FreeBSD/Linux Kernel Cross Reference
sys/dev/vge/if_vge.c
1 /*-
2 * Copyright (c) 2004
3 * Bill Paul <wpaul@windriver.com>. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35
36 /*
37 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44 /*
45 * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46 * combines a tri-speed ethernet MAC and PHY, with the following
47 * features:
48 *
49 * o Jumbo frame support up to 16K
50 * o Transmit and receive flow control
51 * o IPv4 checksum offload
52 * o VLAN tag insertion and stripping
53 * o TCP large send
54 * o 64-bit multicast hash table filter
55 * o 64 entry CAM filter
56 * o 16K RX FIFO and 48K TX FIFO memory
57 * o Interrupt moderation
58 *
59 * The VT6122 supports up to four transmit DMA queues. The descriptors
60 * in the transmit ring can address up to 7 data fragments; frames which
61 * span more than 7 data buffers must be coalesced, but in general the
62 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63 * long. The receive descriptors address only a single buffer.
64 *
65 * There are two peculiar design issues with the VT6122. One is that
66 * receive data buffers must be aligned on a 32-bit boundary. This is
67 * not a problem where the VT6122 is used as a LOM device in x86-based
68 * systems, but on architectures that generate unaligned access traps, we
69 * have to do some copying.
70 *
71 * The other issue has to do with the way 64-bit addresses are handled.
72 * The DMA descriptors only allow you to specify 48 bits of addressing
73 * information. The remaining 16 bits are specified using one of the
74 * I/O registers. If you only have a 32-bit system, then this isn't
75 * an issue, but if you have a 64-bit system and more than 4GB of
76 * memory, you must have to make sure your network data buffers reside
77 * in the same 48-bit 'segment.'
78 *
79 * Special thanks to Ryan Fu at VIA Networking for providing documentation
80 * and sample NICs for testing.
81 */
82
83 #include <sys/param.h>
84 #include <sys/endian.h>
85 #include <sys/systm.h>
86 #include <sys/sockio.h>
87 #include <sys/mbuf.h>
88 #include <sys/malloc.h>
89 #include <sys/module.h>
90 #include <sys/kernel.h>
91 #include <sys/socket.h>
92 #include <sys/taskqueue.h>
93
94 #include <net/if.h>
95 #include <net/if_arp.h>
96 #include <net/ethernet.h>
97 #include <net/if_dl.h>
98 #include <net/if_media.h>
99 #include <net/if_vlan_var.h>
100 #include <net/route.h>
101
102 #include <net/bpf.h>
103
104 #include <machine/bus_pio.h>
105 #include <machine/bus_memio.h>
106 #include <machine/bus.h>
107 #include <machine/resource.h>
108 #include <sys/bus.h>
109 #include <sys/rman.h>
110
111 #include <dev/mii/mii.h>
112 #include <dev/mii/miivar.h>
113
114 #include <dev/pci/pcireg.h>
115 #include <dev/pci/pcivar.h>
116
117 MODULE_DEPEND(vge, pci, 1, 1, 1);
118 MODULE_DEPEND(vge, ether, 1, 1, 1);
119 MODULE_DEPEND(vge, miibus, 1, 1, 1);
120
121 /* "controller miibus0" required. See GENERIC if you get errors here. */
122 #include "miibus_if.h"
123
124 #include <dev/vge/if_vgereg.h>
125 #include <dev/vge/if_vgevar.h>
126
127 #define VGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
128
129 /*
130 * Various supported device vendors/types and their names.
131 */
132 static struct vge_type vge_devs[] = {
133 { VIA_VENDORID, VIA_DEVICEID_61XX,
134 "VIA Networking Gigabit Ethernet" },
135 { 0, 0, NULL }
136 };
137
138 static int vge_probe (device_t);
139 static int vge_attach (device_t);
140 static int vge_detach (device_t);
141
142 static int vge_encap (struct vge_softc *, struct mbuf *, int);
143
144 static void vge_dma_map_addr (void *, bus_dma_segment_t *, int, int);
145 static void vge_dma_map_rx_desc (void *, bus_dma_segment_t *, int,
146 bus_size_t, int);
147 static void vge_dma_map_tx_desc (void *, bus_dma_segment_t *, int,
148 bus_size_t, int);
149 static int vge_allocmem (device_t, struct vge_softc *);
150 static int vge_newbuf (struct vge_softc *, int, struct mbuf *);
151 static int vge_rx_list_init (struct vge_softc *);
152 static int vge_tx_list_init (struct vge_softc *);
153 #ifdef VGE_FIXUP_RX
154 static __inline void vge_fixup_rx
155 (struct mbuf *);
156 #endif
157 static void vge_rxeof (struct vge_softc *);
158 static void vge_txeof (struct vge_softc *);
159 static void vge_intr (void *);
160 static void vge_tick (void *);
161 static void vge_tx_task (void *, int);
162 static void vge_start (struct ifnet *);
163 static int vge_ioctl (struct ifnet *, u_long, caddr_t);
164 static void vge_init (void *);
165 static void vge_stop (struct vge_softc *);
166 static void vge_watchdog (struct ifnet *);
167 static int vge_suspend (device_t);
168 static int vge_resume (device_t);
169 static void vge_shutdown (device_t);
170 static int vge_ifmedia_upd (struct ifnet *);
171 static void vge_ifmedia_sts (struct ifnet *, struct ifmediareq *);
172
173 static void vge_eeprom_getword (struct vge_softc *, int, u_int16_t *);
174 static void vge_read_eeprom (struct vge_softc *, caddr_t, int, int, int);
175
176 static void vge_miipoll_start (struct vge_softc *);
177 static void vge_miipoll_stop (struct vge_softc *);
178 static int vge_miibus_readreg (device_t, int, int);
179 static int vge_miibus_writereg (device_t, int, int, int);
180 static void vge_miibus_statchg (device_t);
181
182 static void vge_cam_clear (struct vge_softc *);
183 static int vge_cam_set (struct vge_softc *, uint8_t *);
184 #if __FreeBSD_version < 502113
185 static uint32_t vge_mchash (uint8_t *);
186 #endif
187 static void vge_setmulti (struct vge_softc *);
188 static void vge_reset (struct vge_softc *);
189
190 #define VGE_PCI_LOIO 0x10
191 #define VGE_PCI_LOMEM 0x14
192
193 static device_method_t vge_methods[] = {
194 /* Device interface */
195 DEVMETHOD(device_probe, vge_probe),
196 DEVMETHOD(device_attach, vge_attach),
197 DEVMETHOD(device_detach, vge_detach),
198 DEVMETHOD(device_suspend, vge_suspend),
199 DEVMETHOD(device_resume, vge_resume),
200 DEVMETHOD(device_shutdown, vge_shutdown),
201
202 /* bus interface */
203 DEVMETHOD(bus_print_child, bus_generic_print_child),
204 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
205
206 /* MII interface */
207 DEVMETHOD(miibus_readreg, vge_miibus_readreg),
208 DEVMETHOD(miibus_writereg, vge_miibus_writereg),
209 DEVMETHOD(miibus_statchg, vge_miibus_statchg),
210
211 { 0, 0 }
212 };
213
214 static driver_t vge_driver = {
215 "vge",
216 vge_methods,
217 sizeof(struct vge_softc)
218 };
219
220 static devclass_t vge_devclass;
221
222 DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
223 DRIVER_MODULE(vge, cardbus, vge_driver, vge_devclass, 0, 0);
224 DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
225
226 /*
227 * Read a word of data stored in the EEPROM at address 'addr.'
228 */
229 static void
230 vge_eeprom_getword(sc, addr, dest)
231 struct vge_softc *sc;
232 int addr;
233 u_int16_t *dest;
234 {
235 register int i;
236 u_int16_t word = 0;
237
238 /*
239 * Enter EEPROM embedded programming mode. In order to
240 * access the EEPROM at all, we first have to set the
241 * EELOAD bit in the CHIPCFG2 register.
242 */
243 CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
244 CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
245
246 /* Select the address of the word we want to read */
247 CSR_WRITE_1(sc, VGE_EEADDR, addr);
248
249 /* Issue read command */
250 CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
251
252 /* Wait for the done bit to be set. */
253 for (i = 0; i < VGE_TIMEOUT; i++) {
254 if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
255 break;
256 }
257
258 if (i == VGE_TIMEOUT) {
259 device_printf(sc->vge_dev, "EEPROM read timed out\n");
260 *dest = 0;
261 return;
262 }
263
264 /* Read the result */
265 word = CSR_READ_2(sc, VGE_EERDDAT);
266
267 /* Turn off EEPROM access mode. */
268 CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
269 CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
270
271 *dest = word;
272
273 return;
274 }
275
276 /*
277 * Read a sequence of words from the EEPROM.
278 */
279 static void
280 vge_read_eeprom(sc, dest, off, cnt, swap)
281 struct vge_softc *sc;
282 caddr_t dest;
283 int off;
284 int cnt;
285 int swap;
286 {
287 int i;
288 u_int16_t word = 0, *ptr;
289
290 for (i = 0; i < cnt; i++) {
291 vge_eeprom_getword(sc, off + i, &word);
292 ptr = (u_int16_t *)(dest + (i * 2));
293 if (swap)
294 *ptr = ntohs(word);
295 else
296 *ptr = word;
297 }
298 }
299
300 static void
301 vge_miipoll_stop(sc)
302 struct vge_softc *sc;
303 {
304 int i;
305
306 CSR_WRITE_1(sc, VGE_MIICMD, 0);
307
308 for (i = 0; i < VGE_TIMEOUT; i++) {
309 DELAY(1);
310 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
311 break;
312 }
313
314 if (i == VGE_TIMEOUT)
315 device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
316
317 return;
318 }
319
320 static void
321 vge_miipoll_start(sc)
322 struct vge_softc *sc;
323 {
324 int i;
325
326 /* First, make sure we're idle. */
327
328 CSR_WRITE_1(sc, VGE_MIICMD, 0);
329 CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
330
331 for (i = 0; i < VGE_TIMEOUT; i++) {
332 DELAY(1);
333 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
334 break;
335 }
336
337 if (i == VGE_TIMEOUT) {
338 device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
339 return;
340 }
341
342 /* Now enable auto poll mode. */
343
344 CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
345
346 /* And make sure it started. */
347
348 for (i = 0; i < VGE_TIMEOUT; i++) {
349 DELAY(1);
350 if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
351 break;
352 }
353
354 if (i == VGE_TIMEOUT)
355 device_printf(sc->vge_dev, "failed to start MII autopoll\n");
356
357 return;
358 }
359
360 static int
361 vge_miibus_readreg(dev, phy, reg)
362 device_t dev;
363 int phy, reg;
364 {
365 struct vge_softc *sc;
366 int i;
367 u_int16_t rval = 0;
368
369 sc = device_get_softc(dev);
370
371 if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
372 return(0);
373
374 VGE_LOCK(sc);
375 vge_miipoll_stop(sc);
376
377 /* Specify the register we want to read. */
378 CSR_WRITE_1(sc, VGE_MIIADDR, reg);
379
380 /* Issue read command. */
381 CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
382
383 /* Wait for the read command bit to self-clear. */
384 for (i = 0; i < VGE_TIMEOUT; i++) {
385 DELAY(1);
386 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
387 break;
388 }
389
390 if (i == VGE_TIMEOUT)
391 device_printf(sc->vge_dev, "MII read timed out\n");
392 else
393 rval = CSR_READ_2(sc, VGE_MIIDATA);
394
395 vge_miipoll_start(sc);
396 VGE_UNLOCK(sc);
397
398 return (rval);
399 }
400
401 static int
402 vge_miibus_writereg(dev, phy, reg, data)
403 device_t dev;
404 int phy, reg, data;
405 {
406 struct vge_softc *sc;
407 int i, rval = 0;
408
409 sc = device_get_softc(dev);
410
411 if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
412 return(0);
413
414 VGE_LOCK(sc);
415 vge_miipoll_stop(sc);
416
417 /* Specify the register we want to write. */
418 CSR_WRITE_1(sc, VGE_MIIADDR, reg);
419
420 /* Specify the data we want to write. */
421 CSR_WRITE_2(sc, VGE_MIIDATA, data);
422
423 /* Issue write command. */
424 CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
425
426 /* Wait for the write command bit to self-clear. */
427 for (i = 0; i < VGE_TIMEOUT; i++) {
428 DELAY(1);
429 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
430 break;
431 }
432
433 if (i == VGE_TIMEOUT) {
434 device_printf(sc->vge_dev, "MII write timed out\n");
435 rval = EIO;
436 }
437
438 vge_miipoll_start(sc);
439 VGE_UNLOCK(sc);
440
441 return (rval);
442 }
443
444 static void
445 vge_cam_clear(sc)
446 struct vge_softc *sc;
447 {
448 int i;
449
450 /*
451 * Turn off all the mask bits. This tells the chip
452 * that none of the entries in the CAM filter are valid.
453 * desired entries will be enabled as we fill the filter in.
454 */
455
456 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
457 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
458 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
459 for (i = 0; i < 8; i++)
460 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
461
462 /* Clear the VLAN filter too. */
463
464 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
465 for (i = 0; i < 8; i++)
466 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
467
468 CSR_WRITE_1(sc, VGE_CAMADDR, 0);
469 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
470 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
471
472 sc->vge_camidx = 0;
473
474 return;
475 }
476
477 static int
478 vge_cam_set(sc, addr)
479 struct vge_softc *sc;
480 uint8_t *addr;
481 {
482 int i, error = 0;
483
484 if (sc->vge_camidx == VGE_CAM_MAXADDRS)
485 return(ENOSPC);
486
487 /* Select the CAM data page. */
488 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
489 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
490
491 /* Set the filter entry we want to update and enable writing. */
492 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
493
494 /* Write the address to the CAM registers */
495 for (i = 0; i < ETHER_ADDR_LEN; i++)
496 CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
497
498 /* Issue a write command. */
499 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
500
501 /* Wake for it to clear. */
502 for (i = 0; i < VGE_TIMEOUT; i++) {
503 DELAY(1);
504 if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
505 break;
506 }
507
508 if (i == VGE_TIMEOUT) {
509 device_printf(sc->vge_dev, "setting CAM filter failed\n");
510 error = EIO;
511 goto fail;
512 }
513
514 /* Select the CAM mask page. */
515 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
516 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
517
518 /* Set the mask bit that enables this filter. */
519 CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
520 1<<(sc->vge_camidx & 7));
521
522 sc->vge_camidx++;
523
524 fail:
525 /* Turn off access to CAM. */
526 CSR_WRITE_1(sc, VGE_CAMADDR, 0);
527 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
528 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
529
530 return (error);
531 }
532
533 #if __FreeBSD_version < 502113
534 static uint32_t
535 vge_mchash(addr)
536 uint8_t *addr;
537 {
538 uint32_t crc, carry;
539 int idx, bit;
540 uint8_t data;
541
542 /* Compute CRC for the address value. */
543 crc = 0xFFFFFFFF; /* initial value */
544
545 for (idx = 0; idx < 6; idx++) {
546 for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) {
547 carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
548 crc <<= 1;
549 if (carry)
550 crc = (crc ^ 0x04c11db6) | carry;
551 }
552 }
553
554 return(crc);
555 }
556 #endif
557
558 /*
559 * Program the multicast filter. We use the 64-entry CAM filter
560 * for perfect filtering. If there's more than 64 multicast addresses,
561 * we use the hash filter insted.
562 */
563 static void
564 vge_setmulti(sc)
565 struct vge_softc *sc;
566 {
567 struct ifnet *ifp;
568 int error = 0/*, h = 0*/;
569 struct ifmultiaddr *ifma;
570 u_int32_t h, hashes[2] = { 0, 0 };
571
572 ifp = &sc->arpcom.ac_if;
573
574 /* First, zot all the multicast entries. */
575 vge_cam_clear(sc);
576 CSR_WRITE_4(sc, VGE_MAR0, 0);
577 CSR_WRITE_4(sc, VGE_MAR1, 0);
578
579 /*
580 * If the user wants allmulti or promisc mode, enable reception
581 * of all multicast frames.
582 */
583 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
584 CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
585 CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
586 return;
587 }
588
589 /* Now program new ones */
590 IF_ADDR_LOCK(ifp);
591 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
592 if (ifma->ifma_addr->sa_family != AF_LINK)
593 continue;
594 error = vge_cam_set(sc,
595 LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
596 if (error)
597 break;
598 }
599
600 /* If there were too many addresses, use the hash filter. */
601 if (error) {
602 vge_cam_clear(sc);
603
604 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
605 if (ifma->ifma_addr->sa_family != AF_LINK)
606 continue;
607 #if __FreeBSD_version < 502113
608 h = vge_mchash(LLADDR((struct sockaddr_dl *)
609 ifma->ifma_addr)) >> 26;
610 #else
611 h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
612 ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
613 #endif
614 if (h < 32)
615 hashes[0] |= (1 << h);
616 else
617 hashes[1] |= (1 << (h - 32));
618 }
619
620 CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
621 CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
622 }
623 IF_ADDR_UNLOCK(ifp);
624
625 return;
626 }
627
628 static void
629 vge_reset(sc)
630 struct vge_softc *sc;
631 {
632 register int i;
633
634 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
635
636 for (i = 0; i < VGE_TIMEOUT; i++) {
637 DELAY(5);
638 if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
639 break;
640 }
641
642 if (i == VGE_TIMEOUT) {
643 device_printf(sc->vge_dev, "soft reset timed out");
644 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
645 DELAY(2000);
646 }
647
648 DELAY(5000);
649
650 CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
651
652 for (i = 0; i < VGE_TIMEOUT; i++) {
653 DELAY(5);
654 if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
655 break;
656 }
657
658 if (i == VGE_TIMEOUT) {
659 device_printf(sc->vge_dev, "EEPROM reload timed out\n");
660 return;
661 }
662
663 CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
664
665 return;
666 }
667
668 /*
669 * Probe for a VIA gigabit chip. Check the PCI vendor and device
670 * IDs against our list and return a device name if we find a match.
671 */
672 static int
673 vge_probe(dev)
674 device_t dev;
675 {
676 struct vge_type *t;
677 struct vge_softc *sc;
678
679 t = vge_devs;
680 sc = device_get_softc(dev);
681
682 while (t->vge_name != NULL) {
683 if ((pci_get_vendor(dev) == t->vge_vid) &&
684 (pci_get_device(dev) == t->vge_did)) {
685 device_set_desc(dev, t->vge_name);
686 return (BUS_PROBE_DEFAULT);
687 }
688 t++;
689 }
690
691 return (ENXIO);
692 }
693
694 static void
695 vge_dma_map_rx_desc(arg, segs, nseg, mapsize, error)
696 void *arg;
697 bus_dma_segment_t *segs;
698 int nseg;
699 bus_size_t mapsize;
700 int error;
701 {
702
703 struct vge_dmaload_arg *ctx;
704 struct vge_rx_desc *d = NULL;
705
706 if (error)
707 return;
708
709 ctx = arg;
710
711 /* Signal error to caller if there's too many segments */
712 if (nseg > ctx->vge_maxsegs) {
713 ctx->vge_maxsegs = 0;
714 return;
715 }
716
717 /*
718 * Map the segment array into descriptors.
719 */
720
721 d = &ctx->sc->vge_ldata.vge_rx_list[ctx->vge_idx];
722
723 /* If this descriptor is still owned by the chip, bail. */
724
725 if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
726 device_printf(ctx->sc->vge_dev,
727 "tried to map busy descriptor\n");
728 ctx->vge_maxsegs = 0;
729 return;
730 }
731
732 d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
733 d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
734 d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
735 d->vge_sts = 0;
736 d->vge_ctl = 0;
737
738 ctx->vge_maxsegs = 1;
739
740 return;
741 }
742
743 static void
744 vge_dma_map_tx_desc(arg, segs, nseg, mapsize, error)
745 void *arg;
746 bus_dma_segment_t *segs;
747 int nseg;
748 bus_size_t mapsize;
749 int error;
750 {
751 struct vge_dmaload_arg *ctx;
752 struct vge_tx_desc *d = NULL;
753 struct vge_tx_frag *f;
754 int i = 0;
755
756 if (error)
757 return;
758
759 ctx = arg;
760
761 /* Signal error to caller if there's too many segments */
762 if (nseg > ctx->vge_maxsegs) {
763 ctx->vge_maxsegs = 0;
764 return;
765 }
766
767 /* Map the segment array into descriptors. */
768
769 d = &ctx->sc->vge_ldata.vge_tx_list[ctx->vge_idx];
770
771 /* If this descriptor is still owned by the chip, bail. */
772
773 if (le32toh(d->vge_sts) & VGE_TDSTS_OWN) {
774 ctx->vge_maxsegs = 0;
775 return;
776 }
777
778 for (i = 0; i < nseg; i++) {
779 f = &d->vge_frag[i];
780 f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
781 f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
782 f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
783 }
784
785 /* Argh. This chip does not autopad short frames */
786
787 if (ctx->vge_m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
788 f = &d->vge_frag[i];
789 f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
790 ctx->vge_m0->m_pkthdr.len));
791 f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
792 f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
793 ctx->vge_m0->m_pkthdr.len = VGE_MIN_FRAMELEN;
794 i++;
795 }
796
797 /*
798 * When telling the chip how many segments there are, we
799 * must use nsegs + 1 instead of just nsegs. Darned if I
800 * know why.
801 */
802 i++;
803
804 d->vge_sts = ctx->vge_m0->m_pkthdr.len << 16;
805 d->vge_ctl = ctx->vge_flags|(i << 28)|VGE_TD_LS_NORM;
806
807 if (ctx->vge_m0->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN)
808 d->vge_ctl |= VGE_TDCTL_JUMBO;
809
810 ctx->vge_maxsegs = nseg;
811
812 return;
813 }
814
815 /*
816 * Map a single buffer address.
817 */
818
819 static void
820 vge_dma_map_addr(arg, segs, nseg, error)
821 void *arg;
822 bus_dma_segment_t *segs;
823 int nseg;
824 int error;
825 {
826 bus_addr_t *addr;
827
828 if (error)
829 return;
830
831 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
832 addr = arg;
833 *addr = segs->ds_addr;
834
835 return;
836 }
837
838 static int
839 vge_allocmem(dev, sc)
840 device_t dev;
841 struct vge_softc *sc;
842 {
843 int error;
844 int nseg;
845 int i;
846
847 /*
848 * Allocate map for RX mbufs.
849 */
850 nseg = 32;
851 error = bus_dma_tag_create(sc->vge_parent_tag, ETHER_ALIGN, 0,
852 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
853 NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
854 NULL, NULL, &sc->vge_ldata.vge_mtag);
855 if (error) {
856 device_printf(dev, "could not allocate dma tag\n");
857 return (ENOMEM);
858 }
859
860 /*
861 * Allocate map for TX descriptor list.
862 */
863 error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
864 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
865 NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
866 NULL, NULL, &sc->vge_ldata.vge_tx_list_tag);
867 if (error) {
868 device_printf(dev, "could not allocate dma tag\n");
869 return (ENOMEM);
870 }
871
872 /* Allocate DMA'able memory for the TX ring */
873
874 error = bus_dmamem_alloc(sc->vge_ldata.vge_tx_list_tag,
875 (void **)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
876 &sc->vge_ldata.vge_tx_list_map);
877 if (error)
878 return (ENOMEM);
879
880 /* Load the map for the TX ring. */
881
882 error = bus_dmamap_load(sc->vge_ldata.vge_tx_list_tag,
883 sc->vge_ldata.vge_tx_list_map, sc->vge_ldata.vge_tx_list,
884 VGE_TX_LIST_SZ, vge_dma_map_addr,
885 &sc->vge_ldata.vge_tx_list_addr, BUS_DMA_NOWAIT);
886
887 /* Create DMA maps for TX buffers */
888
889 for (i = 0; i < VGE_TX_DESC_CNT; i++) {
890 error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
891 &sc->vge_ldata.vge_tx_dmamap[i]);
892 if (error) {
893 device_printf(dev, "can't create DMA map for TX\n");
894 return (ENOMEM);
895 }
896 }
897
898 /*
899 * Allocate map for RX descriptor list.
900 */
901 error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
902 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
903 NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
904 NULL, NULL, &sc->vge_ldata.vge_rx_list_tag);
905 if (error) {
906 device_printf(dev, "could not allocate dma tag\n");
907 return (ENOMEM);
908 }
909
910 /* Allocate DMA'able memory for the RX ring */
911
912 error = bus_dmamem_alloc(sc->vge_ldata.vge_rx_list_tag,
913 (void **)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
914 &sc->vge_ldata.vge_rx_list_map);
915 if (error)
916 return (ENOMEM);
917
918 /* Load the map for the RX ring. */
919
920 error = bus_dmamap_load(sc->vge_ldata.vge_rx_list_tag,
921 sc->vge_ldata.vge_rx_list_map, sc->vge_ldata.vge_rx_list,
922 VGE_TX_LIST_SZ, vge_dma_map_addr,
923 &sc->vge_ldata.vge_rx_list_addr, BUS_DMA_NOWAIT);
924
925 /* Create DMA maps for RX buffers */
926
927 for (i = 0; i < VGE_RX_DESC_CNT; i++) {
928 error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
929 &sc->vge_ldata.vge_rx_dmamap[i]);
930 if (error) {
931 device_printf(dev, "can't create DMA map for RX\n");
932 return (ENOMEM);
933 }
934 }
935
936 return (0);
937 }
938
939 /*
940 * Attach the interface. Allocate softc structures, do ifmedia
941 * setup and ethernet/BPF attach.
942 */
943 static int
944 vge_attach(dev)
945 device_t dev;
946 {
947 u_char eaddr[ETHER_ADDR_LEN];
948 struct vge_softc *sc;
949 struct ifnet *ifp;
950 int unit, error = 0, rid;
951
952 sc = device_get_softc(dev);
953 unit = device_get_unit(dev);
954 sc->vge_dev = dev;
955
956 mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
957 MTX_DEF | MTX_RECURSE);
958 /*
959 * Map control/status registers.
960 */
961 pci_enable_busmaster(dev);
962
963 rid = VGE_PCI_LOMEM;
964 sc->vge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
965 0, ~0, 1, RF_ACTIVE);
966
967 if (sc->vge_res == NULL) {
968 printf ("vge%d: couldn't map ports/memory\n", unit);
969 error = ENXIO;
970 goto fail;
971 }
972
973 sc->vge_btag = rman_get_bustag(sc->vge_res);
974 sc->vge_bhandle = rman_get_bushandle(sc->vge_res);
975
976 /* Allocate interrupt */
977 rid = 0;
978 sc->vge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
979 0, ~0, 1, RF_SHAREABLE | RF_ACTIVE);
980
981 if (sc->vge_irq == NULL) {
982 printf("vge%d: couldn't map interrupt\n", unit);
983 error = ENXIO;
984 goto fail;
985 }
986
987 /* Reset the adapter. */
988 vge_reset(sc);
989
990 /*
991 * Get station address from the EEPROM.
992 */
993 vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
994
995 sc->vge_unit = unit;
996 bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
997
998 #if __FreeBSD_version < 502113
999 printf("vge%d: Ethernet address: %6D\n", unit, eaddr, ":");
1000 #endif
1001
1002 /*
1003 * Allocate the parent bus DMA tag appropriate for PCI.
1004 */
1005 #define VGE_NSEG_NEW 32
1006 error = bus_dma_tag_create(NULL, /* parent */
1007 1, 0, /* alignment, boundary */
1008 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1009 BUS_SPACE_MAXADDR, /* highaddr */
1010 NULL, NULL, /* filter, filterarg */
1011 MAXBSIZE, VGE_NSEG_NEW, /* maxsize, nsegments */
1012 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1013 BUS_DMA_ALLOCNOW, /* flags */
1014 NULL, NULL, /* lockfunc, lockarg */
1015 &sc->vge_parent_tag);
1016 if (error)
1017 goto fail;
1018
1019 error = vge_allocmem(dev, sc);
1020
1021 if (error)
1022 goto fail;
1023
1024 /* Do MII setup */
1025 if (mii_phy_probe(dev, &sc->vge_miibus,
1026 vge_ifmedia_upd, vge_ifmedia_sts)) {
1027 printf("vge%d: MII without any phy!\n", sc->vge_unit);
1028 error = ENXIO;
1029 goto fail;
1030 }
1031
1032 ifp = &sc->arpcom.ac_if;
1033 ifp->if_softc = sc;
1034 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1035 ifp->if_mtu = ETHERMTU;
1036 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1037 ifp->if_ioctl = vge_ioctl;
1038 ifp->if_capabilities = IFCAP_VLAN_MTU;
1039 ifp->if_start = vge_start;
1040 ifp->if_hwassist = VGE_CSUM_FEATURES;
1041 ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1042 #ifdef DEVICE_POLLING
1043 #ifdef IFCAP_POLLING
1044 ifp->if_capabilities |= IFCAP_POLLING;
1045 #endif
1046 #endif
1047 ifp->if_watchdog = vge_watchdog;
1048 ifp->if_init = vge_init;
1049 ifp->if_baudrate = 1000000000;
1050 ifp->if_snd.ifq_maxlen = VGE_IFQ_MAXLEN;
1051 ifp->if_capenable = ifp->if_capabilities;
1052
1053 TASK_INIT(&sc->vge_txtask, 0, vge_tx_task, ifp);
1054
1055 /*
1056 * Call MI attach routine.
1057 */
1058 ether_ifattach(ifp, eaddr);
1059
1060 /* Hook interrupt last to avoid having to lock softc */
1061 error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1062 vge_intr, sc, &sc->vge_intrhand);
1063
1064 if (error) {
1065 printf("vge%d: couldn't set up irq\n", unit);
1066 ether_ifdetach(ifp);
1067 goto fail;
1068 }
1069
1070 fail:
1071 if (error)
1072 vge_detach(dev);
1073
1074 return (error);
1075 }
1076
1077 /*
1078 * Shutdown hardware and free up resources. This can be called any
1079 * time after the mutex has been initialized. It is called in both
1080 * the error case in attach and the normal detach case so it needs
1081 * to be careful about only freeing resources that have actually been
1082 * allocated.
1083 */
1084 static int
1085 vge_detach(dev)
1086 device_t dev;
1087 {
1088 struct vge_softc *sc;
1089 struct ifnet *ifp;
1090 int i;
1091
1092 sc = device_get_softc(dev);
1093 KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1094 ifp = &sc->arpcom.ac_if;
1095
1096 /* These should only be active if attach succeeded */
1097 if (device_is_attached(dev)) {
1098 vge_stop(sc);
1099 /*
1100 * Force off the IFF_UP flag here, in case someone
1101 * still had a BPF descriptor attached to this
1102 * interface. If they do, ether_ifattach() will cause
1103 * the BPF code to try and clear the promisc mode
1104 * flag, which will bubble down to vge_ioctl(),
1105 * which will try to call vge_init() again. This will
1106 * turn the NIC back on and restart the MII ticker,
1107 * which will panic the system when the kernel tries
1108 * to invoke the vge_tick() function that isn't there
1109 * anymore.
1110 */
1111 ifp->if_flags &= ~IFF_UP;
1112 ether_ifdetach(ifp);
1113 }
1114 if (sc->vge_miibus)
1115 device_delete_child(dev, sc->vge_miibus);
1116 bus_generic_detach(dev);
1117
1118 if (sc->vge_intrhand)
1119 bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1120 if (sc->vge_irq)
1121 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vge_irq);
1122 if (sc->vge_res)
1123 bus_release_resource(dev, SYS_RES_MEMORY,
1124 VGE_PCI_LOMEM, sc->vge_res);
1125
1126 /* Unload and free the RX DMA ring memory and map */
1127
1128 if (sc->vge_ldata.vge_rx_list_tag) {
1129 bus_dmamap_unload(sc->vge_ldata.vge_rx_list_tag,
1130 sc->vge_ldata.vge_rx_list_map);
1131 bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag,
1132 sc->vge_ldata.vge_rx_list,
1133 sc->vge_ldata.vge_rx_list_map);
1134 bus_dma_tag_destroy(sc->vge_ldata.vge_rx_list_tag);
1135 }
1136
1137 /* Unload and free the TX DMA ring memory and map */
1138
1139 if (sc->vge_ldata.vge_tx_list_tag) {
1140 bus_dmamap_unload(sc->vge_ldata.vge_tx_list_tag,
1141 sc->vge_ldata.vge_tx_list_map);
1142 bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag,
1143 sc->vge_ldata.vge_tx_list,
1144 sc->vge_ldata.vge_tx_list_map);
1145 bus_dma_tag_destroy(sc->vge_ldata.vge_tx_list_tag);
1146 }
1147
1148 /* Destroy all the RX and TX buffer maps */
1149
1150 if (sc->vge_ldata.vge_mtag) {
1151 for (i = 0; i < VGE_TX_DESC_CNT; i++)
1152 bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1153 sc->vge_ldata.vge_tx_dmamap[i]);
1154 for (i = 0; i < VGE_RX_DESC_CNT; i++)
1155 bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1156 sc->vge_ldata.vge_rx_dmamap[i]);
1157 bus_dma_tag_destroy(sc->vge_ldata.vge_mtag);
1158 }
1159
1160 if (sc->vge_parent_tag)
1161 bus_dma_tag_destroy(sc->vge_parent_tag);
1162
1163 VGE_UNLOCK(sc);
1164 mtx_destroy(&sc->vge_mtx);
1165
1166 return (0);
1167 }
1168
1169 static int
1170 vge_newbuf(sc, idx, m)
1171 struct vge_softc *sc;
1172 int idx;
1173 struct mbuf *m;
1174 {
1175 struct vge_dmaload_arg arg;
1176 struct mbuf *n = NULL;
1177 int i, error;
1178
1179 if (m == NULL) {
1180 n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1181 if (n == NULL)
1182 return (ENOBUFS);
1183 m = n;
1184 } else
1185 m->m_data = m->m_ext.ext_buf;
1186
1187
1188 #ifdef VGE_FIXUP_RX
1189 /*
1190 * This is part of an evil trick to deal with non-x86 platforms.
1191 * The VIA chip requires RX buffers to be aligned on 32-bit
1192 * boundaries, but that will hose non-x86 machines. To get around
1193 * this, we leave some empty space at the start of each buffer
1194 * and for non-x86 hosts, we copy the buffer back two bytes
1195 * to achieve word alignment. This is slightly more efficient
1196 * than allocating a new buffer, copying the contents, and
1197 * discarding the old buffer.
1198 */
1199 m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
1200 m_adj(m, VGE_ETHER_ALIGN);
1201 #else
1202 m->m_len = m->m_pkthdr.len = MCLBYTES;
1203 #endif
1204
1205 arg.sc = sc;
1206 arg.vge_idx = idx;
1207 arg.vge_maxsegs = 1;
1208 arg.vge_flags = 0;
1209
1210 error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag,
1211 sc->vge_ldata.vge_rx_dmamap[idx], m, vge_dma_map_rx_desc,
1212 &arg, BUS_DMA_NOWAIT);
1213 if (error || arg.vge_maxsegs != 1) {
1214 if (n != NULL)
1215 m_freem(n);
1216 return (ENOMEM);
1217 }
1218
1219 /*
1220 * Note: the manual fails to document the fact that for
1221 * proper opration, the driver needs to replentish the RX
1222 * DMA ring 4 descriptors at a time (rather than one at a
1223 * time, like most chips). We can allocate the new buffers
1224 * but we should not set the OWN bits until we're ready
1225 * to hand back 4 of them in one shot.
1226 */
1227
1228 #define VGE_RXCHUNK 4
1229 sc->vge_rx_consumed++;
1230 if (sc->vge_rx_consumed == VGE_RXCHUNK) {
1231 for (i = idx; i != idx - sc->vge_rx_consumed; i--)
1232 sc->vge_ldata.vge_rx_list[i].vge_sts |=
1233 htole32(VGE_RDSTS_OWN);
1234 sc->vge_rx_consumed = 0;
1235 }
1236
1237 sc->vge_ldata.vge_rx_mbuf[idx] = m;
1238
1239 bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1240 sc->vge_ldata.vge_rx_dmamap[idx],
1241 BUS_DMASYNC_PREREAD);
1242
1243 return (0);
1244 }
1245
1246 static int
1247 vge_tx_list_init(sc)
1248 struct vge_softc *sc;
1249 {
1250 bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
1251 bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
1252 (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
1253
1254 bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1255 sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_PREWRITE);
1256 sc->vge_ldata.vge_tx_prodidx = 0;
1257 sc->vge_ldata.vge_tx_considx = 0;
1258 sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
1259
1260 return (0);
1261 }
1262
1263 static int
1264 vge_rx_list_init(sc)
1265 struct vge_softc *sc;
1266 {
1267 int i;
1268
1269 bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
1270 bzero ((char *)&sc->vge_ldata.vge_rx_mbuf,
1271 (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
1272
1273 sc->vge_rx_consumed = 0;
1274
1275 for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1276 if (vge_newbuf(sc, i, NULL) == ENOBUFS)
1277 return (ENOBUFS);
1278 }
1279
1280 /* Flush the RX descriptors */
1281
1282 bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1283 sc->vge_ldata.vge_rx_list_map,
1284 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1285
1286 sc->vge_ldata.vge_rx_prodidx = 0;
1287 sc->vge_rx_consumed = 0;
1288 sc->vge_head = sc->vge_tail = NULL;
1289
1290 return (0);
1291 }
1292
1293 #ifdef VGE_FIXUP_RX
1294 static __inline void
1295 vge_fixup_rx(m)
1296 struct mbuf *m;
1297 {
1298 int i;
1299 uint16_t *src, *dst;
1300
1301 src = mtod(m, uint16_t *);
1302 dst = src - 1;
1303
1304 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1305 *dst++ = *src++;
1306
1307 m->m_data -= ETHER_ALIGN;
1308
1309 return;
1310 }
1311 #endif
1312
1313 /*
1314 * RX handler. We support the reception of jumbo frames that have
1315 * been fragmented across multiple 2K mbuf cluster buffers.
1316 */
1317 static void
1318 vge_rxeof(sc)
1319 struct vge_softc *sc;
1320 {
1321 struct mbuf *m;
1322 struct ifnet *ifp;
1323 int i, total_len;
1324 int lim = 0;
1325 struct vge_rx_desc *cur_rx;
1326 u_int32_t rxstat, rxctl;
1327
1328 VGE_LOCK_ASSERT(sc);
1329 ifp = &sc->arpcom.ac_if;
1330 i = sc->vge_ldata.vge_rx_prodidx;
1331
1332 /* Invalidate the descriptor memory */
1333
1334 bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1335 sc->vge_ldata.vge_rx_list_map,
1336 BUS_DMASYNC_POSTREAD);
1337
1338 while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
1339
1340 #ifdef DEVICE_POLLING
1341 if (ifp->if_flags & IFF_POLLING) {
1342 if (sc->rxcycles <= 0)
1343 break;
1344 sc->rxcycles--;
1345 }
1346 #endif /* DEVICE_POLLING */
1347
1348 cur_rx = &sc->vge_ldata.vge_rx_list[i];
1349 m = sc->vge_ldata.vge_rx_mbuf[i];
1350 total_len = VGE_RXBYTES(cur_rx);
1351 rxstat = le32toh(cur_rx->vge_sts);
1352 rxctl = le32toh(cur_rx->vge_ctl);
1353
1354 /* Invalidate the RX mbuf and unload its map */
1355
1356 bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1357 sc->vge_ldata.vge_rx_dmamap[i],
1358 BUS_DMASYNC_POSTWRITE);
1359 bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1360 sc->vge_ldata.vge_rx_dmamap[i]);
1361
1362 /*
1363 * If the 'start of frame' bit is set, this indicates
1364 * either the first fragment in a multi-fragment receive,
1365 * or an intermediate fragment. Either way, we want to
1366 * accumulate the buffers.
1367 */
1368 if (rxstat & VGE_RXPKT_SOF) {
1369 m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
1370 if (sc->vge_head == NULL)
1371 sc->vge_head = sc->vge_tail = m;
1372 else {
1373 m->m_flags &= ~M_PKTHDR;
1374 sc->vge_tail->m_next = m;
1375 sc->vge_tail = m;
1376 }
1377 vge_newbuf(sc, i, NULL);
1378 VGE_RX_DESC_INC(i);
1379 continue;
1380 }
1381
1382 /*
1383 * Bad/error frames will have the RXOK bit cleared.
1384 * However, there's one error case we want to allow:
1385 * if a VLAN tagged frame arrives and the chip can't
1386 * match it against the CAM filter, it considers this
1387 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1388 * We don't want to drop the frame though: our VLAN
1389 * filtering is done in software.
1390 */
1391 if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1392 && !(rxstat & VGE_RDSTS_CSUMERR)) {
1393 ifp->if_ierrors++;
1394 /*
1395 * If this is part of a multi-fragment packet,
1396 * discard all the pieces.
1397 */
1398 if (sc->vge_head != NULL) {
1399 m_freem(sc->vge_head);
1400 sc->vge_head = sc->vge_tail = NULL;
1401 }
1402 vge_newbuf(sc, i, m);
1403 VGE_RX_DESC_INC(i);
1404 continue;
1405 }
1406
1407 /*
1408 * If allocating a replacement mbuf fails,
1409 * reload the current one.
1410 */
1411
1412 if (vge_newbuf(sc, i, NULL)) {
1413 ifp->if_ierrors++;
1414 if (sc->vge_head != NULL) {
1415 m_freem(sc->vge_head);
1416 sc->vge_head = sc->vge_tail = NULL;
1417 }
1418 vge_newbuf(sc, i, m);
1419 VGE_RX_DESC_INC(i);
1420 continue;
1421 }
1422
1423 VGE_RX_DESC_INC(i);
1424
1425 if (sc->vge_head != NULL) {
1426 m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
1427 /*
1428 * Special case: if there's 4 bytes or less
1429 * in this buffer, the mbuf can be discarded:
1430 * the last 4 bytes is the CRC, which we don't
1431 * care about anyway.
1432 */
1433 if (m->m_len <= ETHER_CRC_LEN) {
1434 sc->vge_tail->m_len -=
1435 (ETHER_CRC_LEN - m->m_len);
1436 m_freem(m);
1437 } else {
1438 m->m_len -= ETHER_CRC_LEN;
1439 m->m_flags &= ~M_PKTHDR;
1440 sc->vge_tail->m_next = m;
1441 }
1442 m = sc->vge_head;
1443 sc->vge_head = sc->vge_tail = NULL;
1444 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1445 } else
1446 m->m_pkthdr.len = m->m_len =
1447 (total_len - ETHER_CRC_LEN);
1448
1449 #ifdef VGE_FIXUP_RX
1450 vge_fixup_rx(m);
1451 #endif
1452 ifp->if_ipackets++;
1453 m->m_pkthdr.rcvif = ifp;
1454
1455 /* Do RX checksumming if enabled */
1456 if (ifp->if_capenable & IFCAP_RXCSUM) {
1457
1458 /* Check IP header checksum */
1459 if (rxctl & VGE_RDCTL_IPPKT)
1460 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1461 if (rxctl & VGE_RDCTL_IPCSUMOK)
1462 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1463
1464 /* Check TCP/UDP checksum */
1465 if (rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT) &&
1466 rxctl & VGE_RDCTL_PROTOCSUMOK) {
1467 m->m_pkthdr.csum_flags |=
1468 CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1469 m->m_pkthdr.csum_data = 0xffff;
1470 }
1471 }
1472
1473 if (rxstat & VGE_RDSTS_VTAG)
1474 VLAN_INPUT_TAG(ifp, m,
1475 ntohs((rxctl & VGE_RDCTL_VLANID)), continue);
1476
1477 VGE_UNLOCK(sc);
1478 (*ifp->if_input)(ifp, m);
1479 VGE_LOCK(sc);
1480
1481 lim++;
1482 if (lim == VGE_RX_DESC_CNT)
1483 break;
1484
1485 }
1486
1487 /* Flush the RX DMA ring */
1488
1489 bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1490 sc->vge_ldata.vge_rx_list_map,
1491 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1492
1493 sc->vge_ldata.vge_rx_prodidx = i;
1494 CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1495
1496
1497 return;
1498 }
1499
1500 static void
1501 vge_txeof(sc)
1502 struct vge_softc *sc;
1503 {
1504 struct ifnet *ifp;
1505 u_int32_t txstat;
1506 int idx;
1507
1508 ifp = &sc->arpcom.ac_if;
1509 idx = sc->vge_ldata.vge_tx_considx;
1510
1511 /* Invalidate the TX descriptor list */
1512
1513 bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1514 sc->vge_ldata.vge_tx_list_map,
1515 BUS_DMASYNC_POSTREAD);
1516
1517 while (idx != sc->vge_ldata.vge_tx_prodidx) {
1518
1519 txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1520 if (txstat & VGE_TDSTS_OWN)
1521 break;
1522
1523 m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1524 sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1525 bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1526 sc->vge_ldata.vge_tx_dmamap[idx]);
1527 if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1528 ifp->if_collisions++;
1529 if (txstat & VGE_TDSTS_TXERR)
1530 ifp->if_oerrors++;
1531 else
1532 ifp->if_opackets++;
1533
1534 sc->vge_ldata.vge_tx_free++;
1535 VGE_TX_DESC_INC(idx);
1536 }
1537
1538 /* No changes made to the TX ring, so no flush needed */
1539
1540 if (idx != sc->vge_ldata.vge_tx_considx) {
1541 sc->vge_ldata.vge_tx_considx = idx;
1542 ifp->if_flags &= ~IFF_OACTIVE;
1543 ifp->if_timer = 0;
1544 }
1545
1546 /*
1547 * If not all descriptors have been released reaped yet,
1548 * reload the timer so that we will eventually get another
1549 * interrupt that will cause us to re-enter this routine.
1550 * This is done in case the transmitter has gone idle.
1551 */
1552 if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) {
1553 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1554 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1555 }
1556
1557 return;
1558 }
1559
1560 static void
1561 vge_tick(xsc)
1562 void *xsc;
1563 {
1564 struct vge_softc *sc;
1565 struct ifnet *ifp;
1566 struct mii_data *mii;
1567
1568 sc = xsc;
1569 ifp = &sc->arpcom.ac_if;
1570 VGE_LOCK(sc);
1571 mii = device_get_softc(sc->vge_miibus);
1572
1573 mii_tick(mii);
1574 if (sc->vge_link) {
1575 if (!(mii->mii_media_status & IFM_ACTIVE)) {
1576 sc->vge_link = 0;
1577 #ifdef LINK_STATE_UP
1578 sc->arpcom.ac_if.if_link_state = LINK_STATE_UP;
1579 rt_ifmsg(&(sc->arpcom.ac_if));
1580 #endif /* LINK_STATE_UP */
1581 }
1582 } else {
1583 if (mii->mii_media_status & IFM_ACTIVE &&
1584 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1585 sc->vge_link = 1;
1586 #ifdef LINK_STATE_DOWN
1587 sc->arpcom.ac_if.if_link_state = LINK_STATE_DOWN;
1588 rt_ifmsg(&(sc->arpcom.ac_if));
1589 #endif /* LINK_STATE_DOWN */
1590 #if __FreeBSD_version < 502114
1591 if (ifp->if_snd.ifq_head != NULL)
1592 #else
1593 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1594 #endif
1595 taskqueue_enqueue(taskqueue_swi,
1596 &sc->vge_txtask);
1597 }
1598 }
1599
1600 VGE_UNLOCK(sc);
1601
1602 return;
1603 }
1604
1605 #ifdef DEVICE_POLLING
1606 static void
1607 vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1608 {
1609 struct vge_softc *sc = ifp->if_softc;
1610
1611 VGE_LOCK(sc);
1612 #ifdef IFCAP_POLLING
1613 if (!(ifp->if_capenable & IFCAP_POLLING)) {
1614 ether_poll_deregister(ifp);
1615 cmd = POLL_DEREGISTER;
1616 }
1617 #endif
1618 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1619 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1620 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
1621 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1622 goto done;
1623 }
1624
1625 sc->rxcycles = count;
1626 vge_rxeof(sc);
1627 vge_txeof(sc);
1628
1629 #if __FreeBSD_version < 502114
1630 if (ifp->if_snd.ifq_head != NULL)
1631 #else
1632 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1633 #endif
1634 taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1635
1636 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1637 u_int32_t status;
1638 status = CSR_READ_4(sc, VGE_ISR);
1639 if (status == 0xFFFFFFFF)
1640 goto done;
1641 if (status)
1642 CSR_WRITE_4(sc, VGE_ISR, status);
1643
1644 /*
1645 * XXX check behaviour on receiver stalls.
1646 */
1647
1648 if (status & VGE_ISR_TXDMA_STALL ||
1649 status & VGE_ISR_RXDMA_STALL)
1650 vge_init(sc);
1651
1652 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1653 vge_rxeof(sc);
1654 ifp->if_ierrors++;
1655 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1656 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1657 }
1658 }
1659 done:
1660 VGE_UNLOCK(sc);
1661 }
1662 #endif /* DEVICE_POLLING */
1663
1664 static void
1665 vge_intr(arg)
1666 void *arg;
1667 {
1668 struct vge_softc *sc;
1669 struct ifnet *ifp;
1670 u_int32_t status;
1671
1672 sc = arg;
1673
1674 if (sc->suspended) {
1675 return;
1676 }
1677
1678 VGE_LOCK(sc);
1679 ifp = &sc->arpcom.ac_if;
1680
1681 if (!(ifp->if_flags & IFF_UP)) {
1682 VGE_UNLOCK(sc);
1683 return;
1684 }
1685
1686 #ifdef DEVICE_POLLING
1687 if (ifp->if_flags & IFF_POLLING)
1688 goto done;
1689 if (
1690 #ifdef IFCAP_POLLING
1691 (ifp->if_capenable & IFCAP_POLLING) &&
1692 #endif
1693 ether_poll_register(vge_poll, ifp)) { /* ok, disable interrupts */
1694 CSR_WRITE_4(sc, VGE_IMR, 0);
1695 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1696 vge_poll(ifp, 0, 1);
1697 goto done;
1698 }
1699
1700 #endif /* DEVICE_POLLING */
1701
1702 /* Disable interrupts */
1703 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1704
1705 for (;;) {
1706
1707 status = CSR_READ_4(sc, VGE_ISR);
1708 /* If the card has gone away the read returns 0xffff. */
1709 if (status == 0xFFFFFFFF)
1710 break;
1711
1712 if (status)
1713 CSR_WRITE_4(sc, VGE_ISR, status);
1714
1715 if ((status & VGE_INTRS) == 0)
1716 break;
1717
1718 if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1719 vge_rxeof(sc);
1720
1721 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1722 vge_rxeof(sc);
1723 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1724 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1725 }
1726
1727 if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1728 vge_txeof(sc);
1729
1730 if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1731 vge_init(sc);
1732
1733 if (status & VGE_ISR_LINKSTS)
1734 vge_tick(sc);
1735 }
1736
1737 /* Re-enable interrupts */
1738 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1739
1740 #ifdef DEVICE_POLLING
1741 done:
1742 #endif
1743 VGE_UNLOCK(sc);
1744
1745 #if __FreeBSD_version < 502114
1746 if (ifp->if_snd.ifq_head != NULL)
1747 #else
1748 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1749 #endif
1750 taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1751
1752 return;
1753 }
1754
1755 static int
1756 vge_encap(sc, m_head, idx)
1757 struct vge_softc *sc;
1758 struct mbuf *m_head;
1759 int idx;
1760 {
1761 struct mbuf *m_new = NULL;
1762 struct vge_dmaload_arg arg;
1763 bus_dmamap_t map;
1764 int error;
1765 struct m_tag *mtag;
1766
1767 if (sc->vge_ldata.vge_tx_free <= 2)
1768 return (EFBIG);
1769
1770 arg.vge_flags = 0;
1771
1772 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1773 arg.vge_flags |= VGE_TDCTL_IPCSUM;
1774 if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1775 arg.vge_flags |= VGE_TDCTL_TCPCSUM;
1776 if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1777 arg.vge_flags |= VGE_TDCTL_UDPCSUM;
1778
1779 arg.sc = sc;
1780 arg.vge_idx = idx;
1781 arg.vge_m0 = m_head;
1782 arg.vge_maxsegs = VGE_TX_FRAGS;
1783
1784 map = sc->vge_ldata.vge_tx_dmamap[idx];
1785 error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1786 m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1787
1788 if (error && error != EFBIG) {
1789 printf("vge%d: can't map mbuf (error %d)\n",
1790 sc->vge_unit, error);
1791 return (ENOBUFS);
1792 }
1793
1794 /* Too many segments to map, coalesce into a single mbuf */
1795
1796 if (error || arg.vge_maxsegs == 0) {
1797 m_new = m_defrag(m_head, M_DONTWAIT);
1798 if (m_new == NULL)
1799 return (1);
1800 else
1801 m_head = m_new;
1802
1803 arg.sc = sc;
1804 arg.vge_m0 = m_head;
1805 arg.vge_idx = idx;
1806 arg.vge_maxsegs = 1;
1807
1808 error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1809 m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1810 if (error) {
1811 printf("vge%d: can't map mbuf (error %d)\n",
1812 sc->vge_unit, error);
1813 return (EFBIG);
1814 }
1815 }
1816
1817 sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1818 sc->vge_ldata.vge_tx_free--;
1819
1820 /*
1821 * Set up hardware VLAN tagging.
1822 */
1823
1824 mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m_head);
1825 if (mtag != NULL)
1826 sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
1827 htole32(htons(VLAN_TAG_VALUE(mtag)) | VGE_TDCTL_VTAG);
1828
1829 sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1830
1831 return (0);
1832 }
1833
1834 static void
1835 vge_tx_task(arg, npending)
1836 void *arg;
1837 int npending;
1838 {
1839 struct ifnet *ifp;
1840
1841 ifp = arg;
1842 vge_start(ifp);
1843
1844 return;
1845 }
1846
1847 /*
1848 * Main transmit routine.
1849 */
1850
1851 static void
1852 vge_start(ifp)
1853 struct ifnet *ifp;
1854 {
1855 struct vge_softc *sc;
1856 struct mbuf *m_head = NULL;
1857 int idx, pidx = 0;
1858
1859 sc = ifp->if_softc;
1860 VGE_LOCK(sc);
1861
1862 if (!sc->vge_link || ifp->if_flags & IFF_OACTIVE) {
1863 VGE_UNLOCK(sc);
1864 return;
1865 }
1866
1867 #if __FreeBSD_version < 502114
1868 if (ifp->if_snd.ifq_head == NULL) {
1869 #else
1870 if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
1871 #endif
1872 VGE_UNLOCK(sc);
1873 return;
1874 }
1875
1876 idx = sc->vge_ldata.vge_tx_prodidx;
1877
1878 pidx = idx - 1;
1879 if (pidx < 0)
1880 pidx = VGE_TX_DESC_CNT - 1;
1881
1882
1883 while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) {
1884 #if __FreeBSD_version < 502114
1885 IF_DEQUEUE(&ifp->if_snd, m_head);
1886 #else
1887 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1888 #endif
1889 if (m_head == NULL)
1890 break;
1891
1892 if (vge_encap(sc, m_head, idx)) {
1893 #if __FreeBSD_version >= 502114
1894 IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1895 #else
1896 IF_PREPEND(&ifp->if_snd, m_head);
1897 #endif
1898 ifp->if_flags |= IFF_OACTIVE;
1899 break;
1900 }
1901
1902 sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1903 htole16(VGE_TXDESC_Q);
1904
1905 pidx = idx;
1906 VGE_TX_DESC_INC(idx);
1907
1908 /*
1909 * If there's a BPF listener, bounce a copy of this frame
1910 * to him.
1911 */
1912 BPF_MTAP(ifp, m_head);
1913 }
1914
1915 if (idx == sc->vge_ldata.vge_tx_prodidx) {
1916 VGE_UNLOCK(sc);
1917 return;
1918 }
1919
1920 /* Flush the TX descriptors */
1921
1922 bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1923 sc->vge_ldata.vge_tx_list_map,
1924 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1925
1926 /* Issue a transmit command. */
1927 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1928
1929 sc->vge_ldata.vge_tx_prodidx = idx;
1930
1931 /*
1932 * Use the countdown timer for interrupt moderation.
1933 * 'TX done' interrupts are disabled. Instead, we reset the
1934 * countdown timer, which will begin counting until it hits
1935 * the value in the SSTIMER register, and then trigger an
1936 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1937 * the timer count is reloaded. Only when the transmitter
1938 * is idle will the timer hit 0 and an interrupt fire.
1939 */
1940 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1941
1942 VGE_UNLOCK(sc);
1943
1944 /*
1945 * Set a timeout in case the chip goes out to lunch.
1946 */
1947 ifp->if_timer = 5;
1948
1949 return;
1950 }
1951
1952 static void
1953 vge_init(xsc)
1954 void *xsc;
1955 {
1956 struct vge_softc *sc = xsc;
1957 struct ifnet *ifp = &sc->arpcom.ac_if;
1958 struct mii_data *mii;
1959 int i;
1960
1961 VGE_LOCK(sc);
1962 mii = device_get_softc(sc->vge_miibus);
1963
1964 /*
1965 * Cancel pending I/O and free all RX/TX buffers.
1966 */
1967 vge_stop(sc);
1968 vge_reset(sc);
1969
1970 /*
1971 * Initialize the RX and TX descriptors and mbufs.
1972 */
1973
1974 vge_rx_list_init(sc);
1975 vge_tx_list_init(sc);
1976
1977 /* Set our station address */
1978 for (i = 0; i < ETHER_ADDR_LEN; i++)
1979 CSR_WRITE_1(sc, VGE_PAR0 + i, sc->arpcom.ac_enaddr[i]);
1980
1981 /*
1982 * Set receive FIFO threshold. Also allow transmission and
1983 * reception of VLAN tagged frames.
1984 */
1985 CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1986 CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1987
1988 /* Set DMA burst length */
1989 CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1990 CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1991
1992 CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1993
1994 /* Set collision backoff algorithm */
1995 CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1996 VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1997 CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1998
1999 /* Disable LPSEL field in priority resolution */
2000 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
2001
2002 /*
2003 * Load the addresses of the DMA queues into the chip.
2004 * Note that we only use one transmit queue.
2005 */
2006
2007 CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
2008 VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
2009 CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
2010
2011 CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
2012 VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
2013 CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
2014 CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
2015
2016 /* Enable and wake up the RX descriptor queue */
2017 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
2018 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
2019
2020 /* Enable the TX descriptor queue */
2021 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
2022
2023 /* Set up the receive filter -- allow large frames for VLANs. */
2024 CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
2025
2026 /* If we want promiscuous mode, set the allframes bit. */
2027 if (ifp->if_flags & IFF_PROMISC) {
2028 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
2029 }
2030
2031 /* Set capture broadcast bit to capture broadcast frames. */
2032 if (ifp->if_flags & IFF_BROADCAST) {
2033 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
2034 }
2035
2036 /* Set multicast bit to capture multicast frames. */
2037 if (ifp->if_flags & IFF_MULTICAST) {
2038 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
2039 }
2040
2041 /* Init the cam filter. */
2042 vge_cam_clear(sc);
2043
2044 /* Init the multicast filter. */
2045 vge_setmulti(sc);
2046
2047 /* Enable flow control */
2048
2049 CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
2050
2051 /* Enable jumbo frame reception (if desired) */
2052
2053 /* Start the MAC. */
2054 CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
2055 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
2056 CSR_WRITE_1(sc, VGE_CRS0,
2057 VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
2058
2059 /*
2060 * Configure one-shot timer for microsecond
2061 * resulution and load it for 500 usecs.
2062 */
2063 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
2064 CSR_WRITE_2(sc, VGE_SSTIMER, 400);
2065
2066 /*
2067 * Configure interrupt moderation for receive. Enable
2068 * the holdoff counter and load it, and set the RX
2069 * suppression count to the number of descriptors we
2070 * want to allow before triggering an interrupt.
2071 * The holdoff timer is in units of 20 usecs.
2072 */
2073
2074 #ifdef notyet
2075 CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
2076 /* Select the interrupt holdoff timer page. */
2077 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2078 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2079 CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
2080
2081 /* Enable use of the holdoff timer. */
2082 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2083 CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
2084
2085 /* Select the RX suppression threshold page. */
2086 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2087 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2088 CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
2089
2090 /* Restore the page select bits. */
2091 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2092 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
2093 #endif
2094
2095 #ifdef DEVICE_POLLING
2096 /*
2097 * Disable interrupts if we are polling.
2098 */
2099 if (ifp->if_flags & IFF_POLLING) {
2100 CSR_WRITE_4(sc, VGE_IMR, 0);
2101 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2102 } else /* otherwise ... */
2103 #endif /* DEVICE_POLLING */
2104 {
2105 /*
2106 * Enable interrupts.
2107 */
2108 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2109 CSR_WRITE_4(sc, VGE_ISR, 0);
2110 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2111 }
2112
2113 mii_mediachg(mii);
2114
2115 ifp->if_flags |= IFF_RUNNING;
2116 ifp->if_flags &= ~IFF_OACTIVE;
2117
2118 sc->vge_if_flags = 0;
2119 sc->vge_link = 0;
2120
2121 VGE_UNLOCK(sc);
2122
2123 return;
2124 }
2125
2126 /*
2127 * Set media options.
2128 */
2129 static int
2130 vge_ifmedia_upd(ifp)
2131 struct ifnet *ifp;
2132 {
2133 struct vge_softc *sc;
2134 struct mii_data *mii;
2135
2136 sc = ifp->if_softc;
2137 mii = device_get_softc(sc->vge_miibus);
2138 mii_mediachg(mii);
2139
2140 return (0);
2141 }
2142
2143 /*
2144 * Report current media status.
2145 */
2146 static void
2147 vge_ifmedia_sts(ifp, ifmr)
2148 struct ifnet *ifp;
2149 struct ifmediareq *ifmr;
2150 {
2151 struct vge_softc *sc;
2152 struct mii_data *mii;
2153
2154 sc = ifp->if_softc;
2155 mii = device_get_softc(sc->vge_miibus);
2156
2157 mii_pollstat(mii);
2158 ifmr->ifm_active = mii->mii_media_active;
2159 ifmr->ifm_status = mii->mii_media_status;
2160
2161 return;
2162 }
2163
2164 static void
2165 vge_miibus_statchg(dev)
2166 device_t dev;
2167 {
2168 struct vge_softc *sc;
2169 struct mii_data *mii;
2170 struct ifmedia_entry *ife;
2171
2172 sc = device_get_softc(dev);
2173 mii = device_get_softc(sc->vge_miibus);
2174 ife = mii->mii_media.ifm_cur;
2175
2176 /*
2177 * If the user manually selects a media mode, we need to turn
2178 * on the forced MAC mode bit in the DIAGCTL register. If the
2179 * user happens to choose a full duplex mode, we also need to
2180 * set the 'force full duplex' bit. This applies only to
2181 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2182 * mode is disabled, and in 1000baseT mode, full duplex is
2183 * always implied, so we turn on the forced mode bit but leave
2184 * the FDX bit cleared.
2185 */
2186
2187 switch (IFM_SUBTYPE(ife->ifm_media)) {
2188 case IFM_AUTO:
2189 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2190 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2191 break;
2192 case IFM_1000_T:
2193 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2194 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2195 break;
2196 case IFM_100_TX:
2197 case IFM_10_T:
2198 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2199 if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2200 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2201 } else {
2202 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2203 }
2204 break;
2205 default:
2206 device_printf(dev, "unknown media type: %x\n",
2207 IFM_SUBTYPE(ife->ifm_media));
2208 break;
2209 }
2210
2211 return;
2212 }
2213
2214 static int
2215 vge_ioctl(ifp, command, data)
2216 struct ifnet *ifp;
2217 u_long command;
2218 caddr_t data;
2219 {
2220 struct vge_softc *sc = ifp->if_softc;
2221 struct ifreq *ifr = (struct ifreq *) data;
2222 struct mii_data *mii;
2223 int error = 0;
2224
2225 switch (command) {
2226 case SIOCSIFMTU:
2227 if (ifr->ifr_mtu > VGE_JUMBO_MTU)
2228 error = EINVAL;
2229 ifp->if_mtu = ifr->ifr_mtu;
2230 break;
2231 case SIOCSIFFLAGS:
2232 if (ifp->if_flags & IFF_UP) {
2233 if (ifp->if_flags & IFF_RUNNING &&
2234 ifp->if_flags & IFF_PROMISC &&
2235 !(sc->vge_if_flags & IFF_PROMISC)) {
2236 CSR_SETBIT_1(sc, VGE_RXCTL,
2237 VGE_RXCTL_RX_PROMISC);
2238 vge_setmulti(sc);
2239 } else if (ifp->if_flags & IFF_RUNNING &&
2240 !(ifp->if_flags & IFF_PROMISC) &&
2241 sc->vge_if_flags & IFF_PROMISC) {
2242 CSR_CLRBIT_1(sc, VGE_RXCTL,
2243 VGE_RXCTL_RX_PROMISC);
2244 vge_setmulti(sc);
2245 } else
2246 vge_init(sc);
2247 } else {
2248 if (ifp->if_flags & IFF_RUNNING)
2249 vge_stop(sc);
2250 }
2251 sc->vge_if_flags = ifp->if_flags;
2252 break;
2253 case SIOCADDMULTI:
2254 case SIOCDELMULTI:
2255 vge_setmulti(sc);
2256 break;
2257 case SIOCGIFMEDIA:
2258 case SIOCSIFMEDIA:
2259 mii = device_get_softc(sc->vge_miibus);
2260 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2261 break;
2262 case SIOCSIFCAP:
2263 #ifdef IFCAP_POLLING
2264 ifp->if_capenable &= ~(IFCAP_HWCSUM | IFCAP_POLLING);
2265 #else
2266 ifp->if_capenable &= ~(IFCAP_HWCSUM);
2267 #endif
2268 ifp->if_capenable |=
2269 #ifdef IFCAP_POLLING
2270 ifr->ifr_reqcap & (IFCAP_HWCSUM | IFCAP_POLLING);
2271 #else
2272 ifr->ifr_reqcap & (IFCAP_HWCSUM);
2273 #endif
2274 if (ifp->if_capenable & IFCAP_TXCSUM)
2275 ifp->if_hwassist = VGE_CSUM_FEATURES;
2276 else
2277 ifp->if_hwassist = 0;
2278 if (ifp->if_flags & IFF_RUNNING)
2279 vge_init(sc);
2280 break;
2281 default:
2282 error = ether_ioctl(ifp, command, data);
2283 break;
2284 }
2285
2286 return (error);
2287 }
2288
2289 static void
2290 vge_watchdog(ifp)
2291 struct ifnet *ifp;
2292 {
2293 struct vge_softc *sc;
2294
2295 sc = ifp->if_softc;
2296 VGE_LOCK(sc);
2297 printf("vge%d: watchdog timeout\n", sc->vge_unit);
2298 ifp->if_oerrors++;
2299
2300 vge_txeof(sc);
2301 vge_rxeof(sc);
2302
2303 vge_init(sc);
2304
2305 VGE_UNLOCK(sc);
2306
2307 return;
2308 }
2309
2310 /*
2311 * Stop the adapter and free any mbufs allocated to the
2312 * RX and TX lists.
2313 */
2314 static void
2315 vge_stop(sc)
2316 struct vge_softc *sc;
2317 {
2318 register int i;
2319 struct ifnet *ifp;
2320
2321 VGE_LOCK(sc);
2322 ifp = &sc->arpcom.ac_if;
2323 ifp->if_timer = 0;
2324
2325 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2326 #ifdef DEVICE_POLLING
2327 ether_poll_deregister(ifp);
2328 #endif /* DEVICE_POLLING */
2329
2330 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2331 CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2332 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2333 CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2334 CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2335 CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2336
2337 if (sc->vge_head != NULL) {
2338 m_freem(sc->vge_head);
2339 sc->vge_head = sc->vge_tail = NULL;
2340 }
2341
2342 /* Free the TX list buffers. */
2343
2344 for (i = 0; i < VGE_TX_DESC_CNT; i++) {
2345 if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
2346 bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2347 sc->vge_ldata.vge_tx_dmamap[i]);
2348 m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
2349 sc->vge_ldata.vge_tx_mbuf[i] = NULL;
2350 }
2351 }
2352
2353 /* Free the RX list buffers. */
2354
2355 for (i = 0; i < VGE_RX_DESC_CNT; i++) {
2356 if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
2357 bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2358 sc->vge_ldata.vge_rx_dmamap[i]);
2359 m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
2360 sc->vge_ldata.vge_rx_mbuf[i] = NULL;
2361 }
2362 }
2363
2364 VGE_UNLOCK(sc);
2365
2366 return;
2367 }
2368
2369 /*
2370 * Device suspend routine. Stop the interface and save some PCI
2371 * settings in case the BIOS doesn't restore them properly on
2372 * resume.
2373 */
2374 static int
2375 vge_suspend(dev)
2376 device_t dev;
2377 {
2378 struct vge_softc *sc;
2379 int i;
2380
2381 sc = device_get_softc(dev);
2382
2383 vge_stop(sc);
2384
2385 for (i = 0; i < 5; i++)
2386 sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2387 sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2388 sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2389 sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2390 sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2391
2392 sc->suspended = 1;
2393
2394 return (0);
2395 }
2396
2397 /*
2398 * Device resume routine. Restore some PCI settings in case the BIOS
2399 * doesn't, re-enable busmastering, and restart the interface if
2400 * appropriate.
2401 */
2402 static int
2403 vge_resume(dev)
2404 device_t dev;
2405 {
2406 struct vge_softc *sc;
2407 struct ifnet *ifp;
2408 int i;
2409
2410 sc = device_get_softc(dev);
2411 ifp = &sc->arpcom.ac_if;
2412
2413 /* better way to do this? */
2414 for (i = 0; i < 5; i++)
2415 pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2416 pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2417 pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2418 pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2419 pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2420
2421 /* reenable busmastering */
2422 pci_enable_busmaster(dev);
2423 pci_enable_io(dev, SYS_RES_MEMORY);
2424
2425 /* reinitialize interface if necessary */
2426 if (ifp->if_flags & IFF_UP)
2427 vge_init(sc);
2428
2429 sc->suspended = 0;
2430
2431 return (0);
2432 }
2433
2434 /*
2435 * Stop all chip I/O so that the kernel's probe routines don't
2436 * get confused by errant DMAs when rebooting.
2437 */
2438 static void
2439 vge_shutdown(dev)
2440 device_t dev;
2441 {
2442 struct vge_softc *sc;
2443
2444 sc = device_get_softc(dev);
2445
2446 vge_stop(sc);
2447 }
Cache object: ff4c6f9ec9d97435fe7bde2a6dae61cd
|