1 /*-
2 * Copyright (c) 1997, 1998
3 * Cybernet Corporation and Nan Yang Computer Services Limited.
4 * All rights reserved.
5 *
6 * This software was developed as part of the NetMAX project.
7 *
8 * Written by Greg Lehey
9 *
10 * This software is distributed under the so-called ``Berkeley
11 * License'':
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by Cybernet Corporation
24 * and Nan Yang Computer Services Limited
25 * 4. Neither the name of the Companies nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * This software is provided ``as is'', and any express or implied
30 * warranties, including, but not limited to, the implied warranties of
31 * merchantability and fitness for a particular purpose are disclaimed.
32 * In no event shall the company or contributors be liable for any
33 * direct, indirect, incidental, special, exemplary, or consequential
34 * damages (including, but not limited to, procurement of substitute
35 * goods or services; loss of use, data, or profits; or business
36 * interruption) however caused and on any theory of liability, whether
37 * in contract, strict liability, or tort (including negligence or
38 * otherwise) arising in any way out of the use of this software, even if
39 * advised of the possibility of such damage.
40 *
41 * $Id: vinumraid5.c,v 1.23 2003/02/08 03:32:45 grog Exp $
42 */
43
44 #include <sys/cdefs.h>
45 __FBSDID("$FreeBSD$");
46 #include <dev/vinum/vinumhdr.h>
47 #include <dev/vinum/request.h>
48 #include <sys/resourcevar.h>
49
50 /*
51 * Parameters which describe the current transfer.
52 * These are only used for calculation, but they
53 * need to be passed to other functions, so it's
54 * tidier to put them in a struct
55 */
56 struct metrics {
57 daddr_t stripebase; /* base address of stripe (1st subdisk) */
58 int stripeoffset; /* offset in stripe */
59 int stripesectors; /* total sectors to transfer in this stripe */
60 daddr_t sdbase; /* offset in subdisk of stripe base */
61 int sdcount; /* number of disks involved in this transfer */
62 daddr_t diskstart; /* remember where this transfer starts */
63 int psdno; /* number of parity subdisk */
64 int badsdno; /* number of down subdisk, if there is one */
65 int firstsdno; /* first data subdisk number */
66 /* These correspond to the fields in rqelement, sort of */
67 int useroffset;
68 /*
69 * Initial offset and length values for the first
70 * data block
71 */
72 int initoffset; /* start address of block to transfer */
73 short initlen; /* length in sectors of data transfer */
74 /* Define a normal operation */
75 int dataoffset; /* start address of block to transfer */
76 int datalen; /* length in sectors of data transfer */
77 /* Define a group operation */
78 int groupoffset; /* subdisk offset of group operation */
79 int grouplen; /* length in sectors of group operation */
80 /* Define a normal write operation */
81 int writeoffset; /* subdisk offset of normal write */
82 int writelen; /* length in sectors of write operation */
83 enum xferinfo flags; /* to check what we're doing */
84 int rqcount; /* number of elements in request */
85 };
86
87 enum requeststatus bre5(struct request *rq,
88 int plexno,
89 daddr_t * diskstart,
90 daddr_t diskend);
91 void complete_raid5_write(struct rqelement *);
92 enum requeststatus build_rq_buffer(struct rqelement *rqe, struct plex *plex);
93 void setrqebounds(struct rqelement *rqe, struct metrics *mp);
94
95 /*
96 * define the low-level requests needed to perform
97 * a high-level I/O operation for a specific plex
98 * 'plexno'.
99 *
100 * Return 0 if all subdisks involved in the
101 * request are up, 1 if some subdisks are not up,
102 * and -1 if the request is at least partially
103 * outside the bounds of the subdisks.
104 *
105 * Modify the pointer *diskstart to point to the
106 * end address. On read, return on the first bad
107 * subdisk, so that the caller
108 * (build_read_request) can try alternatives.
109 *
110 * On entry to this routine, the prq structures
111 * are not assigned. The assignment is performed
112 * by expandrq(). Strictly speaking, the elements
113 * rqe->sdno of all entries should be set to -1,
114 * since 0 (from bzero) is a valid subdisk number.
115 * We avoid this problem by initializing the ones
116 * we use, and not looking at the others (index >=
117 * prq->requests).
118 */
119 enum requeststatus
120 bre5(struct request *rq,
121 int plexno,
122 daddr_t * diskaddr,
123 daddr_t diskend)
124 {
125 struct metrics m; /* most of the information */
126 struct sd *sd;
127 struct plex *plex;
128 struct buf *bp; /* user's bp */
129 struct rqgroup *rqg; /* the request group that we will create */
130 struct rqelement *rqe; /* point to this request information */
131 int rsectors; /* sectors remaining in this stripe */
132 int mysdno; /* another sd index in loops */
133 int rqno; /* request number */
134
135 rqg = NULL; /* shut up, damn compiler */
136 m.diskstart = *diskaddr; /* start of transfer */
137 bp = rq->bp; /* buffer pointer */
138 plex = &PLEX[plexno]; /* point to the plex */
139
140
141 while (*diskaddr < diskend) { /* until we get it all sorted out */
142 if (*diskaddr >= plex->length) /* beyond the end of the plex */
143 return REQUEST_EOF; /* can't continue */
144
145 m.badsdno = -1; /* no bad subdisk yet */
146
147 /* Part A: Define the request */
148 /*
149 * First, calculate some sizes:
150 * The offset of the start address from
151 * the start of the stripe.
152 */
153 m.stripeoffset = *diskaddr % (plex->stripesize * (plex->subdisks - 1));
154
155 /*
156 * The plex-relative address of the
157 * start of the stripe.
158 */
159 m.stripebase = *diskaddr - m.stripeoffset;
160
161 /* subdisk containing the parity stripe */
162 if (plex->organization == plex_raid5)
163 m.psdno = plex->subdisks - 1
164 - (*diskaddr / (plex->stripesize * (plex->subdisks - 1)))
165 % plex->subdisks;
166 else /* RAID-4 */
167 m.psdno = plex->subdisks - 1;
168
169 /*
170 * The number of the subdisk in which
171 * the start is located.
172 */
173 m.firstsdno = m.stripeoffset / plex->stripesize;
174 if (m.firstsdno >= m.psdno) /* at or past parity sd */
175 m.firstsdno++; /* increment it */
176
177 /*
178 * The offset from the beginning of
179 * the stripe on this subdisk.
180 */
181 m.initoffset = m.stripeoffset % plex->stripesize;
182
183 /* The offset of the stripe start relative to this subdisk */
184 m.sdbase = m.stripebase / (plex->subdisks - 1);
185
186 m.useroffset = *diskaddr - m.diskstart; /* The offset of the start in the user buffer */
187
188 /*
189 * The number of sectors to transfer in the
190 * current (first) subdisk.
191 */
192 m.initlen = min(diskend - *diskaddr, /* the amount remaining to transfer */
193 plex->stripesize - m.initoffset); /* and the amount left in this block */
194
195 /*
196 * The number of sectors to transfer in this stripe
197 * is the minumum of the amount remaining to transfer
198 * and the amount left in this stripe.
199 */
200 m.stripesectors = min(diskend - *diskaddr,
201 plex->stripesize * (plex->subdisks - 1) - m.stripeoffset);
202
203 /* The number of data subdisks involved in this request */
204 m.sdcount = (m.stripesectors + m.initoffset + plex->stripesize - 1) / plex->stripesize;
205
206 /* Part B: decide what kind of transfer this will be.
207
208 * start and end addresses of the transfer in
209 * the current block.
210 *
211 * There are a number of different kinds of
212 * transfer, each of which relates to a
213 * specific subdisk:
214 *
215 * 1. Normal read. All participating subdisks
216 * are up, and the transfer can be made
217 * directly to the user buffer. The bounds
218 * of the transfer are described by
219 * m.dataoffset and m.datalen. We have
220 * already calculated m.initoffset and
221 * m.initlen, which define the parameters
222 * for the first data block.
223 *
224 * 2. Recovery read. One participating
225 * subdisk is down. To recover data, all
226 * the other subdisks, including the parity
227 * subdisk, must be read. The data is
228 * recovered by exclusive-oring all the
229 * other blocks. The bounds of the
230 * transfer are described by m.groupoffset
231 * and m.grouplen.
232 *
233 * 3. A read request may request reading both
234 * available data (normal read) and
235 * non-available data (recovery read).
236 * This can be a problem if the address
237 * ranges of the two reads do not coincide:
238 * in this case, the normal read needs to
239 * be extended to cover the address range
240 * of the recovery read, and must thus be
241 * performed out of malloced memory.
242 *
243 * 4. Normal write. All the participating
244 * subdisks are up. The bounds of the
245 * transfer are described by m.dataoffset
246 * and m.datalen. Since these values
247 * differ for each block, we calculate the
248 * bounds for the parity block
249 * independently as the maximum of the
250 * individual blocks and store these values
251 * in m.writeoffset and m.writelen. This
252 * write proceeds in four phases:
253 *
254 * i. Read the old contents of each block
255 * and the parity block.
256 * ii. ``Remove'' the old contents from
257 * the parity block with exclusive or.
258 * iii. ``Insert'' the new contents of the
259 * block in the parity block, again
260 * with exclusive or.
261 *
262 * iv. Write the new contents of the data
263 * blocks and the parity block. The data
264 * block transfers can be made directly from
265 * the user buffer.
266 *
267 * 5. Degraded write where the data block is
268 * not available. The bounds of the
269 * transfer are described by m.groupoffset
270 * and m.grouplen. This requires the
271 * following steps:
272 *
273 * i. Read in all the other data blocks,
274 * excluding the parity block.
275 *
276 * ii. Recreate the parity block from the
277 * other data blocks and the data to be
278 * written.
279 *
280 * iii. Write the parity block.
281 *
282 * 6. Parityless write, a write where the
283 * parity block is not available. This is
284 * in fact the simplest: just write the
285 * data blocks. This can proceed directly
286 * from the user buffer. The bounds of the
287 * transfer are described by m.dataoffset
288 * and m.datalen.
289 *
290 * 7. Combination of degraded data block write
291 * and normal write. In this case the
292 * address ranges of the reads may also
293 * need to be extended to cover all
294 * participating blocks.
295 *
296 * All requests in a group transfer transfer
297 * the same address range relative to their
298 * subdisk. The individual transfers may
299 * vary, but since our group of requests is
300 * all in a single slice, we can define a
301 * range in which they all fall.
302 *
303 * In the following code section, we determine
304 * which kind of transfer we will perform. If
305 * there is a group transfer, we also decide
306 * its bounds relative to the subdisks. At
307 * the end, we have the following values:
308 *
309 * m.flags indicates the kinds of transfers
310 * we will perform.
311 * m.initoffset indicates the offset of the
312 * beginning of any data operation relative
313 * to the beginning of the stripe base.
314 * m.initlen specifies the length of any data
315 * operation.
316 * m.dataoffset contains the same value as
317 * m.initoffset.
318 * m.datalen contains the same value as
319 * m.initlen. Initially dataoffset and
320 * datalen describe the parameters for the
321 * first data block; while building the data
322 * block requests, they are updated for each
323 * block.
324 * m.groupoffset indicates the offset of any
325 * group operation relative to the beginning
326 * of the stripe base.
327 * m.grouplen specifies the length of any
328 * group operation.
329 * m.writeoffset indicates the offset of a
330 * normal write relative to the beginning of
331 * the stripe base. This value differs from
332 * m.dataoffset in that it applies to the
333 * entire operation, and not just the first
334 * block.
335 * m.writelen specifies the total span of a
336 * normal write operation. writeoffset and
337 * writelen are used to define the parity
338 * block.
339 */
340 m.groupoffset = 0; /* assume no group... */
341 m.grouplen = 0; /* until we know we have one */
342 m.writeoffset = m.initoffset; /* start offset of transfer */
343 m.writelen = 0; /* nothing to write yet */
344 m.flags = 0; /* no flags yet */
345 rsectors = m.stripesectors; /* remaining sectors to examine */
346 m.dataoffset = m.initoffset; /* start at the beginning of the transfer */
347 m.datalen = m.initlen;
348
349 if (m.sdcount > 1) {
350 plex->multiblock++; /* more than one block for the request */
351 /*
352 * If we have two transfers that don't overlap,
353 * (one at the end of the first block, the other
354 * at the beginning of the second block),
355 * it's cheaper to split them.
356 */
357 if (rsectors < plex->stripesize) {
358 m.sdcount = 1; /* just one subdisk */
359 m.stripesectors = m.initlen; /* and just this many sectors */
360 rsectors = m.initlen; /* and in the loop counter */
361 }
362 }
363 if (SD[plex->sdnos[m.psdno]].state < sd_reborn) /* is our parity subdisk down? */
364 m.badsdno = m.psdno; /* note that it's down */
365 if (bp->b_iocmd == BIO_READ) { /* read operation */
366 for (mysdno = m.firstsdno; rsectors > 0; mysdno++) {
367 if (mysdno == m.psdno) /* ignore parity on read */
368 mysdno++;
369 if (mysdno == plex->subdisks) /* wraparound */
370 mysdno = 0;
371 if (mysdno == m.psdno) /* parity, */
372 mysdno++; /* we've given already */
373
374 if (SD[plex->sdnos[mysdno]].state < sd_reborn) { /* got a bad subdisk, */
375 if (m.badsdno >= 0) /* we had one already, */
376 return REQUEST_DOWN; /* we can't take a second */
377 m.badsdno = mysdno; /* got the first */
378 m.groupoffset = m.dataoffset; /* define the bounds */
379 m.grouplen = m.datalen;
380 m.flags |= XFR_RECOVERY_READ; /* we need recovery */
381 plex->recovered_reads++; /* count another one */
382 } else
383 m.flags |= XFR_NORMAL_READ; /* normal read */
384
385 /* Update the pointers for the next block */
386 m.dataoffset = 0; /* back to the start of the stripe */
387 rsectors -= m.datalen; /* remaining sectors to examine */
388 m.datalen = min(rsectors, plex->stripesize); /* amount that will fit in this block */
389 }
390 } else { /* write operation */
391 for (mysdno = m.firstsdno; rsectors > 0; mysdno++) {
392 if (mysdno == m.psdno) /* parity stripe, we've dealt with that */
393 mysdno++;
394 if (mysdno == plex->subdisks) /* wraparound */
395 mysdno = 0;
396 if (mysdno == m.psdno) /* parity, */
397 mysdno++; /* we've given already */
398
399 sd = &SD[plex->sdnos[mysdno]];
400 if (sd->state != sd_up) {
401 enum requeststatus s;
402
403 s = checksdstate(sd, rq, *diskaddr, diskend); /* do we need to change state? */
404 if (s && (m.badsdno >= 0)) { /* second bad disk, */
405 int sdno;
406 /*
407 * If the parity disk is down, there's
408 * no recovery. We make all involved
409 * subdisks stale. Otherwise, we
410 * should be able to recover, but it's
411 * like pulling teeth. Fix it later.
412 */
413 for (sdno = 0; sdno < m.sdcount; sdno++) {
414 struct sd *sd = &SD[plex->sdnos[sdno]];
415 if (sd->state >= sd_reborn) /* sort of up, */
416 set_sd_state(sd->sdno, sd_stale, setstate_force); /* make it stale */
417 }
418 return s; /* and crap out */
419 }
420 m.badsdno = mysdno; /* note which one is bad */
421 m.flags |= XFR_DEGRADED_WRITE; /* we need recovery */
422 plex->degraded_writes++; /* count another one */
423 m.groupoffset = m.dataoffset; /* define the bounds */
424 m.grouplen = m.datalen;
425 } else {
426 m.flags |= XFR_NORMAL_WRITE; /* normal write operation */
427 if (m.writeoffset > m.dataoffset) { /* move write operation lower */
428 m.writelen = max(m.writeoffset + m.writelen,
429 m.dataoffset + m.datalen)
430 - m.dataoffset;
431 m.writeoffset = m.dataoffset;
432 } else
433 m.writelen = max(m.writeoffset + m.writelen,
434 m.dataoffset + m.datalen)
435 - m.writeoffset;
436 }
437
438 /* Update the pointers for the next block */
439 m.dataoffset = 0; /* back to the start of the stripe */
440 rsectors -= m.datalen; /* remaining sectors to examine */
441 m.datalen = min(rsectors, plex->stripesize); /* amount that will fit in this block */
442 }
443 if (m.badsdno == m.psdno) { /* got a bad parity block, */
444 struct sd *psd = &SD[plex->sdnos[m.psdno]];
445
446 if (psd->state == sd_down)
447 set_sd_state(psd->sdno, sd_obsolete, setstate_force); /* it's obsolete now */
448 else if (psd->state == sd_crashed)
449 set_sd_state(psd->sdno, sd_stale, setstate_force); /* it's stale now */
450 m.flags &= ~XFR_NORMAL_WRITE; /* this write isn't normal, */
451 m.flags |= XFR_PARITYLESS_WRITE; /* it's parityless */
452 plex->parityless_writes++; /* count another one */
453 }
454 }
455
456 /* reset the initial transfer values */
457 m.dataoffset = m.initoffset; /* start at the beginning of the transfer */
458 m.datalen = m.initlen;
459
460 /* decide how many requests we need */
461 if (m.flags & (XFR_RECOVERY_READ | XFR_DEGRADED_WRITE))
462 /* doing a recovery read or degraded write, */
463 m.rqcount = plex->subdisks; /* all subdisks */
464 else if (m.flags & XFR_NORMAL_WRITE) /* normal write, */
465 m.rqcount = m.sdcount + 1; /* all data blocks and the parity block */
466 else /* parityless write or normal read */
467 m.rqcount = m.sdcount; /* just the data blocks */
468
469 /* Part C: build the requests */
470 rqg = allocrqg(rq, m.rqcount); /* get a request group */
471 if (rqg == NULL) { /* malloc failed */
472 bp->b_error = ENOMEM;
473 bp->b_ioflags |= BIO_ERROR;
474 return REQUEST_ENOMEM;
475 }
476 rqg->plexno = plexno;
477 rqg->flags = m.flags;
478 rqno = 0; /* index in the request group */
479
480 /* 1: PARITY BLOCK */
481 /*
482 * Are we performing an operation which requires parity? In that case,
483 * work out the parameters and define the parity block.
484 * XFR_PARITYOP is XFR_NORMAL_WRITE | XFR_RECOVERY_READ | XFR_DEGRADED_WRITE
485 */
486 if (m.flags & XFR_PARITYOP) { /* need parity */
487 rqe = &rqg->rqe[rqno]; /* point to element */
488 sd = &SD[plex->sdnos[m.psdno]]; /* the subdisk in question */
489 rqe->rqg = rqg; /* point back to group */
490 rqe->flags = (m.flags | XFR_PARITY_BLOCK | XFR_MALLOCED) /* always malloc parity block */
491 &~(XFR_NORMAL_READ | XFR_PARITYLESS_WRITE); /* transfer flags without data op stuf */
492 setrqebounds(rqe, &m); /* set up the bounds of the transfer */
493 rqe->sdno = sd->sdno; /* subdisk number */
494 rqe->driveno = sd->driveno;
495 if (build_rq_buffer(rqe, plex)) /* build the buffer */
496 return REQUEST_ENOMEM; /* can't do it */
497 rqe->b.b_iocmd = BIO_READ; /* we must read first */
498 m.sdcount++; /* adjust the subdisk count */
499 rqno++; /* and point to the next request */
500 }
501 /*
502 * 2: DATA BLOCKS
503 * Now build up requests for the blocks required
504 * for individual transfers
505 */
506 for (mysdno = m.firstsdno; rqno < m.sdcount; mysdno++, rqno++) {
507 if (mysdno == m.psdno) /* parity, */
508 mysdno++; /* we've given already */
509 if (mysdno == plex->subdisks) /* got to the end, */
510 mysdno = 0; /* wrap around */
511 if (mysdno == m.psdno) /* parity, */
512 mysdno++; /* we've given already */
513
514 rqe = &rqg->rqe[rqno]; /* point to element */
515 sd = &SD[plex->sdnos[mysdno]]; /* the subdisk in question */
516 rqe->rqg = rqg; /* point to group */
517 if (m.flags & XFR_NEEDS_MALLOC) /* we need a malloced buffer first */
518 rqe->flags = m.flags | XFR_DATA_BLOCK | XFR_MALLOCED; /* transfer flags */
519 else
520 rqe->flags = m.flags | XFR_DATA_BLOCK; /* transfer flags */
521 if (mysdno == m.badsdno) { /* this is the bad subdisk */
522 rqg->badsdno = rqno; /* note which one */
523 rqe->flags |= XFR_BAD_SUBDISK; /* note that it's dead */
524 /*
525 * we can't read or write from/to it,
526 * but we don't need to malloc
527 */
528 rqe->flags &= ~(XFR_MALLOCED | XFR_NORMAL_READ | XFR_NORMAL_WRITE);
529 }
530 setrqebounds(rqe, &m); /* set up the bounds of the transfer */
531 rqe->useroffset = m.useroffset; /* offset in user buffer */
532 rqe->sdno = sd->sdno; /* subdisk number */
533 rqe->driveno = sd->driveno;
534 if (build_rq_buffer(rqe, plex)) /* build the buffer */
535 return REQUEST_ENOMEM; /* can't do it */
536 if ((m.flags & XFR_PARITYOP) /* parity operation, */
537 &&((m.flags & XFR_BAD_SUBDISK) == 0)) /* and not the bad subdisk, */
538 rqe->b.b_iocmd = BIO_READ; /* we must read first */
539
540 /* Now update pointers for the next block */
541 *diskaddr += m.datalen; /* skip past what we've done */
542 m.stripesectors -= m.datalen; /* deduct from what's left */
543 m.useroffset += m.datalen; /* and move on in the user buffer */
544 m.datalen = min(m.stripesectors, plex->stripesize); /* and recalculate */
545 m.dataoffset = 0; /* start at the beginning of next block */
546 }
547
548 /*
549 * 3: REMAINING BLOCKS FOR RECOVERY
550 * Finally, if we have a recovery operation, build
551 * up transfers for the other subdisks. Follow the
552 * subdisks around until we get to where we started.
553 * These requests use only the group parameters.
554 */
555 if ((rqno < m.rqcount) /* haven't done them all already */
556 &&(m.flags & (XFR_RECOVERY_READ | XFR_DEGRADED_WRITE))) {
557 for (; rqno < m.rqcount; rqno++, mysdno++) {
558 if (mysdno == m.psdno) /* parity, */
559 mysdno++; /* we've given already */
560 if (mysdno == plex->subdisks) /* got to the end, */
561 mysdno = 0; /* wrap around */
562 if (mysdno == m.psdno) /* parity, */
563 mysdno++; /* we've given already */
564
565 rqe = &rqg->rqe[rqno]; /* point to element */
566 sd = &SD[plex->sdnos[mysdno]]; /* the subdisk in question */
567 rqe->rqg = rqg; /* point to group */
568
569 rqe->sdoffset = m.sdbase + m.groupoffset; /* start of transfer */
570 rqe->dataoffset = 0; /* for tidiness' sake */
571 rqe->groupoffset = 0; /* group starts at the beginining */
572 rqe->datalen = 0;
573 rqe->grouplen = m.grouplen;
574 rqe->buflen = m.grouplen;
575 rqe->flags = (m.flags | XFR_MALLOCED) /* transfer flags without data op stuf */
576 &~XFR_DATAOP;
577 rqe->sdno = sd->sdno; /* subdisk number */
578 rqe->driveno = sd->driveno;
579 if (build_rq_buffer(rqe, plex)) /* build the buffer */
580 return REQUEST_ENOMEM; /* can't do it */
581 rqe->b.b_iocmd = BIO_READ; /* we must read first */
582 }
583 }
584 /*
585 * We need to lock the address range before
586 * doing anything. We don't have to be
587 * performing a recovery operation: somebody
588 * else could be doing so, and the results could
589 * influence us. Note the fact here, we'll perform
590 * the lock in launch_requests.
591 */
592 rqg->lockbase = m.stripebase;
593 if (*diskaddr < diskend) /* didn't finish the request on this stripe */
594 plex->multistripe++; /* count another one */
595 }
596 return REQUEST_OK;
597 }
598
599 /*
600 * Helper function for rqe5: adjust the bounds of
601 * the transfers to minimize the buffer
602 * allocation.
603 *
604 * Each request can handle two of three different
605 * data ranges:
606 *
607 * 1. The range described by the parameters
608 * dataoffset and datalen, for normal read or
609 * parityless write.
610 * 2. The range described by the parameters
611 * groupoffset and grouplen, for recovery read
612 * and degraded write.
613 * 3. For normal write, the range depends on the
614 * kind of block. For data blocks, the range
615 * is defined by dataoffset and datalen. For
616 * parity blocks, it is defined by writeoffset
617 * and writelen.
618 *
619 * In order not to allocate more memory than
620 * necessary, this function adjusts the bounds
621 * parameter for each request to cover just the
622 * minimum necessary for the function it performs.
623 * This will normally vary from one request to the
624 * next.
625 *
626 * Things are slightly different for the parity
627 * block. In this case, the bounds defined by
628 * mp->writeoffset and mp->writelen also play a
629 * rôle. Select this case by setting the
630 * parameter forparity != 0.
631 */
632 void
633 setrqebounds(struct rqelement *rqe, struct metrics *mp)
634 {
635 /* parity block of a normal write */
636 if ((rqe->flags & (XFR_NORMAL_WRITE | XFR_PARITY_BLOCK))
637 == (XFR_NORMAL_WRITE | XFR_PARITY_BLOCK)) { /* case 3 */
638 if (rqe->flags & XFR_DEGRADED_WRITE) { /* also degraded write */
639 /*
640 * With a combined normal and degraded write, we
641 * will zero out the area of the degraded write
642 * in the second phase, so we don't need to read
643 * it in. Unfortunately, we need a way to tell
644 * build_request_buffer the size of the buffer,
645 * and currently that's the length of the read.
646 * As a result, we read everything, even the stuff
647 * that we're going to nuke.
648 * FIXME XXX
649 */
650 if (mp->groupoffset < mp->writeoffset) { /* group operation starts lower */
651 rqe->sdoffset = mp->sdbase + mp->groupoffset; /* start of transfer */
652 rqe->dataoffset = mp->writeoffset - mp->groupoffset; /* data starts here */
653 rqe->groupoffset = 0; /* and the group at the beginning */
654 } else { /* individual data starts first */
655 rqe->sdoffset = mp->sdbase + mp->writeoffset; /* start of transfer */
656 rqe->dataoffset = 0; /* individual data starts at the beginning */
657 rqe->groupoffset = mp->groupoffset - mp->writeoffset; /* group starts here */
658 }
659 rqe->datalen = mp->writelen;
660 rqe->grouplen = mp->grouplen;
661 } else { /* just normal write (case 3) */
662 rqe->sdoffset = mp->sdbase + mp->writeoffset; /* start of transfer */
663 rqe->dataoffset = 0; /* degradation starts at the beginning */
664 rqe->groupoffset = 0; /* for tidiness' sake */
665 rqe->datalen = mp->writelen;
666 rqe->grouplen = 0;
667 }
668 } else if (rqe->flags & XFR_DATAOP) { /* data operation (case 1 or 3) */
669 if (rqe->flags & XFR_GROUPOP) { /* also a group operation (case 2) */
670 if (mp->groupoffset < mp->dataoffset) { /* group operation starts lower */
671 rqe->sdoffset = mp->sdbase + mp->groupoffset; /* start of transfer */
672 rqe->dataoffset = mp->dataoffset - mp->groupoffset; /* data starts here */
673 rqe->groupoffset = 0; /* and the group at the beginning */
674 } else { /* individual data starts first */
675 rqe->sdoffset = mp->sdbase + mp->dataoffset; /* start of transfer */
676 rqe->dataoffset = 0; /* individual data starts at the beginning */
677 rqe->groupoffset = mp->groupoffset - mp->dataoffset; /* group starts here */
678 }
679 rqe->datalen = mp->datalen;
680 rqe->grouplen = mp->grouplen;
681 } else { /* just data operation (case 1) */
682 rqe->sdoffset = mp->sdbase + mp->dataoffset; /* start of transfer */
683 rqe->dataoffset = 0; /* degradation starts at the beginning */
684 rqe->groupoffset = 0; /* for tidiness' sake */
685 rqe->datalen = mp->datalen;
686 rqe->grouplen = 0;
687 }
688 } else { /* just group operations (case 2) */
689 rqe->sdoffset = mp->sdbase + mp->groupoffset; /* start of transfer */
690 rqe->dataoffset = 0; /* for tidiness' sake */
691 rqe->groupoffset = 0; /* group starts at the beginining */
692 rqe->datalen = 0;
693 rqe->grouplen = mp->grouplen;
694 }
695 rqe->buflen = max(rqe->dataoffset + rqe->datalen, /* total buffer length */
696 rqe->groupoffset + rqe->grouplen);
697 }
698 /* Local Variables: */
699 /* fill-column: 50 */
700 /* End: */
Cache object: 681434e5281e78b9e87b05900e5278f2
|