The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/usb/wlan/if_zyd.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */
    2 /*      $NetBSD: if_zyd.c,v 1.7 2007/06/21 04:04:29 kiyohara Exp $      */
    3 /*      $FreeBSD$       */
    4 
    5 /*-
    6  * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr>
    7  * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de>
    8  *
    9  * Permission to use, copy, modify, and distribute this software for any
   10  * purpose with or without fee is hereby granted, provided that the above
   11  * copyright notice and this permission notice appear in all copies.
   12  *
   13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
   15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
   16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
   17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
   18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
   19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
   20  */
   21 
   22 #include <sys/cdefs.h>
   23 __FBSDID("$FreeBSD$");
   24 
   25 /*
   26  * ZyDAS ZD1211/ZD1211B USB WLAN driver.
   27  */
   28 
   29 #include "opt_wlan.h"
   30 
   31 #include <sys/param.h>
   32 #include <sys/sockio.h>
   33 #include <sys/sysctl.h>
   34 #include <sys/lock.h>
   35 #include <sys/mutex.h>
   36 #include <sys/condvar.h>
   37 #include <sys/mbuf.h>
   38 #include <sys/kernel.h>
   39 #include <sys/socket.h>
   40 #include <sys/systm.h>
   41 #include <sys/malloc.h>
   42 #include <sys/module.h>
   43 #include <sys/bus.h>
   44 #include <sys/endian.h>
   45 #include <sys/kdb.h>
   46 
   47 #include <net/bpf.h>
   48 #include <net/if.h>
   49 #include <net/if_var.h>
   50 #include <net/if_arp.h>
   51 #include <net/ethernet.h>
   52 #include <net/if_dl.h>
   53 #include <net/if_media.h>
   54 #include <net/if_types.h>
   55 
   56 #ifdef INET
   57 #include <netinet/in.h>
   58 #include <netinet/in_systm.h>
   59 #include <netinet/in_var.h>
   60 #include <netinet/if_ether.h>
   61 #include <netinet/ip.h>
   62 #endif
   63 
   64 #include <net80211/ieee80211_var.h>
   65 #include <net80211/ieee80211_regdomain.h>
   66 #include <net80211/ieee80211_radiotap.h>
   67 #include <net80211/ieee80211_ratectl.h>
   68 
   69 #include <dev/usb/usb.h>
   70 #include <dev/usb/usbdi.h>
   71 #include <dev/usb/usbdi_util.h>
   72 #include "usbdevs.h"
   73 
   74 #include <dev/usb/wlan/if_zydreg.h>
   75 #include <dev/usb/wlan/if_zydfw.h>
   76 
   77 #ifdef USB_DEBUG
   78 static int zyd_debug = 0;
   79 
   80 static SYSCTL_NODE(_hw_usb, OID_AUTO, zyd, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
   81     "USB zyd");
   82 SYSCTL_INT(_hw_usb_zyd, OID_AUTO, debug, CTLFLAG_RWTUN, &zyd_debug, 0,
   83     "zyd debug level");
   84 
   85 enum {
   86         ZYD_DEBUG_XMIT          = 0x00000001,   /* basic xmit operation */
   87         ZYD_DEBUG_RECV          = 0x00000002,   /* basic recv operation */
   88         ZYD_DEBUG_RESET         = 0x00000004,   /* reset processing */
   89         ZYD_DEBUG_INIT          = 0x00000008,   /* device init */
   90         ZYD_DEBUG_TX_PROC       = 0x00000010,   /* tx ISR proc */
   91         ZYD_DEBUG_RX_PROC       = 0x00000020,   /* rx ISR proc */
   92         ZYD_DEBUG_STATE         = 0x00000040,   /* 802.11 state transitions */
   93         ZYD_DEBUG_STAT          = 0x00000080,   /* statistic */
   94         ZYD_DEBUG_FW            = 0x00000100,   /* firmware */
   95         ZYD_DEBUG_CMD           = 0x00000200,   /* fw commands */
   96         ZYD_DEBUG_ANY           = 0xffffffff
   97 };
   98 #define DPRINTF(sc, m, fmt, ...) do {                           \
   99         if (zyd_debug & (m))                                    \
  100                 printf("%s: " fmt, __func__, ## __VA_ARGS__);   \
  101 } while (0)
  102 #else
  103 #define DPRINTF(sc, m, fmt, ...) do {                           \
  104         (void) sc;                                              \
  105 } while (0)
  106 #endif
  107 
  108 #define zyd_do_request(sc,req,data) \
  109     usbd_do_request_flags((sc)->sc_udev, &(sc)->sc_mtx, req, data, 0, NULL, 5000)
  110 
  111 static device_probe_t zyd_match;
  112 static device_attach_t zyd_attach;
  113 static device_detach_t zyd_detach;
  114 
  115 static usb_callback_t zyd_intr_read_callback;
  116 static usb_callback_t zyd_intr_write_callback;
  117 static usb_callback_t zyd_bulk_read_callback;
  118 static usb_callback_t zyd_bulk_write_callback;
  119 
  120 static struct ieee80211vap *zyd_vap_create(struct ieee80211com *,
  121                     const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
  122                     const uint8_t [IEEE80211_ADDR_LEN],
  123                     const uint8_t [IEEE80211_ADDR_LEN]);
  124 static void     zyd_vap_delete(struct ieee80211vap *);
  125 static void     zyd_tx_free(struct zyd_tx_data *, int);
  126 static void     zyd_setup_tx_list(struct zyd_softc *);
  127 static void     zyd_unsetup_tx_list(struct zyd_softc *);
  128 static int      zyd_newstate(struct ieee80211vap *, enum ieee80211_state, int);
  129 static int      zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
  130                     void *, int, int);
  131 static int      zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
  132 static int      zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
  133 static int      zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
  134 static int      zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
  135 static int      zyd_rfwrite(struct zyd_softc *, uint32_t);
  136 static int      zyd_lock_phy(struct zyd_softc *);
  137 static int      zyd_unlock_phy(struct zyd_softc *);
  138 static int      zyd_rf_attach(struct zyd_softc *, uint8_t);
  139 static const char *zyd_rf_name(uint8_t);
  140 static int      zyd_hw_init(struct zyd_softc *);
  141 static int      zyd_read_pod(struct zyd_softc *);
  142 static int      zyd_read_eeprom(struct zyd_softc *);
  143 static int      zyd_get_macaddr(struct zyd_softc *);
  144 static int      zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
  145 static int      zyd_set_bssid(struct zyd_softc *, const uint8_t *);
  146 static int      zyd_switch_radio(struct zyd_softc *, int);
  147 static int      zyd_set_led(struct zyd_softc *, int, int);
  148 static void     zyd_set_multi(struct zyd_softc *);
  149 static void     zyd_update_mcast(struct ieee80211com *);
  150 static int      zyd_set_rxfilter(struct zyd_softc *);
  151 static void     zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
  152 static int      zyd_set_beacon_interval(struct zyd_softc *, int);
  153 static void     zyd_rx_data(struct usb_xfer *, int, uint16_t);
  154 static int      zyd_tx_start(struct zyd_softc *, struct mbuf *,
  155                     struct ieee80211_node *);
  156 static int      zyd_transmit(struct ieee80211com *, struct mbuf *);
  157 static void     zyd_start(struct zyd_softc *);
  158 static int      zyd_raw_xmit(struct ieee80211_node *, struct mbuf *,
  159                     const struct ieee80211_bpf_params *);
  160 static void     zyd_parent(struct ieee80211com *);
  161 static void     zyd_init_locked(struct zyd_softc *);
  162 static void     zyd_stop(struct zyd_softc *);
  163 static int      zyd_loadfirmware(struct zyd_softc *);
  164 static void     zyd_scan_start(struct ieee80211com *);
  165 static void     zyd_scan_end(struct ieee80211com *);
  166 static void     zyd_getradiocaps(struct ieee80211com *, int, int *,
  167                     struct ieee80211_channel[]);
  168 static void     zyd_set_channel(struct ieee80211com *);
  169 static int      zyd_rfmd_init(struct zyd_rf *);
  170 static int      zyd_rfmd_switch_radio(struct zyd_rf *, int);
  171 static int      zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
  172 static int      zyd_al2230_init(struct zyd_rf *);
  173 static int      zyd_al2230_switch_radio(struct zyd_rf *, int);
  174 static int      zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
  175 static int      zyd_al2230_set_channel_b(struct zyd_rf *, uint8_t);
  176 static int      zyd_al2230_init_b(struct zyd_rf *);
  177 static int      zyd_al7230B_init(struct zyd_rf *);
  178 static int      zyd_al7230B_switch_radio(struct zyd_rf *, int);
  179 static int      zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
  180 static int      zyd_al2210_init(struct zyd_rf *);
  181 static int      zyd_al2210_switch_radio(struct zyd_rf *, int);
  182 static int      zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
  183 static int      zyd_gct_init(struct zyd_rf *);
  184 static int      zyd_gct_switch_radio(struct zyd_rf *, int);
  185 static int      zyd_gct_set_channel(struct zyd_rf *, uint8_t);
  186 static int      zyd_gct_mode(struct zyd_rf *);
  187 static int      zyd_gct_set_channel_synth(struct zyd_rf *, int, int);
  188 static int      zyd_gct_write(struct zyd_rf *, uint16_t);
  189 static int      zyd_gct_txgain(struct zyd_rf *, uint8_t);
  190 static int      zyd_maxim2_init(struct zyd_rf *);
  191 static int      zyd_maxim2_switch_radio(struct zyd_rf *, int);
  192 static int      zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
  193 
  194 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
  195 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
  196 
  197 /* various supported device vendors/products */
  198 #define ZYD_ZD1211      0
  199 #define ZYD_ZD1211B     1
  200 
  201 #define ZYD_ZD1211_DEV(v,p)     \
  202         { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211) }
  203 #define ZYD_ZD1211B_DEV(v,p)    \
  204         { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211B) }
  205 static const STRUCT_USB_HOST_ID zyd_devs[] = {
  206         /* ZYD_ZD1211 */
  207         ZYD_ZD1211_DEV(3COM2, 3CRUSB10075),
  208         ZYD_ZD1211_DEV(ABOCOM, WL54),
  209         ZYD_ZD1211_DEV(ASUS, WL159G),
  210         ZYD_ZD1211_DEV(CYBERTAN, TG54USB),
  211         ZYD_ZD1211_DEV(DRAYTEK, VIGOR550),
  212         ZYD_ZD1211_DEV(PLANEX2, GWUS54GD),
  213         ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL),
  214         ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ),
  215         ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI),
  216         ZYD_ZD1211_DEV(SAGEM, XG760A),
  217         ZYD_ZD1211_DEV(SENAO, NUB8301),
  218         ZYD_ZD1211_DEV(SITECOMEU, WL113),
  219         ZYD_ZD1211_DEV(SWEEX, ZD1211),
  220         ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN),
  221         ZYD_ZD1211_DEV(TEKRAM, ZD1211_1),
  222         ZYD_ZD1211_DEV(TEKRAM, ZD1211_2),
  223         ZYD_ZD1211_DEV(TWINMOS, G240),
  224         ZYD_ZD1211_DEV(UMEDIA, ALL0298V2),
  225         ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A),
  226         ZYD_ZD1211_DEV(UMEDIA, TEW429UB),
  227         ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G),
  228         ZYD_ZD1211_DEV(ZCOM, ZD1211),
  229         ZYD_ZD1211_DEV(ZYDAS, ZD1211),
  230         ZYD_ZD1211_DEV(ZYXEL, AG225H),
  231         ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220),
  232         ZYD_ZD1211_DEV(ZYXEL, G200V2),
  233         /* ZYD_ZD1211B */
  234         ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG_NF),
  235         ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG),
  236         ZYD_ZD1211B_DEV(ACCTON, ZD1211B),
  237         ZYD_ZD1211B_DEV(ASUS, A9T_WIFI),
  238         ZYD_ZD1211B_DEV(BELKIN, F5D7050_V4000),
  239         ZYD_ZD1211B_DEV(BELKIN, ZD1211B),
  240         ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G),
  241         ZYD_ZD1211B_DEV(FIBERLINE, WL430U),
  242         ZYD_ZD1211B_DEV(MELCO, KG54L),
  243         ZYD_ZD1211B_DEV(PHILIPS, SNU5600),
  244         ZYD_ZD1211B_DEV(PLANEX2, GW_US54GXS),
  245         ZYD_ZD1211B_DEV(SAGEM, XG76NA),
  246         ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B),
  247         ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1),
  248         ZYD_ZD1211B_DEV(USR, USR5423),
  249         ZYD_ZD1211B_DEV(VTECH, ZD1211B),
  250         ZYD_ZD1211B_DEV(ZCOM, ZD1211B),
  251         ZYD_ZD1211B_DEV(ZYDAS, ZD1211B),
  252         ZYD_ZD1211B_DEV(ZYXEL, M202),
  253         ZYD_ZD1211B_DEV(ZYXEL, G202),
  254         ZYD_ZD1211B_DEV(ZYXEL, G220V2)
  255 };
  256 
  257 static const struct usb_config zyd_config[ZYD_N_TRANSFER] = {
  258         [ZYD_BULK_WR] = {
  259                 .type = UE_BULK,
  260                 .endpoint = UE_ADDR_ANY,
  261                 .direction = UE_DIR_OUT,
  262                 .bufsize = ZYD_MAX_TXBUFSZ,
  263                 .flags = {.pipe_bof = 1,.force_short_xfer = 1,},
  264                 .callback = zyd_bulk_write_callback,
  265                 .ep_index = 0,
  266                 .timeout = 10000,       /* 10 seconds */
  267         },
  268         [ZYD_BULK_RD] = {
  269                 .type = UE_BULK,
  270                 .endpoint = UE_ADDR_ANY,
  271                 .direction = UE_DIR_IN,
  272                 .bufsize = ZYX_MAX_RXBUFSZ,
  273                 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
  274                 .callback = zyd_bulk_read_callback,
  275                 .ep_index = 0,
  276         },
  277         [ZYD_INTR_WR] = {
  278                 .type = UE_BULK_INTR,
  279                 .endpoint = UE_ADDR_ANY,
  280                 .direction = UE_DIR_OUT,
  281                 .bufsize = sizeof(struct zyd_cmd),
  282                 .flags = {.pipe_bof = 1,.force_short_xfer = 1,},
  283                 .callback = zyd_intr_write_callback,
  284                 .timeout = 1000,        /* 1 second */
  285                 .ep_index = 1,
  286         },
  287         [ZYD_INTR_RD] = {
  288                 .type = UE_INTERRUPT,
  289                 .endpoint = UE_ADDR_ANY,
  290                 .direction = UE_DIR_IN,
  291                 .bufsize = sizeof(struct zyd_cmd),
  292                 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
  293                 .callback = zyd_intr_read_callback,
  294         },
  295 };
  296 #define zyd_read16_m(sc, val, data)     do {                            \
  297         error = zyd_read16(sc, val, data);                              \
  298         if (error != 0)                                                 \
  299                 goto fail;                                              \
  300 } while (0)
  301 #define zyd_write16_m(sc, val, data)    do {                            \
  302         error = zyd_write16(sc, val, data);                             \
  303         if (error != 0)                                                 \
  304                 goto fail;                                              \
  305 } while (0)
  306 #define zyd_read32_m(sc, val, data)     do {                            \
  307         error = zyd_read32(sc, val, data);                              \
  308         if (error != 0)                                                 \
  309                 goto fail;                                              \
  310 } while (0)
  311 #define zyd_write32_m(sc, val, data)    do {                            \
  312         error = zyd_write32(sc, val, data);                             \
  313         if (error != 0)                                                 \
  314                 goto fail;                                              \
  315 } while (0)
  316 
  317 static int
  318 zyd_match(device_t dev)
  319 {
  320         struct usb_attach_arg *uaa = device_get_ivars(dev);
  321 
  322         if (uaa->usb_mode != USB_MODE_HOST)
  323                 return (ENXIO);
  324         if (uaa->info.bConfigIndex != ZYD_CONFIG_INDEX)
  325                 return (ENXIO);
  326         if (uaa->info.bIfaceIndex != ZYD_IFACE_INDEX)
  327                 return (ENXIO);
  328 
  329         return (usbd_lookup_id_by_uaa(zyd_devs, sizeof(zyd_devs), uaa));
  330 }
  331 
  332 static int
  333 zyd_attach(device_t dev)
  334 {
  335         struct usb_attach_arg *uaa = device_get_ivars(dev);
  336         struct zyd_softc *sc = device_get_softc(dev);
  337         struct ieee80211com *ic = &sc->sc_ic;
  338         uint8_t iface_index;
  339         int error;
  340 
  341         if (uaa->info.bcdDevice < 0x4330) {
  342                 device_printf(dev, "device version mismatch: 0x%X "
  343                     "(only >= 43.30 supported)\n",
  344                     uaa->info.bcdDevice);
  345                 return (EINVAL);
  346         }
  347 
  348         device_set_usb_desc(dev);
  349         sc->sc_dev = dev;
  350         sc->sc_udev = uaa->device;
  351         sc->sc_macrev = USB_GET_DRIVER_INFO(uaa);
  352 
  353         mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev),
  354             MTX_NETWORK_LOCK, MTX_DEF);
  355         STAILQ_INIT(&sc->sc_rqh);
  356         mbufq_init(&sc->sc_snd, ifqmaxlen);
  357 
  358         iface_index = ZYD_IFACE_INDEX;
  359         error = usbd_transfer_setup(uaa->device,
  360             &iface_index, sc->sc_xfer, zyd_config,
  361             ZYD_N_TRANSFER, sc, &sc->sc_mtx);
  362         if (error) {
  363                 device_printf(dev, "could not allocate USB transfers, "
  364                     "err=%s\n", usbd_errstr(error));
  365                 goto detach;
  366         }
  367 
  368         ZYD_LOCK(sc);
  369         if ((error = zyd_get_macaddr(sc)) != 0) {
  370                 device_printf(sc->sc_dev, "could not read EEPROM\n");
  371                 ZYD_UNLOCK(sc);
  372                 goto detach;
  373         }
  374         ZYD_UNLOCK(sc);
  375 
  376         ic->ic_softc = sc;
  377         ic->ic_name = device_get_nameunit(dev);
  378         ic->ic_phytype = IEEE80211_T_OFDM;      /* not only, but not used */
  379         ic->ic_opmode = IEEE80211_M_STA;
  380 
  381         /* set device capabilities */
  382         ic->ic_caps =
  383                   IEEE80211_C_STA               /* station mode */
  384                 | IEEE80211_C_MONITOR           /* monitor mode */
  385                 | IEEE80211_C_SHPREAMBLE        /* short preamble supported */
  386                 | IEEE80211_C_SHSLOT            /* short slot time supported */
  387                 | IEEE80211_C_BGSCAN            /* capable of bg scanning */
  388                 | IEEE80211_C_WPA               /* 802.11i */
  389                 ;
  390 
  391         zyd_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
  392             ic->ic_channels);
  393 
  394         ieee80211_ifattach(ic);
  395         ic->ic_raw_xmit = zyd_raw_xmit;
  396         ic->ic_scan_start = zyd_scan_start;
  397         ic->ic_scan_end = zyd_scan_end;
  398         ic->ic_getradiocaps = zyd_getradiocaps;
  399         ic->ic_set_channel = zyd_set_channel;
  400         ic->ic_vap_create = zyd_vap_create;
  401         ic->ic_vap_delete = zyd_vap_delete;
  402         ic->ic_update_mcast = zyd_update_mcast;
  403         ic->ic_update_promisc = zyd_update_mcast;
  404         ic->ic_parent = zyd_parent;
  405         ic->ic_transmit = zyd_transmit;
  406 
  407         ieee80211_radiotap_attach(ic,
  408             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
  409                 ZYD_TX_RADIOTAP_PRESENT,
  410             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
  411                 ZYD_RX_RADIOTAP_PRESENT);
  412 
  413         if (bootverbose)
  414                 ieee80211_announce(ic);
  415 
  416         return (0);
  417 
  418 detach:
  419         zyd_detach(dev);
  420         return (ENXIO);                 /* failure */
  421 }
  422 
  423 static void
  424 zyd_drain_mbufq(struct zyd_softc *sc)
  425 {
  426         struct mbuf *m;
  427         struct ieee80211_node *ni;
  428 
  429         ZYD_LOCK_ASSERT(sc, MA_OWNED);
  430         while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
  431                 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
  432                 m->m_pkthdr.rcvif = NULL;
  433                 ieee80211_free_node(ni);
  434                 m_freem(m);
  435         }
  436 }
  437 
  438 static int
  439 zyd_detach(device_t dev)
  440 {
  441         struct zyd_softc *sc = device_get_softc(dev);
  442         struct ieee80211com *ic = &sc->sc_ic;
  443         unsigned x;
  444 
  445         /*
  446          * Prevent further allocations from RX/TX data
  447          * lists and ioctls:
  448          */
  449         ZYD_LOCK(sc);
  450         sc->sc_flags |= ZYD_FLAG_DETACHED;
  451         zyd_drain_mbufq(sc);
  452         STAILQ_INIT(&sc->tx_q);
  453         STAILQ_INIT(&sc->tx_free);
  454         ZYD_UNLOCK(sc);
  455 
  456         /* drain USB transfers */
  457         for (x = 0; x != ZYD_N_TRANSFER; x++)
  458                 usbd_transfer_drain(sc->sc_xfer[x]);
  459 
  460         /* free TX list, if any */
  461         ZYD_LOCK(sc);
  462         zyd_unsetup_tx_list(sc);
  463         ZYD_UNLOCK(sc);
  464 
  465         /* free USB transfers and some data buffers */
  466         usbd_transfer_unsetup(sc->sc_xfer, ZYD_N_TRANSFER);
  467 
  468         if (ic->ic_softc == sc)
  469                 ieee80211_ifdetach(ic);
  470         mtx_destroy(&sc->sc_mtx);
  471 
  472         return (0);
  473 }
  474 
  475 static struct ieee80211vap *
  476 zyd_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
  477     enum ieee80211_opmode opmode, int flags,
  478     const uint8_t bssid[IEEE80211_ADDR_LEN],
  479     const uint8_t mac[IEEE80211_ADDR_LEN])
  480 {
  481         struct zyd_vap *zvp;
  482         struct ieee80211vap *vap;
  483 
  484         if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
  485                 return (NULL);
  486         zvp = malloc(sizeof(struct zyd_vap), M_80211_VAP, M_WAITOK | M_ZERO);
  487         vap = &zvp->vap;
  488 
  489         /* enable s/w bmiss handling for sta mode */
  490         if (ieee80211_vap_setup(ic, vap, name, unit, opmode,
  491             flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) {
  492                 /* out of memory */
  493                 free(zvp, M_80211_VAP);
  494                 return (NULL);
  495         }
  496 
  497         /* override state transition machine */
  498         zvp->newstate = vap->iv_newstate;
  499         vap->iv_newstate = zyd_newstate;
  500 
  501         ieee80211_ratectl_init(vap);
  502         ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
  503 
  504         /* complete setup */
  505         ieee80211_vap_attach(vap, ieee80211_media_change,
  506             ieee80211_media_status, mac);
  507         ic->ic_opmode = opmode;
  508         return (vap);
  509 }
  510 
  511 static void
  512 zyd_vap_delete(struct ieee80211vap *vap)
  513 {
  514         struct zyd_vap *zvp = ZYD_VAP(vap);
  515 
  516         ieee80211_ratectl_deinit(vap);
  517         ieee80211_vap_detach(vap);
  518         free(zvp, M_80211_VAP);
  519 }
  520 
  521 static void
  522 zyd_tx_free(struct zyd_tx_data *data, int txerr)
  523 {
  524         struct zyd_softc *sc = data->sc;
  525 
  526         if (data->m != NULL) {
  527                 ieee80211_tx_complete(data->ni, data->m, txerr);
  528                 data->m = NULL;
  529                 data->ni = NULL;
  530         }
  531         STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
  532         sc->tx_nfree++;
  533 }
  534 
  535 static void
  536 zyd_setup_tx_list(struct zyd_softc *sc)
  537 {
  538         struct zyd_tx_data *data;
  539         int i;
  540 
  541         sc->tx_nfree = 0;
  542         STAILQ_INIT(&sc->tx_q);
  543         STAILQ_INIT(&sc->tx_free);
  544 
  545         for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
  546                 data = &sc->tx_data[i];
  547 
  548                 data->sc = sc;
  549                 STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
  550                 sc->tx_nfree++;
  551         }
  552 }
  553 
  554 static void
  555 zyd_unsetup_tx_list(struct zyd_softc *sc)
  556 {
  557         struct zyd_tx_data *data;
  558         int i;
  559 
  560         /* make sure any subsequent use of the queues will fail */
  561         sc->tx_nfree = 0;
  562         STAILQ_INIT(&sc->tx_q);
  563         STAILQ_INIT(&sc->tx_free);
  564 
  565         /* free up all node references and mbufs */
  566         for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
  567                 data = &sc->tx_data[i];
  568 
  569                 if (data->m != NULL) {
  570                         m_freem(data->m);
  571                         data->m = NULL;
  572                 }
  573                 if (data->ni != NULL) {
  574                         ieee80211_free_node(data->ni);
  575                         data->ni = NULL;
  576                 }
  577         }
  578 }
  579 
  580 static int
  581 zyd_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
  582 {
  583         struct zyd_vap *zvp = ZYD_VAP(vap);
  584         struct ieee80211com *ic = vap->iv_ic;
  585         struct zyd_softc *sc = ic->ic_softc;
  586         int error;
  587 
  588         DPRINTF(sc, ZYD_DEBUG_STATE, "%s: %s -> %s\n", __func__,
  589             ieee80211_state_name[vap->iv_state],
  590             ieee80211_state_name[nstate]);
  591 
  592         IEEE80211_UNLOCK(ic);
  593         ZYD_LOCK(sc);
  594         switch (nstate) {
  595         case IEEE80211_S_AUTH:
  596                 zyd_set_chan(sc, ic->ic_curchan);
  597                 break;
  598         case IEEE80211_S_RUN:
  599                 if (vap->iv_opmode == IEEE80211_M_MONITOR)
  600                         break;
  601 
  602                 /* turn link LED on */
  603                 error = zyd_set_led(sc, ZYD_LED1, 1);
  604                 if (error != 0)
  605                         break;
  606 
  607                 /* make data LED blink upon Tx */
  608                 zyd_write32_m(sc, sc->sc_fwbase + ZYD_FW_LINK_STATUS, 1);
  609 
  610                 IEEE80211_ADDR_COPY(sc->sc_bssid, vap->iv_bss->ni_bssid);
  611                 zyd_set_bssid(sc, sc->sc_bssid);
  612                 break;
  613         default:
  614                 break;
  615         }
  616 fail:
  617         ZYD_UNLOCK(sc);
  618         IEEE80211_LOCK(ic);
  619         return (zvp->newstate(vap, nstate, arg));
  620 }
  621 
  622 /*
  623  * Callback handler for interrupt transfer
  624  */
  625 static void
  626 zyd_intr_read_callback(struct usb_xfer *xfer, usb_error_t error)
  627 {
  628         struct zyd_softc *sc = usbd_xfer_softc(xfer);
  629         struct ieee80211com *ic = &sc->sc_ic;
  630         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
  631         struct ieee80211_node *ni;
  632         struct zyd_cmd *cmd = &sc->sc_ibuf;
  633         struct usb_page_cache *pc;
  634         int datalen;
  635         int actlen;
  636 
  637         usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL);
  638 
  639         switch (USB_GET_STATE(xfer)) {
  640         case USB_ST_TRANSFERRED:
  641                 pc = usbd_xfer_get_frame(xfer, 0);
  642                 usbd_copy_out(pc, 0, cmd, sizeof(*cmd));
  643 
  644                 switch (le16toh(cmd->code)) {
  645                 case ZYD_NOTIF_RETRYSTATUS:
  646                 {
  647                         struct zyd_notif_retry *retry =
  648                             (struct zyd_notif_retry *)cmd->data;
  649                         uint16_t count = le16toh(retry->count);
  650 
  651                         DPRINTF(sc, ZYD_DEBUG_TX_PROC,
  652                             "retry intr: rate=0x%x addr=%s count=%d (0x%x)\n",
  653                             le16toh(retry->rate), ether_sprintf(retry->macaddr),
  654                             count & 0xff, count);
  655 
  656                         /*
  657                          * Find the node to which the packet was sent and
  658                          * update its retry statistics.  In BSS mode, this node
  659                          * is the AP we're associated to so no lookup is
  660                          * actually needed.
  661                          */
  662                         ni = ieee80211_find_txnode(vap, retry->macaddr);
  663                         if (ni != NULL) {
  664                                 struct ieee80211_ratectl_tx_status *txs =
  665                                     &sc->sc_txs;
  666                                 int retrycnt = count & 0xff;
  667 
  668                                 txs->flags =
  669                                     IEEE80211_RATECTL_STATUS_LONG_RETRY;
  670                                 txs->long_retries = retrycnt;
  671                                 if (count & 0x100) {
  672                                         txs->status =
  673                                             IEEE80211_RATECTL_TX_FAIL_LONG;
  674                                 } else {
  675                                         txs->status =
  676                                             IEEE80211_RATECTL_TX_SUCCESS;
  677                                 }
  678 
  679                                 ieee80211_ratectl_tx_complete(ni, txs);
  680                                 ieee80211_free_node(ni);
  681                         }
  682                         if (count & 0x100)
  683                                 /* too many retries */
  684                                 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS,
  685                                     1);
  686                         break;
  687                 }
  688                 case ZYD_NOTIF_IORD:
  689                 {
  690                         struct zyd_rq *rqp;
  691 
  692                         if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
  693                                 break;  /* HMAC interrupt */
  694 
  695                         datalen = actlen - sizeof(cmd->code);
  696                         datalen -= 2;   /* XXX: padding? */
  697 
  698                         STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) {
  699                                 int i;
  700                                 int count;
  701 
  702                                 if (rqp->olen != datalen)
  703                                         continue;
  704                                 count = rqp->olen / sizeof(struct zyd_pair);
  705                                 for (i = 0; i < count; i++) {
  706                                         if (*(((const uint16_t *)rqp->idata) + i) !=
  707                                             (((struct zyd_pair *)cmd->data) + i)->reg)
  708                                                 break;
  709                                 }
  710                                 if (i != count)
  711                                         continue;
  712                                 /* copy answer into caller-supplied buffer */
  713                                 memcpy(rqp->odata, cmd->data, rqp->olen);
  714                                 DPRINTF(sc, ZYD_DEBUG_CMD,
  715                                     "command %p complete, data = %*D \n",
  716                                     rqp, rqp->olen, (char *)rqp->odata, ":");
  717                                 wakeup(rqp);    /* wakeup caller */
  718                                 break;
  719                         }
  720                         if (rqp == NULL) {
  721                                 device_printf(sc->sc_dev,
  722                                     "unexpected IORD notification %*D\n",
  723                                     datalen, cmd->data, ":");
  724                         }
  725                         break;
  726                 }
  727                 default:
  728                         device_printf(sc->sc_dev, "unknown notification %x\n",
  729                             le16toh(cmd->code));
  730                 }
  731 
  732                 /* FALLTHROUGH */
  733         case USB_ST_SETUP:
  734 tr_setup:
  735                 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
  736                 usbd_transfer_submit(xfer);
  737                 break;
  738 
  739         default:                        /* Error */
  740                 DPRINTF(sc, ZYD_DEBUG_CMD, "error = %s\n",
  741                     usbd_errstr(error));
  742 
  743                 if (error != USB_ERR_CANCELLED) {
  744                         /* try to clear stall first */
  745                         usbd_xfer_set_stall(xfer);
  746                         goto tr_setup;
  747                 }
  748                 break;
  749         }
  750 }
  751 
  752 static void
  753 zyd_intr_write_callback(struct usb_xfer *xfer, usb_error_t error)
  754 {
  755         struct zyd_softc *sc = usbd_xfer_softc(xfer);
  756         struct zyd_rq *rqp, *cmd;
  757         struct usb_page_cache *pc;
  758 
  759         switch (USB_GET_STATE(xfer)) {
  760         case USB_ST_TRANSFERRED:
  761                 cmd = usbd_xfer_get_priv(xfer);
  762                 DPRINTF(sc, ZYD_DEBUG_CMD, "command %p transferred\n", cmd);
  763                 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) {
  764                         /* Ensure the cached rq pointer is still valid */
  765                         if (rqp == cmd &&
  766                             (rqp->flags & ZYD_CMD_FLAG_READ) == 0)
  767                                 wakeup(rqp);    /* wakeup caller */
  768                 }
  769 
  770                 /* FALLTHROUGH */
  771         case USB_ST_SETUP:
  772 tr_setup:
  773                 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) {
  774                         if (rqp->flags & ZYD_CMD_FLAG_SENT)
  775                                 continue;
  776 
  777                         pc = usbd_xfer_get_frame(xfer, 0);
  778                         usbd_copy_in(pc, 0, rqp->cmd, rqp->ilen);
  779 
  780                         usbd_xfer_set_frame_len(xfer, 0, rqp->ilen);
  781                         usbd_xfer_set_priv(xfer, rqp);
  782                         rqp->flags |= ZYD_CMD_FLAG_SENT;
  783                         usbd_transfer_submit(xfer);
  784                         break;
  785                 }
  786                 break;
  787 
  788         default:                        /* Error */
  789                 DPRINTF(sc, ZYD_DEBUG_ANY, "error = %s\n",
  790                     usbd_errstr(error));
  791 
  792                 if (error != USB_ERR_CANCELLED) {
  793                         /* try to clear stall first */
  794                         usbd_xfer_set_stall(xfer);
  795                         goto tr_setup;
  796                 }
  797                 break;
  798         }
  799 }
  800 
  801 static int
  802 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
  803     void *odata, int olen, int flags)
  804 {
  805         struct zyd_cmd cmd;
  806         struct zyd_rq rq;
  807         int error;
  808 
  809         if (ilen > (int)sizeof(cmd.data))
  810                 return (EINVAL);
  811 
  812         cmd.code = htole16(code);
  813         memcpy(cmd.data, idata, ilen);
  814         DPRINTF(sc, ZYD_DEBUG_CMD, "sending cmd %p = %*D\n",
  815             &rq, ilen, idata, ":");
  816 
  817         rq.cmd = &cmd;
  818         rq.idata = idata;
  819         rq.odata = odata;
  820         rq.ilen = sizeof(uint16_t) + ilen;
  821         rq.olen = olen;
  822         rq.flags = flags;
  823         STAILQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
  824         usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]);
  825         usbd_transfer_start(sc->sc_xfer[ZYD_INTR_WR]);
  826 
  827         /* wait at most one second for command reply */
  828         error = mtx_sleep(&rq, &sc->sc_mtx, 0 , "zydcmd", hz);
  829         if (error)
  830                 device_printf(sc->sc_dev, "command timeout\n");
  831         STAILQ_REMOVE(&sc->sc_rqh, &rq, zyd_rq, rq);
  832         DPRINTF(sc, ZYD_DEBUG_CMD, "finsihed cmd %p, error = %d \n",
  833             &rq, error);
  834 
  835         return (error);
  836 }
  837 
  838 static int
  839 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
  840 {
  841         struct zyd_pair tmp;
  842         int error;
  843 
  844         reg = htole16(reg);
  845         error = zyd_cmd(sc, ZYD_CMD_IORD, &reg, sizeof(reg), &tmp, sizeof(tmp),
  846             ZYD_CMD_FLAG_READ);
  847         if (error == 0)
  848                 *val = le16toh(tmp.val);
  849         return (error);
  850 }
  851 
  852 static int
  853 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
  854 {
  855         struct zyd_pair tmp[2];
  856         uint16_t regs[2];
  857         int error;
  858 
  859         regs[0] = htole16(ZYD_REG32_HI(reg));
  860         regs[1] = htole16(ZYD_REG32_LO(reg));
  861         error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp),
  862             ZYD_CMD_FLAG_READ);
  863         if (error == 0)
  864                 *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
  865         return (error);
  866 }
  867 
  868 static int
  869 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
  870 {
  871         struct zyd_pair pair;
  872 
  873         pair.reg = htole16(reg);
  874         pair.val = htole16(val);
  875 
  876         return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0);
  877 }
  878 
  879 static int
  880 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
  881 {
  882         struct zyd_pair pair[2];
  883 
  884         pair[0].reg = htole16(ZYD_REG32_HI(reg));
  885         pair[0].val = htole16(val >> 16);
  886         pair[1].reg = htole16(ZYD_REG32_LO(reg));
  887         pair[1].val = htole16(val & 0xffff);
  888 
  889         return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0);
  890 }
  891 
  892 static int
  893 zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
  894 {
  895         struct zyd_rf *rf = &sc->sc_rf;
  896         struct zyd_rfwrite_cmd req;
  897         uint16_t cr203;
  898         int error, i;
  899 
  900         zyd_read16_m(sc, ZYD_CR203, &cr203);
  901         cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
  902 
  903         req.code  = htole16(2);
  904         req.width = htole16(rf->width);
  905         for (i = 0; i < rf->width; i++) {
  906                 req.bit[i] = htole16(cr203);
  907                 if (val & (1 << (rf->width - 1 - i)))
  908                         req.bit[i] |= htole16(ZYD_RF_DATA);
  909         }
  910         error = zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
  911 fail:
  912         return (error);
  913 }
  914 
  915 static int
  916 zyd_rfwrite_cr(struct zyd_softc *sc, uint32_t val)
  917 {
  918         int error;
  919 
  920         zyd_write16_m(sc, ZYD_CR244, (val >> 16) & 0xff);
  921         zyd_write16_m(sc, ZYD_CR243, (val >>  8) & 0xff);
  922         zyd_write16_m(sc, ZYD_CR242, (val >>  0) & 0xff);
  923 fail:
  924         return (error);
  925 }
  926 
  927 static int
  928 zyd_lock_phy(struct zyd_softc *sc)
  929 {
  930         int error;
  931         uint32_t tmp;
  932 
  933         zyd_read32_m(sc, ZYD_MAC_MISC, &tmp);
  934         tmp &= ~ZYD_UNLOCK_PHY_REGS;
  935         zyd_write32_m(sc, ZYD_MAC_MISC, tmp);
  936 fail:
  937         return (error);
  938 }
  939 
  940 static int
  941 zyd_unlock_phy(struct zyd_softc *sc)
  942 {
  943         int error;
  944         uint32_t tmp;
  945 
  946         zyd_read32_m(sc, ZYD_MAC_MISC, &tmp);
  947         tmp |= ZYD_UNLOCK_PHY_REGS;
  948         zyd_write32_m(sc, ZYD_MAC_MISC, tmp);
  949 fail:
  950         return (error);
  951 }
  952 
  953 /*
  954  * RFMD RF methods.
  955  */
  956 static int
  957 zyd_rfmd_init(struct zyd_rf *rf)
  958 {
  959         struct zyd_softc *sc = rf->rf_sc;
  960         static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
  961         static const uint32_t rfini[] = ZYD_RFMD_RF;
  962         int i, error;
  963 
  964         /* init RF-dependent PHY registers */
  965         for (i = 0; i < nitems(phyini); i++) {
  966                 zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
  967         }
  968 
  969         /* init RFMD radio */
  970         for (i = 0; i < nitems(rfini); i++) {
  971                 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
  972                         return (error);
  973         }
  974 fail:
  975         return (error);
  976 }
  977 
  978 static int
  979 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
  980 {
  981         int error;
  982         struct zyd_softc *sc = rf->rf_sc;
  983 
  984         zyd_write16_m(sc, ZYD_CR10, on ? 0x89 : 0x15);
  985         zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x81);
  986 fail:
  987         return (error);
  988 }
  989 
  990 static int
  991 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
  992 {
  993         int error;
  994         struct zyd_softc *sc = rf->rf_sc;
  995         static const struct {
  996                 uint32_t        r1, r2;
  997         } rfprog[] = ZYD_RFMD_CHANTABLE;
  998 
  999         error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
 1000         if (error != 0)
 1001                 goto fail;
 1002         error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
 1003         if (error != 0)
 1004                 goto fail;
 1005 
 1006 fail:
 1007         return (error);
 1008 }
 1009 
 1010 /*
 1011  * AL2230 RF methods.
 1012  */
 1013 static int
 1014 zyd_al2230_init(struct zyd_rf *rf)
 1015 {
 1016         struct zyd_softc *sc = rf->rf_sc;
 1017         static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
 1018         static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
 1019         static const struct zyd_phy_pair phypll[] = {
 1020                 { ZYD_CR251, 0x2f }, { ZYD_CR251, 0x3f },
 1021                 { ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 }
 1022         };
 1023         static const uint32_t rfini1[] = ZYD_AL2230_RF_PART1;
 1024         static const uint32_t rfini2[] = ZYD_AL2230_RF_PART2;
 1025         static const uint32_t rfini3[] = ZYD_AL2230_RF_PART3;
 1026         int i, error;
 1027 
 1028         /* init RF-dependent PHY registers */
 1029         for (i = 0; i < nitems(phyini); i++)
 1030                 zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
 1031 
 1032         if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) {
 1033                 for (i = 0; i < nitems(phy2230s); i++)
 1034                         zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val);
 1035         }
 1036 
 1037         /* init AL2230 radio */
 1038         for (i = 0; i < nitems(rfini1); i++) {
 1039                 error = zyd_rfwrite(sc, rfini1[i]);
 1040                 if (error != 0)
 1041                         goto fail;
 1042         }
 1043 
 1044         if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0)
 1045                 error = zyd_rfwrite(sc, 0x000824);
 1046         else
 1047                 error = zyd_rfwrite(sc, 0x0005a4);
 1048         if (error != 0)
 1049                 goto fail;
 1050 
 1051         for (i = 0; i < nitems(rfini2); i++) {
 1052                 error = zyd_rfwrite(sc, rfini2[i]);
 1053                 if (error != 0)
 1054                         goto fail;
 1055         }
 1056 
 1057         for (i = 0; i < nitems(phypll); i++)
 1058                 zyd_write16_m(sc, phypll[i].reg, phypll[i].val);
 1059 
 1060         for (i = 0; i < nitems(rfini3); i++) {
 1061                 error = zyd_rfwrite(sc, rfini3[i]);
 1062                 if (error != 0)
 1063                         goto fail;
 1064         }
 1065 fail:
 1066         return (error);
 1067 }
 1068 
 1069 static int
 1070 zyd_al2230_fini(struct zyd_rf *rf)
 1071 {
 1072         int error, i;
 1073         struct zyd_softc *sc = rf->rf_sc;
 1074         static const struct zyd_phy_pair phy[] = ZYD_AL2230_PHY_FINI_PART1;
 1075 
 1076         for (i = 0; i < nitems(phy); i++)
 1077                 zyd_write16_m(sc, phy[i].reg, phy[i].val);
 1078 
 1079         if (sc->sc_newphy != 0)
 1080                 zyd_write16_m(sc, ZYD_CR9, 0xe1);
 1081 
 1082         zyd_write16_m(sc, ZYD_CR203, 0x6);
 1083 fail:
 1084         return (error);
 1085 }
 1086 
 1087 static int
 1088 zyd_al2230_init_b(struct zyd_rf *rf)
 1089 {
 1090         struct zyd_softc *sc = rf->rf_sc;
 1091         static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1;
 1092         static const struct zyd_phy_pair phy2[] = ZYD_AL2230_PHY_PART2;
 1093         static const struct zyd_phy_pair phy3[] = ZYD_AL2230_PHY_PART3;
 1094         static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
 1095         static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
 1096         static const uint32_t rfini_part1[] = ZYD_AL2230_RF_B_PART1;
 1097         static const uint32_t rfini_part2[] = ZYD_AL2230_RF_B_PART2;
 1098         static const uint32_t rfini_part3[] = ZYD_AL2230_RF_B_PART3;
 1099         static const uint32_t zyd_al2230_chtable[][3] = ZYD_AL2230_CHANTABLE;
 1100         int i, error;
 1101 
 1102         for (i = 0; i < nitems(phy1); i++)
 1103                 zyd_write16_m(sc, phy1[i].reg, phy1[i].val);
 1104 
 1105         /* init RF-dependent PHY registers */
 1106         for (i = 0; i < nitems(phyini); i++)
 1107                 zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
 1108 
 1109         if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) {
 1110                 for (i = 0; i < nitems(phy2230s); i++)
 1111                         zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val);
 1112         }
 1113 
 1114         for (i = 0; i < 3; i++) {
 1115                 error = zyd_rfwrite_cr(sc, zyd_al2230_chtable[0][i]);
 1116                 if (error != 0)
 1117                         return (error);
 1118         }
 1119 
 1120         for (i = 0; i < nitems(rfini_part1); i++) {
 1121                 error = zyd_rfwrite_cr(sc, rfini_part1[i]);
 1122                 if (error != 0)
 1123                         return (error);
 1124         }
 1125 
 1126         if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0)
 1127                 error = zyd_rfwrite(sc, 0x241000);
 1128         else
 1129                 error = zyd_rfwrite(sc, 0x25a000);
 1130         if (error != 0)
 1131                 goto fail;
 1132 
 1133         for (i = 0; i < nitems(rfini_part2); i++) {
 1134                 error = zyd_rfwrite_cr(sc, rfini_part2[i]);
 1135                 if (error != 0)
 1136                         return (error);
 1137         }
 1138 
 1139         for (i = 0; i < nitems(phy2); i++)
 1140                 zyd_write16_m(sc, phy2[i].reg, phy2[i].val);
 1141 
 1142         for (i = 0; i < nitems(rfini_part3); i++) {
 1143                 error = zyd_rfwrite_cr(sc, rfini_part3[i]);
 1144                 if (error != 0)
 1145                         return (error);
 1146         }
 1147 
 1148         for (i = 0; i < nitems(phy3); i++)
 1149                 zyd_write16_m(sc, phy3[i].reg, phy3[i].val);
 1150 
 1151         error = zyd_al2230_fini(rf);
 1152 fail:
 1153         return (error);
 1154 }
 1155 
 1156 static int
 1157 zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
 1158 {
 1159         struct zyd_softc *sc = rf->rf_sc;
 1160         int error, on251 = (sc->sc_macrev == ZYD_ZD1211) ? 0x3f : 0x7f;
 1161 
 1162         zyd_write16_m(sc, ZYD_CR11,  on ? 0x00 : 0x04);
 1163         zyd_write16_m(sc, ZYD_CR251, on ? on251 : 0x2f);
 1164 fail:
 1165         return (error);
 1166 }
 1167 
 1168 static int
 1169 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
 1170 {
 1171         int error, i;
 1172         struct zyd_softc *sc = rf->rf_sc;
 1173         static const struct zyd_phy_pair phy1[] = {
 1174                 { ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 },
 1175         };
 1176         static const struct {
 1177                 uint32_t        r1, r2, r3;
 1178         } rfprog[] = ZYD_AL2230_CHANTABLE;
 1179 
 1180         error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
 1181         if (error != 0)
 1182                 goto fail;
 1183         error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
 1184         if (error != 0)
 1185                 goto fail;
 1186         error = zyd_rfwrite(sc, rfprog[chan - 1].r3);
 1187         if (error != 0)
 1188                 goto fail;
 1189 
 1190         for (i = 0; i < nitems(phy1); i++)
 1191                 zyd_write16_m(sc, phy1[i].reg, phy1[i].val);
 1192 fail:
 1193         return (error);
 1194 }
 1195 
 1196 static int
 1197 zyd_al2230_set_channel_b(struct zyd_rf *rf, uint8_t chan)
 1198 {
 1199         int error, i;
 1200         struct zyd_softc *sc = rf->rf_sc;
 1201         static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1;
 1202         static const struct {
 1203                 uint32_t        r1, r2, r3;
 1204         } rfprog[] = ZYD_AL2230_CHANTABLE_B;
 1205 
 1206         for (i = 0; i < nitems(phy1); i++)
 1207                 zyd_write16_m(sc, phy1[i].reg, phy1[i].val);
 1208 
 1209         error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r1);
 1210         if (error != 0)
 1211                 goto fail;
 1212         error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r2);
 1213         if (error != 0)
 1214                 goto fail;
 1215         error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r3);
 1216         if (error != 0)
 1217                 goto fail;
 1218         error = zyd_al2230_fini(rf);
 1219 fail:
 1220         return (error);
 1221 }
 1222 
 1223 #define ZYD_AL2230_PHY_BANDEDGE6                                        \
 1224 {                                                                       \
 1225         { ZYD_CR128, 0x14 }, { ZYD_CR129, 0x12 }, { ZYD_CR130, 0x10 },  \
 1226         { ZYD_CR47,  0x1e }                                             \
 1227 }
 1228 
 1229 static int
 1230 zyd_al2230_bandedge6(struct zyd_rf *rf, struct ieee80211_channel *c)
 1231 {
 1232         int error = 0, i;
 1233         struct zyd_softc *sc = rf->rf_sc;
 1234         struct ieee80211com *ic = &sc->sc_ic;
 1235         struct zyd_phy_pair r[] = ZYD_AL2230_PHY_BANDEDGE6;
 1236         int chan = ieee80211_chan2ieee(ic, c);
 1237 
 1238         if (chan == 1 || chan == 11)
 1239                 r[0].val = 0x12;
 1240 
 1241         for (i = 0; i < nitems(r); i++)
 1242                 zyd_write16_m(sc, r[i].reg, r[i].val);
 1243 fail:
 1244         return (error);
 1245 }
 1246 
 1247 /*
 1248  * AL7230B RF methods.
 1249  */
 1250 static int
 1251 zyd_al7230B_init(struct zyd_rf *rf)
 1252 {
 1253         struct zyd_softc *sc = rf->rf_sc;
 1254         static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
 1255         static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
 1256         static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
 1257         static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
 1258         static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
 1259         int i, error;
 1260 
 1261         /* for AL7230B, PHY and RF need to be initialized in "phases" */
 1262 
 1263         /* init RF-dependent PHY registers, part one */
 1264         for (i = 0; i < nitems(phyini_1); i++)
 1265                 zyd_write16_m(sc, phyini_1[i].reg, phyini_1[i].val);
 1266 
 1267         /* init AL7230B radio, part one */
 1268         for (i = 0; i < nitems(rfini_1); i++) {
 1269                 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
 1270                         return (error);
 1271         }
 1272         /* init RF-dependent PHY registers, part two */
 1273         for (i = 0; i < nitems(phyini_2); i++)
 1274                 zyd_write16_m(sc, phyini_2[i].reg, phyini_2[i].val);
 1275 
 1276         /* init AL7230B radio, part two */
 1277         for (i = 0; i < nitems(rfini_2); i++) {
 1278                 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
 1279                         return (error);
 1280         }
 1281         /* init RF-dependent PHY registers, part three */
 1282         for (i = 0; i < nitems(phyini_3); i++)
 1283                 zyd_write16_m(sc, phyini_3[i].reg, phyini_3[i].val);
 1284 fail:
 1285         return (error);
 1286 }
 1287 
 1288 static int
 1289 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
 1290 {
 1291         int error;
 1292         struct zyd_softc *sc = rf->rf_sc;
 1293 
 1294         zyd_write16_m(sc, ZYD_CR11,  on ? 0x00 : 0x04);
 1295         zyd_write16_m(sc, ZYD_CR251, on ? 0x3f : 0x2f);
 1296 fail:
 1297         return (error);
 1298 }
 1299 
 1300 static int
 1301 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
 1302 {
 1303         struct zyd_softc *sc = rf->rf_sc;
 1304         static const struct {
 1305                 uint32_t        r1, r2;
 1306         } rfprog[] = ZYD_AL7230B_CHANTABLE;
 1307         static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
 1308         int i, error;
 1309 
 1310         zyd_write16_m(sc, ZYD_CR240, 0x57);
 1311         zyd_write16_m(sc, ZYD_CR251, 0x2f);
 1312 
 1313         for (i = 0; i < nitems(rfsc); i++) {
 1314                 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
 1315                         return (error);
 1316         }
 1317 
 1318         zyd_write16_m(sc, ZYD_CR128, 0x14);
 1319         zyd_write16_m(sc, ZYD_CR129, 0x12);
 1320         zyd_write16_m(sc, ZYD_CR130, 0x10);
 1321         zyd_write16_m(sc, ZYD_CR38,  0x38);
 1322         zyd_write16_m(sc, ZYD_CR136, 0xdf);
 1323 
 1324         error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
 1325         if (error != 0)
 1326                 goto fail;
 1327         error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
 1328         if (error != 0)
 1329                 goto fail;
 1330         error = zyd_rfwrite(sc, 0x3c9000);
 1331         if (error != 0)
 1332                 goto fail;
 1333 
 1334         zyd_write16_m(sc, ZYD_CR251, 0x3f);
 1335         zyd_write16_m(sc, ZYD_CR203, 0x06);
 1336         zyd_write16_m(sc, ZYD_CR240, 0x08);
 1337 fail:
 1338         return (error);
 1339 }
 1340 
 1341 /*
 1342  * AL2210 RF methods.
 1343  */
 1344 static int
 1345 zyd_al2210_init(struct zyd_rf *rf)
 1346 {
 1347         struct zyd_softc *sc = rf->rf_sc;
 1348         static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
 1349         static const uint32_t rfini[] = ZYD_AL2210_RF;
 1350         uint32_t tmp;
 1351         int i, error;
 1352 
 1353         zyd_write32_m(sc, ZYD_CR18, 2);
 1354 
 1355         /* init RF-dependent PHY registers */
 1356         for (i = 0; i < nitems(phyini); i++)
 1357                 zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
 1358 
 1359         /* init AL2210 radio */
 1360         for (i = 0; i < nitems(rfini); i++) {
 1361                 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
 1362                         return (error);
 1363         }
 1364         zyd_write16_m(sc, ZYD_CR47, 0x1e);
 1365         zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp);
 1366         zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1);
 1367         zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1);
 1368         zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05);
 1369         zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00);
 1370         zyd_write16_m(sc, ZYD_CR47, 0x1e);
 1371         zyd_write32_m(sc, ZYD_CR18, 3);
 1372 fail:
 1373         return (error);
 1374 }
 1375 
 1376 static int
 1377 zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
 1378 {
 1379         /* vendor driver does nothing for this RF chip */
 1380 
 1381         return (0);
 1382 }
 1383 
 1384 static int
 1385 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
 1386 {
 1387         int error;
 1388         struct zyd_softc *sc = rf->rf_sc;
 1389         static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
 1390         uint32_t tmp;
 1391 
 1392         zyd_write32_m(sc, ZYD_CR18, 2);
 1393         zyd_write16_m(sc, ZYD_CR47, 0x1e);
 1394         zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp);
 1395         zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1);
 1396         zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1);
 1397         zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05);
 1398         zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00);
 1399         zyd_write16_m(sc, ZYD_CR47, 0x1e);
 1400 
 1401         /* actually set the channel */
 1402         error = zyd_rfwrite(sc, rfprog[chan - 1]);
 1403         if (error != 0)
 1404                 goto fail;
 1405 
 1406         zyd_write32_m(sc, ZYD_CR18, 3);
 1407 fail:
 1408         return (error);
 1409 }
 1410 
 1411 /*
 1412  * GCT RF methods.
 1413  */
 1414 static int
 1415 zyd_gct_init(struct zyd_rf *rf)
 1416 {
 1417 #define ZYD_GCT_INTR_REG        0x85c1
 1418         struct zyd_softc *sc = rf->rf_sc;
 1419         static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
 1420         static const uint32_t rfini[] = ZYD_GCT_RF;
 1421         static const uint16_t vco[11][7] = ZYD_GCT_VCO;
 1422         int i, idx = -1, error;
 1423         uint16_t data;
 1424 
 1425         /* init RF-dependent PHY registers */
 1426         for (i = 0; i < nitems(phyini); i++)
 1427                 zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
 1428 
 1429         /* init cgt radio */
 1430         for (i = 0; i < nitems(rfini); i++) {
 1431                 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
 1432                         return (error);
 1433         }
 1434 
 1435         error = zyd_gct_mode(rf);
 1436         if (error != 0)
 1437                 return (error);
 1438 
 1439         for (i = 0; i < (int)(nitems(vco) - 1); i++) {
 1440                 error = zyd_gct_set_channel_synth(rf, 1, 0);
 1441                 if (error != 0)
 1442                         goto fail;
 1443                 error = zyd_gct_write(rf, vco[i][0]);
 1444                 if (error != 0)
 1445                         goto fail;
 1446                 zyd_write16_m(sc, ZYD_GCT_INTR_REG, 0xf);
 1447                 zyd_read16_m(sc, ZYD_GCT_INTR_REG, &data);
 1448                 if ((data & 0xf) == 0) {
 1449                         idx = i;
 1450                         break;
 1451                 }
 1452         }
 1453         if (idx == -1) {
 1454                 error = zyd_gct_set_channel_synth(rf, 1, 1);
 1455                 if (error != 0)
 1456                         goto fail;
 1457                 error = zyd_gct_write(rf, 0x6662);
 1458                 if (error != 0)
 1459                         goto fail;
 1460         }
 1461 
 1462         rf->idx = idx;
 1463         zyd_write16_m(sc, ZYD_CR203, 0x6);
 1464 fail:
 1465         return (error);
 1466 #undef ZYD_GCT_INTR_REG
 1467 }
 1468 
 1469 static int
 1470 zyd_gct_mode(struct zyd_rf *rf)
 1471 {
 1472         struct zyd_softc *sc = rf->rf_sc;
 1473         static const uint32_t mode[] = {
 1474                 0x25f98, 0x25f9a, 0x25f94, 0x27fd4
 1475         };
 1476         int i, error;
 1477 
 1478         for (i = 0; i < nitems(mode); i++) {
 1479                 if ((error = zyd_rfwrite(sc, mode[i])) != 0)
 1480                         break;
 1481         }
 1482         return (error);
 1483 }
 1484 
 1485 static int
 1486 zyd_gct_set_channel_synth(struct zyd_rf *rf, int chan, int acal)
 1487 {
 1488         int error, idx = chan - 1;
 1489         struct zyd_softc *sc = rf->rf_sc;
 1490         static uint32_t acal_synth[] = ZYD_GCT_CHANNEL_ACAL;
 1491         static uint32_t std_synth[] = ZYD_GCT_CHANNEL_STD;
 1492         static uint32_t div_synth[] = ZYD_GCT_CHANNEL_DIV;
 1493 
 1494         error = zyd_rfwrite(sc,
 1495             (acal == 1) ? acal_synth[idx] : std_synth[idx]);
 1496         if (error != 0)
 1497                 return (error);
 1498         return zyd_rfwrite(sc, div_synth[idx]);
 1499 }
 1500 
 1501 static int
 1502 zyd_gct_write(struct zyd_rf *rf, uint16_t value)
 1503 {
 1504         struct zyd_softc *sc = rf->rf_sc;
 1505 
 1506         return zyd_rfwrite(sc, 0x300000 | 0x40000 | value);
 1507 }
 1508 
 1509 static int
 1510 zyd_gct_switch_radio(struct zyd_rf *rf, int on)
 1511 {
 1512         int error;
 1513         struct zyd_softc *sc = rf->rf_sc;
 1514 
 1515         error = zyd_rfwrite(sc, on ? 0x25f94 : 0x25f90);
 1516         if (error != 0)
 1517                 return (error);
 1518 
 1519         zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04);
 1520         zyd_write16_m(sc, ZYD_CR251,
 1521             on ? ((sc->sc_macrev == ZYD_ZD1211B) ? 0x7f : 0x3f) : 0x2f);
 1522 fail:
 1523         return (error);
 1524 }
 1525 
 1526 static int
 1527 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
 1528 {
 1529         int error, i;
 1530         struct zyd_softc *sc = rf->rf_sc;
 1531         static const struct zyd_phy_pair cmd[] = {
 1532                 { ZYD_CR80, 0x30 }, { ZYD_CR81, 0x30 }, { ZYD_CR79, 0x58 },
 1533                 { ZYD_CR12, 0xf0 }, { ZYD_CR77, 0x1b }, { ZYD_CR78, 0x58 },
 1534         };
 1535         static const uint16_t vco[11][7] = ZYD_GCT_VCO;
 1536 
 1537         error = zyd_gct_set_channel_synth(rf, chan, 0);
 1538         if (error != 0)
 1539                 goto fail;
 1540         error = zyd_gct_write(rf, (rf->idx == -1) ? 0x6662 :
 1541             vco[rf->idx][((chan - 1) / 2)]);
 1542         if (error != 0)
 1543                 goto fail;
 1544         error = zyd_gct_mode(rf);
 1545         if (error != 0)
 1546                 return (error);
 1547         for (i = 0; i < nitems(cmd); i++)
 1548                 zyd_write16_m(sc, cmd[i].reg, cmd[i].val);
 1549         error = zyd_gct_txgain(rf, chan);
 1550         if (error != 0)
 1551                 return (error);
 1552         zyd_write16_m(sc, ZYD_CR203, 0x6);
 1553 fail:
 1554         return (error);
 1555 }
 1556 
 1557 static int
 1558 zyd_gct_txgain(struct zyd_rf *rf, uint8_t chan)
 1559 {
 1560         struct zyd_softc *sc = rf->rf_sc;
 1561         static uint32_t txgain[] = ZYD_GCT_TXGAIN;
 1562         uint8_t idx = sc->sc_pwrint[chan - 1];
 1563 
 1564         if (idx >= nitems(txgain)) {
 1565                 device_printf(sc->sc_dev, "could not set TX gain (%d %#x)\n",
 1566                     chan, idx);
 1567                 return 0;
 1568         }
 1569 
 1570         return zyd_rfwrite(sc, 0x700000 | txgain[idx]);
 1571 }
 1572 
 1573 /*
 1574  * Maxim2 RF methods.
 1575  */
 1576 static int
 1577 zyd_maxim2_init(struct zyd_rf *rf)
 1578 {
 1579         struct zyd_softc *sc = rf->rf_sc;
 1580         static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
 1581         static const uint32_t rfini[] = ZYD_MAXIM2_RF;
 1582         uint16_t tmp;
 1583         int i, error;
 1584 
 1585         /* init RF-dependent PHY registers */
 1586         for (i = 0; i < nitems(phyini); i++)
 1587                 zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
 1588 
 1589         zyd_read16_m(sc, ZYD_CR203, &tmp);
 1590         zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4));
 1591 
 1592         /* init maxim2 radio */
 1593         for (i = 0; i < nitems(rfini); i++) {
 1594                 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
 1595                         return (error);
 1596         }
 1597         zyd_read16_m(sc, ZYD_CR203, &tmp);
 1598         zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4));
 1599 fail:
 1600         return (error);
 1601 }
 1602 
 1603 static int
 1604 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
 1605 {
 1606 
 1607         /* vendor driver does nothing for this RF chip */
 1608         return (0);
 1609 }
 1610 
 1611 static int
 1612 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
 1613 {
 1614         struct zyd_softc *sc = rf->rf_sc;
 1615         static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
 1616         static const uint32_t rfini[] = ZYD_MAXIM2_RF;
 1617         static const struct {
 1618                 uint32_t        r1, r2;
 1619         } rfprog[] = ZYD_MAXIM2_CHANTABLE;
 1620         uint16_t tmp;
 1621         int i, error;
 1622 
 1623         /*
 1624          * Do the same as we do when initializing it, except for the channel
 1625          * values coming from the two channel tables.
 1626          */
 1627 
 1628         /* init RF-dependent PHY registers */
 1629         for (i = 0; i < nitems(phyini); i++)
 1630                 zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
 1631 
 1632         zyd_read16_m(sc, ZYD_CR203, &tmp);
 1633         zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4));
 1634 
 1635         /* first two values taken from the chantables */
 1636         error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
 1637         if (error != 0)
 1638                 goto fail;
 1639         error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
 1640         if (error != 0)
 1641                 goto fail;
 1642 
 1643         /* init maxim2 radio - skipping the two first values */
 1644         for (i = 2; i < nitems(rfini); i++) {
 1645                 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
 1646                         return (error);
 1647         }
 1648         zyd_read16_m(sc, ZYD_CR203, &tmp);
 1649         zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4));
 1650 fail:
 1651         return (error);
 1652 }
 1653 
 1654 static int
 1655 zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
 1656 {
 1657         struct zyd_rf *rf = &sc->sc_rf;
 1658 
 1659         rf->rf_sc = sc;
 1660         rf->update_pwr = 1;
 1661 
 1662         switch (type) {
 1663         case ZYD_RF_RFMD:
 1664                 rf->init         = zyd_rfmd_init;
 1665                 rf->switch_radio = zyd_rfmd_switch_radio;
 1666                 rf->set_channel  = zyd_rfmd_set_channel;
 1667                 rf->width        = 24;  /* 24-bit RF values */
 1668                 break;
 1669         case ZYD_RF_AL2230:
 1670         case ZYD_RF_AL2230S:
 1671                 if (sc->sc_macrev == ZYD_ZD1211B) {
 1672                         rf->init = zyd_al2230_init_b;
 1673                         rf->set_channel = zyd_al2230_set_channel_b;
 1674                 } else {
 1675                         rf->init = zyd_al2230_init;
 1676                         rf->set_channel = zyd_al2230_set_channel;
 1677                 }
 1678                 rf->switch_radio = zyd_al2230_switch_radio;
 1679                 rf->bandedge6    = zyd_al2230_bandedge6;
 1680                 rf->width        = 24;  /* 24-bit RF values */
 1681                 break;
 1682         case ZYD_RF_AL7230B:
 1683                 rf->init         = zyd_al7230B_init;
 1684                 rf->switch_radio = zyd_al7230B_switch_radio;
 1685                 rf->set_channel  = zyd_al7230B_set_channel;
 1686                 rf->width        = 24;  /* 24-bit RF values */
 1687                 break;
 1688         case ZYD_RF_AL2210:
 1689                 rf->init         = zyd_al2210_init;
 1690                 rf->switch_radio = zyd_al2210_switch_radio;
 1691                 rf->set_channel  = zyd_al2210_set_channel;
 1692                 rf->width        = 24;  /* 24-bit RF values */
 1693                 break;
 1694         case ZYD_RF_MAXIM_NEW:
 1695         case ZYD_RF_GCT:
 1696                 rf->init         = zyd_gct_init;
 1697                 rf->switch_radio = zyd_gct_switch_radio;
 1698                 rf->set_channel  = zyd_gct_set_channel;
 1699                 rf->width        = 24;  /* 24-bit RF values */
 1700                 rf->update_pwr   = 0;
 1701                 break;
 1702         case ZYD_RF_MAXIM_NEW2:
 1703                 rf->init         = zyd_maxim2_init;
 1704                 rf->switch_radio = zyd_maxim2_switch_radio;
 1705                 rf->set_channel  = zyd_maxim2_set_channel;
 1706                 rf->width        = 18;  /* 18-bit RF values */
 1707                 break;
 1708         default:
 1709                 device_printf(sc->sc_dev,
 1710                     "sorry, radio \"%s\" is not supported yet\n",
 1711                     zyd_rf_name(type));
 1712                 return (EINVAL);
 1713         }
 1714         return (0);
 1715 }
 1716 
 1717 static const char *
 1718 zyd_rf_name(uint8_t type)
 1719 {
 1720         static const char * const zyd_rfs[] = {
 1721                 "unknown", "unknown", "UW2451",   "UCHIP",     "AL2230",
 1722                 "AL7230B", "THETA",   "AL2210",   "MAXIM_NEW", "GCT",
 1723                 "AL2230S",  "RALINK",  "INTERSIL", "RFMD",      "MAXIM_NEW2",
 1724                 "PHILIPS"
 1725         };
 1726 
 1727         return zyd_rfs[(type > 15) ? 0 : type];
 1728 }
 1729 
 1730 static int
 1731 zyd_hw_init(struct zyd_softc *sc)
 1732 {
 1733         int error;
 1734         const struct zyd_phy_pair *phyp;
 1735         struct zyd_rf *rf = &sc->sc_rf;
 1736         uint16_t val;
 1737 
 1738         /* specify that the plug and play is finished */
 1739         zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1);
 1740         zyd_read16_m(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->sc_fwbase);
 1741         DPRINTF(sc, ZYD_DEBUG_FW, "firmware base address=0x%04x\n",
 1742             sc->sc_fwbase);
 1743 
 1744         /* retrieve firmware revision number */
 1745         zyd_read16_m(sc, sc->sc_fwbase + ZYD_FW_FIRMWARE_REV, &sc->sc_fwrev);
 1746         zyd_write32_m(sc, ZYD_CR_GPI_EN, 0);
 1747         zyd_write32_m(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
 1748         /* set mandatory rates - XXX assumes 802.11b/g */
 1749         zyd_write32_m(sc, ZYD_MAC_MAN_RATE, 0x150f);
 1750 
 1751         /* disable interrupts */
 1752         zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0);
 1753 
 1754         if ((error = zyd_read_pod(sc)) != 0) {
 1755                 device_printf(sc->sc_dev, "could not read EEPROM\n");
 1756                 goto fail;
 1757         }
 1758 
 1759         /* PHY init (resetting) */
 1760         error = zyd_lock_phy(sc);
 1761         if (error != 0)
 1762                 goto fail;
 1763         phyp = (sc->sc_macrev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
 1764         for (; phyp->reg != 0; phyp++)
 1765                 zyd_write16_m(sc, phyp->reg, phyp->val);
 1766         if (sc->sc_macrev == ZYD_ZD1211 && sc->sc_fix_cr157 != 0) {
 1767                 zyd_read16_m(sc, ZYD_EEPROM_PHY_REG, &val);
 1768                 zyd_write32_m(sc, ZYD_CR157, val >> 8);
 1769         }
 1770         error = zyd_unlock_phy(sc);
 1771         if (error != 0)
 1772                 goto fail;
 1773 
 1774         /* HMAC init */
 1775         zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000020);
 1776         zyd_write32_m(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
 1777         zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0x00000000);
 1778         zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0x00000000);
 1779         zyd_write32_m(sc, ZYD_MAC_GHTBL, 0x00000000);
 1780         zyd_write32_m(sc, ZYD_MAC_GHTBH, 0x80000000);
 1781         zyd_write32_m(sc, ZYD_MAC_MISC, 0x000000a4);
 1782         zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
 1783         zyd_write32_m(sc, ZYD_MAC_BCNCFG, 0x00f00401);
 1784         zyd_write32_m(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
 1785         zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000080);
 1786         zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
 1787         zyd_write32_m(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
 1788         zyd_write32_m(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
 1789         zyd_write32_m(sc, ZYD_CR_PS_CTRL, 0x10000000);
 1790         zyd_write32_m(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
 1791         zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1);
 1792         zyd_write32_m(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
 1793         zyd_write32_m(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0a47c032);
 1794         zyd_write32_m(sc, ZYD_MAC_CAM_MODE, 0x3);
 1795 
 1796         if (sc->sc_macrev == ZYD_ZD1211) {
 1797                 zyd_write32_m(sc, ZYD_MAC_RETRY, 0x00000002);
 1798                 zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
 1799         } else {
 1800                 zyd_write32_m(sc, ZYD_MACB_MAX_RETRY, 0x02020202);
 1801                 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
 1802                 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
 1803                 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
 1804                 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
 1805                 zyd_write32_m(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
 1806                 zyd_write32_m(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
 1807                 zyd_write32_m(sc, ZYD_MACB_TXOP, 0x01800824);
 1808                 zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0eff);
 1809         }
 1810 
 1811         /* init beacon interval to 100ms */
 1812         if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
 1813                 goto fail;
 1814 
 1815         if ((error = zyd_rf_attach(sc, sc->sc_rfrev)) != 0) {
 1816                 device_printf(sc->sc_dev, "could not attach RF, rev 0x%x\n",
 1817                     sc->sc_rfrev);
 1818                 goto fail;
 1819         }
 1820 
 1821         /* RF chip init */
 1822         error = zyd_lock_phy(sc);
 1823         if (error != 0)
 1824                 goto fail;
 1825         error = (*rf->init)(rf);
 1826         if (error != 0) {
 1827                 device_printf(sc->sc_dev,
 1828                     "radio initialization failed, error %d\n", error);
 1829                 goto fail;
 1830         }
 1831         error = zyd_unlock_phy(sc);
 1832         if (error != 0)
 1833                 goto fail;
 1834 
 1835         if ((error = zyd_read_eeprom(sc)) != 0) {
 1836                 device_printf(sc->sc_dev, "could not read EEPROM\n");
 1837                 goto fail;
 1838         }
 1839 
 1840 fail:   return (error);
 1841 }
 1842 
 1843 static int
 1844 zyd_read_pod(struct zyd_softc *sc)
 1845 {
 1846         int error;
 1847         uint32_t tmp;
 1848 
 1849         zyd_read32_m(sc, ZYD_EEPROM_POD, &tmp);
 1850         sc->sc_rfrev     = tmp & 0x0f;
 1851         sc->sc_ledtype   = (tmp >>  4) & 0x01;
 1852         sc->sc_al2230s   = (tmp >>  7) & 0x01;
 1853         sc->sc_cckgain   = (tmp >>  8) & 0x01;
 1854         sc->sc_fix_cr157 = (tmp >> 13) & 0x01;
 1855         sc->sc_parev     = (tmp >> 16) & 0x0f;
 1856         sc->sc_bandedge6 = (tmp >> 21) & 0x01;
 1857         sc->sc_newphy    = (tmp >> 31) & 0x01;
 1858         sc->sc_txled     = ((tmp & (1 << 24)) && (tmp & (1 << 29))) ? 0 : 1;
 1859 fail:
 1860         return (error);
 1861 }
 1862 
 1863 static int
 1864 zyd_read_eeprom(struct zyd_softc *sc)
 1865 {
 1866         uint16_t val;
 1867         int error, i;
 1868 
 1869         /* read Tx power calibration tables */
 1870         for (i = 0; i < 7; i++) {
 1871                 zyd_read16_m(sc, ZYD_EEPROM_PWR_CAL + i, &val);
 1872                 sc->sc_pwrcal[i * 2] = val >> 8;
 1873                 sc->sc_pwrcal[i * 2 + 1] = val & 0xff;
 1874                 zyd_read16_m(sc, ZYD_EEPROM_PWR_INT + i, &val);
 1875                 sc->sc_pwrint[i * 2] = val >> 8;
 1876                 sc->sc_pwrint[i * 2 + 1] = val & 0xff;
 1877                 zyd_read16_m(sc, ZYD_EEPROM_36M_CAL + i, &val);
 1878                 sc->sc_ofdm36_cal[i * 2] = val >> 8;
 1879                 sc->sc_ofdm36_cal[i * 2 + 1] = val & 0xff;
 1880                 zyd_read16_m(sc, ZYD_EEPROM_48M_CAL + i, &val);
 1881                 sc->sc_ofdm48_cal[i * 2] = val >> 8;
 1882                 sc->sc_ofdm48_cal[i * 2 + 1] = val & 0xff;
 1883                 zyd_read16_m(sc, ZYD_EEPROM_54M_CAL + i, &val);
 1884                 sc->sc_ofdm54_cal[i * 2] = val >> 8;
 1885                 sc->sc_ofdm54_cal[i * 2 + 1] = val & 0xff;
 1886         }
 1887 fail:
 1888         return (error);
 1889 }
 1890 
 1891 static int
 1892 zyd_get_macaddr(struct zyd_softc *sc)
 1893 {
 1894         struct usb_device_request req;
 1895         usb_error_t error;
 1896 
 1897         req.bmRequestType = UT_READ_VENDOR_DEVICE;
 1898         req.bRequest = ZYD_READFWDATAREQ;
 1899         USETW(req.wValue, ZYD_EEPROM_MAC_ADDR_P1);
 1900         USETW(req.wIndex, 0);
 1901         USETW(req.wLength, IEEE80211_ADDR_LEN);
 1902 
 1903         error = zyd_do_request(sc, &req, sc->sc_ic.ic_macaddr);
 1904         if (error != 0) {
 1905                 device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
 1906                     usbd_errstr(error));
 1907         }
 1908 
 1909         return (error);
 1910 }
 1911 
 1912 static int
 1913 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
 1914 {
 1915         int error;
 1916         uint32_t tmp;
 1917 
 1918         tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
 1919         zyd_write32_m(sc, ZYD_MAC_MACADRL, tmp);
 1920         tmp = addr[5] << 8 | addr[4];
 1921         zyd_write32_m(sc, ZYD_MAC_MACADRH, tmp);
 1922 fail:
 1923         return (error);
 1924 }
 1925 
 1926 static int
 1927 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
 1928 {
 1929         int error;
 1930         uint32_t tmp;
 1931 
 1932         tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
 1933         zyd_write32_m(sc, ZYD_MAC_BSSADRL, tmp);
 1934         tmp = addr[5] << 8 | addr[4];
 1935         zyd_write32_m(sc, ZYD_MAC_BSSADRH, tmp);
 1936 fail:
 1937         return (error);
 1938 }
 1939 
 1940 static int
 1941 zyd_switch_radio(struct zyd_softc *sc, int on)
 1942 {
 1943         struct zyd_rf *rf = &sc->sc_rf;
 1944         int error;
 1945 
 1946         error = zyd_lock_phy(sc);
 1947         if (error != 0)
 1948                 goto fail;
 1949         error = (*rf->switch_radio)(rf, on);
 1950         if (error != 0)
 1951                 goto fail;
 1952         error = zyd_unlock_phy(sc);
 1953 fail:
 1954         return (error);
 1955 }
 1956 
 1957 static int
 1958 zyd_set_led(struct zyd_softc *sc, int which, int on)
 1959 {
 1960         int error;
 1961         uint32_t tmp;
 1962 
 1963         zyd_read32_m(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
 1964         tmp &= ~which;
 1965         if (on)
 1966                 tmp |= which;
 1967         zyd_write32_m(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
 1968 fail:
 1969         return (error);
 1970 }
 1971 
 1972 static u_int
 1973 zyd_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
 1974 {
 1975         uint32_t *hash = arg;
 1976         uint8_t v;
 1977 
 1978         v = ((uint8_t *)LLADDR(sdl))[5] >> 2;
 1979         if (v < 32)
 1980                 hash[0] |= 1 << v;
 1981         else
 1982                 hash[1] |= 1 << (v - 32);
 1983 
 1984         return (1);
 1985 }
 1986 
 1987 static void
 1988 zyd_set_multi(struct zyd_softc *sc)
 1989 {
 1990         struct ieee80211com *ic = &sc->sc_ic;
 1991         uint32_t hash[2];
 1992         int error;
 1993 
 1994         if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0)
 1995                 return;
 1996 
 1997         hash[0] = 0x00000000;
 1998         hash[1] = 0x80000000;
 1999 
 2000         if (ic->ic_opmode == IEEE80211_M_MONITOR || ic->ic_allmulti > 0 ||
 2001             ic->ic_promisc > 0) {
 2002                 hash[0] = 0xffffffff;
 2003                 hash[1] = 0xffffffff;
 2004         } else {
 2005                 struct ieee80211vap *vap;
 2006 
 2007                 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
 2008                         if_foreach_llmaddr(vap->iv_ifp, zyd_hash_maddr, &hash);
 2009         }
 2010 
 2011         /* reprogram multicast global hash table */
 2012         zyd_write32_m(sc, ZYD_MAC_GHTBL, hash[0]);
 2013         zyd_write32_m(sc, ZYD_MAC_GHTBH, hash[1]);
 2014 fail:
 2015         if (error != 0)
 2016                 device_printf(sc->sc_dev,
 2017                     "could not set multicast hash table\n");
 2018 }
 2019 
 2020 static void
 2021 zyd_update_mcast(struct ieee80211com *ic)
 2022 {
 2023         struct zyd_softc *sc = ic->ic_softc;
 2024 
 2025         ZYD_LOCK(sc);
 2026         zyd_set_multi(sc);
 2027         ZYD_UNLOCK(sc);
 2028 }
 2029 
 2030 static int
 2031 zyd_set_rxfilter(struct zyd_softc *sc)
 2032 {
 2033         struct ieee80211com *ic = &sc->sc_ic;
 2034         uint32_t rxfilter;
 2035 
 2036         switch (ic->ic_opmode) {
 2037         case IEEE80211_M_STA:
 2038                 rxfilter = ZYD_FILTER_BSS;
 2039                 break;
 2040         case IEEE80211_M_IBSS:
 2041         case IEEE80211_M_HOSTAP:
 2042                 rxfilter = ZYD_FILTER_HOSTAP;
 2043                 break;
 2044         case IEEE80211_M_MONITOR:
 2045                 rxfilter = ZYD_FILTER_MONITOR;
 2046                 break;
 2047         default:
 2048                 /* should not get there */
 2049                 return (EINVAL);
 2050         }
 2051         return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
 2052 }
 2053 
 2054 static void
 2055 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
 2056 {
 2057         int error;
 2058         struct ieee80211com *ic = &sc->sc_ic;
 2059         struct zyd_rf *rf = &sc->sc_rf;
 2060         uint32_t tmp;
 2061         int chan;
 2062 
 2063         chan = ieee80211_chan2ieee(ic, c);
 2064         if (chan == 0 || chan == IEEE80211_CHAN_ANY) {
 2065                 /* XXX should NEVER happen */
 2066                 device_printf(sc->sc_dev,
 2067                     "%s: invalid channel %x\n", __func__, chan);
 2068                 return;
 2069         }
 2070 
 2071         error = zyd_lock_phy(sc);
 2072         if (error != 0)
 2073                 goto fail;
 2074 
 2075         error = (*rf->set_channel)(rf, chan);
 2076         if (error != 0)
 2077                 goto fail;
 2078 
 2079         if (rf->update_pwr) {
 2080                 /* update Tx power */
 2081                 zyd_write16_m(sc, ZYD_CR31, sc->sc_pwrint[chan - 1]);
 2082 
 2083                 if (sc->sc_macrev == ZYD_ZD1211B) {
 2084                         zyd_write16_m(sc, ZYD_CR67,
 2085                             sc->sc_ofdm36_cal[chan - 1]);
 2086                         zyd_write16_m(sc, ZYD_CR66,
 2087                             sc->sc_ofdm48_cal[chan - 1]);
 2088                         zyd_write16_m(sc, ZYD_CR65,
 2089                             sc->sc_ofdm54_cal[chan - 1]);
 2090                         zyd_write16_m(sc, ZYD_CR68, sc->sc_pwrcal[chan - 1]);
 2091                         zyd_write16_m(sc, ZYD_CR69, 0x28);
 2092                         zyd_write16_m(sc, ZYD_CR69, 0x2a);
 2093                 }
 2094         }
 2095         if (sc->sc_cckgain) {
 2096                 /* set CCK baseband gain from EEPROM */
 2097                 if (zyd_read32(sc, ZYD_EEPROM_PHY_REG, &tmp) == 0)
 2098                         zyd_write16_m(sc, ZYD_CR47, tmp & 0xff);
 2099         }
 2100         if (sc->sc_bandedge6 && rf->bandedge6 != NULL) {
 2101                 error = (*rf->bandedge6)(rf, c);
 2102                 if (error != 0)
 2103                         goto fail;
 2104         }
 2105         zyd_write32_m(sc, ZYD_CR_CONFIG_PHILIPS, 0);
 2106 
 2107         error = zyd_unlock_phy(sc);
 2108         if (error != 0)
 2109                 goto fail;
 2110 
 2111         sc->sc_rxtap.wr_chan_freq = sc->sc_txtap.wt_chan_freq =
 2112             htole16(c->ic_freq);
 2113         sc->sc_rxtap.wr_chan_flags = sc->sc_txtap.wt_chan_flags =
 2114             htole16(c->ic_flags);
 2115 fail:
 2116         return;
 2117 }
 2118 
 2119 static int
 2120 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
 2121 {
 2122         int error;
 2123         uint32_t val;
 2124 
 2125         zyd_read32_m(sc, ZYD_CR_ATIM_WND_PERIOD, &val);
 2126         sc->sc_atim_wnd = val;
 2127         zyd_read32_m(sc, ZYD_CR_PRE_TBTT, &val);
 2128         sc->sc_pre_tbtt = val;
 2129         sc->sc_bcn_int = bintval;
 2130 
 2131         if (sc->sc_bcn_int <= 5)
 2132                 sc->sc_bcn_int = 5;
 2133         if (sc->sc_pre_tbtt < 4 || sc->sc_pre_tbtt >= sc->sc_bcn_int)
 2134                 sc->sc_pre_tbtt = sc->sc_bcn_int - 1;
 2135         if (sc->sc_atim_wnd >= sc->sc_pre_tbtt)
 2136                 sc->sc_atim_wnd = sc->sc_pre_tbtt - 1;
 2137 
 2138         zyd_write32_m(sc, ZYD_CR_ATIM_WND_PERIOD, sc->sc_atim_wnd);
 2139         zyd_write32_m(sc, ZYD_CR_PRE_TBTT, sc->sc_pre_tbtt);
 2140         zyd_write32_m(sc, ZYD_CR_BCN_INTERVAL, sc->sc_bcn_int);
 2141 fail:
 2142         return (error);
 2143 }
 2144 
 2145 static void
 2146 zyd_rx_data(struct usb_xfer *xfer, int offset, uint16_t len)
 2147 {
 2148         struct zyd_softc *sc = usbd_xfer_softc(xfer);
 2149         struct ieee80211com *ic = &sc->sc_ic;
 2150         struct zyd_plcphdr plcp;
 2151         struct zyd_rx_stat stat;
 2152         struct usb_page_cache *pc;
 2153         struct mbuf *m;
 2154         int rlen, rssi;
 2155 
 2156         if (len < ZYD_MIN_FRAGSZ) {
 2157                 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too short (length=%d)\n",
 2158                     device_get_nameunit(sc->sc_dev), len);
 2159                 counter_u64_add(ic->ic_ierrors, 1);
 2160                 return;
 2161         }
 2162         pc = usbd_xfer_get_frame(xfer, 0);
 2163         usbd_copy_out(pc, offset, &plcp, sizeof(plcp));
 2164         usbd_copy_out(pc, offset + len - sizeof(stat), &stat, sizeof(stat));
 2165 
 2166         if (stat.flags & ZYD_RX_ERROR) {
 2167                 DPRINTF(sc, ZYD_DEBUG_RECV,
 2168                     "%s: RX status indicated error (%x)\n",
 2169                     device_get_nameunit(sc->sc_dev), stat.flags);
 2170                 counter_u64_add(ic->ic_ierrors, 1);
 2171                 return;
 2172         }
 2173 
 2174         /* compute actual frame length */
 2175         rlen = len - sizeof(struct zyd_plcphdr) -
 2176             sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN;
 2177 
 2178         /* allocate a mbuf to store the frame */
 2179         if (rlen > (int)MCLBYTES) {
 2180                 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too long (length=%d)\n",
 2181                     device_get_nameunit(sc->sc_dev), rlen);
 2182                 counter_u64_add(ic->ic_ierrors, 1);
 2183                 return;
 2184         } else if (rlen > (int)MHLEN)
 2185                 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
 2186         else
 2187                 m = m_gethdr(M_NOWAIT, MT_DATA);
 2188         if (m == NULL) {
 2189                 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: could not allocate rx mbuf\n",
 2190                     device_get_nameunit(sc->sc_dev));
 2191                 counter_u64_add(ic->ic_ierrors, 1);
 2192                 return;
 2193         }
 2194         m->m_pkthdr.len = m->m_len = rlen;
 2195         usbd_copy_out(pc, offset + sizeof(plcp), mtod(m, uint8_t *), rlen);
 2196 
 2197         if (ieee80211_radiotap_active(ic)) {
 2198                 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
 2199 
 2200                 tap->wr_flags = 0;
 2201                 if (stat.flags & (ZYD_RX_BADCRC16 | ZYD_RX_BADCRC32))
 2202                         tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
 2203                 /* XXX toss, no way to express errors */
 2204                 if (stat.flags & ZYD_RX_DECRYPTERR)
 2205                         tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
 2206                 tap->wr_rate = ieee80211_plcp2rate(plcp.signal,
 2207                     (stat.flags & ZYD_RX_OFDM) ?
 2208                         IEEE80211_T_OFDM : IEEE80211_T_CCK);
 2209                 tap->wr_antsignal = stat.rssi + -95;
 2210                 tap->wr_antnoise = -95; /* XXX */
 2211         }
 2212         rssi = (stat.rssi > 63) ? 127 : 2 * stat.rssi;
 2213 
 2214         sc->sc_rx_data[sc->sc_rx_count].rssi = rssi;
 2215         sc->sc_rx_data[sc->sc_rx_count].m = m;
 2216         sc->sc_rx_count++;
 2217 }
 2218 
 2219 static void
 2220 zyd_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
 2221 {
 2222         struct zyd_softc *sc = usbd_xfer_softc(xfer);
 2223         struct ieee80211com *ic = &sc->sc_ic;
 2224         struct ieee80211_node *ni;
 2225         struct epoch_tracker et;
 2226         struct zyd_rx_desc desc;
 2227         struct mbuf *m;
 2228         struct usb_page_cache *pc;
 2229         uint32_t offset;
 2230         uint8_t rssi;
 2231         int8_t nf;
 2232         int i;
 2233         int actlen;
 2234 
 2235         usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL);
 2236 
 2237         sc->sc_rx_count = 0;
 2238         switch (USB_GET_STATE(xfer)) {
 2239         case USB_ST_TRANSFERRED:
 2240                 pc = usbd_xfer_get_frame(xfer, 0);
 2241                 usbd_copy_out(pc, actlen - sizeof(desc), &desc, sizeof(desc));
 2242 
 2243                 offset = 0;
 2244                 if (UGETW(desc.tag) == ZYD_TAG_MULTIFRAME) {
 2245                         DPRINTF(sc, ZYD_DEBUG_RECV,
 2246                             "%s: received multi-frame transfer\n", __func__);
 2247 
 2248                         for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
 2249                                 uint16_t len16 = UGETW(desc.len[i]);
 2250 
 2251                                 if (len16 == 0 || len16 > actlen)
 2252                                         break;
 2253 
 2254                                 zyd_rx_data(xfer, offset, len16);
 2255 
 2256                                 /* next frame is aligned on a 32-bit boundary */
 2257                                 len16 = (len16 + 3) & ~3;
 2258                                 offset += len16;
 2259                                 if (len16 > actlen)
 2260                                         break;
 2261                                 actlen -= len16;
 2262                         }
 2263                 } else {
 2264                         DPRINTF(sc, ZYD_DEBUG_RECV,
 2265                             "%s: received single-frame transfer\n", __func__);
 2266 
 2267                         zyd_rx_data(xfer, 0, actlen);
 2268                 }
 2269                 /* FALLTHROUGH */
 2270         case USB_ST_SETUP:
 2271 tr_setup:
 2272                 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
 2273                 usbd_transfer_submit(xfer);
 2274 
 2275                 /*
 2276                  * At the end of a USB callback it is always safe to unlock
 2277                  * the private mutex of a device! That is why we do the
 2278                  * "ieee80211_input" here, and not some lines up!
 2279                  */
 2280                 ZYD_UNLOCK(sc);
 2281                 NET_EPOCH_ENTER(et);
 2282                 for (i = 0; i < sc->sc_rx_count; i++) {
 2283                         rssi = sc->sc_rx_data[i].rssi;
 2284                         m = sc->sc_rx_data[i].m;
 2285                         sc->sc_rx_data[i].m = NULL;
 2286 
 2287                         nf = -95;       /* XXX */
 2288 
 2289                         ni = ieee80211_find_rxnode(ic,
 2290                             mtod(m, struct ieee80211_frame_min *));
 2291                         if (ni != NULL) {
 2292                                 (void)ieee80211_input(ni, m, rssi, nf);
 2293                                 ieee80211_free_node(ni);
 2294                         } else
 2295                                 (void)ieee80211_input_all(ic, m, rssi, nf);
 2296                 }
 2297                 NET_EPOCH_EXIT(et);
 2298                 ZYD_LOCK(sc);
 2299                 zyd_start(sc);
 2300                 break;
 2301 
 2302         default:                        /* Error */
 2303                 DPRINTF(sc, ZYD_DEBUG_ANY, "frame error: %s\n", usbd_errstr(error));
 2304 
 2305                 if (error != USB_ERR_CANCELLED) {
 2306                         /* try to clear stall first */
 2307                         usbd_xfer_set_stall(xfer);
 2308                         goto tr_setup;
 2309                 }
 2310                 break;
 2311         }
 2312 }
 2313 
 2314 static uint8_t
 2315 zyd_plcp_signal(struct zyd_softc *sc, int rate)
 2316 {
 2317         switch (rate) {
 2318         /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
 2319         case 12:
 2320                 return (0xb);
 2321         case 18:
 2322                 return (0xf);
 2323         case 24:
 2324                 return (0xa);
 2325         case 36:
 2326                 return (0xe);
 2327         case 48:
 2328                 return (0x9);
 2329         case 72:
 2330                 return (0xd);
 2331         case 96:
 2332                 return (0x8);
 2333         case 108:
 2334                 return (0xc);
 2335         /* CCK rates (NB: not IEEE std, device-specific) */
 2336         case 2:
 2337                 return (0x0);
 2338         case 4:
 2339                 return (0x1);
 2340         case 11:
 2341                 return (0x2);
 2342         case 22:
 2343                 return (0x3);
 2344         }
 2345 
 2346         device_printf(sc->sc_dev, "unsupported rate %d\n", rate);
 2347         return (0x0);
 2348 }
 2349 
 2350 static void
 2351 zyd_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
 2352 {
 2353         struct zyd_softc *sc = usbd_xfer_softc(xfer);
 2354         struct ieee80211vap *vap;
 2355         struct zyd_tx_data *data;
 2356         struct mbuf *m;
 2357         struct usb_page_cache *pc;
 2358         int actlen;
 2359 
 2360         usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL);
 2361 
 2362         switch (USB_GET_STATE(xfer)) {
 2363         case USB_ST_TRANSFERRED:
 2364                 DPRINTF(sc, ZYD_DEBUG_ANY, "transfer complete, %u bytes\n",
 2365                     actlen);
 2366 
 2367                 /* free resources */
 2368                 data = usbd_xfer_get_priv(xfer);
 2369                 zyd_tx_free(data, 0);
 2370                 usbd_xfer_set_priv(xfer, NULL);
 2371 
 2372                 /* FALLTHROUGH */
 2373         case USB_ST_SETUP:
 2374 tr_setup:
 2375                 data = STAILQ_FIRST(&sc->tx_q);
 2376                 if (data) {
 2377                         STAILQ_REMOVE_HEAD(&sc->tx_q, next);
 2378                         m = data->m;
 2379 
 2380                         if (m->m_pkthdr.len > (int)ZYD_MAX_TXBUFSZ) {
 2381                                 DPRINTF(sc, ZYD_DEBUG_ANY, "data overflow, %u bytes\n",
 2382                                     m->m_pkthdr.len);
 2383                                 m->m_pkthdr.len = ZYD_MAX_TXBUFSZ;
 2384                         }
 2385                         pc = usbd_xfer_get_frame(xfer, 0);
 2386                         usbd_copy_in(pc, 0, &data->desc, ZYD_TX_DESC_SIZE);
 2387                         usbd_m_copy_in(pc, ZYD_TX_DESC_SIZE, m, 0,
 2388                             m->m_pkthdr.len);
 2389 
 2390                         vap = data->ni->ni_vap;
 2391                         if (ieee80211_radiotap_active_vap(vap)) {
 2392                                 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
 2393 
 2394                                 tap->wt_flags = 0;
 2395                                 tap->wt_rate = data->rate;
 2396 
 2397                                 ieee80211_radiotap_tx(vap, m);
 2398                         }
 2399 
 2400                         usbd_xfer_set_frame_len(xfer, 0, ZYD_TX_DESC_SIZE + m->m_pkthdr.len);
 2401                         usbd_xfer_set_priv(xfer, data);
 2402                         usbd_transfer_submit(xfer);
 2403                 }
 2404                 zyd_start(sc);
 2405                 break;
 2406 
 2407         default:                        /* Error */
 2408                 DPRINTF(sc, ZYD_DEBUG_ANY, "transfer error, %s\n",
 2409                     usbd_errstr(error));
 2410 
 2411                 counter_u64_add(sc->sc_ic.ic_oerrors, 1);
 2412                 data = usbd_xfer_get_priv(xfer);
 2413                 usbd_xfer_set_priv(xfer, NULL);
 2414                 if (data != NULL)
 2415                         zyd_tx_free(data, error);
 2416 
 2417                 if (error != USB_ERR_CANCELLED) {
 2418                         if (error == USB_ERR_TIMEOUT)
 2419                                 device_printf(sc->sc_dev, "device timeout\n");
 2420 
 2421                         /*
 2422                          * Try to clear stall first, also if other
 2423                          * errors occur, hence clearing stall
 2424                          * introduces a 50 ms delay:
 2425                          */
 2426                         usbd_xfer_set_stall(xfer);
 2427                         goto tr_setup;
 2428                 }
 2429                 break;
 2430         }
 2431 }
 2432 
 2433 static int
 2434 zyd_tx_start(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
 2435 {
 2436         struct ieee80211vap *vap = ni->ni_vap;
 2437         struct ieee80211com *ic = ni->ni_ic;
 2438         struct zyd_tx_desc *desc;
 2439         struct zyd_tx_data *data;
 2440         struct ieee80211_frame *wh;
 2441         const struct ieee80211_txparam *tp = ni->ni_txparms;
 2442         struct ieee80211_key *k;
 2443         int rate, totlen, type, ismcast;
 2444         static const uint8_t ratediv[] = ZYD_TX_RATEDIV;
 2445         uint8_t phy;
 2446         uint16_t pktlen;
 2447         uint32_t bits;
 2448 
 2449         wh = mtod(m0, struct ieee80211_frame *);
 2450         data = STAILQ_FIRST(&sc->tx_free);
 2451         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
 2452         sc->tx_nfree--;
 2453 
 2454         ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
 2455         type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
 2456 
 2457         if (type == IEEE80211_FC0_TYPE_MGT ||
 2458             type == IEEE80211_FC0_TYPE_CTL ||
 2459             (m0->m_flags & M_EAPOL) != 0) {
 2460                 rate = tp->mgmtrate;
 2461         } else {
 2462                 /* for data frames */
 2463                 if (ismcast)
 2464                         rate = tp->mcastrate;
 2465                 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
 2466                         rate = tp->ucastrate;
 2467                 else {
 2468                         (void) ieee80211_ratectl_rate(ni, NULL, 0);
 2469                         rate = ni->ni_txrate;
 2470                 }
 2471         }
 2472 
 2473         if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
 2474                 k = ieee80211_crypto_encap(ni, m0);
 2475                 if (k == NULL) {
 2476                         return (ENOBUFS);
 2477                 }
 2478                 /* packet header may have moved, reset our local pointer */
 2479                 wh = mtod(m0, struct ieee80211_frame *);
 2480         }
 2481 
 2482         data->ni = ni;
 2483         data->m = m0;
 2484         data->rate = rate;
 2485 
 2486         /* fill Tx descriptor */
 2487         desc = &data->desc;
 2488         phy = zyd_plcp_signal(sc, rate);
 2489         desc->phy = phy;
 2490         if (ZYD_RATE_IS_OFDM(rate)) {
 2491                 desc->phy |= ZYD_TX_PHY_OFDM;
 2492                 if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
 2493                         desc->phy |= ZYD_TX_PHY_5GHZ;
 2494         } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
 2495                 desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
 2496 
 2497         totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
 2498         desc->len = htole16(totlen);
 2499 
 2500         desc->flags = ZYD_TX_FLAG_BACKOFF;
 2501         if (!ismcast) {
 2502                 /* multicast frames are not sent at OFDM rates in 802.11b/g */
 2503                 if (totlen > vap->iv_rtsthreshold) {
 2504                         desc->flags |= ZYD_TX_FLAG_RTS;
 2505                 } else if (ZYD_RATE_IS_OFDM(rate) &&
 2506                     (ic->ic_flags & IEEE80211_F_USEPROT)) {
 2507                         if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
 2508                                 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
 2509                         else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
 2510                                 desc->flags |= ZYD_TX_FLAG_RTS;
 2511                 }
 2512         } else
 2513                 desc->flags |= ZYD_TX_FLAG_MULTICAST;
 2514         if ((wh->i_fc[0] &
 2515             (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
 2516             (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
 2517                 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
 2518 
 2519         /* actual transmit length (XXX why +10?) */
 2520         pktlen = ZYD_TX_DESC_SIZE + 10;
 2521         if (sc->sc_macrev == ZYD_ZD1211)
 2522                 pktlen += totlen;
 2523         desc->pktlen = htole16(pktlen);
 2524 
 2525         bits = (rate == 11) ? (totlen * 16) + 10 :
 2526             ((rate == 22) ? (totlen * 8) + 10 : (totlen * 8));
 2527         desc->plcp_length = htole16(bits / ratediv[phy]);
 2528         desc->plcp_service = 0;
 2529         if (rate == 22 && (bits % 11) > 0 && (bits % 11) <= 3)
 2530                 desc->plcp_service |= ZYD_PLCP_LENGEXT;
 2531         desc->nextlen = 0;
 2532 
 2533         if (ieee80211_radiotap_active_vap(vap)) {
 2534                 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
 2535 
 2536                 tap->wt_flags = 0;
 2537                 tap->wt_rate = rate;
 2538 
 2539                 ieee80211_radiotap_tx(vap, m0);
 2540         }
 2541 
 2542         DPRINTF(sc, ZYD_DEBUG_XMIT,
 2543             "%s: sending data frame len=%zu rate=%u\n",
 2544             device_get_nameunit(sc->sc_dev), (size_t)m0->m_pkthdr.len,
 2545                 rate);
 2546 
 2547         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
 2548         usbd_transfer_start(sc->sc_xfer[ZYD_BULK_WR]);
 2549 
 2550         return (0);
 2551 }
 2552 
 2553 static int
 2554 zyd_transmit(struct ieee80211com *ic, struct mbuf *m)
 2555 {
 2556         struct zyd_softc *sc = ic->ic_softc;
 2557         int error;
 2558 
 2559         ZYD_LOCK(sc);
 2560         if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0) {
 2561                 ZYD_UNLOCK(sc);
 2562                 return (ENXIO);
 2563         }
 2564         error = mbufq_enqueue(&sc->sc_snd, m);
 2565         if (error) {
 2566                 ZYD_UNLOCK(sc);
 2567                 return (error);
 2568         }
 2569         zyd_start(sc);
 2570         ZYD_UNLOCK(sc);
 2571 
 2572         return (0);
 2573 }
 2574 
 2575 static void
 2576 zyd_start(struct zyd_softc *sc)
 2577 {
 2578         struct ieee80211_node *ni;
 2579         struct mbuf *m;
 2580 
 2581         ZYD_LOCK_ASSERT(sc, MA_OWNED);
 2582 
 2583         while (sc->tx_nfree > 0 && (m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
 2584                 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
 2585                 if (zyd_tx_start(sc, m, ni) != 0) {
 2586                         m_freem(m);
 2587                         if_inc_counter(ni->ni_vap->iv_ifp,
 2588                             IFCOUNTER_OERRORS, 1);
 2589                         ieee80211_free_node(ni);
 2590                         break;
 2591                 }
 2592         }
 2593 }
 2594 
 2595 static int
 2596 zyd_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
 2597         const struct ieee80211_bpf_params *params)
 2598 {
 2599         struct ieee80211com *ic = ni->ni_ic;
 2600         struct zyd_softc *sc = ic->ic_softc;
 2601 
 2602         ZYD_LOCK(sc);
 2603         /* prevent management frames from being sent if we're not ready */
 2604         if (!(sc->sc_flags & ZYD_FLAG_RUNNING)) {
 2605                 ZYD_UNLOCK(sc);
 2606                 m_freem(m);
 2607                 return (ENETDOWN);
 2608         }
 2609         if (sc->tx_nfree == 0) {
 2610                 ZYD_UNLOCK(sc);
 2611                 m_freem(m);
 2612                 return (ENOBUFS);               /* XXX */
 2613         }
 2614 
 2615         /*
 2616          * Legacy path; interpret frame contents to decide
 2617          * precisely how to send the frame.
 2618          * XXX raw path
 2619          */
 2620         if (zyd_tx_start(sc, m, ni) != 0) {
 2621                 ZYD_UNLOCK(sc);
 2622                 m_freem(m);
 2623                 return (EIO);
 2624         }
 2625         ZYD_UNLOCK(sc);
 2626         return (0);
 2627 }
 2628 
 2629 static void
 2630 zyd_parent(struct ieee80211com *ic)
 2631 {
 2632         struct zyd_softc *sc = ic->ic_softc;
 2633         int startall = 0;
 2634 
 2635         ZYD_LOCK(sc);
 2636         if (sc->sc_flags & ZYD_FLAG_DETACHED) {
 2637                 ZYD_UNLOCK(sc);
 2638                 return;
 2639         }
 2640         if (ic->ic_nrunning > 0) {
 2641                 if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0) {
 2642                         zyd_init_locked(sc);
 2643                         startall = 1;
 2644                 } else
 2645                         zyd_set_multi(sc);
 2646         } else if (sc->sc_flags & ZYD_FLAG_RUNNING)
 2647                 zyd_stop(sc);
 2648         ZYD_UNLOCK(sc);
 2649         if (startall)
 2650                 ieee80211_start_all(ic);
 2651 }
 2652 
 2653 static void
 2654 zyd_init_locked(struct zyd_softc *sc)
 2655 {
 2656         struct ieee80211com *ic = &sc->sc_ic;
 2657         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 2658         struct usb_config_descriptor *cd;
 2659         int error;
 2660         uint32_t val;
 2661 
 2662         ZYD_LOCK_ASSERT(sc, MA_OWNED);
 2663 
 2664         if (!(sc->sc_flags & ZYD_FLAG_INITONCE)) {
 2665                 error = zyd_loadfirmware(sc);
 2666                 if (error != 0) {
 2667                         device_printf(sc->sc_dev,
 2668                             "could not load firmware (error=%d)\n", error);
 2669                         goto fail;
 2670                 }
 2671 
 2672                 /* reset device */
 2673                 cd = usbd_get_config_descriptor(sc->sc_udev);
 2674                 error = usbd_req_set_config(sc->sc_udev, &sc->sc_mtx,
 2675                     cd->bConfigurationValue);
 2676                 if (error)
 2677                         device_printf(sc->sc_dev, "reset failed, continuing\n");
 2678 
 2679                 error = zyd_hw_init(sc);
 2680                 if (error) {
 2681                         device_printf(sc->sc_dev,
 2682                             "hardware initialization failed\n");
 2683                         goto fail;
 2684                 }
 2685 
 2686                 device_printf(sc->sc_dev,
 2687                     "HMAC ZD1211%s, FW %02x.%02x, RF %s S%x, PA%x LED %x "
 2688                     "BE%x NP%x Gain%x F%x\n",
 2689                     (sc->sc_macrev == ZYD_ZD1211) ? "": "B",
 2690                     sc->sc_fwrev >> 8, sc->sc_fwrev & 0xff,
 2691                     zyd_rf_name(sc->sc_rfrev), sc->sc_al2230s, sc->sc_parev,
 2692                     sc->sc_ledtype, sc->sc_bandedge6, sc->sc_newphy,
 2693                     sc->sc_cckgain, sc->sc_fix_cr157);
 2694 
 2695                 /* read regulatory domain (currently unused) */
 2696                 zyd_read32_m(sc, ZYD_EEPROM_SUBID, &val);
 2697                 sc->sc_regdomain = val >> 16;
 2698                 DPRINTF(sc, ZYD_DEBUG_INIT, "regulatory domain %x\n",
 2699                     sc->sc_regdomain);
 2700 
 2701                 /* we'll do software WEP decryption for now */
 2702                 DPRINTF(sc, ZYD_DEBUG_INIT, "%s: setting encryption type\n",
 2703                     __func__);
 2704                 zyd_write32_m(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
 2705 
 2706                 sc->sc_flags |= ZYD_FLAG_INITONCE;
 2707         }
 2708 
 2709         if (sc->sc_flags & ZYD_FLAG_RUNNING)
 2710                 zyd_stop(sc);
 2711 
 2712         DPRINTF(sc, ZYD_DEBUG_INIT, "setting MAC address to %6D\n",
 2713             vap ? vap->iv_myaddr : ic->ic_macaddr, ":");
 2714         error = zyd_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr);
 2715         if (error != 0)
 2716                 return;
 2717 
 2718         /* set basic rates */
 2719         if (ic->ic_curmode == IEEE80211_MODE_11B)
 2720                 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x0003);
 2721         else if (ic->ic_curmode == IEEE80211_MODE_11A)
 2722                 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x1500);
 2723         else    /* assumes 802.11b/g */
 2724                 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0xff0f);
 2725 
 2726         /* promiscuous mode */
 2727         zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0);
 2728         /* multicast setup */
 2729         zyd_set_multi(sc);
 2730         /* set RX filter  */
 2731         error = zyd_set_rxfilter(sc);
 2732         if (error != 0)
 2733                 goto fail;
 2734 
 2735         /* switch radio transmitter ON */
 2736         error = zyd_switch_radio(sc, 1);
 2737         if (error != 0)
 2738                 goto fail;
 2739         /* set default BSS channel */
 2740         zyd_set_chan(sc, ic->ic_curchan);
 2741 
 2742         /*
 2743          * Allocate Tx and Rx xfer queues.
 2744          */
 2745         zyd_setup_tx_list(sc);
 2746 
 2747         /* enable interrupts */
 2748         zyd_write32_m(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
 2749 
 2750         sc->sc_flags |= ZYD_FLAG_RUNNING;
 2751         usbd_xfer_set_stall(sc->sc_xfer[ZYD_BULK_WR]);
 2752         usbd_transfer_start(sc->sc_xfer[ZYD_BULK_RD]);
 2753         usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]);
 2754 
 2755         return;
 2756 
 2757 fail:   zyd_stop(sc);
 2758         return;
 2759 }
 2760 
 2761 static void
 2762 zyd_stop(struct zyd_softc *sc)
 2763 {
 2764         int error;
 2765 
 2766         ZYD_LOCK_ASSERT(sc, MA_OWNED);
 2767 
 2768         sc->sc_flags &= ~ZYD_FLAG_RUNNING;
 2769         zyd_drain_mbufq(sc);
 2770 
 2771         /*
 2772          * Drain all the transfers, if not already drained:
 2773          */
 2774         ZYD_UNLOCK(sc);
 2775         usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_WR]);
 2776         usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_RD]);
 2777         ZYD_LOCK(sc);
 2778 
 2779         zyd_unsetup_tx_list(sc);
 2780 
 2781         /* Stop now if the device was never set up */
 2782         if (!(sc->sc_flags & ZYD_FLAG_INITONCE))
 2783                 return;
 2784 
 2785         /* switch radio transmitter OFF */
 2786         error = zyd_switch_radio(sc, 0);
 2787         if (error != 0)
 2788                 goto fail;
 2789         /* disable Rx */
 2790         zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0);
 2791         /* disable interrupts */
 2792         zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0);
 2793 
 2794 fail:
 2795         return;
 2796 }
 2797 
 2798 static int
 2799 zyd_loadfirmware(struct zyd_softc *sc)
 2800 {
 2801         struct usb_device_request req;
 2802         size_t size;
 2803         u_char *fw;
 2804         uint8_t stat;
 2805         uint16_t addr;
 2806 
 2807         if (sc->sc_flags & ZYD_FLAG_FWLOADED)
 2808                 return (0);
 2809 
 2810         if (sc->sc_macrev == ZYD_ZD1211) {
 2811                 fw = (u_char *)zd1211_firmware;
 2812                 size = sizeof(zd1211_firmware);
 2813         } else {
 2814                 fw = (u_char *)zd1211b_firmware;
 2815                 size = sizeof(zd1211b_firmware);
 2816         }
 2817 
 2818         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
 2819         req.bRequest = ZYD_DOWNLOADREQ;
 2820         USETW(req.wIndex, 0);
 2821 
 2822         addr = ZYD_FIRMWARE_START_ADDR;
 2823         while (size > 0) {
 2824                 /*
 2825                  * When the transfer size is 4096 bytes, it is not
 2826                  * likely to be able to transfer it.
 2827                  * The cause is port or machine or chip?
 2828                  */
 2829                 const int mlen = min(size, 64);
 2830 
 2831                 DPRINTF(sc, ZYD_DEBUG_FW,
 2832                     "loading firmware block: len=%d, addr=0x%x\n", mlen, addr);
 2833 
 2834                 USETW(req.wValue, addr);
 2835                 USETW(req.wLength, mlen);
 2836                 if (zyd_do_request(sc, &req, fw) != 0)
 2837                         return (EIO);
 2838 
 2839                 addr += mlen / 2;
 2840                 fw   += mlen;
 2841                 size -= mlen;
 2842         }
 2843 
 2844         /* check whether the upload succeeded */
 2845         req.bmRequestType = UT_READ_VENDOR_DEVICE;
 2846         req.bRequest = ZYD_DOWNLOADSTS;
 2847         USETW(req.wValue, 0);
 2848         USETW(req.wIndex, 0);
 2849         USETW(req.wLength, sizeof(stat));
 2850         if (zyd_do_request(sc, &req, &stat) != 0)
 2851                 return (EIO);
 2852 
 2853         sc->sc_flags |= ZYD_FLAG_FWLOADED;
 2854 
 2855         return (stat & 0x80) ? (EIO) : (0);
 2856 }
 2857 
 2858 static void
 2859 zyd_scan_start(struct ieee80211com *ic)
 2860 {
 2861         struct zyd_softc *sc = ic->ic_softc;
 2862 
 2863         ZYD_LOCK(sc);
 2864         /* want broadcast address while scanning */
 2865         zyd_set_bssid(sc, ieee80211broadcastaddr);
 2866         ZYD_UNLOCK(sc);
 2867 }
 2868 
 2869 static void
 2870 zyd_scan_end(struct ieee80211com *ic)
 2871 {
 2872         struct zyd_softc *sc = ic->ic_softc;
 2873 
 2874         ZYD_LOCK(sc);
 2875         /* restore previous bssid */
 2876         zyd_set_bssid(sc, sc->sc_bssid);
 2877         ZYD_UNLOCK(sc);
 2878 }
 2879 
 2880 static void
 2881 zyd_getradiocaps(struct ieee80211com *ic,
 2882     int maxchans, int *nchans, struct ieee80211_channel chans[])
 2883 {
 2884         uint8_t bands[IEEE80211_MODE_BYTES];
 2885 
 2886         memset(bands, 0, sizeof(bands));
 2887         setbit(bands, IEEE80211_MODE_11B);
 2888         setbit(bands, IEEE80211_MODE_11G);
 2889         ieee80211_add_channels_default_2ghz(chans, maxchans, nchans, bands, 0);
 2890 }
 2891 
 2892 static void
 2893 zyd_set_channel(struct ieee80211com *ic)
 2894 {
 2895         struct zyd_softc *sc = ic->ic_softc;
 2896 
 2897         ZYD_LOCK(sc);
 2898         zyd_set_chan(sc, ic->ic_curchan);
 2899         ZYD_UNLOCK(sc);
 2900 }
 2901 
 2902 static device_method_t zyd_methods[] = {
 2903         /* Device interface */
 2904         DEVMETHOD(device_probe, zyd_match),
 2905         DEVMETHOD(device_attach, zyd_attach),
 2906         DEVMETHOD(device_detach, zyd_detach),
 2907         DEVMETHOD_END
 2908 };
 2909 
 2910 static driver_t zyd_driver = {
 2911         .name = "zyd",
 2912         .methods = zyd_methods,
 2913         .size = sizeof(struct zyd_softc)
 2914 };
 2915 
 2916 DRIVER_MODULE(zyd, uhub, zyd_driver, NULL, NULL);
 2917 MODULE_DEPEND(zyd, usb, 1, 1, 1);
 2918 MODULE_DEPEND(zyd, wlan, 1, 1, 1);
 2919 MODULE_VERSION(zyd, 1);
 2920 USB_PNP_HOST_INFO(zyd_devs);

Cache object: e9b6cfd0124379f67648a61fc3528e1d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.