1 /* $OpenBSD: if_upgt.c,v 1.35 2008/04/16 18:32:15 damien Exp $ */
2 /* $FreeBSD$ */
3
4 /*
5 * Copyright (c) 2007 Marcus Glocker <mglocker@openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include "opt_wlan.h"
21
22 #include <sys/param.h>
23 #include <sys/systm.h>
24 #include <sys/kernel.h>
25 #include <sys/endian.h>
26 #include <sys/firmware.h>
27 #include <sys/linker.h>
28 #include <sys/mbuf.h>
29 #include <sys/malloc.h>
30 #include <sys/module.h>
31 #include <sys/socket.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34
35 #include <net/if.h>
36 #include <net/if_var.h>
37 #include <net/if_arp.h>
38 #include <net/ethernet.h>
39 #include <net/if_dl.h>
40 #include <net/if_media.h>
41 #include <net/if_types.h>
42
43 #include <sys/bus.h>
44
45 #include <net80211/ieee80211_var.h>
46 #include <net80211/ieee80211_phy.h>
47 #include <net80211/ieee80211_radiotap.h>
48 #include <net80211/ieee80211_regdomain.h>
49
50 #include <net/bpf.h>
51
52 #include <dev/usb/usb.h>
53 #include <dev/usb/usbdi.h>
54 #include "usbdevs.h"
55
56 #include <dev/usb/wlan/if_upgtvar.h>
57
58 /*
59 * Driver for the USB PrismGT devices.
60 *
61 * For now just USB 2.0 devices with the GW3887 chipset are supported.
62 * The driver has been written based on the firmware version 2.13.1.0_LM87.
63 *
64 * TODO's:
65 * - MONITOR mode test.
66 * - Add HOSTAP mode.
67 * - Add IBSS mode.
68 * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
69 *
70 * Parts of this driver has been influenced by reading the p54u driver
71 * written by Jean-Baptiste Note <jean-baptiste.note@m4x.org> and
72 * Sebastien Bourdeauducq <lekernel@prism54.org>.
73 */
74
75 static SYSCTL_NODE(_hw, OID_AUTO, upgt, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
76 "USB PrismGT GW3887 driver parameters");
77
78 #ifdef UPGT_DEBUG
79 int upgt_debug = 0;
80 SYSCTL_INT(_hw_upgt, OID_AUTO, debug, CTLFLAG_RWTUN, &upgt_debug,
81 0, "control debugging printfs");
82 enum {
83 UPGT_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
84 UPGT_DEBUG_RECV = 0x00000002, /* basic recv operation */
85 UPGT_DEBUG_RESET = 0x00000004, /* reset processing */
86 UPGT_DEBUG_INTR = 0x00000008, /* INTR */
87 UPGT_DEBUG_TX_PROC = 0x00000010, /* tx ISR proc */
88 UPGT_DEBUG_RX_PROC = 0x00000020, /* rx ISR proc */
89 UPGT_DEBUG_STATE = 0x00000040, /* 802.11 state transitions */
90 UPGT_DEBUG_STAT = 0x00000080, /* statistic */
91 UPGT_DEBUG_FW = 0x00000100, /* firmware */
92 UPGT_DEBUG_ANY = 0xffffffff
93 };
94 #define DPRINTF(sc, m, fmt, ...) do { \
95 if (sc->sc_debug & (m)) \
96 printf(fmt, __VA_ARGS__); \
97 } while (0)
98 #else
99 #define DPRINTF(sc, m, fmt, ...) do { \
100 (void) sc; \
101 } while (0)
102 #endif
103
104 /*
105 * Prototypes.
106 */
107 static device_probe_t upgt_match;
108 static device_attach_t upgt_attach;
109 static device_detach_t upgt_detach;
110 static int upgt_alloc_tx(struct upgt_softc *);
111 static int upgt_alloc_rx(struct upgt_softc *);
112 static int upgt_device_reset(struct upgt_softc *);
113 static void upgt_bulk_tx(struct upgt_softc *, struct upgt_data *);
114 static int upgt_fw_verify(struct upgt_softc *);
115 static int upgt_mem_init(struct upgt_softc *);
116 static int upgt_fw_load(struct upgt_softc *);
117 static int upgt_fw_copy(const uint8_t *, char *, int);
118 static uint32_t upgt_crc32_le(const void *, size_t);
119 static struct mbuf *
120 upgt_rxeof(struct usb_xfer *, struct upgt_data *, int *);
121 static struct mbuf *
122 upgt_rx(struct upgt_softc *, uint8_t *, int, int *);
123 static void upgt_txeof(struct usb_xfer *, struct upgt_data *);
124 static int upgt_eeprom_read(struct upgt_softc *);
125 static int upgt_eeprom_parse(struct upgt_softc *);
126 static void upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
127 static void upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
128 static void upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
129 static void upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
130 static uint32_t upgt_chksum_le(const uint32_t *, size_t);
131 static void upgt_tx_done(struct upgt_softc *, uint8_t *);
132 static void upgt_init(struct upgt_softc *);
133 static void upgt_parent(struct ieee80211com *);
134 static int upgt_transmit(struct ieee80211com *, struct mbuf *);
135 static void upgt_start(struct upgt_softc *);
136 static int upgt_raw_xmit(struct ieee80211_node *, struct mbuf *,
137 const struct ieee80211_bpf_params *);
138 static void upgt_scan_start(struct ieee80211com *);
139 static void upgt_scan_end(struct ieee80211com *);
140 static void upgt_set_channel(struct ieee80211com *);
141 static struct ieee80211vap *upgt_vap_create(struct ieee80211com *,
142 const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
143 const uint8_t [IEEE80211_ADDR_LEN],
144 const uint8_t [IEEE80211_ADDR_LEN]);
145 static void upgt_vap_delete(struct ieee80211vap *);
146 static void upgt_update_mcast(struct ieee80211com *);
147 static uint8_t upgt_rx_rate(struct upgt_softc *, const int);
148 static void upgt_set_multi(void *);
149 static void upgt_stop(struct upgt_softc *);
150 static void upgt_setup_rates(struct ieee80211vap *, struct ieee80211com *);
151 static int upgt_set_macfilter(struct upgt_softc *, uint8_t);
152 static int upgt_newstate(struct ieee80211vap *, enum ieee80211_state, int);
153 static void upgt_set_chan(struct upgt_softc *, struct ieee80211_channel *);
154 static void upgt_set_led(struct upgt_softc *, int);
155 static void upgt_set_led_blink(void *);
156 static void upgt_get_stats(struct upgt_softc *);
157 static void upgt_mem_free(struct upgt_softc *, uint32_t);
158 static uint32_t upgt_mem_alloc(struct upgt_softc *);
159 static void upgt_free_tx(struct upgt_softc *);
160 static void upgt_free_rx(struct upgt_softc *);
161 static void upgt_watchdog(void *);
162 static void upgt_abort_xfers(struct upgt_softc *);
163 static void upgt_abort_xfers_locked(struct upgt_softc *);
164 static void upgt_sysctl_node(struct upgt_softc *);
165 static struct upgt_data *
166 upgt_getbuf(struct upgt_softc *);
167 static struct upgt_data *
168 upgt_gettxbuf(struct upgt_softc *);
169 static int upgt_tx_start(struct upgt_softc *, struct mbuf *,
170 struct ieee80211_node *, struct upgt_data *);
171
172 static const char *upgt_fwname = "upgt-gw3887";
173
174 static const STRUCT_USB_HOST_ID upgt_devs[] = {
175 #define UPGT_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
176 /* version 2 devices */
177 UPGT_DEV(ACCTON, PRISM_GT),
178 UPGT_DEV(BELKIN, F5D7050),
179 UPGT_DEV(CISCOLINKSYS, WUSB54AG),
180 UPGT_DEV(CONCEPTRONIC, PRISM_GT),
181 UPGT_DEV(DELL, PRISM_GT_1),
182 UPGT_DEV(DELL, PRISM_GT_2),
183 UPGT_DEV(FSC, E5400),
184 UPGT_DEV(GLOBESPAN, PRISM_GT_1),
185 UPGT_DEV(GLOBESPAN, PRISM_GT_2),
186 UPGT_DEV(NETGEAR, WG111V1_2),
187 UPGT_DEV(INTERSIL, PRISM_GT),
188 UPGT_DEV(SMC, 2862WG),
189 UPGT_DEV(USR, USR5422),
190 UPGT_DEV(WISTRONNEWEB, UR045G),
191 UPGT_DEV(XYRATEX, PRISM_GT_1),
192 UPGT_DEV(XYRATEX, PRISM_GT_2),
193 UPGT_DEV(ZCOM, XG703A),
194 UPGT_DEV(ZCOM, XM142)
195 };
196
197 static usb_callback_t upgt_bulk_rx_callback;
198 static usb_callback_t upgt_bulk_tx_callback;
199
200 static const struct usb_config upgt_config[UPGT_N_XFERS] = {
201 [UPGT_BULK_TX] = {
202 .type = UE_BULK,
203 .endpoint = UE_ADDR_ANY,
204 .direction = UE_DIR_OUT,
205 .bufsize = MCLBYTES * UPGT_TX_MAXCOUNT,
206 .flags = {
207 .force_short_xfer = 1,
208 .pipe_bof = 1
209 },
210 .callback = upgt_bulk_tx_callback,
211 .timeout = UPGT_USB_TIMEOUT, /* ms */
212 },
213 [UPGT_BULK_RX] = {
214 .type = UE_BULK,
215 .endpoint = UE_ADDR_ANY,
216 .direction = UE_DIR_IN,
217 .bufsize = MCLBYTES * UPGT_RX_MAXCOUNT,
218 .flags = {
219 .pipe_bof = 1,
220 .short_xfer_ok = 1
221 },
222 .callback = upgt_bulk_rx_callback,
223 },
224 };
225
226 static int
227 upgt_match(device_t dev)
228 {
229 struct usb_attach_arg *uaa = device_get_ivars(dev);
230
231 if (uaa->usb_mode != USB_MODE_HOST)
232 return (ENXIO);
233 if (uaa->info.bConfigIndex != UPGT_CONFIG_INDEX)
234 return (ENXIO);
235 if (uaa->info.bIfaceIndex != UPGT_IFACE_INDEX)
236 return (ENXIO);
237
238 return (usbd_lookup_id_by_uaa(upgt_devs, sizeof(upgt_devs), uaa));
239 }
240
241 static int
242 upgt_attach(device_t dev)
243 {
244 struct upgt_softc *sc = device_get_softc(dev);
245 struct ieee80211com *ic = &sc->sc_ic;
246 struct usb_attach_arg *uaa = device_get_ivars(dev);
247 uint8_t bands[IEEE80211_MODE_BYTES];
248 uint8_t iface_index = UPGT_IFACE_INDEX;
249 int error;
250
251 sc->sc_dev = dev;
252 sc->sc_udev = uaa->device;
253 #ifdef UPGT_DEBUG
254 sc->sc_debug = upgt_debug;
255 #endif
256 device_set_usb_desc(dev);
257
258 mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), MTX_NETWORK_LOCK,
259 MTX_DEF);
260 callout_init(&sc->sc_led_ch, 0);
261 callout_init(&sc->sc_watchdog_ch, 0);
262 mbufq_init(&sc->sc_snd, ifqmaxlen);
263
264 error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer,
265 upgt_config, UPGT_N_XFERS, sc, &sc->sc_mtx);
266 if (error) {
267 device_printf(dev, "could not allocate USB transfers, "
268 "err=%s\n", usbd_errstr(error));
269 goto fail1;
270 }
271
272 sc->sc_rx_dma_buf = usbd_xfer_get_frame_buffer(
273 sc->sc_xfer[UPGT_BULK_RX], 0);
274 sc->sc_tx_dma_buf = usbd_xfer_get_frame_buffer(
275 sc->sc_xfer[UPGT_BULK_TX], 0);
276
277 /* Setup TX and RX buffers */
278 error = upgt_alloc_tx(sc);
279 if (error)
280 goto fail2;
281 error = upgt_alloc_rx(sc);
282 if (error)
283 goto fail3;
284
285 /* Initialize the device. */
286 error = upgt_device_reset(sc);
287 if (error)
288 goto fail4;
289 /* Verify the firmware. */
290 error = upgt_fw_verify(sc);
291 if (error)
292 goto fail4;
293 /* Calculate device memory space. */
294 if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
295 device_printf(dev,
296 "could not find memory space addresses on FW\n");
297 error = EIO;
298 goto fail4;
299 }
300 sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
301 sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
302
303 DPRINTF(sc, UPGT_DEBUG_FW, "memory address frame start=0x%08x\n",
304 sc->sc_memaddr_frame_start);
305 DPRINTF(sc, UPGT_DEBUG_FW, "memory address frame end=0x%08x\n",
306 sc->sc_memaddr_frame_end);
307 DPRINTF(sc, UPGT_DEBUG_FW, "memory address rx start=0x%08x\n",
308 sc->sc_memaddr_rx_start);
309
310 upgt_mem_init(sc);
311
312 /* Load the firmware. */
313 error = upgt_fw_load(sc);
314 if (error)
315 goto fail4;
316
317 /* Read the whole EEPROM content and parse it. */
318 error = upgt_eeprom_read(sc);
319 if (error)
320 goto fail4;
321 error = upgt_eeprom_parse(sc);
322 if (error)
323 goto fail4;
324
325 /* all works related with the device have done here. */
326 upgt_abort_xfers(sc);
327
328 ic->ic_softc = sc;
329 ic->ic_name = device_get_nameunit(dev);
330 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
331 ic->ic_opmode = IEEE80211_M_STA;
332 /* set device capabilities */
333 ic->ic_caps =
334 IEEE80211_C_STA /* station mode */
335 | IEEE80211_C_MONITOR /* monitor mode */
336 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
337 | IEEE80211_C_SHSLOT /* short slot time supported */
338 | IEEE80211_C_BGSCAN /* capable of bg scanning */
339 | IEEE80211_C_WPA /* 802.11i */
340 ;
341
342 memset(bands, 0, sizeof(bands));
343 setbit(bands, IEEE80211_MODE_11B);
344 setbit(bands, IEEE80211_MODE_11G);
345 ieee80211_init_channels(ic, NULL, bands);
346
347 ieee80211_ifattach(ic);
348 ic->ic_raw_xmit = upgt_raw_xmit;
349 ic->ic_scan_start = upgt_scan_start;
350 ic->ic_scan_end = upgt_scan_end;
351 ic->ic_set_channel = upgt_set_channel;
352 ic->ic_vap_create = upgt_vap_create;
353 ic->ic_vap_delete = upgt_vap_delete;
354 ic->ic_update_mcast = upgt_update_mcast;
355 ic->ic_transmit = upgt_transmit;
356 ic->ic_parent = upgt_parent;
357
358 ieee80211_radiotap_attach(ic,
359 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
360 UPGT_TX_RADIOTAP_PRESENT,
361 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
362 UPGT_RX_RADIOTAP_PRESENT);
363
364 upgt_sysctl_node(sc);
365
366 if (bootverbose)
367 ieee80211_announce(ic);
368
369 return (0);
370
371 fail4: upgt_free_rx(sc);
372 fail3: upgt_free_tx(sc);
373 fail2: usbd_transfer_unsetup(sc->sc_xfer, UPGT_N_XFERS);
374 fail1: mtx_destroy(&sc->sc_mtx);
375
376 return (error);
377 }
378
379 static void
380 upgt_txeof(struct usb_xfer *xfer, struct upgt_data *data)
381 {
382
383 if (data->m) {
384 /* XXX status? */
385 ieee80211_tx_complete(data->ni, data->m, 0);
386 data->m = NULL;
387 data->ni = NULL;
388 }
389 }
390
391 static void
392 upgt_get_stats(struct upgt_softc *sc)
393 {
394 struct upgt_data *data_cmd;
395 struct upgt_lmac_mem *mem;
396 struct upgt_lmac_stats *stats;
397
398 data_cmd = upgt_getbuf(sc);
399 if (data_cmd == NULL) {
400 device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__);
401 return;
402 }
403
404 /*
405 * Transmit the URB containing the CMD data.
406 */
407 memset(data_cmd->buf, 0, MCLBYTES);
408
409 mem = (struct upgt_lmac_mem *)data_cmd->buf;
410 mem->addr = htole32(sc->sc_memaddr_frame_start +
411 UPGT_MEMSIZE_FRAME_HEAD);
412
413 stats = (struct upgt_lmac_stats *)(mem + 1);
414
415 stats->header1.flags = 0;
416 stats->header1.type = UPGT_H1_TYPE_CTRL;
417 stats->header1.len = htole16(
418 sizeof(struct upgt_lmac_stats) - sizeof(struct upgt_lmac_header));
419
420 stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
421 stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
422 stats->header2.flags = 0;
423
424 data_cmd->buflen = sizeof(*mem) + sizeof(*stats);
425
426 mem->chksum = upgt_chksum_le((uint32_t *)stats,
427 data_cmd->buflen - sizeof(*mem));
428
429 upgt_bulk_tx(sc, data_cmd);
430 }
431
432 static void
433 upgt_parent(struct ieee80211com *ic)
434 {
435 struct upgt_softc *sc = ic->ic_softc;
436 int startall = 0;
437
438 UPGT_LOCK(sc);
439 if (sc->sc_flags & UPGT_FLAG_DETACHED) {
440 UPGT_UNLOCK(sc);
441 return;
442 }
443 if (ic->ic_nrunning > 0) {
444 if (sc->sc_flags & UPGT_FLAG_INITDONE) {
445 if (ic->ic_allmulti > 0 || ic->ic_promisc > 0)
446 upgt_set_multi(sc);
447 } else {
448 upgt_init(sc);
449 startall = 1;
450 }
451 } else if (sc->sc_flags & UPGT_FLAG_INITDONE)
452 upgt_stop(sc);
453 UPGT_UNLOCK(sc);
454 if (startall)
455 ieee80211_start_all(ic);
456 }
457
458 static void
459 upgt_stop(struct upgt_softc *sc)
460 {
461
462 UPGT_ASSERT_LOCKED(sc);
463
464 if (sc->sc_flags & UPGT_FLAG_INITDONE)
465 upgt_set_macfilter(sc, IEEE80211_S_INIT);
466 upgt_abort_xfers_locked(sc);
467 /* device down */
468 sc->sc_tx_timer = 0;
469 sc->sc_flags &= ~UPGT_FLAG_INITDONE;
470 }
471
472 static void
473 upgt_set_led(struct upgt_softc *sc, int action)
474 {
475 struct upgt_data *data_cmd;
476 struct upgt_lmac_mem *mem;
477 struct upgt_lmac_led *led;
478
479 data_cmd = upgt_getbuf(sc);
480 if (data_cmd == NULL) {
481 device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__);
482 return;
483 }
484
485 /*
486 * Transmit the URB containing the CMD data.
487 */
488 memset(data_cmd->buf, 0, MCLBYTES);
489
490 mem = (struct upgt_lmac_mem *)data_cmd->buf;
491 mem->addr = htole32(sc->sc_memaddr_frame_start +
492 UPGT_MEMSIZE_FRAME_HEAD);
493
494 led = (struct upgt_lmac_led *)(mem + 1);
495
496 led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
497 led->header1.type = UPGT_H1_TYPE_CTRL;
498 led->header1.len = htole16(
499 sizeof(struct upgt_lmac_led) -
500 sizeof(struct upgt_lmac_header));
501
502 led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
503 led->header2.type = htole16(UPGT_H2_TYPE_LED);
504 led->header2.flags = 0;
505
506 switch (action) {
507 case UPGT_LED_OFF:
508 led->mode = htole16(UPGT_LED_MODE_SET);
509 led->action_fix = 0;
510 led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
511 led->action_tmp_dur = 0;
512 break;
513 case UPGT_LED_ON:
514 led->mode = htole16(UPGT_LED_MODE_SET);
515 led->action_fix = 0;
516 led->action_tmp = htole16(UPGT_LED_ACTION_ON);
517 led->action_tmp_dur = 0;
518 break;
519 case UPGT_LED_BLINK:
520 if (sc->sc_state != IEEE80211_S_RUN) {
521 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next);
522 return;
523 }
524 if (sc->sc_led_blink) {
525 /* previous blink was not finished */
526 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next);
527 return;
528 }
529 led->mode = htole16(UPGT_LED_MODE_SET);
530 led->action_fix = htole16(UPGT_LED_ACTION_OFF);
531 led->action_tmp = htole16(UPGT_LED_ACTION_ON);
532 led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
533 /* lock blink */
534 sc->sc_led_blink = 1;
535 callout_reset(&sc->sc_led_ch, hz, upgt_set_led_blink, sc);
536 break;
537 default:
538 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next);
539 return;
540 }
541
542 data_cmd->buflen = sizeof(*mem) + sizeof(*led);
543
544 mem->chksum = upgt_chksum_le((uint32_t *)led,
545 data_cmd->buflen - sizeof(*mem));
546
547 upgt_bulk_tx(sc, data_cmd);
548 }
549
550 static void
551 upgt_set_led_blink(void *arg)
552 {
553 struct upgt_softc *sc = arg;
554
555 /* blink finished, we are ready for a next one */
556 sc->sc_led_blink = 0;
557 }
558
559 static void
560 upgt_init(struct upgt_softc *sc)
561 {
562
563 UPGT_ASSERT_LOCKED(sc);
564
565 if (sc->sc_flags & UPGT_FLAG_INITDONE)
566 upgt_stop(sc);
567
568 usbd_transfer_start(sc->sc_xfer[UPGT_BULK_RX]);
569
570 (void)upgt_set_macfilter(sc, IEEE80211_S_SCAN);
571
572 sc->sc_flags |= UPGT_FLAG_INITDONE;
573
574 callout_reset(&sc->sc_watchdog_ch, hz, upgt_watchdog, sc);
575 }
576
577 static int
578 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
579 {
580 struct ieee80211com *ic = &sc->sc_ic;
581 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
582 struct ieee80211_node *ni;
583 struct upgt_data *data_cmd;
584 struct upgt_lmac_mem *mem;
585 struct upgt_lmac_filter *filter;
586
587 UPGT_ASSERT_LOCKED(sc);
588
589 data_cmd = upgt_getbuf(sc);
590 if (data_cmd == NULL) {
591 device_printf(sc->sc_dev, "out of TX buffers.\n");
592 return (ENOBUFS);
593 }
594
595 /*
596 * Transmit the URB containing the CMD data.
597 */
598 memset(data_cmd->buf, 0, MCLBYTES);
599
600 mem = (struct upgt_lmac_mem *)data_cmd->buf;
601 mem->addr = htole32(sc->sc_memaddr_frame_start +
602 UPGT_MEMSIZE_FRAME_HEAD);
603
604 filter = (struct upgt_lmac_filter *)(mem + 1);
605
606 filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
607 filter->header1.type = UPGT_H1_TYPE_CTRL;
608 filter->header1.len = htole16(
609 sizeof(struct upgt_lmac_filter) -
610 sizeof(struct upgt_lmac_header));
611
612 filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
613 filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
614 filter->header2.flags = 0;
615
616 switch (state) {
617 case IEEE80211_S_INIT:
618 DPRINTF(sc, UPGT_DEBUG_STATE, "%s: set MAC filter to INIT\n",
619 __func__);
620 filter->type = htole16(UPGT_FILTER_TYPE_RESET);
621 break;
622 case IEEE80211_S_SCAN:
623 DPRINTF(sc, UPGT_DEBUG_STATE,
624 "set MAC filter to SCAN (bssid %s)\n",
625 ether_sprintf(ieee80211broadcastaddr));
626 filter->type = htole16(UPGT_FILTER_TYPE_NONE);
627 IEEE80211_ADDR_COPY(filter->dst,
628 vap ? vap->iv_myaddr : ic->ic_macaddr);
629 IEEE80211_ADDR_COPY(filter->src, ieee80211broadcastaddr);
630 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
631 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
632 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
633 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
634 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
635 break;
636 case IEEE80211_S_RUN:
637 ni = ieee80211_ref_node(vap->iv_bss);
638 /* XXX monitor mode isn't tested yet. */
639 if (vap->iv_opmode == IEEE80211_M_MONITOR) {
640 filter->type = htole16(UPGT_FILTER_TYPE_MONITOR);
641 IEEE80211_ADDR_COPY(filter->dst,
642 vap ? vap->iv_myaddr : ic->ic_macaddr);
643 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
644 filter->unknown1 = htole16(UPGT_FILTER_MONITOR_UNKNOWN1);
645 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
646 filter->unknown2 = htole16(UPGT_FILTER_MONITOR_UNKNOWN2);
647 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
648 filter->unknown3 = htole16(UPGT_FILTER_MONITOR_UNKNOWN3);
649 } else {
650 DPRINTF(sc, UPGT_DEBUG_STATE,
651 "set MAC filter to RUN (bssid %s)\n",
652 ether_sprintf(ni->ni_bssid));
653 filter->type = htole16(UPGT_FILTER_TYPE_STA);
654 IEEE80211_ADDR_COPY(filter->dst,
655 vap ? vap->iv_myaddr : ic->ic_macaddr);
656 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
657 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
658 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
659 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
660 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
661 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
662 }
663 ieee80211_free_node(ni);
664 break;
665 default:
666 device_printf(sc->sc_dev,
667 "MAC filter does not know that state\n");
668 break;
669 }
670
671 data_cmd->buflen = sizeof(*mem) + sizeof(*filter);
672
673 mem->chksum = upgt_chksum_le((uint32_t *)filter,
674 data_cmd->buflen - sizeof(*mem));
675
676 upgt_bulk_tx(sc, data_cmd);
677
678 return (0);
679 }
680
681 static void
682 upgt_setup_rates(struct ieee80211vap *vap, struct ieee80211com *ic)
683 {
684 struct upgt_softc *sc = ic->ic_softc;
685 const struct ieee80211_txparam *tp;
686
687 /*
688 * 0x01 = OFMD6 0x10 = DS1
689 * 0x04 = OFDM9 0x11 = DS2
690 * 0x06 = OFDM12 0x12 = DS5
691 * 0x07 = OFDM18 0x13 = DS11
692 * 0x08 = OFDM24
693 * 0x09 = OFDM36
694 * 0x0a = OFDM48
695 * 0x0b = OFDM54
696 */
697 const uint8_t rateset_auto_11b[] =
698 { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
699 const uint8_t rateset_auto_11g[] =
700 { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
701 const uint8_t rateset_fix_11bg[] =
702 { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
703 0x08, 0x09, 0x0a, 0x0b };
704
705 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
706
707 /* XXX */
708 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) {
709 /*
710 * Automatic rate control is done by the device.
711 * We just pass the rateset from which the device
712 * will pickup a rate.
713 */
714 if (ic->ic_curmode == IEEE80211_MODE_11B)
715 memcpy(sc->sc_cur_rateset, rateset_auto_11b,
716 sizeof(sc->sc_cur_rateset));
717 if (ic->ic_curmode == IEEE80211_MODE_11G ||
718 ic->ic_curmode == IEEE80211_MODE_AUTO)
719 memcpy(sc->sc_cur_rateset, rateset_auto_11g,
720 sizeof(sc->sc_cur_rateset));
721 } else {
722 /* set a fixed rate */
723 memset(sc->sc_cur_rateset, rateset_fix_11bg[tp->ucastrate],
724 sizeof(sc->sc_cur_rateset));
725 }
726 }
727
728 static void
729 upgt_set_multi(void *arg)
730 {
731
732 /* XXX don't know how to set a device. Lack of docs. */
733 }
734
735 static int
736 upgt_transmit(struct ieee80211com *ic, struct mbuf *m)
737 {
738 struct upgt_softc *sc = ic->ic_softc;
739 int error;
740
741 UPGT_LOCK(sc);
742 if ((sc->sc_flags & UPGT_FLAG_INITDONE) == 0) {
743 UPGT_UNLOCK(sc);
744 return (ENXIO);
745 }
746 error = mbufq_enqueue(&sc->sc_snd, m);
747 if (error) {
748 UPGT_UNLOCK(sc);
749 return (error);
750 }
751 upgt_start(sc);
752 UPGT_UNLOCK(sc);
753
754 return (0);
755 }
756
757 static void
758 upgt_start(struct upgt_softc *sc)
759 {
760 struct upgt_data *data_tx;
761 struct ieee80211_node *ni;
762 struct mbuf *m;
763
764 UPGT_ASSERT_LOCKED(sc);
765
766 if ((sc->sc_flags & UPGT_FLAG_INITDONE) == 0)
767 return;
768
769 while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
770 data_tx = upgt_gettxbuf(sc);
771 if (data_tx == NULL) {
772 mbufq_prepend(&sc->sc_snd, m);
773 break;
774 }
775
776 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
777 m->m_pkthdr.rcvif = NULL;
778
779 if (upgt_tx_start(sc, m, ni, data_tx) != 0) {
780 if_inc_counter(ni->ni_vap->iv_ifp,
781 IFCOUNTER_OERRORS, 1);
782 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, data_tx, next);
783 UPGT_STAT_INC(sc, st_tx_inactive);
784 ieee80211_free_node(ni);
785 continue;
786 }
787 sc->sc_tx_timer = 5;
788 }
789 }
790
791 static int
792 upgt_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
793 const struct ieee80211_bpf_params *params)
794 {
795 struct ieee80211com *ic = ni->ni_ic;
796 struct upgt_softc *sc = ic->ic_softc;
797 struct upgt_data *data_tx = NULL;
798
799 UPGT_LOCK(sc);
800 /* prevent management frames from being sent if we're not ready */
801 if (!(sc->sc_flags & UPGT_FLAG_INITDONE)) {
802 m_freem(m);
803 UPGT_UNLOCK(sc);
804 return ENETDOWN;
805 }
806
807 data_tx = upgt_gettxbuf(sc);
808 if (data_tx == NULL) {
809 m_freem(m);
810 UPGT_UNLOCK(sc);
811 return (ENOBUFS);
812 }
813
814 if (upgt_tx_start(sc, m, ni, data_tx) != 0) {
815 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, data_tx, next);
816 UPGT_STAT_INC(sc, st_tx_inactive);
817 UPGT_UNLOCK(sc);
818 return (EIO);
819 }
820 UPGT_UNLOCK(sc);
821
822 sc->sc_tx_timer = 5;
823 return (0);
824 }
825
826 static void
827 upgt_watchdog(void *arg)
828 {
829 struct upgt_softc *sc = arg;
830 struct ieee80211com *ic = &sc->sc_ic;
831
832 if (sc->sc_tx_timer > 0) {
833 if (--sc->sc_tx_timer == 0) {
834 device_printf(sc->sc_dev, "watchdog timeout\n");
835 /* upgt_init(sc); XXX needs a process context ? */
836 counter_u64_add(ic->ic_oerrors, 1);
837 return;
838 }
839 callout_reset(&sc->sc_watchdog_ch, hz, upgt_watchdog, sc);
840 }
841 }
842
843 static uint32_t
844 upgt_mem_alloc(struct upgt_softc *sc)
845 {
846 int i;
847
848 for (i = 0; i < sc->sc_memory.pages; i++) {
849 if (sc->sc_memory.page[i].used == 0) {
850 sc->sc_memory.page[i].used = 1;
851 return (sc->sc_memory.page[i].addr);
852 }
853 }
854
855 return (0);
856 }
857
858 static void
859 upgt_scan_start(struct ieee80211com *ic)
860 {
861 /* do nothing. */
862 }
863
864 static void
865 upgt_scan_end(struct ieee80211com *ic)
866 {
867 /* do nothing. */
868 }
869
870 static void
871 upgt_set_channel(struct ieee80211com *ic)
872 {
873 struct upgt_softc *sc = ic->ic_softc;
874
875 UPGT_LOCK(sc);
876 upgt_set_chan(sc, ic->ic_curchan);
877 UPGT_UNLOCK(sc);
878 }
879
880 static void
881 upgt_set_chan(struct upgt_softc *sc, struct ieee80211_channel *c)
882 {
883 struct ieee80211com *ic = &sc->sc_ic;
884 struct upgt_data *data_cmd;
885 struct upgt_lmac_mem *mem;
886 struct upgt_lmac_channel *chan;
887 int channel;
888
889 UPGT_ASSERT_LOCKED(sc);
890
891 channel = ieee80211_chan2ieee(ic, c);
892 if (channel == 0 || channel == IEEE80211_CHAN_ANY) {
893 /* XXX should NEVER happen */
894 device_printf(sc->sc_dev,
895 "%s: invalid channel %x\n", __func__, channel);
896 return;
897 }
898
899 DPRINTF(sc, UPGT_DEBUG_STATE, "%s: channel %d\n", __func__, channel);
900
901 data_cmd = upgt_getbuf(sc);
902 if (data_cmd == NULL) {
903 device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__);
904 return;
905 }
906 /*
907 * Transmit the URB containing the CMD data.
908 */
909 memset(data_cmd->buf, 0, MCLBYTES);
910
911 mem = (struct upgt_lmac_mem *)data_cmd->buf;
912 mem->addr = htole32(sc->sc_memaddr_frame_start +
913 UPGT_MEMSIZE_FRAME_HEAD);
914
915 chan = (struct upgt_lmac_channel *)(mem + 1);
916
917 chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
918 chan->header1.type = UPGT_H1_TYPE_CTRL;
919 chan->header1.len = htole16(
920 sizeof(struct upgt_lmac_channel) - sizeof(struct upgt_lmac_header));
921
922 chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
923 chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
924 chan->header2.flags = 0;
925
926 chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
927 chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
928 chan->freq6 = sc->sc_eeprom_freq6[channel];
929 chan->settings = sc->sc_eeprom_freq6_settings;
930 chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
931
932 memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data,
933 sizeof(chan->freq3_1));
934 memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel],
935 sizeof(sc->sc_eeprom_freq4[channel]));
936 memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data,
937 sizeof(chan->freq3_2));
938
939 data_cmd->buflen = sizeof(*mem) + sizeof(*chan);
940
941 mem->chksum = upgt_chksum_le((uint32_t *)chan,
942 data_cmd->buflen - sizeof(*mem));
943
944 upgt_bulk_tx(sc, data_cmd);
945 }
946
947 static struct ieee80211vap *
948 upgt_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
949 enum ieee80211_opmode opmode, int flags,
950 const uint8_t bssid[IEEE80211_ADDR_LEN],
951 const uint8_t mac[IEEE80211_ADDR_LEN])
952 {
953 struct upgt_vap *uvp;
954 struct ieee80211vap *vap;
955
956 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */
957 return NULL;
958 uvp = malloc(sizeof(struct upgt_vap), M_80211_VAP, M_WAITOK | M_ZERO);
959 vap = &uvp->vap;
960 /* enable s/w bmiss handling for sta mode */
961
962 if (ieee80211_vap_setup(ic, vap, name, unit, opmode,
963 flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) {
964 /* out of memory */
965 free(uvp, M_80211_VAP);
966 return (NULL);
967 }
968
969 /* override state transition machine */
970 uvp->newstate = vap->iv_newstate;
971 vap->iv_newstate = upgt_newstate;
972
973 /* setup device rates */
974 upgt_setup_rates(vap, ic);
975
976 /* complete setup */
977 ieee80211_vap_attach(vap, ieee80211_media_change,
978 ieee80211_media_status, mac);
979 ic->ic_opmode = opmode;
980 return vap;
981 }
982
983 static int
984 upgt_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
985 {
986 struct upgt_vap *uvp = UPGT_VAP(vap);
987 struct ieee80211com *ic = vap->iv_ic;
988 struct upgt_softc *sc = ic->ic_softc;
989
990 /* do it in a process context */
991 sc->sc_state = nstate;
992
993 IEEE80211_UNLOCK(ic);
994 UPGT_LOCK(sc);
995 callout_stop(&sc->sc_led_ch);
996 callout_stop(&sc->sc_watchdog_ch);
997
998 switch (nstate) {
999 case IEEE80211_S_INIT:
1000 /* do not accept any frames if the device is down */
1001 (void)upgt_set_macfilter(sc, sc->sc_state);
1002 upgt_set_led(sc, UPGT_LED_OFF);
1003 break;
1004 case IEEE80211_S_SCAN:
1005 upgt_set_chan(sc, ic->ic_curchan);
1006 break;
1007 case IEEE80211_S_AUTH:
1008 upgt_set_chan(sc, ic->ic_curchan);
1009 break;
1010 case IEEE80211_S_ASSOC:
1011 break;
1012 case IEEE80211_S_RUN:
1013 upgt_set_macfilter(sc, sc->sc_state);
1014 upgt_set_led(sc, UPGT_LED_ON);
1015 break;
1016 default:
1017 break;
1018 }
1019 UPGT_UNLOCK(sc);
1020 IEEE80211_LOCK(ic);
1021 return (uvp->newstate(vap, nstate, arg));
1022 }
1023
1024 static void
1025 upgt_vap_delete(struct ieee80211vap *vap)
1026 {
1027 struct upgt_vap *uvp = UPGT_VAP(vap);
1028
1029 ieee80211_vap_detach(vap);
1030 free(uvp, M_80211_VAP);
1031 }
1032
1033 static void
1034 upgt_update_mcast(struct ieee80211com *ic)
1035 {
1036 struct upgt_softc *sc = ic->ic_softc;
1037
1038 upgt_set_multi(sc);
1039 }
1040
1041 static int
1042 upgt_eeprom_parse(struct upgt_softc *sc)
1043 {
1044 struct ieee80211com *ic = &sc->sc_ic;
1045 struct upgt_eeprom_header *eeprom_header;
1046 struct upgt_eeprom_option *eeprom_option;
1047 uint16_t option_len;
1048 uint16_t option_type;
1049 uint16_t preamble_len;
1050 int option_end = 0;
1051
1052 /* calculate eeprom options start offset */
1053 eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
1054 preamble_len = le16toh(eeprom_header->preamble_len);
1055 eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
1056 (sizeof(struct upgt_eeprom_header) + preamble_len));
1057
1058 while (!option_end) {
1059 /* sanity check */
1060 if (eeprom_option >= (struct upgt_eeprom_option *)
1061 (sc->sc_eeprom + UPGT_EEPROM_SIZE)) {
1062 return (EINVAL);
1063 }
1064
1065 /* the eeprom option length is stored in words */
1066 option_len =
1067 (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t);
1068 option_type =
1069 le16toh(eeprom_option->type);
1070
1071 /* sanity check */
1072 if (option_len == 0 || option_len >= UPGT_EEPROM_SIZE)
1073 return (EINVAL);
1074
1075 switch (option_type) {
1076 case UPGT_EEPROM_TYPE_NAME:
1077 DPRINTF(sc, UPGT_DEBUG_FW,
1078 "EEPROM name len=%d\n", option_len);
1079 break;
1080 case UPGT_EEPROM_TYPE_SERIAL:
1081 DPRINTF(sc, UPGT_DEBUG_FW,
1082 "EEPROM serial len=%d\n", option_len);
1083 break;
1084 case UPGT_EEPROM_TYPE_MAC:
1085 DPRINTF(sc, UPGT_DEBUG_FW,
1086 "EEPROM mac len=%d\n", option_len);
1087
1088 IEEE80211_ADDR_COPY(ic->ic_macaddr,
1089 eeprom_option->data);
1090 break;
1091 case UPGT_EEPROM_TYPE_HWRX:
1092 DPRINTF(sc, UPGT_DEBUG_FW,
1093 "EEPROM hwrx len=%d\n", option_len);
1094
1095 upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
1096 break;
1097 case UPGT_EEPROM_TYPE_CHIP:
1098 DPRINTF(sc, UPGT_DEBUG_FW,
1099 "EEPROM chip len=%d\n", option_len);
1100 break;
1101 case UPGT_EEPROM_TYPE_FREQ3:
1102 DPRINTF(sc, UPGT_DEBUG_FW,
1103 "EEPROM freq3 len=%d\n", option_len);
1104
1105 upgt_eeprom_parse_freq3(sc, eeprom_option->data,
1106 option_len);
1107 break;
1108 case UPGT_EEPROM_TYPE_FREQ4:
1109 DPRINTF(sc, UPGT_DEBUG_FW,
1110 "EEPROM freq4 len=%d\n", option_len);
1111
1112 upgt_eeprom_parse_freq4(sc, eeprom_option->data,
1113 option_len);
1114 break;
1115 case UPGT_EEPROM_TYPE_FREQ5:
1116 DPRINTF(sc, UPGT_DEBUG_FW,
1117 "EEPROM freq5 len=%d\n", option_len);
1118 break;
1119 case UPGT_EEPROM_TYPE_FREQ6:
1120 DPRINTF(sc, UPGT_DEBUG_FW,
1121 "EEPROM freq6 len=%d\n", option_len);
1122
1123 upgt_eeprom_parse_freq6(sc, eeprom_option->data,
1124 option_len);
1125 break;
1126 case UPGT_EEPROM_TYPE_END:
1127 DPRINTF(sc, UPGT_DEBUG_FW,
1128 "EEPROM end len=%d\n", option_len);
1129 option_end = 1;
1130 break;
1131 case UPGT_EEPROM_TYPE_OFF:
1132 DPRINTF(sc, UPGT_DEBUG_FW,
1133 "%s: EEPROM off without end option\n", __func__);
1134 return (EIO);
1135 default:
1136 DPRINTF(sc, UPGT_DEBUG_FW,
1137 "EEPROM unknown type 0x%04x len=%d\n",
1138 option_type, option_len);
1139 break;
1140 }
1141
1142 /* jump to next EEPROM option */
1143 eeprom_option = (struct upgt_eeprom_option *)
1144 (eeprom_option->data + option_len);
1145 }
1146 return (0);
1147 }
1148
1149 static void
1150 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
1151 {
1152 struct upgt_eeprom_freq3_header *freq3_header;
1153 struct upgt_lmac_freq3 *freq3;
1154 int i;
1155 int elements;
1156 unsigned channel;
1157
1158 freq3_header = (struct upgt_eeprom_freq3_header *)data;
1159 freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
1160
1161 elements = freq3_header->elements;
1162
1163 DPRINTF(sc, UPGT_DEBUG_FW, "flags=0x%02x elements=%d\n",
1164 freq3_header->flags, elements);
1165
1166 if (elements >= (int)(UPGT_EEPROM_SIZE / sizeof(freq3[0])))
1167 return;
1168
1169 for (i = 0; i < elements; i++) {
1170 channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0);
1171 if (channel >= IEEE80211_CHAN_MAX)
1172 continue;
1173
1174 sc->sc_eeprom_freq3[channel] = freq3[i];
1175
1176 DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n",
1177 le16toh(sc->sc_eeprom_freq3[channel].freq), channel);
1178 }
1179 }
1180
1181 void
1182 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
1183 {
1184 struct upgt_eeprom_freq4_header *freq4_header;
1185 struct upgt_eeprom_freq4_1 *freq4_1;
1186 struct upgt_eeprom_freq4_2 *freq4_2;
1187 int i;
1188 int j;
1189 int elements;
1190 int settings;
1191 unsigned channel;
1192
1193 freq4_header = (struct upgt_eeprom_freq4_header *)data;
1194 freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
1195 elements = freq4_header->elements;
1196 settings = freq4_header->settings;
1197
1198 /* we need this value later */
1199 sc->sc_eeprom_freq6_settings = freq4_header->settings;
1200
1201 DPRINTF(sc, UPGT_DEBUG_FW, "flags=0x%02x elements=%d settings=%d\n",
1202 freq4_header->flags, elements, settings);
1203
1204 if (elements >= (int)(UPGT_EEPROM_SIZE / sizeof(freq4_1[0])))
1205 return;
1206
1207 for (i = 0; i < elements; i++) {
1208 channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0);
1209 if (channel >= IEEE80211_CHAN_MAX)
1210 continue;
1211
1212 freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
1213 for (j = 0; j < settings; j++) {
1214 sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
1215 sc->sc_eeprom_freq4[channel][j].pad = 0;
1216 }
1217
1218 DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n",
1219 le16toh(freq4_1[i].freq), channel);
1220 }
1221 }
1222
1223 void
1224 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
1225 {
1226 struct upgt_lmac_freq6 *freq6;
1227 int i;
1228 int elements;
1229 unsigned channel;
1230
1231 freq6 = (struct upgt_lmac_freq6 *)data;
1232 elements = len / sizeof(struct upgt_lmac_freq6);
1233
1234 DPRINTF(sc, UPGT_DEBUG_FW, "elements=%d\n", elements);
1235
1236 if (elements >= (int)(UPGT_EEPROM_SIZE / sizeof(freq6[0])))
1237 return;
1238
1239 for (i = 0; i < elements; i++) {
1240 channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0);
1241 if (channel >= IEEE80211_CHAN_MAX)
1242 continue;
1243
1244 sc->sc_eeprom_freq6[channel] = freq6[i];
1245
1246 DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n",
1247 le16toh(sc->sc_eeprom_freq6[channel].freq), channel);
1248 }
1249 }
1250
1251 static void
1252 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
1253 {
1254 struct upgt_eeprom_option_hwrx *option_hwrx;
1255
1256 option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
1257
1258 sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
1259
1260 DPRINTF(sc, UPGT_DEBUG_FW, "hwrx option value=0x%04x\n",
1261 sc->sc_eeprom_hwrx);
1262 }
1263
1264 static int
1265 upgt_eeprom_read(struct upgt_softc *sc)
1266 {
1267 struct upgt_data *data_cmd;
1268 struct upgt_lmac_mem *mem;
1269 struct upgt_lmac_eeprom *eeprom;
1270 int block, error, offset;
1271
1272 UPGT_LOCK(sc);
1273 usb_pause_mtx(&sc->sc_mtx, USB_MS_TO_TICKS(100));
1274
1275 offset = 0;
1276 block = UPGT_EEPROM_BLOCK_SIZE;
1277 while (offset < UPGT_EEPROM_SIZE) {
1278 DPRINTF(sc, UPGT_DEBUG_FW,
1279 "request EEPROM block (offset=%d, len=%d)\n", offset, block);
1280
1281 data_cmd = upgt_getbuf(sc);
1282 if (data_cmd == NULL) {
1283 UPGT_UNLOCK(sc);
1284 return (ENOBUFS);
1285 }
1286
1287 /*
1288 * Transmit the URB containing the CMD data.
1289 */
1290 memset(data_cmd->buf, 0, MCLBYTES);
1291
1292 mem = (struct upgt_lmac_mem *)data_cmd->buf;
1293 mem->addr = htole32(sc->sc_memaddr_frame_start +
1294 UPGT_MEMSIZE_FRAME_HEAD);
1295
1296 eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
1297 eeprom->header1.flags = 0;
1298 eeprom->header1.type = UPGT_H1_TYPE_CTRL;
1299 eeprom->header1.len = htole16((
1300 sizeof(struct upgt_lmac_eeprom) -
1301 sizeof(struct upgt_lmac_header)) + block);
1302
1303 eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
1304 eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
1305 eeprom->header2.flags = 0;
1306
1307 eeprom->offset = htole16(offset);
1308 eeprom->len = htole16(block);
1309
1310 data_cmd->buflen = sizeof(*mem) + sizeof(*eeprom) + block;
1311
1312 mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
1313 data_cmd->buflen - sizeof(*mem));
1314 upgt_bulk_tx(sc, data_cmd);
1315
1316 error = mtx_sleep(sc, &sc->sc_mtx, 0, "eeprom_request", hz);
1317 if (error != 0) {
1318 device_printf(sc->sc_dev,
1319 "timeout while waiting for EEPROM data\n");
1320 UPGT_UNLOCK(sc);
1321 return (EIO);
1322 }
1323
1324 offset += block;
1325 if (UPGT_EEPROM_SIZE - offset < block)
1326 block = UPGT_EEPROM_SIZE - offset;
1327 }
1328
1329 UPGT_UNLOCK(sc);
1330 return (0);
1331 }
1332
1333 /*
1334 * When a rx data came in the function returns a mbuf and a rssi values.
1335 */
1336 static struct mbuf *
1337 upgt_rxeof(struct usb_xfer *xfer, struct upgt_data *data, int *rssi)
1338 {
1339 struct mbuf *m = NULL;
1340 struct upgt_softc *sc = usbd_xfer_softc(xfer);
1341 struct upgt_lmac_header *header;
1342 struct upgt_lmac_eeprom *eeprom;
1343 uint8_t h1_type;
1344 uint16_t h2_type;
1345 int actlen, sumlen;
1346
1347 usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
1348
1349 UPGT_ASSERT_LOCKED(sc);
1350
1351 if (actlen < 1)
1352 return (NULL);
1353
1354 /* Check only at the very beginning. */
1355 if (!(sc->sc_flags & UPGT_FLAG_FWLOADED) &&
1356 (memcmp(data->buf, "OK", 2) == 0)) {
1357 sc->sc_flags |= UPGT_FLAG_FWLOADED;
1358 wakeup_one(sc);
1359 return (NULL);
1360 }
1361
1362 if (actlen < (int)UPGT_RX_MINSZ)
1363 return (NULL);
1364
1365 /*
1366 * Check what type of frame came in.
1367 */
1368 header = (struct upgt_lmac_header *)(data->buf + 4);
1369
1370 h1_type = header->header1.type;
1371 h2_type = le16toh(header->header2.type);
1372
1373 if (h1_type == UPGT_H1_TYPE_CTRL && h2_type == UPGT_H2_TYPE_EEPROM) {
1374 eeprom = (struct upgt_lmac_eeprom *)(data->buf + 4);
1375 uint16_t eeprom_offset = le16toh(eeprom->offset);
1376 uint16_t eeprom_len = le16toh(eeprom->len);
1377
1378 DPRINTF(sc, UPGT_DEBUG_FW,
1379 "received EEPROM block (offset=%d, len=%d)\n",
1380 eeprom_offset, eeprom_len);
1381
1382 memcpy(sc->sc_eeprom + eeprom_offset,
1383 data->buf + sizeof(struct upgt_lmac_eeprom) + 4,
1384 eeprom_len);
1385
1386 /* EEPROM data has arrived in time, wakeup. */
1387 wakeup(sc);
1388 } else if (h1_type == UPGT_H1_TYPE_CTRL &&
1389 h2_type == UPGT_H2_TYPE_TX_DONE) {
1390 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: received 802.11 TX done\n",
1391 __func__);
1392 upgt_tx_done(sc, data->buf + 4);
1393 } else if (h1_type == UPGT_H1_TYPE_RX_DATA ||
1394 h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
1395 DPRINTF(sc, UPGT_DEBUG_RECV, "%s: received 802.11 RX data\n",
1396 __func__);
1397 m = upgt_rx(sc, data->buf + 4, le16toh(header->header1.len),
1398 rssi);
1399 } else if (h1_type == UPGT_H1_TYPE_CTRL &&
1400 h2_type == UPGT_H2_TYPE_STATS) {
1401 DPRINTF(sc, UPGT_DEBUG_STAT, "%s: received statistic data\n",
1402 __func__);
1403 /* TODO: what could we do with the statistic data? */
1404 } else {
1405 /* ignore unknown frame types */
1406 DPRINTF(sc, UPGT_DEBUG_INTR,
1407 "received unknown frame type 0x%02x\n",
1408 header->header1.type);
1409 }
1410 return (m);
1411 }
1412
1413 /*
1414 * The firmware awaits a checksum for each frame we send to it.
1415 * The algorithm used therefor is uncommon but somehow similar to CRC32.
1416 */
1417 static uint32_t
1418 upgt_chksum_le(const uint32_t *buf, size_t size)
1419 {
1420 size_t i;
1421 uint32_t crc = 0;
1422
1423 for (i = 0; i < size; i += sizeof(uint32_t)) {
1424 crc = htole32(crc ^ *buf++);
1425 crc = htole32((crc >> 5) ^ (crc << 3));
1426 }
1427
1428 return (crc);
1429 }
1430
1431 static struct mbuf *
1432 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen, int *rssi)
1433 {
1434 struct ieee80211com *ic = &sc->sc_ic;
1435 struct upgt_lmac_rx_desc *rxdesc;
1436 struct mbuf *m;
1437
1438 /*
1439 * don't pass packets to the ieee80211 framework if the driver isn't
1440 * RUNNING.
1441 */
1442 if (!(sc->sc_flags & UPGT_FLAG_INITDONE))
1443 return (NULL);
1444
1445 /* access RX packet descriptor */
1446 rxdesc = (struct upgt_lmac_rx_desc *)data;
1447
1448 /* create mbuf which is suitable for strict alignment archs */
1449 KASSERT((pkglen + ETHER_ALIGN) < MCLBYTES,
1450 ("A current mbuf storage is small (%d)", pkglen + ETHER_ALIGN));
1451 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1452 if (m == NULL) {
1453 device_printf(sc->sc_dev, "could not create RX mbuf\n");
1454 return (NULL);
1455 }
1456 m_adj(m, ETHER_ALIGN);
1457 memcpy(mtod(m, char *), rxdesc->data, pkglen);
1458 /* trim FCS */
1459 m->m_len = m->m_pkthdr.len = pkglen - IEEE80211_CRC_LEN;
1460
1461 if (ieee80211_radiotap_active(ic)) {
1462 struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
1463
1464 tap->wr_flags = 0;
1465 tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
1466 tap->wr_antsignal = rxdesc->rssi;
1467 }
1468
1469 DPRINTF(sc, UPGT_DEBUG_RX_PROC, "%s: RX done\n", __func__);
1470 *rssi = rxdesc->rssi;
1471 return (m);
1472 }
1473
1474 static uint8_t
1475 upgt_rx_rate(struct upgt_softc *sc, const int rate)
1476 {
1477 struct ieee80211com *ic = &sc->sc_ic;
1478 static const uint8_t cck_upgt2rate[4] = { 2, 4, 11, 22 };
1479 static const uint8_t ofdm_upgt2rate[12] =
1480 { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 };
1481
1482 if (ic->ic_curmode == IEEE80211_MODE_11B &&
1483 !(rate < 0 || rate > 3))
1484 return cck_upgt2rate[rate & 0xf];
1485
1486 if (ic->ic_curmode == IEEE80211_MODE_11G &&
1487 !(rate < 0 || rate > 11))
1488 return ofdm_upgt2rate[rate & 0xf];
1489
1490 return (0);
1491 }
1492
1493 static void
1494 upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
1495 {
1496 struct upgt_lmac_tx_done_desc *desc;
1497 int i, freed = 0;
1498
1499 UPGT_ASSERT_LOCKED(sc);
1500
1501 desc = (struct upgt_lmac_tx_done_desc *)data;
1502
1503 for (i = 0; i < UPGT_TX_MAXCOUNT; i++) {
1504 struct upgt_data *data_tx = &sc->sc_tx_data[i];
1505
1506 if (data_tx->addr == le32toh(desc->header2.reqid)) {
1507 upgt_mem_free(sc, data_tx->addr);
1508 data_tx->ni = NULL;
1509 data_tx->addr = 0;
1510 data_tx->m = NULL;
1511
1512 DPRINTF(sc, UPGT_DEBUG_TX_PROC,
1513 "TX done: memaddr=0x%08x, status=0x%04x, rssi=%d, ",
1514 le32toh(desc->header2.reqid),
1515 le16toh(desc->status), le16toh(desc->rssi));
1516 DPRINTF(sc, UPGT_DEBUG_TX_PROC, "seq=%d\n",
1517 le16toh(desc->seq));
1518
1519 freed++;
1520 }
1521 }
1522
1523 if (freed != 0) {
1524 UPGT_UNLOCK(sc);
1525 sc->sc_tx_timer = 0;
1526 upgt_start(sc);
1527 UPGT_LOCK(sc);
1528 }
1529 }
1530
1531 static void
1532 upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
1533 {
1534 int i;
1535
1536 for (i = 0; i < sc->sc_memory.pages; i++) {
1537 if (sc->sc_memory.page[i].addr == addr) {
1538 sc->sc_memory.page[i].used = 0;
1539 return;
1540 }
1541 }
1542
1543 device_printf(sc->sc_dev,
1544 "could not free memory address 0x%08x\n", addr);
1545 }
1546
1547 static int
1548 upgt_fw_load(struct upgt_softc *sc)
1549 {
1550 const struct firmware *fw;
1551 struct upgt_data *data_cmd;
1552 struct upgt_fw_x2_header *x2;
1553 char start_fwload_cmd[] = { 0x3c, 0x0d };
1554 int error = 0;
1555 size_t offset;
1556 int bsize;
1557 int n;
1558 uint32_t crc32;
1559
1560 fw = firmware_get(upgt_fwname);
1561 if (fw == NULL) {
1562 device_printf(sc->sc_dev, "could not read microcode %s\n",
1563 upgt_fwname);
1564 return (EIO);
1565 }
1566
1567 UPGT_LOCK(sc);
1568
1569 /* send firmware start load command */
1570 data_cmd = upgt_getbuf(sc);
1571 if (data_cmd == NULL) {
1572 error = ENOBUFS;
1573 goto fail;
1574 }
1575 data_cmd->buflen = sizeof(start_fwload_cmd);
1576 memcpy(data_cmd->buf, start_fwload_cmd, data_cmd->buflen);
1577 upgt_bulk_tx(sc, data_cmd);
1578
1579 /* send X2 header */
1580 data_cmd = upgt_getbuf(sc);
1581 if (data_cmd == NULL) {
1582 error = ENOBUFS;
1583 goto fail;
1584 }
1585 data_cmd->buflen = sizeof(struct upgt_fw_x2_header);
1586 x2 = (struct upgt_fw_x2_header *)data_cmd->buf;
1587 memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE);
1588 x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
1589 x2->len = htole32(fw->datasize);
1590 x2->crc = upgt_crc32_le((uint8_t *)data_cmd->buf +
1591 UPGT_X2_SIGNATURE_SIZE,
1592 sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
1593 sizeof(uint32_t));
1594 upgt_bulk_tx(sc, data_cmd);
1595
1596 /* download firmware */
1597 for (offset = 0; offset < fw->datasize; offset += bsize) {
1598 if (fw->datasize - offset > UPGT_FW_BLOCK_SIZE)
1599 bsize = UPGT_FW_BLOCK_SIZE;
1600 else
1601 bsize = fw->datasize - offset;
1602
1603 data_cmd = upgt_getbuf(sc);
1604 if (data_cmd == NULL) {
1605 error = ENOBUFS;
1606 goto fail;
1607 }
1608 n = upgt_fw_copy((const uint8_t *)fw->data + offset,
1609 data_cmd->buf, bsize);
1610 data_cmd->buflen = bsize;
1611 upgt_bulk_tx(sc, data_cmd);
1612
1613 DPRINTF(sc, UPGT_DEBUG_FW, "FW offset=%zu, read=%d, sent=%d\n",
1614 offset, n, bsize);
1615 bsize = n;
1616 }
1617 DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware downloaded\n", __func__);
1618
1619 /* load firmware */
1620 data_cmd = upgt_getbuf(sc);
1621 if (data_cmd == NULL) {
1622 error = ENOBUFS;
1623 goto fail;
1624 }
1625 crc32 = upgt_crc32_le(fw->data, fw->datasize);
1626 *((uint32_t *)(data_cmd->buf) ) = crc32;
1627 *((uint8_t *)(data_cmd->buf) + 4) = 'g';
1628 *((uint8_t *)(data_cmd->buf) + 5) = '\r';
1629 data_cmd->buflen = 6;
1630 upgt_bulk_tx(sc, data_cmd);
1631
1632 /* waiting 'OK' response. */
1633 usbd_transfer_start(sc->sc_xfer[UPGT_BULK_RX]);
1634 error = mtx_sleep(sc, &sc->sc_mtx, 0, "upgtfw", 2 * hz);
1635 if (error != 0) {
1636 device_printf(sc->sc_dev, "firmware load failed\n");
1637 error = EIO;
1638 }
1639
1640 DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware loaded\n", __func__);
1641 fail:
1642 UPGT_UNLOCK(sc);
1643 firmware_put(fw, FIRMWARE_UNLOAD);
1644 return (error);
1645 }
1646
1647 static uint32_t
1648 upgt_crc32_le(const void *buf, size_t size)
1649 {
1650 uint32_t crc;
1651
1652 crc = ether_crc32_le(buf, size);
1653
1654 /* apply final XOR value as common for CRC-32 */
1655 crc = htole32(crc ^ 0xffffffffU);
1656
1657 return (crc);
1658 }
1659
1660 /*
1661 * While copying the version 2 firmware, we need to replace two characters:
1662 *
1663 * 0x7e -> 0x7d 0x5e
1664 * 0x7d -> 0x7d 0x5d
1665 */
1666 static int
1667 upgt_fw_copy(const uint8_t *src, char *dst, int size)
1668 {
1669 int i, j;
1670
1671 for (i = 0, j = 0; i < size && j < size; i++) {
1672 switch (src[i]) {
1673 case 0x7e:
1674 dst[j] = 0x7d;
1675 j++;
1676 dst[j] = 0x5e;
1677 j++;
1678 break;
1679 case 0x7d:
1680 dst[j] = 0x7d;
1681 j++;
1682 dst[j] = 0x5d;
1683 j++;
1684 break;
1685 default:
1686 dst[j] = src[i];
1687 j++;
1688 break;
1689 }
1690 }
1691
1692 return (i);
1693 }
1694
1695 static int
1696 upgt_mem_init(struct upgt_softc *sc)
1697 {
1698 int i;
1699
1700 for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
1701 sc->sc_memory.page[i].used = 0;
1702
1703 if (i == 0) {
1704 /*
1705 * The first memory page is always reserved for
1706 * command data.
1707 */
1708 sc->sc_memory.page[i].addr =
1709 sc->sc_memaddr_frame_start + MCLBYTES;
1710 } else {
1711 sc->sc_memory.page[i].addr =
1712 sc->sc_memory.page[i - 1].addr + MCLBYTES;
1713 }
1714
1715 if (sc->sc_memory.page[i].addr + MCLBYTES >=
1716 sc->sc_memaddr_frame_end)
1717 break;
1718
1719 DPRINTF(sc, UPGT_DEBUG_FW, "memory address page %d=0x%08x\n",
1720 i, sc->sc_memory.page[i].addr);
1721 }
1722
1723 sc->sc_memory.pages = i;
1724
1725 DPRINTF(sc, UPGT_DEBUG_FW, "memory pages=%d\n", sc->sc_memory.pages);
1726 return (0);
1727 }
1728
1729 static int
1730 upgt_fw_verify(struct upgt_softc *sc)
1731 {
1732 const struct firmware *fw;
1733 const struct upgt_fw_bra_option *bra_opt;
1734 const struct upgt_fw_bra_descr *descr;
1735 const uint8_t *p;
1736 const uint32_t *uc;
1737 uint32_t bra_option_type, bra_option_len;
1738 size_t offset;
1739 int bra_end = 0;
1740 int error = 0;
1741
1742 fw = firmware_get(upgt_fwname);
1743 if (fw == NULL) {
1744 device_printf(sc->sc_dev, "could not read microcode %s\n",
1745 upgt_fwname);
1746 return EIO;
1747 }
1748
1749 /*
1750 * Seek to beginning of Boot Record Area (BRA).
1751 */
1752 for (offset = 0; offset < fw->datasize; offset += sizeof(*uc)) {
1753 uc = (const uint32_t *)((const uint8_t *)fw->data + offset);
1754 if (*uc == 0)
1755 break;
1756 }
1757 for (; offset < fw->datasize; offset += sizeof(*uc)) {
1758 uc = (const uint32_t *)((const uint8_t *)fw->data + offset);
1759 if (*uc != 0)
1760 break;
1761 }
1762 if (offset == fw->datasize) {
1763 device_printf(sc->sc_dev,
1764 "firmware Boot Record Area not found\n");
1765 error = EIO;
1766 goto fail;
1767 }
1768
1769 DPRINTF(sc, UPGT_DEBUG_FW,
1770 "firmware Boot Record Area found at offset %zu\n", offset);
1771
1772 /*
1773 * Parse Boot Record Area (BRA) options.
1774 */
1775 while (offset < fw->datasize && bra_end == 0) {
1776 /* get current BRA option */
1777 p = (const uint8_t *)fw->data + offset;
1778 bra_opt = (const struct upgt_fw_bra_option *)p;
1779 bra_option_type = le32toh(bra_opt->type);
1780 bra_option_len = le32toh(bra_opt->len) * sizeof(*uc);
1781
1782 switch (bra_option_type) {
1783 case UPGT_BRA_TYPE_FW:
1784 DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_FW len=%d\n",
1785 bra_option_len);
1786
1787 if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
1788 device_printf(sc->sc_dev,
1789 "wrong UPGT_BRA_TYPE_FW len\n");
1790 error = EIO;
1791 goto fail;
1792 }
1793 if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_opt->data,
1794 bra_option_len) == 0) {
1795 sc->sc_fw_type = UPGT_FWTYPE_LM86;
1796 break;
1797 }
1798 if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_opt->data,
1799 bra_option_len) == 0) {
1800 sc->sc_fw_type = UPGT_FWTYPE_LM87;
1801 break;
1802 }
1803 device_printf(sc->sc_dev,
1804 "unsupported firmware type\n");
1805 error = EIO;
1806 goto fail;
1807 case UPGT_BRA_TYPE_VERSION:
1808 DPRINTF(sc, UPGT_DEBUG_FW,
1809 "UPGT_BRA_TYPE_VERSION len=%d\n", bra_option_len);
1810 break;
1811 case UPGT_BRA_TYPE_DEPIF:
1812 DPRINTF(sc, UPGT_DEBUG_FW,
1813 "UPGT_BRA_TYPE_DEPIF len=%d\n", bra_option_len);
1814 break;
1815 case UPGT_BRA_TYPE_EXPIF:
1816 DPRINTF(sc, UPGT_DEBUG_FW,
1817 "UPGT_BRA_TYPE_EXPIF len=%d\n", bra_option_len);
1818 break;
1819 case UPGT_BRA_TYPE_DESCR:
1820 DPRINTF(sc, UPGT_DEBUG_FW,
1821 "UPGT_BRA_TYPE_DESCR len=%d\n", bra_option_len);
1822
1823 descr = (const struct upgt_fw_bra_descr *)bra_opt->data;
1824
1825 sc->sc_memaddr_frame_start =
1826 le32toh(descr->memaddr_space_start);
1827 sc->sc_memaddr_frame_end =
1828 le32toh(descr->memaddr_space_end);
1829
1830 DPRINTF(sc, UPGT_DEBUG_FW,
1831 "memory address space start=0x%08x\n",
1832 sc->sc_memaddr_frame_start);
1833 DPRINTF(sc, UPGT_DEBUG_FW,
1834 "memory address space end=0x%08x\n",
1835 sc->sc_memaddr_frame_end);
1836 break;
1837 case UPGT_BRA_TYPE_END:
1838 DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_END len=%d\n",
1839 bra_option_len);
1840 bra_end = 1;
1841 break;
1842 default:
1843 DPRINTF(sc, UPGT_DEBUG_FW, "unknown BRA option len=%d\n",
1844 bra_option_len);
1845 error = EIO;
1846 goto fail;
1847 }
1848
1849 /* jump to next BRA option */
1850 offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
1851 }
1852
1853 DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware verified", __func__);
1854 fail:
1855 firmware_put(fw, FIRMWARE_UNLOAD);
1856 return (error);
1857 }
1858
1859 static void
1860 upgt_bulk_tx(struct upgt_softc *sc, struct upgt_data *data)
1861 {
1862
1863 UPGT_ASSERT_LOCKED(sc);
1864
1865 STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next);
1866 UPGT_STAT_INC(sc, st_tx_pending);
1867 usbd_transfer_start(sc->sc_xfer[UPGT_BULK_TX]);
1868 }
1869
1870 static int
1871 upgt_device_reset(struct upgt_softc *sc)
1872 {
1873 struct upgt_data *data;
1874 char init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
1875
1876 UPGT_LOCK(sc);
1877
1878 data = upgt_getbuf(sc);
1879 if (data == NULL) {
1880 UPGT_UNLOCK(sc);
1881 return (ENOBUFS);
1882 }
1883 memcpy(data->buf, init_cmd, sizeof(init_cmd));
1884 data->buflen = sizeof(init_cmd);
1885 upgt_bulk_tx(sc, data);
1886 usb_pause_mtx(&sc->sc_mtx, USB_MS_TO_TICKS(100));
1887
1888 UPGT_UNLOCK(sc);
1889 DPRINTF(sc, UPGT_DEBUG_FW, "%s: device initialized\n", __func__);
1890 return (0);
1891 }
1892
1893 static int
1894 upgt_alloc_tx(struct upgt_softc *sc)
1895 {
1896 int i;
1897
1898 STAILQ_INIT(&sc->sc_tx_active);
1899 STAILQ_INIT(&sc->sc_tx_inactive);
1900 STAILQ_INIT(&sc->sc_tx_pending);
1901
1902 for (i = 0; i < UPGT_TX_MAXCOUNT; i++) {
1903 struct upgt_data *data = &sc->sc_tx_data[i];
1904 data->buf = ((uint8_t *)sc->sc_tx_dma_buf) + (i * MCLBYTES);
1905 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next);
1906 UPGT_STAT_INC(sc, st_tx_inactive);
1907 }
1908
1909 return (0);
1910 }
1911
1912 static int
1913 upgt_alloc_rx(struct upgt_softc *sc)
1914 {
1915 int i;
1916
1917 STAILQ_INIT(&sc->sc_rx_active);
1918 STAILQ_INIT(&sc->sc_rx_inactive);
1919
1920 for (i = 0; i < UPGT_RX_MAXCOUNT; i++) {
1921 struct upgt_data *data = &sc->sc_rx_data[i];
1922 data->buf = ((uint8_t *)sc->sc_rx_dma_buf) + (i * MCLBYTES);
1923 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
1924 }
1925 return (0);
1926 }
1927
1928 static int
1929 upgt_detach(device_t dev)
1930 {
1931 struct upgt_softc *sc = device_get_softc(dev);
1932 struct ieee80211com *ic = &sc->sc_ic;
1933 unsigned x;
1934
1935 /*
1936 * Prevent further allocations from RX/TX/CMD
1937 * data lists and ioctls
1938 */
1939 UPGT_LOCK(sc);
1940 sc->sc_flags |= UPGT_FLAG_DETACHED;
1941
1942 STAILQ_INIT(&sc->sc_tx_active);
1943 STAILQ_INIT(&sc->sc_tx_inactive);
1944 STAILQ_INIT(&sc->sc_tx_pending);
1945
1946 STAILQ_INIT(&sc->sc_rx_active);
1947 STAILQ_INIT(&sc->sc_rx_inactive);
1948
1949 upgt_stop(sc);
1950 UPGT_UNLOCK(sc);
1951
1952 callout_drain(&sc->sc_led_ch);
1953 callout_drain(&sc->sc_watchdog_ch);
1954
1955 /* drain USB transfers */
1956 for (x = 0; x != UPGT_N_XFERS; x++)
1957 usbd_transfer_drain(sc->sc_xfer[x]);
1958
1959 /* free data buffers */
1960 UPGT_LOCK(sc);
1961 upgt_free_rx(sc);
1962 upgt_free_tx(sc);
1963 UPGT_UNLOCK(sc);
1964
1965 /* free USB transfers and some data buffers */
1966 usbd_transfer_unsetup(sc->sc_xfer, UPGT_N_XFERS);
1967
1968 ieee80211_ifdetach(ic);
1969 mbufq_drain(&sc->sc_snd);
1970 mtx_destroy(&sc->sc_mtx);
1971
1972 return (0);
1973 }
1974
1975 static void
1976 upgt_free_rx(struct upgt_softc *sc)
1977 {
1978 int i;
1979
1980 for (i = 0; i < UPGT_RX_MAXCOUNT; i++) {
1981 struct upgt_data *data = &sc->sc_rx_data[i];
1982
1983 data->buf = NULL;
1984 data->ni = NULL;
1985 }
1986 }
1987
1988 static void
1989 upgt_free_tx(struct upgt_softc *sc)
1990 {
1991 int i;
1992
1993 for (i = 0; i < UPGT_TX_MAXCOUNT; i++) {
1994 struct upgt_data *data = &sc->sc_tx_data[i];
1995
1996 if (data->ni != NULL)
1997 ieee80211_free_node(data->ni);
1998
1999 data->buf = NULL;
2000 data->ni = NULL;
2001 }
2002 }
2003
2004 static void
2005 upgt_abort_xfers_locked(struct upgt_softc *sc)
2006 {
2007 int i;
2008
2009 UPGT_ASSERT_LOCKED(sc);
2010 /* abort any pending transfers */
2011 for (i = 0; i < UPGT_N_XFERS; i++)
2012 usbd_transfer_stop(sc->sc_xfer[i]);
2013 }
2014
2015 static void
2016 upgt_abort_xfers(struct upgt_softc *sc)
2017 {
2018
2019 UPGT_LOCK(sc);
2020 upgt_abort_xfers_locked(sc);
2021 UPGT_UNLOCK(sc);
2022 }
2023
2024 #define UPGT_SYSCTL_STAT_ADD32(c, h, n, p, d) \
2025 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2026
2027 static void
2028 upgt_sysctl_node(struct upgt_softc *sc)
2029 {
2030 struct sysctl_ctx_list *ctx;
2031 struct sysctl_oid_list *child;
2032 struct sysctl_oid *tree;
2033 struct upgt_stat *stats;
2034
2035 stats = &sc->sc_stat;
2036 ctx = device_get_sysctl_ctx(sc->sc_dev);
2037 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sc_dev));
2038
2039 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
2040 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "UPGT statistics");
2041 child = SYSCTL_CHILDREN(tree);
2042 UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_active",
2043 &stats->st_tx_active, "Active numbers in TX queue");
2044 UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_inactive",
2045 &stats->st_tx_inactive, "Inactive numbers in TX queue");
2046 UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_pending",
2047 &stats->st_tx_pending, "Pending numbers in TX queue");
2048 }
2049
2050 #undef UPGT_SYSCTL_STAT_ADD32
2051
2052 static struct upgt_data *
2053 _upgt_getbuf(struct upgt_softc *sc)
2054 {
2055 struct upgt_data *bf;
2056
2057 bf = STAILQ_FIRST(&sc->sc_tx_inactive);
2058 if (bf != NULL) {
2059 STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next);
2060 UPGT_STAT_DEC(sc, st_tx_inactive);
2061 } else
2062 bf = NULL;
2063 if (bf == NULL)
2064 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: %s\n", __func__,
2065 "out of xmit buffers");
2066 return (bf);
2067 }
2068
2069 static struct upgt_data *
2070 upgt_getbuf(struct upgt_softc *sc)
2071 {
2072 struct upgt_data *bf;
2073
2074 UPGT_ASSERT_LOCKED(sc);
2075
2076 bf = _upgt_getbuf(sc);
2077 if (bf == NULL)
2078 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: stop queue\n", __func__);
2079
2080 return (bf);
2081 }
2082
2083 static struct upgt_data *
2084 upgt_gettxbuf(struct upgt_softc *sc)
2085 {
2086 struct upgt_data *bf;
2087
2088 UPGT_ASSERT_LOCKED(sc);
2089
2090 bf = upgt_getbuf(sc);
2091 if (bf == NULL)
2092 return (NULL);
2093
2094 bf->addr = upgt_mem_alloc(sc);
2095 if (bf->addr == 0) {
2096 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: no free prism memory!\n",
2097 __func__);
2098 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next);
2099 UPGT_STAT_INC(sc, st_tx_inactive);
2100 return (NULL);
2101 }
2102 return (bf);
2103 }
2104
2105 static int
2106 upgt_tx_start(struct upgt_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
2107 struct upgt_data *data)
2108 {
2109 struct ieee80211vap *vap = ni->ni_vap;
2110 int error = 0, len;
2111 struct ieee80211_frame *wh;
2112 struct ieee80211_key *k;
2113 struct upgt_lmac_mem *mem;
2114 struct upgt_lmac_tx_desc *txdesc;
2115
2116 UPGT_ASSERT_LOCKED(sc);
2117
2118 upgt_set_led(sc, UPGT_LED_BLINK);
2119
2120 /*
2121 * Software crypto.
2122 */
2123 wh = mtod(m, struct ieee80211_frame *);
2124 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2125 k = ieee80211_crypto_encap(ni, m);
2126 if (k == NULL) {
2127 device_printf(sc->sc_dev,
2128 "ieee80211_crypto_encap returns NULL.\n");
2129 error = EIO;
2130 goto done;
2131 }
2132
2133 /* in case packet header moved, reset pointer */
2134 wh = mtod(m, struct ieee80211_frame *);
2135 }
2136
2137 /* Transmit the URB containing the TX data. */
2138 memset(data->buf, 0, MCLBYTES);
2139 mem = (struct upgt_lmac_mem *)data->buf;
2140 mem->addr = htole32(data->addr);
2141 txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
2142
2143 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2144 IEEE80211_FC0_TYPE_MGT) {
2145 /* mgmt frames */
2146 txdesc->header1.flags = UPGT_H1_FLAGS_TX_MGMT;
2147 /* always send mgmt frames at lowest rate (DS1) */
2148 memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
2149 } else {
2150 /* data frames */
2151 txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
2152 memcpy(txdesc->rates, sc->sc_cur_rateset, sizeof(txdesc->rates));
2153 }
2154 txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
2155 txdesc->header1.len = htole16(m->m_pkthdr.len);
2156 txdesc->header2.reqid = htole32(data->addr);
2157 txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
2158 txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
2159 txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
2160 txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
2161
2162 if (ieee80211_radiotap_active_vap(vap)) {
2163 struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
2164
2165 tap->wt_flags = 0;
2166 tap->wt_rate = 0; /* XXX where to get from? */
2167
2168 ieee80211_radiotap_tx(vap, m);
2169 }
2170
2171 /* copy frame below our TX descriptor header */
2172 m_copydata(m, 0, m->m_pkthdr.len,
2173 data->buf + (sizeof(*mem) + sizeof(*txdesc)));
2174 /* calculate frame size */
2175 len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
2176 /* we need to align the frame to a 4 byte boundary */
2177 len = (len + 3) & ~3;
2178 /* calculate frame checksum */
2179 mem->chksum = upgt_chksum_le((uint32_t *)txdesc, len - sizeof(*mem));
2180 data->ni = ni;
2181 data->m = m;
2182 data->buflen = len;
2183
2184 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: TX start data sending (%d bytes)\n",
2185 __func__, len);
2186 KASSERT(len <= MCLBYTES, ("mbuf is small for saving data"));
2187
2188 upgt_bulk_tx(sc, data);
2189 done:
2190 /*
2191 * If we don't regulary read the device statistics, the RX queue
2192 * will stall. It's strange, but it works, so we keep reading
2193 * the statistics here. *shrug*
2194 */
2195 if (!(vap->iv_ifp->if_get_counter(vap->iv_ifp, IFCOUNTER_OPACKETS) %
2196 UPGT_TX_STAT_INTERVAL))
2197 upgt_get_stats(sc);
2198
2199 return (error);
2200 }
2201
2202 static void
2203 upgt_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error)
2204 {
2205 struct upgt_softc *sc = usbd_xfer_softc(xfer);
2206 struct ieee80211com *ic = &sc->sc_ic;
2207 struct ieee80211_frame *wh;
2208 struct ieee80211_node *ni;
2209 struct epoch_tracker et;
2210 struct mbuf *m = NULL;
2211 struct upgt_data *data;
2212 int8_t nf;
2213 int rssi = -1;
2214
2215 UPGT_ASSERT_LOCKED(sc);
2216
2217 switch (USB_GET_STATE(xfer)) {
2218 case USB_ST_TRANSFERRED:
2219 data = STAILQ_FIRST(&sc->sc_rx_active);
2220 if (data == NULL)
2221 goto setup;
2222 STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next);
2223 m = upgt_rxeof(xfer, data, &rssi);
2224 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
2225 /* FALLTHROUGH */
2226 case USB_ST_SETUP:
2227 setup:
2228 data = STAILQ_FIRST(&sc->sc_rx_inactive);
2229 if (data == NULL)
2230 return;
2231 STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next);
2232 STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next);
2233 usbd_xfer_set_frame_data(xfer, 0, data->buf, MCLBYTES);
2234 usbd_transfer_submit(xfer);
2235
2236 /*
2237 * To avoid LOR we should unlock our private mutex here to call
2238 * ieee80211_input() because here is at the end of a USB
2239 * callback and safe to unlock.
2240 */
2241 UPGT_UNLOCK(sc);
2242 if (m != NULL) {
2243 wh = mtod(m, struct ieee80211_frame *);
2244 ni = ieee80211_find_rxnode(ic,
2245 (struct ieee80211_frame_min *)wh);
2246 nf = -95; /* XXX */
2247 NET_EPOCH_ENTER(et);
2248 if (ni != NULL) {
2249 (void) ieee80211_input(ni, m, rssi, nf);
2250 /* node is no longer needed */
2251 ieee80211_free_node(ni);
2252 } else
2253 (void) ieee80211_input_all(ic, m, rssi, nf);
2254 NET_EPOCH_EXIT(et);
2255 m = NULL;
2256 }
2257 UPGT_LOCK(sc);
2258 upgt_start(sc);
2259 break;
2260 default:
2261 /* needs it to the inactive queue due to a error. */
2262 data = STAILQ_FIRST(&sc->sc_rx_active);
2263 if (data != NULL) {
2264 STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next);
2265 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
2266 }
2267 if (error != USB_ERR_CANCELLED) {
2268 usbd_xfer_set_stall(xfer);
2269 counter_u64_add(ic->ic_ierrors, 1);
2270 goto setup;
2271 }
2272 break;
2273 }
2274 }
2275
2276 static void
2277 upgt_bulk_tx_callback(struct usb_xfer *xfer, usb_error_t error)
2278 {
2279 struct upgt_softc *sc = usbd_xfer_softc(xfer);
2280 struct upgt_data *data;
2281
2282 UPGT_ASSERT_LOCKED(sc);
2283 switch (USB_GET_STATE(xfer)) {
2284 case USB_ST_TRANSFERRED:
2285 data = STAILQ_FIRST(&sc->sc_tx_active);
2286 if (data == NULL)
2287 goto setup;
2288 STAILQ_REMOVE_HEAD(&sc->sc_tx_active, next);
2289 UPGT_STAT_DEC(sc, st_tx_active);
2290 upgt_txeof(xfer, data);
2291 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next);
2292 UPGT_STAT_INC(sc, st_tx_inactive);
2293 /* FALLTHROUGH */
2294 case USB_ST_SETUP:
2295 setup:
2296 data = STAILQ_FIRST(&sc->sc_tx_pending);
2297 if (data == NULL) {
2298 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: empty pending queue\n",
2299 __func__);
2300 return;
2301 }
2302 STAILQ_REMOVE_HEAD(&sc->sc_tx_pending, next);
2303 UPGT_STAT_DEC(sc, st_tx_pending);
2304 STAILQ_INSERT_TAIL(&sc->sc_tx_active, data, next);
2305 UPGT_STAT_INC(sc, st_tx_active);
2306
2307 usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen);
2308 usbd_transfer_submit(xfer);
2309 upgt_start(sc);
2310 break;
2311 default:
2312 data = STAILQ_FIRST(&sc->sc_tx_active);
2313 if (data == NULL)
2314 goto setup;
2315 if (data->ni != NULL) {
2316 if_inc_counter(data->ni->ni_vap->iv_ifp,
2317 IFCOUNTER_OERRORS, 1);
2318 ieee80211_free_node(data->ni);
2319 data->ni = NULL;
2320 }
2321 if (error != USB_ERR_CANCELLED) {
2322 usbd_xfer_set_stall(xfer);
2323 goto setup;
2324 }
2325 break;
2326 }
2327 }
2328
2329 static device_method_t upgt_methods[] = {
2330 /* Device interface */
2331 DEVMETHOD(device_probe, upgt_match),
2332 DEVMETHOD(device_attach, upgt_attach),
2333 DEVMETHOD(device_detach, upgt_detach),
2334 DEVMETHOD_END
2335 };
2336
2337 static driver_t upgt_driver = {
2338 .name = "upgt",
2339 .methods = upgt_methods,
2340 .size = sizeof(struct upgt_softc)
2341 };
2342
2343 DRIVER_MODULE(if_upgt, uhub, upgt_driver, NULL, NULL);
2344 MODULE_VERSION(if_upgt, 1);
2345 MODULE_DEPEND(if_upgt, usb, 1, 1, 1);
2346 MODULE_DEPEND(if_upgt, wlan, 1, 1, 1);
2347 MODULE_DEPEND(if_upgt, upgtfw_fw, 1, 1, 1);
2348 USB_PNP_HOST_INFO(upgt_devs);
Cache object: f6f1d7a18018d46b2bfe56adf7c1113c
|