The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/usb/wlan/if_rum.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $FreeBSD$       */
    2 
    3 /*-
    4  * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
    5  * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
    6  * Copyright (c) 2007-2008 Hans Petter Selasky <hselasky@FreeBSD.org>
    7  * Copyright (c) 2015 Andriy Voskoboinyk <avos@FreeBSD.org>
    8  *
    9  * Permission to use, copy, modify, and distribute this software for any
   10  * purpose with or without fee is hereby granted, provided that the above
   11  * copyright notice and this permission notice appear in all copies.
   12  *
   13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
   15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
   16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
   17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
   18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
   19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
   20  */
   21 
   22 #include <sys/cdefs.h>
   23 __FBSDID("$FreeBSD$");
   24 
   25 /*-
   26  * Ralink Technology RT2501USB/RT2601USB chipset driver
   27  * http://www.ralinktech.com.tw/
   28  */
   29 
   30 #include "opt_wlan.h"
   31 
   32 #include <sys/param.h>
   33 #include <sys/sockio.h>
   34 #include <sys/sysctl.h>
   35 #include <sys/lock.h>
   36 #include <sys/mutex.h>
   37 #include <sys/mbuf.h>
   38 #include <sys/kernel.h>
   39 #include <sys/socket.h>
   40 #include <sys/systm.h>
   41 #include <sys/malloc.h>
   42 #include <sys/module.h>
   43 #include <sys/bus.h>
   44 #include <sys/endian.h>
   45 #include <sys/kdb.h>
   46 
   47 #include <net/bpf.h>
   48 #include <net/if.h>
   49 #include <net/if_var.h>
   50 #include <net/if_arp.h>
   51 #include <net/ethernet.h>
   52 #include <net/if_dl.h>
   53 #include <net/if_media.h>
   54 #include <net/if_types.h>
   55 
   56 #ifdef INET
   57 #include <netinet/in.h>
   58 #include <netinet/in_systm.h>
   59 #include <netinet/in_var.h>
   60 #include <netinet/if_ether.h>
   61 #include <netinet/ip.h>
   62 #endif
   63 
   64 #include <net80211/ieee80211_var.h>
   65 #include <net80211/ieee80211_regdomain.h>
   66 #include <net80211/ieee80211_radiotap.h>
   67 #include <net80211/ieee80211_ratectl.h>
   68 
   69 #include <dev/usb/usb.h>
   70 #include <dev/usb/usbdi.h>
   71 #include "usbdevs.h"
   72 
   73 #define USB_DEBUG_VAR rum_debug
   74 #include <dev/usb/usb_debug.h>
   75 
   76 #include <dev/usb/wlan/if_rumreg.h>
   77 #include <dev/usb/wlan/if_rumvar.h>
   78 #include <dev/usb/wlan/if_rumfw.h>
   79 
   80 #ifdef USB_DEBUG
   81 static int rum_debug = 0;
   82 
   83 static SYSCTL_NODE(_hw_usb, OID_AUTO, rum, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
   84     "USB rum");
   85 SYSCTL_INT(_hw_usb_rum, OID_AUTO, debug, CTLFLAG_RWTUN, &rum_debug, 0,
   86     "Debug level");
   87 #endif
   88 
   89 static const STRUCT_USB_HOST_ID rum_devs[] = {
   90 #define RUM_DEV(v,p)  { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
   91     RUM_DEV(ABOCOM, HWU54DM),
   92     RUM_DEV(ABOCOM, RT2573_2),
   93     RUM_DEV(ABOCOM, RT2573_3),
   94     RUM_DEV(ABOCOM, RT2573_4),
   95     RUM_DEV(ABOCOM, WUG2700),
   96     RUM_DEV(AMIT, CGWLUSB2GO),
   97     RUM_DEV(ASUS, RT2573_1),
   98     RUM_DEV(ASUS, RT2573_2),
   99     RUM_DEV(BELKIN, F5D7050A),
  100     RUM_DEV(BELKIN, F5D9050V3),
  101     RUM_DEV(CISCOLINKSYS, WUSB54GC),
  102     RUM_DEV(CISCOLINKSYS, WUSB54GR),
  103     RUM_DEV(CONCEPTRONIC2, C54RU2),
  104     RUM_DEV(COREGA, CGWLUSB2GL),
  105     RUM_DEV(COREGA, CGWLUSB2GPX),
  106     RUM_DEV(DICKSMITH, CWD854F),
  107     RUM_DEV(DICKSMITH, RT2573),
  108     RUM_DEV(EDIMAX, EW7318USG),
  109     RUM_DEV(DLINK2, DWLG122C1),
  110     RUM_DEV(DLINK2, WUA1340),
  111     RUM_DEV(DLINK2, DWA111),
  112     RUM_DEV(DLINK2, DWA110),
  113     RUM_DEV(GIGABYTE, GNWB01GS),
  114     RUM_DEV(GIGABYTE, GNWI05GS),
  115     RUM_DEV(GIGASET, RT2573),
  116     RUM_DEV(GOODWAY, RT2573),
  117     RUM_DEV(GUILLEMOT, HWGUSB254LB),
  118     RUM_DEV(GUILLEMOT, HWGUSB254V2AP),
  119     RUM_DEV(HUAWEI3COM, WUB320G),
  120     RUM_DEV(MELCO, G54HP),
  121     RUM_DEV(MELCO, SG54HP),
  122     RUM_DEV(MELCO, SG54HG),
  123     RUM_DEV(MELCO, WLIUCG),
  124     RUM_DEV(MELCO, WLRUCG),
  125     RUM_DEV(MELCO, WLRUCGAOSS),
  126     RUM_DEV(MSI, RT2573_1),
  127     RUM_DEV(MSI, RT2573_2),
  128     RUM_DEV(MSI, RT2573_3),
  129     RUM_DEV(MSI, RT2573_4),
  130     RUM_DEV(NOVATECH, RT2573),
  131     RUM_DEV(PLANEX2, GWUS54HP),
  132     RUM_DEV(PLANEX2, GWUS54MINI2),
  133     RUM_DEV(PLANEX2, GWUSMM),
  134     RUM_DEV(QCOM, RT2573),
  135     RUM_DEV(QCOM, RT2573_2),
  136     RUM_DEV(QCOM, RT2573_3),
  137     RUM_DEV(RALINK, RT2573),
  138     RUM_DEV(RALINK, RT2573_2),
  139     RUM_DEV(RALINK, RT2671),
  140     RUM_DEV(SITECOMEU, WL113R2),
  141     RUM_DEV(SITECOMEU, WL172),
  142     RUM_DEV(SPARKLAN, RT2573),
  143     RUM_DEV(SURECOM, RT2573),
  144 #undef RUM_DEV
  145 };
  146 
  147 static device_probe_t rum_match;
  148 static device_attach_t rum_attach;
  149 static device_detach_t rum_detach;
  150 
  151 static usb_callback_t rum_bulk_read_callback;
  152 static usb_callback_t rum_bulk_write_callback;
  153 
  154 static usb_error_t      rum_do_request(struct rum_softc *sc,
  155                             struct usb_device_request *req, void *data);
  156 static usb_error_t      rum_do_mcu_request(struct rum_softc *sc, int);
  157 static struct ieee80211vap *rum_vap_create(struct ieee80211com *,
  158                             const char [IFNAMSIZ], int, enum ieee80211_opmode,
  159                             int, const uint8_t [IEEE80211_ADDR_LEN],
  160                             const uint8_t [IEEE80211_ADDR_LEN]);
  161 static void             rum_vap_delete(struct ieee80211vap *);
  162 static void             rum_cmdq_cb(void *, int);
  163 static int              rum_cmd_sleepable(struct rum_softc *, const void *,
  164                             size_t, uint8_t, CMD_FUNC_PROTO);
  165 static void             rum_tx_free(struct rum_tx_data *, int);
  166 static void             rum_setup_tx_list(struct rum_softc *);
  167 static void             rum_reset_tx_list(struct rum_softc *,
  168                             struct ieee80211vap *);
  169 static void             rum_unsetup_tx_list(struct rum_softc *);
  170 static void             rum_beacon_miss(struct ieee80211vap *);
  171 static void             rum_sta_recv_mgmt(struct ieee80211_node *,
  172                             struct mbuf *, int,
  173                             const struct ieee80211_rx_stats *, int, int);
  174 static int              rum_set_power_state(struct rum_softc *, int);
  175 static int              rum_newstate(struct ieee80211vap *,
  176                             enum ieee80211_state, int);
  177 static uint8_t          rum_crypto_mode(struct rum_softc *, u_int, int);
  178 static void             rum_setup_tx_desc(struct rum_softc *,
  179                             struct rum_tx_desc *, struct ieee80211_key *,
  180                             uint32_t, uint8_t, uint8_t, int, int, int);
  181 static uint32_t         rum_tx_crypto_flags(struct rum_softc *,
  182                             struct ieee80211_node *,
  183                             const struct ieee80211_key *);
  184 static int              rum_tx_mgt(struct rum_softc *, struct mbuf *,
  185                             struct ieee80211_node *);
  186 static int              rum_tx_raw(struct rum_softc *, struct mbuf *,
  187                             struct ieee80211_node *, 
  188                             const struct ieee80211_bpf_params *);
  189 static int              rum_tx_data(struct rum_softc *, struct mbuf *,
  190                             struct ieee80211_node *);
  191 static int              rum_transmit(struct ieee80211com *, struct mbuf *);
  192 static void             rum_start(struct rum_softc *);
  193 static void             rum_parent(struct ieee80211com *);
  194 static void             rum_eeprom_read(struct rum_softc *, uint16_t, void *,
  195                             int);
  196 static uint32_t         rum_read(struct rum_softc *, uint16_t);
  197 static void             rum_read_multi(struct rum_softc *, uint16_t, void *,
  198                             int);
  199 static usb_error_t      rum_write(struct rum_softc *, uint16_t, uint32_t);
  200 static usb_error_t      rum_write_multi(struct rum_softc *, uint16_t, void *,
  201                             size_t);
  202 static usb_error_t      rum_setbits(struct rum_softc *, uint16_t, uint32_t);
  203 static usb_error_t      rum_clrbits(struct rum_softc *, uint16_t, uint32_t);
  204 static usb_error_t      rum_modbits(struct rum_softc *, uint16_t, uint32_t,
  205                             uint32_t);
  206 static int              rum_bbp_busy(struct rum_softc *);
  207 static void             rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
  208 static uint8_t          rum_bbp_read(struct rum_softc *, uint8_t);
  209 static void             rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
  210 static void             rum_select_antenna(struct rum_softc *);
  211 static void             rum_enable_mrr(struct rum_softc *);
  212 static void             rum_set_txpreamble(struct rum_softc *);
  213 static void             rum_set_basicrates(struct rum_softc *);
  214 static void             rum_select_band(struct rum_softc *,
  215                             struct ieee80211_channel *);
  216 static void             rum_set_chan(struct rum_softc *,
  217                             struct ieee80211_channel *);
  218 static void             rum_set_maxretry(struct rum_softc *,
  219                             struct ieee80211vap *);
  220 static int              rum_enable_tsf_sync(struct rum_softc *);
  221 static void             rum_enable_tsf(struct rum_softc *);
  222 static void             rum_abort_tsf_sync(struct rum_softc *);
  223 static void             rum_get_tsf(struct rum_softc *, uint64_t *);
  224 static void             rum_update_slot_cb(struct rum_softc *,
  225                             union sec_param *, uint8_t);
  226 static void             rum_update_slot(struct ieee80211com *);
  227 static int              rum_wme_update(struct ieee80211com *);
  228 static void             rum_set_bssid(struct rum_softc *, const uint8_t *);
  229 static void             rum_set_macaddr(struct rum_softc *, const uint8_t *);
  230 static void             rum_update_mcast(struct ieee80211com *);
  231 static void             rum_update_promisc(struct ieee80211com *);
  232 static void             rum_setpromisc(struct rum_softc *);
  233 static const char       *rum_get_rf(int);
  234 static void             rum_read_eeprom(struct rum_softc *);
  235 static int              rum_bbp_wakeup(struct rum_softc *);
  236 static int              rum_bbp_init(struct rum_softc *);
  237 static void             rum_clr_shkey_regs(struct rum_softc *);
  238 static int              rum_init(struct rum_softc *);
  239 static void             rum_stop(struct rum_softc *);
  240 static void             rum_load_microcode(struct rum_softc *, const uint8_t *,
  241                             size_t);
  242 static int              rum_set_sleep_time(struct rum_softc *, uint16_t);
  243 static int              rum_reset(struct ieee80211vap *, u_long);
  244 static int              rum_set_beacon(struct rum_softc *,
  245                             struct ieee80211vap *);
  246 static int              rum_alloc_beacon(struct rum_softc *,
  247                             struct ieee80211vap *);
  248 static void             rum_update_beacon_cb(struct rum_softc *,
  249                             union sec_param *, uint8_t);
  250 static void             rum_update_beacon(struct ieee80211vap *, int);
  251 static int              rum_common_key_set(struct rum_softc *,
  252                             struct ieee80211_key *, uint16_t);
  253 static void             rum_group_key_set_cb(struct rum_softc *,
  254                             union sec_param *, uint8_t);
  255 static void             rum_group_key_del_cb(struct rum_softc *,
  256                             union sec_param *, uint8_t);
  257 static void             rum_pair_key_set_cb(struct rum_softc *,
  258                             union sec_param *, uint8_t);
  259 static void             rum_pair_key_del_cb(struct rum_softc *,
  260                             union sec_param *, uint8_t);
  261 static int              rum_key_alloc(struct ieee80211vap *,
  262                             struct ieee80211_key *, ieee80211_keyix *,
  263                             ieee80211_keyix *);
  264 static int              rum_key_set(struct ieee80211vap *,
  265                             const struct ieee80211_key *);
  266 static int              rum_key_delete(struct ieee80211vap *,
  267                             const struct ieee80211_key *);
  268 static int              rum_raw_xmit(struct ieee80211_node *, struct mbuf *,
  269                             const struct ieee80211_bpf_params *);
  270 static void             rum_scan_start(struct ieee80211com *);
  271 static void             rum_scan_end(struct ieee80211com *);
  272 static void             rum_set_channel(struct ieee80211com *);
  273 static void             rum_getradiocaps(struct ieee80211com *, int, int *,
  274                             struct ieee80211_channel[]);
  275 static int              rum_get_rssi(struct rum_softc *, uint8_t);
  276 static void             rum_ratectl_start(struct rum_softc *,
  277                             struct ieee80211_node *);
  278 static void             rum_ratectl_timeout(void *);
  279 static void             rum_ratectl_task(void *, int);
  280 static int              rum_pause(struct rum_softc *, int);
  281 
  282 static const struct {
  283         uint32_t        reg;
  284         uint32_t        val;
  285 } rum_def_mac[] = {
  286         { RT2573_TXRX_CSR0,  0x025fb032 },
  287         { RT2573_TXRX_CSR1,  0x9eaa9eaf },
  288         { RT2573_TXRX_CSR2,  0x8a8b8c8d }, 
  289         { RT2573_TXRX_CSR3,  0x00858687 },
  290         { RT2573_TXRX_CSR7,  0x2e31353b },
  291         { RT2573_TXRX_CSR8,  0x2a2a2a2c },
  292         { RT2573_TXRX_CSR15, 0x0000000f },
  293         { RT2573_MAC_CSR6,   0x00000fff },
  294         { RT2573_MAC_CSR8,   0x016c030a },
  295         { RT2573_MAC_CSR10,  0x00000718 },
  296         { RT2573_MAC_CSR12,  0x00000004 },
  297         { RT2573_MAC_CSR13,  0x00007f00 },
  298         { RT2573_SEC_CSR2,   0x00000000 },
  299         { RT2573_SEC_CSR3,   0x00000000 },
  300         { RT2573_SEC_CSR4,   0x00000000 },
  301         { RT2573_PHY_CSR1,   0x000023b0 },
  302         { RT2573_PHY_CSR5,   0x00040a06 },
  303         { RT2573_PHY_CSR6,   0x00080606 },
  304         { RT2573_PHY_CSR7,   0x00000408 },
  305         { RT2573_AIFSN_CSR,  0x00002273 },
  306         { RT2573_CWMIN_CSR,  0x00002344 },
  307         { RT2573_CWMAX_CSR,  0x000034aa }
  308 };
  309 
  310 static const struct {
  311         uint8_t reg;
  312         uint8_t val;
  313 } rum_def_bbp[] = {
  314         {   3, 0x80 },
  315         {  15, 0x30 },
  316         {  17, 0x20 },
  317         {  21, 0xc8 },
  318         {  22, 0x38 },
  319         {  23, 0x06 },
  320         {  24, 0xfe },
  321         {  25, 0x0a },
  322         {  26, 0x0d },
  323         {  32, 0x0b },
  324         {  34, 0x12 },
  325         {  37, 0x07 },
  326         {  39, 0xf8 },
  327         {  41, 0x60 },
  328         {  53, 0x10 },
  329         {  54, 0x18 },
  330         {  60, 0x10 },
  331         {  61, 0x04 },
  332         {  62, 0x04 },
  333         {  75, 0xfe },
  334         {  86, 0xfe },
  335         {  88, 0xfe },
  336         {  90, 0x0f },
  337         {  99, 0x00 },
  338         { 102, 0x16 },
  339         { 107, 0x04 }
  340 };
  341 
  342 static const uint8_t rum_chan_5ghz[] =
  343         { 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64,
  344           100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140,
  345           149, 153, 157, 161, 165 };
  346 
  347 static const struct rfprog {
  348         uint8_t         chan;
  349         uint32_t        r1, r2, r3, r4;
  350 }  rum_rf5226[] = {
  351         {   1, 0x00b03, 0x001e1, 0x1a014, 0x30282 },
  352         {   2, 0x00b03, 0x001e1, 0x1a014, 0x30287 },
  353         {   3, 0x00b03, 0x001e2, 0x1a014, 0x30282 },
  354         {   4, 0x00b03, 0x001e2, 0x1a014, 0x30287 },
  355         {   5, 0x00b03, 0x001e3, 0x1a014, 0x30282 },
  356         {   6, 0x00b03, 0x001e3, 0x1a014, 0x30287 },
  357         {   7, 0x00b03, 0x001e4, 0x1a014, 0x30282 },
  358         {   8, 0x00b03, 0x001e4, 0x1a014, 0x30287 },
  359         {   9, 0x00b03, 0x001e5, 0x1a014, 0x30282 },
  360         {  10, 0x00b03, 0x001e5, 0x1a014, 0x30287 },
  361         {  11, 0x00b03, 0x001e6, 0x1a014, 0x30282 },
  362         {  12, 0x00b03, 0x001e6, 0x1a014, 0x30287 },
  363         {  13, 0x00b03, 0x001e7, 0x1a014, 0x30282 },
  364         {  14, 0x00b03, 0x001e8, 0x1a014, 0x30284 },
  365 
  366         {  34, 0x00b03, 0x20266, 0x36014, 0x30282 },
  367         {  38, 0x00b03, 0x20267, 0x36014, 0x30284 },
  368         {  42, 0x00b03, 0x20268, 0x36014, 0x30286 },
  369         {  46, 0x00b03, 0x20269, 0x36014, 0x30288 },
  370 
  371         {  36, 0x00b03, 0x00266, 0x26014, 0x30288 },
  372         {  40, 0x00b03, 0x00268, 0x26014, 0x30280 },
  373         {  44, 0x00b03, 0x00269, 0x26014, 0x30282 },
  374         {  48, 0x00b03, 0x0026a, 0x26014, 0x30284 },
  375         {  52, 0x00b03, 0x0026b, 0x26014, 0x30286 },
  376         {  56, 0x00b03, 0x0026c, 0x26014, 0x30288 },
  377         {  60, 0x00b03, 0x0026e, 0x26014, 0x30280 },
  378         {  64, 0x00b03, 0x0026f, 0x26014, 0x30282 },
  379 
  380         { 100, 0x00b03, 0x0028a, 0x2e014, 0x30280 },
  381         { 104, 0x00b03, 0x0028b, 0x2e014, 0x30282 },
  382         { 108, 0x00b03, 0x0028c, 0x2e014, 0x30284 },
  383         { 112, 0x00b03, 0x0028d, 0x2e014, 0x30286 },
  384         { 116, 0x00b03, 0x0028e, 0x2e014, 0x30288 },
  385         { 120, 0x00b03, 0x002a0, 0x2e014, 0x30280 },
  386         { 124, 0x00b03, 0x002a1, 0x2e014, 0x30282 },
  387         { 128, 0x00b03, 0x002a2, 0x2e014, 0x30284 },
  388         { 132, 0x00b03, 0x002a3, 0x2e014, 0x30286 },
  389         { 136, 0x00b03, 0x002a4, 0x2e014, 0x30288 },
  390         { 140, 0x00b03, 0x002a6, 0x2e014, 0x30280 },
  391 
  392         { 149, 0x00b03, 0x002a8, 0x2e014, 0x30287 },
  393         { 153, 0x00b03, 0x002a9, 0x2e014, 0x30289 },
  394         { 157, 0x00b03, 0x002ab, 0x2e014, 0x30281 },
  395         { 161, 0x00b03, 0x002ac, 0x2e014, 0x30283 },
  396         { 165, 0x00b03, 0x002ad, 0x2e014, 0x30285 }
  397 }, rum_rf5225[] = {
  398         {   1, 0x00b33, 0x011e1, 0x1a014, 0x30282 },
  399         {   2, 0x00b33, 0x011e1, 0x1a014, 0x30287 },
  400         {   3, 0x00b33, 0x011e2, 0x1a014, 0x30282 },
  401         {   4, 0x00b33, 0x011e2, 0x1a014, 0x30287 },
  402         {   5, 0x00b33, 0x011e3, 0x1a014, 0x30282 },
  403         {   6, 0x00b33, 0x011e3, 0x1a014, 0x30287 },
  404         {   7, 0x00b33, 0x011e4, 0x1a014, 0x30282 },
  405         {   8, 0x00b33, 0x011e4, 0x1a014, 0x30287 },
  406         {   9, 0x00b33, 0x011e5, 0x1a014, 0x30282 },
  407         {  10, 0x00b33, 0x011e5, 0x1a014, 0x30287 },
  408         {  11, 0x00b33, 0x011e6, 0x1a014, 0x30282 },
  409         {  12, 0x00b33, 0x011e6, 0x1a014, 0x30287 },
  410         {  13, 0x00b33, 0x011e7, 0x1a014, 0x30282 },
  411         {  14, 0x00b33, 0x011e8, 0x1a014, 0x30284 },
  412 
  413         {  34, 0x00b33, 0x01266, 0x26014, 0x30282 },
  414         {  38, 0x00b33, 0x01267, 0x26014, 0x30284 },
  415         {  42, 0x00b33, 0x01268, 0x26014, 0x30286 },
  416         {  46, 0x00b33, 0x01269, 0x26014, 0x30288 },
  417 
  418         {  36, 0x00b33, 0x01266, 0x26014, 0x30288 },
  419         {  40, 0x00b33, 0x01268, 0x26014, 0x30280 },
  420         {  44, 0x00b33, 0x01269, 0x26014, 0x30282 },
  421         {  48, 0x00b33, 0x0126a, 0x26014, 0x30284 },
  422         {  52, 0x00b33, 0x0126b, 0x26014, 0x30286 },
  423         {  56, 0x00b33, 0x0126c, 0x26014, 0x30288 },
  424         {  60, 0x00b33, 0x0126e, 0x26014, 0x30280 },
  425         {  64, 0x00b33, 0x0126f, 0x26014, 0x30282 },
  426 
  427         { 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 },
  428         { 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 },
  429         { 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 },
  430         { 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 },
  431         { 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 },
  432         { 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 },
  433         { 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 },
  434         { 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 },
  435         { 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 },
  436         { 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 },
  437         { 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 },
  438 
  439         { 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 },
  440         { 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 },
  441         { 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 },
  442         { 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 },
  443         { 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 }
  444 };
  445 
  446 static const struct usb_config rum_config[RUM_N_TRANSFER] = {
  447         [RUM_BULK_WR] = {
  448                 .type = UE_BULK,
  449                 .endpoint = UE_ADDR_ANY,
  450                 .direction = UE_DIR_OUT,
  451                 .bufsize = (MCLBYTES + RT2573_TX_DESC_SIZE + 8),
  452                 .flags = {.pipe_bof = 1,.force_short_xfer = 1,},
  453                 .callback = rum_bulk_write_callback,
  454                 .timeout = 5000,        /* ms */
  455         },
  456         [RUM_BULK_RD] = {
  457                 .type = UE_BULK,
  458                 .endpoint = UE_ADDR_ANY,
  459                 .direction = UE_DIR_IN,
  460                 .bufsize = (MCLBYTES + RT2573_RX_DESC_SIZE),
  461                 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
  462                 .callback = rum_bulk_read_callback,
  463         },
  464 };
  465 
  466 static int
  467 rum_match(device_t self)
  468 {
  469         struct usb_attach_arg *uaa = device_get_ivars(self);
  470 
  471         if (uaa->usb_mode != USB_MODE_HOST)
  472                 return (ENXIO);
  473         if (uaa->info.bConfigIndex != 0)
  474                 return (ENXIO);
  475         if (uaa->info.bIfaceIndex != RT2573_IFACE_INDEX)
  476                 return (ENXIO);
  477 
  478         return (usbd_lookup_id_by_uaa(rum_devs, sizeof(rum_devs), uaa));
  479 }
  480 
  481 static int
  482 rum_attach(device_t self)
  483 {
  484         struct usb_attach_arg *uaa = device_get_ivars(self);
  485         struct rum_softc *sc = device_get_softc(self);
  486         struct ieee80211com *ic = &sc->sc_ic;
  487         uint32_t tmp;
  488         uint8_t iface_index;
  489         int error, ntries;
  490 
  491         device_set_usb_desc(self);
  492         sc->sc_udev = uaa->device;
  493         sc->sc_dev = self;
  494 
  495         RUM_LOCK_INIT(sc);
  496         RUM_CMDQ_LOCK_INIT(sc);
  497         mbufq_init(&sc->sc_snd, ifqmaxlen);
  498 
  499         iface_index = RT2573_IFACE_INDEX;
  500         error = usbd_transfer_setup(uaa->device, &iface_index,
  501             sc->sc_xfer, rum_config, RUM_N_TRANSFER, sc, &sc->sc_mtx);
  502         if (error) {
  503                 device_printf(self, "could not allocate USB transfers, "
  504                     "err=%s\n", usbd_errstr(error));
  505                 goto detach;
  506         }
  507 
  508         RUM_LOCK(sc);
  509         /* retrieve RT2573 rev. no */
  510         for (ntries = 0; ntries < 100; ntries++) {
  511                 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
  512                         break;
  513                 if (rum_pause(sc, hz / 100))
  514                         break;
  515         }
  516         if (ntries == 100) {
  517                 device_printf(sc->sc_dev, "timeout waiting for chip to settle\n");
  518                 RUM_UNLOCK(sc);
  519                 goto detach;
  520         }
  521 
  522         /* retrieve MAC address and various other things from EEPROM */
  523         rum_read_eeprom(sc);
  524 
  525         device_printf(sc->sc_dev, "MAC/BBP RT2573 (rev 0x%05x), RF %s\n",
  526             tmp, rum_get_rf(sc->rf_rev));
  527 
  528         rum_load_microcode(sc, rt2573_ucode, sizeof(rt2573_ucode));
  529         RUM_UNLOCK(sc);
  530 
  531         ic->ic_softc = sc;
  532         ic->ic_name = device_get_nameunit(self);
  533         ic->ic_phytype = IEEE80211_T_OFDM;      /* not only, but not used */
  534 
  535         /* set device capabilities */
  536         ic->ic_caps =
  537               IEEE80211_C_STA           /* station mode supported */
  538             | IEEE80211_C_IBSS          /* IBSS mode supported */
  539             | IEEE80211_C_MONITOR       /* monitor mode supported */
  540             | IEEE80211_C_HOSTAP        /* HostAp mode supported */
  541             | IEEE80211_C_AHDEMO        /* adhoc demo mode */
  542             | IEEE80211_C_TXPMGT        /* tx power management */
  543             | IEEE80211_C_SHPREAMBLE    /* short preamble supported */
  544             | IEEE80211_C_SHSLOT        /* short slot time supported */
  545             | IEEE80211_C_BGSCAN        /* bg scanning supported */
  546             | IEEE80211_C_WPA           /* 802.11i */
  547             | IEEE80211_C_WME           /* 802.11e */
  548             | IEEE80211_C_PMGT          /* Station-side power mgmt */
  549             | IEEE80211_C_SWSLEEP       /* net80211 managed power mgmt */
  550             ;
  551 
  552         ic->ic_cryptocaps =
  553             IEEE80211_CRYPTO_WEP |
  554             IEEE80211_CRYPTO_AES_CCM |
  555             IEEE80211_CRYPTO_TKIPMIC |
  556             IEEE80211_CRYPTO_TKIP;
  557 
  558         rum_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
  559             ic->ic_channels);
  560 
  561         ieee80211_ifattach(ic);
  562         ic->ic_update_promisc = rum_update_promisc;
  563         ic->ic_raw_xmit = rum_raw_xmit;
  564         ic->ic_scan_start = rum_scan_start;
  565         ic->ic_scan_end = rum_scan_end;
  566         ic->ic_set_channel = rum_set_channel;
  567         ic->ic_getradiocaps = rum_getradiocaps;
  568         ic->ic_transmit = rum_transmit;
  569         ic->ic_parent = rum_parent;
  570         ic->ic_vap_create = rum_vap_create;
  571         ic->ic_vap_delete = rum_vap_delete;
  572         ic->ic_updateslot = rum_update_slot;
  573         ic->ic_wme.wme_update = rum_wme_update;
  574         ic->ic_update_mcast = rum_update_mcast;
  575 
  576         ieee80211_radiotap_attach(ic,
  577             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
  578                 RT2573_TX_RADIOTAP_PRESENT,
  579             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
  580                 RT2573_RX_RADIOTAP_PRESENT);
  581 
  582         TASK_INIT(&sc->cmdq_task, 0, rum_cmdq_cb, sc);
  583 
  584         if (bootverbose)
  585                 ieee80211_announce(ic);
  586 
  587         return (0);
  588 
  589 detach:
  590         rum_detach(self);
  591         return (ENXIO);                 /* failure */
  592 }
  593 
  594 static int
  595 rum_detach(device_t self)
  596 {
  597         struct rum_softc *sc = device_get_softc(self);
  598         struct ieee80211com *ic = &sc->sc_ic;
  599 
  600         /* Prevent further ioctls */
  601         RUM_LOCK(sc);
  602         sc->sc_detached = 1;
  603         RUM_UNLOCK(sc);
  604 
  605         /* stop all USB transfers */
  606         usbd_transfer_unsetup(sc->sc_xfer, RUM_N_TRANSFER);
  607 
  608         /* free TX list, if any */
  609         RUM_LOCK(sc);
  610         rum_unsetup_tx_list(sc);
  611         RUM_UNLOCK(sc);
  612 
  613         if (ic->ic_softc == sc) {
  614                 ieee80211_draintask(ic, &sc->cmdq_task);
  615                 ieee80211_ifdetach(ic);
  616         }
  617 
  618         mbufq_drain(&sc->sc_snd);
  619         RUM_CMDQ_LOCK_DESTROY(sc);
  620         RUM_LOCK_DESTROY(sc);
  621 
  622         return (0);
  623 }
  624 
  625 static usb_error_t
  626 rum_do_request(struct rum_softc *sc,
  627     struct usb_device_request *req, void *data)
  628 {
  629         usb_error_t err;
  630         int ntries = 10;
  631 
  632         while (ntries--) {
  633                 err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
  634                     req, data, 0, NULL, 250 /* ms */);
  635                 if (err == 0)
  636                         break;
  637 
  638                 DPRINTFN(1, "Control request failed, %s (retrying)\n",
  639                     usbd_errstr(err));
  640                 if (rum_pause(sc, hz / 100))
  641                         break;
  642         }
  643         return (err);
  644 }
  645 
  646 static usb_error_t
  647 rum_do_mcu_request(struct rum_softc *sc, int request)
  648 {
  649         struct usb_device_request req;
  650 
  651         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
  652         req.bRequest = RT2573_MCU_CNTL;
  653         USETW(req.wValue, request);
  654         USETW(req.wIndex, 0);
  655         USETW(req.wLength, 0);
  656 
  657         return (rum_do_request(sc, &req, NULL));
  658 }
  659 
  660 static struct ieee80211vap *
  661 rum_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
  662     enum ieee80211_opmode opmode, int flags,
  663     const uint8_t bssid[IEEE80211_ADDR_LEN],
  664     const uint8_t mac[IEEE80211_ADDR_LEN])
  665 {
  666         struct rum_softc *sc = ic->ic_softc;
  667         struct rum_vap *rvp;
  668         struct ieee80211vap *vap;
  669 
  670         if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
  671                 return NULL;
  672         rvp = malloc(sizeof(struct rum_vap), M_80211_VAP, M_WAITOK | M_ZERO);
  673         vap = &rvp->vap;
  674         /* enable s/w bmiss handling for sta mode */
  675 
  676         if (ieee80211_vap_setup(ic, vap, name, unit, opmode,
  677             flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) {
  678                 /* out of memory */
  679                 free(rvp, M_80211_VAP);
  680                 return (NULL);
  681         }
  682 
  683         /* override state transition machine */
  684         rvp->newstate = vap->iv_newstate;
  685         vap->iv_newstate = rum_newstate;
  686         vap->iv_key_alloc = rum_key_alloc;
  687         vap->iv_key_set = rum_key_set;
  688         vap->iv_key_delete = rum_key_delete;
  689         vap->iv_update_beacon = rum_update_beacon;
  690         vap->iv_reset = rum_reset;
  691         vap->iv_max_aid = RT2573_ADDR_MAX;
  692 
  693         if (opmode == IEEE80211_M_STA) {
  694                 /*
  695                  * Move device to the sleep state when
  696                  * beacon is received and there is no data for us.
  697                  *
  698                  * Used only for IEEE80211_S_SLEEP state.
  699                  */
  700                 rvp->recv_mgmt = vap->iv_recv_mgmt;
  701                 vap->iv_recv_mgmt = rum_sta_recv_mgmt;
  702 
  703                 /* Ignored while sleeping. */
  704                 rvp->bmiss = vap->iv_bmiss;
  705                 vap->iv_bmiss = rum_beacon_miss;
  706         }
  707 
  708         usb_callout_init_mtx(&rvp->ratectl_ch, &sc->sc_mtx, 0);
  709         TASK_INIT(&rvp->ratectl_task, 0, rum_ratectl_task, rvp);
  710         ieee80211_ratectl_init(vap);
  711         ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
  712         /* complete setup */
  713         ieee80211_vap_attach(vap, ieee80211_media_change,
  714             ieee80211_media_status, mac);
  715         ic->ic_opmode = opmode;
  716         return vap;
  717 }
  718 
  719 static void
  720 rum_vap_delete(struct ieee80211vap *vap)
  721 {
  722         struct rum_vap *rvp = RUM_VAP(vap);
  723         struct ieee80211com *ic = vap->iv_ic;
  724         struct rum_softc *sc = ic->ic_softc;
  725 
  726         /* Put vap into INIT state. */
  727         ieee80211_new_state(vap, IEEE80211_S_INIT, -1);
  728         ieee80211_draintask(ic, &vap->iv_nstate_task);
  729 
  730         RUM_LOCK(sc);
  731         /* Cancel any unfinished Tx. */
  732         rum_reset_tx_list(sc, vap);
  733         RUM_UNLOCK(sc);
  734 
  735         usb_callout_drain(&rvp->ratectl_ch);
  736         ieee80211_draintask(ic, &rvp->ratectl_task);
  737         ieee80211_ratectl_deinit(vap);
  738         ieee80211_vap_detach(vap);
  739         m_freem(rvp->bcn_mbuf);
  740         free(rvp, M_80211_VAP);
  741 }
  742 
  743 static void
  744 rum_cmdq_cb(void *arg, int pending)
  745 {
  746         struct rum_softc *sc = arg;
  747         struct rum_cmdq *rc;
  748 
  749         RUM_CMDQ_LOCK(sc);
  750         while (sc->cmdq[sc->cmdq_first].func != NULL) {
  751                 rc = &sc->cmdq[sc->cmdq_first];
  752                 RUM_CMDQ_UNLOCK(sc);
  753 
  754                 RUM_LOCK(sc);
  755                 rc->func(sc, &rc->data, rc->rvp_id);
  756                 RUM_UNLOCK(sc);
  757 
  758                 RUM_CMDQ_LOCK(sc);
  759                 memset(rc, 0, sizeof (*rc));
  760                 sc->cmdq_first = (sc->cmdq_first + 1) % RUM_CMDQ_SIZE;
  761         }
  762         RUM_CMDQ_UNLOCK(sc);
  763 }
  764 
  765 static int
  766 rum_cmd_sleepable(struct rum_softc *sc, const void *ptr, size_t len,
  767     uint8_t rvp_id, CMD_FUNC_PROTO)
  768 {
  769         struct ieee80211com *ic = &sc->sc_ic;
  770 
  771         KASSERT(len <= sizeof(union sec_param), ("buffer overflow"));
  772 
  773         RUM_CMDQ_LOCK(sc);
  774         if (sc->cmdq[sc->cmdq_last].func != NULL) {
  775                 device_printf(sc->sc_dev, "%s: cmdq overflow\n", __func__);
  776                 RUM_CMDQ_UNLOCK(sc);
  777 
  778                 return EAGAIN;
  779         }
  780 
  781         if (ptr != NULL)
  782                 memcpy(&sc->cmdq[sc->cmdq_last].data, ptr, len);
  783         sc->cmdq[sc->cmdq_last].rvp_id = rvp_id;
  784         sc->cmdq[sc->cmdq_last].func = func;
  785         sc->cmdq_last = (sc->cmdq_last + 1) % RUM_CMDQ_SIZE;
  786         RUM_CMDQ_UNLOCK(sc);
  787 
  788         ieee80211_runtask(ic, &sc->cmdq_task);
  789 
  790         return 0;
  791 }
  792 
  793 static void
  794 rum_tx_free(struct rum_tx_data *data, int txerr)
  795 {
  796         struct rum_softc *sc = data->sc;
  797 
  798         if (data->m != NULL) {
  799                 ieee80211_tx_complete(data->ni, data->m, txerr);
  800                 data->m = NULL;
  801                 data->ni = NULL;
  802         }
  803         STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
  804         sc->tx_nfree++;
  805 }
  806 
  807 static void
  808 rum_setup_tx_list(struct rum_softc *sc)
  809 {
  810         struct rum_tx_data *data;
  811         int i;
  812 
  813         sc->tx_nfree = 0;
  814         STAILQ_INIT(&sc->tx_q);
  815         STAILQ_INIT(&sc->tx_free);
  816 
  817         for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
  818                 data = &sc->tx_data[i];
  819 
  820                 data->sc = sc;
  821                 STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
  822                 sc->tx_nfree++;
  823         }
  824 }
  825 
  826 static void
  827 rum_reset_tx_list(struct rum_softc *sc, struct ieee80211vap *vap)
  828 {
  829         struct rum_tx_data *data, *tmp;
  830 
  831         KASSERT(vap != NULL, ("%s: vap is NULL\n", __func__));
  832 
  833         STAILQ_FOREACH_SAFE(data, &sc->tx_q, next, tmp) {
  834                 if (data->ni != NULL && data->ni->ni_vap == vap) {
  835                         ieee80211_free_node(data->ni);
  836                         data->ni = NULL;
  837 
  838                         KASSERT(data->m != NULL, ("%s: m is NULL\n",
  839                             __func__));
  840                         m_freem(data->m);
  841                         data->m = NULL;
  842 
  843                         STAILQ_REMOVE(&sc->tx_q, data, rum_tx_data, next);
  844                         STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
  845                         sc->tx_nfree++;
  846                 }
  847         }
  848 }
  849 
  850 static void
  851 rum_unsetup_tx_list(struct rum_softc *sc)
  852 {
  853         struct rum_tx_data *data;
  854         int i;
  855 
  856         /* make sure any subsequent use of the queues will fail */
  857         sc->tx_nfree = 0;
  858         STAILQ_INIT(&sc->tx_q);
  859         STAILQ_INIT(&sc->tx_free);
  860 
  861         /* free up all node references and mbufs */
  862         for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
  863                 data = &sc->tx_data[i];
  864 
  865                 if (data->m != NULL) {
  866                         m_freem(data->m);
  867                         data->m = NULL;
  868                 }
  869                 if (data->ni != NULL) {
  870                         ieee80211_free_node(data->ni);
  871                         data->ni = NULL;
  872                 }
  873         }
  874 }
  875 
  876 static void
  877 rum_beacon_miss(struct ieee80211vap *vap)
  878 {
  879         struct ieee80211com *ic = vap->iv_ic;
  880         struct rum_softc *sc = ic->ic_softc;
  881         struct rum_vap *rvp = RUM_VAP(vap);
  882         int sleep;
  883 
  884         RUM_LOCK(sc);
  885         if (sc->sc_sleeping && sc->sc_sleep_end < ticks) {
  886                 DPRINTFN(12, "dropping 'sleeping' bit, "
  887                     "device must be awake now\n");
  888 
  889                 sc->sc_sleeping = 0;
  890         }
  891 
  892         sleep = sc->sc_sleeping;
  893         RUM_UNLOCK(sc);
  894 
  895         if (!sleep)
  896                 rvp->bmiss(vap);
  897 #ifdef USB_DEBUG
  898         else
  899                 DPRINTFN(13, "bmiss event is ignored whilst sleeping\n");
  900 #endif
  901 }
  902 
  903 static void
  904 rum_sta_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype,
  905     const struct ieee80211_rx_stats *rxs,
  906     int rssi, int nf)
  907 {
  908         struct ieee80211vap *vap = ni->ni_vap;
  909         struct rum_softc *sc = vap->iv_ic->ic_softc;
  910         struct rum_vap *rvp = RUM_VAP(vap);
  911 
  912         if (vap->iv_state == IEEE80211_S_SLEEP &&
  913             subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
  914                 RUM_LOCK(sc);
  915                 DPRINTFN(12, "beacon, mybss %d (flags %02X)\n",
  916                     !!(sc->last_rx_flags & RT2573_RX_MYBSS),
  917                     sc->last_rx_flags);
  918 
  919                 if ((sc->last_rx_flags & (RT2573_RX_MYBSS | RT2573_RX_BC)) ==
  920                     (RT2573_RX_MYBSS | RT2573_RX_BC)) {
  921                         /*
  922                          * Put it to sleep here; in case if there is a data
  923                          * for us, iv_recv_mgmt() will wakeup the device via
  924                          * SLEEP -> RUN state transition.
  925                          */
  926                         rum_set_power_state(sc, 1);
  927                 }
  928                 RUM_UNLOCK(sc);
  929         }
  930 
  931         rvp->recv_mgmt(ni, m, subtype, rxs, rssi, nf);
  932 }
  933 
  934 static int
  935 rum_set_power_state(struct rum_softc *sc, int sleep)
  936 {
  937         usb_error_t uerror;
  938 
  939         RUM_LOCK_ASSERT(sc);
  940 
  941         DPRINTFN(12, "moving to %s state (sleep time %u)\n",
  942             sleep ? "sleep" : "awake", sc->sc_sleep_time);
  943 
  944         uerror = rum_do_mcu_request(sc,
  945             sleep ? RT2573_MCU_SLEEP : RT2573_MCU_WAKEUP);
  946         if (uerror != USB_ERR_NORMAL_COMPLETION) {
  947                 device_printf(sc->sc_dev,
  948                     "%s: could not change power state: %s\n",
  949                     __func__, usbd_errstr(uerror));
  950                 return (EIO);
  951         }
  952 
  953         sc->sc_sleeping = !!sleep;
  954         sc->sc_sleep_end = sleep ? ticks + sc->sc_sleep_time : 0;
  955 
  956         return (0);
  957 }
  958 
  959 static int
  960 rum_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
  961 {
  962         struct rum_vap *rvp = RUM_VAP(vap);
  963         struct ieee80211com *ic = vap->iv_ic;
  964         struct rum_softc *sc = ic->ic_softc;
  965         const struct ieee80211_txparam *tp;
  966         enum ieee80211_state ostate;
  967         struct ieee80211_node *ni;
  968         usb_error_t uerror;
  969         int ret = 0;
  970 
  971         ostate = vap->iv_state;
  972         DPRINTF("%s -> %s\n",
  973                 ieee80211_state_name[ostate],
  974                 ieee80211_state_name[nstate]);
  975 
  976         IEEE80211_UNLOCK(ic);
  977         RUM_LOCK(sc);
  978         usb_callout_stop(&rvp->ratectl_ch);
  979 
  980         if (ostate == IEEE80211_S_SLEEP && vap->iv_opmode == IEEE80211_M_STA) {
  981                 rum_clrbits(sc, RT2573_TXRX_CSR4, RT2573_ACKCTS_PWRMGT);
  982                 rum_clrbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP);
  983 
  984                 /*
  985                  * Ignore any errors;
  986                  * any subsequent TX will wakeup it anyway
  987                  */
  988                 (void) rum_set_power_state(sc, 0);
  989         }
  990 
  991         switch (nstate) {
  992         case IEEE80211_S_INIT:
  993                 if (ostate == IEEE80211_S_RUN)
  994                         rum_abort_tsf_sync(sc);
  995 
  996                 break;
  997 
  998         case IEEE80211_S_RUN:
  999                 if (ostate == IEEE80211_S_SLEEP)
 1000                         break;          /* already handled */
 1001 
 1002                 ni = ieee80211_ref_node(vap->iv_bss);
 1003 
 1004                 if (vap->iv_opmode != IEEE80211_M_MONITOR) {
 1005                         if (ic->ic_bsschan == IEEE80211_CHAN_ANYC ||
 1006                             ni->ni_chan == IEEE80211_CHAN_ANYC) {
 1007                                 ret = EINVAL;
 1008                                 goto run_fail;
 1009                         }
 1010                         rum_update_slot_cb(sc, NULL, 0);
 1011                         rum_enable_mrr(sc);
 1012                         rum_set_txpreamble(sc);
 1013                         rum_set_basicrates(sc);
 1014                         rum_set_maxretry(sc, vap);
 1015                         IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
 1016                         rum_set_bssid(sc, sc->sc_bssid);
 1017                 }
 1018 
 1019                 if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
 1020                     vap->iv_opmode == IEEE80211_M_IBSS) {
 1021                         if ((ret = rum_alloc_beacon(sc, vap)) != 0)
 1022                                 goto run_fail;
 1023                 }
 1024 
 1025                 if (vap->iv_opmode != IEEE80211_M_MONITOR &&
 1026                     vap->iv_opmode != IEEE80211_M_AHDEMO) {
 1027                         if ((ret = rum_enable_tsf_sync(sc)) != 0)
 1028                                 goto run_fail;
 1029                 } else
 1030                         rum_enable_tsf(sc);
 1031 
 1032                 /* enable automatic rate adaptation */
 1033                 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
 1034                 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
 1035                         rum_ratectl_start(sc, ni);
 1036 run_fail:
 1037                 ieee80211_free_node(ni);
 1038                 break;
 1039         case IEEE80211_S_SLEEP:
 1040                 /* Implemented for STA mode only. */
 1041                 if (vap->iv_opmode != IEEE80211_M_STA)
 1042                         break;
 1043 
 1044                 uerror = rum_setbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP);
 1045                 if (uerror != USB_ERR_NORMAL_COMPLETION) {
 1046                         ret = EIO;
 1047                         break;
 1048                 }
 1049 
 1050                 uerror = rum_setbits(sc, RT2573_TXRX_CSR4, RT2573_ACKCTS_PWRMGT);
 1051                 if (uerror != USB_ERR_NORMAL_COMPLETION) {
 1052                         ret = EIO;
 1053                         break;
 1054                 }
 1055 
 1056                 ret = rum_set_power_state(sc, 1);
 1057                 if (ret != 0) {
 1058                         device_printf(sc->sc_dev,
 1059                             "%s: could not move to the SLEEP state: %s\n",
 1060                             __func__, usbd_errstr(uerror));
 1061                 }
 1062                 break;
 1063         default:
 1064                 break;
 1065         }
 1066         RUM_UNLOCK(sc);
 1067         IEEE80211_LOCK(ic);
 1068         return (ret == 0 ? rvp->newstate(vap, nstate, arg) : ret);
 1069 }
 1070 
 1071 static void
 1072 rum_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
 1073 {
 1074         struct rum_softc *sc = usbd_xfer_softc(xfer);
 1075         struct ieee80211vap *vap;
 1076         struct rum_tx_data *data;
 1077         struct mbuf *m;
 1078         struct usb_page_cache *pc;
 1079         unsigned len;
 1080         int actlen, sumlen;
 1081 
 1082         usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
 1083 
 1084         switch (USB_GET_STATE(xfer)) {
 1085         case USB_ST_TRANSFERRED:
 1086                 DPRINTFN(11, "transfer complete, %d bytes\n", actlen);
 1087 
 1088                 /* free resources */
 1089                 data = usbd_xfer_get_priv(xfer);
 1090                 rum_tx_free(data, 0);
 1091                 usbd_xfer_set_priv(xfer, NULL);
 1092 
 1093                 /* FALLTHROUGH */
 1094         case USB_ST_SETUP:
 1095 tr_setup:
 1096                 data = STAILQ_FIRST(&sc->tx_q);
 1097                 if (data) {
 1098                         STAILQ_REMOVE_HEAD(&sc->tx_q, next);
 1099                         m = data->m;
 1100 
 1101                         if (m->m_pkthdr.len > (int)(MCLBYTES + RT2573_TX_DESC_SIZE)) {
 1102                                 DPRINTFN(0, "data overflow, %u bytes\n",
 1103                                     m->m_pkthdr.len);
 1104                                 m->m_pkthdr.len = (MCLBYTES + RT2573_TX_DESC_SIZE);
 1105                         }
 1106                         pc = usbd_xfer_get_frame(xfer, 0);
 1107                         usbd_copy_in(pc, 0, &data->desc, RT2573_TX_DESC_SIZE);
 1108                         usbd_m_copy_in(pc, RT2573_TX_DESC_SIZE, m, 0,
 1109                             m->m_pkthdr.len);
 1110 
 1111                         vap = data->ni->ni_vap;
 1112                         if (ieee80211_radiotap_active_vap(vap)) {
 1113                                 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
 1114 
 1115                                 tap->wt_flags = 0;
 1116                                 tap->wt_rate = data->rate;
 1117                                 tap->wt_antenna = sc->tx_ant;
 1118 
 1119                                 ieee80211_radiotap_tx(vap, m);
 1120                         }
 1121 
 1122                         /* align end on a 4-bytes boundary */
 1123                         len = (RT2573_TX_DESC_SIZE + m->m_pkthdr.len + 3) & ~3;
 1124                         if ((len % 64) == 0)
 1125                                 len += 4;
 1126 
 1127                         DPRINTFN(11, "sending frame len=%u xferlen=%u\n",
 1128                             m->m_pkthdr.len, len);
 1129 
 1130                         usbd_xfer_set_frame_len(xfer, 0, len);
 1131                         usbd_xfer_set_priv(xfer, data);
 1132 
 1133                         usbd_transfer_submit(xfer);
 1134                 }
 1135                 rum_start(sc);
 1136                 break;
 1137 
 1138         default:                        /* Error */
 1139                 DPRINTFN(11, "transfer error, %s\n",
 1140                     usbd_errstr(error));
 1141 
 1142                 counter_u64_add(sc->sc_ic.ic_oerrors, 1);
 1143                 data = usbd_xfer_get_priv(xfer);
 1144                 if (data != NULL) {
 1145                         rum_tx_free(data, error);
 1146                         usbd_xfer_set_priv(xfer, NULL);
 1147                 }
 1148 
 1149                 if (error != USB_ERR_CANCELLED) {
 1150                         if (error == USB_ERR_TIMEOUT)
 1151                                 device_printf(sc->sc_dev, "device timeout\n");
 1152 
 1153                         /*
 1154                          * Try to clear stall first, also if other
 1155                          * errors occur, hence clearing stall
 1156                          * introduces a 50 ms delay:
 1157                          */
 1158                         usbd_xfer_set_stall(xfer);
 1159                         goto tr_setup;
 1160                 }
 1161                 break;
 1162         }
 1163 }
 1164 
 1165 static void
 1166 rum_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
 1167 {
 1168         struct rum_softc *sc = usbd_xfer_softc(xfer);
 1169         struct ieee80211com *ic = &sc->sc_ic;
 1170         struct ieee80211_frame_min *wh;
 1171         struct ieee80211_node *ni;
 1172         struct epoch_tracker et;
 1173         struct mbuf *m = NULL;
 1174         struct usb_page_cache *pc;
 1175         uint32_t flags;
 1176         uint8_t rssi = 0;
 1177         int len;
 1178 
 1179         usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
 1180 
 1181         switch (USB_GET_STATE(xfer)) {
 1182         case USB_ST_TRANSFERRED:
 1183 
 1184                 DPRINTFN(15, "rx done, actlen=%d\n", len);
 1185 
 1186                 if (len < RT2573_RX_DESC_SIZE) {
 1187                         DPRINTF("%s: xfer too short %d\n",
 1188                             device_get_nameunit(sc->sc_dev), len);
 1189                         counter_u64_add(ic->ic_ierrors, 1);
 1190                         goto tr_setup;
 1191                 }
 1192 
 1193                 len -= RT2573_RX_DESC_SIZE;
 1194                 pc = usbd_xfer_get_frame(xfer, 0);
 1195                 usbd_copy_out(pc, 0, &sc->sc_rx_desc, RT2573_RX_DESC_SIZE);
 1196 
 1197                 rssi = rum_get_rssi(sc, sc->sc_rx_desc.rssi);
 1198                 flags = le32toh(sc->sc_rx_desc.flags);
 1199                 sc->last_rx_flags = flags;
 1200                 if (len < ((flags >> 16) & 0xfff)) {
 1201                         DPRINTFN(5, "%s: frame is truncated from %d to %d "
 1202                             "bytes\n", device_get_nameunit(sc->sc_dev),
 1203                             (flags >> 16) & 0xfff, len);
 1204                         counter_u64_add(ic->ic_ierrors, 1);
 1205                         goto tr_setup;
 1206                 }
 1207                 len = (flags >> 16) & 0xfff;
 1208                 if (len < sizeof(struct ieee80211_frame_ack)) {
 1209                         DPRINTFN(5, "%s: frame too short %d\n",
 1210                             device_get_nameunit(sc->sc_dev), len);
 1211                         counter_u64_add(ic->ic_ierrors, 1);
 1212                         goto tr_setup;
 1213                 }
 1214                 if (flags & RT2573_RX_CRC_ERROR) {
 1215                         /*
 1216                          * This should not happen since we did not
 1217                          * request to receive those frames when we
 1218                          * filled RUM_TXRX_CSR2:
 1219                          */
 1220                         DPRINTFN(5, "PHY or CRC error\n");
 1221                         counter_u64_add(ic->ic_ierrors, 1);
 1222                         goto tr_setup;
 1223                 }
 1224                 if ((flags & RT2573_RX_DEC_MASK) != RT2573_RX_DEC_OK) {
 1225                         switch (flags & RT2573_RX_DEC_MASK) {
 1226                         case RT2573_RX_IV_ERROR:
 1227                                 DPRINTFN(5, "IV/EIV error\n");
 1228                                 break;
 1229                         case RT2573_RX_MIC_ERROR:
 1230                                 DPRINTFN(5, "MIC error\n");
 1231                                 break;
 1232                         case RT2573_RX_KEY_ERROR:
 1233                                 DPRINTFN(5, "Key error\n");
 1234                                 break;
 1235                         }
 1236                         counter_u64_add(ic->ic_ierrors, 1);
 1237                         goto tr_setup;
 1238                 }
 1239 
 1240                 m = m_get2(len, M_NOWAIT, MT_DATA, M_PKTHDR);
 1241                 if (m == NULL) {
 1242                         DPRINTF("could not allocate mbuf\n");
 1243                         counter_u64_add(ic->ic_ierrors, 1);
 1244                         goto tr_setup;
 1245                 }
 1246                 usbd_copy_out(pc, RT2573_RX_DESC_SIZE,
 1247                     mtod(m, uint8_t *), len);
 1248 
 1249                 wh = mtod(m, struct ieee80211_frame_min *);
 1250 
 1251                 if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
 1252                     (flags & RT2573_RX_CIP_MASK) !=
 1253                      RT2573_RX_CIP_MODE(RT2573_MODE_NOSEC)) {
 1254                         wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED;
 1255                         m->m_flags |= M_WEP;
 1256                 }
 1257 
 1258                 /* finalize mbuf */
 1259                 m->m_pkthdr.len = m->m_len = len;
 1260 
 1261                 if (ieee80211_radiotap_active(ic)) {
 1262                         struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
 1263 
 1264                         tap->wr_flags = 0;
 1265                         tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate,
 1266                             (flags & RT2573_RX_OFDM) ?
 1267                             IEEE80211_T_OFDM : IEEE80211_T_CCK);
 1268                         rum_get_tsf(sc, &tap->wr_tsf);
 1269                         tap->wr_antsignal = RT2573_NOISE_FLOOR + rssi;
 1270                         tap->wr_antnoise = RT2573_NOISE_FLOOR;
 1271                         tap->wr_antenna = sc->rx_ant;
 1272                 }
 1273                 /* FALLTHROUGH */
 1274         case USB_ST_SETUP:
 1275 tr_setup:
 1276                 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
 1277                 usbd_transfer_submit(xfer);
 1278 
 1279                 /*
 1280                  * At the end of a USB callback it is always safe to unlock
 1281                  * the private mutex of a device! That is why we do the
 1282                  * "ieee80211_input" here, and not some lines up!
 1283                  */
 1284                 RUM_UNLOCK(sc);
 1285                 if (m) {
 1286                         if (m->m_len >= sizeof(struct ieee80211_frame_min))
 1287                                 ni = ieee80211_find_rxnode(ic, wh);
 1288                         else
 1289                                 ni = NULL;
 1290 
 1291                         NET_EPOCH_ENTER(et);
 1292                         if (ni != NULL) {
 1293                                 (void) ieee80211_input(ni, m, rssi,
 1294                                     RT2573_NOISE_FLOOR);
 1295                                 ieee80211_free_node(ni);
 1296                         } else
 1297                                 (void) ieee80211_input_all(ic, m, rssi,
 1298                                     RT2573_NOISE_FLOOR);
 1299                         NET_EPOCH_EXIT(et);
 1300                 }
 1301                 RUM_LOCK(sc);
 1302                 rum_start(sc);
 1303                 return;
 1304 
 1305         default:                        /* Error */
 1306                 if (error != USB_ERR_CANCELLED) {
 1307                         /* try to clear stall first */
 1308                         usbd_xfer_set_stall(xfer);
 1309                         goto tr_setup;
 1310                 }
 1311                 return;
 1312         }
 1313 }
 1314 
 1315 static uint8_t
 1316 rum_plcp_signal(int rate)
 1317 {
 1318         switch (rate) {
 1319         /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
 1320         case 12:        return 0xb;
 1321         case 18:        return 0xf;
 1322         case 24:        return 0xa;
 1323         case 36:        return 0xe;
 1324         case 48:        return 0x9;
 1325         case 72:        return 0xd;
 1326         case 96:        return 0x8;
 1327         case 108:       return 0xc;
 1328 
 1329         /* CCK rates (NB: not IEEE std, device-specific) */
 1330         case 2:         return 0x0;
 1331         case 4:         return 0x1;
 1332         case 11:        return 0x2;
 1333         case 22:        return 0x3;
 1334         }
 1335         return 0xff;            /* XXX unsupported/unknown rate */
 1336 }
 1337 
 1338 /*
 1339  * Map net80211 cipher to RT2573 security mode.
 1340  */
 1341 static uint8_t
 1342 rum_crypto_mode(struct rum_softc *sc, u_int cipher, int keylen)
 1343 {
 1344         switch (cipher) {
 1345         case IEEE80211_CIPHER_WEP:
 1346                 return (keylen < 8 ? RT2573_MODE_WEP40 : RT2573_MODE_WEP104);
 1347         case IEEE80211_CIPHER_TKIP:
 1348                 return RT2573_MODE_TKIP;
 1349         case IEEE80211_CIPHER_AES_CCM:
 1350                 return RT2573_MODE_AES_CCMP;
 1351         default:
 1352                 device_printf(sc->sc_dev, "unknown cipher %d\n", cipher);
 1353                 return 0;
 1354         }
 1355 }
 1356 
 1357 static void
 1358 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
 1359     struct ieee80211_key *k, uint32_t flags, uint8_t xflags, uint8_t qid,
 1360     int hdrlen, int len, int rate)
 1361 {
 1362         struct ieee80211com *ic = &sc->sc_ic;
 1363         struct wmeParams *wmep = &sc->wme_params[qid];
 1364         uint16_t plcp_length;
 1365         int remainder;
 1366 
 1367         flags |= RT2573_TX_VALID;
 1368         flags |= len << 16;
 1369 
 1370         if (k != NULL && !(k->wk_flags & IEEE80211_KEY_SWCRYPT)) {
 1371                 const struct ieee80211_cipher *cip = k->wk_cipher;
 1372 
 1373                 len += cip->ic_header + cip->ic_trailer + cip->ic_miclen;
 1374 
 1375                 desc->eiv = 0;          /* for WEP */
 1376                 cip->ic_setiv(k, (uint8_t *)&desc->iv);
 1377         }
 1378 
 1379         /* setup PLCP fields */
 1380         desc->plcp_signal  = rum_plcp_signal(rate);
 1381         desc->plcp_service = 4;
 1382 
 1383         len += IEEE80211_CRC_LEN;
 1384         if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) {
 1385                 flags |= RT2573_TX_OFDM;
 1386 
 1387                 plcp_length = len & 0xfff;
 1388                 desc->plcp_length_hi = plcp_length >> 6;
 1389                 desc->plcp_length_lo = plcp_length & 0x3f;
 1390         } else {
 1391                 if (rate == 0)
 1392                         rate = 2;       /* avoid division by zero */
 1393                 plcp_length = howmany(16 * len, rate);
 1394                 if (rate == 22) {
 1395                         remainder = (16 * len) % 22;
 1396                         if (remainder != 0 && remainder < 7)
 1397                                 desc->plcp_service |= RT2573_PLCP_LENGEXT;
 1398                 }
 1399                 desc->plcp_length_hi = plcp_length >> 8;
 1400                 desc->plcp_length_lo = plcp_length & 0xff;
 1401 
 1402                 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
 1403                         desc->plcp_signal |= 0x08;
 1404         }
 1405 
 1406         desc->flags = htole32(flags);
 1407         desc->hdrlen = hdrlen;
 1408         desc->xflags = xflags;
 1409 
 1410         desc->wme = htole16(RT2573_QID(qid) |
 1411             RT2573_AIFSN(wmep->wmep_aifsn) |
 1412             RT2573_LOGCWMIN(wmep->wmep_logcwmin) |
 1413             RT2573_LOGCWMAX(wmep->wmep_logcwmax));
 1414 }
 1415 
 1416 static int
 1417 rum_sendprot(struct rum_softc *sc,
 1418     const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
 1419 {
 1420         struct ieee80211com *ic = ni->ni_ic;
 1421         struct rum_tx_data *data;
 1422         struct mbuf *mprot;
 1423         int protrate, flags;
 1424 
 1425         RUM_LOCK_ASSERT(sc);
 1426 
 1427         mprot = ieee80211_alloc_prot(ni, m, rate, prot);
 1428         if (mprot == NULL) {
 1429                 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
 1430                 device_printf(sc->sc_dev,
 1431                     "could not allocate mbuf for protection mode %d\n", prot);
 1432                 return (ENOBUFS);
 1433         }
 1434 
 1435         protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
 1436         flags = 0;
 1437         if (prot == IEEE80211_PROT_RTSCTS)
 1438                 flags |= RT2573_TX_NEED_ACK;
 1439 
 1440         data = STAILQ_FIRST(&sc->tx_free);
 1441         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
 1442         sc->tx_nfree--;
 1443 
 1444         data->m = mprot;
 1445         data->ni = ieee80211_ref_node(ni);
 1446         data->rate = protrate;
 1447         rum_setup_tx_desc(sc, &data->desc, NULL, flags, 0, 0, 0,
 1448             mprot->m_pkthdr.len, protrate);
 1449 
 1450         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
 1451         usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
 1452 
 1453         return 0;
 1454 }
 1455 
 1456 static uint32_t
 1457 rum_tx_crypto_flags(struct rum_softc *sc, struct ieee80211_node *ni, 
 1458     const struct ieee80211_key *k)
 1459 {
 1460         struct ieee80211vap *vap = ni->ni_vap;
 1461         u_int cipher;
 1462         uint32_t flags = 0;
 1463         uint8_t mode, pos;
 1464 
 1465         if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) {
 1466                 cipher = k->wk_cipher->ic_cipher;
 1467                 pos = k->wk_keyix;
 1468                 mode = rum_crypto_mode(sc, cipher, k->wk_keylen);
 1469                 if (mode == 0)
 1470                         return 0;
 1471 
 1472                 flags |= RT2573_TX_CIP_MODE(mode);
 1473 
 1474                 /* Do not trust GROUP flag */
 1475                 if (!(k >= &vap->iv_nw_keys[0] &&
 1476                       k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]))
 1477                         flags |= RT2573_TX_KEY_PAIR;
 1478                 else
 1479                         pos += 0 * RT2573_SKEY_MAX;     /* vap id */
 1480 
 1481                 flags |= RT2573_TX_KEY_ID(pos);
 1482 
 1483                 if (cipher == IEEE80211_CIPHER_TKIP)
 1484                         flags |= RT2573_TX_TKIPMIC;
 1485         }
 1486 
 1487         return flags;
 1488 }
 1489 
 1490 static int
 1491 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
 1492 {
 1493         const struct ieee80211_txparam *tp = ni->ni_txparms;
 1494         struct ieee80211com *ic = &sc->sc_ic;
 1495         struct rum_tx_data *data;
 1496         struct ieee80211_frame *wh;
 1497         struct ieee80211_key *k = NULL;
 1498         uint32_t flags = 0;
 1499         uint16_t dur;
 1500         uint8_t ac, type, xflags = 0;
 1501         int hdrlen;
 1502 
 1503         RUM_LOCK_ASSERT(sc);
 1504 
 1505         data = STAILQ_FIRST(&sc->tx_free);
 1506         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
 1507         sc->tx_nfree--;
 1508 
 1509         wh = mtod(m0, struct ieee80211_frame *);
 1510         type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
 1511         hdrlen = ieee80211_anyhdrsize(wh);
 1512         ac = M_WME_GETAC(m0);
 1513 
 1514         if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
 1515                 k = ieee80211_crypto_get_txkey(ni, m0);
 1516                 if (k == NULL)
 1517                         return (ENOENT);
 1518 
 1519                 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) &&
 1520                     !k->wk_cipher->ic_encap(k, m0))
 1521                         return (ENOBUFS);
 1522 
 1523                 wh = mtod(m0, struct ieee80211_frame *);
 1524         }
 1525 
 1526         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
 1527                 flags |= RT2573_TX_NEED_ACK;
 1528 
 1529                 dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate, 
 1530                     ic->ic_flags & IEEE80211_F_SHPREAMBLE);
 1531                 USETW(wh->i_dur, dur);
 1532 
 1533                 /* tell hardware to add timestamp for probe responses */
 1534                 if (type == IEEE80211_FC0_TYPE_MGT &&
 1535                     (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
 1536                     IEEE80211_FC0_SUBTYPE_PROBE_RESP)
 1537                         flags |= RT2573_TX_TIMESTAMP;
 1538         }
 1539 
 1540         if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh))
 1541                 xflags |= RT2573_TX_HWSEQ;
 1542 
 1543         if (k != NULL)
 1544                 flags |= rum_tx_crypto_flags(sc, ni, k);
 1545 
 1546         data->m = m0;
 1547         data->ni = ni;
 1548         data->rate = tp->mgmtrate;
 1549 
 1550         rum_setup_tx_desc(sc, &data->desc, k, flags, xflags, ac, hdrlen,
 1551             m0->m_pkthdr.len, tp->mgmtrate);
 1552 
 1553         DPRINTFN(10, "sending mgt frame len=%d rate=%d\n",
 1554             m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, tp->mgmtrate);
 1555 
 1556         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
 1557         usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
 1558 
 1559         return (0);
 1560 }
 1561 
 1562 static int
 1563 rum_tx_raw(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
 1564     const struct ieee80211_bpf_params *params)
 1565 {
 1566         struct ieee80211com *ic = ni->ni_ic;
 1567         struct ieee80211_frame *wh;
 1568         struct rum_tx_data *data;
 1569         uint32_t flags;
 1570         uint8_t ac, type, xflags = 0;
 1571         int rate, error;
 1572 
 1573         RUM_LOCK_ASSERT(sc);
 1574 
 1575         wh = mtod(m0, struct ieee80211_frame *);
 1576         type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
 1577 
 1578         ac = params->ibp_pri & 3;
 1579 
 1580         rate = params->ibp_rate0;
 1581         if (!ieee80211_isratevalid(ic->ic_rt, rate))
 1582                 return (EINVAL);
 1583 
 1584         flags = 0;
 1585         if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
 1586                 flags |= RT2573_TX_NEED_ACK;
 1587         if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
 1588                 error = rum_sendprot(sc, m0, ni,
 1589                     params->ibp_flags & IEEE80211_BPF_RTS ?
 1590                          IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
 1591                     rate);
 1592                 if (error || sc->tx_nfree == 0)
 1593                         return (ENOBUFS);
 1594 
 1595                 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
 1596         }
 1597 
 1598         if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh))
 1599                 xflags |= RT2573_TX_HWSEQ;
 1600 
 1601         data = STAILQ_FIRST(&sc->tx_free);
 1602         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
 1603         sc->tx_nfree--;
 1604 
 1605         data->m = m0;
 1606         data->ni = ni;
 1607         data->rate = rate;
 1608 
 1609         /* XXX need to setup descriptor ourself */
 1610         rum_setup_tx_desc(sc, &data->desc, NULL, flags, xflags, ac, 0,
 1611             m0->m_pkthdr.len, rate);
 1612 
 1613         DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
 1614             m0->m_pkthdr.len, rate);
 1615 
 1616         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
 1617         usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
 1618 
 1619         return 0;
 1620 }
 1621 
 1622 static int
 1623 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
 1624 {
 1625         struct ieee80211vap *vap = ni->ni_vap;
 1626         struct ieee80211com *ic = &sc->sc_ic;
 1627         struct rum_tx_data *data;
 1628         struct ieee80211_frame *wh;
 1629         const struct ieee80211_txparam *tp = ni->ni_txparms;
 1630         struct ieee80211_key *k = NULL;
 1631         uint32_t flags = 0;
 1632         uint16_t dur;
 1633         uint8_t ac, type, qos, xflags = 0;
 1634         int error, hdrlen, rate;
 1635 
 1636         RUM_LOCK_ASSERT(sc);
 1637 
 1638         wh = mtod(m0, struct ieee80211_frame *);
 1639         type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
 1640         hdrlen = ieee80211_anyhdrsize(wh);
 1641 
 1642         if (IEEE80211_QOS_HAS_SEQ(wh))
 1643                 qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
 1644         else
 1645                 qos = 0;
 1646         ac = M_WME_GETAC(m0);
 1647 
 1648         if (m0->m_flags & M_EAPOL)
 1649                 rate = tp->mgmtrate;
 1650         else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
 1651                 rate = tp->mcastrate;
 1652         else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
 1653                 rate = tp->ucastrate;
 1654         else {
 1655                 (void) ieee80211_ratectl_rate(ni, NULL, 0);
 1656                 rate = ni->ni_txrate;
 1657         }
 1658 
 1659         if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
 1660                 k = ieee80211_crypto_get_txkey(ni, m0);
 1661                 if (k == NULL) {
 1662                         m_freem(m0);
 1663                         return (ENOENT);
 1664                 }
 1665                 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) &&
 1666                     !k->wk_cipher->ic_encap(k, m0)) {
 1667                         m_freem(m0);
 1668                         return (ENOBUFS);
 1669                 }
 1670 
 1671                 /* packet header may have moved, reset our local pointer */
 1672                 wh = mtod(m0, struct ieee80211_frame *);
 1673         }
 1674 
 1675         if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh))
 1676                 xflags |= RT2573_TX_HWSEQ;
 1677 
 1678         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
 1679                 int prot = IEEE80211_PROT_NONE;
 1680                 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
 1681                         prot = IEEE80211_PROT_RTSCTS;
 1682                 else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
 1683                     ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM)
 1684                         prot = ic->ic_protmode;
 1685                 if (prot != IEEE80211_PROT_NONE) {
 1686                         error = rum_sendprot(sc, m0, ni, prot, rate);
 1687                         if (error || sc->tx_nfree == 0) {
 1688                                 m_freem(m0);
 1689                                 return ENOBUFS;
 1690                         }
 1691                         flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
 1692                 }
 1693         }
 1694 
 1695         if (k != NULL)
 1696                 flags |= rum_tx_crypto_flags(sc, ni, k);
 1697 
 1698         data = STAILQ_FIRST(&sc->tx_free);
 1699         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
 1700         sc->tx_nfree--;
 1701 
 1702         data->m = m0;
 1703         data->ni = ni;
 1704         data->rate = rate;
 1705 
 1706         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
 1707                 /* Unicast frame, check if an ACK is expected. */
 1708                 if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
 1709                     IEEE80211_QOS_ACKPOLICY_NOACK)
 1710                         flags |= RT2573_TX_NEED_ACK;
 1711 
 1712                 dur = ieee80211_ack_duration(ic->ic_rt, rate,
 1713                     ic->ic_flags & IEEE80211_F_SHPREAMBLE);
 1714                 USETW(wh->i_dur, dur);
 1715         }
 1716 
 1717         rum_setup_tx_desc(sc, &data->desc, k, flags, xflags, ac, hdrlen,
 1718             m0->m_pkthdr.len, rate);
 1719 
 1720         DPRINTFN(10, "sending frame len=%d rate=%d\n",
 1721             m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, rate);
 1722 
 1723         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
 1724         usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
 1725 
 1726         return 0;
 1727 }
 1728 
 1729 static int
 1730 rum_transmit(struct ieee80211com *ic, struct mbuf *m)
 1731 {
 1732         struct rum_softc *sc = ic->ic_softc;
 1733         int error;
 1734 
 1735         RUM_LOCK(sc);
 1736         if (!sc->sc_running) {
 1737                 RUM_UNLOCK(sc);
 1738                 return (ENXIO);
 1739         }
 1740         error = mbufq_enqueue(&sc->sc_snd, m);
 1741         if (error) {
 1742                 RUM_UNLOCK(sc);
 1743                 return (error);
 1744         }
 1745         rum_start(sc);
 1746         RUM_UNLOCK(sc);
 1747 
 1748         return (0);
 1749 }
 1750 
 1751 static void
 1752 rum_start(struct rum_softc *sc)
 1753 {
 1754         struct ieee80211_node *ni;
 1755         struct mbuf *m;
 1756 
 1757         RUM_LOCK_ASSERT(sc);
 1758 
 1759         if (!sc->sc_running)
 1760                 return;
 1761 
 1762         while (sc->tx_nfree >= RUM_TX_MINFREE &&
 1763             (m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
 1764                 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
 1765                 if (rum_tx_data(sc, m, ni) != 0) {
 1766                         if_inc_counter(ni->ni_vap->iv_ifp,
 1767                             IFCOUNTER_OERRORS, 1);
 1768                         ieee80211_free_node(ni);
 1769                         break;
 1770                 }
 1771         }
 1772 }
 1773 
 1774 static void
 1775 rum_parent(struct ieee80211com *ic)
 1776 {
 1777         struct rum_softc *sc = ic->ic_softc;
 1778         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 1779 
 1780         RUM_LOCK(sc);
 1781         if (sc->sc_detached) {
 1782                 RUM_UNLOCK(sc);
 1783                 return;
 1784         }
 1785         RUM_UNLOCK(sc);
 1786 
 1787         if (ic->ic_nrunning > 0) {
 1788                 if (rum_init(sc) == 0)
 1789                         ieee80211_start_all(ic);
 1790                 else
 1791                         ieee80211_stop(vap);
 1792         } else
 1793                 rum_stop(sc);
 1794 }
 1795 
 1796 static void
 1797 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
 1798 {
 1799         struct usb_device_request req;
 1800         usb_error_t error;
 1801 
 1802         req.bmRequestType = UT_READ_VENDOR_DEVICE;
 1803         req.bRequest = RT2573_READ_EEPROM;
 1804         USETW(req.wValue, 0);
 1805         USETW(req.wIndex, addr);
 1806         USETW(req.wLength, len);
 1807 
 1808         error = rum_do_request(sc, &req, buf);
 1809         if (error != 0) {
 1810                 device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
 1811                     usbd_errstr(error));
 1812         }
 1813 }
 1814 
 1815 static uint32_t
 1816 rum_read(struct rum_softc *sc, uint16_t reg)
 1817 {
 1818         uint32_t val;
 1819 
 1820         rum_read_multi(sc, reg, &val, sizeof val);
 1821 
 1822         return le32toh(val);
 1823 }
 1824 
 1825 static void
 1826 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
 1827 {
 1828         struct usb_device_request req;
 1829         usb_error_t error;
 1830 
 1831         req.bmRequestType = UT_READ_VENDOR_DEVICE;
 1832         req.bRequest = RT2573_READ_MULTI_MAC;
 1833         USETW(req.wValue, 0);
 1834         USETW(req.wIndex, reg);
 1835         USETW(req.wLength, len);
 1836 
 1837         error = rum_do_request(sc, &req, buf);
 1838         if (error != 0) {
 1839                 device_printf(sc->sc_dev,
 1840                     "could not multi read MAC register: %s\n",
 1841                     usbd_errstr(error));
 1842         }
 1843 }
 1844 
 1845 static usb_error_t
 1846 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
 1847 {
 1848         uint32_t tmp = htole32(val);
 1849 
 1850         return (rum_write_multi(sc, reg, &tmp, sizeof tmp));
 1851 }
 1852 
 1853 static usb_error_t
 1854 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
 1855 {
 1856         struct usb_device_request req;
 1857         usb_error_t error;
 1858         size_t offset;
 1859 
 1860         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
 1861         req.bRequest = RT2573_WRITE_MULTI_MAC;
 1862         USETW(req.wValue, 0);
 1863 
 1864         /* write at most 64 bytes at a time */
 1865         for (offset = 0; offset < len; offset += 64) {
 1866                 USETW(req.wIndex, reg + offset);
 1867                 USETW(req.wLength, MIN(len - offset, 64));
 1868 
 1869                 error = rum_do_request(sc, &req, (char *)buf + offset);
 1870                 if (error != 0) {
 1871                         device_printf(sc->sc_dev,
 1872                             "could not multi write MAC register: %s\n",
 1873                             usbd_errstr(error));
 1874                         return (error);
 1875                 }
 1876         }
 1877 
 1878         return (USB_ERR_NORMAL_COMPLETION);
 1879 }
 1880 
 1881 static usb_error_t
 1882 rum_setbits(struct rum_softc *sc, uint16_t reg, uint32_t mask)
 1883 {
 1884         return (rum_write(sc, reg, rum_read(sc, reg) | mask));
 1885 }
 1886 
 1887 static usb_error_t
 1888 rum_clrbits(struct rum_softc *sc, uint16_t reg, uint32_t mask)
 1889 {
 1890         return (rum_write(sc, reg, rum_read(sc, reg) & ~mask));
 1891 }
 1892 
 1893 static usb_error_t
 1894 rum_modbits(struct rum_softc *sc, uint16_t reg, uint32_t set, uint32_t unset)
 1895 {
 1896         return (rum_write(sc, reg, (rum_read(sc, reg) & ~unset) | set));
 1897 }
 1898 
 1899 static int
 1900 rum_bbp_busy(struct rum_softc *sc)
 1901 {
 1902         int ntries;
 1903 
 1904         for (ntries = 0; ntries < 100; ntries++) {
 1905                 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
 1906                         break;
 1907                 if (rum_pause(sc, hz / 100))
 1908                         break;
 1909         }
 1910         if (ntries == 100)
 1911                 return (ETIMEDOUT);
 1912 
 1913         return (0);
 1914 }
 1915 
 1916 static void
 1917 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
 1918 {
 1919         uint32_t tmp;
 1920 
 1921         DPRINTFN(2, "reg=0x%08x\n", reg);
 1922 
 1923         if (rum_bbp_busy(sc) != 0) {
 1924                 device_printf(sc->sc_dev, "could not write to BBP\n");
 1925                 return;
 1926         }
 1927 
 1928         tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
 1929         rum_write(sc, RT2573_PHY_CSR3, tmp);
 1930 }
 1931 
 1932 static uint8_t
 1933 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
 1934 {
 1935         uint32_t val;
 1936         int ntries;
 1937 
 1938         DPRINTFN(2, "reg=0x%08x\n", reg);
 1939 
 1940         if (rum_bbp_busy(sc) != 0) {
 1941                 device_printf(sc->sc_dev, "could not read BBP\n");
 1942                 return 0;
 1943         }
 1944 
 1945         val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
 1946         rum_write(sc, RT2573_PHY_CSR3, val);
 1947 
 1948         for (ntries = 0; ntries < 100; ntries++) {
 1949                 val = rum_read(sc, RT2573_PHY_CSR3);
 1950                 if (!(val & RT2573_BBP_BUSY))
 1951                         return val & 0xff;
 1952                 if (rum_pause(sc, hz / 100))
 1953                         break;
 1954         }
 1955 
 1956         device_printf(sc->sc_dev, "could not read BBP\n");
 1957         return 0;
 1958 }
 1959 
 1960 static void
 1961 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
 1962 {
 1963         uint32_t tmp;
 1964         int ntries;
 1965 
 1966         for (ntries = 0; ntries < 100; ntries++) {
 1967                 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
 1968                         break;
 1969                 if (rum_pause(sc, hz / 100))
 1970                         break;
 1971         }
 1972         if (ntries == 100) {
 1973                 device_printf(sc->sc_dev, "could not write to RF\n");
 1974                 return;
 1975         }
 1976 
 1977         tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
 1978             (reg & 3);
 1979         rum_write(sc, RT2573_PHY_CSR4, tmp);
 1980 
 1981         /* remember last written value in sc */
 1982         sc->rf_regs[reg] = val;
 1983 
 1984         DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff);
 1985 }
 1986 
 1987 static void
 1988 rum_select_antenna(struct rum_softc *sc)
 1989 {
 1990         uint8_t bbp4, bbp77;
 1991         uint32_t tmp;
 1992 
 1993         bbp4  = rum_bbp_read(sc, 4);
 1994         bbp77 = rum_bbp_read(sc, 77);
 1995 
 1996         /* TBD */
 1997 
 1998         /* make sure Rx is disabled before switching antenna */
 1999         tmp = rum_read(sc, RT2573_TXRX_CSR0);
 2000         rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
 2001 
 2002         rum_bbp_write(sc,  4, bbp4);
 2003         rum_bbp_write(sc, 77, bbp77);
 2004 
 2005         rum_write(sc, RT2573_TXRX_CSR0, tmp);
 2006 }
 2007 
 2008 /*
 2009  * Enable multi-rate retries for frames sent at OFDM rates.
 2010  * In 802.11b/g mode, allow fallback to CCK rates.
 2011  */
 2012 static void
 2013 rum_enable_mrr(struct rum_softc *sc)
 2014 {
 2015         struct ieee80211com *ic = &sc->sc_ic;
 2016 
 2017         if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) {
 2018                 rum_setbits(sc, RT2573_TXRX_CSR4,
 2019                     RT2573_MRR_ENABLED | RT2573_MRR_CCK_FALLBACK);
 2020         } else {
 2021                 rum_modbits(sc, RT2573_TXRX_CSR4,
 2022                     RT2573_MRR_ENABLED, RT2573_MRR_CCK_FALLBACK);
 2023         }
 2024 }
 2025 
 2026 static void
 2027 rum_set_txpreamble(struct rum_softc *sc)
 2028 {
 2029         struct ieee80211com *ic = &sc->sc_ic;
 2030 
 2031         if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
 2032                 rum_setbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_PREAMBLE);
 2033         else
 2034                 rum_clrbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_PREAMBLE);
 2035 }
 2036 
 2037 static void
 2038 rum_set_basicrates(struct rum_softc *sc)
 2039 {
 2040         struct ieee80211com *ic = &sc->sc_ic;
 2041 
 2042         /* update basic rate set */
 2043         if (ic->ic_curmode == IEEE80211_MODE_11B) {
 2044                 /* 11b basic rates: 1, 2Mbps */
 2045                 rum_write(sc, RT2573_TXRX_CSR5, 0x3);
 2046         } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) {
 2047                 /* 11a basic rates: 6, 12, 24Mbps */
 2048                 rum_write(sc, RT2573_TXRX_CSR5, 0x150);
 2049         } else {
 2050                 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
 2051                 rum_write(sc, RT2573_TXRX_CSR5, 0xf);
 2052         }
 2053 }
 2054 
 2055 /*
 2056  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
 2057  * driver.
 2058  */
 2059 static void
 2060 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
 2061 {
 2062         uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
 2063 
 2064         /* update all BBP registers that depend on the band */
 2065         bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
 2066         bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
 2067         if (IEEE80211_IS_CHAN_5GHZ(c)) {
 2068                 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
 2069                 bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
 2070         }
 2071         if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
 2072             (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
 2073                 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
 2074         }
 2075 
 2076         sc->bbp17 = bbp17;
 2077         rum_bbp_write(sc,  17, bbp17);
 2078         rum_bbp_write(sc,  96, bbp96);
 2079         rum_bbp_write(sc, 104, bbp104);
 2080 
 2081         if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
 2082             (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
 2083                 rum_bbp_write(sc, 75, 0x80);
 2084                 rum_bbp_write(sc, 86, 0x80);
 2085                 rum_bbp_write(sc, 88, 0x80);
 2086         }
 2087 
 2088         rum_bbp_write(sc, 35, bbp35);
 2089         rum_bbp_write(sc, 97, bbp97);
 2090         rum_bbp_write(sc, 98, bbp98);
 2091 
 2092         if (IEEE80211_IS_CHAN_2GHZ(c)) {
 2093                 rum_modbits(sc, RT2573_PHY_CSR0, RT2573_PA_PE_2GHZ,
 2094                     RT2573_PA_PE_5GHZ);
 2095         } else {
 2096                 rum_modbits(sc, RT2573_PHY_CSR0, RT2573_PA_PE_5GHZ,
 2097                     RT2573_PA_PE_2GHZ);
 2098         }
 2099 }
 2100 
 2101 static void
 2102 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
 2103 {
 2104         struct ieee80211com *ic = &sc->sc_ic;
 2105         const struct rfprog *rfprog;
 2106         uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
 2107         int8_t power;
 2108         int i, chan;
 2109 
 2110         chan = ieee80211_chan2ieee(ic, c);
 2111         if (chan == 0 || chan == IEEE80211_CHAN_ANY)
 2112                 return;
 2113 
 2114         /* select the appropriate RF settings based on what EEPROM says */
 2115         rfprog = (sc->rf_rev == RT2573_RF_5225 ||
 2116                   sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
 2117 
 2118         /* find the settings for this channel (we know it exists) */
 2119         for (i = 0; rfprog[i].chan != chan; i++);
 2120 
 2121         power = sc->txpow[i];
 2122         if (power < 0) {
 2123                 bbp94 += power;
 2124                 power = 0;
 2125         } else if (power > 31) {
 2126                 bbp94 += power - 31;
 2127                 power = 31;
 2128         }
 2129 
 2130         /*
 2131          * If we are switching from the 2GHz band to the 5GHz band or
 2132          * vice-versa, BBP registers need to be reprogrammed.
 2133          */
 2134         if (c->ic_flags != ic->ic_curchan->ic_flags) {
 2135                 rum_select_band(sc, c);
 2136                 rum_select_antenna(sc);
 2137         }
 2138         ic->ic_curchan = c;
 2139 
 2140         rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
 2141         rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
 2142         rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
 2143         rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
 2144 
 2145         rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
 2146         rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
 2147         rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
 2148         rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
 2149 
 2150         rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
 2151         rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
 2152         rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
 2153         rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
 2154 
 2155         rum_pause(sc, hz / 100);
 2156 
 2157         /* enable smart mode for MIMO-capable RFs */
 2158         bbp3 = rum_bbp_read(sc, 3);
 2159 
 2160         bbp3 &= ~RT2573_SMART_MODE;
 2161         if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
 2162                 bbp3 |= RT2573_SMART_MODE;
 2163 
 2164         rum_bbp_write(sc, 3, bbp3);
 2165 
 2166         if (bbp94 != RT2573_BBPR94_DEFAULT)
 2167                 rum_bbp_write(sc, 94, bbp94);
 2168 
 2169         /* give the chip some extra time to do the switchover */
 2170         rum_pause(sc, hz / 100);
 2171 }
 2172 
 2173 static void
 2174 rum_set_maxretry(struct rum_softc *sc, struct ieee80211vap *vap)
 2175 {
 2176         struct ieee80211_node *ni = vap->iv_bss;
 2177         const struct ieee80211_txparam *tp = ni->ni_txparms;
 2178         struct rum_vap *rvp = RUM_VAP(vap);
 2179 
 2180         rvp->maxretry = MIN(tp->maxretry, 0xf);
 2181 
 2182         rum_modbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_RETRY(rvp->maxretry) |
 2183             RT2573_LONG_RETRY(rvp->maxretry),
 2184             RT2573_SHORT_RETRY_MASK | RT2573_LONG_RETRY_MASK);
 2185 }
 2186 
 2187 /*
 2188  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
 2189  * and HostAP operating modes.
 2190  */
 2191 static int
 2192 rum_enable_tsf_sync(struct rum_softc *sc)
 2193 {
 2194         struct ieee80211com *ic = &sc->sc_ic;
 2195         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 2196         uint32_t tmp;
 2197         uint16_t bintval;
 2198 
 2199         if (vap->iv_opmode != IEEE80211_M_STA) {
 2200                 /*
 2201                  * Change default 16ms TBTT adjustment to 8ms.
 2202                  * Must be done before enabling beacon generation.
 2203                  */
 2204                 if (rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8) != 0)
 2205                         return EIO;
 2206         }
 2207 
 2208         tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
 2209 
 2210         /* set beacon interval (in 1/16ms unit) */
 2211         bintval = vap->iv_bss->ni_intval;
 2212         tmp |= bintval * 16;
 2213         tmp |= RT2573_TSF_TIMER_EN | RT2573_TBTT_TIMER_EN;
 2214 
 2215         switch (vap->iv_opmode) {
 2216         case IEEE80211_M_STA:
 2217                 /*
 2218                  * Local TSF is always updated with remote TSF on beacon
 2219                  * reception.
 2220                  */
 2221                 tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_STA);
 2222                 break;
 2223         case IEEE80211_M_IBSS:
 2224                 /*
 2225                  * Local TSF is updated with remote TSF on beacon reception
 2226                  * only if the remote TSF is greater than local TSF.
 2227                  */
 2228                 tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_IBSS);
 2229                 tmp |= RT2573_BCN_TX_EN;
 2230                 break;
 2231         case IEEE80211_M_HOSTAP:
 2232                 /* SYNC with nobody */
 2233                 tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_HOSTAP);
 2234                 tmp |= RT2573_BCN_TX_EN;
 2235                 break;
 2236         default:
 2237                 device_printf(sc->sc_dev,
 2238                     "Enabling TSF failed. undefined opmode %d\n",
 2239                     vap->iv_opmode);
 2240                 return EINVAL;
 2241         }
 2242 
 2243         if (rum_write(sc, RT2573_TXRX_CSR9, tmp) != 0)
 2244                 return EIO;
 2245 
 2246         /* refresh current sleep time */
 2247         return (rum_set_sleep_time(sc, bintval));
 2248 }
 2249 
 2250 static void
 2251 rum_enable_tsf(struct rum_softc *sc)
 2252 {
 2253         rum_modbits(sc, RT2573_TXRX_CSR9, RT2573_TSF_TIMER_EN |
 2254             RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_DIS), 0x00ffffff);
 2255 }
 2256 
 2257 static void
 2258 rum_abort_tsf_sync(struct rum_softc *sc)
 2259 {
 2260         rum_clrbits(sc, RT2573_TXRX_CSR9, 0x00ffffff);
 2261 }
 2262 
 2263 static void
 2264 rum_get_tsf(struct rum_softc *sc, uint64_t *buf)
 2265 {
 2266         rum_read_multi(sc, RT2573_TXRX_CSR12, buf, sizeof (*buf));
 2267 }
 2268 
 2269 static void
 2270 rum_update_slot_cb(struct rum_softc *sc, union sec_param *data, uint8_t rvp_id)
 2271 {
 2272         struct ieee80211com *ic = &sc->sc_ic;
 2273         uint8_t slottime;
 2274 
 2275         slottime = IEEE80211_GET_SLOTTIME(ic);
 2276 
 2277         rum_modbits(sc, RT2573_MAC_CSR9, slottime, 0xff);
 2278 
 2279         DPRINTF("setting slot time to %uus\n", slottime);
 2280 }
 2281 
 2282 static void
 2283 rum_update_slot(struct ieee80211com *ic)
 2284 {
 2285         rum_cmd_sleepable(ic->ic_softc, NULL, 0, 0, rum_update_slot_cb);
 2286 }
 2287 
 2288 static int
 2289 rum_wme_update(struct ieee80211com *ic)
 2290 {
 2291         struct chanAccParams chp;
 2292         const struct wmeParams *chanp;
 2293         struct rum_softc *sc = ic->ic_softc;
 2294         int error = 0;
 2295 
 2296         ieee80211_wme_ic_getparams(ic, &chp);
 2297         chanp = chp.cap_wmeParams;
 2298 
 2299         RUM_LOCK(sc);
 2300         error = rum_write(sc, RT2573_AIFSN_CSR,
 2301             chanp[WME_AC_VO].wmep_aifsn  << 12 |
 2302             chanp[WME_AC_VI].wmep_aifsn  <<  8 |
 2303             chanp[WME_AC_BK].wmep_aifsn  <<  4 |
 2304             chanp[WME_AC_BE].wmep_aifsn);
 2305         if (error)
 2306                 goto print_err;
 2307         error = rum_write(sc, RT2573_CWMIN_CSR,
 2308             chanp[WME_AC_VO].wmep_logcwmin << 12 |
 2309             chanp[WME_AC_VI].wmep_logcwmin <<  8 |
 2310             chanp[WME_AC_BK].wmep_logcwmin <<  4 |
 2311             chanp[WME_AC_BE].wmep_logcwmin);
 2312         if (error)
 2313                 goto print_err;
 2314         error = rum_write(sc, RT2573_CWMAX_CSR,
 2315             chanp[WME_AC_VO].wmep_logcwmax << 12 |
 2316             chanp[WME_AC_VI].wmep_logcwmax <<  8 |
 2317             chanp[WME_AC_BK].wmep_logcwmax <<  4 |
 2318             chanp[WME_AC_BE].wmep_logcwmax);
 2319         if (error)
 2320                 goto print_err;
 2321         error = rum_write(sc, RT2573_TXOP01_CSR,
 2322             chanp[WME_AC_BK].wmep_txopLimit << 16 |
 2323             chanp[WME_AC_BE].wmep_txopLimit);
 2324         if (error)
 2325                 goto print_err;
 2326         error = rum_write(sc, RT2573_TXOP23_CSR,
 2327             chanp[WME_AC_VO].wmep_txopLimit << 16 |
 2328             chanp[WME_AC_VI].wmep_txopLimit);
 2329         if (error)
 2330                 goto print_err;
 2331 
 2332         memcpy(sc->wme_params, chanp, sizeof(*chanp) * WME_NUM_AC);
 2333 
 2334 print_err:
 2335         RUM_UNLOCK(sc);
 2336         if (error != 0) {
 2337                 device_printf(sc->sc_dev, "%s: WME update failed, error %d\n",
 2338                     __func__, error);
 2339         }
 2340 
 2341         return (error);
 2342 }
 2343 
 2344 static void
 2345 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
 2346 {
 2347 
 2348         rum_write(sc, RT2573_MAC_CSR4,
 2349             bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24);
 2350         rum_write(sc, RT2573_MAC_CSR5,
 2351             bssid[4] | bssid[5] << 8 | RT2573_NUM_BSSID_MSK(1));
 2352 }
 2353 
 2354 static void
 2355 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
 2356 {
 2357 
 2358         rum_write(sc, RT2573_MAC_CSR2,
 2359             addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24);
 2360         rum_write(sc, RT2573_MAC_CSR3,
 2361             addr[4] | addr[5] << 8 | 0xff << 16);
 2362 }
 2363 
 2364 static void
 2365 rum_setpromisc(struct rum_softc *sc)
 2366 {
 2367         struct ieee80211com *ic = &sc->sc_ic;
 2368 
 2369         if (ic->ic_promisc == 0)
 2370                 rum_setbits(sc, RT2573_TXRX_CSR0, RT2573_DROP_NOT_TO_ME);
 2371         else
 2372                 rum_clrbits(sc, RT2573_TXRX_CSR0, RT2573_DROP_NOT_TO_ME);
 2373 
 2374         DPRINTF("%s promiscuous mode\n", ic->ic_promisc > 0 ?
 2375             "entering" : "leaving");
 2376 }
 2377 
 2378 static void
 2379 rum_update_promisc(struct ieee80211com *ic)
 2380 {
 2381         struct rum_softc *sc = ic->ic_softc;
 2382 
 2383         RUM_LOCK(sc);
 2384         if (sc->sc_running)
 2385                 rum_setpromisc(sc);
 2386         RUM_UNLOCK(sc);
 2387 }
 2388 
 2389 static void
 2390 rum_update_mcast(struct ieee80211com *ic)
 2391 {
 2392         /* Ignore. */
 2393 }
 2394 
 2395 static const char *
 2396 rum_get_rf(int rev)
 2397 {
 2398         switch (rev) {
 2399         case RT2573_RF_2527:    return "RT2527 (MIMO XR)";
 2400         case RT2573_RF_2528:    return "RT2528";
 2401         case RT2573_RF_5225:    return "RT5225 (MIMO XR)";
 2402         case RT2573_RF_5226:    return "RT5226";
 2403         default:                return "unknown";
 2404         }
 2405 }
 2406 
 2407 static void
 2408 rum_read_eeprom(struct rum_softc *sc)
 2409 {
 2410         uint16_t val;
 2411 #ifdef RUM_DEBUG
 2412         int i;
 2413 #endif
 2414 
 2415         /* read MAC address */
 2416         rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, sc->sc_ic.ic_macaddr, 6);
 2417 
 2418         rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
 2419         val = le16toh(val);
 2420         sc->rf_rev =   (val >> 11) & 0x1f;
 2421         sc->hw_radio = (val >> 10) & 0x1;
 2422         sc->rx_ant =   (val >> 4)  & 0x3;
 2423         sc->tx_ant =   (val >> 2)  & 0x3;
 2424         sc->nb_ant =   val & 0x3;
 2425 
 2426         DPRINTF("RF revision=%d\n", sc->rf_rev);
 2427 
 2428         rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
 2429         val = le16toh(val);
 2430         sc->ext_5ghz_lna = (val >> 6) & 0x1;
 2431         sc->ext_2ghz_lna = (val >> 4) & 0x1;
 2432 
 2433         DPRINTF("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
 2434             sc->ext_2ghz_lna, sc->ext_5ghz_lna);
 2435 
 2436         rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
 2437         val = le16toh(val);
 2438         if ((val & 0xff) != 0xff)
 2439                 sc->rssi_2ghz_corr = (int8_t)(val & 0xff);      /* signed */
 2440 
 2441         /* Only [-10, 10] is valid */
 2442         if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10)
 2443                 sc->rssi_2ghz_corr = 0;
 2444 
 2445         rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
 2446         val = le16toh(val);
 2447         if ((val & 0xff) != 0xff)
 2448                 sc->rssi_5ghz_corr = (int8_t)(val & 0xff);      /* signed */
 2449 
 2450         /* Only [-10, 10] is valid */
 2451         if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10)
 2452                 sc->rssi_5ghz_corr = 0;
 2453 
 2454         if (sc->ext_2ghz_lna)
 2455                 sc->rssi_2ghz_corr -= 14;
 2456         if (sc->ext_5ghz_lna)
 2457                 sc->rssi_5ghz_corr -= 14;
 2458 
 2459         DPRINTF("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
 2460             sc->rssi_2ghz_corr, sc->rssi_5ghz_corr);
 2461 
 2462         rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
 2463         val = le16toh(val);
 2464         if ((val & 0xff) != 0xff)
 2465                 sc->rffreq = val & 0xff;
 2466 
 2467         DPRINTF("RF freq=%d\n", sc->rffreq);
 2468 
 2469         /* read Tx power for all a/b/g channels */
 2470         rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
 2471         /* XXX default Tx power for 802.11a channels */
 2472         memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
 2473 #ifdef RUM_DEBUG
 2474         for (i = 0; i < 14; i++)
 2475                 DPRINTF("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]);
 2476 #endif
 2477 
 2478         /* read default values for BBP registers */
 2479         rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
 2480 #ifdef RUM_DEBUG
 2481         for (i = 0; i < 14; i++) {
 2482                 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
 2483                         continue;
 2484                 DPRINTF("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
 2485                     sc->bbp_prom[i].val);
 2486         }
 2487 #endif
 2488 }
 2489 
 2490 static int
 2491 rum_bbp_wakeup(struct rum_softc *sc)
 2492 {
 2493         unsigned ntries;
 2494 
 2495         for (ntries = 0; ntries < 100; ntries++) {
 2496                 if (rum_read(sc, RT2573_MAC_CSR12) & 8)
 2497                         break;
 2498                 rum_write(sc, RT2573_MAC_CSR12, 4);     /* force wakeup */
 2499                 if (rum_pause(sc, hz / 100))
 2500                         break;
 2501         }
 2502         if (ntries == 100) {
 2503                 device_printf(sc->sc_dev,
 2504                     "timeout waiting for BBP/RF to wakeup\n");
 2505                 return (ETIMEDOUT);
 2506         }
 2507 
 2508         return (0);
 2509 }
 2510 
 2511 static int
 2512 rum_bbp_init(struct rum_softc *sc)
 2513 {
 2514         int i, ntries;
 2515 
 2516         /* wait for BBP to be ready */
 2517         for (ntries = 0; ntries < 100; ntries++) {
 2518                 const uint8_t val = rum_bbp_read(sc, 0);
 2519                 if (val != 0 && val != 0xff)
 2520                         break;
 2521                 if (rum_pause(sc, hz / 100))
 2522                         break;
 2523         }
 2524         if (ntries == 100) {
 2525                 device_printf(sc->sc_dev, "timeout waiting for BBP\n");
 2526                 return EIO;
 2527         }
 2528 
 2529         /* initialize BBP registers to default values */
 2530         for (i = 0; i < nitems(rum_def_bbp); i++)
 2531                 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
 2532 
 2533         /* write vendor-specific BBP values (from EEPROM) */
 2534         for (i = 0; i < 16; i++) {
 2535                 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
 2536                         continue;
 2537                 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
 2538         }
 2539 
 2540         return 0;
 2541 }
 2542 
 2543 static void
 2544 rum_clr_shkey_regs(struct rum_softc *sc)
 2545 {
 2546         rum_write(sc, RT2573_SEC_CSR0, 0);
 2547         rum_write(sc, RT2573_SEC_CSR1, 0);
 2548         rum_write(sc, RT2573_SEC_CSR5, 0);
 2549 }
 2550 
 2551 static int
 2552 rum_init(struct rum_softc *sc)
 2553 {
 2554         struct ieee80211com *ic = &sc->sc_ic;
 2555         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 2556         uint32_t tmp;
 2557         int i, ret;
 2558 
 2559         RUM_LOCK(sc);
 2560         if (sc->sc_running) {
 2561                 ret = 0;
 2562                 goto end;
 2563         }
 2564 
 2565         /* initialize MAC registers to default values */
 2566         for (i = 0; i < nitems(rum_def_mac); i++)
 2567                 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
 2568 
 2569         /* reset some WME parameters to default values */
 2570         sc->wme_params[0].wmep_aifsn = 2;
 2571         sc->wme_params[0].wmep_logcwmin = 4;
 2572         sc->wme_params[0].wmep_logcwmax = 10;
 2573 
 2574         /* set host ready */
 2575         rum_write(sc, RT2573_MAC_CSR1, RT2573_RESET_ASIC | RT2573_RESET_BBP);
 2576         rum_write(sc, RT2573_MAC_CSR1, 0);
 2577 
 2578         /* wait for BBP/RF to wakeup */
 2579         if ((ret = rum_bbp_wakeup(sc)) != 0)
 2580                 goto end;
 2581 
 2582         if ((ret = rum_bbp_init(sc)) != 0)
 2583                 goto end;
 2584 
 2585         /* select default channel */
 2586         rum_select_band(sc, ic->ic_curchan);
 2587         rum_select_antenna(sc);
 2588         rum_set_chan(sc, ic->ic_curchan);
 2589 
 2590         /* clear STA registers */
 2591         rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
 2592 
 2593         /* clear security registers (if required) */
 2594         if (sc->sc_clr_shkeys == 0) {
 2595                 rum_clr_shkey_regs(sc);
 2596                 sc->sc_clr_shkeys = 1;
 2597         }
 2598 
 2599         rum_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr);
 2600 
 2601         /* initialize ASIC */
 2602         rum_write(sc, RT2573_MAC_CSR1, RT2573_HOST_READY);
 2603 
 2604         /*
 2605          * Allocate Tx and Rx xfer queues.
 2606          */
 2607         rum_setup_tx_list(sc);
 2608 
 2609         /* update Rx filter */
 2610         tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
 2611 
 2612         tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
 2613         if (ic->ic_opmode != IEEE80211_M_MONITOR) {
 2614                 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
 2615                        RT2573_DROP_ACKCTS;
 2616                 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
 2617                         tmp |= RT2573_DROP_TODS;
 2618                 if (ic->ic_promisc == 0)
 2619                         tmp |= RT2573_DROP_NOT_TO_ME;
 2620         }
 2621         rum_write(sc, RT2573_TXRX_CSR0, tmp);
 2622 
 2623         sc->sc_running = 1;
 2624         usbd_xfer_set_stall(sc->sc_xfer[RUM_BULK_WR]);
 2625         usbd_transfer_start(sc->sc_xfer[RUM_BULK_RD]);
 2626 
 2627 end:    RUM_UNLOCK(sc);
 2628 
 2629         if (ret != 0)
 2630                 rum_stop(sc);
 2631 
 2632         return ret;
 2633 }
 2634 
 2635 static void
 2636 rum_stop(struct rum_softc *sc)
 2637 {
 2638 
 2639         RUM_LOCK(sc);
 2640         if (!sc->sc_running) {
 2641                 RUM_UNLOCK(sc);
 2642                 return;
 2643         }
 2644         sc->sc_running = 0;
 2645         RUM_UNLOCK(sc);
 2646 
 2647         /*
 2648          * Drain the USB transfers, if not already drained:
 2649          */
 2650         usbd_transfer_drain(sc->sc_xfer[RUM_BULK_WR]);
 2651         usbd_transfer_drain(sc->sc_xfer[RUM_BULK_RD]);
 2652 
 2653         RUM_LOCK(sc);
 2654         rum_unsetup_tx_list(sc);
 2655 
 2656         /* disable Rx */
 2657         rum_setbits(sc, RT2573_TXRX_CSR0, RT2573_DISABLE_RX);
 2658 
 2659         /* reset ASIC */
 2660         rum_write(sc, RT2573_MAC_CSR1, RT2573_RESET_ASIC | RT2573_RESET_BBP);
 2661         rum_write(sc, RT2573_MAC_CSR1, 0);
 2662         RUM_UNLOCK(sc);
 2663 }
 2664 
 2665 static void
 2666 rum_load_microcode(struct rum_softc *sc, const uint8_t *ucode, size_t size)
 2667 {
 2668         uint16_t reg = RT2573_MCU_CODE_BASE;
 2669         usb_error_t err;
 2670 
 2671         /* copy firmware image into NIC */
 2672         for (; size >= 4; reg += 4, ucode += 4, size -= 4) {
 2673                 err = rum_write(sc, reg, UGETDW(ucode));
 2674                 if (err) {
 2675                         /* firmware already loaded ? */
 2676                         device_printf(sc->sc_dev, "Firmware load "
 2677                             "failure! (ignored)\n");
 2678                         break;
 2679                 }
 2680         }
 2681 
 2682         err = rum_do_mcu_request(sc, RT2573_MCU_RUN);
 2683         if (err != USB_ERR_NORMAL_COMPLETION) {
 2684                 device_printf(sc->sc_dev, "could not run firmware: %s\n",
 2685                     usbd_errstr(err));
 2686         }
 2687 
 2688         /* give the chip some time to boot */
 2689         rum_pause(sc, hz / 8);
 2690 }
 2691 
 2692 static int
 2693 rum_set_sleep_time(struct rum_softc *sc, uint16_t bintval)
 2694 {
 2695         struct ieee80211com *ic = &sc->sc_ic;
 2696         usb_error_t uerror;
 2697         int exp, delay;
 2698 
 2699         RUM_LOCK_ASSERT(sc);
 2700 
 2701         exp = ic->ic_lintval / bintval;
 2702         delay = ic->ic_lintval % bintval;
 2703 
 2704         if (exp > RT2573_TBCN_EXP_MAX)
 2705                 exp = RT2573_TBCN_EXP_MAX;
 2706         if (delay > RT2573_TBCN_DELAY_MAX)
 2707                 delay = RT2573_TBCN_DELAY_MAX;
 2708 
 2709         uerror = rum_modbits(sc, RT2573_MAC_CSR11,
 2710             RT2573_TBCN_EXP(exp) |
 2711             RT2573_TBCN_DELAY(delay),
 2712             RT2573_TBCN_EXP(RT2573_TBCN_EXP_MAX) |
 2713             RT2573_TBCN_DELAY(RT2573_TBCN_DELAY_MAX));
 2714 
 2715         if (uerror != USB_ERR_NORMAL_COMPLETION)
 2716                 return (EIO);
 2717 
 2718         sc->sc_sleep_time = IEEE80211_TU_TO_TICKS(exp * bintval + delay);
 2719 
 2720         return (0);
 2721 }
 2722 
 2723 static int
 2724 rum_reset(struct ieee80211vap *vap, u_long cmd)
 2725 {
 2726         struct ieee80211com *ic = vap->iv_ic;
 2727         struct ieee80211_node *ni;
 2728         struct rum_softc *sc = ic->ic_softc;
 2729         int error;
 2730 
 2731         switch (cmd) {
 2732         case IEEE80211_IOC_POWERSAVE:
 2733         case IEEE80211_IOC_PROTMODE:
 2734         case IEEE80211_IOC_RTSTHRESHOLD:
 2735                 error = 0;
 2736                 break;
 2737         case IEEE80211_IOC_POWERSAVESLEEP:
 2738                 ni = ieee80211_ref_node(vap->iv_bss);
 2739 
 2740                 RUM_LOCK(sc);
 2741                 error = rum_set_sleep_time(sc, ni->ni_intval);
 2742                 if (vap->iv_state == IEEE80211_S_SLEEP) {
 2743                         /* Use new values for wakeup timer. */
 2744                         rum_clrbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP);
 2745                         rum_setbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP);
 2746                 }
 2747                 /* XXX send reassoc */
 2748                 RUM_UNLOCK(sc);
 2749 
 2750                 ieee80211_free_node(ni);
 2751                 break;
 2752         default:
 2753                 error = ENETRESET;
 2754                 break;
 2755         }
 2756 
 2757         return (error);
 2758 }
 2759 
 2760 static int
 2761 rum_set_beacon(struct rum_softc *sc, struct ieee80211vap *vap)
 2762 {
 2763         struct ieee80211com *ic = vap->iv_ic;
 2764         struct rum_vap *rvp = RUM_VAP(vap);
 2765         struct mbuf *m = rvp->bcn_mbuf;
 2766         const struct ieee80211_txparam *tp;
 2767         struct rum_tx_desc desc;
 2768 
 2769         RUM_LOCK_ASSERT(sc);
 2770 
 2771         if (m == NULL)
 2772                 return EINVAL;
 2773         if (ic->ic_bsschan == IEEE80211_CHAN_ANYC)
 2774                 return EINVAL;
 2775 
 2776         tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)];
 2777         rum_setup_tx_desc(sc, &desc, NULL, RT2573_TX_TIMESTAMP,
 2778             RT2573_TX_HWSEQ, 0, 0, m->m_pkthdr.len, tp->mgmtrate);
 2779 
 2780         /* copy the Tx descriptor into NIC memory */
 2781         if (rum_write_multi(sc, RT2573_HW_BCN_BASE(0), (uint8_t *)&desc,
 2782             RT2573_TX_DESC_SIZE) != 0)
 2783                 return EIO;
 2784 
 2785         /* copy beacon header and payload into NIC memory */
 2786         if (rum_write_multi(sc, RT2573_HW_BCN_BASE(0) + RT2573_TX_DESC_SIZE,
 2787             mtod(m, uint8_t *), m->m_pkthdr.len) != 0)
 2788                 return EIO;
 2789 
 2790         return 0;
 2791 }
 2792 
 2793 static int
 2794 rum_alloc_beacon(struct rum_softc *sc, struct ieee80211vap *vap)
 2795 {
 2796         struct rum_vap *rvp = RUM_VAP(vap);
 2797         struct ieee80211_node *ni = vap->iv_bss;
 2798         struct mbuf *m;
 2799 
 2800         if (ni->ni_chan == IEEE80211_CHAN_ANYC)
 2801                 return EINVAL;
 2802 
 2803         m = ieee80211_beacon_alloc(ni);
 2804         if (m == NULL)
 2805                 return ENOMEM;
 2806 
 2807         if (rvp->bcn_mbuf != NULL)
 2808                 m_freem(rvp->bcn_mbuf);
 2809 
 2810         rvp->bcn_mbuf = m;
 2811 
 2812         return (rum_set_beacon(sc, vap));
 2813 }
 2814 
 2815 static void
 2816 rum_update_beacon_cb(struct rum_softc *sc, union sec_param *data,
 2817     uint8_t rvp_id)
 2818 {
 2819         struct ieee80211vap *vap = data->vap;
 2820 
 2821         rum_set_beacon(sc, vap);
 2822 }
 2823 
 2824 static void
 2825 rum_update_beacon(struct ieee80211vap *vap, int item)
 2826 {
 2827         struct ieee80211com *ic = vap->iv_ic;
 2828         struct rum_softc *sc = ic->ic_softc;
 2829         struct rum_vap *rvp = RUM_VAP(vap);
 2830         struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
 2831         struct ieee80211_node *ni = vap->iv_bss;
 2832         struct mbuf *m = rvp->bcn_mbuf;
 2833         int mcast = 0;
 2834 
 2835         RUM_LOCK(sc);
 2836         if (m == NULL) {
 2837                 m = ieee80211_beacon_alloc(ni);
 2838                 if (m == NULL) {
 2839                         device_printf(sc->sc_dev,
 2840                             "%s: could not allocate beacon frame\n", __func__);
 2841                         RUM_UNLOCK(sc);
 2842                         return;
 2843                 }
 2844                 rvp->bcn_mbuf = m;
 2845         }
 2846 
 2847         switch (item) {
 2848         case IEEE80211_BEACON_ERP:
 2849                 rum_update_slot(ic);
 2850                 break;
 2851         case IEEE80211_BEACON_TIM:
 2852                 mcast = 1;      /*TODO*/
 2853                 break;
 2854         default:
 2855                 break;
 2856         }
 2857         RUM_UNLOCK(sc);
 2858 
 2859         setbit(bo->bo_flags, item);
 2860         ieee80211_beacon_update(ni, m, mcast);
 2861 
 2862         rum_cmd_sleepable(sc, &vap, sizeof(vap), 0, rum_update_beacon_cb);
 2863 }
 2864 
 2865 static int
 2866 rum_common_key_set(struct rum_softc *sc, struct ieee80211_key *k,
 2867     uint16_t base)
 2868 {
 2869 
 2870         if (rum_write_multi(sc, base, k->wk_key, k->wk_keylen))
 2871                 return EIO;
 2872 
 2873         if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) {
 2874                 if (rum_write_multi(sc, base + IEEE80211_KEYBUF_SIZE,
 2875                     k->wk_txmic, 8))
 2876                         return EIO;
 2877                 if (rum_write_multi(sc, base + IEEE80211_KEYBUF_SIZE + 8,
 2878                     k->wk_rxmic, 8))
 2879                         return EIO;
 2880         }
 2881 
 2882         return 0;
 2883 }
 2884 
 2885 static void
 2886 rum_group_key_set_cb(struct rum_softc *sc, union sec_param *data,
 2887     uint8_t rvp_id) 
 2888 {
 2889         struct ieee80211_key *k = &data->key;
 2890         uint8_t mode;
 2891 
 2892         if (sc->sc_clr_shkeys == 0) {
 2893                 rum_clr_shkey_regs(sc);
 2894                 sc->sc_clr_shkeys = 1;
 2895         }
 2896 
 2897         mode = rum_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen);
 2898         if (mode == 0)
 2899                 goto print_err;
 2900 
 2901         DPRINTFN(1, "setting group key %d for vap %d, mode %d "
 2902             "(tx %s, rx %s)\n", k->wk_keyix, rvp_id, mode,
 2903             (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off",
 2904             (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off");
 2905 
 2906         /* Install the key. */
 2907         if (rum_common_key_set(sc, k, RT2573_SKEY(rvp_id, k->wk_keyix)) != 0)
 2908                 goto print_err;
 2909 
 2910         /* Set cipher mode. */
 2911         if (rum_modbits(sc, rvp_id < 2 ? RT2573_SEC_CSR1 : RT2573_SEC_CSR5,
 2912               mode << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX,
 2913               RT2573_MODE_MASK << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX)
 2914             != 0)
 2915                 goto print_err;
 2916 
 2917         /* Mark this key as valid. */
 2918         if (rum_setbits(sc, RT2573_SEC_CSR0,
 2919               1 << (rvp_id * RT2573_SKEY_MAX + k->wk_keyix)) != 0)
 2920                 goto print_err;
 2921 
 2922         return;
 2923 
 2924 print_err:
 2925         device_printf(sc->sc_dev, "%s: cannot set group key %d for vap %d\n",
 2926             __func__, k->wk_keyix, rvp_id);
 2927 }
 2928 
 2929 static void
 2930 rum_group_key_del_cb(struct rum_softc *sc, union sec_param *data,
 2931     uint8_t rvp_id)
 2932 {
 2933         struct ieee80211_key *k = &data->key;
 2934 
 2935         DPRINTF("%s: removing group key %d for vap %d\n", __func__,
 2936             k->wk_keyix, rvp_id);
 2937         rum_clrbits(sc,
 2938             rvp_id < 2 ? RT2573_SEC_CSR1 : RT2573_SEC_CSR5,
 2939             RT2573_MODE_MASK << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX);
 2940         rum_clrbits(sc, RT2573_SEC_CSR0,
 2941             rvp_id * RT2573_SKEY_MAX + k->wk_keyix);
 2942 }
 2943 
 2944 static void
 2945 rum_pair_key_set_cb(struct rum_softc *sc, union sec_param *data,
 2946     uint8_t rvp_id)
 2947 {
 2948         struct ieee80211_key *k = &data->key;
 2949         uint8_t buf[IEEE80211_ADDR_LEN + 1];
 2950         uint8_t mode;
 2951 
 2952         mode = rum_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen);
 2953         if (mode == 0)
 2954                 goto print_err;
 2955 
 2956         DPRINTFN(1, "setting pairwise key %d for vap %d, mode %d "
 2957             "(tx %s, rx %s)\n", k->wk_keyix, rvp_id, mode,
 2958             (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off",
 2959             (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off");
 2960 
 2961         /* Install the key. */
 2962         if (rum_common_key_set(sc, k, RT2573_PKEY(k->wk_keyix)) != 0)
 2963                 goto print_err;
 2964 
 2965         IEEE80211_ADDR_COPY(buf, k->wk_macaddr);
 2966         buf[IEEE80211_ADDR_LEN] = mode;
 2967 
 2968         /* Set transmitter address and cipher mode. */
 2969         if (rum_write_multi(sc, RT2573_ADDR_ENTRY(k->wk_keyix),
 2970               buf, sizeof buf) != 0)
 2971                 goto print_err;
 2972 
 2973         /* Enable key table lookup for this vap. */
 2974         if (sc->vap_key_count[rvp_id]++ == 0)
 2975                 if (rum_setbits(sc, RT2573_SEC_CSR4, 1 << rvp_id) != 0)
 2976                         goto print_err;
 2977 
 2978         /* Mark this key as valid. */
 2979         if (rum_setbits(sc,
 2980               k->wk_keyix < 32 ? RT2573_SEC_CSR2 : RT2573_SEC_CSR3,
 2981               1 << (k->wk_keyix % 32)) != 0)
 2982                 goto print_err;
 2983 
 2984         return;
 2985 
 2986 print_err:
 2987         device_printf(sc->sc_dev,
 2988             "%s: cannot set pairwise key %d, vap %d\n", __func__, k->wk_keyix,
 2989             rvp_id);
 2990 }
 2991 
 2992 static void
 2993 rum_pair_key_del_cb(struct rum_softc *sc, union sec_param *data,
 2994     uint8_t rvp_id)
 2995 {
 2996         struct ieee80211_key *k = &data->key;
 2997 
 2998         DPRINTF("%s: removing key %d\n", __func__, k->wk_keyix);
 2999         rum_clrbits(sc, (k->wk_keyix < 32) ? RT2573_SEC_CSR2 : RT2573_SEC_CSR3,
 3000             1 << (k->wk_keyix % 32));
 3001         sc->keys_bmap &= ~(1ULL << k->wk_keyix);
 3002         if (--sc->vap_key_count[rvp_id] == 0)
 3003                 rum_clrbits(sc, RT2573_SEC_CSR4, 1 << rvp_id);
 3004 }
 3005 
 3006 static int
 3007 rum_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
 3008     ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
 3009 {
 3010         struct rum_softc *sc = vap->iv_ic->ic_softc;
 3011         uint8_t i;
 3012 
 3013         if (!(&vap->iv_nw_keys[0] <= k &&
 3014              k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
 3015                 if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) {
 3016                         RUM_LOCK(sc);
 3017                         for (i = 0; i < RT2573_ADDR_MAX; i++) {
 3018                                 if ((sc->keys_bmap & (1ULL << i)) == 0) {
 3019                                         sc->keys_bmap |= (1ULL << i);
 3020                                         *keyix = i;
 3021                                         break;
 3022                                 }
 3023                         }
 3024                         RUM_UNLOCK(sc);
 3025                         if (i == RT2573_ADDR_MAX) {
 3026                                 device_printf(sc->sc_dev,
 3027                                     "%s: no free space in the key table\n",
 3028                                     __func__);
 3029                                 return 0;
 3030                         }
 3031                 } else
 3032                         *keyix = 0;
 3033         } else {
 3034                 *keyix = ieee80211_crypto_get_key_wepidx(vap, k);
 3035         }
 3036         *rxkeyix = *keyix;
 3037         return 1;
 3038 }
 3039 
 3040 static int
 3041 rum_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k)
 3042 {
 3043         struct rum_softc *sc = vap->iv_ic->ic_softc;
 3044         int group;
 3045 
 3046         if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
 3047                 /* Not for us. */
 3048                 return 1;
 3049         }
 3050 
 3051         group = k >= &vap->iv_nw_keys[0] && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID];
 3052 
 3053         return !rum_cmd_sleepable(sc, k, sizeof(*k), 0,
 3054                    group ? rum_group_key_set_cb : rum_pair_key_set_cb);
 3055 }
 3056 
 3057 static int
 3058 rum_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
 3059 {
 3060         struct rum_softc *sc = vap->iv_ic->ic_softc;
 3061         int group;
 3062 
 3063         if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
 3064                 /* Not for us. */
 3065                 return 1;
 3066         }
 3067 
 3068         group = k >= &vap->iv_nw_keys[0] && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID];
 3069 
 3070         return !rum_cmd_sleepable(sc, k, sizeof(*k), 0,
 3071                    group ? rum_group_key_del_cb : rum_pair_key_del_cb);
 3072 }
 3073 
 3074 static int
 3075 rum_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
 3076     const struct ieee80211_bpf_params *params)
 3077 {
 3078         struct rum_softc *sc = ni->ni_ic->ic_softc;
 3079         int ret;
 3080 
 3081         RUM_LOCK(sc);
 3082         /* prevent management frames from being sent if we're not ready */
 3083         if (!sc->sc_running) {
 3084                 ret = ENETDOWN;
 3085                 goto bad;
 3086         }
 3087         if (sc->tx_nfree < RUM_TX_MINFREE) {
 3088                 ret = EIO;
 3089                 goto bad;
 3090         }
 3091 
 3092         if (params == NULL) {
 3093                 /*
 3094                  * Legacy path; interpret frame contents to decide
 3095                  * precisely how to send the frame.
 3096                  */
 3097                 if ((ret = rum_tx_mgt(sc, m, ni)) != 0)
 3098                         goto bad;
 3099         } else {
 3100                 /*
 3101                  * Caller supplied explicit parameters to use in
 3102                  * sending the frame.
 3103                  */
 3104                 if ((ret = rum_tx_raw(sc, m, ni, params)) != 0)
 3105                         goto bad;
 3106         }
 3107         RUM_UNLOCK(sc);
 3108 
 3109         return 0;
 3110 bad:
 3111         RUM_UNLOCK(sc);
 3112         m_freem(m);
 3113         return ret;
 3114 }
 3115 
 3116 static void
 3117 rum_ratectl_start(struct rum_softc *sc, struct ieee80211_node *ni)
 3118 {
 3119         struct ieee80211vap *vap = ni->ni_vap;
 3120         struct rum_vap *rvp = RUM_VAP(vap);
 3121 
 3122         /* clear statistic registers (STA_CSR0 to STA_CSR5) */
 3123         rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
 3124 
 3125         usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp);
 3126 }
 3127 
 3128 static void
 3129 rum_ratectl_timeout(void *arg)
 3130 {
 3131         struct rum_vap *rvp = arg;
 3132         struct ieee80211vap *vap = &rvp->vap;
 3133         struct ieee80211com *ic = vap->iv_ic;
 3134 
 3135         ieee80211_runtask(ic, &rvp->ratectl_task);
 3136 }
 3137 
 3138 static void
 3139 rum_ratectl_task(void *arg, int pending)
 3140 {
 3141         struct rum_vap *rvp = arg;
 3142         struct ieee80211vap *vap = &rvp->vap;
 3143         struct rum_softc *sc = vap->iv_ic->ic_softc;
 3144         struct ieee80211_ratectl_tx_stats *txs = &sc->sc_txs;
 3145         int ok[3], fail;
 3146 
 3147         RUM_LOCK(sc);
 3148         /* read and clear statistic registers (STA_CSR0 to STA_CSR5) */
 3149         rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
 3150 
 3151         ok[0] = (le32toh(sc->sta[4]) & 0xffff); /* TX ok w/o retry */
 3152         ok[1] = (le32toh(sc->sta[4]) >> 16);    /* TX ok w/ one retry */
 3153         ok[2] = (le32toh(sc->sta[5]) & 0xffff); /* TX ok w/ multiple retries */
 3154         fail =  (le32toh(sc->sta[5]) >> 16);    /* TX retry-fail count */
 3155 
 3156         txs->flags = IEEE80211_RATECTL_TX_STATS_RETRIES;
 3157         txs->nframes = ok[0] + ok[1] + ok[2] + fail;
 3158         txs->nsuccess = txs->nframes - fail;
 3159         /* XXX at least */
 3160         txs->nretries = ok[1] + ok[2] * 2 + fail * (rvp->maxretry + 1);
 3161 
 3162         if (txs->nframes != 0)
 3163                 ieee80211_ratectl_tx_update(vap, txs);
 3164 
 3165         /* count TX retry-fail as Tx errors */
 3166         if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, fail);
 3167 
 3168         usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp);
 3169         RUM_UNLOCK(sc);
 3170 }
 3171 
 3172 static void
 3173 rum_scan_start(struct ieee80211com *ic)
 3174 {
 3175         struct rum_softc *sc = ic->ic_softc;
 3176 
 3177         RUM_LOCK(sc);
 3178         rum_abort_tsf_sync(sc);
 3179         rum_set_bssid(sc, ieee80211broadcastaddr);
 3180         RUM_UNLOCK(sc);
 3181 
 3182 }
 3183 
 3184 static void
 3185 rum_scan_end(struct ieee80211com *ic)
 3186 {
 3187         struct rum_softc *sc = ic->ic_softc;
 3188 
 3189         if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) {
 3190                 RUM_LOCK(sc);
 3191                 if (ic->ic_opmode != IEEE80211_M_AHDEMO)
 3192                         rum_enable_tsf_sync(sc);
 3193                 else
 3194                         rum_enable_tsf(sc);
 3195                 rum_set_bssid(sc, sc->sc_bssid);
 3196                 RUM_UNLOCK(sc);
 3197         }
 3198 }
 3199 
 3200 static void
 3201 rum_set_channel(struct ieee80211com *ic)
 3202 {
 3203         struct rum_softc *sc = ic->ic_softc;
 3204 
 3205         RUM_LOCK(sc);
 3206         rum_set_chan(sc, ic->ic_curchan);
 3207         RUM_UNLOCK(sc);
 3208 }
 3209 
 3210 static void
 3211 rum_getradiocaps(struct ieee80211com *ic,
 3212     int maxchans, int *nchans, struct ieee80211_channel chans[])
 3213 {
 3214         struct rum_softc *sc = ic->ic_softc;
 3215         uint8_t bands[IEEE80211_MODE_BYTES];
 3216 
 3217         memset(bands, 0, sizeof(bands));
 3218         setbit(bands, IEEE80211_MODE_11B);
 3219         setbit(bands, IEEE80211_MODE_11G);
 3220         ieee80211_add_channels_default_2ghz(chans, maxchans, nchans, bands, 0);
 3221 
 3222         if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
 3223                 setbit(bands, IEEE80211_MODE_11A);
 3224                 ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
 3225                     rum_chan_5ghz, nitems(rum_chan_5ghz), bands, 0);
 3226         }
 3227 }
 3228 
 3229 static int
 3230 rum_get_rssi(struct rum_softc *sc, uint8_t raw)
 3231 {
 3232         struct ieee80211com *ic = &sc->sc_ic;
 3233         int lna, agc, rssi;
 3234 
 3235         lna = (raw >> 5) & 0x3;
 3236         agc = raw & 0x1f;
 3237 
 3238         if (lna == 0) {
 3239                 /*
 3240                  * No RSSI mapping
 3241                  *
 3242                  * NB: Since RSSI is relative to noise floor, -1 is
 3243                  *     adequate for caller to know error happened.
 3244                  */
 3245                 return -1;
 3246         }
 3247 
 3248         rssi = (2 * agc) - RT2573_NOISE_FLOOR;
 3249 
 3250         if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
 3251                 rssi += sc->rssi_2ghz_corr;
 3252 
 3253                 if (lna == 1)
 3254                         rssi -= 64;
 3255                 else if (lna == 2)
 3256                         rssi -= 74;
 3257                 else if (lna == 3)
 3258                         rssi -= 90;
 3259         } else {
 3260                 rssi += sc->rssi_5ghz_corr;
 3261 
 3262                 if (!sc->ext_5ghz_lna && lna != 1)
 3263                         rssi += 4;
 3264 
 3265                 if (lna == 1)
 3266                         rssi -= 64;
 3267                 else if (lna == 2)
 3268                         rssi -= 86;
 3269                 else if (lna == 3)
 3270                         rssi -= 100;
 3271         }
 3272         return rssi;
 3273 }
 3274 
 3275 static int
 3276 rum_pause(struct rum_softc *sc, int timeout)
 3277 {
 3278 
 3279         usb_pause_mtx(&sc->sc_mtx, timeout);
 3280         return (0);
 3281 }
 3282 
 3283 static device_method_t rum_methods[] = {
 3284         /* Device interface */
 3285         DEVMETHOD(device_probe,         rum_match),
 3286         DEVMETHOD(device_attach,        rum_attach),
 3287         DEVMETHOD(device_detach,        rum_detach),
 3288         DEVMETHOD_END
 3289 };
 3290 
 3291 static driver_t rum_driver = {
 3292         .name = "rum",
 3293         .methods = rum_methods,
 3294         .size = sizeof(struct rum_softc),
 3295 };
 3296 
 3297 DRIVER_MODULE(rum, uhub, rum_driver, NULL, NULL);
 3298 MODULE_DEPEND(rum, wlan, 1, 1, 1);
 3299 MODULE_DEPEND(rum, usb, 1, 1, 1);
 3300 MODULE_VERSION(rum, 1);
 3301 USB_PNP_HOST_INFO(rum_devs);

Cache object: 3dfc7f4679dce0ac91af7e0f66c526f6


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.