The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/vge/if_vge.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2004
    3  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. All advertising materials mentioning features or use of this software
   14  *    must display the following acknowledgement:
   15  *      This product includes software developed by Bill Paul.
   16  * 4. Neither the name of the author nor the names of any co-contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   30  * THE POSSIBILITY OF SUCH DAMAGE.
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD$");
   35 
   36 /*
   37  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
   38  *
   39  * Written by Bill Paul <wpaul@windriver.com>
   40  * Senior Networking Software Engineer
   41  * Wind River Systems
   42  */
   43 
   44 /*
   45  * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
   46  * combines a tri-speed ethernet MAC and PHY, with the following
   47  * features:
   48  *
   49  *      o Jumbo frame support up to 16K
   50  *      o Transmit and receive flow control
   51  *      o IPv4 checksum offload
   52  *      o VLAN tag insertion and stripping
   53  *      o TCP large send
   54  *      o 64-bit multicast hash table filter
   55  *      o 64 entry CAM filter
   56  *      o 16K RX FIFO and 48K TX FIFO memory
   57  *      o Interrupt moderation
   58  *
   59  * The VT6122 supports up to four transmit DMA queues. The descriptors
   60  * in the transmit ring can address up to 7 data fragments; frames which
   61  * span more than 7 data buffers must be coalesced, but in general the
   62  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
   63  * long. The receive descriptors address only a single buffer.
   64  *
   65  * There are two peculiar design issues with the VT6122. One is that
   66  * receive data buffers must be aligned on a 32-bit boundary. This is
   67  * not a problem where the VT6122 is used as a LOM device in x86-based
   68  * systems, but on architectures that generate unaligned access traps, we
   69  * have to do some copying.
   70  *
   71  * The other issue has to do with the way 64-bit addresses are handled.
   72  * The DMA descriptors only allow you to specify 48 bits of addressing
   73  * information. The remaining 16 bits are specified using one of the
   74  * I/O registers. If you only have a 32-bit system, then this isn't
   75  * an issue, but if you have a 64-bit system and more than 4GB of
   76  * memory, you must have to make sure your network data buffers reside
   77  * in the same 48-bit 'segment.'
   78  *
   79  * Special thanks to Ryan Fu at VIA Networking for providing documentation
   80  * and sample NICs for testing.
   81  */
   82 
   83 #ifdef HAVE_KERNEL_OPTION_HEADERS
   84 #include "opt_device_polling.h"
   85 #endif
   86 
   87 #include <sys/param.h>
   88 #include <sys/endian.h>
   89 #include <sys/systm.h>
   90 #include <sys/sockio.h>
   91 #include <sys/mbuf.h>
   92 #include <sys/malloc.h>
   93 #include <sys/module.h>
   94 #include <sys/kernel.h>
   95 #include <sys/socket.h>
   96 #include <sys/sysctl.h>
   97 
   98 #include <net/if.h>
   99 #include <net/if_arp.h>
  100 #include <net/ethernet.h>
  101 #include <net/if_dl.h>
  102 #include <net/if_media.h>
  103 #include <net/if_types.h>
  104 #include <net/if_vlan_var.h>
  105 
  106 #include <net/bpf.h>
  107 
  108 #include <machine/bus.h>
  109 #include <machine/resource.h>
  110 #include <sys/bus.h>
  111 #include <sys/rman.h>
  112 
  113 #include <dev/mii/mii.h>
  114 #include <dev/mii/miivar.h>
  115 
  116 #include <dev/pci/pcireg.h>
  117 #include <dev/pci/pcivar.h>
  118 
  119 MODULE_DEPEND(vge, pci, 1, 1, 1);
  120 MODULE_DEPEND(vge, ether, 1, 1, 1);
  121 MODULE_DEPEND(vge, miibus, 1, 1, 1);
  122 
  123 /* "device miibus" required.  See GENERIC if you get errors here. */
  124 #include "miibus_if.h"
  125 
  126 #include <dev/vge/if_vgereg.h>
  127 #include <dev/vge/if_vgevar.h>
  128 
  129 #define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
  130 
  131 /* Tunables */
  132 static int msi_disable = 0;
  133 TUNABLE_INT("hw.vge.msi_disable", &msi_disable);
  134 
  135 /*
  136  * The SQE error counter of MIB seems to report bogus value.
  137  * Vendor's workaround does not seem to work on PCIe based
  138  * controllers. Disable it until we find better workaround.
  139  */
  140 #undef VGE_ENABLE_SQEERR
  141 
  142 /*
  143  * Various supported device vendors/types and their names.
  144  */
  145 static struct vge_type vge_devs[] = {
  146         { VIA_VENDORID, VIA_DEVICEID_61XX,
  147                 "VIA Networking Velocity Gigabit Ethernet" },
  148         { 0, 0, NULL }
  149 };
  150 
  151 static int      vge_attach(device_t);
  152 static int      vge_detach(device_t);
  153 static int      vge_probe(device_t);
  154 static int      vge_resume(device_t);
  155 static int      vge_shutdown(device_t);
  156 static int      vge_suspend(device_t);
  157 
  158 static void     vge_cam_clear(struct vge_softc *);
  159 static int      vge_cam_set(struct vge_softc *, uint8_t *);
  160 static void     vge_clrwol(struct vge_softc *);
  161 static void     vge_discard_rxbuf(struct vge_softc *, int);
  162 static int      vge_dma_alloc(struct vge_softc *);
  163 static void     vge_dma_free(struct vge_softc *);
  164 static void     vge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
  165 #ifdef VGE_EEPROM
  166 static void     vge_eeprom_getword(struct vge_softc *, int, uint16_t *);
  167 #endif
  168 static int      vge_encap(struct vge_softc *, struct mbuf **);
  169 #ifndef __NO_STRICT_ALIGNMENT
  170 static __inline void
  171                 vge_fixup_rx(struct mbuf *);
  172 #endif
  173 static void     vge_freebufs(struct vge_softc *);
  174 static void     vge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
  175 static int      vge_ifmedia_upd(struct ifnet *);
  176 static int      vge_ifmedia_upd_locked(struct vge_softc *);
  177 static void     vge_init(void *);
  178 static void     vge_init_locked(struct vge_softc *);
  179 static void     vge_intr(void *);
  180 static void     vge_intr_holdoff(struct vge_softc *);
  181 static int      vge_ioctl(struct ifnet *, u_long, caddr_t);
  182 static void     vge_link_statchg(void *);
  183 static int      vge_miibus_readreg(device_t, int, int);
  184 static int      vge_miibus_writereg(device_t, int, int, int);
  185 static void     vge_miipoll_start(struct vge_softc *);
  186 static void     vge_miipoll_stop(struct vge_softc *);
  187 static int      vge_newbuf(struct vge_softc *, int);
  188 static void     vge_read_eeprom(struct vge_softc *, caddr_t, int, int, int);
  189 static void     vge_reset(struct vge_softc *);
  190 static int      vge_rx_list_init(struct vge_softc *);
  191 static int      vge_rxeof(struct vge_softc *, int);
  192 static void     vge_rxfilter(struct vge_softc *);
  193 static void     vge_setmedia(struct vge_softc *);
  194 static void     vge_setvlan(struct vge_softc *);
  195 static void     vge_setwol(struct vge_softc *);
  196 static void     vge_start(struct ifnet *);
  197 static void     vge_start_locked(struct ifnet *);
  198 static void     vge_stats_clear(struct vge_softc *);
  199 static void     vge_stats_update(struct vge_softc *);
  200 static void     vge_stop(struct vge_softc *);
  201 static void     vge_sysctl_node(struct vge_softc *);
  202 static int      vge_tx_list_init(struct vge_softc *);
  203 static void     vge_txeof(struct vge_softc *);
  204 static void     vge_watchdog(void *);
  205 
  206 static device_method_t vge_methods[] = {
  207         /* Device interface */
  208         DEVMETHOD(device_probe,         vge_probe),
  209         DEVMETHOD(device_attach,        vge_attach),
  210         DEVMETHOD(device_detach,        vge_detach),
  211         DEVMETHOD(device_suspend,       vge_suspend),
  212         DEVMETHOD(device_resume,        vge_resume),
  213         DEVMETHOD(device_shutdown,      vge_shutdown),
  214 
  215         /* MII interface */
  216         DEVMETHOD(miibus_readreg,       vge_miibus_readreg),
  217         DEVMETHOD(miibus_writereg,      vge_miibus_writereg),
  218 
  219         DEVMETHOD_END
  220 };
  221 
  222 static driver_t vge_driver = {
  223         "vge",
  224         vge_methods,
  225         sizeof(struct vge_softc)
  226 };
  227 
  228 static devclass_t vge_devclass;
  229 
  230 DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
  231 DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
  232 
  233 #ifdef VGE_EEPROM
  234 /*
  235  * Read a word of data stored in the EEPROM at address 'addr.'
  236  */
  237 static void
  238 vge_eeprom_getword(struct vge_softc *sc, int addr, uint16_t *dest)
  239 {
  240         int i;
  241         uint16_t word = 0;
  242 
  243         /*
  244          * Enter EEPROM embedded programming mode. In order to
  245          * access the EEPROM at all, we first have to set the
  246          * EELOAD bit in the CHIPCFG2 register.
  247          */
  248         CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
  249         CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
  250 
  251         /* Select the address of the word we want to read */
  252         CSR_WRITE_1(sc, VGE_EEADDR, addr);
  253 
  254         /* Issue read command */
  255         CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
  256 
  257         /* Wait for the done bit to be set. */
  258         for (i = 0; i < VGE_TIMEOUT; i++) {
  259                 if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
  260                         break;
  261         }
  262 
  263         if (i == VGE_TIMEOUT) {
  264                 device_printf(sc->vge_dev, "EEPROM read timed out\n");
  265                 *dest = 0;
  266                 return;
  267         }
  268 
  269         /* Read the result */
  270         word = CSR_READ_2(sc, VGE_EERDDAT);
  271 
  272         /* Turn off EEPROM access mode. */
  273         CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
  274         CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
  275 
  276         *dest = word;
  277 }
  278 #endif
  279 
  280 /*
  281  * Read a sequence of words from the EEPROM.
  282  */
  283 static void
  284 vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt, int swap)
  285 {
  286         int i;
  287 #ifdef VGE_EEPROM
  288         uint16_t word = 0, *ptr;
  289 
  290         for (i = 0; i < cnt; i++) {
  291                 vge_eeprom_getword(sc, off + i, &word);
  292                 ptr = (uint16_t *)(dest + (i * 2));
  293                 if (swap)
  294                         *ptr = ntohs(word);
  295                 else
  296                         *ptr = word;
  297         }
  298 #else
  299         for (i = 0; i < ETHER_ADDR_LEN; i++)
  300                 dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
  301 #endif
  302 }
  303 
  304 static void
  305 vge_miipoll_stop(struct vge_softc *sc)
  306 {
  307         int i;
  308 
  309         CSR_WRITE_1(sc, VGE_MIICMD, 0);
  310 
  311         for (i = 0; i < VGE_TIMEOUT; i++) {
  312                 DELAY(1);
  313                 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
  314                         break;
  315         }
  316 
  317         if (i == VGE_TIMEOUT)
  318                 device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
  319 }
  320 
  321 static void
  322 vge_miipoll_start(struct vge_softc *sc)
  323 {
  324         int i;
  325 
  326         /* First, make sure we're idle. */
  327 
  328         CSR_WRITE_1(sc, VGE_MIICMD, 0);
  329         CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
  330 
  331         for (i = 0; i < VGE_TIMEOUT; i++) {
  332                 DELAY(1);
  333                 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
  334                         break;
  335         }
  336 
  337         if (i == VGE_TIMEOUT) {
  338                 device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
  339                 return;
  340         }
  341 
  342         /* Now enable auto poll mode. */
  343 
  344         CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
  345 
  346         /* And make sure it started. */
  347 
  348         for (i = 0; i < VGE_TIMEOUT; i++) {
  349                 DELAY(1);
  350                 if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
  351                         break;
  352         }
  353 
  354         if (i == VGE_TIMEOUT)
  355                 device_printf(sc->vge_dev, "failed to start MII autopoll\n");
  356 }
  357 
  358 static int
  359 vge_miibus_readreg(device_t dev, int phy, int reg)
  360 {
  361         struct vge_softc *sc;
  362         int i;
  363         uint16_t rval = 0;
  364 
  365         sc = device_get_softc(dev);
  366 
  367         vge_miipoll_stop(sc);
  368 
  369         /* Specify the register we want to read. */
  370         CSR_WRITE_1(sc, VGE_MIIADDR, reg);
  371 
  372         /* Issue read command. */
  373         CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
  374 
  375         /* Wait for the read command bit to self-clear. */
  376         for (i = 0; i < VGE_TIMEOUT; i++) {
  377                 DELAY(1);
  378                 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
  379                         break;
  380         }
  381 
  382         if (i == VGE_TIMEOUT)
  383                 device_printf(sc->vge_dev, "MII read timed out\n");
  384         else
  385                 rval = CSR_READ_2(sc, VGE_MIIDATA);
  386 
  387         vge_miipoll_start(sc);
  388 
  389         return (rval);
  390 }
  391 
  392 static int
  393 vge_miibus_writereg(device_t dev, int phy, int reg, int data)
  394 {
  395         struct vge_softc *sc;
  396         int i, rval = 0;
  397 
  398         sc = device_get_softc(dev);
  399 
  400         vge_miipoll_stop(sc);
  401 
  402         /* Specify the register we want to write. */
  403         CSR_WRITE_1(sc, VGE_MIIADDR, reg);
  404 
  405         /* Specify the data we want to write. */
  406         CSR_WRITE_2(sc, VGE_MIIDATA, data);
  407 
  408         /* Issue write command. */
  409         CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
  410 
  411         /* Wait for the write command bit to self-clear. */
  412         for (i = 0; i < VGE_TIMEOUT; i++) {
  413                 DELAY(1);
  414                 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
  415                         break;
  416         }
  417 
  418         if (i == VGE_TIMEOUT) {
  419                 device_printf(sc->vge_dev, "MII write timed out\n");
  420                 rval = EIO;
  421         }
  422 
  423         vge_miipoll_start(sc);
  424 
  425         return (rval);
  426 }
  427 
  428 static void
  429 vge_cam_clear(struct vge_softc *sc)
  430 {
  431         int i;
  432 
  433         /*
  434          * Turn off all the mask bits. This tells the chip
  435          * that none of the entries in the CAM filter are valid.
  436          * desired entries will be enabled as we fill the filter in.
  437          */
  438 
  439         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
  440         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
  441         CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
  442         for (i = 0; i < 8; i++)
  443                 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
  444 
  445         /* Clear the VLAN filter too. */
  446 
  447         CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
  448         for (i = 0; i < 8; i++)
  449                 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
  450 
  451         CSR_WRITE_1(sc, VGE_CAMADDR, 0);
  452         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
  453         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
  454 
  455         sc->vge_camidx = 0;
  456 }
  457 
  458 static int
  459 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
  460 {
  461         int i, error = 0;
  462 
  463         if (sc->vge_camidx == VGE_CAM_MAXADDRS)
  464                 return (ENOSPC);
  465 
  466         /* Select the CAM data page. */
  467         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
  468         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
  469 
  470         /* Set the filter entry we want to update and enable writing. */
  471         CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
  472 
  473         /* Write the address to the CAM registers */
  474         for (i = 0; i < ETHER_ADDR_LEN; i++)
  475                 CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
  476 
  477         /* Issue a write command. */
  478         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
  479 
  480         /* Wake for it to clear. */
  481         for (i = 0; i < VGE_TIMEOUT; i++) {
  482                 DELAY(1);
  483                 if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
  484                         break;
  485         }
  486 
  487         if (i == VGE_TIMEOUT) {
  488                 device_printf(sc->vge_dev, "setting CAM filter failed\n");
  489                 error = EIO;
  490                 goto fail;
  491         }
  492 
  493         /* Select the CAM mask page. */
  494         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
  495         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
  496 
  497         /* Set the mask bit that enables this filter. */
  498         CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
  499             1<<(sc->vge_camidx & 7));
  500 
  501         sc->vge_camidx++;
  502 
  503 fail:
  504         /* Turn off access to CAM. */
  505         CSR_WRITE_1(sc, VGE_CAMADDR, 0);
  506         CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
  507         CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
  508 
  509         return (error);
  510 }
  511 
  512 static void
  513 vge_setvlan(struct vge_softc *sc)
  514 {
  515         struct ifnet *ifp;
  516         uint8_t cfg;
  517 
  518         VGE_LOCK_ASSERT(sc);
  519 
  520         ifp = sc->vge_ifp;
  521         cfg = CSR_READ_1(sc, VGE_RXCFG);
  522         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
  523                 cfg |= VGE_VTAG_OPT2;
  524         else
  525                 cfg &= ~VGE_VTAG_OPT2;
  526         CSR_WRITE_1(sc, VGE_RXCFG, cfg);
  527 }
  528 
  529 /*
  530  * Program the multicast filter. We use the 64-entry CAM filter
  531  * for perfect filtering. If there's more than 64 multicast addresses,
  532  * we use the hash filter instead.
  533  */
  534 static void
  535 vge_rxfilter(struct vge_softc *sc)
  536 {
  537         struct ifnet *ifp;
  538         struct ifmultiaddr *ifma;
  539         uint32_t h, hashes[2];
  540         uint8_t rxcfg;
  541         int error = 0;
  542 
  543         VGE_LOCK_ASSERT(sc);
  544 
  545         /* First, zot all the multicast entries. */
  546         hashes[0] = 0;
  547         hashes[1] = 0;
  548 
  549         rxcfg = CSR_READ_1(sc, VGE_RXCTL);
  550         rxcfg &= ~(VGE_RXCTL_RX_MCAST | VGE_RXCTL_RX_BCAST |
  551             VGE_RXCTL_RX_PROMISC);
  552         /*
  553          * Always allow VLAN oversized frames and frames for
  554          * this host.
  555          */
  556         rxcfg |= VGE_RXCTL_RX_GIANT | VGE_RXCTL_RX_UCAST;
  557 
  558         ifp = sc->vge_ifp;
  559         if ((ifp->if_flags & IFF_BROADCAST) != 0)
  560                 rxcfg |= VGE_RXCTL_RX_BCAST;
  561         if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
  562                 if ((ifp->if_flags & IFF_PROMISC) != 0)
  563                         rxcfg |= VGE_RXCTL_RX_PROMISC;
  564                 if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
  565                         hashes[0] = 0xFFFFFFFF;
  566                         hashes[1] = 0xFFFFFFFF;
  567                 }
  568                 goto done;
  569         }
  570 
  571         vge_cam_clear(sc);
  572         /* Now program new ones */
  573         if_maddr_rlock(ifp);
  574         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
  575                 if (ifma->ifma_addr->sa_family != AF_LINK)
  576                         continue;
  577                 error = vge_cam_set(sc,
  578                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
  579                 if (error)
  580                         break;
  581         }
  582 
  583         /* If there were too many addresses, use the hash filter. */
  584         if (error) {
  585                 vge_cam_clear(sc);
  586 
  587                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
  588                         if (ifma->ifma_addr->sa_family != AF_LINK)
  589                                 continue;
  590                         h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
  591                             ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
  592                         if (h < 32)
  593                                 hashes[0] |= (1 << h);
  594                         else
  595                                 hashes[1] |= (1 << (h - 32));
  596                 }
  597         }
  598         if_maddr_runlock(ifp);
  599 
  600 done:
  601         if (hashes[0] != 0 || hashes[1] != 0)
  602                 rxcfg |= VGE_RXCTL_RX_MCAST;
  603         CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
  604         CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
  605         CSR_WRITE_1(sc, VGE_RXCTL, rxcfg);
  606 }
  607 
  608 static void
  609 vge_reset(struct vge_softc *sc)
  610 {
  611         int i;
  612 
  613         CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
  614 
  615         for (i = 0; i < VGE_TIMEOUT; i++) {
  616                 DELAY(5);
  617                 if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
  618                         break;
  619         }
  620 
  621         if (i == VGE_TIMEOUT) {
  622                 device_printf(sc->vge_dev, "soft reset timed out\n");
  623                 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
  624                 DELAY(2000);
  625         }
  626 
  627         DELAY(5000);
  628 }
  629 
  630 /*
  631  * Probe for a VIA gigabit chip. Check the PCI vendor and device
  632  * IDs against our list and return a device name if we find a match.
  633  */
  634 static int
  635 vge_probe(device_t dev)
  636 {
  637         struct vge_type *t;
  638 
  639         t = vge_devs;
  640 
  641         while (t->vge_name != NULL) {
  642                 if ((pci_get_vendor(dev) == t->vge_vid) &&
  643                     (pci_get_device(dev) == t->vge_did)) {
  644                         device_set_desc(dev, t->vge_name);
  645                         return (BUS_PROBE_DEFAULT);
  646                 }
  647                 t++;
  648         }
  649 
  650         return (ENXIO);
  651 }
  652 
  653 /*
  654  * Map a single buffer address.
  655  */
  656 
  657 struct vge_dmamap_arg {
  658         bus_addr_t      vge_busaddr;
  659 };
  660 
  661 static void
  662 vge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
  663 {
  664         struct vge_dmamap_arg *ctx;
  665 
  666         if (error != 0)
  667                 return;
  668 
  669         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
  670 
  671         ctx = (struct vge_dmamap_arg *)arg;
  672         ctx->vge_busaddr = segs[0].ds_addr;
  673 }
  674 
  675 static int
  676 vge_dma_alloc(struct vge_softc *sc)
  677 {
  678         struct vge_dmamap_arg ctx;
  679         struct vge_txdesc *txd;
  680         struct vge_rxdesc *rxd;
  681         bus_addr_t lowaddr, tx_ring_end, rx_ring_end;
  682         int error, i;
  683 
  684         /*
  685          * It seems old PCI controllers do not support DAC.  DAC
  686          * configuration can be enabled by accessing VGE_CHIPCFG3
  687          * register but honor EEPROM configuration instead of
  688          * blindly overriding DAC configuration.  PCIe based
  689          * controllers are supposed to support 64bit DMA so enable
  690          * 64bit DMA on these controllers.
  691          */
  692         if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
  693                 lowaddr = BUS_SPACE_MAXADDR;
  694         else
  695                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
  696 
  697 again:
  698         /* Create parent ring tag. */
  699         error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
  700             1, 0,                       /* algnmnt, boundary */
  701             lowaddr,                    /* lowaddr */
  702             BUS_SPACE_MAXADDR,          /* highaddr */
  703             NULL, NULL,                 /* filter, filterarg */
  704             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
  705             0,                          /* nsegments */
  706             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
  707             0,                          /* flags */
  708             NULL, NULL,                 /* lockfunc, lockarg */
  709             &sc->vge_cdata.vge_ring_tag);
  710         if (error != 0) {
  711                 device_printf(sc->vge_dev,
  712                     "could not create parent DMA tag.\n");
  713                 goto fail;
  714         }
  715 
  716         /* Create tag for Tx ring. */
  717         error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
  718             VGE_TX_RING_ALIGN, 0,       /* algnmnt, boundary */
  719             BUS_SPACE_MAXADDR,          /* lowaddr */
  720             BUS_SPACE_MAXADDR,          /* highaddr */
  721             NULL, NULL,                 /* filter, filterarg */
  722             VGE_TX_LIST_SZ,             /* maxsize */
  723             1,                          /* nsegments */
  724             VGE_TX_LIST_SZ,             /* maxsegsize */
  725             0,                          /* flags */
  726             NULL, NULL,                 /* lockfunc, lockarg */
  727             &sc->vge_cdata.vge_tx_ring_tag);
  728         if (error != 0) {
  729                 device_printf(sc->vge_dev,
  730                     "could not allocate Tx ring DMA tag.\n");
  731                 goto fail;
  732         }
  733 
  734         /* Create tag for Rx ring. */
  735         error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
  736             VGE_RX_RING_ALIGN, 0,       /* algnmnt, boundary */
  737             BUS_SPACE_MAXADDR,          /* lowaddr */
  738             BUS_SPACE_MAXADDR,          /* highaddr */
  739             NULL, NULL,                 /* filter, filterarg */
  740             VGE_RX_LIST_SZ,             /* maxsize */
  741             1,                          /* nsegments */
  742             VGE_RX_LIST_SZ,             /* maxsegsize */
  743             0,                          /* flags */
  744             NULL, NULL,                 /* lockfunc, lockarg */
  745             &sc->vge_cdata.vge_rx_ring_tag);
  746         if (error != 0) {
  747                 device_printf(sc->vge_dev,
  748                     "could not allocate Rx ring DMA tag.\n");
  749                 goto fail;
  750         }
  751 
  752         /* Allocate DMA'able memory and load the DMA map for Tx ring. */
  753         error = bus_dmamem_alloc(sc->vge_cdata.vge_tx_ring_tag,
  754             (void **)&sc->vge_rdata.vge_tx_ring,
  755             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
  756             &sc->vge_cdata.vge_tx_ring_map);
  757         if (error != 0) {
  758                 device_printf(sc->vge_dev,
  759                     "could not allocate DMA'able memory for Tx ring.\n");
  760                 goto fail;
  761         }
  762 
  763         ctx.vge_busaddr = 0;
  764         error = bus_dmamap_load(sc->vge_cdata.vge_tx_ring_tag,
  765             sc->vge_cdata.vge_tx_ring_map, sc->vge_rdata.vge_tx_ring,
  766             VGE_TX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
  767         if (error != 0 || ctx.vge_busaddr == 0) {
  768                 device_printf(sc->vge_dev,
  769                     "could not load DMA'able memory for Tx ring.\n");
  770                 goto fail;
  771         }
  772         sc->vge_rdata.vge_tx_ring_paddr = ctx.vge_busaddr;
  773 
  774         /* Allocate DMA'able memory and load the DMA map for Rx ring. */
  775         error = bus_dmamem_alloc(sc->vge_cdata.vge_rx_ring_tag,
  776             (void **)&sc->vge_rdata.vge_rx_ring,
  777             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
  778             &sc->vge_cdata.vge_rx_ring_map);
  779         if (error != 0) {
  780                 device_printf(sc->vge_dev,
  781                     "could not allocate DMA'able memory for Rx ring.\n");
  782                 goto fail;
  783         }
  784 
  785         ctx.vge_busaddr = 0;
  786         error = bus_dmamap_load(sc->vge_cdata.vge_rx_ring_tag,
  787             sc->vge_cdata.vge_rx_ring_map, sc->vge_rdata.vge_rx_ring,
  788             VGE_RX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
  789         if (error != 0 || ctx.vge_busaddr == 0) {
  790                 device_printf(sc->vge_dev,
  791                     "could not load DMA'able memory for Rx ring.\n");
  792                 goto fail;
  793         }
  794         sc->vge_rdata.vge_rx_ring_paddr = ctx.vge_busaddr;
  795 
  796         /* Tx/Rx descriptor queue should reside within 4GB boundary. */
  797         tx_ring_end = sc->vge_rdata.vge_tx_ring_paddr + VGE_TX_LIST_SZ;
  798         rx_ring_end = sc->vge_rdata.vge_rx_ring_paddr + VGE_RX_LIST_SZ;
  799         if ((VGE_ADDR_HI(tx_ring_end) !=
  800             VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr)) ||
  801             (VGE_ADDR_HI(rx_ring_end) !=
  802             VGE_ADDR_HI(sc->vge_rdata.vge_rx_ring_paddr)) ||
  803             VGE_ADDR_HI(tx_ring_end) != VGE_ADDR_HI(rx_ring_end)) {
  804                 device_printf(sc->vge_dev, "4GB boundary crossed, "
  805                     "switching to 32bit DMA address mode.\n");
  806                 vge_dma_free(sc);
  807                 /* Limit DMA address space to 32bit and try again. */
  808                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
  809                 goto again;
  810         }
  811 
  812         if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
  813                 lowaddr = VGE_BUF_DMA_MAXADDR;
  814         else
  815                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
  816         /* Create parent buffer tag. */
  817         error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
  818             1, 0,                       /* algnmnt, boundary */
  819             lowaddr,                    /* lowaddr */
  820             BUS_SPACE_MAXADDR,          /* highaddr */
  821             NULL, NULL,                 /* filter, filterarg */
  822             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
  823             0,                          /* nsegments */
  824             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
  825             0,                          /* flags */
  826             NULL, NULL,                 /* lockfunc, lockarg */
  827             &sc->vge_cdata.vge_buffer_tag);
  828         if (error != 0) {
  829                 device_printf(sc->vge_dev,
  830                     "could not create parent buffer DMA tag.\n");
  831                 goto fail;
  832         }
  833 
  834         /* Create tag for Tx buffers. */
  835         error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
  836             1, 0,                       /* algnmnt, boundary */
  837             BUS_SPACE_MAXADDR,          /* lowaddr */
  838             BUS_SPACE_MAXADDR,          /* highaddr */
  839             NULL, NULL,                 /* filter, filterarg */
  840             MCLBYTES * VGE_MAXTXSEGS,   /* maxsize */
  841             VGE_MAXTXSEGS,              /* nsegments */
  842             MCLBYTES,                   /* maxsegsize */
  843             0,                          /* flags */
  844             NULL, NULL,                 /* lockfunc, lockarg */
  845             &sc->vge_cdata.vge_tx_tag);
  846         if (error != 0) {
  847                 device_printf(sc->vge_dev, "could not create Tx DMA tag.\n");
  848                 goto fail;
  849         }
  850 
  851         /* Create tag for Rx buffers. */
  852         error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
  853             VGE_RX_BUF_ALIGN, 0,        /* algnmnt, boundary */
  854             BUS_SPACE_MAXADDR,          /* lowaddr */
  855             BUS_SPACE_MAXADDR,          /* highaddr */
  856             NULL, NULL,                 /* filter, filterarg */
  857             MCLBYTES,                   /* maxsize */
  858             1,                          /* nsegments */
  859             MCLBYTES,                   /* maxsegsize */
  860             0,                          /* flags */
  861             NULL, NULL,                 /* lockfunc, lockarg */
  862             &sc->vge_cdata.vge_rx_tag);
  863         if (error != 0) {
  864                 device_printf(sc->vge_dev, "could not create Rx DMA tag.\n");
  865                 goto fail;
  866         }
  867 
  868         /* Create DMA maps for Tx buffers. */
  869         for (i = 0; i < VGE_TX_DESC_CNT; i++) {
  870                 txd = &sc->vge_cdata.vge_txdesc[i];
  871                 txd->tx_m = NULL;
  872                 txd->tx_dmamap = NULL;
  873                 error = bus_dmamap_create(sc->vge_cdata.vge_tx_tag, 0,
  874                     &txd->tx_dmamap);
  875                 if (error != 0) {
  876                         device_printf(sc->vge_dev,
  877                             "could not create Tx dmamap.\n");
  878                         goto fail;
  879                 }
  880         }
  881         /* Create DMA maps for Rx buffers. */
  882         if ((error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
  883             &sc->vge_cdata.vge_rx_sparemap)) != 0) {
  884                 device_printf(sc->vge_dev,
  885                     "could not create spare Rx dmamap.\n");
  886                 goto fail;
  887         }
  888         for (i = 0; i < VGE_RX_DESC_CNT; i++) {
  889                 rxd = &sc->vge_cdata.vge_rxdesc[i];
  890                 rxd->rx_m = NULL;
  891                 rxd->rx_dmamap = NULL;
  892                 error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
  893                     &rxd->rx_dmamap);
  894                 if (error != 0) {
  895                         device_printf(sc->vge_dev,
  896                             "could not create Rx dmamap.\n");
  897                         goto fail;
  898                 }
  899         }
  900 
  901 fail:
  902         return (error);
  903 }
  904 
  905 static void
  906 vge_dma_free(struct vge_softc *sc)
  907 {
  908         struct vge_txdesc *txd;
  909         struct vge_rxdesc *rxd;
  910         int i;
  911 
  912         /* Tx ring. */
  913         if (sc->vge_cdata.vge_tx_ring_tag != NULL) {
  914                 if (sc->vge_cdata.vge_tx_ring_map)
  915                         bus_dmamap_unload(sc->vge_cdata.vge_tx_ring_tag,
  916                             sc->vge_cdata.vge_tx_ring_map);
  917                 if (sc->vge_cdata.vge_tx_ring_map &&
  918                     sc->vge_rdata.vge_tx_ring)
  919                         bus_dmamem_free(sc->vge_cdata.vge_tx_ring_tag,
  920                             sc->vge_rdata.vge_tx_ring,
  921                             sc->vge_cdata.vge_tx_ring_map);
  922                 sc->vge_rdata.vge_tx_ring = NULL;
  923                 sc->vge_cdata.vge_tx_ring_map = NULL;
  924                 bus_dma_tag_destroy(sc->vge_cdata.vge_tx_ring_tag);
  925                 sc->vge_cdata.vge_tx_ring_tag = NULL;
  926         }
  927         /* Rx ring. */
  928         if (sc->vge_cdata.vge_rx_ring_tag != NULL) {
  929                 if (sc->vge_cdata.vge_rx_ring_map)
  930                         bus_dmamap_unload(sc->vge_cdata.vge_rx_ring_tag,
  931                             sc->vge_cdata.vge_rx_ring_map);
  932                 if (sc->vge_cdata.vge_rx_ring_map &&
  933                     sc->vge_rdata.vge_rx_ring)
  934                         bus_dmamem_free(sc->vge_cdata.vge_rx_ring_tag,
  935                             sc->vge_rdata.vge_rx_ring,
  936                             sc->vge_cdata.vge_rx_ring_map);
  937                 sc->vge_rdata.vge_rx_ring = NULL;
  938                 sc->vge_cdata.vge_rx_ring_map = NULL;
  939                 bus_dma_tag_destroy(sc->vge_cdata.vge_rx_ring_tag);
  940                 sc->vge_cdata.vge_rx_ring_tag = NULL;
  941         }
  942         /* Tx buffers. */
  943         if (sc->vge_cdata.vge_tx_tag != NULL) {
  944                 for (i = 0; i < VGE_TX_DESC_CNT; i++) {
  945                         txd = &sc->vge_cdata.vge_txdesc[i];
  946                         if (txd->tx_dmamap != NULL) {
  947                                 bus_dmamap_destroy(sc->vge_cdata.vge_tx_tag,
  948                                     txd->tx_dmamap);
  949                                 txd->tx_dmamap = NULL;
  950                         }
  951                 }
  952                 bus_dma_tag_destroy(sc->vge_cdata.vge_tx_tag);
  953                 sc->vge_cdata.vge_tx_tag = NULL;
  954         }
  955         /* Rx buffers. */
  956         if (sc->vge_cdata.vge_rx_tag != NULL) {
  957                 for (i = 0; i < VGE_RX_DESC_CNT; i++) {
  958                         rxd = &sc->vge_cdata.vge_rxdesc[i];
  959                         if (rxd->rx_dmamap != NULL) {
  960                                 bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
  961                                     rxd->rx_dmamap);
  962                                 rxd->rx_dmamap = NULL;
  963                         }
  964                 }
  965                 if (sc->vge_cdata.vge_rx_sparemap != NULL) {
  966                         bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
  967                             sc->vge_cdata.vge_rx_sparemap);
  968                         sc->vge_cdata.vge_rx_sparemap = NULL;
  969                 }
  970                 bus_dma_tag_destroy(sc->vge_cdata.vge_rx_tag);
  971                 sc->vge_cdata.vge_rx_tag = NULL;
  972         }
  973 
  974         if (sc->vge_cdata.vge_buffer_tag != NULL) {
  975                 bus_dma_tag_destroy(sc->vge_cdata.vge_buffer_tag);
  976                 sc->vge_cdata.vge_buffer_tag = NULL;
  977         }
  978         if (sc->vge_cdata.vge_ring_tag != NULL) {
  979                 bus_dma_tag_destroy(sc->vge_cdata.vge_ring_tag);
  980                 sc->vge_cdata.vge_ring_tag = NULL;
  981         }
  982 }
  983 
  984 /*
  985  * Attach the interface. Allocate softc structures, do ifmedia
  986  * setup and ethernet/BPF attach.
  987  */
  988 static int
  989 vge_attach(device_t dev)
  990 {
  991         u_char eaddr[ETHER_ADDR_LEN];
  992         struct vge_softc *sc;
  993         struct ifnet *ifp;
  994         int error = 0, cap, i, msic, rid;
  995 
  996         sc = device_get_softc(dev);
  997         sc->vge_dev = dev;
  998 
  999         mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
 1000             MTX_DEF);
 1001         callout_init_mtx(&sc->vge_watchdog, &sc->vge_mtx, 0);
 1002 
 1003         /*
 1004          * Map control/status registers.
 1005          */
 1006         pci_enable_busmaster(dev);
 1007 
 1008         rid = PCIR_BAR(1);
 1009         sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
 1010             RF_ACTIVE);
 1011 
 1012         if (sc->vge_res == NULL) {
 1013                 device_printf(dev, "couldn't map ports/memory\n");
 1014                 error = ENXIO;
 1015                 goto fail;
 1016         }
 1017 
 1018         if (pci_find_cap(dev, PCIY_EXPRESS, &cap) == 0) {
 1019                 sc->vge_flags |= VGE_FLAG_PCIE;
 1020                 sc->vge_expcap = cap;
 1021         } else
 1022                 sc->vge_flags |= VGE_FLAG_JUMBO;
 1023         if (pci_find_cap(dev, PCIY_PMG, &cap) == 0) {
 1024                 sc->vge_flags |= VGE_FLAG_PMCAP;
 1025                 sc->vge_pmcap = cap;
 1026         }
 1027         rid = 0;
 1028         msic = pci_msi_count(dev);
 1029         if (msi_disable == 0 && msic > 0) {
 1030                 msic = 1;
 1031                 if (pci_alloc_msi(dev, &msic) == 0) {
 1032                         if (msic == 1) {
 1033                                 sc->vge_flags |= VGE_FLAG_MSI;
 1034                                 device_printf(dev, "Using %d MSI message\n",
 1035                                     msic);
 1036                                 rid = 1;
 1037                         } else
 1038                                 pci_release_msi(dev);
 1039                 }
 1040         }
 1041 
 1042         /* Allocate interrupt */
 1043         sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
 1044             ((sc->vge_flags & VGE_FLAG_MSI) ? 0 : RF_SHAREABLE) | RF_ACTIVE);
 1045         if (sc->vge_irq == NULL) {
 1046                 device_printf(dev, "couldn't map interrupt\n");
 1047                 error = ENXIO;
 1048                 goto fail;
 1049         }
 1050 
 1051         /* Reset the adapter. */
 1052         vge_reset(sc);
 1053         /* Reload EEPROM. */
 1054         CSR_WRITE_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
 1055         for (i = 0; i < VGE_TIMEOUT; i++) {
 1056                 DELAY(5);
 1057                 if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
 1058                         break;
 1059         }
 1060         if (i == VGE_TIMEOUT)
 1061                 device_printf(dev, "EEPROM reload timed out\n");
 1062         /*
 1063          * Clear PACPI as EEPROM reload will set the bit. Otherwise
 1064          * MAC will receive magic packet which in turn confuses
 1065          * controller.
 1066          */
 1067         CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
 1068 
 1069         /*
 1070          * Get station address from the EEPROM.
 1071          */
 1072         vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
 1073         /*
 1074          * Save configured PHY address.
 1075          * It seems the PHY address of PCIe controllers just
 1076          * reflects media jump strapping status so we assume the
 1077          * internal PHY address of PCIe controller is at 1.
 1078          */
 1079         if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
 1080                 sc->vge_phyaddr = 1;
 1081         else
 1082                 sc->vge_phyaddr = CSR_READ_1(sc, VGE_MIICFG) &
 1083                     VGE_MIICFG_PHYADDR;
 1084         /* Clear WOL and take hardware from powerdown. */
 1085         vge_clrwol(sc);
 1086         vge_sysctl_node(sc);
 1087         error = vge_dma_alloc(sc);
 1088         if (error)
 1089                 goto fail;
 1090 
 1091         ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
 1092         if (ifp == NULL) {
 1093                 device_printf(dev, "can not if_alloc()\n");
 1094                 error = ENOSPC;
 1095                 goto fail;
 1096         }
 1097 
 1098         vge_miipoll_start(sc);
 1099         /* Do MII setup */
 1100         error = mii_attach(dev, &sc->vge_miibus, ifp, vge_ifmedia_upd,
 1101             vge_ifmedia_sts, BMSR_DEFCAPMASK, sc->vge_phyaddr, MII_OFFSET_ANY,
 1102             MIIF_DOPAUSE);
 1103         if (error != 0) {
 1104                 device_printf(dev, "attaching PHYs failed\n");
 1105                 goto fail;
 1106         }
 1107 
 1108         ifp->if_softc = sc;
 1109         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
 1110         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
 1111         ifp->if_ioctl = vge_ioctl;
 1112         ifp->if_capabilities = IFCAP_VLAN_MTU;
 1113         ifp->if_start = vge_start;
 1114         ifp->if_hwassist = VGE_CSUM_FEATURES;
 1115         ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM |
 1116             IFCAP_VLAN_HWTAGGING;
 1117         if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0)
 1118                 ifp->if_capabilities |= IFCAP_WOL;
 1119         ifp->if_capenable = ifp->if_capabilities;
 1120 #ifdef DEVICE_POLLING
 1121         ifp->if_capabilities |= IFCAP_POLLING;
 1122 #endif
 1123         ifp->if_init = vge_init;
 1124         IFQ_SET_MAXLEN(&ifp->if_snd, VGE_TX_DESC_CNT - 1);
 1125         ifp->if_snd.ifq_drv_maxlen = VGE_TX_DESC_CNT - 1;
 1126         IFQ_SET_READY(&ifp->if_snd);
 1127 
 1128         /*
 1129          * Call MI attach routine.
 1130          */
 1131         ether_ifattach(ifp, eaddr);
 1132 
 1133         /* Tell the upper layer(s) we support long frames. */
 1134         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
 1135 
 1136         /* Hook interrupt last to avoid having to lock softc */
 1137         error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
 1138             NULL, vge_intr, sc, &sc->vge_intrhand);
 1139 
 1140         if (error) {
 1141                 device_printf(dev, "couldn't set up irq\n");
 1142                 ether_ifdetach(ifp);
 1143                 goto fail;
 1144         }
 1145 
 1146 fail:
 1147         if (error)
 1148                 vge_detach(dev);
 1149 
 1150         return (error);
 1151 }
 1152 
 1153 /*
 1154  * Shutdown hardware and free up resources. This can be called any
 1155  * time after the mutex has been initialized. It is called in both
 1156  * the error case in attach and the normal detach case so it needs
 1157  * to be careful about only freeing resources that have actually been
 1158  * allocated.
 1159  */
 1160 static int
 1161 vge_detach(device_t dev)
 1162 {
 1163         struct vge_softc *sc;
 1164         struct ifnet *ifp;
 1165 
 1166         sc = device_get_softc(dev);
 1167         KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
 1168         ifp = sc->vge_ifp;
 1169 
 1170 #ifdef DEVICE_POLLING
 1171         if (ifp->if_capenable & IFCAP_POLLING)
 1172                 ether_poll_deregister(ifp);
 1173 #endif
 1174 
 1175         /* These should only be active if attach succeeded */
 1176         if (device_is_attached(dev)) {
 1177                 ether_ifdetach(ifp);
 1178                 VGE_LOCK(sc);
 1179                 vge_stop(sc);
 1180                 VGE_UNLOCK(sc);
 1181                 callout_drain(&sc->vge_watchdog);
 1182         }
 1183         if (sc->vge_miibus)
 1184                 device_delete_child(dev, sc->vge_miibus);
 1185         bus_generic_detach(dev);
 1186 
 1187         if (sc->vge_intrhand)
 1188                 bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
 1189         if (sc->vge_irq)
 1190                 bus_release_resource(dev, SYS_RES_IRQ,
 1191                     sc->vge_flags & VGE_FLAG_MSI ? 1 : 0, sc->vge_irq);
 1192         if (sc->vge_flags & VGE_FLAG_MSI)
 1193                 pci_release_msi(dev);
 1194         if (sc->vge_res)
 1195                 bus_release_resource(dev, SYS_RES_MEMORY,
 1196                     PCIR_BAR(1), sc->vge_res);
 1197         if (ifp)
 1198                 if_free(ifp);
 1199 
 1200         vge_dma_free(sc);
 1201         mtx_destroy(&sc->vge_mtx);
 1202 
 1203         return (0);
 1204 }
 1205 
 1206 static void
 1207 vge_discard_rxbuf(struct vge_softc *sc, int prod)
 1208 {
 1209         struct vge_rxdesc *rxd;
 1210         int i;
 1211 
 1212         rxd = &sc->vge_cdata.vge_rxdesc[prod];
 1213         rxd->rx_desc->vge_sts = 0;
 1214         rxd->rx_desc->vge_ctl = 0;
 1215 
 1216         /*
 1217          * Note: the manual fails to document the fact that for
 1218          * proper opration, the driver needs to replentish the RX
 1219          * DMA ring 4 descriptors at a time (rather than one at a
 1220          * time, like most chips). We can allocate the new buffers
 1221          * but we should not set the OWN bits until we're ready
 1222          * to hand back 4 of them in one shot.
 1223          */
 1224         if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
 1225                 for (i = VGE_RXCHUNK; i > 0; i--) {
 1226                         rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
 1227                         rxd = rxd->rxd_prev;
 1228                 }
 1229                 sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
 1230         }
 1231 }
 1232 
 1233 static int
 1234 vge_newbuf(struct vge_softc *sc, int prod)
 1235 {
 1236         struct vge_rxdesc *rxd;
 1237         struct mbuf *m;
 1238         bus_dma_segment_t segs[1];
 1239         bus_dmamap_t map;
 1240         int i, nsegs;
 1241 
 1242         m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
 1243         if (m == NULL)
 1244                 return (ENOBUFS);
 1245         /*
 1246          * This is part of an evil trick to deal with strict-alignment
 1247          * architectures. The VIA chip requires RX buffers to be aligned
 1248          * on 32-bit boundaries, but that will hose strict-alignment
 1249          * architectures. To get around this, we leave some empty space
 1250          * at the start of each buffer and for non-strict-alignment hosts,
 1251          * we copy the buffer back two bytes to achieve word alignment.
 1252          * This is slightly more efficient than allocating a new buffer,
 1253          * copying the contents, and discarding the old buffer.
 1254          */
 1255         m->m_len = m->m_pkthdr.len = MCLBYTES;
 1256         m_adj(m, VGE_RX_BUF_ALIGN);
 1257 
 1258         if (bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_rx_tag,
 1259             sc->vge_cdata.vge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
 1260                 m_freem(m);
 1261                 return (ENOBUFS);
 1262         }
 1263         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
 1264 
 1265         rxd = &sc->vge_cdata.vge_rxdesc[prod];
 1266         if (rxd->rx_m != NULL) {
 1267                 bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
 1268                     BUS_DMASYNC_POSTREAD);
 1269                 bus_dmamap_unload(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap);
 1270         }
 1271         map = rxd->rx_dmamap;
 1272         rxd->rx_dmamap = sc->vge_cdata.vge_rx_sparemap;
 1273         sc->vge_cdata.vge_rx_sparemap = map;
 1274         bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
 1275             BUS_DMASYNC_PREREAD);
 1276         rxd->rx_m = m;
 1277 
 1278         rxd->rx_desc->vge_sts = 0;
 1279         rxd->rx_desc->vge_ctl = 0;
 1280         rxd->rx_desc->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
 1281         rxd->rx_desc->vge_addrhi = htole32(VGE_ADDR_HI(segs[0].ds_addr) |
 1282             (VGE_BUFLEN(segs[0].ds_len) << 16) | VGE_RXDESC_I);
 1283 
 1284         /*
 1285          * Note: the manual fails to document the fact that for
 1286          * proper operation, the driver needs to replenish the RX
 1287          * DMA ring 4 descriptors at a time (rather than one at a
 1288          * time, like most chips). We can allocate the new buffers
 1289          * but we should not set the OWN bits until we're ready
 1290          * to hand back 4 of them in one shot.
 1291          */
 1292         if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
 1293                 for (i = VGE_RXCHUNK; i > 0; i--) {
 1294                         rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
 1295                         rxd = rxd->rxd_prev;
 1296                 }
 1297                 sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
 1298         }
 1299 
 1300         return (0);
 1301 }
 1302 
 1303 static int
 1304 vge_tx_list_init(struct vge_softc *sc)
 1305 {
 1306         struct vge_ring_data *rd;
 1307         struct vge_txdesc *txd;
 1308         int i;
 1309 
 1310         VGE_LOCK_ASSERT(sc);
 1311 
 1312         sc->vge_cdata.vge_tx_prodidx = 0;
 1313         sc->vge_cdata.vge_tx_considx = 0;
 1314         sc->vge_cdata.vge_tx_cnt = 0;
 1315 
 1316         rd = &sc->vge_rdata;
 1317         bzero(rd->vge_tx_ring, VGE_TX_LIST_SZ);
 1318         for (i = 0; i < VGE_TX_DESC_CNT; i++) {
 1319                 txd = &sc->vge_cdata.vge_txdesc[i];
 1320                 txd->tx_m = NULL;
 1321                 txd->tx_desc = &rd->vge_tx_ring[i];
 1322         }
 1323 
 1324         bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
 1325             sc->vge_cdata.vge_tx_ring_map,
 1326             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1327 
 1328         return (0);
 1329 }
 1330 
 1331 static int
 1332 vge_rx_list_init(struct vge_softc *sc)
 1333 {
 1334         struct vge_ring_data *rd;
 1335         struct vge_rxdesc *rxd;
 1336         int i;
 1337 
 1338         VGE_LOCK_ASSERT(sc);
 1339 
 1340         sc->vge_cdata.vge_rx_prodidx = 0;
 1341         sc->vge_cdata.vge_head = NULL;
 1342         sc->vge_cdata.vge_tail = NULL;
 1343         sc->vge_cdata.vge_rx_commit = 0;
 1344 
 1345         rd = &sc->vge_rdata;
 1346         bzero(rd->vge_rx_ring, VGE_RX_LIST_SZ);
 1347         for (i = 0; i < VGE_RX_DESC_CNT; i++) {
 1348                 rxd = &sc->vge_cdata.vge_rxdesc[i];
 1349                 rxd->rx_m = NULL;
 1350                 rxd->rx_desc = &rd->vge_rx_ring[i];
 1351                 if (i == 0)
 1352                         rxd->rxd_prev =
 1353                             &sc->vge_cdata.vge_rxdesc[VGE_RX_DESC_CNT - 1];
 1354                 else
 1355                         rxd->rxd_prev = &sc->vge_cdata.vge_rxdesc[i - 1];
 1356                 if (vge_newbuf(sc, i) != 0)
 1357                         return (ENOBUFS);
 1358         }
 1359 
 1360         bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
 1361             sc->vge_cdata.vge_rx_ring_map,
 1362             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1363 
 1364         sc->vge_cdata.vge_rx_commit = 0;
 1365 
 1366         return (0);
 1367 }
 1368 
 1369 static void
 1370 vge_freebufs(struct vge_softc *sc)
 1371 {
 1372         struct vge_txdesc *txd;
 1373         struct vge_rxdesc *rxd;
 1374         struct ifnet *ifp;
 1375         int i;
 1376 
 1377         VGE_LOCK_ASSERT(sc);
 1378 
 1379         ifp = sc->vge_ifp;
 1380         /*
 1381          * Free RX and TX mbufs still in the queues.
 1382          */
 1383         for (i = 0; i < VGE_RX_DESC_CNT; i++) {
 1384                 rxd = &sc->vge_cdata.vge_rxdesc[i];
 1385                 if (rxd->rx_m != NULL) {
 1386                         bus_dmamap_sync(sc->vge_cdata.vge_rx_tag,
 1387                             rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
 1388                         bus_dmamap_unload(sc->vge_cdata.vge_rx_tag,
 1389                             rxd->rx_dmamap);
 1390                         m_freem(rxd->rx_m);
 1391                         rxd->rx_m = NULL;
 1392                 }
 1393         }
 1394 
 1395         for (i = 0; i < VGE_TX_DESC_CNT; i++) {
 1396                 txd = &sc->vge_cdata.vge_txdesc[i];
 1397                 if (txd->tx_m != NULL) {
 1398                         bus_dmamap_sync(sc->vge_cdata.vge_tx_tag,
 1399                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
 1400                         bus_dmamap_unload(sc->vge_cdata.vge_tx_tag,
 1401                             txd->tx_dmamap);
 1402                         m_freem(txd->tx_m);
 1403                         txd->tx_m = NULL;
 1404                         ifp->if_oerrors++;
 1405                 }
 1406         }
 1407 }
 1408 
 1409 #ifndef __NO_STRICT_ALIGNMENT
 1410 static __inline void
 1411 vge_fixup_rx(struct mbuf *m)
 1412 {
 1413         int i;
 1414         uint16_t *src, *dst;
 1415 
 1416         src = mtod(m, uint16_t *);
 1417         dst = src - 1;
 1418 
 1419         for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
 1420                 *dst++ = *src++;
 1421 
 1422         m->m_data -= ETHER_ALIGN;
 1423 }
 1424 #endif
 1425 
 1426 /*
 1427  * RX handler. We support the reception of jumbo frames that have
 1428  * been fragmented across multiple 2K mbuf cluster buffers.
 1429  */
 1430 static int
 1431 vge_rxeof(struct vge_softc *sc, int count)
 1432 {
 1433         struct mbuf *m;
 1434         struct ifnet *ifp;
 1435         int prod, prog, total_len;
 1436         struct vge_rxdesc *rxd;
 1437         struct vge_rx_desc *cur_rx;
 1438         uint32_t rxstat, rxctl;
 1439 
 1440         VGE_LOCK_ASSERT(sc);
 1441 
 1442         ifp = sc->vge_ifp;
 1443 
 1444         bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
 1445             sc->vge_cdata.vge_rx_ring_map,
 1446             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 1447 
 1448         prod = sc->vge_cdata.vge_rx_prodidx;
 1449         for (prog = 0; count > 0 &&
 1450             (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
 1451             VGE_RX_DESC_INC(prod)) {
 1452                 cur_rx = &sc->vge_rdata.vge_rx_ring[prod];
 1453                 rxstat = le32toh(cur_rx->vge_sts);
 1454                 if ((rxstat & VGE_RDSTS_OWN) != 0)
 1455                         break;
 1456                 count--;
 1457                 prog++;
 1458                 rxctl = le32toh(cur_rx->vge_ctl);
 1459                 total_len = VGE_RXBYTES(rxstat);
 1460                 rxd = &sc->vge_cdata.vge_rxdesc[prod];
 1461                 m = rxd->rx_m;
 1462 
 1463                 /*
 1464                  * If the 'start of frame' bit is set, this indicates
 1465                  * either the first fragment in a multi-fragment receive,
 1466                  * or an intermediate fragment. Either way, we want to
 1467                  * accumulate the buffers.
 1468                  */
 1469                 if ((rxstat & VGE_RXPKT_SOF) != 0) {
 1470                         if (vge_newbuf(sc, prod) != 0) {
 1471                                 ifp->if_iqdrops++;
 1472                                 VGE_CHAIN_RESET(sc);
 1473                                 vge_discard_rxbuf(sc, prod);
 1474                                 continue;
 1475                         }
 1476                         m->m_len = MCLBYTES - VGE_RX_BUF_ALIGN;
 1477                         if (sc->vge_cdata.vge_head == NULL) {
 1478                                 sc->vge_cdata.vge_head = m;
 1479                                 sc->vge_cdata.vge_tail = m;
 1480                         } else {
 1481                                 m->m_flags &= ~M_PKTHDR;
 1482                                 sc->vge_cdata.vge_tail->m_next = m;
 1483                                 sc->vge_cdata.vge_tail = m;
 1484                         }
 1485                         continue;
 1486                 }
 1487 
 1488                 /*
 1489                  * Bad/error frames will have the RXOK bit cleared.
 1490                  * However, there's one error case we want to allow:
 1491                  * if a VLAN tagged frame arrives and the chip can't
 1492                  * match it against the CAM filter, it considers this
 1493                  * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
 1494                  * We don't want to drop the frame though: our VLAN
 1495                  * filtering is done in software.
 1496                  * We also want to receive bad-checksummed frames and
 1497                  * and frames with bad-length.
 1498                  */
 1499                 if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
 1500                     (rxstat & (VGE_RDSTS_VIDM | VGE_RDSTS_RLERR |
 1501                     VGE_RDSTS_CSUMERR)) == 0) {
 1502                         ifp->if_ierrors++;
 1503                         /*
 1504                          * If this is part of a multi-fragment packet,
 1505                          * discard all the pieces.
 1506                          */
 1507                         VGE_CHAIN_RESET(sc);
 1508                         vge_discard_rxbuf(sc, prod);
 1509                         continue;
 1510                 }
 1511 
 1512                 if (vge_newbuf(sc, prod) != 0) {
 1513                         ifp->if_iqdrops++;
 1514                         VGE_CHAIN_RESET(sc);
 1515                         vge_discard_rxbuf(sc, prod);
 1516                         continue;
 1517                 }
 1518 
 1519                 /* Chain received mbufs. */
 1520                 if (sc->vge_cdata.vge_head != NULL) {
 1521                         m->m_len = total_len % (MCLBYTES - VGE_RX_BUF_ALIGN);
 1522                         /*
 1523                          * Special case: if there's 4 bytes or less
 1524                          * in this buffer, the mbuf can be discarded:
 1525                          * the last 4 bytes is the CRC, which we don't
 1526                          * care about anyway.
 1527                          */
 1528                         if (m->m_len <= ETHER_CRC_LEN) {
 1529                                 sc->vge_cdata.vge_tail->m_len -=
 1530                                     (ETHER_CRC_LEN - m->m_len);
 1531                                 m_freem(m);
 1532                         } else {
 1533                                 m->m_len -= ETHER_CRC_LEN;
 1534                                 m->m_flags &= ~M_PKTHDR;
 1535                                 sc->vge_cdata.vge_tail->m_next = m;
 1536                         }
 1537                         m = sc->vge_cdata.vge_head;
 1538                         m->m_flags |= M_PKTHDR;
 1539                         m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
 1540                 } else {
 1541                         m->m_flags |= M_PKTHDR;
 1542                         m->m_pkthdr.len = m->m_len =
 1543                             (total_len - ETHER_CRC_LEN);
 1544                 }
 1545 
 1546 #ifndef __NO_STRICT_ALIGNMENT
 1547                 vge_fixup_rx(m);
 1548 #endif
 1549                 m->m_pkthdr.rcvif = ifp;
 1550 
 1551                 /* Do RX checksumming if enabled */
 1552                 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
 1553                     (rxctl & VGE_RDCTL_FRAG) == 0) {
 1554                         /* Check IP header checksum */
 1555                         if ((rxctl & VGE_RDCTL_IPPKT) != 0)
 1556                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
 1557                         if ((rxctl & VGE_RDCTL_IPCSUMOK) != 0)
 1558                                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
 1559 
 1560                         /* Check TCP/UDP checksum */
 1561                         if (rxctl & (VGE_RDCTL_TCPPKT | VGE_RDCTL_UDPPKT) &&
 1562                             rxctl & VGE_RDCTL_PROTOCSUMOK) {
 1563                                 m->m_pkthdr.csum_flags |=
 1564                                     CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
 1565                                 m->m_pkthdr.csum_data = 0xffff;
 1566                         }
 1567                 }
 1568 
 1569                 if ((rxstat & VGE_RDSTS_VTAG) != 0) {
 1570                         /*
 1571                          * The 32-bit rxctl register is stored in little-endian.
 1572                          * However, the 16-bit vlan tag is stored in big-endian,
 1573                          * so we have to byte swap it.
 1574                          */
 1575                         m->m_pkthdr.ether_vtag =
 1576                             bswap16(rxctl & VGE_RDCTL_VLANID);
 1577                         m->m_flags |= M_VLANTAG;
 1578                 }
 1579 
 1580                 VGE_UNLOCK(sc);
 1581                 (*ifp->if_input)(ifp, m);
 1582                 VGE_LOCK(sc);
 1583                 sc->vge_cdata.vge_head = NULL;
 1584                 sc->vge_cdata.vge_tail = NULL;
 1585         }
 1586 
 1587         if (prog > 0) {
 1588                 sc->vge_cdata.vge_rx_prodidx = prod;
 1589                 bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
 1590                     sc->vge_cdata.vge_rx_ring_map,
 1591                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1592                 /* Update residue counter. */
 1593                 if (sc->vge_cdata.vge_rx_commit != 0) {
 1594                         CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT,
 1595                             sc->vge_cdata.vge_rx_commit);
 1596                         sc->vge_cdata.vge_rx_commit = 0;
 1597                 }
 1598         }
 1599         return (prog);
 1600 }
 1601 
 1602 static void
 1603 vge_txeof(struct vge_softc *sc)
 1604 {
 1605         struct ifnet *ifp;
 1606         struct vge_tx_desc *cur_tx;
 1607         struct vge_txdesc *txd;
 1608         uint32_t txstat;
 1609         int cons, prod;
 1610 
 1611         VGE_LOCK_ASSERT(sc);
 1612 
 1613         ifp = sc->vge_ifp;
 1614 
 1615         if (sc->vge_cdata.vge_tx_cnt == 0)
 1616                 return;
 1617 
 1618         bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
 1619             sc->vge_cdata.vge_tx_ring_map,
 1620             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 1621 
 1622         /*
 1623          * Go through our tx list and free mbufs for those
 1624          * frames that have been transmitted.
 1625          */
 1626         cons = sc->vge_cdata.vge_tx_considx;
 1627         prod = sc->vge_cdata.vge_tx_prodidx;
 1628         for (; cons != prod; VGE_TX_DESC_INC(cons)) {
 1629                 cur_tx = &sc->vge_rdata.vge_tx_ring[cons];
 1630                 txstat = le32toh(cur_tx->vge_sts);
 1631                 if ((txstat & VGE_TDSTS_OWN) != 0)
 1632                         break;
 1633                 sc->vge_cdata.vge_tx_cnt--;
 1634                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 1635 
 1636                 txd = &sc->vge_cdata.vge_txdesc[cons];
 1637                 bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
 1638                     BUS_DMASYNC_POSTWRITE);
 1639                 bus_dmamap_unload(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap);
 1640 
 1641                 KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
 1642                     __func__));
 1643                 m_freem(txd->tx_m);
 1644                 txd->tx_m = NULL;
 1645                 txd->tx_desc->vge_frag[0].vge_addrhi = 0;
 1646         }
 1647         bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
 1648             sc->vge_cdata.vge_tx_ring_map,
 1649             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1650         sc->vge_cdata.vge_tx_considx = cons;
 1651         if (sc->vge_cdata.vge_tx_cnt == 0)
 1652                 sc->vge_timer = 0;
 1653 }
 1654 
 1655 static void
 1656 vge_link_statchg(void *xsc)
 1657 {
 1658         struct vge_softc *sc;
 1659         struct ifnet *ifp;
 1660         uint8_t physts;
 1661 
 1662         sc = xsc;
 1663         ifp = sc->vge_ifp;
 1664         VGE_LOCK_ASSERT(sc);
 1665 
 1666         physts = CSR_READ_1(sc, VGE_PHYSTS0);
 1667         if ((physts & VGE_PHYSTS_RESETSTS) == 0) {
 1668                 if ((physts & VGE_PHYSTS_LINK) == 0) {
 1669                         sc->vge_flags &= ~VGE_FLAG_LINK;
 1670                         if_link_state_change(sc->vge_ifp,
 1671                             LINK_STATE_DOWN);
 1672                 } else {
 1673                         sc->vge_flags |= VGE_FLAG_LINK;
 1674                         if_link_state_change(sc->vge_ifp,
 1675                             LINK_STATE_UP);
 1676                         CSR_WRITE_1(sc, VGE_CRC2, VGE_CR2_FDX_TXFLOWCTL_ENABLE |
 1677                             VGE_CR2_FDX_RXFLOWCTL_ENABLE);
 1678                         if ((physts & VGE_PHYSTS_FDX) != 0) {
 1679                                 if ((physts & VGE_PHYSTS_TXFLOWCAP) != 0)
 1680                                         CSR_WRITE_1(sc, VGE_CRS2,
 1681                                             VGE_CR2_FDX_TXFLOWCTL_ENABLE);
 1682                                 if ((physts & VGE_PHYSTS_RXFLOWCAP) != 0)
 1683                                         CSR_WRITE_1(sc, VGE_CRS2,
 1684                                             VGE_CR2_FDX_RXFLOWCTL_ENABLE);
 1685                         }
 1686                         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 1687                                 vge_start_locked(ifp);
 1688                 }
 1689         }
 1690         /*
 1691          * Restart MII auto-polling because link state change interrupt
 1692          * will disable it.
 1693          */
 1694         vge_miipoll_start(sc);
 1695 }
 1696 
 1697 #ifdef DEVICE_POLLING
 1698 static int
 1699 vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
 1700 {
 1701         struct vge_softc *sc = ifp->if_softc;
 1702         int rx_npkts = 0;
 1703 
 1704         VGE_LOCK(sc);
 1705         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
 1706                 goto done;
 1707 
 1708         rx_npkts = vge_rxeof(sc, count);
 1709         vge_txeof(sc);
 1710 
 1711         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 1712                 vge_start_locked(ifp);
 1713 
 1714         if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
 1715                 uint32_t       status;
 1716                 status = CSR_READ_4(sc, VGE_ISR);
 1717                 if (status == 0xFFFFFFFF)
 1718                         goto done;
 1719                 if (status)
 1720                         CSR_WRITE_4(sc, VGE_ISR, status);
 1721 
 1722                 /*
 1723                  * XXX check behaviour on receiver stalls.
 1724                  */
 1725 
 1726                 if (status & VGE_ISR_TXDMA_STALL ||
 1727                     status & VGE_ISR_RXDMA_STALL) {
 1728                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1729                         vge_init_locked(sc);
 1730                 }
 1731 
 1732                 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
 1733                         vge_rxeof(sc, count);
 1734                         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
 1735                         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
 1736                 }
 1737         }
 1738 done:
 1739         VGE_UNLOCK(sc);
 1740         return (rx_npkts);
 1741 }
 1742 #endif /* DEVICE_POLLING */
 1743 
 1744 static void
 1745 vge_intr(void *arg)
 1746 {
 1747         struct vge_softc *sc;
 1748         struct ifnet *ifp;
 1749         uint32_t status;
 1750 
 1751         sc = arg;
 1752         VGE_LOCK(sc);
 1753 
 1754         ifp = sc->vge_ifp;
 1755         if ((sc->vge_flags & VGE_FLAG_SUSPENDED) != 0 ||
 1756             (ifp->if_flags & IFF_UP) == 0) {
 1757                 VGE_UNLOCK(sc);
 1758                 return;
 1759         }
 1760 
 1761 #ifdef DEVICE_POLLING
 1762         if  (ifp->if_capenable & IFCAP_POLLING) {
 1763                 status = CSR_READ_4(sc, VGE_ISR);
 1764                 CSR_WRITE_4(sc, VGE_ISR, status);
 1765                 if (status != 0xFFFFFFFF && (status & VGE_ISR_LINKSTS) != 0)
 1766                         vge_link_statchg(sc);
 1767                 VGE_UNLOCK(sc);
 1768                 return;
 1769         }
 1770 #endif
 1771 
 1772         /* Disable interrupts */
 1773         CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
 1774         status = CSR_READ_4(sc, VGE_ISR);
 1775         CSR_WRITE_4(sc, VGE_ISR, status | VGE_ISR_HOLDOFF_RELOAD);
 1776         /* If the card has gone away the read returns 0xffff. */
 1777         if (status == 0xFFFFFFFF || (status & VGE_INTRS) == 0)
 1778                 goto done;
 1779         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
 1780                 if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
 1781                         vge_rxeof(sc, VGE_RX_DESC_CNT);
 1782                 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
 1783                         vge_rxeof(sc, VGE_RX_DESC_CNT);
 1784                         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
 1785                         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
 1786                 }
 1787 
 1788                 if (status & (VGE_ISR_TXOK0|VGE_ISR_TXOK_HIPRIO))
 1789                         vge_txeof(sc);
 1790 
 1791                 if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) {
 1792                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1793                         vge_init_locked(sc);
 1794                 }
 1795 
 1796                 if (status & VGE_ISR_LINKSTS)
 1797                         vge_link_statchg(sc);
 1798         }
 1799 done:
 1800         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
 1801                 /* Re-enable interrupts */
 1802                 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
 1803 
 1804                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 1805                         vge_start_locked(ifp);
 1806         }
 1807         VGE_UNLOCK(sc);
 1808 }
 1809 
 1810 static int
 1811 vge_encap(struct vge_softc *sc, struct mbuf **m_head)
 1812 {
 1813         struct vge_txdesc *txd;
 1814         struct vge_tx_frag *frag;
 1815         struct mbuf *m;
 1816         bus_dma_segment_t txsegs[VGE_MAXTXSEGS];
 1817         int error, i, nsegs, padlen;
 1818         uint32_t cflags;
 1819 
 1820         VGE_LOCK_ASSERT(sc);
 1821 
 1822         M_ASSERTPKTHDR((*m_head));
 1823 
 1824         /* Argh. This chip does not autopad short frames. */
 1825         if ((*m_head)->m_pkthdr.len < VGE_MIN_FRAMELEN) {
 1826                 m = *m_head;
 1827                 padlen = VGE_MIN_FRAMELEN - m->m_pkthdr.len;
 1828                 if (M_WRITABLE(m) == 0) {
 1829                         /* Get a writable copy. */
 1830                         m = m_dup(*m_head, M_NOWAIT);
 1831                         m_freem(*m_head);
 1832                         if (m == NULL) {
 1833                                 *m_head = NULL;
 1834                                 return (ENOBUFS);
 1835                         }
 1836                         *m_head = m;
 1837                 }
 1838                 if (M_TRAILINGSPACE(m) < padlen) {
 1839                         m = m_defrag(m, M_NOWAIT);
 1840                         if (m == NULL) {
 1841                                 m_freem(*m_head);
 1842                                 *m_head = NULL;
 1843                                 return (ENOBUFS);
 1844                         }
 1845                 }
 1846                 /*
 1847                  * Manually pad short frames, and zero the pad space
 1848                  * to avoid leaking data.
 1849                  */
 1850                 bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
 1851                 m->m_pkthdr.len += padlen;
 1852                 m->m_len = m->m_pkthdr.len;
 1853                 *m_head = m;
 1854         }
 1855 
 1856         txd = &sc->vge_cdata.vge_txdesc[sc->vge_cdata.vge_tx_prodidx];
 1857 
 1858         error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
 1859             txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
 1860         if (error == EFBIG) {
 1861                 m = m_collapse(*m_head, M_NOWAIT, VGE_MAXTXSEGS);
 1862                 if (m == NULL) {
 1863                         m_freem(*m_head);
 1864                         *m_head = NULL;
 1865                         return (ENOMEM);
 1866                 }
 1867                 *m_head = m;
 1868                 error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
 1869                     txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
 1870                 if (error != 0) {
 1871                         m_freem(*m_head);
 1872                         *m_head = NULL;
 1873                         return (error);
 1874                 }
 1875         } else if (error != 0)
 1876                 return (error);
 1877         bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
 1878             BUS_DMASYNC_PREWRITE);
 1879 
 1880         m = *m_head;
 1881         cflags = 0;
 1882 
 1883         /* Configure checksum offload. */
 1884         if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
 1885                 cflags |= VGE_TDCTL_IPCSUM;
 1886         if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
 1887                 cflags |= VGE_TDCTL_TCPCSUM;
 1888         if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
 1889                 cflags |= VGE_TDCTL_UDPCSUM;
 1890 
 1891         /* Configure VLAN. */
 1892         if ((m->m_flags & M_VLANTAG) != 0)
 1893                 cflags |= m->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG;
 1894         txd->tx_desc->vge_sts = htole32(m->m_pkthdr.len << 16);
 1895         /*
 1896          * XXX
 1897          * Velocity family seems to support TSO but no information
 1898          * for MSS configuration is available. Also the number of
 1899          * fragments supported by a descriptor is too small to hold
 1900          * entire 64KB TCP/IP segment. Maybe VGE_TD_LS_MOF,
 1901          * VGE_TD_LS_SOF and VGE_TD_LS_EOF could be used to build
 1902          * longer chain of buffers but no additional information is
 1903          * available.
 1904          *
 1905          * When telling the chip how many segments there are, we
 1906          * must use nsegs + 1 instead of just nsegs. Darned if I
 1907          * know why. This also means we can't use the last fragment
 1908          * field of Tx descriptor.
 1909          */
 1910         txd->tx_desc->vge_ctl = htole32(cflags | ((nsegs + 1) << 28) |
 1911             VGE_TD_LS_NORM);
 1912         for (i = 0; i < nsegs; i++) {
 1913                 frag = &txd->tx_desc->vge_frag[i];
 1914                 frag->vge_addrlo = htole32(VGE_ADDR_LO(txsegs[i].ds_addr));
 1915                 frag->vge_addrhi = htole32(VGE_ADDR_HI(txsegs[i].ds_addr) |
 1916                     (VGE_BUFLEN(txsegs[i].ds_len) << 16));
 1917         }
 1918 
 1919         sc->vge_cdata.vge_tx_cnt++;
 1920         VGE_TX_DESC_INC(sc->vge_cdata.vge_tx_prodidx);
 1921 
 1922         /*
 1923          * Finally request interrupt and give the first descriptor
 1924          * ownership to hardware.
 1925          */
 1926         txd->tx_desc->vge_ctl |= htole32(VGE_TDCTL_TIC);
 1927         txd->tx_desc->vge_sts |= htole32(VGE_TDSTS_OWN);
 1928         txd->tx_m = m;
 1929 
 1930         return (0);
 1931 }
 1932 
 1933 /*
 1934  * Main transmit routine.
 1935  */
 1936 
 1937 static void
 1938 vge_start(struct ifnet *ifp)
 1939 {
 1940         struct vge_softc *sc;
 1941 
 1942         sc = ifp->if_softc;
 1943         VGE_LOCK(sc);
 1944         vge_start_locked(ifp);
 1945         VGE_UNLOCK(sc);
 1946 }
 1947 
 1948 
 1949 static void
 1950 vge_start_locked(struct ifnet *ifp)
 1951 {
 1952         struct vge_softc *sc;
 1953         struct vge_txdesc *txd;
 1954         struct mbuf *m_head;
 1955         int enq, idx;
 1956 
 1957         sc = ifp->if_softc;
 1958 
 1959         VGE_LOCK_ASSERT(sc);
 1960 
 1961         if ((sc->vge_flags & VGE_FLAG_LINK) == 0 ||
 1962             (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
 1963             IFF_DRV_RUNNING)
 1964                 return;
 1965 
 1966         idx = sc->vge_cdata.vge_tx_prodidx;
 1967         VGE_TX_DESC_DEC(idx);
 1968         for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
 1969             sc->vge_cdata.vge_tx_cnt < VGE_TX_DESC_CNT - 1; ) {
 1970                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
 1971                 if (m_head == NULL)
 1972                         break;
 1973                 /*
 1974                  * Pack the data into the transmit ring. If we
 1975                  * don't have room, set the OACTIVE flag and wait
 1976                  * for the NIC to drain the ring.
 1977                  */
 1978                 if (vge_encap(sc, &m_head)) {
 1979                         if (m_head == NULL)
 1980                                 break;
 1981                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
 1982                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 1983                         break;
 1984                 }
 1985 
 1986                 txd = &sc->vge_cdata.vge_txdesc[idx];
 1987                 txd->tx_desc->vge_frag[0].vge_addrhi |= htole32(VGE_TXDESC_Q);
 1988                 VGE_TX_DESC_INC(idx);
 1989 
 1990                 enq++;
 1991                 /*
 1992                  * If there's a BPF listener, bounce a copy of this frame
 1993                  * to him.
 1994                  */
 1995                 ETHER_BPF_MTAP(ifp, m_head);
 1996         }
 1997 
 1998         if (enq > 0) {
 1999                 bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
 2000                     sc->vge_cdata.vge_tx_ring_map,
 2001                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 2002                 /* Issue a transmit command. */
 2003                 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
 2004                 /*
 2005                  * Set a timeout in case the chip goes out to lunch.
 2006                  */
 2007                 sc->vge_timer = 5;
 2008         }
 2009 }
 2010 
 2011 static void
 2012 vge_init(void *xsc)
 2013 {
 2014         struct vge_softc *sc = xsc;
 2015 
 2016         VGE_LOCK(sc);
 2017         vge_init_locked(sc);
 2018         VGE_UNLOCK(sc);
 2019 }
 2020 
 2021 static void
 2022 vge_init_locked(struct vge_softc *sc)
 2023 {
 2024         struct ifnet *ifp = sc->vge_ifp;
 2025         struct mii_data *mii;
 2026         int error, i;
 2027 
 2028         VGE_LOCK_ASSERT(sc);
 2029         mii = device_get_softc(sc->vge_miibus);
 2030 
 2031         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 2032                 return;
 2033 
 2034         /*
 2035          * Cancel pending I/O and free all RX/TX buffers.
 2036          */
 2037         vge_stop(sc);
 2038         vge_reset(sc);
 2039         vge_miipoll_start(sc);
 2040 
 2041         /*
 2042          * Initialize the RX and TX descriptors and mbufs.
 2043          */
 2044 
 2045         error = vge_rx_list_init(sc);
 2046         if (error != 0) {
 2047                 device_printf(sc->vge_dev, "no memory for Rx buffers.\n");
 2048                 return;
 2049         }
 2050         vge_tx_list_init(sc);
 2051         /* Clear MAC statistics. */
 2052         vge_stats_clear(sc);
 2053         /* Set our station address */
 2054         for (i = 0; i < ETHER_ADDR_LEN; i++)
 2055                 CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]);
 2056 
 2057         /*
 2058          * Set receive FIFO threshold. Also allow transmission and
 2059          * reception of VLAN tagged frames.
 2060          */
 2061         CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
 2062         CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES);
 2063 
 2064         /* Set DMA burst length */
 2065         CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
 2066         CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
 2067 
 2068         CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
 2069 
 2070         /* Set collision backoff algorithm */
 2071         CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
 2072             VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
 2073         CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
 2074 
 2075         /* Disable LPSEL field in priority resolution */
 2076         CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
 2077 
 2078         /*
 2079          * Load the addresses of the DMA queues into the chip.
 2080          * Note that we only use one transmit queue.
 2081          */
 2082 
 2083         CSR_WRITE_4(sc, VGE_TXDESC_HIADDR,
 2084             VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr));
 2085         CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
 2086             VGE_ADDR_LO(sc->vge_rdata.vge_tx_ring_paddr));
 2087         CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
 2088 
 2089         CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
 2090             VGE_ADDR_LO(sc->vge_rdata.vge_rx_ring_paddr));
 2091         CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
 2092         CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
 2093 
 2094         /* Configure interrupt moderation. */
 2095         vge_intr_holdoff(sc);
 2096 
 2097         /* Enable and wake up the RX descriptor queue */
 2098         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
 2099         CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
 2100 
 2101         /* Enable the TX descriptor queue */
 2102         CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
 2103 
 2104         /* Init the cam filter. */
 2105         vge_cam_clear(sc);
 2106 
 2107         /* Set up receiver filter. */
 2108         vge_rxfilter(sc);
 2109         vge_setvlan(sc);
 2110 
 2111         /* Initialize pause timer. */
 2112         CSR_WRITE_2(sc, VGE_TX_PAUSE_TIMER, 0xFFFF);
 2113         /*
 2114          * Initialize flow control parameters.
 2115          *  TX XON high threshold : 48
 2116          *  TX pause low threshold : 24
 2117          *  Disable hald-duplex flow control
 2118          */
 2119         CSR_WRITE_1(sc, VGE_CRC2, 0xFF);
 2120         CSR_WRITE_1(sc, VGE_CRS2, VGE_CR2_XON_ENABLE | 0x0B);
 2121 
 2122         /* Enable jumbo frame reception (if desired) */
 2123 
 2124         /* Start the MAC. */
 2125         CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
 2126         CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
 2127         CSR_WRITE_1(sc, VGE_CRS0,
 2128             VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
 2129 
 2130 #ifdef DEVICE_POLLING
 2131         /*
 2132          * Disable interrupts except link state change if we are polling.
 2133          */
 2134         if (ifp->if_capenable & IFCAP_POLLING) {
 2135                 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
 2136         } else  /* otherwise ... */
 2137 #endif
 2138         {
 2139         /*
 2140          * Enable interrupts.
 2141          */
 2142                 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
 2143         }
 2144         CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
 2145         CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
 2146 
 2147         sc->vge_flags &= ~VGE_FLAG_LINK;
 2148         vge_ifmedia_upd_locked(sc);
 2149 
 2150         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 2151         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 2152         callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
 2153 }
 2154 
 2155 /*
 2156  * Set media options.
 2157  */
 2158 static int
 2159 vge_ifmedia_upd(struct ifnet *ifp)
 2160 {
 2161         struct vge_softc *sc;
 2162         int error;
 2163 
 2164         sc = ifp->if_softc;
 2165         VGE_LOCK(sc);
 2166         error = vge_ifmedia_upd_locked(sc);
 2167         VGE_UNLOCK(sc);
 2168 
 2169         return (error);
 2170 }
 2171 
 2172 static int
 2173 vge_ifmedia_upd_locked(struct vge_softc *sc)
 2174 {
 2175         struct mii_data *mii;
 2176         struct mii_softc *miisc;
 2177         int error;
 2178 
 2179         mii = device_get_softc(sc->vge_miibus);
 2180         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
 2181                 PHY_RESET(miisc);
 2182         vge_setmedia(sc);
 2183         error = mii_mediachg(mii);
 2184 
 2185         return (error);
 2186 }
 2187 
 2188 /*
 2189  * Report current media status.
 2190  */
 2191 static void
 2192 vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
 2193 {
 2194         struct vge_softc *sc;
 2195         struct mii_data *mii;
 2196 
 2197         sc = ifp->if_softc;
 2198         mii = device_get_softc(sc->vge_miibus);
 2199 
 2200         VGE_LOCK(sc);
 2201         if ((ifp->if_flags & IFF_UP) == 0) {
 2202                 VGE_UNLOCK(sc);
 2203                 return;
 2204         }
 2205         mii_pollstat(mii);
 2206         ifmr->ifm_active = mii->mii_media_active;
 2207         ifmr->ifm_status = mii->mii_media_status;
 2208         VGE_UNLOCK(sc);
 2209 }
 2210 
 2211 static void
 2212 vge_setmedia(struct vge_softc *sc)
 2213 {
 2214         struct mii_data *mii;
 2215         struct ifmedia_entry *ife;
 2216 
 2217         mii = device_get_softc(sc->vge_miibus);
 2218         ife = mii->mii_media.ifm_cur;
 2219 
 2220         /*
 2221          * If the user manually selects a media mode, we need to turn
 2222          * on the forced MAC mode bit in the DIAGCTL register. If the
 2223          * user happens to choose a full duplex mode, we also need to
 2224          * set the 'force full duplex' bit. This applies only to
 2225          * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
 2226          * mode is disabled, and in 1000baseT mode, full duplex is
 2227          * always implied, so we turn on the forced mode bit but leave
 2228          * the FDX bit cleared.
 2229          */
 2230 
 2231         switch (IFM_SUBTYPE(ife->ifm_media)) {
 2232         case IFM_AUTO:
 2233                 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
 2234                 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
 2235                 break;
 2236         case IFM_1000_T:
 2237                 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
 2238                 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
 2239                 break;
 2240         case IFM_100_TX:
 2241         case IFM_10_T:
 2242                 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
 2243                 if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
 2244                         CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
 2245                 } else {
 2246                         CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
 2247                 }
 2248                 break;
 2249         default:
 2250                 device_printf(sc->vge_dev, "unknown media type: %x\n",
 2251                     IFM_SUBTYPE(ife->ifm_media));
 2252                 break;
 2253         }
 2254 }
 2255 
 2256 static int
 2257 vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
 2258 {
 2259         struct vge_softc *sc = ifp->if_softc;
 2260         struct ifreq *ifr = (struct ifreq *) data;
 2261         struct mii_data *mii;
 2262         int error = 0, mask;
 2263 
 2264         switch (command) {
 2265         case SIOCSIFMTU:
 2266                 VGE_LOCK(sc);
 2267                 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > VGE_JUMBO_MTU)
 2268                         error = EINVAL;
 2269                 else if (ifp->if_mtu != ifr->ifr_mtu) {
 2270                         if (ifr->ifr_mtu > ETHERMTU &&
 2271                             (sc->vge_flags & VGE_FLAG_JUMBO) == 0)
 2272                                 error = EINVAL;
 2273                         else
 2274                                 ifp->if_mtu = ifr->ifr_mtu;
 2275                 }
 2276                 VGE_UNLOCK(sc);
 2277                 break;
 2278         case SIOCSIFFLAGS:
 2279                 VGE_LOCK(sc);
 2280                 if ((ifp->if_flags & IFF_UP) != 0) {
 2281                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
 2282                             ((ifp->if_flags ^ sc->vge_if_flags) &
 2283                             (IFF_PROMISC | IFF_ALLMULTI)) != 0)
 2284                                 vge_rxfilter(sc);
 2285                         else
 2286                                 vge_init_locked(sc);
 2287                 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 2288                         vge_stop(sc);
 2289                 sc->vge_if_flags = ifp->if_flags;
 2290                 VGE_UNLOCK(sc);
 2291                 break;
 2292         case SIOCADDMULTI:
 2293         case SIOCDELMULTI:
 2294                 VGE_LOCK(sc);
 2295                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 2296                         vge_rxfilter(sc);
 2297                 VGE_UNLOCK(sc);
 2298                 break;
 2299         case SIOCGIFMEDIA:
 2300         case SIOCSIFMEDIA:
 2301                 mii = device_get_softc(sc->vge_miibus);
 2302                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
 2303                 break;
 2304         case SIOCSIFCAP:
 2305                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
 2306 #ifdef DEVICE_POLLING
 2307                 if (mask & IFCAP_POLLING) {
 2308                         if (ifr->ifr_reqcap & IFCAP_POLLING) {
 2309                                 error = ether_poll_register(vge_poll, ifp);
 2310                                 if (error)
 2311                                         return (error);
 2312                                 VGE_LOCK(sc);
 2313                                         /* Disable interrupts */
 2314                                 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
 2315                                 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
 2316                                 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
 2317                                 ifp->if_capenable |= IFCAP_POLLING;
 2318                                 VGE_UNLOCK(sc);
 2319                         } else {
 2320                                 error = ether_poll_deregister(ifp);
 2321                                 /* Enable interrupts. */
 2322                                 VGE_LOCK(sc);
 2323                                 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
 2324                                 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
 2325                                 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
 2326                                 ifp->if_capenable &= ~IFCAP_POLLING;
 2327                                 VGE_UNLOCK(sc);
 2328                         }
 2329                 }
 2330 #endif /* DEVICE_POLLING */
 2331                 VGE_LOCK(sc);
 2332                 if ((mask & IFCAP_TXCSUM) != 0 &&
 2333                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
 2334                         ifp->if_capenable ^= IFCAP_TXCSUM;
 2335                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
 2336                                 ifp->if_hwassist |= VGE_CSUM_FEATURES;
 2337                         else
 2338                                 ifp->if_hwassist &= ~VGE_CSUM_FEATURES;
 2339                 }
 2340                 if ((mask & IFCAP_RXCSUM) != 0 &&
 2341                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
 2342                         ifp->if_capenable ^= IFCAP_RXCSUM;
 2343                 if ((mask & IFCAP_WOL_UCAST) != 0 &&
 2344                     (ifp->if_capabilities & IFCAP_WOL_UCAST) != 0)
 2345                         ifp->if_capenable ^= IFCAP_WOL_UCAST;
 2346                 if ((mask & IFCAP_WOL_MCAST) != 0 &&
 2347                     (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
 2348                         ifp->if_capenable ^= IFCAP_WOL_MCAST;
 2349                 if ((mask & IFCAP_WOL_MAGIC) != 0 &&
 2350                     (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
 2351                         ifp->if_capenable ^= IFCAP_WOL_MAGIC;
 2352                 if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
 2353                     (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
 2354                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
 2355                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
 2356                     (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
 2357                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
 2358                         vge_setvlan(sc);
 2359                 }
 2360                 VGE_UNLOCK(sc);
 2361                 VLAN_CAPABILITIES(ifp);
 2362                 break;
 2363         default:
 2364                 error = ether_ioctl(ifp, command, data);
 2365                 break;
 2366         }
 2367 
 2368         return (error);
 2369 }
 2370 
 2371 static void
 2372 vge_watchdog(void *arg)
 2373 {
 2374         struct vge_softc *sc;
 2375         struct ifnet *ifp;
 2376 
 2377         sc = arg;
 2378         VGE_LOCK_ASSERT(sc);
 2379         vge_stats_update(sc);
 2380         callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
 2381         if (sc->vge_timer == 0 || --sc->vge_timer > 0)
 2382                 return;
 2383 
 2384         ifp = sc->vge_ifp;
 2385         if_printf(ifp, "watchdog timeout\n");
 2386         ifp->if_oerrors++;
 2387 
 2388         vge_txeof(sc);
 2389         vge_rxeof(sc, VGE_RX_DESC_CNT);
 2390 
 2391         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 2392         vge_init_locked(sc);
 2393 }
 2394 
 2395 /*
 2396  * Stop the adapter and free any mbufs allocated to the
 2397  * RX and TX lists.
 2398  */
 2399 static void
 2400 vge_stop(struct vge_softc *sc)
 2401 {
 2402         struct ifnet *ifp;
 2403 
 2404         VGE_LOCK_ASSERT(sc);
 2405         ifp = sc->vge_ifp;
 2406         sc->vge_timer = 0;
 2407         callout_stop(&sc->vge_watchdog);
 2408 
 2409         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 2410 
 2411         CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
 2412         CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
 2413         CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
 2414         CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
 2415         CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
 2416         CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
 2417 
 2418         vge_stats_update(sc);
 2419         VGE_CHAIN_RESET(sc);
 2420         vge_txeof(sc);
 2421         vge_freebufs(sc);
 2422 }
 2423 
 2424 /*
 2425  * Device suspend routine.  Stop the interface and save some PCI
 2426  * settings in case the BIOS doesn't restore them properly on
 2427  * resume.
 2428  */
 2429 static int
 2430 vge_suspend(device_t dev)
 2431 {
 2432         struct vge_softc *sc;
 2433 
 2434         sc = device_get_softc(dev);
 2435 
 2436         VGE_LOCK(sc);
 2437         vge_stop(sc);
 2438         vge_setwol(sc);
 2439         sc->vge_flags |= VGE_FLAG_SUSPENDED;
 2440         VGE_UNLOCK(sc);
 2441 
 2442         return (0);
 2443 }
 2444 
 2445 /*
 2446  * Device resume routine.  Restore some PCI settings in case the BIOS
 2447  * doesn't, re-enable busmastering, and restart the interface if
 2448  * appropriate.
 2449  */
 2450 static int
 2451 vge_resume(device_t dev)
 2452 {
 2453         struct vge_softc *sc;
 2454         struct ifnet *ifp;
 2455         uint16_t pmstat;
 2456 
 2457         sc = device_get_softc(dev);
 2458         VGE_LOCK(sc);
 2459         if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0) {
 2460                 /* Disable PME and clear PME status. */
 2461                 pmstat = pci_read_config(sc->vge_dev,
 2462                     sc->vge_pmcap + PCIR_POWER_STATUS, 2);
 2463                 if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
 2464                         pmstat &= ~PCIM_PSTAT_PMEENABLE;
 2465                         pci_write_config(sc->vge_dev,
 2466                             sc->vge_pmcap + PCIR_POWER_STATUS, pmstat, 2);
 2467                 }
 2468         }
 2469         vge_clrwol(sc);
 2470         /* Restart MII auto-polling. */
 2471         vge_miipoll_start(sc);
 2472         ifp = sc->vge_ifp;
 2473         /* Reinitialize interface if necessary. */
 2474         if ((ifp->if_flags & IFF_UP) != 0) {
 2475                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 2476                 vge_init_locked(sc);
 2477         }
 2478         sc->vge_flags &= ~VGE_FLAG_SUSPENDED;
 2479         VGE_UNLOCK(sc);
 2480 
 2481         return (0);
 2482 }
 2483 
 2484 /*
 2485  * Stop all chip I/O so that the kernel's probe routines don't
 2486  * get confused by errant DMAs when rebooting.
 2487  */
 2488 static int
 2489 vge_shutdown(device_t dev)
 2490 {
 2491 
 2492         return (vge_suspend(dev));
 2493 }
 2494 
 2495 #define VGE_SYSCTL_STAT_ADD32(c, h, n, p, d)    \
 2496             SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
 2497 
 2498 static void
 2499 vge_sysctl_node(struct vge_softc *sc)
 2500 {
 2501         struct sysctl_ctx_list *ctx;
 2502         struct sysctl_oid_list *child, *parent;
 2503         struct sysctl_oid *tree;
 2504         struct vge_hw_stats *stats;
 2505 
 2506         stats = &sc->vge_stats;
 2507         ctx = device_get_sysctl_ctx(sc->vge_dev);
 2508         child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vge_dev));
 2509 
 2510         SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_holdoff",
 2511             CTLFLAG_RW, &sc->vge_int_holdoff, 0, "interrupt holdoff");
 2512         SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rx_coal_pkt",
 2513             CTLFLAG_RW, &sc->vge_rx_coal_pkt, 0, "rx coalescing packet");
 2514         SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_coal_pkt",
 2515             CTLFLAG_RW, &sc->vge_tx_coal_pkt, 0, "tx coalescing packet");
 2516 
 2517         /* Pull in device tunables. */
 2518         sc->vge_int_holdoff = VGE_INT_HOLDOFF_DEFAULT;
 2519         resource_int_value(device_get_name(sc->vge_dev),
 2520             device_get_unit(sc->vge_dev), "int_holdoff", &sc->vge_int_holdoff);
 2521         sc->vge_rx_coal_pkt = VGE_RX_COAL_PKT_DEFAULT;
 2522         resource_int_value(device_get_name(sc->vge_dev),
 2523             device_get_unit(sc->vge_dev), "rx_coal_pkt", &sc->vge_rx_coal_pkt);
 2524         sc->vge_tx_coal_pkt = VGE_TX_COAL_PKT_DEFAULT;
 2525         resource_int_value(device_get_name(sc->vge_dev),
 2526             device_get_unit(sc->vge_dev), "tx_coal_pkt", &sc->vge_tx_coal_pkt);
 2527 
 2528         tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
 2529             NULL, "VGE statistics");
 2530         parent = SYSCTL_CHILDREN(tree);
 2531 
 2532         /* Rx statistics. */
 2533         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
 2534             NULL, "RX MAC statistics");
 2535         child = SYSCTL_CHILDREN(tree);
 2536         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames",
 2537             &stats->rx_frames, "frames");
 2538         VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
 2539             &stats->rx_good_frames, "Good frames");
 2540         VGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
 2541             &stats->rx_fifo_oflows, "FIFO overflows");
 2542         VGE_SYSCTL_STAT_ADD32(ctx, child, "runts",
 2543             &stats->rx_runts, "Too short frames");
 2544         VGE_SYSCTL_STAT_ADD32(ctx, child, "runts_errs",
 2545             &stats->rx_runts_errs, "Too short frames with errors");
 2546         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
 2547             &stats->rx_pkts_64, "64 bytes frames");
 2548         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
 2549             &stats->rx_pkts_65_127, "65 to 127 bytes frames");
 2550         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
 2551             &stats->rx_pkts_128_255, "128 to 255 bytes frames");
 2552         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
 2553             &stats->rx_pkts_256_511, "256 to 511 bytes frames");
 2554         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
 2555             &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
 2556         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
 2557             &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
 2558         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
 2559             &stats->rx_pkts_1519_max, "1519 to max frames");
 2560         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max_errs",
 2561             &stats->rx_pkts_1519_max_errs, "1519 to max frames with error");
 2562         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
 2563             &stats->rx_jumbos, "Jumbo frames");
 2564         VGE_SYSCTL_STAT_ADD32(ctx, child, "crcerrs",
 2565             &stats->rx_crcerrs, "CRC errors");
 2566         VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
 2567             &stats->rx_pause_frames, "CRC errors");
 2568         VGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
 2569             &stats->rx_alignerrs, "Alignment errors");
 2570         VGE_SYSCTL_STAT_ADD32(ctx, child, "nobufs",
 2571             &stats->rx_nobufs, "Frames with no buffer event");
 2572         VGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
 2573             &stats->rx_symerrs, "Frames with symbol errors");
 2574         VGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
 2575             &stats->rx_lenerrs, "Frames with length mismatched");
 2576 
 2577         /* Tx statistics. */
 2578         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
 2579             NULL, "TX MAC statistics");
 2580         child = SYSCTL_CHILDREN(tree);
 2581         VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
 2582             &stats->tx_good_frames, "Good frames");
 2583         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
 2584             &stats->tx_pkts_64, "64 bytes frames");
 2585         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
 2586             &stats->tx_pkts_65_127, "65 to 127 bytes frames");
 2587         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
 2588             &stats->tx_pkts_128_255, "128 to 255 bytes frames");
 2589         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
 2590             &stats->tx_pkts_256_511, "256 to 511 bytes frames");
 2591         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
 2592             &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
 2593         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
 2594             &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
 2595         VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
 2596             &stats->tx_jumbos, "Jumbo frames");
 2597         VGE_SYSCTL_STAT_ADD32(ctx, child, "colls",
 2598             &stats->tx_colls, "Collisions");
 2599         VGE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
 2600             &stats->tx_latecolls, "Late collisions");
 2601         VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
 2602             &stats->tx_pause, "Pause frames");
 2603 #ifdef VGE_ENABLE_SQEERR
 2604         VGE_SYSCTL_STAT_ADD32(ctx, child, "sqeerrs",
 2605             &stats->tx_sqeerrs, "SQE errors");
 2606 #endif
 2607         /* Clear MAC statistics. */
 2608         vge_stats_clear(sc);
 2609 }
 2610 
 2611 #undef  VGE_SYSCTL_STAT_ADD32
 2612 
 2613 static void
 2614 vge_stats_clear(struct vge_softc *sc)
 2615 {
 2616         int i;
 2617 
 2618         CSR_WRITE_1(sc, VGE_MIBCSR,
 2619             CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FREEZE);
 2620         CSR_WRITE_1(sc, VGE_MIBCSR,
 2621             CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_CLR);
 2622         for (i = VGE_TIMEOUT; i > 0; i--) {
 2623                 DELAY(1);
 2624                 if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_CLR) == 0)
 2625                         break;
 2626         }
 2627         if (i == 0)
 2628                 device_printf(sc->vge_dev, "MIB clear timed out!\n");
 2629         CSR_WRITE_1(sc, VGE_MIBCSR, CSR_READ_1(sc, VGE_MIBCSR) &
 2630             ~VGE_MIBCSR_FREEZE);
 2631 }
 2632 
 2633 static void
 2634 vge_stats_update(struct vge_softc *sc)
 2635 {
 2636         struct vge_hw_stats *stats;
 2637         struct ifnet *ifp;
 2638         uint32_t mib[VGE_MIB_CNT], val;
 2639         int i;
 2640 
 2641         VGE_LOCK_ASSERT(sc);
 2642 
 2643         stats = &sc->vge_stats;
 2644         ifp = sc->vge_ifp;
 2645 
 2646         CSR_WRITE_1(sc, VGE_MIBCSR,
 2647             CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FLUSH);
 2648         for (i = VGE_TIMEOUT; i > 0; i--) {
 2649                 DELAY(1);
 2650                 if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_FLUSH) == 0)
 2651                         break;
 2652         }
 2653         if (i == 0) {
 2654                 device_printf(sc->vge_dev, "MIB counter dump timed out!\n");
 2655                 vge_stats_clear(sc);
 2656                 return;
 2657         }
 2658 
 2659         bzero(mib, sizeof(mib));
 2660 reset_idx:
 2661         /* Set MIB read index to 0. */
 2662         CSR_WRITE_1(sc, VGE_MIBCSR,
 2663             CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_RINI);
 2664         for (i = 0; i < VGE_MIB_CNT; i++) {
 2665                 val = CSR_READ_4(sc, VGE_MIBDATA);
 2666                 if (i != VGE_MIB_DATA_IDX(val)) {
 2667                         /* Reading interrupted. */
 2668                         goto reset_idx;
 2669                 }
 2670                 mib[i] = val & VGE_MIB_DATA_MASK;
 2671         }
 2672 
 2673         /* Rx stats. */
 2674         stats->rx_frames += mib[VGE_MIB_RX_FRAMES];
 2675         stats->rx_good_frames += mib[VGE_MIB_RX_GOOD_FRAMES];
 2676         stats->rx_fifo_oflows += mib[VGE_MIB_RX_FIFO_OVERRUNS];
 2677         stats->rx_runts += mib[VGE_MIB_RX_RUNTS];
 2678         stats->rx_runts_errs += mib[VGE_MIB_RX_RUNTS_ERRS];
 2679         stats->rx_pkts_64 += mib[VGE_MIB_RX_PKTS_64];
 2680         stats->rx_pkts_65_127 += mib[VGE_MIB_RX_PKTS_65_127];
 2681         stats->rx_pkts_128_255 += mib[VGE_MIB_RX_PKTS_128_255];
 2682         stats->rx_pkts_256_511 += mib[VGE_MIB_RX_PKTS_256_511];
 2683         stats->rx_pkts_512_1023 += mib[VGE_MIB_RX_PKTS_512_1023];
 2684         stats->rx_pkts_1024_1518 += mib[VGE_MIB_RX_PKTS_1024_1518];
 2685         stats->rx_pkts_1519_max += mib[VGE_MIB_RX_PKTS_1519_MAX];
 2686         stats->rx_pkts_1519_max_errs += mib[VGE_MIB_RX_PKTS_1519_MAX_ERRS];
 2687         stats->rx_jumbos += mib[VGE_MIB_RX_JUMBOS];
 2688         stats->rx_crcerrs += mib[VGE_MIB_RX_CRCERRS];
 2689         stats->rx_pause_frames += mib[VGE_MIB_RX_PAUSE];
 2690         stats->rx_alignerrs += mib[VGE_MIB_RX_ALIGNERRS];
 2691         stats->rx_nobufs += mib[VGE_MIB_RX_NOBUFS];
 2692         stats->rx_symerrs += mib[VGE_MIB_RX_SYMERRS];
 2693         stats->rx_lenerrs += mib[VGE_MIB_RX_LENERRS];
 2694 
 2695         /* Tx stats. */
 2696         stats->tx_good_frames += mib[VGE_MIB_TX_GOOD_FRAMES];
 2697         stats->tx_pkts_64 += mib[VGE_MIB_TX_PKTS_64];
 2698         stats->tx_pkts_65_127 += mib[VGE_MIB_TX_PKTS_65_127];
 2699         stats->tx_pkts_128_255 += mib[VGE_MIB_TX_PKTS_128_255];
 2700         stats->tx_pkts_256_511 += mib[VGE_MIB_TX_PKTS_256_511];
 2701         stats->tx_pkts_512_1023 += mib[VGE_MIB_TX_PKTS_512_1023];
 2702         stats->tx_pkts_1024_1518 += mib[VGE_MIB_TX_PKTS_1024_1518];
 2703         stats->tx_jumbos += mib[VGE_MIB_TX_JUMBOS];
 2704         stats->tx_colls += mib[VGE_MIB_TX_COLLS];
 2705         stats->tx_pause += mib[VGE_MIB_TX_PAUSE];
 2706 #ifdef VGE_ENABLE_SQEERR
 2707         stats->tx_sqeerrs += mib[VGE_MIB_TX_SQEERRS];
 2708 #endif
 2709         stats->tx_latecolls += mib[VGE_MIB_TX_LATECOLLS];
 2710 
 2711         /* Update counters in ifnet. */
 2712         ifp->if_opackets += mib[VGE_MIB_TX_GOOD_FRAMES];
 2713 
 2714         ifp->if_collisions += mib[VGE_MIB_TX_COLLS] +
 2715             mib[VGE_MIB_TX_LATECOLLS];
 2716 
 2717         ifp->if_oerrors += mib[VGE_MIB_TX_COLLS] +
 2718             mib[VGE_MIB_TX_LATECOLLS];
 2719 
 2720         ifp->if_ipackets += mib[VGE_MIB_RX_GOOD_FRAMES];
 2721 
 2722         ifp->if_ierrors += mib[VGE_MIB_RX_FIFO_OVERRUNS] +
 2723             mib[VGE_MIB_RX_RUNTS] +
 2724             mib[VGE_MIB_RX_RUNTS_ERRS] +
 2725             mib[VGE_MIB_RX_CRCERRS] +
 2726             mib[VGE_MIB_RX_ALIGNERRS] +
 2727             mib[VGE_MIB_RX_NOBUFS] +
 2728             mib[VGE_MIB_RX_SYMERRS] +
 2729             mib[VGE_MIB_RX_LENERRS];
 2730 }
 2731 
 2732 static void
 2733 vge_intr_holdoff(struct vge_softc *sc)
 2734 {
 2735         uint8_t intctl;
 2736 
 2737         VGE_LOCK_ASSERT(sc);
 2738 
 2739         /*
 2740          * Set Tx interrupt supression threshold.
 2741          * It's possible to use single-shot timer in VGE_CRS1 register
 2742          * in Tx path such that driver can remove most of Tx completion
 2743          * interrupts. However this requires additional access to
 2744          * VGE_CRS1 register to reload the timer in addintion to
 2745          * activating Tx kick command. Another downside is we don't know
 2746          * what single-shot timer value should be used in advance so
 2747          * reclaiming transmitted mbufs could be delayed a lot which in
 2748          * turn slows down Tx operation.
 2749          */
 2750         CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_TXSUPPTHR);
 2751         CSR_WRITE_1(sc, VGE_TXSUPPTHR, sc->vge_tx_coal_pkt);
 2752 
 2753         /* Set Rx interrupt suppresion threshold. */
 2754         CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
 2755         CSR_WRITE_1(sc, VGE_RXSUPPTHR, sc->vge_rx_coal_pkt);
 2756 
 2757         intctl = CSR_READ_1(sc, VGE_INTCTL1);
 2758         intctl &= ~VGE_INTCTL_SC_RELOAD;
 2759         intctl |= VGE_INTCTL_HC_RELOAD;
 2760         if (sc->vge_tx_coal_pkt <= 0)
 2761                 intctl |= VGE_INTCTL_TXINTSUP_DISABLE;
 2762         else
 2763                 intctl &= ~VGE_INTCTL_TXINTSUP_DISABLE;
 2764         if (sc->vge_rx_coal_pkt <= 0)
 2765                 intctl |= VGE_INTCTL_RXINTSUP_DISABLE;
 2766         else
 2767                 intctl &= ~VGE_INTCTL_RXINTSUP_DISABLE;
 2768         CSR_WRITE_1(sc, VGE_INTCTL1, intctl);
 2769         CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_HOLDOFF);
 2770         if (sc->vge_int_holdoff > 0) {
 2771                 /* Set interrupt holdoff timer. */
 2772                 CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
 2773                 CSR_WRITE_1(sc, VGE_INTHOLDOFF,
 2774                     VGE_INT_HOLDOFF_USEC(sc->vge_int_holdoff));
 2775                 /* Enable holdoff timer. */
 2776                 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
 2777         }
 2778 }
 2779 
 2780 static void
 2781 vge_setlinkspeed(struct vge_softc *sc)
 2782 {
 2783         struct mii_data *mii;
 2784         int aneg, i;
 2785 
 2786         VGE_LOCK_ASSERT(sc);
 2787 
 2788         mii = device_get_softc(sc->vge_miibus);
 2789         mii_pollstat(mii);
 2790         aneg = 0;
 2791         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
 2792             (IFM_ACTIVE | IFM_AVALID)) {
 2793                 switch IFM_SUBTYPE(mii->mii_media_active) {
 2794                 case IFM_10_T:
 2795                 case IFM_100_TX:
 2796                         return;
 2797                 case IFM_1000_T:
 2798                         aneg++;
 2799                 default:
 2800                         break;
 2801                 }
 2802         }
 2803         /* Clear forced MAC speed/duplex configuration. */
 2804         CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
 2805         CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
 2806         vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_100T2CR, 0);
 2807         vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_ANAR,
 2808             ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
 2809         vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
 2810             BMCR_AUTOEN | BMCR_STARTNEG);
 2811         DELAY(1000);
 2812         if (aneg != 0) {
 2813                 /* Poll link state until vge(4) get a 10/100 link. */
 2814                 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
 2815                         mii_pollstat(mii);
 2816                         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
 2817                             == (IFM_ACTIVE | IFM_AVALID)) {
 2818                                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
 2819                                 case IFM_10_T:
 2820                                 case IFM_100_TX:
 2821                                         return;
 2822                                 default:
 2823                                         break;
 2824                                 }
 2825                         }
 2826                         VGE_UNLOCK(sc);
 2827                         pause("vgelnk", hz);
 2828                         VGE_LOCK(sc);
 2829                 }
 2830                 if (i == MII_ANEGTICKS_GIGE)
 2831                         device_printf(sc->vge_dev, "establishing link failed, "
 2832                             "WOL may not work!");
 2833         }
 2834         /*
 2835          * No link, force MAC to have 100Mbps, full-duplex link.
 2836          * This is the last resort and may/may not work.
 2837          */
 2838         mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
 2839         mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
 2840 }
 2841 
 2842 static void
 2843 vge_setwol(struct vge_softc *sc)
 2844 {
 2845         struct ifnet *ifp;
 2846         uint16_t pmstat;
 2847         uint8_t val;
 2848 
 2849         VGE_LOCK_ASSERT(sc);
 2850 
 2851         if ((sc->vge_flags & VGE_FLAG_PMCAP) == 0) {
 2852                 /* No PME capability, PHY power down. */
 2853                 vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
 2854                     BMCR_PDOWN);
 2855                 vge_miipoll_stop(sc);
 2856                 return;
 2857         }
 2858 
 2859         ifp = sc->vge_ifp;
 2860 
 2861         /* Clear WOL on pattern match. */
 2862         CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
 2863         /* Disable WOL on magic/unicast packet. */
 2864         CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
 2865         CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
 2866             VGE_WOLCFG_PMEOVR);
 2867         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
 2868                 vge_setlinkspeed(sc);
 2869                 val = 0;
 2870                 if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
 2871                         val |= VGE_WOLCR1_UCAST;
 2872                 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
 2873                         val |= VGE_WOLCR1_MAGIC;
 2874                 CSR_WRITE_1(sc, VGE_WOLCR1S, val);
 2875                 val = 0;
 2876                 if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
 2877                         val |= VGE_WOLCFG_SAM | VGE_WOLCFG_SAB;
 2878                 CSR_WRITE_1(sc, VGE_WOLCFGS, val | VGE_WOLCFG_PMEOVR);
 2879                 /* Disable MII auto-polling. */
 2880                 vge_miipoll_stop(sc);
 2881         }
 2882         CSR_SETBIT_1(sc, VGE_DIAGCTL,
 2883             VGE_DIAGCTL_MACFORCE | VGE_DIAGCTL_FDXFORCE);
 2884         CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
 2885 
 2886         /* Clear WOL status on pattern match. */
 2887         CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
 2888         CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
 2889 
 2890         val = CSR_READ_1(sc, VGE_PWRSTAT);
 2891         val |= VGE_STICKHW_SWPTAG;
 2892         CSR_WRITE_1(sc, VGE_PWRSTAT, val);
 2893         /* Put hardware into sleep. */
 2894         val = CSR_READ_1(sc, VGE_PWRSTAT);
 2895         val |= VGE_STICKHW_DS0 | VGE_STICKHW_DS1;
 2896         CSR_WRITE_1(sc, VGE_PWRSTAT, val);
 2897         /* Request PME if WOL is requested. */
 2898         pmstat = pci_read_config(sc->vge_dev, sc->vge_pmcap +
 2899             PCIR_POWER_STATUS, 2);
 2900         pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
 2901         if ((ifp->if_capenable & IFCAP_WOL) != 0)
 2902                 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
 2903         pci_write_config(sc->vge_dev, sc->vge_pmcap + PCIR_POWER_STATUS,
 2904             pmstat, 2);
 2905 }
 2906 
 2907 static void
 2908 vge_clrwol(struct vge_softc *sc)
 2909 {
 2910         uint8_t val;
 2911 
 2912         val = CSR_READ_1(sc, VGE_PWRSTAT);
 2913         val &= ~VGE_STICKHW_SWPTAG;
 2914         CSR_WRITE_1(sc, VGE_PWRSTAT, val);
 2915         /* Disable WOL and clear power state indicator. */
 2916         val = CSR_READ_1(sc, VGE_PWRSTAT);
 2917         val &= ~(VGE_STICKHW_DS0 | VGE_STICKHW_DS1);
 2918         CSR_WRITE_1(sc, VGE_PWRSTAT, val);
 2919 
 2920         CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
 2921         CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
 2922 
 2923         /* Clear WOL on pattern match. */
 2924         CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
 2925         /* Disable WOL on magic/unicast packet. */
 2926         CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
 2927         CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
 2928             VGE_WOLCFG_PMEOVR);
 2929         /* Clear WOL status on pattern match. */
 2930         CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
 2931         CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
 2932 }

Cache object: bcdb378111d7e7aa9d53e8f7348e9f8a


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.