) }
517
518 /* TODO: STRUCT_USB_HOST_ID */
519 static const struct usb_device_id wsp_devs[] = {
520 /* MacbookAir1.1 */
521 ATP_DEV(APPLE, WELLSPRING_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING1)),
522 ATP_DEV(APPLE, WELLSPRING_ISO, WELLSPRING_DRIVER_INFO(WELLSPRING1)),
523 ATP_DEV(APPLE, WELLSPRING_JIS, WELLSPRING_DRIVER_INFO(WELLSPRING1)),
524
525 /* MacbookProPenryn, aka wellspring2 */
526 ATP_DEV(APPLE, WELLSPRING2_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING2)),
527 ATP_DEV(APPLE, WELLSPRING2_ISO, WELLSPRING_DRIVER_INFO(WELLSPRING2)),
528 ATP_DEV(APPLE, WELLSPRING2_JIS, WELLSPRING_DRIVER_INFO(WELLSPRING2)),
529
530 /* Macbook5,1 (unibody), aka wellspring3 */
531 ATP_DEV(APPLE, WELLSPRING3_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING3)),
532 ATP_DEV(APPLE, WELLSPRING3_ISO, WELLSPRING_DRIVER_INFO(WELLSPRING3)),
533 ATP_DEV(APPLE, WELLSPRING3_JIS, WELLSPRING_DRIVER_INFO(WELLSPRING3)),
534
535 /* MacbookAir3,2 (unibody), aka wellspring4 */
536 ATP_DEV(APPLE, WELLSPRING4_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING4)),
537 ATP_DEV(APPLE, WELLSPRING4_ISO, WELLSPRING_DRIVER_INFO(WELLSPRING4)),
538 ATP_DEV(APPLE, WELLSPRING4_JIS, WELLSPRING_DRIVER_INFO(WELLSPRING4)),
539
540 /* MacbookAir3,1 (unibody), aka wellspring4 */
541 ATP_DEV(APPLE, WELLSPRING4A_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING4A)),
542 ATP_DEV(APPLE, WELLSPRING4A_ISO, WELLSPRING_DRIVER_INFO(WELLSPRING4A)),
543 ATP_DEV(APPLE, WELLSPRING4A_JIS, WELLSPRING_DRIVER_INFO(WELLSPRING4A)),
544
545 /* Macbook8 (unibody, March 2011) */
546 ATP_DEV(APPLE, WELLSPRING5_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING5)),
547 ATP_DEV(APPLE, WELLSPRING5_ISO, WELLSPRING_DRIVER_INFO(WELLSPRING5)),
548 ATP_DEV(APPLE, WELLSPRING5_JIS, WELLSPRING_DRIVER_INFO(WELLSPRING5)),
549
550 /* MacbookAir4,1 (unibody, July 2011) */
551 ATP_DEV(APPLE, WELLSPRING6A_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING6A)),
552 ATP_DEV(APPLE, WELLSPRING6A_ISO, WELLSPRING_DRIVER_INFO(WELLSPRING6A)),
553 ATP_DEV(APPLE, WELLSPRING6A_JIS, WELLSPRING_DRIVER_INFO(WELLSPRING6A)),
554
555 /* MacbookAir4,2 (unibody, July 2011) */
556 ATP_DEV(APPLE, WELLSPRING6_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING6)),
557 ATP_DEV(APPLE, WELLSPRING6_ISO, WELLSPRING_DRIVER_INFO(WELLSPRING6)),
558 ATP_DEV(APPLE, WELLSPRING6_JIS, WELLSPRING_DRIVER_INFO(WELLSPRING6)),
559
560 /* Macbook8,2 (unibody) */
561 ATP_DEV(APPLE, WELLSPRING5A_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING5A)),
562 ATP_DEV(APPLE, WELLSPRING5A_ISO, WELLSPRING_DRIVER_INFO(WELLSPRING5A)),
563 ATP_DEV(APPLE, WELLSPRING5A_JIS, WELLSPRING_DRIVER_INFO(WELLSPRING5A)),
564
565 /* MacbookPro10,1 (unibody, June 2012) */
566 /* MacbookPro11,? (unibody, June 2013) */
567 ATP_DEV(APPLE, WELLSPRING7_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING7)),
568 ATP_DEV(APPLE, WELLSPRING7_ISO, WELLSPRING_DRIVER_INFO(WELLSPRING7)),
569 ATP_DEV(APPLE, WELLSPRING7_JIS, WELLSPRING_DRIVER_INFO(WELLSPRING7)),
570
571 /* MacbookPro10,2 (unibody, October 2012) */
572 ATP_DEV(APPLE, WELLSPRING7A_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING7A)),
573 ATP_DEV(APPLE, WELLSPRING7A_ISO, WELLSPRING_DRIVER_INFO(WELLSPRING7A)),
574 ATP_DEV(APPLE, WELLSPRING7A_JIS, WELLSPRING_DRIVER_INFO(WELLSPRING7A)),
575
576 /* MacbookAir6,2 (unibody, June 2013) */
577 ATP_DEV(APPLE, WELLSPRING8_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING8)),
578 ATP_DEV(APPLE, WELLSPRING8_ISO, WELLSPRING_DRIVER_INFO(WELLSPRING8)),
579 ATP_DEV(APPLE, WELLSPRING8_JIS, WELLSPRING_DRIVER_INFO(WELLSPRING8)),
580 };
581
582 typedef enum atp_stroke_type {
583 ATP_STROKE_TOUCH,
584 ATP_STROKE_SLIDE,
585 } atp_stroke_type;
586
587 typedef enum atp_axis {
588 X = 0,
589 Y = 1,
590 NUM_AXES
591 } atp_axis;
592
593 #define ATP_FIFO_BUF_SIZE 8 /* bytes */
594 #define ATP_FIFO_QUEUE_MAXLEN 50 /* units */
595
596 enum {
597 ATP_INTR_DT,
598 ATP_RESET,
599 ATP_N_TRANSFER,
600 };
601
602 typedef struct fg_stroke_component {
603 /* Fields encapsulating the pressure-span. */
604 u_int loc; /* location (scaled) */
605 u_int cum_pressure; /* cumulative compression */
606 u_int max_cum_pressure; /* max cumulative compression */
607 boolean_t matched; /*to track components as they match against pspans.*/
608
609 int delta_mickeys; /* change in location (un-smoothened movement)*/
610 } fg_stroke_component_t;
611
612 /*
613 * The following structure captures a finger contact with the
614 * touchpad. A stroke comprises two p-span components and some state.
615 */
616 typedef struct atp_stroke {
617 TAILQ_ENTRY(atp_stroke) entry;
618
619 atp_stroke_type type;
620 uint32_t flags; /* the state of this stroke */
621 #define ATSF_ZOMBIE 0x1
622 boolean_t matched; /* to track match against fingers.*/
623
624 struct timeval ctime; /* create time; for coincident siblings. */
625
626 /*
627 * Unit: interrupts; we maintain this value in
628 * addition to 'ctime' in order to avoid the
629 * expensive call to microtime() at every
630 * interrupt.
631 */
632 uint32_t age;
633
634 /* Location */
635 int x;
636 int y;
637
638 /* Fields containing information about movement. */
639 int instantaneous_dx; /* curr. change in X location (un-smoothened) */
640 int instantaneous_dy; /* curr. change in Y location (un-smoothened) */
641 int pending_dx; /* cum. of pending short movements */
642 int pending_dy; /* cum. of pending short movements */
643 int movement_dx; /* interpreted smoothened movement */
644 int movement_dy; /* interpreted smoothened movement */
645 int cum_movement_x; /* cum. horizontal movement */
646 int cum_movement_y; /* cum. vertical movement */
647
648 /*
649 * The following member is relevant only for fountain-geyser trackpads.
650 * For these, there is the need to track pressure-spans and cumulative
651 * pressures for stroke components.
652 */
653 fg_stroke_component_t components[NUM_AXES];
654 } atp_stroke_t;
655
656 struct atp_softc; /* forward declaration */
657 typedef void (*sensor_data_interpreter_t)(struct atp_softc *sc, u_int len);
658
659 struct atp_softc {
660 device_t sc_dev;
661 struct usb_device *sc_usb_device;
662 struct mtx sc_mutex; /* for synchronization */
663 struct usb_fifo_sc sc_fifo;
664
665 #define MODE_LENGTH 8
666 char sc_mode_bytes[MODE_LENGTH]; /* device mode */
667
668 trackpad_family_t sc_family;
669 const void *sc_params; /* device configuration */
670 sensor_data_interpreter_t sensor_data_interpreter;
671
672 mousehw_t sc_hw;
673 mousemode_t sc_mode;
674 mousestatus_t sc_status;
675
676 u_int sc_state;
677 #define ATP_ENABLED 0x01
678 #define ATP_ZOMBIES_EXIST 0x02
679 #define ATP_DOUBLE_TAP_DRAG 0x04
680 #define ATP_VALID 0x08
681
682 struct usb_xfer *sc_xfer[ATP_N_TRANSFER];
683
684 u_int sc_pollrate;
685 int sc_fflags;
686
687 atp_stroke_t sc_strokes_data[ATP_MAX_STROKES];
688 TAILQ_HEAD(,atp_stroke) sc_stroke_free;
689 TAILQ_HEAD(,atp_stroke) sc_stroke_used;
690 u_int sc_n_strokes;
691
692 struct callout sc_callout;
693
694 /*
695 * button status. Set to non-zero if the mouse-button is physically
696 * pressed. This state variable is exposed through softc to allow
697 * reap_sibling_zombies to avoid registering taps while the trackpad
698 * button is pressed.
699 */
700 uint8_t sc_ibtn;
701
702 /*
703 * Time when touch zombies were last reaped; useful for detecting
704 * double-touch-n-drag.
705 */
706 struct timeval sc_touch_reap_time;
707
708 u_int sc_idlecount;
709
710 /* Regarding the data transferred from t-pad in USB INTR packets. */
711 u_int sc_expected_sensor_data_len;
712 uint8_t sc_sensor_data[ATP_SENSOR_DATA_BUF_MAX] __aligned(4);
713
714 int sc_cur_x[FG_MAX_XSENSORS]; /* current sensor readings */
715 int sc_cur_y[FG_MAX_YSENSORS];
716 int sc_base_x[FG_MAX_XSENSORS]; /* base sensor readings */
717 int sc_base_y[FG_MAX_YSENSORS];
718 int sc_pressure_x[FG_MAX_XSENSORS]; /* computed pressures */
719 int sc_pressure_y[FG_MAX_YSENSORS];
720 fg_pspan sc_pspans_x[FG_MAX_PSPANS_PER_AXIS];
721 fg_pspan sc_pspans_y[FG_MAX_PSPANS_PER_AXIS];
722 };
723
724 /*
725 * The last byte of the fountain-geyser sensor data contains status bits; the
726 * following values define the meanings of these bits.
727 * (only Geyser 3/4)
728 */
729 enum geyser34_status_bits {
730 FG_STATUS_BUTTON = (uint8_t)0x01, /* The button was pressed */
731 FG_STATUS_BASE_UPDATE = (uint8_t)0x04, /* Data from an untouched pad.*/
732 };
733
734 typedef enum interface_mode {
735 RAW_SENSOR_MODE = (uint8_t)0x01,
736 HID_MODE = (uint8_t)0x08
737 } interface_mode;
738
739 /*
740 * function prototypes
741 */
742 static usb_fifo_cmd_t atp_start_read;
743 static usb_fifo_cmd_t atp_stop_read;
744 static usb_fifo_open_t atp_open;
745 static usb_fifo_close_t atp_close;
746 static usb_fifo_ioctl_t atp_ioctl;
747
748 static struct usb_fifo_methods atp_fifo_methods = {
749 .f_open = &atp_open,
750 .f_close = &atp_close,
751 .f_ioctl = &atp_ioctl,
752 .f_start_read = &atp_start_read,
753 .f_stop_read = &atp_stop_read,
754 .basename[0] = ATP_DRIVER_NAME,
755 };
756
757 /* device initialization and shutdown */
758 static usb_error_t atp_set_device_mode(struct atp_softc *, interface_mode);
759 static void atp_reset_callback(struct usb_xfer *, usb_error_t);
760 static int atp_enable(struct atp_softc *);
761 static void atp_disable(struct atp_softc *);
762
763 /* sensor interpretation */
764 static void fg_interpret_sensor_data(struct atp_softc *, u_int);
765 static void fg_extract_sensor_data(const int8_t *, u_int, atp_axis,
766 int *, enum fountain_geyser_trackpad_type);
767 static void fg_get_pressures(int *, const int *, const int *, int);
768 static void fg_detect_pspans(int *, u_int, u_int, fg_pspan *, u_int *);
769 static void wsp_interpret_sensor_data(struct atp_softc *, u_int);
770
771 /* movement detection */
772 static boolean_t fg_match_stroke_component(fg_stroke_component_t *,
773 const fg_pspan *, atp_stroke_type);
774 static void fg_match_strokes_against_pspans(struct atp_softc *,
775 atp_axis, fg_pspan *, u_int, u_int);
776 static boolean_t wsp_match_strokes_against_fingers(struct atp_softc *,
777 wsp_finger_t *, u_int);
778 static boolean_t fg_update_strokes(struct atp_softc *, fg_pspan *, u_int,
779 fg_pspan *, u_int);
780 static boolean_t wsp_update_strokes(struct atp_softc *,
781 wsp_finger_t [WSP_MAX_FINGERS], u_int);
782 static void fg_add_stroke(struct atp_softc *, const fg_pspan *, const fg_pspan *);
783 static void fg_add_new_strokes(struct atp_softc *, fg_pspan *,
784 u_int, fg_pspan *, u_int);
785 static void wsp_add_stroke(struct atp_softc *, const wsp_finger_t *);
786 static void atp_advance_stroke_state(struct atp_softc *,
787 atp_stroke_t *, boolean_t *);
788 static boolean_t atp_stroke_has_small_movement(const atp_stroke_t *);
789 static void atp_update_pending_mickeys(atp_stroke_t *);
790 static boolean_t atp_compute_stroke_movement(atp_stroke_t *);
791 static void atp_terminate_stroke(struct atp_softc *, atp_stroke_t *);
792
793 /* tap detection */
794 static boolean_t atp_is_horizontal_scroll(const atp_stroke_t *);
795 static boolean_t atp_is_vertical_scroll(const atp_stroke_t *);
796 static void atp_reap_sibling_zombies(void *);
797 static void atp_convert_to_slide(struct atp_softc *, atp_stroke_t *);
798
799 /* updating fifo */
800 static void atp_reset_buf(struct atp_softc *);
801 static void atp_add_to_queue(struct atp_softc *, int, int, int, uint32_t);
802
803 /* Device methods. */
804 static device_probe_t atp_probe;
805 static device_attach_t atp_attach;
806 static device_detach_t atp_detach;
807 static usb_callback_t atp_intr;
808
809 static const struct usb_config atp_xfer_config[ATP_N_TRANSFER] = {
810 [ATP_INTR_DT] = {
811 .type = UE_INTERRUPT,
812 .endpoint = UE_ADDR_ANY,
813 .direction = UE_DIR_IN,
814 .flags = {
815 .pipe_bof = 1, /* block pipe on failure */
816 .short_xfer_ok = 1,
817 },
818 .bufsize = ATP_SENSOR_DATA_BUF_MAX,
819 .callback = &atp_intr,
820 },
821 [ATP_RESET] = {
822 .type = UE_CONTROL,
823 .endpoint = 0, /* Control pipe */
824 .direction = UE_DIR_ANY,
825 .bufsize = sizeof(struct usb_device_request) + MODE_LENGTH,
826 .callback = &atp_reset_callback,
827 .interval = 0, /* no pre-delay */
828 },
829 };
830
831 static atp_stroke_t *
832 atp_alloc_stroke(struct atp_softc *sc)
833 {
834 atp_stroke_t *pstroke;
835
836 pstroke = TAILQ_FIRST(&sc->sc_stroke_free);
837 if (pstroke == NULL)
838 goto done;
839
840 TAILQ_REMOVE(&sc->sc_stroke_free, pstroke, entry);
841 memset(pstroke, 0, sizeof(*pstroke));
842 TAILQ_INSERT_TAIL(&sc->sc_stroke_used, pstroke, entry);
843
844 sc->sc_n_strokes++;
845 done:
846 return (pstroke);
847 }
848
849 static void
850 atp_free_stroke(struct atp_softc *sc, atp_stroke_t *pstroke)
851 {
852 if (pstroke == NULL)
853 return;
854
855 sc->sc_n_strokes--;
856
857 TAILQ_REMOVE(&sc->sc_stroke_used, pstroke, entry);
858 TAILQ_INSERT_TAIL(&sc->sc_stroke_free, pstroke, entry);
859 }
860
861 static void
862 atp_init_stroke_pool(struct atp_softc *sc)
863 {
864 u_int x;
865
866 TAILQ_INIT(&sc->sc_stroke_free);
867 TAILQ_INIT(&sc->sc_stroke_used);
868
869 sc->sc_n_strokes = 0;
870
871 memset(&sc->sc_strokes_data, 0, sizeof(sc->sc_strokes_data));
872
873 for (x = 0; x != ATP_MAX_STROKES; x++) {
874 TAILQ_INSERT_TAIL(&sc->sc_stroke_free, &sc->sc_strokes_data[x],
875 entry);
876 }
877 }
878
879 static usb_error_t
880 atp_set_device_mode(struct atp_softc *sc, interface_mode newMode)
881 {
882 uint8_t mode_value;
883 usb_error_t err;
884
885 if ((newMode != RAW_SENSOR_MODE) && (newMode != HID_MODE))
886 return (USB_ERR_INVAL);
887
888 if ((newMode == RAW_SENSOR_MODE) &&
889 (sc->sc_family == TRACKPAD_FAMILY_FOUNTAIN_GEYSER))
890 mode_value = (uint8_t)0x04;
891 else
892 mode_value = newMode;
893
894 err = usbd_req_get_report(sc->sc_usb_device, NULL /* mutex */,
895 sc->sc_mode_bytes, sizeof(sc->sc_mode_bytes), 0 /* interface idx */,
896 0x03 /* type */, 0x00 /* id */);
897 if (err != USB_ERR_NORMAL_COMPLETION) {
898 DPRINTF("Failed to read device mode (%d)\n", err);
899 return (err);
900 }
901
902 if (sc->sc_mode_bytes[0] == mode_value)
903 return (err);
904
905 /*
906 * XXX Need to wait at least 250ms for hardware to get
907 * ready. The device mode handling appears to be handled
908 * asynchronously and we should not issue these commands too
909 * quickly.
910 */
911 pause("WHW", hz / 4);
912
913 sc->sc_mode_bytes[0] = mode_value;
914 return (usbd_req_set_report(sc->sc_usb_device, NULL /* mutex */,
915 sc->sc_mode_bytes, sizeof(sc->sc_mode_bytes), 0 /* interface idx */,
916 0x03 /* type */, 0x00 /* id */));
917 }
918
919 static void
920 atp_reset_callback(struct usb_xfer *xfer, usb_error_t error)
921 {
922 usb_device_request_t req;
923 struct usb_page_cache *pc;
924 struct atp_softc *sc = usbd_xfer_softc(xfer);
925
926 uint8_t mode_value;
927 if (sc->sc_family == TRACKPAD_FAMILY_FOUNTAIN_GEYSER)
928 mode_value = 0x04;
929 else
930 mode_value = RAW_SENSOR_MODE;
931
932 switch (USB_GET_STATE(xfer)) {
933 case USB_ST_SETUP:
934 sc->sc_mode_bytes[0] = mode_value;
935 req.bmRequestType = UT_WRITE_CLASS_INTERFACE;
936 req.bRequest = UR_SET_REPORT;
937 USETW2(req.wValue,
938 (uint8_t)0x03 /* type */, (uint8_t)0x00 /* id */);
939 USETW(req.wIndex, 0);
940 USETW(req.wLength, MODE_LENGTH);
941
942 pc = usbd_xfer_get_frame(xfer, 0);
943 usbd_copy_in(pc, 0, &req, sizeof(req));
944 pc = usbd_xfer_get_frame(xfer, 1);
945 usbd_copy_in(pc, 0, sc->sc_mode_bytes, MODE_LENGTH);
946
947 usbd_xfer_set_frame_len(xfer, 0, sizeof(req));
948 usbd_xfer_set_frame_len(xfer, 1, MODE_LENGTH);
949 usbd_xfer_set_frames(xfer, 2);
950 usbd_transfer_submit(xfer);
951 break;
952
953 case USB_ST_TRANSFERRED:
954 default:
955 break;
956 }
957 }
958
959 static int
960 atp_enable(struct atp_softc *sc)
961 {
962 if (sc->sc_state & ATP_ENABLED)
963 return (0);
964
965 /* reset status */
966 memset(&sc->sc_status, 0, sizeof(sc->sc_status));
967
968 atp_init_stroke_pool(sc);
969
970 sc->sc_state |= ATP_ENABLED;
971
972 DPRINTFN(ATP_LLEVEL_INFO, "enabled atp\n");
973 return (0);
974 }
975
976 static void
977 atp_disable(struct atp_softc *sc)
978 {
979 sc->sc_state &= ~(ATP_ENABLED | ATP_VALID);
980 DPRINTFN(ATP_LLEVEL_INFO, "disabled atp\n");
981 }
982
983 static void
984 fg_interpret_sensor_data(struct atp_softc *sc, u_int data_len)
985 {
986 u_int n_xpspans = 0;
987 u_int n_ypspans = 0;
988 uint8_t status_bits;
989
990 const struct fg_dev_params *params =
991 (const struct fg_dev_params *)sc->sc_params;
992
993 fg_extract_sensor_data(sc->sc_sensor_data, params->n_xsensors, X,
994 sc->sc_cur_x, params->prot);
995 fg_extract_sensor_data(sc->sc_sensor_data, params->n_ysensors, Y,
996 sc->sc_cur_y, params->prot);
997
998 /*
999 * If this is the initial update (from an untouched
1000 * pad), we should set the base values for the sensor
1001 * data; deltas with respect to these base values can
1002 * be used as pressure readings subsequently.
1003 */
1004 status_bits = sc->sc_sensor_data[params->data_len - 1];
1005 if (((params->prot == FG_TRACKPAD_TYPE_GEYSER3) ||
1006 (params->prot == FG_TRACKPAD_TYPE_GEYSER4)) &&
1007 ((sc->sc_state & ATP_VALID) == 0)) {
1008 if (status_bits & FG_STATUS_BASE_UPDATE) {
1009 memcpy(sc->sc_base_x, sc->sc_cur_x,
1010 params->n_xsensors * sizeof(*sc->sc_base_x));
1011 memcpy(sc->sc_base_y, sc->sc_cur_y,
1012 params->n_ysensors * sizeof(*sc->sc_base_y));
1013 sc->sc_state |= ATP_VALID;
1014 return;
1015 }
1016 }
1017
1018 /* Get pressure readings and detect p-spans for both axes. */
1019 fg_get_pressures(sc->sc_pressure_x, sc->sc_cur_x, sc->sc_base_x,
1020 params->n_xsensors);
1021 fg_detect_pspans(sc->sc_pressure_x, params->n_xsensors,
1022 FG_MAX_PSPANS_PER_AXIS, sc->sc_pspans_x, &n_xpspans);
1023 fg_get_pressures(sc->sc_pressure_y, sc->sc_cur_y, sc->sc_base_y,
1024 params->n_ysensors);
1025 fg_detect_pspans(sc->sc_pressure_y, params->n_ysensors,
1026 FG_MAX_PSPANS_PER_AXIS, sc->sc_pspans_y, &n_ypspans);
1027
1028 /* Update strokes with new pspans to detect movements. */
1029 if (fg_update_strokes(sc, sc->sc_pspans_x, n_xpspans, sc->sc_pspans_y, n_ypspans))
1030 sc->sc_status.flags |= MOUSE_POSCHANGED;
1031
1032 sc->sc_ibtn = (status_bits & FG_STATUS_BUTTON) ? MOUSE_BUTTON1DOWN : 0;
1033 sc->sc_status.button = sc->sc_ibtn;
1034
1035 /*
1036 * The Fountain/Geyser device continues to trigger interrupts
1037 * at a fast rate even after touchpad activity has
1038 * stopped. Upon detecting that the device has remained idle
1039 * beyond a threshold, we reinitialize it to silence the
1040 * interrupts.
1041 */
1042 if ((sc->sc_status.flags == 0) && (sc->sc_n_strokes == 0)) {
1043 sc->sc_idlecount++;
1044 if (sc->sc_idlecount >= ATP_IDLENESS_THRESHOLD) {
1045 /*
1046 * Use the last frame before we go idle for
1047 * calibration on pads which do not send
1048 * calibration frames.
1049 */
1050 const struct fg_dev_params *params =
1051 (const struct fg_dev_params *)sc->sc_params;
1052
1053 DPRINTFN(ATP_LLEVEL_INFO, "idle\n");
1054
1055 if (params->prot < FG_TRACKPAD_TYPE_GEYSER3) {
1056 memcpy(sc->sc_base_x, sc->sc_cur_x,
1057 params->n_xsensors * sizeof(*(sc->sc_base_x)));
1058 memcpy(sc->sc_base_y, sc->sc_cur_y,
1059 params->n_ysensors * sizeof(*(sc->sc_base_y)));
1060 }
1061
1062 sc->sc_idlecount = 0;
1063 usbd_transfer_start(sc->sc_xfer[ATP_RESET]);
1064 }
1065 } else {
1066 sc->sc_idlecount = 0;
1067 }
1068 }
1069
1070 /*
1071 * Interpret the data from the X and Y pressure sensors. This function
1072 * is called separately for the X and Y sensor arrays. The data in the
1073 * USB packet is laid out in the following manner:
1074 *
1075 * sensor_data:
1076 * --,--,Y1,Y2,--,Y3,Y4,--,Y5,...,Y10, ... X1,X2,--,X3,X4
1077 * indices: 0 1 2 3 4 5 6 7 8 ... 15 ... 20 21 22 23 24
1078 *
1079 * '--' (in the above) indicates that the value is unimportant.
1080 *
1081 * Information about the above layout was obtained from the
1082 * implementation of the AppleTouch driver in Linux.
1083 *
1084 * parameters:
1085 * sensor_data
1086 * raw sensor data from the USB packet.
1087 * num
1088 * The number of elements in the array 'arr'.
1089 * axis
1090 * Axis of data to fetch
1091 * arr
1092 * The array to be initialized with the readings.
1093 * prot
1094 * The protocol to use to interpret the data
1095 */
1096 static void
1097 fg_extract_sensor_data(const int8_t *sensor_data, u_int num, atp_axis axis,
1098 int *arr, enum fountain_geyser_trackpad_type prot)
1099 {
1100 u_int i;
1101 u_int di; /* index into sensor data */
1102
1103 switch (prot) {
1104 case FG_TRACKPAD_TYPE_GEYSER1:
1105 /*
1106 * For Geyser 1, the sensors are laid out in pairs
1107 * every 5 bytes.
1108 */
1109 for (i = 0, di = (axis == Y) ? 1 : 2; i < 8; di += 5, i++) {
1110 arr[i] = sensor_data[di];
1111 arr[i+8] = sensor_data[di+2];
1112 if ((axis == X) && (num > 16))
1113 arr[i+16] = sensor_data[di+40];
1114 }
1115
1116 break;
1117 case FG_TRACKPAD_TYPE_GEYSER2:
1118 for (i = 0, di = (axis == Y) ? 1 : 19; i < num; /* empty */ ) {
1119 arr[i++] = sensor_data[di++];
1120 arr[i++] = sensor_data[di++];
1121 di++;
1122 }
1123 break;
1124 case FG_TRACKPAD_TYPE_GEYSER3:
1125 case FG_TRACKPAD_TYPE_GEYSER4:
1126 for (i = 0, di = (axis == Y) ? 2 : 20; i < num; /* empty */ ) {
1127 arr[i++] = sensor_data[di++];
1128 arr[i++] = sensor_data[di++];
1129 di++;
1130 }
1131 break;
1132 default:
1133 break;
1134 }
1135 }
1136
1137 static void
1138 fg_get_pressures(int *p, const int *cur, const int *base, int n)
1139 {
1140 int i;
1141
1142 for (i = 0; i < n; i++) {
1143 p[i] = cur[i] - base[i];
1144 if (p[i] > 127)
1145 p[i] -= 256;
1146 if (p[i] < -127)
1147 p[i] += 256;
1148 if (p[i] < 0)
1149 p[i] = 0;
1150
1151 /*
1152 * Shave off pressures below the noise-pressure
1153 * threshold; this will reduce the contribution from
1154 * lower pressure readings.
1155 */
1156 if ((u_int)p[i] <= FG_SENSOR_NOISE_THRESHOLD)
1157 p[i] = 0; /* filter away noise */
1158 else
1159 p[i] -= FG_SENSOR_NOISE_THRESHOLD;
1160 }
1161 }
1162
1163 static void
1164 fg_detect_pspans(int *p, u_int num_sensors,
1165 u_int max_spans, /* max # of pspans permitted */
1166 fg_pspan *spans, /* finger spans */
1167 u_int *nspans_p) /* num spans detected */
1168 {
1169 u_int i;
1170 int maxp; /* max pressure seen within a span */
1171 u_int num_spans = 0;
1172
1173 enum fg_pspan_state {
1174 ATP_PSPAN_INACTIVE,
1175 ATP_PSPAN_INCREASING,
1176 ATP_PSPAN_DECREASING,
1177 } state; /* state of the pressure span */
1178
1179 /*
1180 * The following is a simple state machine to track
1181 * the phase of the pressure span.
1182 */
1183 memset(spans, 0, max_spans * sizeof(fg_pspan));
1184 maxp = 0;
1185 state = ATP_PSPAN_INACTIVE;
1186 for (i = 0; i < num_sensors; i++) {
1187 if (num_spans >= max_spans)
1188 break;
1189
1190 if (p[i] == 0) {
1191 if (state == ATP_PSPAN_INACTIVE) {
1192 /*
1193 * There is no pressure information for this
1194 * sensor, and we aren't tracking a finger.
1195 */
1196 continue;
1197 } else {
1198 state = ATP_PSPAN_INACTIVE;
1199 maxp = 0;
1200 num_spans++;
1201 }
1202 } else {
1203 switch (state) {
1204 case ATP_PSPAN_INACTIVE:
1205 state = ATP_PSPAN_INCREASING;
1206 maxp = p[i];
1207 break;
1208
1209 case ATP_PSPAN_INCREASING:
1210 if (p[i] > maxp)
1211 maxp = p[i];
1212 else if (p[i] <= (maxp >> 1))
1213 state = ATP_PSPAN_DECREASING;
1214 break;
1215
1216 case ATP_PSPAN_DECREASING:
1217 if (p[i] > p[i - 1]) {
1218 /*
1219 * This is the beginning of
1220 * another span; change state
1221 * to give the appearance that
1222 * we're starting from an
1223 * inactive span, and then
1224 * re-process this reading in
1225 * the next iteration.
1226 */
1227 num_spans++;
1228 state = ATP_PSPAN_INACTIVE;
1229 maxp = 0;
1230 i--;
1231 continue;
1232 }
1233 break;
1234 }
1235
1236 /* Update the finger span with this reading. */
1237 spans[num_spans].width++;
1238 spans[num_spans].cum += p[i];
1239 spans[num_spans].cog += p[i] * (i + 1);
1240 }
1241 }
1242 if (state != ATP_PSPAN_INACTIVE)
1243 num_spans++; /* close the last finger span */
1244
1245 /* post-process the spans */
1246 for (i = 0; i < num_spans; i++) {
1247 /* filter away unwanted pressure spans */
1248 if ((spans[i].cum < FG_PSPAN_MIN_CUM_PRESSURE) ||
1249 (spans[i].width > FG_PSPAN_MAX_WIDTH)) {
1250 if ((i + 1) < num_spans) {
1251 memcpy(&spans[i], &spans[i + 1],
1252 (num_spans - i - 1) * sizeof(fg_pspan));
1253 i--;
1254 }
1255 num_spans--;
1256 continue;
1257 }
1258
1259 /* compute this span's representative location */
1260 spans[i].loc = spans[i].cog * FG_SCALE_FACTOR /
1261 spans[i].cum;
1262
1263 spans[i].matched = false; /* not yet matched against a stroke */
1264 }
1265
1266 *nspans_p = num_spans;
1267 }
1268
1269 static void
1270 wsp_interpret_sensor_data(struct atp_softc *sc, u_int data_len)
1271 {
1272 const struct wsp_dev_params *params = sc->sc_params;
1273 wsp_finger_t fingers[WSP_MAX_FINGERS];
1274 struct wsp_finger_sensor_data *source_fingerp;
1275 u_int n_source_fingers;
1276 u_int n_fingers;
1277 u_int i;
1278
1279 /* validate sensor data length */
1280 if ((data_len < params->finger_data_offset) ||
1281 ((data_len - params->finger_data_offset) %
1282 WSP_SIZEOF_FINGER_SENSOR_DATA) != 0)
1283 return;
1284
1285 /* compute number of source fingers */
1286 n_source_fingers = (data_len - params->finger_data_offset) /
1287 WSP_SIZEOF_FINGER_SENSOR_DATA;
1288
1289 if (n_source_fingers > WSP_MAX_FINGERS)
1290 n_source_fingers = WSP_MAX_FINGERS;
1291
1292 /* iterate over the source data collecting useful fingers */
1293 n_fingers = 0;
1294 source_fingerp = (struct wsp_finger_sensor_data *)(sc->sc_sensor_data +
1295 params->finger_data_offset);
1296
1297 for (i = 0; i < n_source_fingers; i++, source_fingerp++) {
1298 /* swap endianness, if any */
1299 if (le16toh(0x1234) != 0x1234) {
1300 source_fingerp->origin = le16toh((uint16_t)source_fingerp->origin);
1301 source_fingerp->abs_x = le16toh((uint16_t)source_fingerp->abs_x);
1302 source_fingerp->abs_y = le16toh((uint16_t)source_fingerp->abs_y);
1303 source_fingerp->rel_x = le16toh((uint16_t)source_fingerp->rel_x);
1304 source_fingerp->rel_y = le16toh((uint16_t)source_fingerp->rel_y);
1305 source_fingerp->tool_major = le16toh((uint16_t)source_fingerp->tool_major);
1306 source_fingerp->tool_minor = le16toh((uint16_t)source_fingerp->tool_minor);
1307 source_fingerp->orientation = le16toh((uint16_t)source_fingerp->orientation);
1308 source_fingerp->touch_major = le16toh((uint16_t)source_fingerp->touch_major);
1309 source_fingerp->touch_minor = le16toh((uint16_t)source_fingerp->touch_minor);
1310 source_fingerp->multi = le16toh((uint16_t)source_fingerp->multi);
1311 }
1312
1313 /* check for minium threshold */
1314 if (source_fingerp->touch_major == 0)
1315 continue;
1316
1317 fingers[n_fingers].matched = false;
1318 fingers[n_fingers].x = source_fingerp->abs_x;
1319 fingers[n_fingers].y = -source_fingerp->abs_y;
1320
1321 n_fingers++;
1322 }
1323
1324 if ((sc->sc_n_strokes == 0) && (n_fingers == 0))
1325 return;
1326
1327 if (wsp_update_strokes(sc, fingers, n_fingers))
1328 sc->sc_status.flags |= MOUSE_POSCHANGED;
1329
1330 switch(params->tp_type) {
1331 case WSP_TRACKPAD_TYPE2:
1332 sc->sc_ibtn = sc->sc_sensor_data[WSP_TYPE2_BUTTON_DATA_OFFSET];
1333 break;
1334 case WSP_TRACKPAD_TYPE3:
1335 sc->sc_ibtn = sc->sc_sensor_data[WSP_TYPE3_BUTTON_DATA_OFFSET];
1336 break;
1337 default:
1338 break;
1339 }
1340 sc->sc_status.button = sc->sc_ibtn ? MOUSE_BUTTON1DOWN : 0;
1341 }
1342
1343 /*
1344 * Match a pressure-span against a stroke-component. If there is a
1345 * match, update the component's state and return true.
1346 */
1347 static boolean_t
1348 fg_match_stroke_component(fg_stroke_component_t *component,
1349 const fg_pspan *pspan, atp_stroke_type stroke_type)
1350 {
1351 int delta_mickeys;
1352 u_int min_pressure;
1353
1354 delta_mickeys = pspan->loc - component->loc;
1355
1356 if (abs(delta_mickeys) > (int)FG_MAX_DELTA_MICKEYS)
1357 return (false); /* the finger span is too far out; no match */
1358
1359 component->loc = pspan->loc;
1360
1361 /*
1362 * A sudden and significant increase in a pspan's cumulative
1363 * pressure indicates the incidence of a new finger
1364 * contact. This usually revises the pspan's
1365 * centre-of-gravity, and hence the location of any/all
1366 * matching stroke component(s). But such a change should
1367 * *not* be interpreted as a movement.
1368 */
1369 if (pspan->cum > ((3 * component->cum_pressure) >> 1))
1370 delta_mickeys = 0;
1371
1372 component->cum_pressure = pspan->cum;
1373 if (pspan->cum > component->max_cum_pressure)
1374 component->max_cum_pressure = pspan->cum;
1375
1376 /*
1377 * Disregard the component's movement if its cumulative
1378 * pressure drops below a fraction of the maximum; this
1379 * fraction is determined based on the stroke's type.
1380 */
1381 if (stroke_type == ATP_STROKE_TOUCH)
1382 min_pressure = (3 * component->max_cum_pressure) >> 2;
1383 else
1384 min_pressure = component->max_cum_pressure >> 2;
1385 if (component->cum_pressure < min_pressure)
1386 delta_mickeys = 0;
1387
1388 component->delta_mickeys = delta_mickeys;
1389 return (true);
1390 }
1391
1392 static void
1393 fg_match_strokes_against_pspans(struct atp_softc *sc, atp_axis axis,
1394 fg_pspan *pspans, u_int n_pspans, u_int repeat_count)
1395 {
1396 atp_stroke_t *strokep;
1397 u_int repeat_index = 0;
1398 u_int i;
1399
1400 /* Determine the index of the multi-span. */
1401 if (repeat_count) {
1402 for (i = 0; i < n_pspans; i++) {
1403 if (pspans[i].cum > pspans[repeat_index].cum)
1404 repeat_index = i;
1405 }
1406 }
1407
1408 TAILQ_FOREACH(strokep, &sc->sc_stroke_used, entry) {
1409 if (strokep->components[axis].matched)
1410 continue; /* skip matched components */
1411
1412 for (i = 0; i < n_pspans; i++) {
1413 if (pspans[i].matched)
1414 continue; /* skip matched pspans */
1415
1416 if (fg_match_stroke_component(
1417 &strokep->components[axis], &pspans[i],
1418 strokep->type)) {
1419 /* There is a match. */
1420 strokep->components[axis].matched = true;
1421
1422 /* Take care to repeat at the multi-span. */
1423 if ((repeat_count > 0) && (i == repeat_index))
1424 repeat_count--;
1425 else
1426 pspans[i].matched = true;
1427
1428 break; /* skip to the next strokep */
1429 }
1430 } /* loop over pspans */
1431 } /* loop over strokes */
1432 }
1433
1434 static boolean_t
1435 wsp_match_strokes_against_fingers(struct atp_softc *sc,
1436 wsp_finger_t *fingers, u_int n_fingers)
1437 {
1438 boolean_t movement = false;
1439 atp_stroke_t *strokep;
1440 u_int i;
1441
1442 /* reset the matched status for all strokes */
1443 TAILQ_FOREACH(strokep, &sc->sc_stroke_used, entry)
1444 strokep->matched = false;
1445
1446 for (i = 0; i != n_fingers; i++) {
1447 u_int least_distance_sq = WSP_MAX_ALLOWED_MATCH_DISTANCE_SQ;
1448 atp_stroke_t *strokep_best = NULL;
1449
1450 TAILQ_FOREACH(strokep, &sc->sc_stroke_used, entry) {
1451 int instantaneous_dx;
1452 int instantaneous_dy;
1453 u_int d_squared;
1454
1455 if (strokep->matched)
1456 continue;
1457
1458 instantaneous_dx = fingers[i].x - strokep->x;
1459 instantaneous_dy = fingers[i].y - strokep->y;
1460
1461 /* skip strokes which are far away */
1462 d_squared =
1463 (instantaneous_dx * instantaneous_dx) +
1464 (instantaneous_dy * instantaneous_dy);
1465
1466 if (d_squared < least_distance_sq) {
1467 least_distance_sq = d_squared;
1468 strokep_best = strokep;
1469 }
1470 }
1471
1472 strokep = strokep_best;
1473
1474 if (strokep != NULL) {
1475 fingers[i].matched = true;
1476
1477 strokep->matched = true;
1478 strokep->instantaneous_dx = fingers[i].x - strokep->x;
1479 strokep->instantaneous_dy = fingers[i].y - strokep->y;
1480 strokep->x = fingers[i].x;
1481 strokep->y = fingers[i].y;
1482
1483 atp_advance_stroke_state(sc, strokep, &movement);
1484 }
1485 }
1486 return (movement);
1487 }
1488
1489 /*
1490 * Update strokes by matching against current pressure-spans.
1491 * Return true if any movement is detected.
1492 */
1493 static boolean_t
1494 fg_update_strokes(struct atp_softc *sc, fg_pspan *pspans_x,
1495 u_int n_xpspans, fg_pspan *pspans_y, u_int n_ypspans)
1496 {
1497 atp_stroke_t *strokep;
1498 atp_stroke_t *strokep_next;
1499 boolean_t movement = false;
1500 u_int repeat_count = 0;
1501 u_int i;
1502 u_int j;
1503
1504 /* Reset X and Y components of all strokes as unmatched. */
1505 TAILQ_FOREACH(strokep, &sc->sc_stroke_used, entry) {
1506 strokep->components[X].matched = false;
1507 strokep->components[Y].matched = false;
1508 }
1509
1510 /*
1511 * Usually, the X and Y pspans come in pairs (the common case
1512 * being a single pair). It is possible, however, that
1513 * multiple contacts resolve to a single pspan along an
1514 * axis, as illustrated in the following:
1515 *
1516 * F = finger-contact
1517 *
1518 * pspan pspan
1519 * +-----------------------+
1520 * | . . |
1521 * | . . |
1522 * | . . |
1523 * | . . |
1524 * pspan |.........F......F |
1525 * | |
1526 * | |
1527 * | |
1528 * +-----------------------+
1529 *
1530 *
1531 * The above case can be detected by a difference in the
1532 * number of X and Y pspans. When this happens, X and Y pspans
1533 * aren't easy to pair or match against strokes.
1534 *
1535 * When X and Y pspans differ in number, the axis with the
1536 * smaller number of pspans is regarded as having a repeating
1537 * pspan (or a multi-pspan)--in the above illustration, the
1538 * Y-axis has a repeating pspan. Our approach is to try to
1539 * match the multi-pspan repeatedly against strokes. The
1540 * difference between the number of X and Y pspans gives us a
1541 * crude repeat_count for matching multi-pspans--i.e. the
1542 * multi-pspan along the Y axis (above) has a repeat_count of 1.
1543 */
1544 repeat_count = abs(n_xpspans - n_ypspans);
1545
1546 fg_match_strokes_against_pspans(sc, X, pspans_x, n_xpspans,
1547 (((repeat_count != 0) && ((n_xpspans < n_ypspans))) ?
1548 repeat_count : 0));
1549 fg_match_strokes_against_pspans(sc, Y, pspans_y, n_ypspans,
1550 (((repeat_count != 0) && (n_ypspans < n_xpspans)) ?
1551 repeat_count : 0));
1552
1553 /* Update the state of strokes based on the above pspan matches. */
1554 TAILQ_FOREACH_SAFE(strokep, &sc->sc_stroke_used, entry, strokep_next) {
1555 if (strokep->components[X].matched &&
1556 strokep->components[Y].matched) {
1557 strokep->matched = true;
1558 strokep->instantaneous_dx =
1559 strokep->components[X].delta_mickeys;
1560 strokep->instantaneous_dy =
1561 strokep->components[Y].delta_mickeys;
1562 atp_advance_stroke_state(sc, strokep, &movement);
1563 } else {
1564 /*
1565 * At least one component of this stroke
1566 * didn't match against current pspans;
1567 * terminate it.
1568 */
1569 atp_terminate_stroke(sc, strokep);
1570 }
1571 }
1572
1573 /* Add new strokes for pairs of unmatched pspans */
1574 for (i = 0; i < n_xpspans; i++) {
1575 if (pspans_x[i].matched == false) break;
1576 }
1577 for (j = 0; j < n_ypspans; j++) {
1578 if (pspans_y[j].matched == false) break;
1579 }
1580 if ((i < n_xpspans) && (j < n_ypspans)) {
1581 #ifdef USB_DEBUG
1582 if (atp_debug >= ATP_LLEVEL_INFO) {
1583 printf("unmatched pspans:");
1584 for (; i < n_xpspans; i++) {
1585 if (pspans_x[i].matched)
1586 continue;
1587 printf(" X:[loc:%u,cum:%u]",
1588 pspans_x[i].loc, pspans_x[i].cum);
1589 }
1590 for (; j < n_ypspans; j++) {
1591 if (pspans_y[j].matched)
1592 continue;
1593 printf(" Y:[loc:%u,cum:%u]",
1594 pspans_y[j].loc, pspans_y[j].cum);
1595 }
1596 printf("\n");
1597 }
1598 #endif /* USB_DEBUG */
1599 if ((n_xpspans == 1) && (n_ypspans == 1))
1600 /* The common case of a single pair of new pspans. */
1601 fg_add_stroke(sc, &pspans_x[0], &pspans_y[0]);
1602 else
1603 fg_add_new_strokes(sc, pspans_x, n_xpspans,
1604 pspans_y, n_ypspans);
1605 }
1606
1607 #ifdef USB_DEBUG
1608 if (atp_debug >= ATP_LLEVEL_INFO) {
1609 TAILQ_FOREACH(strokep, &sc->sc_stroke_used, entry) {
1610 printf(" %s%clc:%u,dm:%d,cum:%d,max:%d,%c"
1611 ",%clc:%u,dm:%d,cum:%d,max:%d,%c",
1612 (strokep->flags & ATSF_ZOMBIE) ? "zomb:" : "",
1613 (strokep->type == ATP_STROKE_TOUCH) ? '[' : '<',
1614 strokep->components[X].loc,
1615 strokep->components[X].delta_mickeys,
1616 strokep->components[X].cum_pressure,
1617 strokep->components[X].max_cum_pressure,
1618 (strokep->type == ATP_STROKE_TOUCH) ? ']' : '>',
1619 (strokep->type == ATP_STROKE_TOUCH) ? '[' : '<',
1620 strokep->components[Y].loc,
1621 strokep->components[Y].delta_mickeys,
1622 strokep->components[Y].cum_pressure,
1623 strokep->components[Y].max_cum_pressure,
1624 (strokep->type == ATP_STROKE_TOUCH) ? ']' : '>');
1625 }
1626 if (TAILQ_FIRST(&sc->sc_stroke_used) != NULL)
1627 printf("\n");
1628 }
1629 #endif /* USB_DEBUG */
1630 return (movement);
1631 }
1632
1633 /*
1634 * Update strokes by matching against current pressure-spans.
1635 * Return true if any movement is detected.
1636 */
1637 static boolean_t
1638 wsp_update_strokes(struct atp_softc *sc, wsp_finger_t fingers[WSP_MAX_FINGERS],
1639 u_int n_fingers)
1640 {
1641 boolean_t movement = false;
1642 atp_stroke_t *strokep_next;
1643 atp_stroke_t *strokep;
1644 u_int i;
1645
1646 if (sc->sc_n_strokes > 0) {
1647 movement = wsp_match_strokes_against_fingers(
1648 sc, fingers, n_fingers);
1649
1650 /* handle zombie strokes */
1651 TAILQ_FOREACH_SAFE(strokep, &sc->sc_stroke_used, entry, strokep_next) {
1652 if (strokep->matched)
1653 continue;
1654 atp_terminate_stroke(sc, strokep);
1655 }
1656 }
1657
1658 /* initialize unmatched fingers as strokes */
1659 for (i = 0; i != n_fingers; i++) {
1660 if (fingers[i].matched)
1661 continue;
1662
1663 wsp_add_stroke(sc, fingers + i);
1664 }
1665 return (movement);
1666 }
1667
1668 /* Initialize a stroke using a pressure-span. */
1669 static void
1670 fg_add_stroke(struct atp_softc *sc, const fg_pspan *pspan_x,
1671 const fg_pspan *pspan_y)
1672 {
1673 atp_stroke_t *strokep;
1674
1675 strokep = atp_alloc_stroke(sc);
1676 if (strokep == NULL)
1677 return;
1678
1679 /*
1680 * Strokes begin as potential touches. If a stroke survives
1681 * longer than a threshold, or if it records significant
1682 * cumulative movement, then it is considered a 'slide'.
1683 */
1684 strokep->type = ATP_STROKE_TOUCH;
1685 strokep->matched = false;
1686 microtime(&strokep->ctime);
1687 strokep->age = 1; /* number of interrupts */
1688 strokep->x = pspan_x->loc;
1689 strokep->y = pspan_y->loc;
1690
1691 strokep->components[X].loc = pspan_x->loc;
1692 strokep->components[X].cum_pressure = pspan_x->cum;
1693 strokep->components[X].max_cum_pressure = pspan_x->cum;
1694 strokep->components[X].matched = true;
1695
1696 strokep->components[Y].loc = pspan_y->loc;
1697 strokep->components[Y].cum_pressure = pspan_y->cum;
1698 strokep->components[Y].max_cum_pressure = pspan_y->cum;
1699 strokep->components[Y].matched = true;
1700
1701 if (sc->sc_n_strokes > 1) {
1702 /* Reset double-tap-n-drag if we have more than one strokes. */
1703 sc->sc_state &= ~ATP_DOUBLE_TAP_DRAG;
1704 }
1705
1706 DPRINTFN(ATP_LLEVEL_INFO, "[%u,%u], time: %u,%ld\n",
1707 strokep->components[X].loc,
1708 strokep->components[Y].loc,
1709 (u_int)strokep->ctime.tv_sec,
1710 (unsigned long int)strokep->ctime.tv_usec);
1711 }
1712
1713 static void
1714 fg_add_new_strokes(struct atp_softc *sc, fg_pspan *pspans_x,
1715 u_int n_xpspans, fg_pspan *pspans_y, u_int n_ypspans)
1716 {
1717 fg_pspan spans[2][FG_MAX_PSPANS_PER_AXIS];
1718 u_int nspans[2];
1719 u_int i;
1720 u_int j;
1721
1722 /* Copy unmatched pspans into the local arrays. */
1723 for (i = 0, nspans[X] = 0; i < n_xpspans; i++) {
1724 if (pspans_x[i].matched == false) {
1725 spans[X][nspans[X]] = pspans_x[i];
1726 nspans[X]++;
1727 }
1728 }
1729 for (j = 0, nspans[Y] = 0; j < n_ypspans; j++) {
1730 if (pspans_y[j].matched == false) {
1731 spans[Y][nspans[Y]] = pspans_y[j];
1732 nspans[Y]++;
1733 }
1734 }
1735
1736 if (nspans[X] == nspans[Y]) {
1737 /* Create new strokes from pairs of unmatched pspans */
1738 for (i = 0, j = 0; (i < nspans[X]) && (j < nspans[Y]); i++, j++)
1739 fg_add_stroke(sc, &spans[X][i], &spans[Y][j]);
1740 } else {
1741 u_int cum = 0;
1742 atp_axis repeat_axis; /* axis with multi-pspans */
1743 u_int repeat_count; /* repeat count for the multi-pspan*/
1744 u_int repeat_index = 0; /* index of the multi-span */
1745
1746 repeat_axis = (nspans[X] > nspans[Y]) ? Y : X;
1747 repeat_count = abs(nspans[X] - nspans[Y]);
1748 for (i = 0; i < nspans[repeat_axis]; i++) {
1749 if (spans[repeat_axis][i].cum > cum) {
1750 repeat_index = i;
1751 cum = spans[repeat_axis][i].cum;
1752 }
1753 }
1754
1755 /* Create new strokes from pairs of unmatched pspans */
1756 i = 0, j = 0;
1757 for (; (i < nspans[X]) && (j < nspans[Y]); i++, j++) {
1758 fg_add_stroke(sc, &spans[X][i], &spans[Y][j]);
1759
1760 /* Take care to repeat at the multi-pspan. */
1761 if (repeat_count > 0) {
1762 if ((repeat_axis == X) &&
1763 (repeat_index == i)) {
1764 i--; /* counter loop increment */
1765 repeat_count--;
1766 } else if ((repeat_axis == Y) &&
1767 (repeat_index == j)) {
1768 j--; /* counter loop increment */
1769 repeat_count--;
1770 }
1771 }
1772 }
1773 }
1774 }
1775
1776 /* Initialize a stroke from an unmatched finger. */
1777 static void
1778 wsp_add_stroke(struct atp_softc *sc, const wsp_finger_t *fingerp)
1779 {
1780 atp_stroke_t *strokep;
1781
1782 strokep = atp_alloc_stroke(sc);
1783 if (strokep == NULL)
1784 return;
1785
1786 /*
1787 * Strokes begin as potential touches. If a stroke survives
1788 * longer than a threshold, or if it records significant
1789 * cumulative movement, then it is considered a 'slide'.
1790 */
1791 strokep->type = ATP_STROKE_TOUCH;
1792 strokep->matched = true;
1793 microtime(&strokep->ctime);
1794 strokep->age = 1; /* number of interrupts */
1795 strokep->x = fingerp->x;
1796 strokep->y = fingerp->y;
1797
1798 /* Reset double-tap-n-drag if we have more than one strokes. */
1799 if (sc->sc_n_strokes > 1)
1800 sc->sc_state &= ~ATP_DOUBLE_TAP_DRAG;
1801
1802 DPRINTFN(ATP_LLEVEL_INFO, "[%d,%d]\n", strokep->x, strokep->y);
1803 }
1804
1805 static void
1806 atp_advance_stroke_state(struct atp_softc *sc, atp_stroke_t *strokep,
1807 boolean_t *movementp)
1808 {
1809 /* Revitalize stroke if it had previously been marked as a zombie. */
1810 if (strokep->flags & ATSF_ZOMBIE)
1811 strokep->flags &= ~ATSF_ZOMBIE;
1812
1813 strokep->age++;
1814 if (strokep->age <= atp_stroke_maturity_threshold) {
1815 /* Avoid noise from immature strokes. */
1816 strokep->instantaneous_dx = 0;
1817 strokep->instantaneous_dy = 0;
1818 }
1819
1820 if (atp_compute_stroke_movement(strokep))
1821 *movementp = true;
1822
1823 if (strokep->type != ATP_STROKE_TOUCH)
1824 return;
1825
1826 /* Convert touch strokes to slides upon detecting movement or age. */
1827 if ((abs(strokep->cum_movement_x) > atp_slide_min_movement) ||
1828 (abs(strokep->cum_movement_y) > atp_slide_min_movement))
1829 atp_convert_to_slide(sc, strokep);
1830 else {
1831 /* Compute the stroke's age. */
1832 struct timeval tdiff;
1833 getmicrotime(&tdiff);
1834 if (timevalcmp(&tdiff, &strokep->ctime, >)) {
1835 timevalsub(&tdiff, &strokep->ctime);
1836
1837 if ((tdiff.tv_sec > (atp_touch_timeout / 1000000)) ||
1838 ((tdiff.tv_sec == (atp_touch_timeout / 1000000)) &&
1839 (tdiff.tv_usec >= (atp_touch_timeout % 1000000))))
1840 atp_convert_to_slide(sc, strokep);
1841 }
1842 }
1843 }
1844
1845 static boolean_t
1846 atp_stroke_has_small_movement(const atp_stroke_t *strokep)
1847 {
1848 return (((u_int)abs(strokep->instantaneous_dx) <=
1849 atp_small_movement_threshold) &&
1850 ((u_int)abs(strokep->instantaneous_dy) <=
1851 atp_small_movement_threshold));
1852 }
1853
1854 /*
1855 * Accumulate instantaneous changes into the stroke's 'pending' bucket; if
1856 * the aggregate exceeds the small_movement_threshold, then retain
1857 * instantaneous changes for later.
1858 */
1859 static void
1860 atp_update_pending_mickeys(atp_stroke_t *strokep)
1861 {
1862 /* accumulate instantaneous movement */
1863 strokep->pending_dx += strokep->instantaneous_dx;
1864 strokep->pending_dy += strokep->instantaneous_dy;
1865
1866 #define UPDATE_INSTANTANEOUS_AND_PENDING(I, P) \
1867 if (abs((P)) <= atp_small_movement_threshold) \
1868 (I) = 0; /* clobber small movement */ \
1869 else { \
1870 if ((I) > 0) { \
1871 /* \
1872 * Round up instantaneous movement to the nearest \
1873 * ceiling. This helps preserve small mickey \
1874 * movements from being lost in following scaling \
1875 * operation. \
1876 */ \
1877 (I) = (((I) + (atp_mickeys_scale_factor - 1)) / \
1878 atp_mickeys_scale_factor) * \
1879 atp_mickeys_scale_factor; \
1880 \
1881 /* \
1882 * Deduct the rounded mickeys from pending mickeys. \
1883 * Note: we multiply by 2 to offset the previous \
1884 * accumulation of instantaneous movement into \
1885 * pending. \
1886 */ \
1887 (P) -= ((I) << 1); \
1888 \
1889 /* truncate pending to 0 if it becomes negative. */ \
1890 (P) = imax((P), 0); \
1891 } else { \
1892 /* \
1893 * Round down instantaneous movement to the nearest \
1894 * ceiling. This helps preserve small mickey \
1895 * movements from being lost in following scaling \
1896 * operation. \
1897 */ \
1898 (I) = (((I) - (atp_mickeys_scale_factor - 1)) / \
1899 atp_mickeys_scale_factor) * \
1900 atp_mickeys_scale_factor; \
1901 \
1902 /* \
1903 * Deduct the rounded mickeys from pending mickeys. \
1904 * Note: we multiply by 2 to offset the previous \
1905 * accumulation of instantaneous movement into \
1906 * pending. \
1907 */ \
1908 (P) -= ((I) << 1); \
1909 \
1910 /* truncate pending to 0 if it becomes positive. */ \
1911 (P) = imin((P), 0); \
1912 } \
1913 }
1914
1915 UPDATE_INSTANTANEOUS_AND_PENDING(strokep->instantaneous_dx,
1916 strokep->pending_dx);
1917 UPDATE_INSTANTANEOUS_AND_PENDING(strokep->instantaneous_dy,
1918 strokep->pending_dy);
1919 }
1920
1921 /*
1922 * Compute a smoothened value for the stroke's movement from
1923 * instantaneous changes in the X and Y components.
1924 */
1925 static boolean_t
1926 atp_compute_stroke_movement(atp_stroke_t *strokep)
1927 {
1928 /*
1929 * Short movements are added first to the 'pending' bucket,
1930 * and then acted upon only when their aggregate exceeds a
1931 * threshold. This has the effect of filtering away movement
1932 * noise.
1933 */
1934 if (atp_stroke_has_small_movement(strokep))
1935 atp_update_pending_mickeys(strokep);
1936 else { /* large movement */
1937 /* clear away any pending mickeys if there are large movements*/
1938 strokep->pending_dx = 0;
1939 strokep->pending_dy = 0;
1940 }
1941
1942 /* scale movement */
1943 strokep->movement_dx = (strokep->instantaneous_dx) /
1944 (int)atp_mickeys_scale_factor;
1945 strokep->movement_dy = (strokep->instantaneous_dy) /
1946 (int)atp_mickeys_scale_factor;
1947
1948 if ((abs(strokep->instantaneous_dx) >= ATP_FAST_MOVEMENT_TRESHOLD) ||
1949 (abs(strokep->instantaneous_dy) >= ATP_FAST_MOVEMENT_TRESHOLD)) {
1950 strokep->movement_dx <<= 1;
1951 strokep->movement_dy <<= 1;
1952 }
1953
1954 strokep->cum_movement_x += strokep->movement_dx;
1955 strokep->cum_movement_y += strokep->movement_dy;
1956
1957 return ((strokep->movement_dx != 0) || (strokep->movement_dy != 0));
1958 }
1959
1960 /*
1961 * Terminate a stroke. Aside from immature strokes, a slide or touch is
1962 * retained as a zombies so as to reap all their termination siblings
1963 * together; this helps establish the number of fingers involved at the
1964 * end of a multi-touch gesture.
1965 */
1966 static void
1967 atp_terminate_stroke(struct atp_softc *sc, atp_stroke_t *strokep)
1968 {
1969 if (strokep->flags & ATSF_ZOMBIE)
1970 return;
1971
1972 /* Drop immature strokes rightaway. */
1973 if (strokep->age <= atp_stroke_maturity_threshold) {
1974 atp_free_stroke(sc, strokep);
1975 return;
1976 }
1977
1978 strokep->flags |= ATSF_ZOMBIE;
1979 sc->sc_state |= ATP_ZOMBIES_EXIST;
1980
1981 callout_reset(&sc->sc_callout, ATP_ZOMBIE_STROKE_REAP_INTERVAL,
1982 atp_reap_sibling_zombies, sc);
1983
1984 /*
1985 * Reset the double-click-n-drag at the termination of any
1986 * slide stroke.
1987 */
1988 if (strokep->type == ATP_STROKE_SLIDE)
1989 sc->sc_state &= ~ATP_DOUBLE_TAP_DRAG;
1990 }
1991
1992 static boolean_t
1993 atp_is_horizontal_scroll(const atp_stroke_t *strokep)
1994 {
1995 if (abs(strokep->cum_movement_x) < atp_slide_min_movement)
1996 return (false);
1997 if (strokep->cum_movement_y == 0)
1998 return (true);
1999 return (abs(strokep->cum_movement_x / strokep->cum_movement_y) >= 4);
2000 }
2001
2002 static boolean_t
2003 atp_is_vertical_scroll(const atp_stroke_t *strokep)
2004 {
2005 if (abs(strokep->cum_movement_y) < atp_slide_min_movement)
2006 return (false);
2007 if (strokep->cum_movement_x == 0)
2008 return (true);
2009 return (abs(strokep->cum_movement_y / strokep->cum_movement_x) >= 4);
2010 }
2011
2012 static void
2013 atp_reap_sibling_zombies(void *arg)
2014 {
2015 struct atp_softc *sc = (struct atp_softc *)arg;
2016 u_int8_t n_touches_reaped = 0;
2017 u_int8_t n_slides_reaped = 0;
2018 u_int8_t n_horizontal_scrolls = 0;
2019 int horizontal_scroll = 0;
2020 atp_stroke_t *strokep;
2021 atp_stroke_t *strokep_next;
2022
2023 DPRINTFN(ATP_LLEVEL_INFO, "\n");
2024
2025 TAILQ_FOREACH_SAFE(strokep, &sc->sc_stroke_used, entry, strokep_next) {
2026 if ((strokep->flags & ATSF_ZOMBIE) == 0)
2027 continue;
2028
2029 if (strokep->type == ATP_STROKE_TOUCH) {
2030 n_touches_reaped++;
2031 } else {
2032 n_slides_reaped++;
2033
2034 if (atp_is_horizontal_scroll(strokep)) {
2035 n_horizontal_scrolls++;
2036 horizontal_scroll += strokep->cum_movement_x;
2037 }
2038 }
2039
2040 atp_free_stroke(sc, strokep);
2041 }
2042
2043 DPRINTFN(ATP_LLEVEL_INFO, "reaped %u zombies\n",
2044 n_touches_reaped + n_slides_reaped);
2045 sc->sc_state &= ~ATP_ZOMBIES_EXIST;
2046
2047 /* No further processing necessary if physical button is depressed. */
2048 if (sc->sc_ibtn != 0)
2049 return;
2050
2051 if ((n_touches_reaped == 0) && (n_slides_reaped == 0))
2052 return;
2053
2054 /* Add a pair of virtual button events (button-down and button-up) if
2055 * the physical button isn't pressed. */
2056 if (n_touches_reaped != 0) {
2057 if (n_touches_reaped < atp_tap_minimum)
2058 return;
2059
2060 switch (n_touches_reaped) {
2061 case 1:
2062 atp_add_to_queue(sc, 0, 0, 0, MOUSE_BUTTON1DOWN);
2063 microtime(&sc->sc_touch_reap_time); /* remember this time */
2064 break;
2065 case 2:
2066 atp_add_to_queue(sc, 0, 0, 0, MOUSE_BUTTON3DOWN);
2067 break;
2068 case 3:
2069 atp_add_to_queue(sc, 0, 0, 0, MOUSE_BUTTON2DOWN);
2070 break;
2071 default:
2072 /* we handle taps of only up to 3 fingers */
2073 return;
2074 }
2075 atp_add_to_queue(sc, 0, 0, 0, 0); /* button release */
2076
2077 } else if ((n_slides_reaped == 2) && (n_horizontal_scrolls == 2)) {
2078 if (horizontal_scroll < 0)
2079 atp_add_to_queue(sc, 0, 0, 0, MOUSE_BUTTON4DOWN);
2080 else
2081 atp_add_to_queue(sc, 0, 0, 0, MOUSE_BUTTON5DOWN);
2082 atp_add_to_queue(sc, 0, 0, 0, 0); /* button release */
2083 }
2084 }
2085
2086 /* Switch a given touch stroke to being a slide. */
2087 static void
2088 atp_convert_to_slide(struct atp_softc *sc, atp_stroke_t *strokep)
2089 {
2090 strokep->type = ATP_STROKE_SLIDE;
2091
2092 /* Are we at the beginning of a double-click-n-drag? */
2093 if ((sc->sc_n_strokes == 1) &&
2094 ((sc->sc_state & ATP_ZOMBIES_EXIST) == 0) &&
2095 timevalcmp(&strokep->ctime, &sc->sc_touch_reap_time, >)) {
2096 struct timeval delta;
2097 struct timeval window = {
2098 atp_double_tap_threshold / 1000000,
2099 atp_double_tap_threshold % 1000000
2100 };
2101
2102 delta = strokep->ctime;
2103 timevalsub(&delta, &sc->sc_touch_reap_time);
2104 if (timevalcmp(&delta, &window, <=))
2105 sc->sc_state |= ATP_DOUBLE_TAP_DRAG;
2106 }
2107 }
2108
2109 static void
2110 atp_reset_buf(struct atp_softc *sc)
2111 {
2112 /* reset read queue */
2113 usb_fifo_reset(sc->sc_fifo.fp[USB_FIFO_RX]);
2114 }
2115
2116 static void
2117 atp_add_to_queue(struct atp_softc *sc, int dx, int dy, int dz,
2118 uint32_t buttons_in)
2119 {
2120 uint32_t buttons_out;
2121 uint8_t buf[8];
2122
2123 dx = imin(dx, 254); dx = imax(dx, -256);
2124 dy = imin(dy, 254); dy = imax(dy, -256);
2125 dz = imin(dz, 126); dz = imax(dz, -128);
2126
2127 buttons_out = MOUSE_MSC_BUTTONS;
2128 if (buttons_in & MOUSE_BUTTON1DOWN)
2129 buttons_out &= ~MOUSE_MSC_BUTTON1UP;
2130 else if (buttons_in & MOUSE_BUTTON2DOWN)
2131 buttons_out &= ~MOUSE_MSC_BUTTON2UP;
2132 else if (buttons_in & MOUSE_BUTTON3DOWN)
2133 buttons_out &= ~MOUSE_MSC_BUTTON3UP;
2134
2135 DPRINTFN(ATP_LLEVEL_INFO, "dx=%d, dy=%d, buttons=%x\n",
2136 dx, dy, buttons_out);
2137
2138 /* Encode the mouse data in standard format; refer to mouse(4) */
2139 buf[0] = sc->sc_mode.syncmask[1];
2140 buf[0] |= buttons_out;
2141 buf[1] = dx >> 1;
2142 buf[2] = dy >> 1;
2143 buf[3] = dx - (dx >> 1);
2144 buf[4] = dy - (dy >> 1);
2145 /* Encode extra bytes for level 1 */
2146 if (sc->sc_mode.level == 1) {
2147 buf[5] = dz >> 1;
2148 buf[6] = dz - (dz >> 1);
2149 buf[7] = (((~buttons_in) >> 3) & MOUSE_SYS_EXTBUTTONS);
2150 }
2151
2152 usb_fifo_put_data_linear(sc->sc_fifo.fp[USB_FIFO_RX], buf,
2153 sc->sc_mode.packetsize, 1);
2154 }
2155
2156 static int
2157 atp_probe(device_t self)
2158 {
2159 struct usb_attach_arg *uaa = device_get_ivars(self);
2160
2161 if (uaa->usb_mode != USB_MODE_HOST)
2162 return (ENXIO);
2163
2164 if (uaa->info.bInterfaceClass != UICLASS_HID)
2165 return (ENXIO);
2166 /*
2167 * Note: for some reason, the check
2168 * (uaa->info.bInterfaceProtocol == UIPROTO_MOUSE) doesn't hold true
2169 * for wellspring trackpads, so we've removed it from the common path.
2170 */
2171
2172 if ((usbd_lookup_id_by_uaa(fg_devs, sizeof(fg_devs), uaa)) == 0)
2173 return ((uaa->info.bInterfaceProtocol == UIPROTO_MOUSE) ?
2174 BUS_PROBE_DEFAULT : ENXIO);
2175
2176 if ((usbd_lookup_id_by_uaa(wsp_devs, sizeof(wsp_devs), uaa)) == 0)
2177 if (uaa->info.bIfaceIndex == WELLSPRING_INTERFACE_INDEX)
2178 return (BUS_PROBE_DEFAULT);
2179
2180 return (ENXIO);
2181 }
2182
2183 static int
2184 atp_attach(device_t dev)
2185 {
2186 struct atp_softc *sc = device_get_softc(dev);
2187 struct usb_attach_arg *uaa = device_get_ivars(dev);
2188 usb_error_t err;
2189 void *descriptor_ptr = NULL;
2190 uint16_t descriptor_len;
2191 unsigned long di;
2192
2193 DPRINTFN(ATP_LLEVEL_INFO, "sc=%p\n", sc);
2194
2195 sc->sc_dev = dev;
2196 sc->sc_usb_device = uaa->device;
2197
2198 /* Get HID descriptor */
2199 if (usbd_req_get_hid_desc(uaa->device, NULL, &descriptor_ptr,
2200 &descriptor_len, M_TEMP, uaa->info.bIfaceIndex) !=
2201 USB_ERR_NORMAL_COMPLETION)
2202 return (ENXIO);
2203
2204 /* Get HID report descriptor length */
2205 sc->sc_expected_sensor_data_len = hid_report_size_max(descriptor_ptr,
2206 descriptor_len, hid_input, NULL);
2207 free(descriptor_ptr, M_TEMP);
2208
2209 if ((sc->sc_expected_sensor_data_len <= 0) ||
2210 (sc->sc_expected_sensor_data_len > ATP_SENSOR_DATA_BUF_MAX)) {
2211 DPRINTF("atp_attach: datalength invalid or too large: %d\n",
2212 sc->sc_expected_sensor_data_len);
2213 return (ENXIO);
2214 }
2215
2216 di = USB_GET_DRIVER_INFO(uaa);
2217 sc->sc_family = DECODE_FAMILY_FROM_DRIVER_INFO(di);
2218
2219 /*
2220 * By default the touchpad behaves like an HID device, sending
2221 * packets with reportID = 2. Such reports contain only
2222 * limited information--they encode movement deltas and button
2223 * events,--but do not include data from the pressure
2224 * sensors. The device input mode can be switched from HID
2225 * reports to raw sensor data using vendor-specific USB
2226 * control commands.
2227 * FOUNTAIN devices will give an error when trying to switch
2228 * input mode, so we skip this command
2229 */
2230 if ((sc->sc_family == TRACKPAD_FAMILY_FOUNTAIN_GEYSER) &&
2231 (DECODE_PRODUCT_FROM_DRIVER_INFO(di) == FOUNTAIN))
2232 DPRINTF("device mode switch skipped: Fountain device\n");
2233 else if ((err = atp_set_device_mode(sc, RAW_SENSOR_MODE)) != 0) {
2234 DPRINTF("failed to set mode to 'RAW_SENSOR' (%d)\n", err);
2235 return (ENXIO);
2236 }
2237
2238 mtx_init(&sc->sc_mutex, "atpmtx", NULL, MTX_DEF | MTX_RECURSE);
2239
2240 switch(sc->sc_family) {
2241 case TRACKPAD_FAMILY_FOUNTAIN_GEYSER:
2242 sc->sc_params =
2243 &fg_dev_params[DECODE_PRODUCT_FROM_DRIVER_INFO(di)];
2244 sc->sensor_data_interpreter = fg_interpret_sensor_data;
2245 break;
2246 case TRACKPAD_FAMILY_WELLSPRING:
2247 sc->sc_params =
2248 &wsp_dev_params[DECODE_PRODUCT_FROM_DRIVER_INFO(di)];
2249 sc->sensor_data_interpreter = wsp_interpret_sensor_data;
2250 break;
2251 default:
2252 goto detach;
2253 }
2254
2255 err = usbd_transfer_setup(uaa->device,
2256 &uaa->info.bIfaceIndex, sc->sc_xfer, atp_xfer_config,
2257 ATP_N_TRANSFER, sc, &sc->sc_mutex);
2258 if (err) {
2259 DPRINTF("error=%s\n", usbd_errstr(err));
2260 goto detach;
2261 }
2262
2263 if (usb_fifo_attach(sc->sc_usb_device, sc, &sc->sc_mutex,
2264 &atp_fifo_methods, &sc->sc_fifo,
2265 device_get_unit(dev), -1, uaa->info.bIfaceIndex,
2266 UID_ROOT, GID_OPERATOR, 0644)) {
2267 goto detach;
2268 }
2269
2270 device_set_usb_desc(dev);
2271
2272 sc->sc_hw.buttons = 3;
2273 sc->sc_hw.iftype = MOUSE_IF_USB;
2274 sc->sc_hw.type = MOUSE_PAD;
2275 sc->sc_hw.model = MOUSE_MODEL_GENERIC;
2276 sc->sc_hw.hwid = 0;
2277 sc->sc_mode.protocol = MOUSE_PROTO_MSC;
2278 sc->sc_mode.rate = -1;
2279 sc->sc_mode.resolution = MOUSE_RES_UNKNOWN;
2280 sc->sc_mode.packetsize = MOUSE_MSC_PACKETSIZE;
2281 sc->sc_mode.syncmask[0] = MOUSE_MSC_SYNCMASK;
2282 sc->sc_mode.syncmask[1] = MOUSE_MSC_SYNC;
2283 sc->sc_mode.accelfactor = 0;
2284 sc->sc_mode.level = 0;
2285
2286 sc->sc_state = 0;
2287 sc->sc_ibtn = 0;
2288
2289 callout_init_mtx(&sc->sc_callout, &sc->sc_mutex, 0);
2290
2291 return (0);
2292
2293 detach:
2294 atp_detach(dev);
2295 return (ENOMEM);
2296 }
2297
2298 static int
2299 atp_detach(device_t dev)
2300 {
2301 struct atp_softc *sc;
2302
2303 sc = device_get_softc(dev);
2304 atp_set_device_mode(sc, HID_MODE);
2305
2306 mtx_lock(&sc->sc_mutex);
2307 callout_drain(&sc->sc_callout);
2308 if (sc->sc_state & ATP_ENABLED)
2309 atp_disable(sc);
2310 mtx_unlock(&sc->sc_mutex);
2311
2312 usb_fifo_detach(&sc->sc_fifo);
2313
2314 usbd_transfer_unsetup(sc->sc_xfer, ATP_N_TRANSFER);
2315
2316 mtx_destroy(&sc->sc_mutex);
2317
2318 return (0);
2319 }
2320
2321 static void
2322 atp_intr(struct usb_xfer *xfer, usb_error_t error)
2323 {
2324 struct atp_softc *sc = usbd_xfer_softc(xfer);
2325 struct usb_page_cache *pc;
2326 int len;
2327
2328 usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
2329
2330 switch (USB_GET_STATE(xfer)) {
2331 case USB_ST_TRANSFERRED:
2332 pc = usbd_xfer_get_frame(xfer, 0);
2333 usbd_copy_out(pc, 0, sc->sc_sensor_data, len);
2334 if (len < sc->sc_expected_sensor_data_len) {
2335 /* make sure we don't process old data */
2336 memset(sc->sc_sensor_data + len, 0,
2337 sc->sc_expected_sensor_data_len - len);
2338 }
2339
2340 sc->sc_status.flags &= ~(MOUSE_STDBUTTONSCHANGED |
2341 MOUSE_POSCHANGED);
2342 sc->sc_status.obutton = sc->sc_status.button;
2343
2344 (sc->sensor_data_interpreter)(sc, len);
2345
2346 if (sc->sc_status.button != 0) {
2347 /* Reset DOUBLE_TAP_N_DRAG if the button is pressed. */
2348 sc->sc_state &= ~ATP_DOUBLE_TAP_DRAG;
2349 } else if (sc->sc_state & ATP_DOUBLE_TAP_DRAG) {
2350 /* Assume a button-press with DOUBLE_TAP_N_DRAG. */
2351 sc->sc_status.button = MOUSE_BUTTON1DOWN;
2352 }
2353
2354 sc->sc_status.flags |=
2355 sc->sc_status.button ^ sc->sc_status.obutton;
2356 if (sc->sc_status.flags & MOUSE_STDBUTTONSCHANGED) {
2357 DPRINTFN(ATP_LLEVEL_INFO, "button %s\n",
2358 ((sc->sc_status.button & MOUSE_BUTTON1DOWN) ?
2359 "pressed" : "released"));
2360 }
2361
2362 if (sc->sc_status.flags & (MOUSE_POSCHANGED |
2363 MOUSE_STDBUTTONSCHANGED)) {
2364 atp_stroke_t *strokep;
2365 u_int8_t n_movements = 0;
2366 int dx = 0;
2367 int dy = 0;
2368 int dz = 0;
2369
2370 TAILQ_FOREACH(strokep, &sc->sc_stroke_used, entry) {
2371 if (strokep->flags & ATSF_ZOMBIE)
2372 continue;
2373
2374 dx += strokep->movement_dx;
2375 dy += strokep->movement_dy;
2376 if (strokep->movement_dx ||
2377 strokep->movement_dy)
2378 n_movements++;
2379 }
2380
2381 /* average movement if multiple strokes record motion.*/
2382 if (n_movements > 1) {
2383 dx /= (int)n_movements;
2384 dy /= (int)n_movements;
2385 }
2386
2387 /* detect multi-finger vertical scrolls */
2388 if (n_movements >= 2) {
2389 boolean_t all_vertical_scrolls = true;
2390 TAILQ_FOREACH(strokep, &sc->sc_stroke_used, entry) {
2391 if (strokep->flags & ATSF_ZOMBIE)
2392 continue;
2393
2394 if (!atp_is_vertical_scroll(strokep))
2395 all_vertical_scrolls = false;
2396 }
2397 if (all_vertical_scrolls) {
2398 dz = dy;
2399 dy = dx = 0;
2400 }
2401 }
2402
2403 sc->sc_status.dx += dx;
2404 sc->sc_status.dy += dy;
2405 sc->sc_status.dz += dz;
2406 atp_add_to_queue(sc, dx, -dy, -dz, sc->sc_status.button);
2407 }
2408
2409 case USB_ST_SETUP:
2410 tr_setup:
2411 /* check if we can put more data into the FIFO */
2412 if (usb_fifo_put_bytes_max(sc->sc_fifo.fp[USB_FIFO_RX]) != 0) {
2413 usbd_xfer_set_frame_len(xfer, 0,
2414 sc->sc_expected_sensor_data_len);
2415 usbd_transfer_submit(xfer);
2416 }
2417 break;
2418
2419 default: /* Error */
2420 if (error != USB_ERR_CANCELLED) {
2421 /* try clear stall first */
2422 usbd_xfer_set_stall(xfer);
2423 goto tr_setup;
2424 }
2425 break;
2426 }
2427 }
2428
2429 static void
2430 atp_start_read(struct usb_fifo *fifo)
2431 {
2432 struct atp_softc *sc = usb_fifo_softc(fifo);
2433 int rate;
2434
2435 /* Check if we should override the default polling interval */
2436 rate = sc->sc_pollrate;
2437 /* Range check rate */
2438 if (rate > 1000)
2439 rate = 1000;
2440 /* Check for set rate */
2441 if ((rate > 0) && (sc->sc_xfer[ATP_INTR_DT] != NULL)) {
2442 /* Stop current transfer, if any */
2443 usbd_transfer_stop(sc->sc_xfer[ATP_INTR_DT]);
2444 /* Set new interval */
2445 usbd_xfer_set_interval(sc->sc_xfer[ATP_INTR_DT], 1000 / rate);
2446 /* Only set pollrate once */
2447 sc->sc_pollrate = 0;
2448 }
2449
2450 usbd_transfer_start(sc->sc_xfer[ATP_INTR_DT]);
2451 }
2452
2453 static void
2454 atp_stop_read(struct usb_fifo *fifo)
2455 {
2456 struct atp_softc *sc = usb_fifo_softc(fifo);
2457 usbd_transfer_stop(sc->sc_xfer[ATP_INTR_DT]);
2458 }
2459
2460 static int
2461 atp_open(struct usb_fifo *fifo, int fflags)
2462 {
2463 struct atp_softc *sc = usb_fifo_softc(fifo);
2464
2465 /* check for duplicate open, should not happen */
2466 if (sc->sc_fflags & fflags)
2467 return (EBUSY);
2468
2469 /* check for first open */
2470 if (sc->sc_fflags == 0) {
2471 int rc;
2472 if ((rc = atp_enable(sc)) != 0)
2473 return (rc);
2474 }
2475
2476 if (fflags & FREAD) {
2477 if (usb_fifo_alloc_buffer(fifo,
2478 ATP_FIFO_BUF_SIZE, ATP_FIFO_QUEUE_MAXLEN)) {
2479 return (ENOMEM);
2480 }
2481 }
2482
2483 sc->sc_fflags |= (fflags & (FREAD | FWRITE));
2484 return (0);
2485 }
2486
2487 static void
2488 atp_close(struct usb_fifo *fifo, int fflags)
2489 {
2490 struct atp_softc *sc = usb_fifo_softc(fifo);
2491 if (fflags & FREAD)
2492 usb_fifo_free_buffer(fifo);
2493
2494 sc->sc_fflags &= ~(fflags & (FREAD | FWRITE));
2495 if (sc->sc_fflags == 0) {
2496 atp_disable(sc);
2497 }
2498 }
2499
2500 static int
2501 atp_ioctl(struct usb_fifo *fifo, u_long cmd, void *addr, int fflags)
2502 {
2503 struct atp_softc *sc = usb_fifo_softc(fifo);
2504 mousemode_t mode;
2505 int error = 0;
2506
2507 mtx_lock(&sc->sc_mutex);
2508
2509 switch(cmd) {
2510 case MOUSE_GETHWINFO:
2511 *(mousehw_t *)addr = sc->sc_hw;
2512 break;
2513 case MOUSE_GETMODE:
2514 *(mousemode_t *)addr = sc->sc_mode;
2515 break;
2516 case MOUSE_SETMODE:
2517 mode = *(mousemode_t *)addr;
2518
2519 if (mode.level == -1)
2520 /* Don't change the current setting */
2521 ;
2522 else if ((mode.level < 0) || (mode.level > 1)) {
2523 error = EINVAL;
2524 break;
2525 }
2526 sc->sc_mode.level = mode.level;
2527 sc->sc_pollrate = mode.rate;
2528 sc->sc_hw.buttons = 3;
2529
2530 if (sc->sc_mode.level == 0) {
2531 sc->sc_mode.protocol = MOUSE_PROTO_MSC;
2532 sc->sc_mode.packetsize = MOUSE_MSC_PACKETSIZE;
2533 sc->sc_mode.syncmask[0] = MOUSE_MSC_SYNCMASK;
2534 sc->sc_mode.syncmask[1] = MOUSE_MSC_SYNC;
2535 } else if (sc->sc_mode.level == 1) {
2536 sc->sc_mode.protocol = MOUSE_PROTO_SYSMOUSE;
2537 sc->sc_mode.packetsize = MOUSE_SYS_PACKETSIZE;
2538 sc->sc_mode.syncmask[0] = MOUSE_SYS_SYNCMASK;
2539 sc->sc_mode.syncmask[1] = MOUSE_SYS_SYNC;
2540 }
2541 atp_reset_buf(sc);
2542 break;
2543 case MOUSE_GETLEVEL:
2544 *(int *)addr = sc->sc_mode.level;
2545 break;
2546 case MOUSE_SETLEVEL:
2547 if ((*(int *)addr < 0) || (*(int *)addr > 1)) {
2548 error = EINVAL;
2549 break;
2550 }
2551 sc->sc_mode.level = *(int *)addr;
2552 sc->sc_hw.buttons = 3;
2553
2554 if (sc->sc_mode.level == 0) {
2555 sc->sc_mode.protocol = MOUSE_PROTO_MSC;
2556 sc->sc_mode.packetsize = MOUSE_MSC_PACKETSIZE;
2557 sc->sc_mode.syncmask[0] = MOUSE_MSC_SYNCMASK;
2558 sc->sc_mode.syncmask[1] = MOUSE_MSC_SYNC;
2559 } else if (sc->sc_mode.level == 1) {
2560 sc->sc_mode.protocol = MOUSE_PROTO_SYSMOUSE;
2561 sc->sc_mode.packetsize = MOUSE_SYS_PACKETSIZE;
2562 sc->sc_mode.syncmask[0] = MOUSE_SYS_SYNCMASK;
2563 sc->sc_mode.syncmask[1] = MOUSE_SYS_SYNC;
2564 }
2565 atp_reset_buf(sc);
2566 break;
2567 case MOUSE_GETSTATUS: {
2568 mousestatus_t *status = (mousestatus_t *)addr;
2569
2570 *status = sc->sc_status;
2571 sc->sc_status.obutton = sc->sc_status.button;
2572 sc->sc_status.button = 0;
2573 sc->sc_status.dx = 0;
2574 sc->sc_status.dy = 0;
2575 sc->sc_status.dz = 0;
2576
2577 if (status->dx || status->dy || status->dz)
2578 status->flags |= MOUSE_POSCHANGED;
2579 if (status->button != status->obutton)
2580 status->flags |= MOUSE_BUTTONSCHANGED;
2581 break;
2582 }
2583
2584 default:
2585 error = ENOTTY;
2586 break;
2587 }
2588
2589 mtx_unlock(&sc->sc_mutex);
2590 return (error);
2591 }
2592
2593 static int
2594 atp_sysctl_scale_factor_handler(SYSCTL_HANDLER_ARGS)
2595 {
2596 int error;
2597 u_int tmp;
2598
2599 tmp = atp_mickeys_scale_factor;
2600 error = sysctl_handle_int(oidp, &tmp, 0, req);
2601 if (error != 0 || req->newptr == NULL)
2602 return (error);
2603
2604 if (tmp == atp_mickeys_scale_factor)
2605 return (0); /* no change */
2606 if ((tmp == 0) || (tmp > (10 * ATP_SCALE_FACTOR)))
2607 return (EINVAL);
2608
2609 atp_mickeys_scale_factor = tmp;
2610 DPRINTFN(ATP_LLEVEL_INFO, "%s: resetting mickeys_scale_factor to %u\n",
2611 ATP_DRIVER_NAME, tmp);
2612
2613 return (0);
2614 }
2615
2616 static device_method_t atp_methods[] = {
2617 DEVMETHOD(device_probe, atp_probe),
2618 DEVMETHOD(device_attach, atp_attach),
2619 DEVMETHOD(device_detach, atp_detach),
2620
2621 DEVMETHOD_END
2622 };
2623
2624 static driver_t atp_driver = {
2625 .name = ATP_DRIVER_NAME,
2626 .methods = atp_methods,
2627 .size = sizeof(struct atp_softc)
2628 };
2629
2630 DRIVER_MODULE(atp, uhub, atp_driver, NULL, NULL);
2631 MODULE_DEPEND(atp, usb, 1, 1, 1);
2632 MODULE_DEPEND(atp, hid, 1, 1, 1);
2633 MODULE_VERSION(atp, 1);
2634 USB_PNP_HOST_INFO(fg_devs);
2635 USB_PNP_HOST_INFO(wsp_devs);
Cache object: d635b8346e1d2f14a6e5c6d6d55ede50
|