The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/vinum/vinumrequest.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1997, 1998, 1999
    3  *  Nan Yang Computer Services Limited.  All rights reserved.
    4  *
    5  *  Parts copyright (c) 1997, 1998 Cybernet Corporation, NetMAX project.
    6  *
    7  *  Written by Greg Lehey
    8  *
    9  *  This software is distributed under the so-called ``Berkeley
   10  *  License'':
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice, this list of conditions and the following disclaimer.
   17  * 2. Redistributions in binary form must reproduce the above copyright
   18  *    notice, this list of conditions and the following disclaimer in the
   19  *    documentation and/or other materials provided with the distribution.
   20  * 3. All advertising materials mentioning features or use of this software
   21  *    must display the following acknowledgement:
   22  *      This product includes software developed by Nan Yang Computer
   23  *      Services Limited.
   24  * 4. Neither the name of the Company nor the names of its contributors
   25  *    may be used to endorse or promote products derived from this software
   26  *    without specific prior written permission.
   27  *
   28  * This software is provided ``as is'', and any express or implied
   29  * warranties, including, but not limited to, the implied warranties of
   30  * merchantability and fitness for a particular purpose are disclaimed.
   31  * In no event shall the company or contributors be liable for any
   32  * direct, indirect, incidental, special, exemplary, or consequential
   33  * damages (including, but not limited to, procurement of substitute
   34  * goods or services; loss of use, data, or profits; or business
   35  * interruption) however caused and on any theory of liability, whether
   36  * in contract, strict liability, or tort (including negligence or
   37  * otherwise) arising in any way out of the use of this software, even if
   38  * advised of the possibility of such damage.
   39  *
   40  * $Id: vinumrequest.c,v 1.69 2003/10/18 17:57:48 phk Exp $
   41  */
   42 
   43 #include <sys/cdefs.h>
   44 __FBSDID("$FreeBSD$");
   45 
   46 #include <dev/vinum/vinumhdr.h>
   47 #include <dev/vinum/request.h>
   48 #include <sys/resourcevar.h>
   49 
   50 enum requeststatus bre(struct request *rq,
   51     int plexno,
   52     daddr_t * diskstart,
   53     daddr_t diskend);
   54 enum requeststatus bre5(struct request *rq,
   55     int plexno,
   56     daddr_t * diskstart,
   57     daddr_t diskend);
   58 enum requeststatus build_read_request(struct request *rq, int volplexno);
   59 enum requeststatus build_write_request(struct request *rq);
   60 enum requeststatus build_rq_buffer(struct rqelement *rqe, struct plex *plex);
   61 int find_alternate_sd(struct request *rq);
   62 int check_range_covered(struct request *);
   63 void complete_rqe(struct buf *bp);
   64 void complete_raid5_write(struct rqelement *);
   65 int abortrequest(struct request *rq, int error);
   66 void sdio_done(struct buf *bp);
   67 int vinum_bounds_check(struct buf *bp, struct volume *vol);
   68 caddr_t allocdatabuf(struct rqelement *rqe);
   69 void freedatabuf(struct rqelement *rqe);
   70 
   71 #ifdef VINUMDEBUG
   72 struct rqinfo rqinfo[RQINFO_SIZE];
   73 struct rqinfo *rqip = rqinfo;
   74 
   75 void
   76 logrq(enum rqinfo_type type, union rqinfou info, struct buf *ubp)
   77 {
   78     int s = splhigh();
   79 
   80     microtime(&rqip->timestamp);                            /* when did this happen? */
   81     rqip->type = type;
   82     rqip->bp = ubp;                                         /* user buffer */
   83     switch (type) {
   84     case loginfo_user_bp:
   85     case loginfo_user_bpl:
   86     case loginfo_sdio:                                      /* subdisk I/O */
   87     case loginfo_sdiol:                                     /* subdisk I/O launch */
   88     case loginfo_sdiodone:                                  /* subdisk I/O complete */
   89         bcopy(info.bp, &rqip->info.b, sizeof(struct buf));
   90         rqip->devmajor = major(info.bp->b_dev);
   91         rqip->devminor = minor(info.bp->b_dev);
   92         break;
   93 
   94     case loginfo_iodone:
   95     case loginfo_rqe:
   96     case loginfo_raid5_data:
   97     case loginfo_raid5_parity:
   98         bcopy(info.rqe, &rqip->info.rqe, sizeof(struct rqelement));
   99         rqip->devmajor = major(info.rqe->b.b_dev);
  100         rqip->devminor = minor(info.rqe->b.b_dev);
  101         break;
  102 
  103     case loginfo_lockwait:
  104     case loginfo_lock:
  105     case loginfo_unlock:
  106         bcopy(info.lockinfo, &rqip->info.lockinfo, sizeof(struct rangelock));
  107 
  108         break;
  109 
  110     case loginfo_unused:
  111         break;
  112     }
  113     rqip++;
  114     if (rqip >= &rqinfo[RQINFO_SIZE])                       /* wrap around */
  115         rqip = rqinfo;
  116     splx(s);
  117 }
  118 
  119 #endif
  120 
  121 void
  122 vinumstrategy(struct bio *biop)
  123 {
  124     struct buf *bp = (struct buf *) biop;
  125     int volno;
  126     struct volume *vol = NULL;
  127 
  128     switch (DEVTYPE(bp->b_dev)) {
  129     case VINUM_SD_TYPE:
  130     case VINUM_SD2_TYPE:
  131         sdio(bp);
  132         return;
  133 
  134     default:
  135         bp->b_error = EIO;                                  /* I/O error */
  136         bp->b_io.bio_flags |= BIO_ERROR;
  137         bufdone(bp);
  138         return;
  139 
  140     case VINUM_VOLUME_TYPE:                                 /* volume I/O */
  141         volno = Volno(bp->b_dev);
  142         vol = &VOL[volno];
  143         if (vol->state != volume_up) {                      /* can't access this volume */
  144             bp->b_error = EIO;                              /* I/O error */
  145             bp->b_io.bio_flags |= BIO_ERROR;
  146             bufdone(bp);
  147             return;
  148         }
  149         if (vinum_bounds_check(bp, vol) <= 0) {             /* don't like them bounds */
  150             bufdone(bp);
  151             return;
  152         }
  153         /* FALLTHROUGH */
  154         /*
  155          * Plex I/O is pretty much the same as volume I/O
  156          * for a single plex.  Indicate this by passing a NULL
  157          * pointer (set above) for the volume
  158          */
  159     case VINUM_PLEX_TYPE:
  160         bp->b_resid = bp->b_bcount;                         /* transfer everything */
  161         vinumstart(bp, 0);
  162         return;
  163     }
  164 }
  165 
  166 /*
  167  * Start a transfer.  Return -1 on error, 0 if OK,
  168  * 1 if we need to retry.  Parameter reviveok is
  169  * set when doing transfers for revives: it allows
  170  * transfers to be started immediately when a
  171  * revive is in progress.  During revive, normal
  172  * transfers are queued if they share address
  173  * space with a currently active revive operation.
  174  */
  175 int
  176 vinumstart(struct buf *bp, int reviveok)
  177 {
  178     int plexno;
  179     int maxplex;                                            /* maximum number of plexes to handle */
  180     struct volume *vol;
  181     struct request *rq;                                     /* build up our request here */
  182     enum requeststatus status;
  183 
  184 #ifdef VINUMDEBUG
  185     if (debug & DEBUG_LASTREQS)
  186         logrq(loginfo_user_bp, (union rqinfou) bp, bp);
  187 #endif
  188 
  189     if ((bp->b_bcount % DEV_BSIZE) != 0) {                  /* bad length */
  190         bp->b_error = EINVAL;                               /* invalid size */
  191         bp->b_io.bio_flags |= BIO_ERROR;
  192         bufdone(bp);
  193         return -1;
  194     }
  195     rq = (struct request *) Malloc(sizeof(struct request)); /* allocate a request struct */
  196     if (rq == NULL) {                                       /* can't do it */
  197         bp->b_error = ENOMEM;                               /* can't get memory */
  198         bp->b_io.bio_flags |= BIO_ERROR;
  199         bufdone(bp);
  200         return -1;
  201     }
  202     bzero(rq, sizeof(struct request));
  203 
  204     /*
  205      * Note the volume ID.  This can be NULL, which
  206      * the request building functions use as an
  207      * indication for single plex I/O.
  208      */
  209     rq->bp = bp;                                            /* and the user buffer struct */
  210 
  211     if (DEVTYPE(bp->b_dev) == VINUM_VOLUME_TYPE) {          /* it's a volume, */
  212         rq->volplex.volno = Volno(bp->b_dev);               /* get the volume number */
  213         vol = &VOL[rq->volplex.volno];                      /* and point to it */
  214         vol->active++;                                      /* one more active request */
  215         maxplex = vol->plexes;                              /* consider all its plexes */
  216     } else {
  217         vol = NULL;                                         /* no volume */
  218         rq->volplex.plexno = Plexno(bp->b_dev);             /* point to the plex */
  219         rq->isplex = 1;                                     /* note that it's a plex */
  220         maxplex = 1;                                        /* just the one plex */
  221     }
  222 
  223     if (bp->b_iocmd == BIO_READ) {
  224         /*
  225          * This is a read request.  Decide
  226          * which plex to read from.
  227          *
  228          * There's a potential race condition here,
  229          * since we're not locked, and we could end
  230          * up multiply incrementing the round-robin
  231          * counter.  This doesn't have any serious
  232          * effects, however.
  233          */
  234         if (vol != NULL) {
  235             plexno = vol->preferred_plex;                   /* get the plex to use */
  236             if (plexno < 0) {                               /* round robin */
  237                 for (plexno = 0; plexno < vol->plexes; plexno++)
  238                     if (abs(bp->b_blkno - PLEX[vol->plex[plexno]].last_addr) <= ROUNDROBIN_SWITCH)
  239                         break;
  240                 if (plexno >= vol->plexes) {
  241                     vol->last_plex_read++;
  242                     if (vol->last_plex_read >= vol->plexes)
  243                         vol->last_plex_read = 0;
  244                     plexno = vol->last_plex_read;
  245                 } else {
  246                     vol->last_plex_read = plexno;
  247                 };
  248                 PLEX[vol->plex[plexno]].last_addr = bp->b_blkno;
  249             }
  250             status = build_read_request(rq, plexno);        /* build a request */
  251         } else {
  252             daddr_t diskaddr = bp->b_blkno;                 /* start offset of transfer */
  253             status = bre(rq,                                /* build a request list */
  254                 rq->volplex.plexno,
  255                 &diskaddr,
  256                 diskaddr + (bp->b_bcount / DEV_BSIZE));
  257         }
  258 
  259         if (status > REQUEST_RECOVERED) {                   /* can't satisfy it */
  260             if (status == REQUEST_DOWN) {                   /* not enough subdisks */
  261                 bp->b_error = EIO;                          /* I/O error */
  262                 bp->b_io.bio_flags |= BIO_ERROR;
  263             }
  264             bufdone(bp);
  265             freerq(rq);
  266             return -1;
  267         }
  268         return launch_requests(rq, reviveok);               /* now start the requests if we can */
  269     } else
  270         /*
  271          * This is a write operation.  We write to all plexes.  If this is
  272          * a RAID-4 or RAID-5 plex, we must also update the parity stripe.
  273          */
  274     {
  275         if (vol != NULL) {
  276             if ((vol->plexes > 0)                           /* multiple plex */
  277             ||(isparity((&PLEX[vol->plex[0]])))) {          /* or RAID-[45], */
  278                 rq->save_data = bp->b_data;                 /* save the data buffer address */
  279                 bp->b_data = Malloc(bp->b_bcount);
  280                 bcopy(rq->save_data, bp->b_data, bp->b_bcount); /* make a copy */
  281                 rq->flags |= XFR_COPYBUF;                   /* and note that we did it */
  282             }
  283             status = build_write_request(rq);
  284         } else {                                            /* plex I/O */
  285             daddr_t diskstart;
  286 
  287             diskstart = bp->b_blkno;                        /* start offset of transfer */
  288             status = bre(rq,
  289                 Plexno(bp->b_dev),
  290                 &diskstart,
  291                 bp->b_blkno + (bp->b_bcount / DEV_BSIZE));  /* build requests for the plex */
  292         }
  293         if (status > REQUEST_RECOVERED) {                   /* can't satisfy it */
  294             if (status == REQUEST_DOWN) {                   /* not enough subdisks */
  295                 bp->b_error = EIO;                          /* I/O error */
  296                 bp->b_io.bio_flags |= BIO_ERROR;
  297             }
  298             if (rq->flags & XFR_COPYBUF) {
  299                 Free(bp->b_data);
  300                 bp->b_data = rq->save_data;
  301             }
  302             bufdone(bp);
  303             freerq(rq);
  304             return -1;
  305         }
  306         return launch_requests(rq, reviveok);               /* now start the requests if we can */
  307     }
  308 }
  309 
  310 /*
  311  * Call the low-level strategy routines to
  312  * perform the requests in a struct request
  313  */
  314 int
  315 launch_requests(struct request *rq, int reviveok)
  316 {
  317     struct rqgroup *rqg;
  318     int rqno;                                               /* loop index */
  319     struct rqelement *rqe;                                  /* current element */
  320     struct drive *drive;
  321     int rcount;                                             /* request count */
  322 
  323     /*
  324      * First find out whether we're reviving, and
  325      * the request contains a conflict.  If so, we
  326      * hang the request off plex->waitlist of the
  327      * first plex we find which is reviving.
  328      */
  329 
  330     if ((rq->flags & XFR_REVIVECONFLICT)                    /* possible revive conflict */
  331     &&(!reviveok)) {                                        /* and we don't want to do it now, */
  332         struct sd *sd;
  333         struct request *waitlist;                           /* point to the waitlist */
  334 
  335         sd = &SD[rq->sdno];
  336         if (sd->waitlist != NULL) {                         /* something there already, */
  337             waitlist = sd->waitlist;
  338             while (waitlist->next != NULL)                  /* find the end */
  339                 waitlist = waitlist->next;
  340             waitlist->next = rq;                            /* hook our request there */
  341         } else
  342             sd->waitlist = rq;                              /* hook our request at the front */
  343 
  344 #ifdef VINUMDEBUG
  345         if (debug & DEBUG_REVIVECONFLICT)
  346             log(LOG_DEBUG,
  347                 "Revive conflict sd %d: %p\n%s dev %d.%d, offset 0x%jx, length %ld\n",
  348                 rq->sdno,
  349                 rq,
  350                 rq->bp->b_iocmd == BIO_READ ? "Read" : "Write",
  351                 major(rq->bp->b_dev),
  352                 minor(rq->bp->b_dev),
  353                 (intmax_t) rq->bp->b_blkno,
  354                 rq->bp->b_bcount);
  355 #endif
  356         return 0;                                           /* and get out of here */
  357     }
  358     rq->active = 0;                                         /* nothing yet */
  359 #ifdef VINUMDEBUG
  360     /* XXX This is probably due to a bug */
  361     if (rq->rqg == NULL) {                                  /* no request */
  362         log(LOG_ERR, "vinum: null rqg\n");
  363         abortrequest(rq, EINVAL);
  364         return -1;
  365     }
  366 #endif
  367 #ifdef VINUMDEBUG
  368     if (debug & DEBUG_ADDRESSES)
  369         log(LOG_DEBUG,
  370             "Request: %p\n%s dev %d.%d, offset 0x%jx, length %ld\n",
  371             rq,
  372             rq->bp->b_iocmd == BIO_READ ? "Read" : "Write",
  373             major(rq->bp->b_dev),
  374             minor(rq->bp->b_dev),
  375             (intmax_t) rq->bp->b_blkno,
  376             rq->bp->b_bcount);
  377     vinum_conf.lastrq = rq;
  378     vinum_conf.lastbuf = rq->bp;
  379     if (debug & DEBUG_LASTREQS)
  380         logrq(loginfo_user_bpl, (union rqinfou) rq->bp, rq->bp);
  381 #endif
  382 
  383     /*
  384      * We used to have an splbio() here anyway, out
  385      * of superstition.  With the division of labour
  386      * below (first count the requests, then issue
  387      * them), it looks as if we don't need this
  388      * splbio() protection.  In fact, as dillon
  389      * points out, there's a race condition
  390      * incrementing and decrementing rq->active and
  391      * rqg->active.  This splbio() didn't help
  392      * there, because the device strategy routine
  393      * can sleep.  Solve this by putting shorter
  394      * duration locks on the code.
  395      */
  396     /*
  397      * This loop happens without any participation
  398      * of the bottom half, so it requires no
  399      * protection.
  400      */
  401     for (rqg = rq->rqg; rqg != NULL; rqg = rqg->next) {     /* through the whole request chain */
  402         rqg->active = rqg->count;                           /* they're all active */
  403         for (rqno = 0; rqno < rqg->count; rqno++) {
  404             rqe = &rqg->rqe[rqno];
  405             if (rqe->flags & XFR_BAD_SUBDISK)               /* this subdisk is bad, */
  406                 rqg->active--;                              /* one less active request */
  407         }
  408         if (rqg->active)                                    /* we have at least one active request, */
  409             rq->active++;                                   /* one more active request group */
  410     }
  411 
  412     /*
  413      * Now fire off the requests.  In this loop the
  414      * bottom half could be completing requests
  415      * before we finish.  We avoid splbio()
  416      * protection by ensuring we don't tread in the
  417      * same places that the bottom half does.
  418      */
  419     for (rqg = rq->rqg; rqg != NULL;) {                     /* through the whole request chain */
  420         if (rqg->lockbase >= 0)                             /* this rqg needs a lock first */
  421             rqg->lock = lockrange(rqg->lockbase, rqg->rq->bp, &PLEX[rqg->plexno]);
  422         rcount = rqg->count;
  423         for (rqno = 0; rqno < rcount;) {
  424             rqe = &rqg->rqe[rqno];
  425 
  426             /*
  427              * Point to next rqg before the bottom half
  428              * changes the structures.
  429              */
  430             if (++rqno >= rcount)
  431                 rqg = rqg->next;
  432             if ((rqe->flags & XFR_BAD_SUBDISK) == 0) {      /* this subdisk is good, */
  433                 drive = &DRIVE[rqe->driveno];               /* look at drive */
  434                 drive->active++;
  435                 if (drive->active >= drive->maxactive)
  436                     drive->maxactive = drive->active;
  437                 vinum_conf.active++;
  438                 if (vinum_conf.active >= vinum_conf.maxactive)
  439                     vinum_conf.maxactive = vinum_conf.active;
  440 
  441 #ifdef VINUMDEBUG
  442                 if (debug & DEBUG_ADDRESSES)
  443                     log(LOG_DEBUG,
  444                         "  %s dev %d.%d, sd %d, offset 0x%x, devoffset 0x%jx, length %ld\n",
  445                         rqe->b.b_iocmd == BIO_READ ? "Read" : "Write",
  446                         major(rqe->b.b_dev),
  447                         minor(rqe->b.b_dev),
  448                         rqe->sdno,
  449                         (u_int) (rqe->b.b_blkno - SD[rqe->sdno].driveoffset),
  450                         (intmax_t) rqe->b.b_blkno,
  451                         rqe->b.b_bcount);
  452                 if (debug & DEBUG_LASTREQS) {
  453                     microtime(&rqe->launchtime);            /* time we launched this request */
  454                     logrq(loginfo_rqe, (union rqinfou) rqe, rq->bp);
  455                 }
  456 #endif
  457                 /* fire off the request */
  458                 rqe->b.b_offset = rqe->b.b_blkno << DEV_BSHIFT;
  459                 rqe->b.b_iooffset = rqe->b.b_offset;
  460                 DEV_STRATEGY(&rqe->b);
  461             }
  462         }
  463     }
  464     return 0;
  465 }
  466 
  467 /*
  468  * define the low-level requests needed to perform a
  469  * high-level I/O operation for a specific plex 'plexno'.
  470  *
  471  * Return REQUEST_OK if all subdisks involved in the request are up,
  472  * REQUEST_DOWN if some subdisks are not up, and REQUEST_EOF if the
  473  * request is at least partially outside the bounds of the subdisks.
  474  *
  475  * Modify the pointer *diskstart to point to the end address.  On
  476  * read, return on the first bad subdisk, so that the caller
  477  * (build_read_request) can try alternatives.
  478  *
  479  * On entry to this routine, the rqg structures are not assigned.  The
  480  * assignment is performed by expandrq().  Strictly speaking, the
  481  * elements rqe->sdno of all entries should be set to -1, since 0
  482  * (from bzero) is a valid subdisk number.  We avoid this problem by
  483  * initializing the ones we use, and not looking at the others (index
  484  * >= rqg->requests).
  485  */
  486 enum requeststatus
  487 bre(struct request *rq,
  488     int plexno,
  489     daddr_t * diskaddr,
  490     daddr_t diskend)
  491 {
  492     int sdno;
  493     struct sd *sd;
  494     struct rqgroup *rqg;
  495     struct buf *bp;                                         /* user's bp */
  496     struct plex *plex;
  497     enum requeststatus status;                              /* return value */
  498     daddr_t plexoffset;                                     /* offset of transfer in plex */
  499     daddr_t stripebase;                                     /* base address of stripe (1st subdisk) */
  500     daddr_t stripeoffset;                                   /* offset in stripe */
  501     daddr_t blockoffset;                                    /* offset in stripe on subdisk */
  502     struct rqelement *rqe;                                  /* point to this request information */
  503     daddr_t diskstart = *diskaddr;                          /* remember where this transfer starts */
  504     enum requeststatus s;                                   /* temp return value */
  505 
  506     bp = rq->bp;                                            /* buffer pointer */
  507     status = REQUEST_OK;                                    /* return value: OK until proven otherwise */
  508     plex = &PLEX[plexno];                                   /* point to the plex */
  509 
  510     switch (plex->organization) {
  511     case plex_concat:
  512         sd = NULL;                                          /* (keep compiler quiet) */
  513         for (sdno = 0; sdno < plex->subdisks; sdno++) {
  514             sd = &SD[plex->sdnos[sdno]];
  515             if (*diskaddr < sd->plexoffset)                 /* we must have a hole, */
  516                 status = REQUEST_DEGRADED;                  /* note the fact */
  517             if (*diskaddr < (sd->plexoffset + sd->sectors)) { /* the request starts in this subdisk */
  518                 rqg = allocrqg(rq, 1);                      /* space for the request */
  519                 if (rqg == NULL) {                          /* malloc failed */
  520                     bp->b_error = ENOMEM;
  521                     bp->b_io.bio_flags |= BIO_ERROR;
  522                     return REQUEST_ENOMEM;
  523                 }
  524                 rqg->plexno = plexno;
  525 
  526                 rqe = &rqg->rqe[0];                         /* point to the element */
  527                 rqe->rqg = rqg;                             /* group */
  528                 rqe->sdno = sd->sdno;                       /* put in the subdisk number */
  529                 plexoffset = *diskaddr;                     /* start offset in plex */
  530                 rqe->sdoffset = plexoffset - sd->plexoffset; /* start offset in subdisk */
  531                 rqe->useroffset = plexoffset - diskstart;   /* start offset in user buffer */
  532                 rqe->dataoffset = 0;
  533                 rqe->datalen = min(diskend - *diskaddr,     /* number of sectors to transfer in this sd */
  534                     sd->sectors - rqe->sdoffset);
  535                 rqe->groupoffset = 0;                       /* no groups for concatenated plexes */
  536                 rqe->grouplen = 0;
  537                 rqe->buflen = rqe->datalen;                 /* buffer length is data buffer length */
  538                 rqe->flags = 0;
  539                 rqe->driveno = sd->driveno;
  540                 if (sd->state != sd_up) {                   /* *now* we find the sd is down */
  541                     s = checksdstate(sd, rq, *diskaddr, diskend); /* do we need to change state? */
  542                     if (s == REQUEST_DOWN) {                /* down? */
  543                         rqe->flags = XFR_BAD_SUBDISK;       /* yup */
  544                         if (rq->bp->b_iocmd == BIO_READ)    /* read request, */
  545                             return REQUEST_DEGRADED;        /* give up here */
  546                         /*
  547                          * If we're writing, don't give up
  548                          * because of a bad subdisk.  Go
  549                          * through to the bitter end, but note
  550                          * which ones we can't access.
  551                          */
  552                         status = REQUEST_DEGRADED;          /* can't do it all */
  553                     }
  554                 }
  555                 *diskaddr += rqe->datalen;                  /* bump the address */
  556                 if (build_rq_buffer(rqe, plex)) {           /* build the buffer */
  557                     deallocrqg(rqg);
  558                     bp->b_error = ENOMEM;
  559                     bp->b_io.bio_flags |= BIO_ERROR;
  560                     return REQUEST_ENOMEM;                  /* can't do it */
  561                 }
  562             }
  563             if (*diskaddr == diskend)                       /* we're finished, */
  564                 break;                                      /* get out of here */
  565         }
  566         /*
  567          * We've got to the end of the plex.  Have we got to the end of
  568          * the transfer?  It would seem that having an offset beyond the
  569          * end of the subdisk is an error, but in fact it can happen if
  570          * the volume has another plex of different size.  There's a valid
  571          * question as to why you would want to do this, but currently
  572          * it's allowed.
  573          *
  574          * In a previous version, I returned REQUEST_DOWN here.  I think
  575          * REQUEST_EOF is more appropriate now.
  576          */
  577         if (diskend > sd->sectors + sd->plexoffset)         /* pointing beyond EOF? */
  578             status = REQUEST_EOF;
  579         break;
  580 
  581     case plex_striped:
  582         {
  583             while (*diskaddr < diskend) {                   /* until we get it all sorted out */
  584                 if (*diskaddr >= plex->length)              /* beyond the end of the plex */
  585                     return REQUEST_EOF;                     /* can't continue */
  586 
  587                 /* The offset of the start address from the start of the stripe. */
  588                 stripeoffset = *diskaddr % (plex->stripesize * plex->subdisks);
  589 
  590                 /* The plex-relative address of the start of the stripe. */
  591                 stripebase = *diskaddr - stripeoffset;
  592 
  593                 /* The number of the subdisk in which the start is located. */
  594                 sdno = stripeoffset / plex->stripesize;
  595 
  596                 /* The offset from the beginning of the stripe on this subdisk. */
  597                 blockoffset = stripeoffset % plex->stripesize;
  598 
  599                 sd = &SD[plex->sdnos[sdno]];                /* the subdisk in question */
  600                 rqg = allocrqg(rq, 1);                      /* space for the request */
  601                 if (rqg == NULL) {                          /* malloc failed */
  602                     bp->b_error = ENOMEM;
  603                     bp->b_io.bio_flags |= BIO_ERROR;
  604                     return REQUEST_ENOMEM;
  605                 }
  606                 rqg->plexno = plexno;
  607 
  608                 rqe = &rqg->rqe[0];                         /* point to the element */
  609                 rqe->rqg = rqg;
  610                 rqe->sdoffset = stripebase / plex->subdisks + blockoffset; /* start offset in this subdisk */
  611                 rqe->useroffset = *diskaddr - diskstart;    /* The offset of the start in the user buffer */
  612                 rqe->dataoffset = 0;
  613                 rqe->datalen = min(diskend - *diskaddr,     /* the amount remaining to transfer */
  614                     plex->stripesize - blockoffset);        /* and the amount left in this stripe */
  615                 rqe->groupoffset = 0;                       /* no groups for striped plexes */
  616                 rqe->grouplen = 0;
  617                 rqe->buflen = rqe->datalen;                 /* buffer length is data buffer length */
  618                 rqe->flags = 0;
  619                 rqe->sdno = sd->sdno;                       /* put in the subdisk number */
  620                 rqe->driveno = sd->driveno;
  621 
  622                 if (sd->state != sd_up) {                   /* *now* we find the sd is down */
  623                     s = checksdstate(sd, rq, *diskaddr, diskend); /* do we need to change state? */
  624                     if (s == REQUEST_DOWN) {                /* down? */
  625                         rqe->flags = XFR_BAD_SUBDISK;       /* yup */
  626                         if (rq->bp->b_iocmd == BIO_READ)    /* read request, */
  627                             return REQUEST_DEGRADED;        /* give up here */
  628                         /*
  629                          * If we're writing, don't give up
  630                          * because of a bad subdisk.  Go through
  631                          * to the bitter end, but note which
  632                          * ones we can't access.
  633                          */
  634                         status = REQUEST_DEGRADED;          /* can't do it all */
  635                     }
  636                 }
  637                 /*
  638                  * It would seem that having an offset
  639                  * beyond the end of the subdisk is an
  640                  * error, but in fact it can happen if the
  641                  * volume has another plex of different
  642                  * size.  There's a valid question as to why
  643                  * you would want to do this, but currently
  644                  * it's allowed.
  645                  */
  646                 if (rqe->sdoffset + rqe->datalen > sd->sectors) { /* ends beyond the end of the subdisk? */
  647                     rqe->datalen = sd->sectors - rqe->sdoffset; /* truncate */
  648 #ifdef VINUMDEBUG
  649                     if (debug & DEBUG_EOFINFO) {            /* tell on the request */
  650                         log(LOG_DEBUG,
  651                             "vinum: EOF on plex %s, sd %s offset %x (user offset 0x%jx)\n",
  652                             plex->name,
  653                             sd->name,
  654                             (u_int) sd->sectors,
  655                             (intmax_t) bp->b_blkno);
  656                         log(LOG_DEBUG,
  657                             "vinum: stripebase %#jx, stripeoffset %#jx, blockoffset %#jx\n",
  658                             (intmax_t) stripebase,
  659                             (intmax_t) stripeoffset,
  660                             (intmax_t) blockoffset);
  661                     }
  662 #endif
  663                 }
  664                 if (build_rq_buffer(rqe, plex)) {           /* build the buffer */
  665                     deallocrqg(rqg);
  666                     bp->b_error = ENOMEM;
  667                     bp->b_io.bio_flags |= BIO_ERROR;
  668                     return REQUEST_ENOMEM;                  /* can't do it */
  669                 }
  670                 *diskaddr += rqe->datalen;                  /* look at the remainder */
  671                 if ((*diskaddr < diskend)                   /* didn't finish the request on this stripe */
  672                 &&(*diskaddr < plex->length)) {             /* and there's more to come */
  673                     plex->multiblock++;                     /* count another one */
  674                     if (sdno == plex->subdisks - 1)         /* last subdisk, */
  675                         plex->multistripe++;                /* another stripe as well */
  676                 }
  677             }
  678         }
  679         break;
  680 
  681         /*
  682          * RAID-4 and RAID-5 are complicated enough to have their own
  683          * function.
  684          */
  685     case plex_raid4:
  686     case plex_raid5:
  687         status = bre5(rq, plexno, diskaddr, diskend);
  688         break;
  689 
  690     default:
  691         log(LOG_ERR, "vinum: invalid plex type %d in bre\n", plex->organization);
  692         status = REQUEST_DOWN;                              /* can't access it */
  693     }
  694 
  695     return status;
  696 }
  697 
  698 /*
  699  * Build up a request structure for reading volumes.
  700  * This function is not needed for plex reads, since there's
  701  * no recovery if a plex read can't be satisified.
  702  */
  703 enum requeststatus
  704 build_read_request(struct request *rq,                      /* request */
  705     int plexindex)
  706 {                                                           /* index in the volume's plex table */
  707     struct buf *bp;
  708     daddr_t startaddr;                                      /* offset of previous part of transfer */
  709     daddr_t diskaddr;                                       /* offset of current part of transfer */
  710     daddr_t diskend;                                        /* and end offset of transfer */
  711     int plexno;                                             /* plex index in vinum_conf */
  712     struct rqgroup *rqg;                                    /* point to the request we're working on */
  713     struct volume *vol;                                     /* volume in question */
  714     int recovered = 0;                                      /* set if we recover a read */
  715     enum requeststatus status = REQUEST_OK;
  716     int plexmask;                                           /* bit mask of plexes, for recovery */
  717 
  718     bp = rq->bp;                                            /* buffer pointer */
  719     diskaddr = bp->b_blkno;                                 /* start offset of transfer */
  720     diskend = diskaddr + (bp->b_bcount / DEV_BSIZE);        /* and end offset of transfer */
  721     rqg = &rq->rqg[plexindex];                              /* plex request */
  722     vol = &VOL[rq->volplex.volno];                          /* point to volume */
  723 
  724     while (diskaddr < diskend) {                            /* build up request components */
  725         startaddr = diskaddr;
  726         status = bre(rq, vol->plex[plexindex], &diskaddr, diskend); /* build up a request */
  727         switch (status) {
  728         case REQUEST_OK:
  729             continue;
  730 
  731         case REQUEST_RECOVERED:
  732             /*
  733              * XXX FIXME if we have more than one plex, and we can
  734              * satisfy the request from another, don't use the
  735              * recovered request, since it's more expensive.
  736              */
  737             recovered = 1;
  738             break;
  739 
  740         case REQUEST_ENOMEM:
  741             return status;
  742             /*
  743              * If we get here, our request is not complete.  Try
  744              * to fill in the missing parts from another plex.
  745              * This can happen multiple times in this function,
  746              * and we reinitialize the plex mask each time, since
  747              * we could have a hole in our plexes.
  748              */
  749         case REQUEST_EOF:
  750         case REQUEST_DOWN:                                  /* can't access the plex */
  751         case REQUEST_DEGRADED:                              /* can't access the plex */
  752             plexmask = ((1 << vol->plexes) - 1)             /* all plexes in the volume */
  753             &~(1 << plexindex);                             /* except for the one we were looking at */
  754             for (plexno = 0; plexno < vol->plexes; plexno++) {
  755                 if (plexmask == 0)                          /* no plexes left to try */
  756                     return REQUEST_DOWN;                    /* failed */
  757                 diskaddr = startaddr;                       /* start at the beginning again */
  758                 if (plexmask & (1 << plexno)) {             /* we haven't tried this plex yet */
  759                     bre(rq, vol->plex[plexno], &diskaddr, diskend); /* try a request */
  760                     if (diskaddr > startaddr) {             /* we satisfied another part */
  761                         recovered = 1;                      /* we recovered from the problem */
  762                         status = REQUEST_OK;                /* don't complain about it */
  763                         break;
  764                     }
  765                 }
  766             }
  767             if (diskaddr == startaddr)                      /* didn't get any further, */
  768                 return status;
  769         }
  770         if (recovered)
  771             vol->recovered_reads += recovered;              /* adjust our recovery count */
  772     }
  773     return status;
  774 }
  775 
  776 /*
  777  * Build up a request structure for writes.
  778  * Return 0 if all subdisks involved in the request are up, 1 if some
  779  * subdisks are not up, and -1 if the request is at least partially
  780  * outside the bounds of the subdisks.
  781  */
  782 enum requeststatus
  783 build_write_request(struct request *rq)
  784 {                                                           /* request */
  785     struct buf *bp;
  786     daddr_t diskstart;                                      /* offset of current part of transfer */
  787     daddr_t diskend;                                        /* and end offset of transfer */
  788     int plexno;                                             /* plex index in vinum_conf */
  789     struct volume *vol;                                     /* volume in question */
  790     enum requeststatus status;
  791 
  792     bp = rq->bp;                                            /* buffer pointer */
  793     vol = &VOL[rq->volplex.volno];                          /* point to volume */
  794     diskend = bp->b_blkno + (bp->b_bcount / DEV_BSIZE);     /* end offset of transfer */
  795     status = REQUEST_DOWN;                                  /* assume the worst */
  796     for (plexno = 0; plexno < vol->plexes; plexno++) {
  797         diskstart = bp->b_blkno;                            /* start offset of transfer */
  798         /*
  799          * Build requests for the plex.
  800          * We take the best possible result here (min,
  801          * not max): we're happy if we can write at all
  802          */
  803         status = min(status, bre(rq,
  804                 vol->plex[plexno],
  805                 &diskstart,
  806                 diskend));
  807     }
  808     return status;
  809 }
  810 
  811 /* Fill in the struct buf part of a request element. */
  812 enum requeststatus
  813 build_rq_buffer(struct rqelement *rqe, struct plex *plex)
  814 {
  815     struct sd *sd;                                          /* point to subdisk */
  816     struct volume *vol;
  817     struct buf *bp;
  818     struct buf *ubp;                                        /* user (high level) buffer header */
  819 
  820     vol = &VOL[rqe->rqg->rq->volplex.volno];
  821     sd = &SD[rqe->sdno];                                    /* point to subdisk */
  822     bp = &rqe->b;
  823     ubp = rqe->rqg->rq->bp;                                 /* pointer to user buffer header */
  824 
  825     /* Initialize the buf struct */
  826     /* copy these flags from user bp */
  827     bp->b_flags = ubp->b_flags & (B_NOCACHE | B_ASYNC);
  828     bp->b_io.bio_flags = 0;
  829     bp->b_iocmd = ubp->b_iocmd;
  830 #ifdef VINUMDEBUG
  831     if (rqe->flags & XFR_BUFLOCKED)                         /* paranoia */
  832         panic("build_rq_buffer: rqe already locked");       /* XXX remove this when we're sure */
  833 #endif
  834     BUF_LOCKINIT(bp);                                       /* get a lock for the buffer */
  835     BUF_LOCK(bp, LK_EXCLUSIVE, NULL);                       /* and lock it */
  836     BUF_KERNPROC(bp);
  837     rqe->flags |= XFR_BUFLOCKED;
  838     bp->b_iodone = complete_rqe;
  839     /*
  840      * You'd think that we wouldn't need to even
  841      * build the request buffer for a dead subdisk,
  842      * but in some cases we need information like
  843      * the user buffer address.  Err on the side of
  844      * generosity and supply what we can.  That
  845      * obviously doesn't include drive information
  846      * when the drive is dead.
  847      */
  848     if ((rqe->flags & XFR_BAD_SUBDISK) == 0)                /* subdisk is accessible, */
  849         bp->b_dev = DRIVE[rqe->driveno].dev;                /* drive device */
  850     bp->b_blkno = rqe->sdoffset + sd->driveoffset;          /* start address */
  851     bp->b_bcount = rqe->buflen << DEV_BSHIFT;               /* number of bytes to transfer */
  852     bp->b_resid = bp->b_bcount;                             /* and it's still all waiting */
  853     bp->b_bufsize = bp->b_bcount;                           /* and buffer size */
  854     bp->b_rcred = FSCRED;                                   /* we have the file system credentials */
  855     bp->b_wcred = FSCRED;                                   /* we have the file system credentials */
  856 
  857     if (rqe->flags & XFR_MALLOCED) {                        /* this operation requires a malloced buffer */
  858         bp->b_data = Malloc(bp->b_bcount);                  /* get a buffer to put it in */
  859         if (bp->b_data == NULL) {                           /* failed */
  860             abortrequest(rqe->rqg->rq, ENOMEM);
  861             return REQUEST_ENOMEM;                          /* no memory */
  862         }
  863     } else
  864         /*
  865          * Point directly to user buffer data.  This means
  866          * that we don't need to do anything when we have
  867          * finished the transfer
  868          */
  869         bp->b_data = ubp->b_data + rqe->useroffset * DEV_BSIZE;
  870     /*
  871      * On a recovery read, we perform an XOR of
  872      * all blocks to the user buffer.  To make
  873      * this work, we first clean out the buffer
  874      */
  875     if ((rqe->flags & (XFR_RECOVERY_READ | XFR_BAD_SUBDISK))
  876         == (XFR_RECOVERY_READ | XFR_BAD_SUBDISK)) {         /* bad subdisk of a recovery read */
  877         int length = rqe->grouplen << DEV_BSHIFT;           /* and count involved */
  878         char *data = (char *) &rqe->b.b_data[rqe->groupoffset << DEV_BSHIFT]; /* destination */
  879 
  880         bzero(data, length);                                /* clean it out */
  881     }
  882     return 0;
  883 }
  884 
  885 /*
  886  * Abort a request: free resources and complete the
  887  * user request with the specified error
  888  */
  889 int
  890 abortrequest(struct request *rq, int error)
  891 {
  892     struct buf *bp = rq->bp;                                /* user buffer */
  893 
  894     bp->b_error = error;
  895     freerq(rq);                                             /* free everything we're doing */
  896     bp->b_io.bio_flags |= BIO_ERROR;
  897     return error;                                           /* and give up */
  898 }
  899 
  900 /*
  901  * Check that our transfer will cover the
  902  * complete address space of the user request.
  903  *
  904  * Return 1 if it can, otherwise 0
  905  */
  906 int
  907 check_range_covered(struct request *rq)
  908 {
  909     return 1;
  910 }
  911 
  912 /* Perform I/O on a subdisk */
  913 void
  914 sdio(struct buf *bp)
  915 {
  916     int s;                                                  /* spl */
  917     struct sd *sd;
  918     struct sdbuf *sbp;
  919     daddr_t endoffset;
  920     struct drive *drive;
  921 
  922 #ifdef VINUMDEBUG
  923     if (debug & DEBUG_LASTREQS)
  924         logrq(loginfo_sdio, (union rqinfou) bp, bp);
  925 #endif
  926     sd = &SD[Sdno(bp->b_dev)];                              /* point to the subdisk */
  927     drive = &DRIVE[sd->driveno];
  928 
  929     if (drive->state != drive_up) {
  930         if (sd->state >= sd_crashed) {
  931             if (bp->b_iocmd == BIO_WRITE)                   /* writing, */
  932                 set_sd_state(sd->sdno, sd_stale, setstate_force);
  933             else
  934                 set_sd_state(sd->sdno, sd_crashed, setstate_force);
  935         }
  936         bp->b_error = EIO;
  937         bp->b_io.bio_flags |= BIO_ERROR;
  938         bufdone(bp);
  939         return;
  940     }
  941     /*
  942      * We allow access to any kind of subdisk as long as we can expect
  943      * to get the I/O performed.
  944      */
  945     if (sd->state < sd_empty) {                             /* nothing to talk to, */
  946         bp->b_error = EIO;
  947         bp->b_io.bio_flags |= BIO_ERROR;
  948         bufdone(bp);
  949         return;
  950     }
  951     /* Get a buffer */
  952     sbp = (struct sdbuf *) Malloc(sizeof(struct sdbuf));
  953     if (sbp == NULL) {
  954         bp->b_error = ENOMEM;
  955         bp->b_io.bio_flags |= BIO_ERROR;
  956         bufdone(bp);
  957         return;
  958     }
  959     bzero(sbp, sizeof(struct sdbuf));                       /* start with nothing */
  960     sbp->b.b_flags = bp->b_flags;
  961     sbp->b.b_iocmd = bp->b_iocmd;
  962     sbp->b.b_bufsize = bp->b_bcount;                        /* buffer size */
  963     sbp->b.b_bcount = bp->b_bcount;                         /* number of bytes to transfer */
  964     sbp->b.b_resid = bp->b_resid;                           /* and amount waiting */
  965     sbp->b.b_dev = DRIVE[sd->driveno].dev;                  /* device */
  966     sbp->b.b_data = bp->b_data;                             /* data buffer */
  967     sbp->b.b_blkno = bp->b_blkno + sd->driveoffset;
  968     sbp->b.b_iodone = sdio_done;                            /* come here on completion */
  969     BUF_LOCKINIT(&sbp->b);                                  /* get a lock for the buffer */
  970     BUF_LOCK(&sbp->b, LK_EXCLUSIVE, NULL);                  /* and lock it */
  971     BUF_KERNPROC(&sbp->b);
  972     sbp->bp = bp;                                           /* note the address of the original header */
  973     sbp->sdno = sd->sdno;                                   /* note for statistics */
  974     sbp->driveno = sd->driveno;
  975     endoffset = bp->b_blkno + sbp->b.b_bcount / DEV_BSIZE;  /* final sector offset */
  976     if (endoffset > sd->sectors) {                          /* beyond the end */
  977         sbp->b.b_bcount -= (endoffset - sd->sectors) * DEV_BSIZE; /* trim */
  978         if (sbp->b.b_bcount <= 0) {                         /* nothing to transfer */
  979             bp->b_resid = bp->b_bcount;                     /* nothing transferred */
  980             bufdone(bp);
  981             BUF_UNLOCK(&sbp->b);
  982             BUF_LOCKFREE(&sbp->b);
  983             Free(sbp);
  984             return;
  985         }
  986     }
  987 #ifdef VINUMDEBUG
  988     if (debug & DEBUG_ADDRESSES)
  989         log(LOG_DEBUG,
  990             "  %s dev %d.%d, sd %d, offset 0x%jx, devoffset 0x%jx, length %ld\n",
  991             sbp->b.b_iocmd == BIO_READ ? "Read" : "Write",
  992             major(sbp->b.b_dev),
  993             minor(sbp->b.b_dev),
  994             sbp->sdno,
  995             (intmax_t) (sbp->b.b_blkno - SD[sbp->sdno].driveoffset),
  996             (intmax_t) sbp->b.b_blkno,
  997             sbp->b.b_bcount);
  998 #endif
  999     s = splbio();
 1000 #ifdef VINUMDEBUG
 1001     if (debug & DEBUG_LASTREQS)
 1002         logrq(loginfo_sdiol, (union rqinfou) &sbp->b, &sbp->b);
 1003 #endif
 1004     sbp->b.b_offset = sbp->b.b_blkno << DEV_BSHIFT;
 1005     sbp->b.b_iooffset = sbp->b.b_offset;
 1006     DEV_STRATEGY(&sbp->b);
 1007     splx(s);
 1008 }
 1009 
 1010 /*
 1011  * Simplified version of bounds_check_with_label
 1012  * Determine the size of the transfer, and make sure it is
 1013  * within the boundaries of the partition. Adjust transfer
 1014  * if needed, and signal errors or early completion.
 1015  *
 1016  * Volumes are simpler than disk slices: they only contain
 1017  * one component (though we call them a, b and c to make
 1018  * system utilities happy), and they always take up the
 1019  * complete space of the "partition".
 1020  *
 1021  * I'm still not happy with this: why should the label be
 1022  * protected?  If it weren't so damned difficult to write
 1023  * one in the first pleace (because it's protected), it wouldn't
 1024  * be a problem.
 1025  */
 1026 int
 1027 vinum_bounds_check(struct buf *bp, struct volume *vol)
 1028 {
 1029     int64_t maxsize = vol->size;                            /* size of the partition (sectors) */
 1030     int size = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT; /* size of this request (sectors) */
 1031 
 1032 #ifdef LABELSECTOR
 1033     /* Would this transfer overwrite the disk label? */
 1034     if (bp->b_blkno <= LABELSECTOR                          /* starts before or at the label */
 1035 #if LABELSECTOR != 0
 1036         && bp->b_blkno + size > LABELSECTOR                 /* and finishes after */
 1037 #endif
 1038         && (bp->b_iocmd == BIO_WRITE)                       /* and it's a write */
 1039         &&(!vol->flags & (VF_WLABEL | VF_LABELLING))) {     /* and we're not allowed to write the label */
 1040         bp->b_error = EROFS;                                /* read-only */
 1041         bp->b_io.bio_flags |= BIO_ERROR;
 1042         return -1;
 1043     }
 1044 #endif
 1045     if (size == 0)                                          /* no transfer specified, */
 1046         return 0;                                           /* treat as EOF */
 1047     /* beyond partition? */
 1048     if (bp->b_blkno < 0                                     /* negative start */
 1049         || bp->b_blkno + size > maxsize) {                  /* or goes beyond the end of the partition */
 1050         /* if exactly at end of disk, return an EOF */
 1051         if (bp->b_blkno == maxsize) {
 1052             bp->b_resid = bp->b_bcount;
 1053             return 0;
 1054         }
 1055         /* or truncate if part of it fits */
 1056         size = maxsize - bp->b_blkno;
 1057         if (size <= 0) {                                    /* nothing to transfer */
 1058             bp->b_error = EINVAL;
 1059             bp->b_io.bio_flags |= BIO_ERROR;
 1060             return -1;
 1061         }
 1062         bp->b_bcount = size << DEV_BSHIFT;
 1063     }
 1064     return 1;
 1065 }
 1066 
 1067 /*
 1068  * Allocate a request group and hook
 1069  * it in in the list for rq
 1070  */
 1071 struct rqgroup *
 1072 allocrqg(struct request *rq, int elements)
 1073 {
 1074     struct rqgroup *rqg;                                    /* the one we're going to allocate */
 1075     int size = sizeof(struct rqgroup) + elements * sizeof(struct rqelement);
 1076 
 1077     rqg = (struct rqgroup *) Malloc(size);
 1078     if (rqg != NULL) {                                      /* malloc OK, */
 1079         if (rq->rqg)                                        /* we already have requests */
 1080             rq->lrqg->next = rqg;                           /* hang it off the end */
 1081         else                                                /* first request */
 1082             rq->rqg = rqg;                                  /* at the start */
 1083         rq->lrqg = rqg;                                     /* this one is the last in the list */
 1084 
 1085         bzero(rqg, size);                                   /* no old junk */
 1086         rqg->rq = rq;                                       /* point back to the parent request */
 1087         rqg->count = elements;                              /* number of requests in the group */
 1088         rqg->lockbase = -1;                                 /* no lock required yet */
 1089     }
 1090     return rqg;
 1091 }
 1092 
 1093 /*
 1094  * Deallocate a request group out of a chain.  We do
 1095  * this by linear search: the chain is short, this
 1096  * almost never happens, and currently it can only
 1097  * happen to the first member of the chain.
 1098  */
 1099 void
 1100 deallocrqg(struct rqgroup *rqg)
 1101 {
 1102     struct rqgroup *rqgc = rqg->rq->rqg;                    /* point to the request chain */
 1103 
 1104     if (rqg->lock)                                          /* got a lock? */
 1105         unlockrange(rqg->plexno, rqg->lock);                /* yes, free it */
 1106     if (rqgc == rqg)                                        /* we're first in line */
 1107         rqg->rq->rqg = rqg->next;                           /* unhook ourselves */
 1108     else {
 1109         while ((rqgc->next != NULL)                         /* find the group */
 1110         &&(rqgc->next != rqg))
 1111             rqgc = rqgc->next;
 1112         if (rqgc->next == NULL)
 1113             log(LOG_ERR,
 1114                 "vinum deallocrqg: rqg %p not found in request %p\n",
 1115                 rqg->rq,
 1116                 rqg);
 1117         else
 1118             rqgc->next = rqg->next;                         /* make the chain jump over us */
 1119     }
 1120     Free(rqg);
 1121 }
 1122 
 1123 /* Local Variables: */
 1124 /* fill-column: 50 */
 1125 /* End: */

Cache object: 874383c796312f6d1cc8210abbceb22c


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.