1 /* $NetBSD: vesagtf.c,v 1.2 2013/09/15 15:56:07 martin Exp $ */
2 /* $FreeBSD$ */
3
4 /*-
5 * Copyright (c) 2006 Itronix Inc.
6 * All rights reserved.
7 *
8 * Written by Garrett D'Amore for Itronix Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of Itronix Inc. may not be used to endorse
19 * or promote products derived from this software without specific
20 * prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY ITRONIX INC. ``AS IS'' AND ANY EXPRESS
23 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
24 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL ITRONIX INC. BE LIABLE FOR ANY
26 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
28 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
30 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
31 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
32 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * This was derived from a userland GTF program supplied by NVIDIA.
37 * NVIDIA's original boilerplate follows.
38 *
39 * Note that I have heavily modified the program for use in the EDID
40 * kernel code for NetBSD, including removing the use of floating
41 * point operations and making significant adjustments to minimize
42 * error propagation while operating with integer only math.
43 *
44 * This has required the use of 64-bit integers in a few places, but
45 * the upshot is that for a calculation of 1920x1200x85 (as an
46 * example), the error deviates by only ~.004% relative to the
47 * floating point version. This error is *well* within VESA
48 * tolerances.
49 */
50
51 /*
52 * Copyright (c) 2001, Andy Ritger aritger@nvidia.com
53 * All rights reserved.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 *
59 * o Redistributions of source code must retain the above copyright
60 * notice, this list of conditions and the following disclaimer.
61 * o Redistributions in binary form must reproduce the above copyright
62 * notice, this list of conditions and the following disclaimer
63 * in the documentation and/or other materials provided with the
64 * distribution.
65 * o Neither the name of NVIDIA nor the names of its contributors
66 * may be used to endorse or promote products derived from this
67 * software without specific prior written permission.
68 *
69 *
70 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
71 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
72 * NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
73 * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
74 * THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
75 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
76 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
77 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
78 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
79 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
80 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
81 * POSSIBILITY OF SUCH DAMAGE.
82 *
83 *
84 *
85 * This program is based on the Generalized Timing Formula(GTF TM)
86 * Standard Version: 1.0, Revision: 1.0
87 *
88 * The GTF Document contains the following Copyright information:
89 *
90 * Copyright (c) 1994, 1995, 1996 - Video Electronics Standards
91 * Association. Duplication of this document within VESA member
92 * companies for review purposes is permitted. All other rights
93 * reserved.
94 *
95 * While every precaution has been taken in the preparation
96 * of this standard, the Video Electronics Standards Association and
97 * its contributors assume no responsibility for errors or omissions,
98 * and make no warranties, expressed or implied, of functionality
99 * of suitability for any purpose. The sample code contained within
100 * this standard may be used without restriction.
101 *
102 *
103 *
104 * The GTF EXCEL(TM) SPREADSHEET, a sample (and the definitive)
105 * implementation of the GTF Timing Standard, is available at:
106 *
107 * ftp://ftp.vesa.org/pub/GTF/GTF_V1R1.xls
108 *
109 *
110 *
111 * This program takes a desired resolution and vertical refresh rate,
112 * and computes mode timings according to the GTF Timing Standard.
113 * These mode timings can then be formatted as an XFree86 modeline
114 * or a mode description for use by fbset(8).
115 *
116 *
117 *
118 * NOTES:
119 *
120 * The GTF allows for computation of "margins" (the visible border
121 * surrounding the addressable video); on most non-overscan type
122 * systems, the margin period is zero. I've implemented the margin
123 * computations but not enabled it because 1) I don't really have
124 * any experience with this, and 2) neither XFree86 modelines nor
125 * fbset fb.modes provide an obvious way for margin timings to be
126 * included in their mode descriptions (needs more investigation).
127 *
128 * The GTF provides for computation of interlaced mode timings;
129 * I've implemented the computations but not enabled them, yet.
130 * I should probably enable and test this at some point.
131 *
132 *
133 *
134 * TODO:
135 *
136 * o Add support for interlaced modes.
137 *
138 * o Implement the other portions of the GTF: compute mode timings
139 * given either the desired pixel clock or the desired horizontal
140 * frequency.
141 *
142 * o It would be nice if this were more general purpose to do things
143 * outside the scope of the GTF: like generate double scan mode
144 * timings, for example.
145 *
146 * o Printing digits to the right of the decimal point when the
147 * digits are 0 annoys me.
148 *
149 * o Error checking.
150 *
151 */
152
153 #ifdef _KERNEL
154 #include <sys/cdefs.h>
155
156 __FBSDID("$FreeBSD$");
157 #include <sys/types.h>
158 #include <sys/param.h>
159 #include <sys/systm.h>
160 #include <dev/videomode/videomode.h>
161 #include <dev/videomode/vesagtf.h>
162 #else
163 #include <stdio.h>
164 #include <stdlib.h>
165 #include <sys/types.h>
166 #include "videomode.h"
167 #include "vesagtf.h"
168
169 void print_xf86_mode(struct videomode *m);
170 #endif
171
172 #define CELL_GRAN 8 /* assumed character cell granularity */
173
174 /* C' and M' are part of the Blanking Duty Cycle computation */
175 /*
176 * #define C_PRIME (((C - J) * K/256.0) + J)
177 * #define M_PRIME (K/256.0 * M)
178 */
179
180 /*
181 * C' and M' multiplied by 256 to give integer math. Make sure to
182 * scale results using these back down, appropriately.
183 */
184 #define C_PRIME256(p) (((p->C - p->J) * p->K) + (p->J * 256))
185 #define M_PRIME256(p) (p->K * p->M)
186
187 #define DIVIDE(x,y) (((x) + ((y) / 2)) / (y))
188
189 /*
190 * print_value() - print the result of the named computation; this is
191 * useful when comparing against the GTF EXCEL spreadsheet.
192 */
193
194 #ifdef GTFDEBUG
195
196 static void
197 print_value(int n, const char *name, unsigned val)
198 {
199 printf("%2d: %-27s: %u\n", n, name, val);
200 }
201 #else
202 #define print_value(n, name, val)
203 #endif
204
205 /*
206 * vert_refresh() - as defined by the GTF Timing Standard, compute the
207 * Stage 1 Parameters using the vertical refresh frequency. In other
208 * words: input a desired resolution and desired refresh rate, and
209 * output the GTF mode timings.
210 *
211 * XXX All the code is in place to compute interlaced modes, but I don't
212 * feel like testing it right now.
213 *
214 * XXX margin computations are implemented but not tested (nor used by
215 * XFree86 of fbset mode descriptions, from what I can tell).
216 */
217
218 void
219 vesagtf_mode_params(unsigned h_pixels, unsigned v_lines, unsigned freq,
220 struct vesagtf_params *params, int flags, struct videomode *vmp)
221 {
222 unsigned v_field_rqd;
223 unsigned top_margin;
224 unsigned bottom_margin;
225 unsigned interlace;
226 uint64_t h_period_est;
227 unsigned vsync_plus_bp;
228 unsigned v_back_porch __unused;
229 unsigned total_v_lines;
230 uint64_t v_field_est;
231 uint64_t h_period;
232 unsigned v_field_rate;
233 unsigned v_frame_rate __unused;
234 unsigned left_margin;
235 unsigned right_margin;
236 unsigned total_active_pixels;
237 uint64_t ideal_duty_cycle;
238 unsigned h_blank;
239 unsigned total_pixels;
240 unsigned pixel_freq;
241
242 unsigned h_sync;
243 unsigned h_front_porch;
244 unsigned v_odd_front_porch_lines;
245
246 #ifdef GTFDEBUG
247 unsigned h_freq;
248 #endif
249
250 /* 1. In order to give correct results, the number of horizontal
251 * pixels requested is first processed to ensure that it is divisible
252 * by the character size, by rounding it to the nearest character
253 * cell boundary:
254 *
255 * [H PIXELS RND] = ((ROUND([H PIXELS]/[CELL GRAN RND],0))*[CELLGRAN RND])
256 */
257
258 h_pixels = DIVIDE(h_pixels, CELL_GRAN) * CELL_GRAN;
259
260 print_value(1, "[H PIXELS RND]", h_pixels);
261
262
263 /* 2. If interlace is requested, the number of vertical lines assumed
264 * by the calculation must be halved, as the computation calculates
265 * the number of vertical lines per field. In either case, the
266 * number of lines is rounded to the nearest integer.
267 *
268 * [V LINES RND] = IF([INT RQD?]="y", ROUND([V LINES]/2,0),
269 * ROUND([V LINES],0))
270 */
271
272 v_lines = (flags & VESAGTF_FLAG_ILACE) ? DIVIDE(v_lines, 2) : v_lines;
273
274 print_value(2, "[V LINES RND]", v_lines);
275
276
277 /* 3. Find the frame rate required:
278 *
279 * [V FIELD RATE RQD] = IF([INT RQD?]="y", [I/P FREQ RQD]*2,
280 * [I/P FREQ RQD])
281 */
282
283 v_field_rqd = (flags & VESAGTF_FLAG_ILACE) ? (freq * 2) : (freq);
284
285 print_value(3, "[V FIELD RATE RQD]", v_field_rqd);
286
287
288 /* 4. Find number of lines in Top margin:
289 * 5. Find number of lines in Bottom margin:
290 *
291 * [TOP MARGIN (LINES)] = IF([MARGINS RQD?]="Y",
292 * ROUND(([MARGIN%]/100*[V LINES RND]),0),
293 * 0)
294 *
295 * Ditto for bottom margin. Note that instead of %, we use PPT, which
296 * is parts per thousand. This helps us with integer math.
297 */
298
299 top_margin = bottom_margin = (flags & VESAGTF_FLAG_MARGINS) ?
300 DIVIDE(v_lines * params->margin_ppt, 1000) : 0;
301
302 print_value(4, "[TOP MARGIN (LINES)]", top_margin);
303 print_value(5, "[BOT MARGIN (LINES)]", bottom_margin);
304
305
306 /* 6. If interlace is required, then set variable [INTERLACE]=0.5:
307 *
308 * [INTERLACE]=(IF([INT RQD?]="y",0.5,0))
309 *
310 * To make this integer friendly, we use some special hacks in step
311 * 7 below. Please read those comments to understand why I am using
312 * a whole number of 1.0 instead of 0.5 here.
313 */
314 interlace = (flags & VESAGTF_FLAG_ILACE) ? 1 : 0;
315
316 print_value(6, "[2*INTERLACE]", interlace);
317
318
319 /* 7. Estimate the Horizontal period
320 *
321 * [H PERIOD EST] = ((1/[V FIELD RATE RQD]) - [MIN VSYNC+BP]/1000000) /
322 * ([V LINES RND] + (2*[TOP MARGIN (LINES)]) +
323 * [MIN PORCH RND]+[INTERLACE]) * 1000000
324 *
325 * To make it integer friendly, we pre-multiply the 1000000 to get to
326 * usec. This gives us:
327 *
328 * [H PERIOD EST] = ((1000000/[V FIELD RATE RQD]) - [MIN VSYNC+BP]) /
329 * ([V LINES RND] + (2 * [TOP MARGIN (LINES)]) +
330 * [MIN PORCH RND]+[INTERLACE])
331 *
332 * The other problem is that the interlace value is wrong. To get
333 * the interlace to a whole number, we multiply both the numerator and
334 * divisor by 2, so we can use a value of either 1 or 0 for the interlace
335 * factor.
336 *
337 * This gives us:
338 *
339 * [H PERIOD EST] = ((2*((1000000/[V FIELD RATE RQD]) - [MIN VSYNC+BP])) /
340 * (2*([V LINES RND] + (2*[TOP MARGIN (LINES)]) +
341 * [MIN PORCH RND]) + [2*INTERLACE]))
342 *
343 * Finally we multiply by another 1000, to get value in picosec.
344 * Why picosec? To minimize rounding errors. Gotta love integer
345 * math and error propagation.
346 */
347
348 h_period_est = DIVIDE(((DIVIDE(2000000000000ULL, v_field_rqd)) -
349 (2000000 * params->min_vsbp)),
350 ((2 * (v_lines + (2 * top_margin) + params->min_porch)) + interlace));
351
352 print_value(7, "[H PERIOD EST (ps)]", h_period_est);
353
354
355 /* 8. Find the number of lines in V sync + back porch:
356 *
357 * [V SYNC+BP] = ROUND(([MIN VSYNC+BP]/[H PERIOD EST]),0)
358 *
359 * But recall that h_period_est is in psec. So multiply by 1000000.
360 */
361
362 vsync_plus_bp = DIVIDE(params->min_vsbp * 1000000, h_period_est);
363
364 print_value(8, "[V SYNC+BP]", vsync_plus_bp);
365
366
367 /* 9. Find the number of lines in V back porch alone:
368 *
369 * [V BACK PORCH] = [V SYNC+BP] - [V SYNC RND]
370 *
371 * XXX is "[V SYNC RND]" a typo? should be [V SYNC RQD]?
372 */
373
374 v_back_porch = vsync_plus_bp - params->vsync_rqd;
375
376 print_value(9, "[V BACK PORCH]", v_back_porch);
377
378
379 /* 10. Find the total number of lines in Vertical field period:
380 *
381 * [TOTAL V LINES] = [V LINES RND] + [TOP MARGIN (LINES)] +
382 * [BOT MARGIN (LINES)] + [V SYNC+BP] + [INTERLACE] +
383 * [MIN PORCH RND]
384 */
385
386 total_v_lines = v_lines + top_margin + bottom_margin + vsync_plus_bp +
387 interlace + params->min_porch;
388
389 print_value(10, "[TOTAL V LINES]", total_v_lines);
390
391
392 /* 11. Estimate the Vertical field frequency:
393 *
394 * [V FIELD RATE EST] = 1 / [H PERIOD EST] / [TOTAL V LINES] * 1000000
395 *
396 * Again, we want to pre multiply by 10^9 to convert for nsec, thereby
397 * making it usable in integer math.
398 *
399 * So we get:
400 *
401 * [V FIELD RATE EST] = 1000000000 / [H PERIOD EST] / [TOTAL V LINES]
402 *
403 * This is all scaled to get the result in uHz. Again, we're trying to
404 * minimize error propagation.
405 */
406 v_field_est = DIVIDE(DIVIDE(1000000000000000ULL, h_period_est),
407 total_v_lines);
408
409 print_value(11, "[V FIELD RATE EST(uHz)]", v_field_est);
410
411
412 /* 12. Find the actual horizontal period:
413 *
414 * [H PERIOD] = [H PERIOD EST] / ([V FIELD RATE RQD] / [V FIELD RATE EST])
415 */
416
417 h_period = DIVIDE(h_period_est * v_field_est, v_field_rqd * 1000);
418
419 print_value(12, "[H PERIOD(ps)]", h_period);
420
421
422 /* 13. Find the actual Vertical field frequency:
423 *
424 * [V FIELD RATE] = 1 / [H PERIOD] / [TOTAL V LINES] * 1000000
425 *
426 * And again, we convert to nsec ahead of time, giving us:
427 *
428 * [V FIELD RATE] = 1000000 / [H PERIOD] / [TOTAL V LINES]
429 *
430 * And another rescaling back to mHz. Gotta love it.
431 */
432
433 v_field_rate = DIVIDE(1000000000000ULL, h_period * total_v_lines);
434
435 print_value(13, "[V FIELD RATE]", v_field_rate);
436
437
438 /* 14. Find the Vertical frame frequency:
439 *
440 * [V FRAME RATE] = (IF([INT RQD?]="y", [V FIELD RATE]/2, [V FIELD RATE]))
441 *
442 * N.B. that the result here is in mHz.
443 */
444
445 v_frame_rate = (flags & VESAGTF_FLAG_ILACE) ?
446 v_field_rate / 2 : v_field_rate;
447
448 print_value(14, "[V FRAME RATE]", v_frame_rate);
449
450
451 /* 15. Find number of pixels in left margin:
452 * 16. Find number of pixels in right margin:
453 *
454 * [LEFT MARGIN (PIXELS)] = (IF( [MARGINS RQD?]="Y",
455 * (ROUND( ([H PIXELS RND] * [MARGIN%] / 100 /
456 * [CELL GRAN RND]),0)) * [CELL GRAN RND],
457 * 0))
458 *
459 * Again, we deal with margin percentages as PPT (parts per thousand).
460 * And the calculations for left and right are the same.
461 */
462
463 left_margin = right_margin = (flags & VESAGTF_FLAG_MARGINS) ?
464 DIVIDE(DIVIDE(h_pixels * params->margin_ppt, 1000),
465 CELL_GRAN) * CELL_GRAN : 0;
466
467 print_value(15, "[LEFT MARGIN (PIXELS)]", left_margin);
468 print_value(16, "[RIGHT MARGIN (PIXELS)]", right_margin);
469
470
471 /* 17. Find total number of active pixels in image and left and right
472 * margins:
473 *
474 * [TOTAL ACTIVE PIXELS] = [H PIXELS RND] + [LEFT MARGIN (PIXELS)] +
475 * [RIGHT MARGIN (PIXELS)]
476 */
477
478 total_active_pixels = h_pixels + left_margin + right_margin;
479
480 print_value(17, "[TOTAL ACTIVE PIXELS]", total_active_pixels);
481
482
483 /* 18. Find the ideal blanking duty cycle from the blanking duty cycle
484 * equation:
485 *
486 * [IDEAL DUTY CYCLE] = [C'] - ([M']*[H PERIOD]/1000)
487 *
488 * However, we have modified values for [C'] as [256*C'] and
489 * [M'] as [256*M']. Again the idea here is to get good scaling.
490 * We use 256 as the factor to make the math fast.
491 *
492 * Note that this means that we have to scale it appropriately in
493 * later calculations.
494 *
495 * The ending result is that our ideal_duty_cycle is 256000x larger
496 * than the duty cycle used by VESA. But again, this reduces error
497 * propagation.
498 */
499
500 ideal_duty_cycle =
501 ((C_PRIME256(params) * 1000) -
502 (M_PRIME256(params) * h_period / 1000000));
503
504 print_value(18, "[IDEAL DUTY CYCLE]", ideal_duty_cycle);
505
506
507 /* 19. Find the number of pixels in the blanking time to the nearest
508 * double character cell:
509 *
510 * [H BLANK (PIXELS)] = (ROUND(([TOTAL ACTIVE PIXELS] *
511 * [IDEAL DUTY CYCLE] /
512 * (100-[IDEAL DUTY CYCLE]) /
513 * (2*[CELL GRAN RND])), 0))
514 * * (2*[CELL GRAN RND])
515 *
516 * Of course, we adjust to make this rounding work in integer math.
517 */
518
519 h_blank = DIVIDE(DIVIDE(total_active_pixels * ideal_duty_cycle,
520 (256000 * 100ULL) - ideal_duty_cycle),
521 2 * CELL_GRAN) * (2 * CELL_GRAN);
522
523 print_value(19, "[H BLANK (PIXELS)]", h_blank);
524
525
526 /* 20. Find total number of pixels:
527 *
528 * [TOTAL PIXELS] = [TOTAL ACTIVE PIXELS] + [H BLANK (PIXELS)]
529 */
530
531 total_pixels = total_active_pixels + h_blank;
532
533 print_value(20, "[TOTAL PIXELS]", total_pixels);
534
535
536 /* 21. Find pixel clock frequency:
537 *
538 * [PIXEL FREQ] = [TOTAL PIXELS] / [H PERIOD]
539 *
540 * We calculate this in Hz rather than MHz, to get a value that
541 * is usable with integer math. Recall that the [H PERIOD] is in
542 * nsec.
543 */
544
545 pixel_freq = DIVIDE(total_pixels * 1000000, DIVIDE(h_period, 1000));
546
547 print_value(21, "[PIXEL FREQ]", pixel_freq);
548
549
550 /* 22. Find horizontal frequency:
551 *
552 * [H FREQ] = 1000 / [H PERIOD]
553 *
554 * I've ifdef'd this out, because we don't need it for any of
555 * our calculations.
556 * We calculate this in Hz rather than kHz, to avoid rounding
557 * errors. Recall that the [H PERIOD] is in usec.
558 */
559
560 #ifdef GTFDEBUG
561 h_freq = 1000000000 / h_period;
562
563 print_value(22, "[H FREQ]", h_freq);
564 #endif
565
566
567 /* Stage 1 computations are now complete; I should really pass
568 the results to another function and do the Stage 2
569 computations, but I only need a few more values so I'll just
570 append the computations here for now */
571
572
573
574 /* 17. Find the number of pixels in the horizontal sync period:
575 *
576 * [H SYNC (PIXELS)] =(ROUND(([H SYNC%] / 100 * [TOTAL PIXELS] /
577 * [CELL GRAN RND]),0))*[CELL GRAN RND]
578 *
579 * Rewriting for integer math:
580 *
581 * [H SYNC (PIXELS)]=(ROUND((H SYNC%] * [TOTAL PIXELS] / 100 /
582 * [CELL GRAN RND),0))*[CELL GRAN RND]
583 */
584
585 h_sync = DIVIDE(((params->hsync_pct * total_pixels) / 100), CELL_GRAN) *
586 CELL_GRAN;
587
588 print_value(17, "[H SYNC (PIXELS)]", h_sync);
589
590
591 /* 18. Find the number of pixels in the horizontal front porch period:
592 *
593 * [H FRONT PORCH (PIXELS)] = ([H BLANK (PIXELS)]/2)-[H SYNC (PIXELS)]
594 *
595 * Note that h_blank is always an even number of characters (i.e.
596 * h_blank % (CELL_GRAN * 2) == 0)
597 */
598
599 h_front_porch = (h_blank / 2) - h_sync;
600
601 print_value(18, "[H FRONT PORCH (PIXELS)]", h_front_porch);
602
603
604 /* 36. Find the number of lines in the odd front porch period:
605 *
606 * [V ODD FRONT PORCH(LINES)]=([MIN PORCH RND]+[INTERLACE])
607 *
608 * Adjusting for the fact that the interlace is scaled:
609 *
610 * [V ODD FRONT PORCH(LINES)]=(([MIN PORCH RND] * 2) + [2*INTERLACE]) / 2
611 */
612
613 v_odd_front_porch_lines = ((2 * params->min_porch) + interlace) / 2;
614
615 print_value(36, "[V ODD FRONT PORCH(LINES)]", v_odd_front_porch_lines);
616
617
618 /* finally, pack the results in the mode struct */
619
620 vmp->hsync_start = h_pixels + h_front_porch;
621 vmp->hsync_end = vmp->hsync_start + h_sync;
622 vmp->htotal = total_pixels;
623 vmp->hdisplay = h_pixels;
624
625 vmp->vsync_start = v_lines + v_odd_front_porch_lines;
626 vmp->vsync_end = vmp->vsync_start + params->vsync_rqd;
627 vmp->vtotal = total_v_lines;
628 vmp->vdisplay = v_lines;
629
630 vmp->dot_clock = pixel_freq;
631
632 }
633
634 void
635 vesagtf_mode(unsigned x, unsigned y, unsigned refresh, struct videomode *vmp)
636 {
637 struct vesagtf_params params;
638
639 params.margin_ppt = VESAGTF_MARGIN_PPT;
640 params.min_porch = VESAGTF_MIN_PORCH;
641 params.vsync_rqd = VESAGTF_VSYNC_RQD;
642 params.hsync_pct = VESAGTF_HSYNC_PCT;
643 params.min_vsbp = VESAGTF_MIN_VSBP;
644 params.M = VESAGTF_M;
645 params.C = VESAGTF_C;
646 params.K = VESAGTF_K;
647 params.J = VESAGTF_J;
648
649 vesagtf_mode_params(x, y, refresh, ¶ms, 0, vmp);
650 }
651
652 /*
653 * The tidbit here is so that you can compile this file as a
654 * standalone user program to generate X11 modelines using VESA GTF.
655 * This also allows for testing of the code itself, without
656 * necessitating a full kernel recompile.
657 */
658
659 /* print_xf86_mode() - print the XFree86 modeline, given mode timings. */
660
661 #ifndef _KERNEL
662 void
663 print_xf86_mode (struct videomode *vmp)
664 {
665 float vf, hf;
666
667 hf = 1000.0 * vmp->dot_clock / vmp->htotal;
668 vf = 1.0 * hf / vmp->vtotal;
669
670 printf("\n");
671 printf(" # %dx%d @ %.2f Hz (GTF) hsync: %.2f kHz; pclk: %.2f MHz\n",
672 vmp->hdisplay, vmp->vdisplay, vf, hf, vmp->dot_clock / 1000.0);
673
674 printf(" Modeline \"%dx%d_%.2f\" %.2f"
675 " %d %d %d %d"
676 " %d %d %d %d"
677 " -HSync +Vsync\n\n",
678 vmp->hdisplay, vmp->vdisplay, vf, (vmp->dot_clock / 1000.0),
679 vmp->hdisplay, vmp->hsync_start, vmp->hsync_end, vmp->htotal,
680 vmp->vdisplay, vmp->vsync_start, vmp->vsync_end, vmp->vtotal);
681 }
682
683 int
684 main (int argc, char *argv[])
685 {
686 struct videomode m;
687
688 if (argc != 4) {
689 printf("usage: %s x y refresh\n", argv[0]);
690 exit(1);
691 }
692
693 vesagtf_mode(atoi(argv[1]), atoi(argv[2]), atoi(argv[3]), &m);
694
695 print_xf86_mode(&m);
696
697 return 0;
698
699 }
700 #endif
Cache object: 7397f293cba42a34f15c249d88db9853
|