1 /*
2 * Copyright (C) 2015 Cavium Inc.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 * $FreeBSD$
27 *
28 */
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/bitset.h>
38 #include <sys/bitstring.h>
39 #include <sys/buf_ring.h>
40 #include <sys/bus.h>
41 #include <sys/endian.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/module.h>
45 #include <sys/rman.h>
46 #include <sys/pciio.h>
47 #include <sys/pcpu.h>
48 #include <sys/proc.h>
49 #include <sys/sockio.h>
50 #include <sys/socket.h>
51 #include <sys/stdatomic.h>
52 #include <sys/cpuset.h>
53 #include <sys/lock.h>
54 #include <sys/mutex.h>
55 #include <sys/smp.h>
56 #include <sys/taskqueue.h>
57
58 #include <vm/vm.h>
59 #include <vm/pmap.h>
60
61 #include <machine/bus.h>
62 #include <machine/vmparam.h>
63
64 #include <net/if.h>
65 #include <net/if_var.h>
66 #include <net/if_media.h>
67 #include <net/ifq.h>
68 #include <net/bpf.h>
69 #include <net/ethernet.h>
70
71 #include <netinet/in_systm.h>
72 #include <netinet/in.h>
73 #include <netinet/if_ether.h>
74 #include <netinet/ip.h>
75 #include <netinet/ip6.h>
76 #include <netinet/sctp.h>
77 #include <netinet/tcp.h>
78 #include <netinet/tcp_lro.h>
79 #include <netinet/udp.h>
80
81 #include <netinet6/ip6_var.h>
82
83 #include <dev/pci/pcireg.h>
84 #include <dev/pci/pcivar.h>
85
86 #include "thunder_bgx.h"
87 #include "nic_reg.h"
88 #include "nic.h"
89 #include "q_struct.h"
90 #include "nicvf_queues.h"
91
92 #define DEBUG
93 #undef DEBUG
94
95 #ifdef DEBUG
96 #define dprintf(dev, fmt, ...) device_printf(dev, fmt, ##__VA_ARGS__)
97 #else
98 #define dprintf(dev, fmt, ...)
99 #endif
100
101 MALLOC_DECLARE(M_NICVF);
102
103 static void nicvf_free_snd_queue(struct nicvf *, struct snd_queue *);
104 static struct mbuf * nicvf_get_rcv_mbuf(struct nicvf *, struct cqe_rx_t *);
105 static void nicvf_sq_disable(struct nicvf *, int);
106 static void nicvf_sq_enable(struct nicvf *, struct snd_queue *, int);
107 static void nicvf_put_sq_desc(struct snd_queue *, int);
108 static void nicvf_cmp_queue_config(struct nicvf *, struct queue_set *, int,
109 boolean_t);
110 static void nicvf_sq_free_used_descs(struct nicvf *, struct snd_queue *, int);
111
112 static int nicvf_tx_mbuf_locked(struct snd_queue *, struct mbuf **);
113
114 static void nicvf_rbdr_task(void *, int);
115 static void nicvf_rbdr_task_nowait(void *, int);
116
117 struct rbuf_info {
118 bus_dma_tag_t dmat;
119 bus_dmamap_t dmap;
120 struct mbuf * mbuf;
121 };
122
123 #define GET_RBUF_INFO(x) ((struct rbuf_info *)((x) - NICVF_RCV_BUF_ALIGN_BYTES))
124
125 /* Poll a register for a specific value */
126 static int nicvf_poll_reg(struct nicvf *nic, int qidx,
127 uint64_t reg, int bit_pos, int bits, int val)
128 {
129 uint64_t bit_mask;
130 uint64_t reg_val;
131 int timeout = 10;
132
133 bit_mask = (1UL << bits) - 1;
134 bit_mask = (bit_mask << bit_pos);
135
136 while (timeout) {
137 reg_val = nicvf_queue_reg_read(nic, reg, qidx);
138 if (((reg_val & bit_mask) >> bit_pos) == val)
139 return (0);
140
141 DELAY(1000);
142 timeout--;
143 }
144 device_printf(nic->dev, "Poll on reg 0x%lx failed\n", reg);
145 return (ETIMEDOUT);
146 }
147
148 /* Callback for bus_dmamap_load() */
149 static void
150 nicvf_dmamap_q_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
151 {
152 bus_addr_t *paddr;
153
154 KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
155 paddr = arg;
156 *paddr = segs->ds_addr;
157 }
158
159 /* Allocate memory for a queue's descriptors */
160 static int
161 nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem,
162 int q_len, int desc_size, int align_bytes)
163 {
164 int err, err_dmat;
165
166 /* Create DMA tag first */
167 err = bus_dma_tag_create(
168 bus_get_dma_tag(nic->dev), /* parent tag */
169 align_bytes, /* alignment */
170 0, /* boundary */
171 BUS_SPACE_MAXADDR, /* lowaddr */
172 BUS_SPACE_MAXADDR, /* highaddr */
173 NULL, NULL, /* filtfunc, filtfuncarg */
174 (q_len * desc_size), /* maxsize */
175 1, /* nsegments */
176 (q_len * desc_size), /* maxsegsize */
177 0, /* flags */
178 NULL, NULL, /* lockfunc, lockfuncarg */
179 &dmem->dmat); /* dmat */
180
181 if (err != 0) {
182 device_printf(nic->dev,
183 "Failed to create busdma tag for descriptors ring\n");
184 return (err);
185 }
186
187 /* Allocate segment of continuous DMA safe memory */
188 err = bus_dmamem_alloc(
189 dmem->dmat, /* DMA tag */
190 &dmem->base, /* virtual address */
191 (BUS_DMA_NOWAIT | BUS_DMA_ZERO), /* flags */
192 &dmem->dmap); /* DMA map */
193 if (err != 0) {
194 device_printf(nic->dev, "Failed to allocate DMA safe memory for"
195 "descriptors ring\n");
196 goto dmamem_fail;
197 }
198
199 err = bus_dmamap_load(
200 dmem->dmat,
201 dmem->dmap,
202 dmem->base,
203 (q_len * desc_size), /* allocation size */
204 nicvf_dmamap_q_cb, /* map to DMA address cb. */
205 &dmem->phys_base, /* physical address */
206 BUS_DMA_NOWAIT);
207 if (err != 0) {
208 device_printf(nic->dev,
209 "Cannot load DMA map of descriptors ring\n");
210 goto dmamap_fail;
211 }
212
213 dmem->q_len = q_len;
214 dmem->size = (desc_size * q_len);
215
216 return (0);
217
218 dmamap_fail:
219 bus_dmamem_free(dmem->dmat, dmem->base, dmem->dmap);
220 dmem->phys_base = 0;
221 dmamem_fail:
222 err_dmat = bus_dma_tag_destroy(dmem->dmat);
223 dmem->base = NULL;
224 KASSERT(err_dmat == 0,
225 ("%s: Trying to destroy BUSY DMA tag", __func__));
226
227 return (err);
228 }
229
230 /* Free queue's descriptor memory */
231 static void
232 nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem)
233 {
234 int err;
235
236 if ((dmem == NULL) || (dmem->base == NULL))
237 return;
238
239 /* Unload a map */
240 bus_dmamap_sync(dmem->dmat, dmem->dmap, BUS_DMASYNC_POSTREAD);
241 bus_dmamap_unload(dmem->dmat, dmem->dmap);
242 /* Free DMA memory */
243 bus_dmamem_free(dmem->dmat, dmem->base, dmem->dmap);
244 /* Destroy DMA tag */
245 err = bus_dma_tag_destroy(dmem->dmat);
246
247 KASSERT(err == 0,
248 ("%s: Trying to destroy BUSY DMA tag", __func__));
249
250 dmem->phys_base = 0;
251 dmem->base = NULL;
252 }
253
254 /*
255 * Allocate buffer for packet reception
256 * HW returns memory address where packet is DMA'ed but not a pointer
257 * into RBDR ring, so save buffer address at the start of fragment and
258 * align the start address to a cache aligned address
259 */
260 static __inline int
261 nicvf_alloc_rcv_buffer(struct nicvf *nic, struct rbdr *rbdr,
262 bus_dmamap_t dmap, int mflags, uint32_t buf_len, bus_addr_t *rbuf)
263 {
264 struct mbuf *mbuf;
265 struct rbuf_info *rinfo;
266 bus_dma_segment_t segs[1];
267 int nsegs;
268 int err;
269
270 mbuf = m_getjcl(mflags, MT_DATA, M_PKTHDR, MCLBYTES);
271 if (mbuf == NULL)
272 return (ENOMEM);
273
274 /*
275 * The length is equal to the actual length + one 128b line
276 * used as a room for rbuf_info structure.
277 */
278 mbuf->m_len = mbuf->m_pkthdr.len = buf_len;
279
280 err = bus_dmamap_load_mbuf_sg(rbdr->rbdr_buff_dmat, dmap, mbuf, segs,
281 &nsegs, BUS_DMA_NOWAIT);
282 if (err != 0) {
283 device_printf(nic->dev,
284 "Failed to map mbuf into DMA visible memory, err: %d\n",
285 err);
286 m_freem(mbuf);
287 bus_dmamap_destroy(rbdr->rbdr_buff_dmat, dmap);
288 return (err);
289 }
290 if (nsegs != 1)
291 panic("Unexpected number of DMA segments for RB: %d", nsegs);
292 /*
293 * Now use the room for rbuf_info structure
294 * and adjust mbuf data and length.
295 */
296 rinfo = (struct rbuf_info *)mbuf->m_data;
297 m_adj(mbuf, NICVF_RCV_BUF_ALIGN_BYTES);
298
299 rinfo->dmat = rbdr->rbdr_buff_dmat;
300 rinfo->dmap = dmap;
301 rinfo->mbuf = mbuf;
302
303 *rbuf = segs[0].ds_addr + NICVF_RCV_BUF_ALIGN_BYTES;
304
305 return (0);
306 }
307
308 /* Retrieve mbuf for received packet */
309 static struct mbuf *
310 nicvf_rb_ptr_to_mbuf(struct nicvf *nic, bus_addr_t rb_ptr)
311 {
312 struct mbuf *mbuf;
313 struct rbuf_info *rinfo;
314
315 /* Get buffer start address and alignment offset */
316 rinfo = GET_RBUF_INFO(PHYS_TO_DMAP(rb_ptr));
317
318 /* Now retrieve mbuf to give to stack */
319 mbuf = rinfo->mbuf;
320 if (__predict_false(mbuf == NULL)) {
321 panic("%s: Received packet fragment with NULL mbuf",
322 device_get_nameunit(nic->dev));
323 }
324 /*
325 * Clear the mbuf in the descriptor to indicate
326 * that this slot is processed and free to use.
327 */
328 rinfo->mbuf = NULL;
329
330 bus_dmamap_sync(rinfo->dmat, rinfo->dmap, BUS_DMASYNC_POSTREAD);
331 bus_dmamap_unload(rinfo->dmat, rinfo->dmap);
332
333 return (mbuf);
334 }
335
336 /* Allocate RBDR ring and populate receive buffers */
337 static int
338 nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr, int ring_len,
339 int buf_size, int qidx)
340 {
341 bus_dmamap_t dmap;
342 bus_addr_t rbuf;
343 struct rbdr_entry_t *desc;
344 int idx;
345 int err;
346
347 /* Allocate rbdr descriptors ring */
348 err = nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len,
349 sizeof(struct rbdr_entry_t), NICVF_RCV_BUF_ALIGN_BYTES);
350 if (err != 0) {
351 device_printf(nic->dev,
352 "Failed to create RBDR descriptors ring\n");
353 return (err);
354 }
355
356 rbdr->desc = rbdr->dmem.base;
357 /*
358 * Buffer size has to be in multiples of 128 bytes.
359 * Make room for metadata of size of one line (128 bytes).
360 */
361 rbdr->dma_size = buf_size - NICVF_RCV_BUF_ALIGN_BYTES;
362 rbdr->enable = TRUE;
363 rbdr->thresh = RBDR_THRESH;
364 rbdr->nic = nic;
365 rbdr->idx = qidx;
366
367 /*
368 * Create DMA tag for Rx buffers.
369 * Each map created using this tag is intended to store Rx payload for
370 * one fragment and one header structure containing rbuf_info (thus
371 * additional 128 byte line since RB must be a multiple of 128 byte
372 * cache line).
373 */
374 if (buf_size > MCLBYTES) {
375 device_printf(nic->dev,
376 "Buffer size to large for mbuf cluster\n");
377 return (EINVAL);
378 }
379 err = bus_dma_tag_create(
380 bus_get_dma_tag(nic->dev), /* parent tag */
381 NICVF_RCV_BUF_ALIGN_BYTES, /* alignment */
382 0, /* boundary */
383 DMAP_MAX_PHYSADDR, /* lowaddr */
384 DMAP_MIN_PHYSADDR, /* highaddr */
385 NULL, NULL, /* filtfunc, filtfuncarg */
386 roundup2(buf_size, MCLBYTES), /* maxsize */
387 1, /* nsegments */
388 roundup2(buf_size, MCLBYTES), /* maxsegsize */
389 0, /* flags */
390 NULL, NULL, /* lockfunc, lockfuncarg */
391 &rbdr->rbdr_buff_dmat); /* dmat */
392
393 if (err != 0) {
394 device_printf(nic->dev,
395 "Failed to create busdma tag for RBDR buffers\n");
396 return (err);
397 }
398
399 rbdr->rbdr_buff_dmaps = malloc(sizeof(*rbdr->rbdr_buff_dmaps) *
400 ring_len, M_NICVF, (M_WAITOK | M_ZERO));
401
402 for (idx = 0; idx < ring_len; idx++) {
403 err = bus_dmamap_create(rbdr->rbdr_buff_dmat, 0, &dmap);
404 if (err != 0) {
405 device_printf(nic->dev,
406 "Failed to create DMA map for RB\n");
407 return (err);
408 }
409 rbdr->rbdr_buff_dmaps[idx] = dmap;
410
411 err = nicvf_alloc_rcv_buffer(nic, rbdr, dmap, M_WAITOK,
412 DMA_BUFFER_LEN, &rbuf);
413 if (err != 0)
414 return (err);
415
416 desc = GET_RBDR_DESC(rbdr, idx);
417 desc->buf_addr = (rbuf >> NICVF_RCV_BUF_ALIGN);
418 }
419
420 /* Allocate taskqueue */
421 TASK_INIT(&rbdr->rbdr_task, 0, nicvf_rbdr_task, rbdr);
422 TASK_INIT(&rbdr->rbdr_task_nowait, 0, nicvf_rbdr_task_nowait, rbdr);
423 rbdr->rbdr_taskq = taskqueue_create_fast("nicvf_rbdr_taskq", M_WAITOK,
424 taskqueue_thread_enqueue, &rbdr->rbdr_taskq);
425 taskqueue_start_threads(&rbdr->rbdr_taskq, 1, PI_NET, "%s: rbdr_taskq",
426 device_get_nameunit(nic->dev));
427
428 return (0);
429 }
430
431 /* Free RBDR ring and its receive buffers */
432 static void
433 nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr)
434 {
435 struct mbuf *mbuf;
436 struct queue_set *qs;
437 struct rbdr_entry_t *desc;
438 struct rbuf_info *rinfo;
439 bus_addr_t buf_addr;
440 int head, tail, idx;
441 int err;
442
443 qs = nic->qs;
444
445 if ((qs == NULL) || (rbdr == NULL))
446 return;
447
448 rbdr->enable = FALSE;
449 if (rbdr->rbdr_taskq != NULL) {
450 /* Remove tasks */
451 while (taskqueue_cancel(rbdr->rbdr_taskq,
452 &rbdr->rbdr_task_nowait, NULL) != 0) {
453 /* Finish the nowait task first */
454 taskqueue_drain(rbdr->rbdr_taskq,
455 &rbdr->rbdr_task_nowait);
456 }
457 taskqueue_free(rbdr->rbdr_taskq);
458 rbdr->rbdr_taskq = NULL;
459
460 while (taskqueue_cancel(taskqueue_thread,
461 &rbdr->rbdr_task, NULL) != 0) {
462 /* Now finish the sleepable task */
463 taskqueue_drain(taskqueue_thread, &rbdr->rbdr_task);
464 }
465 }
466
467 /*
468 * Free all of the memory under the RB descriptors.
469 * There are assumptions here:
470 * 1. Corresponding RBDR is disabled
471 * - it is safe to operate using head and tail indexes
472 * 2. All bffers that were received are properly freed by
473 * the receive handler
474 * - there is no need to unload DMA map and free MBUF for other
475 * descriptors than unused ones
476 */
477 if (rbdr->rbdr_buff_dmat != NULL) {
478 head = rbdr->head;
479 tail = rbdr->tail;
480 while (head != tail) {
481 desc = GET_RBDR_DESC(rbdr, head);
482 buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
483 rinfo = GET_RBUF_INFO(PHYS_TO_DMAP(buf_addr));
484 bus_dmamap_unload(rbdr->rbdr_buff_dmat, rinfo->dmap);
485 mbuf = rinfo->mbuf;
486 /* This will destroy everything including rinfo! */
487 m_freem(mbuf);
488 head++;
489 head &= (rbdr->dmem.q_len - 1);
490 }
491 /* Free tail descriptor */
492 desc = GET_RBDR_DESC(rbdr, tail);
493 buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
494 rinfo = GET_RBUF_INFO(PHYS_TO_DMAP(buf_addr));
495 bus_dmamap_unload(rbdr->rbdr_buff_dmat, rinfo->dmap);
496 mbuf = rinfo->mbuf;
497 /* This will destroy everything including rinfo! */
498 m_freem(mbuf);
499
500 /* Destroy DMA maps */
501 for (idx = 0; idx < qs->rbdr_len; idx++) {
502 if (rbdr->rbdr_buff_dmaps[idx] == NULL)
503 continue;
504 err = bus_dmamap_destroy(rbdr->rbdr_buff_dmat,
505 rbdr->rbdr_buff_dmaps[idx]);
506 KASSERT(err == 0,
507 ("%s: Could not destroy DMA map for RB, desc: %d",
508 __func__, idx));
509 rbdr->rbdr_buff_dmaps[idx] = NULL;
510 }
511
512 /* Now destroy the tag */
513 err = bus_dma_tag_destroy(rbdr->rbdr_buff_dmat);
514 KASSERT(err == 0,
515 ("%s: Trying to destroy BUSY DMA tag", __func__));
516
517 rbdr->head = 0;
518 rbdr->tail = 0;
519 }
520
521 /* Free RBDR ring */
522 nicvf_free_q_desc_mem(nic, &rbdr->dmem);
523 }
524
525 /*
526 * Refill receive buffer descriptors with new buffers.
527 */
528 static int
529 nicvf_refill_rbdr(struct rbdr *rbdr, int mflags)
530 {
531 struct nicvf *nic;
532 struct queue_set *qs;
533 int rbdr_idx;
534 int tail, qcount;
535 int refill_rb_cnt;
536 struct rbdr_entry_t *desc;
537 bus_dmamap_t dmap;
538 bus_addr_t rbuf;
539 boolean_t rb_alloc_fail;
540 int new_rb;
541
542 rb_alloc_fail = TRUE;
543 new_rb = 0;
544 nic = rbdr->nic;
545 qs = nic->qs;
546 rbdr_idx = rbdr->idx;
547
548 /* Check if it's enabled */
549 if (!rbdr->enable)
550 return (0);
551
552 /* Get no of desc's to be refilled */
553 qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx);
554 qcount &= 0x7FFFF;
555 /* Doorbell can be ringed with a max of ring size minus 1 */
556 if (qcount >= (qs->rbdr_len - 1)) {
557 rb_alloc_fail = FALSE;
558 goto out;
559 } else
560 refill_rb_cnt = qs->rbdr_len - qcount - 1;
561
562 /* Start filling descs from tail */
563 tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx) >> 3;
564 while (refill_rb_cnt) {
565 tail++;
566 tail &= (rbdr->dmem.q_len - 1);
567
568 dmap = rbdr->rbdr_buff_dmaps[tail];
569 if (nicvf_alloc_rcv_buffer(nic, rbdr, dmap, mflags,
570 DMA_BUFFER_LEN, &rbuf)) {
571 /* Something went wrong. Resign */
572 break;
573 }
574 desc = GET_RBDR_DESC(rbdr, tail);
575 desc->buf_addr = (rbuf >> NICVF_RCV_BUF_ALIGN);
576 refill_rb_cnt--;
577 new_rb++;
578 }
579
580 /* make sure all memory stores are done before ringing doorbell */
581 wmb();
582
583 /* Check if buffer allocation failed */
584 if (refill_rb_cnt == 0)
585 rb_alloc_fail = FALSE;
586
587 /* Notify HW */
588 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
589 rbdr_idx, new_rb);
590 out:
591 if (!rb_alloc_fail) {
592 /*
593 * Re-enable RBDR interrupts only
594 * if buffer allocation is success.
595 */
596 nicvf_enable_intr(nic, NICVF_INTR_RBDR, rbdr_idx);
597
598 return (0);
599 }
600
601 return (ENOMEM);
602 }
603
604 /* Refill RBs even if sleep is needed to reclaim memory */
605 static void
606 nicvf_rbdr_task(void *arg, int pending)
607 {
608 struct rbdr *rbdr;
609 int err;
610
611 rbdr = (struct rbdr *)arg;
612
613 err = nicvf_refill_rbdr(rbdr, M_WAITOK);
614 if (__predict_false(err != 0)) {
615 panic("%s: Failed to refill RBs even when sleep enabled",
616 __func__);
617 }
618 }
619
620 /* Refill RBs as soon as possible without waiting */
621 static void
622 nicvf_rbdr_task_nowait(void *arg, int pending)
623 {
624 struct rbdr *rbdr;
625 int err;
626
627 rbdr = (struct rbdr *)arg;
628
629 err = nicvf_refill_rbdr(rbdr, M_NOWAIT);
630 if (err != 0) {
631 /*
632 * Schedule another, sleepable kernel thread
633 * that will for sure refill the buffers.
634 */
635 taskqueue_enqueue(taskqueue_thread, &rbdr->rbdr_task);
636 }
637 }
638
639 static int
640 nicvf_rcv_pkt_handler(struct nicvf *nic, struct cmp_queue *cq,
641 struct cqe_rx_t *cqe_rx, int cqe_type)
642 {
643 struct mbuf *mbuf;
644 struct rcv_queue *rq;
645 int rq_idx;
646 int err = 0;
647
648 rq_idx = cqe_rx->rq_idx;
649 rq = &nic->qs->rq[rq_idx];
650
651 /* Check for errors */
652 err = nicvf_check_cqe_rx_errs(nic, cq, cqe_rx);
653 if (err && !cqe_rx->rb_cnt)
654 return (0);
655
656 mbuf = nicvf_get_rcv_mbuf(nic, cqe_rx);
657 if (mbuf == NULL) {
658 dprintf(nic->dev, "Packet not received\n");
659 return (0);
660 }
661
662 /* If error packet */
663 if (err != 0) {
664 m_freem(mbuf);
665 return (0);
666 }
667
668 if (rq->lro_enabled &&
669 ((cqe_rx->l3_type == L3TYPE_IPV4) && (cqe_rx->l4_type == L4TYPE_TCP)) &&
670 (mbuf->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) ==
671 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) {
672 /*
673 * At this point it is known that there are no errors in the
674 * packet. Attempt to LRO enqueue. Send to stack if no resources
675 * or enqueue error.
676 */
677 if ((rq->lro.lro_cnt != 0) &&
678 (tcp_lro_rx(&rq->lro, mbuf, 0) == 0))
679 return (0);
680 }
681 /*
682 * Push this packet to the stack later to avoid
683 * unlocking completion task in the middle of work.
684 */
685 err = buf_ring_enqueue(cq->rx_br, mbuf);
686 if (err != 0) {
687 /*
688 * Failed to enqueue this mbuf.
689 * We don't drop it, just schedule another task.
690 */
691 return (err);
692 }
693
694 return (0);
695 }
696
697 static void
698 nicvf_snd_pkt_handler(struct nicvf *nic, struct cmp_queue *cq,
699 struct cqe_send_t *cqe_tx, int cqe_type)
700 {
701 bus_dmamap_t dmap;
702 struct mbuf *mbuf;
703 struct snd_queue *sq;
704 struct sq_hdr_subdesc *hdr;
705
706 mbuf = NULL;
707 sq = &nic->qs->sq[cqe_tx->sq_idx];
708
709 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, cqe_tx->sqe_ptr);
710 if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER)
711 return;
712
713 dprintf(nic->dev,
714 "%s Qset #%d SQ #%d SQ ptr #%d subdesc count %d\n",
715 __func__, cqe_tx->sq_qs, cqe_tx->sq_idx,
716 cqe_tx->sqe_ptr, hdr->subdesc_cnt);
717
718 dmap = (bus_dmamap_t)sq->snd_buff[cqe_tx->sqe_ptr].dmap;
719 bus_dmamap_unload(sq->snd_buff_dmat, dmap);
720
721 mbuf = (struct mbuf *)sq->snd_buff[cqe_tx->sqe_ptr].mbuf;
722 if (mbuf != NULL) {
723 m_freem(mbuf);
724 sq->snd_buff[cqe_tx->sqe_ptr].mbuf = NULL;
725 nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
726 }
727
728 nicvf_check_cqe_tx_errs(nic, cq, cqe_tx);
729 }
730
731 static int
732 nicvf_cq_intr_handler(struct nicvf *nic, uint8_t cq_idx)
733 {
734 struct mbuf *mbuf;
735 struct ifnet *ifp;
736 int processed_cqe, work_done = 0, tx_done = 0;
737 int cqe_count, cqe_head;
738 struct queue_set *qs = nic->qs;
739 struct cmp_queue *cq = &qs->cq[cq_idx];
740 struct snd_queue *sq = &qs->sq[cq_idx];
741 struct rcv_queue *rq;
742 struct cqe_rx_t *cq_desc;
743 struct lro_ctrl *lro;
744 int rq_idx;
745 int cmp_err;
746
747 NICVF_CMP_LOCK(cq);
748 cmp_err = 0;
749 processed_cqe = 0;
750 /* Get no of valid CQ entries to process */
751 cqe_count = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS, cq_idx);
752 cqe_count &= CQ_CQE_COUNT;
753 if (cqe_count == 0)
754 goto out;
755
756 /* Get head of the valid CQ entries */
757 cqe_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD, cq_idx) >> 9;
758 cqe_head &= 0xFFFF;
759
760 dprintf(nic->dev, "%s CQ%d cqe_count %d cqe_head %d\n",
761 __func__, cq_idx, cqe_count, cqe_head);
762 while (processed_cqe < cqe_count) {
763 /* Get the CQ descriptor */
764 cq_desc = (struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head);
765 cqe_head++;
766 cqe_head &= (cq->dmem.q_len - 1);
767 /* Prefetch next CQ descriptor */
768 __builtin_prefetch((struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head));
769
770 dprintf(nic->dev, "CQ%d cq_desc->cqe_type %d\n", cq_idx,
771 cq_desc->cqe_type);
772 switch (cq_desc->cqe_type) {
773 case CQE_TYPE_RX:
774 cmp_err = nicvf_rcv_pkt_handler(nic, cq, cq_desc,
775 CQE_TYPE_RX);
776 if (__predict_false(cmp_err != 0)) {
777 /*
778 * Ups. Cannot finish now.
779 * Let's try again later.
780 */
781 goto done;
782 }
783 work_done++;
784 break;
785 case CQE_TYPE_SEND:
786 nicvf_snd_pkt_handler(nic, cq, (void *)cq_desc,
787 CQE_TYPE_SEND);
788 tx_done++;
789 break;
790 case CQE_TYPE_INVALID:
791 case CQE_TYPE_RX_SPLIT:
792 case CQE_TYPE_RX_TCP:
793 case CQE_TYPE_SEND_PTP:
794 /* Ignore for now */
795 break;
796 }
797 processed_cqe++;
798 }
799 done:
800 dprintf(nic->dev,
801 "%s CQ%d processed_cqe %d work_done %d\n",
802 __func__, cq_idx, processed_cqe, work_done);
803
804 /* Ring doorbell to inform H/W to reuse processed CQEs */
805 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_DOOR, cq_idx, processed_cqe);
806
807 if ((tx_done > 0) &&
808 ((if_getdrvflags(nic->ifp) & IFF_DRV_RUNNING) != 0)) {
809 /* Reenable TXQ if its stopped earlier due to SQ full */
810 if_setdrvflagbits(nic->ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
811 taskqueue_enqueue(sq->snd_taskq, &sq->snd_task);
812 }
813 out:
814 /*
815 * Flush any outstanding LRO work
816 */
817 rq_idx = cq_idx;
818 rq = &nic->qs->rq[rq_idx];
819 lro = &rq->lro;
820 tcp_lro_flush_all(lro);
821
822 NICVF_CMP_UNLOCK(cq);
823
824 ifp = nic->ifp;
825 /* Push received MBUFs to the stack */
826 while (!buf_ring_empty(cq->rx_br)) {
827 mbuf = buf_ring_dequeue_mc(cq->rx_br);
828 if (__predict_true(mbuf != NULL))
829 (*ifp->if_input)(ifp, mbuf);
830 }
831
832 return (cmp_err);
833 }
834
835 /*
836 * Qset error interrupt handler
837 *
838 * As of now only CQ errors are handled
839 */
840 static void
841 nicvf_qs_err_task(void *arg, int pending)
842 {
843 struct nicvf *nic;
844 struct queue_set *qs;
845 int qidx;
846 uint64_t status;
847 boolean_t enable = TRUE;
848
849 nic = (struct nicvf *)arg;
850 qs = nic->qs;
851
852 /* Deactivate network interface */
853 if_setdrvflagbits(nic->ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING);
854
855 /* Check if it is CQ err */
856 for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
857 status = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS,
858 qidx);
859 if ((status & CQ_ERR_MASK) == 0)
860 continue;
861 /* Process already queued CQEs and reconfig CQ */
862 nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
863 nicvf_sq_disable(nic, qidx);
864 (void)nicvf_cq_intr_handler(nic, qidx);
865 nicvf_cmp_queue_config(nic, qs, qidx, enable);
866 nicvf_sq_free_used_descs(nic, &qs->sq[qidx], qidx);
867 nicvf_sq_enable(nic, &qs->sq[qidx], qidx);
868 nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
869 }
870
871 if_setdrvflagbits(nic->ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
872 /* Re-enable Qset error interrupt */
873 nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
874 }
875
876 static void
877 nicvf_cmp_task(void *arg, int pending)
878 {
879 struct cmp_queue *cq;
880 struct nicvf *nic;
881 int cmp_err;
882
883 cq = (struct cmp_queue *)arg;
884 nic = cq->nic;
885
886 /* Handle CQ descriptors */
887 cmp_err = nicvf_cq_intr_handler(nic, cq->idx);
888 if (__predict_false(cmp_err != 0)) {
889 /*
890 * Schedule another thread here since we did not
891 * process the entire CQ due to Tx or Rx CQ parse error.
892 */
893 taskqueue_enqueue(cq->cmp_taskq, &cq->cmp_task);
894
895 }
896
897 nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->idx);
898 /* Reenable interrupt (previously disabled in nicvf_intr_handler() */
899 nicvf_enable_intr(nic, NICVF_INTR_CQ, cq->idx);
900
901 }
902
903 /* Initialize completion queue */
904 static int
905 nicvf_init_cmp_queue(struct nicvf *nic, struct cmp_queue *cq, int q_len,
906 int qidx)
907 {
908 int err;
909
910 /* Initizalize lock */
911 snprintf(cq->mtx_name, sizeof(cq->mtx_name), "%s: CQ(%d) lock",
912 device_get_nameunit(nic->dev), qidx);
913 mtx_init(&cq->mtx, cq->mtx_name, NULL, MTX_DEF);
914
915 err = nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len, CMP_QUEUE_DESC_SIZE,
916 NICVF_CQ_BASE_ALIGN_BYTES);
917
918 if (err != 0) {
919 device_printf(nic->dev,
920 "Could not allocate DMA memory for CQ\n");
921 return (err);
922 }
923
924 cq->desc = cq->dmem.base;
925 cq->thresh = pass1_silicon(nic->dev) ? 0 : CMP_QUEUE_CQE_THRESH;
926 cq->nic = nic;
927 cq->idx = qidx;
928 nic->cq_coalesce_usecs = (CMP_QUEUE_TIMER_THRESH * 0.05) - 1;
929
930 cq->rx_br = buf_ring_alloc(CMP_QUEUE_LEN * 8, M_DEVBUF, M_WAITOK,
931 &cq->mtx);
932
933 /* Allocate taskqueue */
934 TASK_INIT(&cq->cmp_task, 0, nicvf_cmp_task, cq);
935 cq->cmp_taskq = taskqueue_create_fast("nicvf_cmp_taskq", M_WAITOK,
936 taskqueue_thread_enqueue, &cq->cmp_taskq);
937 taskqueue_start_threads(&cq->cmp_taskq, 1, PI_NET, "%s: cmp_taskq(%d)",
938 device_get_nameunit(nic->dev), qidx);
939
940 return (0);
941 }
942
943 static void
944 nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq)
945 {
946
947 if (cq == NULL)
948 return;
949 /*
950 * The completion queue itself should be disabled by now
951 * (ref. nicvf_snd_queue_config()).
952 * Ensure that it is safe to disable it or panic.
953 */
954 if (cq->enable)
955 panic("%s: Trying to free working CQ(%d)", __func__, cq->idx);
956
957 if (cq->cmp_taskq != NULL) {
958 /* Remove task */
959 while (taskqueue_cancel(cq->cmp_taskq, &cq->cmp_task, NULL) != 0)
960 taskqueue_drain(cq->cmp_taskq, &cq->cmp_task);
961
962 taskqueue_free(cq->cmp_taskq);
963 cq->cmp_taskq = NULL;
964 }
965 /*
966 * Completion interrupt will possibly enable interrupts again
967 * so disable interrupting now after we finished processing
968 * completion task. It is safe to do so since the corresponding CQ
969 * was already disabled.
970 */
971 nicvf_disable_intr(nic, NICVF_INTR_CQ, cq->idx);
972 nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->idx);
973
974 NICVF_CMP_LOCK(cq);
975 nicvf_free_q_desc_mem(nic, &cq->dmem);
976 drbr_free(cq->rx_br, M_DEVBUF);
977 NICVF_CMP_UNLOCK(cq);
978 mtx_destroy(&cq->mtx);
979 memset(cq->mtx_name, 0, sizeof(cq->mtx_name));
980 }
981
982 int
983 nicvf_xmit_locked(struct snd_queue *sq)
984 {
985 struct nicvf *nic;
986 struct ifnet *ifp;
987 struct mbuf *next;
988 int err;
989
990 NICVF_TX_LOCK_ASSERT(sq);
991
992 nic = sq->nic;
993 ifp = nic->ifp;
994 err = 0;
995
996 while ((next = drbr_peek(ifp, sq->br)) != NULL) {
997 /* Send a copy of the frame to the BPF listener */
998 ETHER_BPF_MTAP(ifp, next);
999
1000 err = nicvf_tx_mbuf_locked(sq, &next);
1001 if (err != 0) {
1002 if (next == NULL)
1003 drbr_advance(ifp, sq->br);
1004 else
1005 drbr_putback(ifp, sq->br, next);
1006
1007 break;
1008 }
1009 drbr_advance(ifp, sq->br);
1010 }
1011 return (err);
1012 }
1013
1014 static void
1015 nicvf_snd_task(void *arg, int pending)
1016 {
1017 struct snd_queue *sq = (struct snd_queue *)arg;
1018 struct nicvf *nic;
1019 struct ifnet *ifp;
1020 int err;
1021
1022 nic = sq->nic;
1023 ifp = nic->ifp;
1024
1025 /*
1026 * Skip sending anything if the driver is not running,
1027 * SQ full or link is down.
1028 */
1029 if (((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1030 IFF_DRV_RUNNING) || !nic->link_up)
1031 return;
1032
1033 NICVF_TX_LOCK(sq);
1034 err = nicvf_xmit_locked(sq);
1035 NICVF_TX_UNLOCK(sq);
1036 /* Try again */
1037 if (err != 0)
1038 taskqueue_enqueue(sq->snd_taskq, &sq->snd_task);
1039 }
1040
1041 /* Initialize transmit queue */
1042 static int
1043 nicvf_init_snd_queue(struct nicvf *nic, struct snd_queue *sq, int q_len,
1044 int qidx)
1045 {
1046 size_t i;
1047 int err;
1048
1049 /* Initizalize TX lock for this queue */
1050 snprintf(sq->mtx_name, sizeof(sq->mtx_name), "%s: SQ(%d) lock",
1051 device_get_nameunit(nic->dev), qidx);
1052 mtx_init(&sq->mtx, sq->mtx_name, NULL, MTX_DEF);
1053
1054 NICVF_TX_LOCK(sq);
1055 /* Allocate buffer ring */
1056 sq->br = buf_ring_alloc(q_len / MIN_SQ_DESC_PER_PKT_XMIT, M_DEVBUF,
1057 M_NOWAIT, &sq->mtx);
1058 if (sq->br == NULL) {
1059 device_printf(nic->dev,
1060 "ERROR: Could not set up buf ring for SQ(%d)\n", qidx);
1061 err = ENOMEM;
1062 goto error;
1063 }
1064
1065 /* Allocate DMA memory for Tx descriptors */
1066 err = nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len, SND_QUEUE_DESC_SIZE,
1067 NICVF_SQ_BASE_ALIGN_BYTES);
1068 if (err != 0) {
1069 device_printf(nic->dev,
1070 "Could not allocate DMA memory for SQ\n");
1071 goto error;
1072 }
1073
1074 sq->desc = sq->dmem.base;
1075 sq->head = sq->tail = 0;
1076 atomic_store_rel_int(&sq->free_cnt, q_len - 1);
1077 sq->thresh = SND_QUEUE_THRESH;
1078 sq->idx = qidx;
1079 sq->nic = nic;
1080
1081 /*
1082 * Allocate DMA maps for Tx buffers
1083 */
1084
1085 /* Create DMA tag first */
1086 err = bus_dma_tag_create(
1087 bus_get_dma_tag(nic->dev), /* parent tag */
1088 1, /* alignment */
1089 0, /* boundary */
1090 BUS_SPACE_MAXADDR, /* lowaddr */
1091 BUS_SPACE_MAXADDR, /* highaddr */
1092 NULL, NULL, /* filtfunc, filtfuncarg */
1093 NICVF_TSO_MAXSIZE, /* maxsize */
1094 NICVF_TSO_NSEGS, /* nsegments */
1095 MCLBYTES, /* maxsegsize */
1096 0, /* flags */
1097 NULL, NULL, /* lockfunc, lockfuncarg */
1098 &sq->snd_buff_dmat); /* dmat */
1099
1100 if (err != 0) {
1101 device_printf(nic->dev,
1102 "Failed to create busdma tag for Tx buffers\n");
1103 goto error;
1104 }
1105
1106 /* Allocate send buffers array */
1107 sq->snd_buff = malloc(sizeof(*sq->snd_buff) * q_len, M_NICVF,
1108 (M_NOWAIT | M_ZERO));
1109 if (sq->snd_buff == NULL) {
1110 device_printf(nic->dev,
1111 "Could not allocate memory for Tx buffers array\n");
1112 err = ENOMEM;
1113 goto error;
1114 }
1115
1116 /* Now populate maps */
1117 for (i = 0; i < q_len; i++) {
1118 err = bus_dmamap_create(sq->snd_buff_dmat, 0,
1119 &sq->snd_buff[i].dmap);
1120 if (err != 0) {
1121 device_printf(nic->dev,
1122 "Failed to create DMA maps for Tx buffers\n");
1123 goto error;
1124 }
1125 }
1126 NICVF_TX_UNLOCK(sq);
1127
1128 /* Allocate taskqueue */
1129 TASK_INIT(&sq->snd_task, 0, nicvf_snd_task, sq);
1130 sq->snd_taskq = taskqueue_create_fast("nicvf_snd_taskq", M_WAITOK,
1131 taskqueue_thread_enqueue, &sq->snd_taskq);
1132 taskqueue_start_threads(&sq->snd_taskq, 1, PI_NET, "%s: snd_taskq(%d)",
1133 device_get_nameunit(nic->dev), qidx);
1134
1135 return (0);
1136 error:
1137 NICVF_TX_UNLOCK(sq);
1138 return (err);
1139 }
1140
1141 static void
1142 nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq)
1143 {
1144 struct queue_set *qs = nic->qs;
1145 size_t i;
1146 int err;
1147
1148 if (sq == NULL)
1149 return;
1150
1151 if (sq->snd_taskq != NULL) {
1152 /* Remove task */
1153 while (taskqueue_cancel(sq->snd_taskq, &sq->snd_task, NULL) != 0)
1154 taskqueue_drain(sq->snd_taskq, &sq->snd_task);
1155
1156 taskqueue_free(sq->snd_taskq);
1157 sq->snd_taskq = NULL;
1158 }
1159
1160 NICVF_TX_LOCK(sq);
1161 if (sq->snd_buff_dmat != NULL) {
1162 if (sq->snd_buff != NULL) {
1163 for (i = 0; i < qs->sq_len; i++) {
1164 m_freem(sq->snd_buff[i].mbuf);
1165 sq->snd_buff[i].mbuf = NULL;
1166
1167 bus_dmamap_unload(sq->snd_buff_dmat,
1168 sq->snd_buff[i].dmap);
1169 err = bus_dmamap_destroy(sq->snd_buff_dmat,
1170 sq->snd_buff[i].dmap);
1171 /*
1172 * If bus_dmamap_destroy fails it can cause
1173 * random panic later if the tag is also
1174 * destroyed in the process.
1175 */
1176 KASSERT(err == 0,
1177 ("%s: Could not destroy DMA map for SQ",
1178 __func__));
1179 }
1180 }
1181
1182 free(sq->snd_buff, M_NICVF);
1183
1184 err = bus_dma_tag_destroy(sq->snd_buff_dmat);
1185 KASSERT(err == 0,
1186 ("%s: Trying to destroy BUSY DMA tag", __func__));
1187 }
1188
1189 /* Free private driver ring for this send queue */
1190 if (sq->br != NULL)
1191 drbr_free(sq->br, M_DEVBUF);
1192
1193 if (sq->dmem.base != NULL)
1194 nicvf_free_q_desc_mem(nic, &sq->dmem);
1195
1196 NICVF_TX_UNLOCK(sq);
1197 /* Destroy Tx lock */
1198 mtx_destroy(&sq->mtx);
1199 memset(sq->mtx_name, 0, sizeof(sq->mtx_name));
1200 }
1201
1202 static void
1203 nicvf_reclaim_snd_queue(struct nicvf *nic, struct queue_set *qs, int qidx)
1204 {
1205
1206 /* Disable send queue */
1207 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0);
1208 /* Check if SQ is stopped */
1209 if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01))
1210 return;
1211 /* Reset send queue */
1212 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
1213 }
1214
1215 static void
1216 nicvf_reclaim_rcv_queue(struct nicvf *nic, struct queue_set *qs, int qidx)
1217 {
1218 union nic_mbx mbx = {};
1219
1220 /* Make sure all packets in the pipeline are written back into mem */
1221 mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC;
1222 nicvf_send_msg_to_pf(nic, &mbx);
1223 }
1224
1225 static void
1226 nicvf_reclaim_cmp_queue(struct nicvf *nic, struct queue_set *qs, int qidx)
1227 {
1228
1229 /* Disable timer threshold (doesn't get reset upon CQ reset */
1230 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0);
1231 /* Disable completion queue */
1232 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0);
1233 /* Reset completion queue */
1234 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
1235 }
1236
1237 static void
1238 nicvf_reclaim_rbdr(struct nicvf *nic, struct rbdr *rbdr, int qidx)
1239 {
1240 uint64_t tmp, fifo_state;
1241 int timeout = 10;
1242
1243 /* Save head and tail pointers for feeing up buffers */
1244 rbdr->head =
1245 nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_HEAD, qidx) >> 3;
1246 rbdr->tail =
1247 nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, qidx) >> 3;
1248
1249 /*
1250 * If RBDR FIFO is in 'FAIL' state then do a reset first
1251 * before relaiming.
1252 */
1253 fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx);
1254 if (((fifo_state >> 62) & 0x03) == 0x3) {
1255 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
1256 qidx, NICVF_RBDR_RESET);
1257 }
1258
1259 /* Disable RBDR */
1260 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0);
1261 if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
1262 return;
1263 while (1) {
1264 tmp = nicvf_queue_reg_read(nic,
1265 NIC_QSET_RBDR_0_1_PREFETCH_STATUS, qidx);
1266 if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF))
1267 break;
1268
1269 DELAY(1000);
1270 timeout--;
1271 if (!timeout) {
1272 device_printf(nic->dev,
1273 "Failed polling on prefetch status\n");
1274 return;
1275 }
1276 }
1277 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx,
1278 NICVF_RBDR_RESET);
1279
1280 if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02))
1281 return;
1282 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00);
1283 if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
1284 return;
1285 }
1286
1287 /* Configures receive queue */
1288 static void
1289 nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs,
1290 int qidx, bool enable)
1291 {
1292 union nic_mbx mbx = {};
1293 struct rcv_queue *rq;
1294 struct rq_cfg rq_cfg;
1295 struct ifnet *ifp;
1296 struct lro_ctrl *lro;
1297
1298 ifp = nic->ifp;
1299
1300 rq = &qs->rq[qidx];
1301 rq->enable = enable;
1302
1303 lro = &rq->lro;
1304
1305 /* Disable receive queue */
1306 nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0);
1307
1308 if (!rq->enable) {
1309 nicvf_reclaim_rcv_queue(nic, qs, qidx);
1310 /* Free LRO memory */
1311 tcp_lro_free(lro);
1312 rq->lro_enabled = FALSE;
1313 return;
1314 }
1315
1316 /* Configure LRO if enabled */
1317 rq->lro_enabled = FALSE;
1318 if ((if_getcapenable(ifp) & IFCAP_LRO) != 0) {
1319 if (tcp_lro_init(lro) != 0) {
1320 device_printf(nic->dev,
1321 "Failed to initialize LRO for RXQ%d\n", qidx);
1322 } else {
1323 rq->lro_enabled = TRUE;
1324 lro->ifp = nic->ifp;
1325 }
1326 }
1327
1328 rq->cq_qs = qs->vnic_id;
1329 rq->cq_idx = qidx;
1330 rq->start_rbdr_qs = qs->vnic_id;
1331 rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1;
1332 rq->cont_rbdr_qs = qs->vnic_id;
1333 rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1;
1334 /* all writes of RBDR data to be loaded into L2 Cache as well*/
1335 rq->caching = 1;
1336
1337 /* Send a mailbox msg to PF to config RQ */
1338 mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG;
1339 mbx.rq.qs_num = qs->vnic_id;
1340 mbx.rq.rq_num = qidx;
1341 mbx.rq.cfg = (rq->caching << 26) | (rq->cq_qs << 19) |
1342 (rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) |
1343 (rq->cont_qs_rbdr_idx << 8) | (rq->start_rbdr_qs << 1) |
1344 (rq->start_qs_rbdr_idx);
1345 nicvf_send_msg_to_pf(nic, &mbx);
1346
1347 mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG;
1348 mbx.rq.cfg = (1UL << 63) | (1UL << 62) | (qs->vnic_id << 0);
1349 nicvf_send_msg_to_pf(nic, &mbx);
1350
1351 /*
1352 * RQ drop config
1353 * Enable CQ drop to reserve sufficient CQEs for all tx packets
1354 */
1355 mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG;
1356 mbx.rq.cfg = (1UL << 62) | (RQ_CQ_DROP << 8);
1357 nicvf_send_msg_to_pf(nic, &mbx);
1358
1359 nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0, 0x00);
1360
1361 /* Enable Receive queue */
1362 rq_cfg.ena = 1;
1363 rq_cfg.tcp_ena = 0;
1364 nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx,
1365 *(uint64_t *)&rq_cfg);
1366 }
1367
1368 /* Configures completion queue */
1369 static void
1370 nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs,
1371 int qidx, boolean_t enable)
1372 {
1373 struct cmp_queue *cq;
1374 struct cq_cfg cq_cfg;
1375
1376 cq = &qs->cq[qidx];
1377 cq->enable = enable;
1378
1379 if (!cq->enable) {
1380 nicvf_reclaim_cmp_queue(nic, qs, qidx);
1381 return;
1382 }
1383
1384 /* Reset completion queue */
1385 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
1386
1387 /* Set completion queue base address */
1388 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE, qidx,
1389 (uint64_t)(cq->dmem.phys_base));
1390
1391 /* Enable Completion queue */
1392 cq_cfg.ena = 1;
1393 cq_cfg.reset = 0;
1394 cq_cfg.caching = 0;
1395 cq_cfg.qsize = CMP_QSIZE;
1396 cq_cfg.avg_con = 0;
1397 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, *(uint64_t *)&cq_cfg);
1398
1399 /* Set threshold value for interrupt generation */
1400 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh);
1401 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx,
1402 nic->cq_coalesce_usecs);
1403 }
1404
1405 /* Configures transmit queue */
1406 static void
1407 nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs, int qidx,
1408 boolean_t enable)
1409 {
1410 union nic_mbx mbx = {};
1411 struct snd_queue *sq;
1412 struct sq_cfg sq_cfg;
1413
1414 sq = &qs->sq[qidx];
1415 sq->enable = enable;
1416
1417 if (!sq->enable) {
1418 nicvf_reclaim_snd_queue(nic, qs, qidx);
1419 return;
1420 }
1421
1422 /* Reset send queue */
1423 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
1424
1425 sq->cq_qs = qs->vnic_id;
1426 sq->cq_idx = qidx;
1427
1428 /* Send a mailbox msg to PF to config SQ */
1429 mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG;
1430 mbx.sq.qs_num = qs->vnic_id;
1431 mbx.sq.sq_num = qidx;
1432 mbx.sq.sqs_mode = nic->sqs_mode;
1433 mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx;
1434 nicvf_send_msg_to_pf(nic, &mbx);
1435
1436 /* Set queue base address */
1437 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE, qidx,
1438 (uint64_t)(sq->dmem.phys_base));
1439
1440 /* Enable send queue & set queue size */
1441 sq_cfg.ena = 1;
1442 sq_cfg.reset = 0;
1443 sq_cfg.ldwb = 0;
1444 sq_cfg.qsize = SND_QSIZE;
1445 sq_cfg.tstmp_bgx_intf = 0;
1446 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, *(uint64_t *)&sq_cfg);
1447
1448 /* Set threshold value for interrupt generation */
1449 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh);
1450 }
1451
1452 /* Configures receive buffer descriptor ring */
1453 static void
1454 nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs, int qidx,
1455 boolean_t enable)
1456 {
1457 struct rbdr *rbdr;
1458 struct rbdr_cfg rbdr_cfg;
1459
1460 rbdr = &qs->rbdr[qidx];
1461 nicvf_reclaim_rbdr(nic, rbdr, qidx);
1462 if (!enable)
1463 return;
1464
1465 /* Set descriptor base address */
1466 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE, qidx,
1467 (uint64_t)(rbdr->dmem.phys_base));
1468
1469 /* Enable RBDR & set queue size */
1470 /* Buffer size should be in multiples of 128 bytes */
1471 rbdr_cfg.ena = 1;
1472 rbdr_cfg.reset = 0;
1473 rbdr_cfg.ldwb = 0;
1474 rbdr_cfg.qsize = RBDR_SIZE;
1475 rbdr_cfg.avg_con = 0;
1476 rbdr_cfg.lines = rbdr->dma_size / 128;
1477 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx,
1478 *(uint64_t *)&rbdr_cfg);
1479
1480 /* Notify HW */
1481 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR, qidx,
1482 qs->rbdr_len - 1);
1483
1484 /* Set threshold value for interrupt generation */
1485 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH, qidx,
1486 rbdr->thresh - 1);
1487 }
1488
1489 /* Requests PF to assign and enable Qset */
1490 void
1491 nicvf_qset_config(struct nicvf *nic, boolean_t enable)
1492 {
1493 union nic_mbx mbx = {};
1494 struct queue_set *qs;
1495 struct qs_cfg *qs_cfg;
1496
1497 qs = nic->qs;
1498 if (qs == NULL) {
1499 device_printf(nic->dev,
1500 "Qset is still not allocated, don't init queues\n");
1501 return;
1502 }
1503
1504 qs->enable = enable;
1505 qs->vnic_id = nic->vf_id;
1506
1507 /* Send a mailbox msg to PF to config Qset */
1508 mbx.qs.msg = NIC_MBOX_MSG_QS_CFG;
1509 mbx.qs.num = qs->vnic_id;
1510
1511 mbx.qs.cfg = 0;
1512 qs_cfg = (struct qs_cfg *)&mbx.qs.cfg;
1513 if (qs->enable) {
1514 qs_cfg->ena = 1;
1515 qs_cfg->vnic = qs->vnic_id;
1516 }
1517 nicvf_send_msg_to_pf(nic, &mbx);
1518 }
1519
1520 static void
1521 nicvf_free_resources(struct nicvf *nic)
1522 {
1523 int qidx;
1524 struct queue_set *qs;
1525
1526 qs = nic->qs;
1527 /*
1528 * Remove QS error task first since it has to be dead
1529 * to safely free completion queue tasks.
1530 */
1531 if (qs->qs_err_taskq != NULL) {
1532 /* Shut down QS error tasks */
1533 while (taskqueue_cancel(qs->qs_err_taskq,
1534 &qs->qs_err_task, NULL) != 0) {
1535 taskqueue_drain(qs->qs_err_taskq, &qs->qs_err_task);
1536
1537 }
1538 taskqueue_free(qs->qs_err_taskq);
1539 qs->qs_err_taskq = NULL;
1540 }
1541 /* Free receive buffer descriptor ring */
1542 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1543 nicvf_free_rbdr(nic, &qs->rbdr[qidx]);
1544
1545 /* Free completion queue */
1546 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1547 nicvf_free_cmp_queue(nic, &qs->cq[qidx]);
1548
1549 /* Free send queue */
1550 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1551 nicvf_free_snd_queue(nic, &qs->sq[qidx]);
1552 }
1553
1554 static int
1555 nicvf_alloc_resources(struct nicvf *nic)
1556 {
1557 struct queue_set *qs = nic->qs;
1558 int qidx;
1559
1560 /* Alloc receive buffer descriptor ring */
1561 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
1562 if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len,
1563 DMA_BUFFER_LEN, qidx))
1564 goto alloc_fail;
1565 }
1566
1567 /* Alloc send queue */
1568 for (qidx = 0; qidx < qs->sq_cnt; qidx++) {
1569 if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len, qidx))
1570 goto alloc_fail;
1571 }
1572
1573 /* Alloc completion queue */
1574 for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1575 if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len, qidx))
1576 goto alloc_fail;
1577 }
1578
1579 /* Allocate QS error taskqueue */
1580 TASK_INIT(&qs->qs_err_task, 0, nicvf_qs_err_task, nic);
1581 qs->qs_err_taskq = taskqueue_create_fast("nicvf_qs_err_taskq", M_WAITOK,
1582 taskqueue_thread_enqueue, &qs->qs_err_taskq);
1583 taskqueue_start_threads(&qs->qs_err_taskq, 1, PI_NET, "%s: qs_taskq",
1584 device_get_nameunit(nic->dev));
1585
1586 return (0);
1587 alloc_fail:
1588 nicvf_free_resources(nic);
1589 return (ENOMEM);
1590 }
1591
1592 int
1593 nicvf_set_qset_resources(struct nicvf *nic)
1594 {
1595 struct queue_set *qs;
1596
1597 qs = malloc(sizeof(*qs), M_NICVF, (M_ZERO | M_WAITOK));
1598 nic->qs = qs;
1599
1600 /* Set count of each queue */
1601 qs->rbdr_cnt = RBDR_CNT;
1602 qs->rq_cnt = RCV_QUEUE_CNT;
1603
1604 qs->sq_cnt = SND_QUEUE_CNT;
1605 qs->cq_cnt = CMP_QUEUE_CNT;
1606
1607 /* Set queue lengths */
1608 qs->rbdr_len = RCV_BUF_COUNT;
1609 qs->sq_len = SND_QUEUE_LEN;
1610 qs->cq_len = CMP_QUEUE_LEN;
1611
1612 nic->rx_queues = qs->rq_cnt;
1613 nic->tx_queues = qs->sq_cnt;
1614
1615 return (0);
1616 }
1617
1618 int
1619 nicvf_config_data_transfer(struct nicvf *nic, boolean_t enable)
1620 {
1621 boolean_t disable = FALSE;
1622 struct queue_set *qs;
1623 int qidx;
1624
1625 qs = nic->qs;
1626 if (qs == NULL)
1627 return (0);
1628
1629 if (enable) {
1630 if (nicvf_alloc_resources(nic) != 0)
1631 return (ENOMEM);
1632
1633 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1634 nicvf_snd_queue_config(nic, qs, qidx, enable);
1635 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1636 nicvf_cmp_queue_config(nic, qs, qidx, enable);
1637 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1638 nicvf_rbdr_config(nic, qs, qidx, enable);
1639 for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1640 nicvf_rcv_queue_config(nic, qs, qidx, enable);
1641 } else {
1642 for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1643 nicvf_rcv_queue_config(nic, qs, qidx, disable);
1644 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1645 nicvf_rbdr_config(nic, qs, qidx, disable);
1646 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1647 nicvf_snd_queue_config(nic, qs, qidx, disable);
1648 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1649 nicvf_cmp_queue_config(nic, qs, qidx, disable);
1650
1651 nicvf_free_resources(nic);
1652 }
1653
1654 return (0);
1655 }
1656
1657 /*
1658 * Get a free desc from SQ
1659 * returns descriptor ponter & descriptor number
1660 */
1661 static __inline int
1662 nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt)
1663 {
1664 int qentry;
1665
1666 qentry = sq->tail;
1667 atomic_subtract_int(&sq->free_cnt, desc_cnt);
1668 sq->tail += desc_cnt;
1669 sq->tail &= (sq->dmem.q_len - 1);
1670
1671 return (qentry);
1672 }
1673
1674 /* Free descriptor back to SQ for future use */
1675 static void
1676 nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt)
1677 {
1678
1679 atomic_add_int(&sq->free_cnt, desc_cnt);
1680 sq->head += desc_cnt;
1681 sq->head &= (sq->dmem.q_len - 1);
1682 }
1683
1684 static __inline int
1685 nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry)
1686 {
1687 qentry++;
1688 qentry &= (sq->dmem.q_len - 1);
1689 return (qentry);
1690 }
1691
1692 static void
1693 nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx)
1694 {
1695 uint64_t sq_cfg;
1696
1697 sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1698 sq_cfg |= NICVF_SQ_EN;
1699 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1700 /* Ring doorbell so that H/W restarts processing SQEs */
1701 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0);
1702 }
1703
1704 static void
1705 nicvf_sq_disable(struct nicvf *nic, int qidx)
1706 {
1707 uint64_t sq_cfg;
1708
1709 sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1710 sq_cfg &= ~NICVF_SQ_EN;
1711 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1712 }
1713
1714 static void
1715 nicvf_sq_free_used_descs(struct nicvf *nic, struct snd_queue *sq, int qidx)
1716 {
1717 uint64_t head;
1718 struct snd_buff *snd_buff;
1719 struct sq_hdr_subdesc *hdr;
1720
1721 NICVF_TX_LOCK(sq);
1722 head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4;
1723 while (sq->head != head) {
1724 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
1725 if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
1726 nicvf_put_sq_desc(sq, 1);
1727 continue;
1728 }
1729 snd_buff = &sq->snd_buff[sq->head];
1730 if (snd_buff->mbuf != NULL) {
1731 bus_dmamap_unload(sq->snd_buff_dmat, snd_buff->dmap);
1732 m_freem(snd_buff->mbuf);
1733 sq->snd_buff[sq->head].mbuf = NULL;
1734 }
1735 nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
1736 }
1737 NICVF_TX_UNLOCK(sq);
1738 }
1739
1740 /*
1741 * Add SQ HEADER subdescriptor.
1742 * First subdescriptor for every send descriptor.
1743 */
1744 static __inline int
1745 nicvf_sq_add_hdr_subdesc(struct snd_queue *sq, int qentry,
1746 int subdesc_cnt, struct mbuf *mbuf, int len)
1747 {
1748 struct nicvf *nic;
1749 struct sq_hdr_subdesc *hdr;
1750 struct ether_vlan_header *eh;
1751 #ifdef INET
1752 struct ip *ip;
1753 struct tcphdr *th;
1754 #endif
1755 uint16_t etype;
1756 int ehdrlen, iphlen, poff, proto;
1757
1758 nic = sq->nic;
1759
1760 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1761 sq->snd_buff[qentry].mbuf = mbuf;
1762
1763 memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1764 hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1765 /* Enable notification via CQE after processing SQE */
1766 hdr->post_cqe = 1;
1767 /* No of subdescriptors following this */
1768 hdr->subdesc_cnt = subdesc_cnt;
1769 hdr->tot_len = len;
1770
1771 eh = mtod(mbuf, struct ether_vlan_header *);
1772 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
1773 ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1774 etype = ntohs(eh->evl_proto);
1775 } else {
1776 ehdrlen = ETHER_HDR_LEN;
1777 etype = ntohs(eh->evl_encap_proto);
1778 }
1779
1780 poff = proto = -1;
1781 switch (etype) {
1782 #ifdef INET6
1783 case ETHERTYPE_IPV6:
1784 if (mbuf->m_len < ehdrlen + sizeof(struct ip6_hdr)) {
1785 mbuf = m_pullup(mbuf, ehdrlen +sizeof(struct ip6_hdr));
1786 sq->snd_buff[qentry].mbuf = NULL;
1787 if (mbuf == NULL)
1788 return (ENOBUFS);
1789 }
1790 poff = ip6_lasthdr(mbuf, ehdrlen, IPPROTO_IPV6, &proto);
1791 if (poff < 0)
1792 return (ENOBUFS);
1793 poff += ehdrlen;
1794 break;
1795 #endif
1796 #ifdef INET
1797 case ETHERTYPE_IP:
1798 if (mbuf->m_len < ehdrlen + sizeof(struct ip)) {
1799 mbuf = m_pullup(mbuf, ehdrlen + sizeof(struct ip));
1800 sq->snd_buff[qentry].mbuf = mbuf;
1801 if (mbuf == NULL)
1802 return (ENOBUFS);
1803 }
1804 if (mbuf->m_pkthdr.csum_flags & CSUM_IP)
1805 hdr->csum_l3 = 1; /* Enable IP csum calculation */
1806
1807 ip = (struct ip *)(mbuf->m_data + ehdrlen);
1808 iphlen = ip->ip_hl << 2;
1809 poff = ehdrlen + iphlen;
1810 proto = ip->ip_p;
1811 break;
1812 #endif
1813 }
1814
1815 #if defined(INET6) || defined(INET)
1816 if (poff > 0 && mbuf->m_pkthdr.csum_flags != 0) {
1817 switch (proto) {
1818 case IPPROTO_TCP:
1819 if ((mbuf->m_pkthdr.csum_flags & CSUM_TCP) == 0)
1820 break;
1821
1822 if (mbuf->m_len < (poff + sizeof(struct tcphdr))) {
1823 mbuf = m_pullup(mbuf, poff + sizeof(struct tcphdr));
1824 sq->snd_buff[qentry].mbuf = mbuf;
1825 if (mbuf == NULL)
1826 return (ENOBUFS);
1827 }
1828 hdr->csum_l4 = SEND_L4_CSUM_TCP;
1829 break;
1830 case IPPROTO_UDP:
1831 if ((mbuf->m_pkthdr.csum_flags & CSUM_UDP) == 0)
1832 break;
1833
1834 if (mbuf->m_len < (poff + sizeof(struct udphdr))) {
1835 mbuf = m_pullup(mbuf, poff + sizeof(struct udphdr));
1836 sq->snd_buff[qentry].mbuf = mbuf;
1837 if (mbuf == NULL)
1838 return (ENOBUFS);
1839 }
1840 hdr->csum_l4 = SEND_L4_CSUM_UDP;
1841 break;
1842 case IPPROTO_SCTP:
1843 if ((mbuf->m_pkthdr.csum_flags & CSUM_SCTP) == 0)
1844 break;
1845
1846 if (mbuf->m_len < (poff + sizeof(struct sctphdr))) {
1847 mbuf = m_pullup(mbuf, poff + sizeof(struct sctphdr));
1848 sq->snd_buff[qentry].mbuf = mbuf;
1849 if (mbuf == NULL)
1850 return (ENOBUFS);
1851 }
1852 hdr->csum_l4 = SEND_L4_CSUM_SCTP;
1853 break;
1854 default:
1855 break;
1856 }
1857 hdr->l3_offset = ehdrlen;
1858 hdr->l4_offset = poff;
1859 }
1860
1861 if ((mbuf->m_pkthdr.tso_segsz != 0) && nic->hw_tso) {
1862 th = (struct tcphdr *)((caddr_t)(mbuf->m_data + poff));
1863
1864 hdr->tso = 1;
1865 hdr->tso_start = poff + (th->th_off * 4);
1866 hdr->tso_max_paysize = mbuf->m_pkthdr.tso_segsz;
1867 hdr->inner_l3_offset = ehdrlen - 2;
1868 nic->drv_stats.tx_tso++;
1869 }
1870 #endif
1871
1872 return (0);
1873 }
1874
1875 /*
1876 * SQ GATHER subdescriptor
1877 * Must follow HDR descriptor
1878 */
1879 static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
1880 int size, uint64_t data)
1881 {
1882 struct sq_gather_subdesc *gather;
1883
1884 qentry &= (sq->dmem.q_len - 1);
1885 gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry);
1886
1887 memset(gather, 0, SND_QUEUE_DESC_SIZE);
1888 gather->subdesc_type = SQ_DESC_TYPE_GATHER;
1889 gather->ld_type = NIC_SEND_LD_TYPE_E_LDD;
1890 gather->size = size;
1891 gather->addr = data;
1892 }
1893
1894 /* Put an mbuf to a SQ for packet transfer. */
1895 static int
1896 nicvf_tx_mbuf_locked(struct snd_queue *sq, struct mbuf **mbufp)
1897 {
1898 bus_dma_segment_t segs[256];
1899 struct snd_buff *snd_buff;
1900 size_t seg;
1901 int nsegs, qentry;
1902 int subdesc_cnt;
1903 int err;
1904
1905 NICVF_TX_LOCK_ASSERT(sq);
1906
1907 if (sq->free_cnt == 0)
1908 return (ENOBUFS);
1909
1910 snd_buff = &sq->snd_buff[sq->tail];
1911
1912 err = bus_dmamap_load_mbuf_sg(sq->snd_buff_dmat, snd_buff->dmap,
1913 *mbufp, segs, &nsegs, BUS_DMA_NOWAIT);
1914 if (__predict_false(err != 0)) {
1915 /* ARM64TODO: Add mbuf defragmenting if we lack maps */
1916 m_freem(*mbufp);
1917 *mbufp = NULL;
1918 return (err);
1919 }
1920
1921 /* Set how many subdescriptors is required */
1922 subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT + nsegs - 1;
1923 if (subdesc_cnt > sq->free_cnt) {
1924 /* ARM64TODO: Add mbuf defragmentation if we lack descriptors */
1925 bus_dmamap_unload(sq->snd_buff_dmat, snd_buff->dmap);
1926 return (ENOBUFS);
1927 }
1928
1929 qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1930
1931 /* Add SQ header subdesc */
1932 err = nicvf_sq_add_hdr_subdesc(sq, qentry, subdesc_cnt - 1, *mbufp,
1933 (*mbufp)->m_pkthdr.len);
1934 if (err != 0) {
1935 nicvf_put_sq_desc(sq, subdesc_cnt);
1936 bus_dmamap_unload(sq->snd_buff_dmat, snd_buff->dmap);
1937 if (err == ENOBUFS) {
1938 m_freem(*mbufp);
1939 *mbufp = NULL;
1940 }
1941 return (err);
1942 }
1943
1944 /* Add SQ gather subdescs */
1945 for (seg = 0; seg < nsegs; seg++) {
1946 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1947 nicvf_sq_add_gather_subdesc(sq, qentry, segs[seg].ds_len,
1948 segs[seg].ds_addr);
1949 }
1950
1951 /* make sure all memory stores are done before ringing doorbell */
1952 bus_dmamap_sync(sq->dmem.dmat, sq->dmem.dmap, BUS_DMASYNC_PREWRITE);
1953
1954 dprintf(sq->nic->dev, "%s: sq->idx: %d, subdesc_cnt: %d\n",
1955 __func__, sq->idx, subdesc_cnt);
1956 /* Inform HW to xmit new packet */
1957 nicvf_queue_reg_write(sq->nic, NIC_QSET_SQ_0_7_DOOR,
1958 sq->idx, subdesc_cnt);
1959 return (0);
1960 }
1961
1962 static __inline u_int
1963 frag_num(u_int i)
1964 {
1965 #if BYTE_ORDER == BIG_ENDIAN
1966 return ((i & ~3) + 3 - (i & 3));
1967 #else
1968 return (i);
1969 #endif
1970 }
1971
1972 /* Returns MBUF for a received packet */
1973 struct mbuf *
1974 nicvf_get_rcv_mbuf(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
1975 {
1976 int frag;
1977 int payload_len = 0;
1978 struct mbuf *mbuf;
1979 struct mbuf *mbuf_frag;
1980 uint16_t *rb_lens = NULL;
1981 uint64_t *rb_ptrs = NULL;
1982
1983 mbuf = NULL;
1984 rb_lens = (uint16_t *)((uint8_t *)cqe_rx + (3 * sizeof(uint64_t)));
1985 rb_ptrs = (uint64_t *)((uint8_t *)cqe_rx + (6 * sizeof(uint64_t)));
1986
1987 dprintf(nic->dev, "%s rb_cnt %d rb0_ptr %lx rb0_sz %d\n",
1988 __func__, cqe_rx->rb_cnt, cqe_rx->rb0_ptr, cqe_rx->rb0_sz);
1989
1990 for (frag = 0; frag < cqe_rx->rb_cnt; frag++) {
1991 payload_len = rb_lens[frag_num(frag)];
1992 if (frag == 0) {
1993 /* First fragment */
1994 mbuf = nicvf_rb_ptr_to_mbuf(nic,
1995 (*rb_ptrs - cqe_rx->align_pad));
1996 mbuf->m_len = payload_len;
1997 mbuf->m_data += cqe_rx->align_pad;
1998 if_setrcvif(mbuf, nic->ifp);
1999 } else {
2000 /* Add fragments */
2001 mbuf_frag = nicvf_rb_ptr_to_mbuf(nic, *rb_ptrs);
2002 m_append(mbuf, payload_len, mbuf_frag->m_data);
2003 m_freem(mbuf_frag);
2004 }
2005 /* Next buffer pointer */
2006 rb_ptrs++;
2007 }
2008
2009 if (__predict_true(mbuf != NULL)) {
2010 m_fixhdr(mbuf);
2011 mbuf->m_pkthdr.flowid = cqe_rx->rq_idx;
2012 M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE);
2013 if (__predict_true((if_getcapenable(nic->ifp) & IFCAP_RXCSUM) != 0)) {
2014 /*
2015 * HW by default verifies IP & TCP/UDP/SCTP checksums
2016 */
2017 if (__predict_true(cqe_rx->l3_type == L3TYPE_IPV4)) {
2018 mbuf->m_pkthdr.csum_flags =
2019 (CSUM_IP_CHECKED | CSUM_IP_VALID);
2020 }
2021
2022 switch (cqe_rx->l4_type) {
2023 case L4TYPE_UDP:
2024 case L4TYPE_TCP: /* fall through */
2025 mbuf->m_pkthdr.csum_flags |=
2026 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
2027 mbuf->m_pkthdr.csum_data = 0xffff;
2028 break;
2029 case L4TYPE_SCTP:
2030 mbuf->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
2031 break;
2032 default:
2033 break;
2034 }
2035 }
2036 }
2037
2038 return (mbuf);
2039 }
2040
2041 /* Enable interrupt */
2042 void
2043 nicvf_enable_intr(struct nicvf *nic, int int_type, int q_idx)
2044 {
2045 uint64_t reg_val;
2046
2047 reg_val = nicvf_reg_read(nic, NIC_VF_ENA_W1S);
2048
2049 switch (int_type) {
2050 case NICVF_INTR_CQ:
2051 reg_val |= ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2052 break;
2053 case NICVF_INTR_SQ:
2054 reg_val |= ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2055 break;
2056 case NICVF_INTR_RBDR:
2057 reg_val |= ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2058 break;
2059 case NICVF_INTR_PKT_DROP:
2060 reg_val |= (1UL << NICVF_INTR_PKT_DROP_SHIFT);
2061 break;
2062 case NICVF_INTR_TCP_TIMER:
2063 reg_val |= (1UL << NICVF_INTR_TCP_TIMER_SHIFT);
2064 break;
2065 case NICVF_INTR_MBOX:
2066 reg_val |= (1UL << NICVF_INTR_MBOX_SHIFT);
2067 break;
2068 case NICVF_INTR_QS_ERR:
2069 reg_val |= (1UL << NICVF_INTR_QS_ERR_SHIFT);
2070 break;
2071 default:
2072 device_printf(nic->dev,
2073 "Failed to enable interrupt: unknown type\n");
2074 break;
2075 }
2076
2077 nicvf_reg_write(nic, NIC_VF_ENA_W1S, reg_val);
2078 }
2079
2080 /* Disable interrupt */
2081 void
2082 nicvf_disable_intr(struct nicvf *nic, int int_type, int q_idx)
2083 {
2084 uint64_t reg_val = 0;
2085
2086 switch (int_type) {
2087 case NICVF_INTR_CQ:
2088 reg_val |= ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2089 break;
2090 case NICVF_INTR_SQ:
2091 reg_val |= ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2092 break;
2093 case NICVF_INTR_RBDR:
2094 reg_val |= ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2095 break;
2096 case NICVF_INTR_PKT_DROP:
2097 reg_val |= (1UL << NICVF_INTR_PKT_DROP_SHIFT);
2098 break;
2099 case NICVF_INTR_TCP_TIMER:
2100 reg_val |= (1UL << NICVF_INTR_TCP_TIMER_SHIFT);
2101 break;
2102 case NICVF_INTR_MBOX:
2103 reg_val |= (1UL << NICVF_INTR_MBOX_SHIFT);
2104 break;
2105 case NICVF_INTR_QS_ERR:
2106 reg_val |= (1UL << NICVF_INTR_QS_ERR_SHIFT);
2107 break;
2108 default:
2109 device_printf(nic->dev,
2110 "Failed to disable interrupt: unknown type\n");
2111 break;
2112 }
2113
2114 nicvf_reg_write(nic, NIC_VF_ENA_W1C, reg_val);
2115 }
2116
2117 /* Clear interrupt */
2118 void
2119 nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx)
2120 {
2121 uint64_t reg_val = 0;
2122
2123 switch (int_type) {
2124 case NICVF_INTR_CQ:
2125 reg_val = ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2126 break;
2127 case NICVF_INTR_SQ:
2128 reg_val = ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2129 break;
2130 case NICVF_INTR_RBDR:
2131 reg_val = ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2132 break;
2133 case NICVF_INTR_PKT_DROP:
2134 reg_val = (1UL << NICVF_INTR_PKT_DROP_SHIFT);
2135 break;
2136 case NICVF_INTR_TCP_TIMER:
2137 reg_val = (1UL << NICVF_INTR_TCP_TIMER_SHIFT);
2138 break;
2139 case NICVF_INTR_MBOX:
2140 reg_val = (1UL << NICVF_INTR_MBOX_SHIFT);
2141 break;
2142 case NICVF_INTR_QS_ERR:
2143 reg_val |= (1UL << NICVF_INTR_QS_ERR_SHIFT);
2144 break;
2145 default:
2146 device_printf(nic->dev,
2147 "Failed to clear interrupt: unknown type\n");
2148 break;
2149 }
2150
2151 nicvf_reg_write(nic, NIC_VF_INT, reg_val);
2152 }
2153
2154 /* Check if interrupt is enabled */
2155 int
2156 nicvf_is_intr_enabled(struct nicvf *nic, int int_type, int q_idx)
2157 {
2158 uint64_t reg_val;
2159 uint64_t mask = 0xff;
2160
2161 reg_val = nicvf_reg_read(nic, NIC_VF_ENA_W1S);
2162
2163 switch (int_type) {
2164 case NICVF_INTR_CQ:
2165 mask = ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2166 break;
2167 case NICVF_INTR_SQ:
2168 mask = ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2169 break;
2170 case NICVF_INTR_RBDR:
2171 mask = ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2172 break;
2173 case NICVF_INTR_PKT_DROP:
2174 mask = NICVF_INTR_PKT_DROP_MASK;
2175 break;
2176 case NICVF_INTR_TCP_TIMER:
2177 mask = NICVF_INTR_TCP_TIMER_MASK;
2178 break;
2179 case NICVF_INTR_MBOX:
2180 mask = NICVF_INTR_MBOX_MASK;
2181 break;
2182 case NICVF_INTR_QS_ERR:
2183 mask = NICVF_INTR_QS_ERR_MASK;
2184 break;
2185 default:
2186 device_printf(nic->dev,
2187 "Failed to check interrupt enable: unknown type\n");
2188 break;
2189 }
2190
2191 return (reg_val & mask);
2192 }
2193
2194 void
2195 nicvf_update_rq_stats(struct nicvf *nic, int rq_idx)
2196 {
2197 struct rcv_queue *rq;
2198
2199 #define GET_RQ_STATS(reg) \
2200 nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\
2201 (rq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
2202
2203 rq = &nic->qs->rq[rq_idx];
2204 rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS);
2205 rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS);
2206 }
2207
2208 void
2209 nicvf_update_sq_stats(struct nicvf *nic, int sq_idx)
2210 {
2211 struct snd_queue *sq;
2212
2213 #define GET_SQ_STATS(reg) \
2214 nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\
2215 (sq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
2216
2217 sq = &nic->qs->sq[sq_idx];
2218 sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS);
2219 sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS);
2220 }
2221
2222 /* Check for errors in the receive cmp.queue entry */
2223 int
2224 nicvf_check_cqe_rx_errs(struct nicvf *nic, struct cmp_queue *cq,
2225 struct cqe_rx_t *cqe_rx)
2226 {
2227 struct nicvf_hw_stats *stats = &nic->hw_stats;
2228 struct nicvf_drv_stats *drv_stats = &nic->drv_stats;
2229
2230 if (!cqe_rx->err_level && !cqe_rx->err_opcode) {
2231 drv_stats->rx_frames_ok++;
2232 return (0);
2233 }
2234
2235 switch (cqe_rx->err_opcode) {
2236 case CQ_RX_ERROP_RE_PARTIAL:
2237 stats->rx_bgx_truncated_pkts++;
2238 break;
2239 case CQ_RX_ERROP_RE_JABBER:
2240 stats->rx_jabber_errs++;
2241 break;
2242 case CQ_RX_ERROP_RE_FCS:
2243 stats->rx_fcs_errs++;
2244 break;
2245 case CQ_RX_ERROP_RE_RX_CTL:
2246 stats->rx_bgx_errs++;
2247 break;
2248 case CQ_RX_ERROP_PREL2_ERR:
2249 stats->rx_prel2_errs++;
2250 break;
2251 case CQ_RX_ERROP_L2_MAL:
2252 stats->rx_l2_hdr_malformed++;
2253 break;
2254 case CQ_RX_ERROP_L2_OVERSIZE:
2255 stats->rx_oversize++;
2256 break;
2257 case CQ_RX_ERROP_L2_UNDERSIZE:
2258 stats->rx_undersize++;
2259 break;
2260 case CQ_RX_ERROP_L2_LENMISM:
2261 stats->rx_l2_len_mismatch++;
2262 break;
2263 case CQ_RX_ERROP_L2_PCLP:
2264 stats->rx_l2_pclp++;
2265 break;
2266 case CQ_RX_ERROP_IP_NOT:
2267 stats->rx_ip_ver_errs++;
2268 break;
2269 case CQ_RX_ERROP_IP_CSUM_ERR:
2270 stats->rx_ip_csum_errs++;
2271 break;
2272 case CQ_RX_ERROP_IP_MAL:
2273 stats->rx_ip_hdr_malformed++;
2274 break;
2275 case CQ_RX_ERROP_IP_MALD:
2276 stats->rx_ip_payload_malformed++;
2277 break;
2278 case CQ_RX_ERROP_IP_HOP:
2279 stats->rx_ip_ttl_errs++;
2280 break;
2281 case CQ_RX_ERROP_L3_PCLP:
2282 stats->rx_l3_pclp++;
2283 break;
2284 case CQ_RX_ERROP_L4_MAL:
2285 stats->rx_l4_malformed++;
2286 break;
2287 case CQ_RX_ERROP_L4_CHK:
2288 stats->rx_l4_csum_errs++;
2289 break;
2290 case CQ_RX_ERROP_UDP_LEN:
2291 stats->rx_udp_len_errs++;
2292 break;
2293 case CQ_RX_ERROP_L4_PORT:
2294 stats->rx_l4_port_errs++;
2295 break;
2296 case CQ_RX_ERROP_TCP_FLAG:
2297 stats->rx_tcp_flag_errs++;
2298 break;
2299 case CQ_RX_ERROP_TCP_OFFSET:
2300 stats->rx_tcp_offset_errs++;
2301 break;
2302 case CQ_RX_ERROP_L4_PCLP:
2303 stats->rx_l4_pclp++;
2304 break;
2305 case CQ_RX_ERROP_RBDR_TRUNC:
2306 stats->rx_truncated_pkts++;
2307 break;
2308 }
2309
2310 return (1);
2311 }
2312
2313 /* Check for errors in the send cmp.queue entry */
2314 int
2315 nicvf_check_cqe_tx_errs(struct nicvf *nic, struct cmp_queue *cq,
2316 struct cqe_send_t *cqe_tx)
2317 {
2318 struct cmp_queue_stats *stats = &cq->stats;
2319
2320 switch (cqe_tx->send_status) {
2321 case CQ_TX_ERROP_GOOD:
2322 stats->tx.good++;
2323 return (0);
2324 case CQ_TX_ERROP_DESC_FAULT:
2325 stats->tx.desc_fault++;
2326 break;
2327 case CQ_TX_ERROP_HDR_CONS_ERR:
2328 stats->tx.hdr_cons_err++;
2329 break;
2330 case CQ_TX_ERROP_SUBDC_ERR:
2331 stats->tx.subdesc_err++;
2332 break;
2333 case CQ_TX_ERROP_IMM_SIZE_OFLOW:
2334 stats->tx.imm_size_oflow++;
2335 break;
2336 case CQ_TX_ERROP_DATA_SEQUENCE_ERR:
2337 stats->tx.data_seq_err++;
2338 break;
2339 case CQ_TX_ERROP_MEM_SEQUENCE_ERR:
2340 stats->tx.mem_seq_err++;
2341 break;
2342 case CQ_TX_ERROP_LOCK_VIOL:
2343 stats->tx.lock_viol++;
2344 break;
2345 case CQ_TX_ERROP_DATA_FAULT:
2346 stats->tx.data_fault++;
2347 break;
2348 case CQ_TX_ERROP_TSTMP_CONFLICT:
2349 stats->tx.tstmp_conflict++;
2350 break;
2351 case CQ_TX_ERROP_TSTMP_TIMEOUT:
2352 stats->tx.tstmp_timeout++;
2353 break;
2354 case CQ_TX_ERROP_MEM_FAULT:
2355 stats->tx.mem_fault++;
2356 break;
2357 case CQ_TX_ERROP_CK_OVERLAP:
2358 stats->tx.csum_overlap++;
2359 break;
2360 case CQ_TX_ERROP_CK_OFLOW:
2361 stats->tx.csum_overflow++;
2362 break;
2363 }
2364
2365 return (1);
2366 }
Cache object: 27b753554b4954dc00a3ed78b028bd27
|