1 /*
2 * Copyright (C) 2015 Cavium Inc.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 * $FreeBSD$
27 *
28 */
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/bitset.h>
38 #include <sys/bitstring.h>
39 #include <sys/buf_ring.h>
40 #include <sys/bus.h>
41 #include <sys/endian.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/module.h>
45 #include <sys/rman.h>
46 #include <sys/pciio.h>
47 #include <sys/pcpu.h>
48 #include <sys/proc.h>
49 #include <sys/sockio.h>
50 #include <sys/socket.h>
51 #include <sys/stdatomic.h>
52 #include <sys/cpuset.h>
53 #include <sys/lock.h>
54 #include <sys/mutex.h>
55 #include <sys/smp.h>
56 #include <sys/taskqueue.h>
57
58 #include <vm/vm.h>
59 #include <vm/pmap.h>
60
61 #include <machine/bus.h>
62 #include <machine/vmparam.h>
63
64 #include <net/if.h>
65 #include <net/if_var.h>
66 #include <net/if_media.h>
67 #include <net/ifq.h>
68 #include <net/bpf.h>
69 #include <net/ethernet.h>
70
71 #include <netinet/in_systm.h>
72 #include <netinet/in.h>
73 #include <netinet/if_ether.h>
74 #include <netinet/ip.h>
75 #include <netinet/ip6.h>
76 #include <netinet/sctp.h>
77 #include <netinet/tcp.h>
78 #include <netinet/tcp_lro.h>
79 #include <netinet/udp.h>
80
81 #include <netinet6/ip6_var.h>
82
83 #include <dev/pci/pcireg.h>
84 #include <dev/pci/pcivar.h>
85
86 #include "thunder_bgx.h"
87 #include "nic_reg.h"
88 #include "nic.h"
89 #include "q_struct.h"
90 #include "nicvf_queues.h"
91
92 #define DEBUG
93 #undef DEBUG
94
95 #ifdef DEBUG
96 #define dprintf(dev, fmt, ...) device_printf(dev, fmt, ##__VA_ARGS__)
97 #else
98 #define dprintf(dev, fmt, ...)
99 #endif
100
101 MALLOC_DECLARE(M_NICVF);
102
103 static void nicvf_free_snd_queue(struct nicvf *, struct snd_queue *);
104 static struct mbuf * nicvf_get_rcv_mbuf(struct nicvf *, struct cqe_rx_t *);
105 static void nicvf_sq_disable(struct nicvf *, int);
106 static void nicvf_sq_enable(struct nicvf *, struct snd_queue *, int);
107 static void nicvf_put_sq_desc(struct snd_queue *, int);
108 static void nicvf_cmp_queue_config(struct nicvf *, struct queue_set *, int,
109 boolean_t);
110 static void nicvf_sq_free_used_descs(struct nicvf *, struct snd_queue *, int);
111
112 static int nicvf_tx_mbuf_locked(struct snd_queue *, struct mbuf **);
113
114 static void nicvf_rbdr_task(void *, int);
115 static void nicvf_rbdr_task_nowait(void *, int);
116
117 struct rbuf_info {
118 bus_dma_tag_t dmat;
119 bus_dmamap_t dmap;
120 struct mbuf * mbuf;
121 };
122
123 #define GET_RBUF_INFO(x) ((struct rbuf_info *)((x) - NICVF_RCV_BUF_ALIGN_BYTES))
124
125 /* Poll a register for a specific value */
126 static int nicvf_poll_reg(struct nicvf *nic, int qidx,
127 uint64_t reg, int bit_pos, int bits, int val)
128 {
129 uint64_t bit_mask;
130 uint64_t reg_val;
131 int timeout = 10;
132
133 bit_mask = (1UL << bits) - 1;
134 bit_mask = (bit_mask << bit_pos);
135
136 while (timeout) {
137 reg_val = nicvf_queue_reg_read(nic, reg, qidx);
138 if (((reg_val & bit_mask) >> bit_pos) == val)
139 return (0);
140
141 DELAY(1000);
142 timeout--;
143 }
144 device_printf(nic->dev, "Poll on reg 0x%lx failed\n", reg);
145 return (ETIMEDOUT);
146 }
147
148 /* Callback for bus_dmamap_load() */
149 static void
150 nicvf_dmamap_q_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
151 {
152 bus_addr_t *paddr;
153
154 KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
155 paddr = arg;
156 *paddr = segs->ds_addr;
157 }
158
159 /* Allocate memory for a queue's descriptors */
160 static int
161 nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem,
162 int q_len, int desc_size, int align_bytes)
163 {
164 int err, err_dmat;
165
166 /* Create DMA tag first */
167 err = bus_dma_tag_create(
168 bus_get_dma_tag(nic->dev), /* parent tag */
169 align_bytes, /* alignment */
170 0, /* boundary */
171 BUS_SPACE_MAXADDR, /* lowaddr */
172 BUS_SPACE_MAXADDR, /* highaddr */
173 NULL, NULL, /* filtfunc, filtfuncarg */
174 (q_len * desc_size), /* maxsize */
175 1, /* nsegments */
176 (q_len * desc_size), /* maxsegsize */
177 0, /* flags */
178 NULL, NULL, /* lockfunc, lockfuncarg */
179 &dmem->dmat); /* dmat */
180
181 if (err != 0) {
182 device_printf(nic->dev,
183 "Failed to create busdma tag for descriptors ring\n");
184 return (err);
185 }
186
187 /* Allocate segment of continuous DMA safe memory */
188 err = bus_dmamem_alloc(
189 dmem->dmat, /* DMA tag */
190 &dmem->base, /* virtual address */
191 (BUS_DMA_NOWAIT | BUS_DMA_ZERO), /* flags */
192 &dmem->dmap); /* DMA map */
193 if (err != 0) {
194 device_printf(nic->dev, "Failed to allocate DMA safe memory for"
195 "descriptors ring\n");
196 goto dmamem_fail;
197 }
198
199 err = bus_dmamap_load(
200 dmem->dmat,
201 dmem->dmap,
202 dmem->base,
203 (q_len * desc_size), /* allocation size */
204 nicvf_dmamap_q_cb, /* map to DMA address cb. */
205 &dmem->phys_base, /* physical address */
206 BUS_DMA_NOWAIT);
207 if (err != 0) {
208 device_printf(nic->dev,
209 "Cannot load DMA map of descriptors ring\n");
210 goto dmamap_fail;
211 }
212
213 dmem->q_len = q_len;
214 dmem->size = (desc_size * q_len);
215
216 return (0);
217
218 dmamap_fail:
219 bus_dmamem_free(dmem->dmat, dmem->base, dmem->dmap);
220 dmem->phys_base = 0;
221 dmamem_fail:
222 err_dmat = bus_dma_tag_destroy(dmem->dmat);
223 dmem->base = NULL;
224 KASSERT(err_dmat == 0,
225 ("%s: Trying to destroy BUSY DMA tag", __func__));
226
227 return (err);
228 }
229
230 /* Free queue's descriptor memory */
231 static void
232 nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem)
233 {
234 int err;
235
236 if ((dmem == NULL) || (dmem->base == NULL))
237 return;
238
239 /* Unload a map */
240 bus_dmamap_sync(dmem->dmat, dmem->dmap, BUS_DMASYNC_POSTREAD);
241 bus_dmamap_unload(dmem->dmat, dmem->dmap);
242 /* Free DMA memory */
243 bus_dmamem_free(dmem->dmat, dmem->base, dmem->dmap);
244 /* Destroy DMA tag */
245 err = bus_dma_tag_destroy(dmem->dmat);
246
247 KASSERT(err == 0,
248 ("%s: Trying to destroy BUSY DMA tag", __func__));
249
250 dmem->phys_base = 0;
251 dmem->base = NULL;
252 }
253
254 /*
255 * Allocate buffer for packet reception
256 * HW returns memory address where packet is DMA'ed but not a pointer
257 * into RBDR ring, so save buffer address at the start of fragment and
258 * align the start address to a cache aligned address
259 */
260 static __inline int
261 nicvf_alloc_rcv_buffer(struct nicvf *nic, struct rbdr *rbdr,
262 bus_dmamap_t dmap, int mflags, uint32_t buf_len, bus_addr_t *rbuf)
263 {
264 struct mbuf *mbuf;
265 struct rbuf_info *rinfo;
266 bus_dma_segment_t segs[1];
267 int nsegs;
268 int err;
269
270 mbuf = m_getjcl(mflags, MT_DATA, M_PKTHDR, MCLBYTES);
271 if (mbuf == NULL)
272 return (ENOMEM);
273
274 /*
275 * The length is equal to the actual length + one 128b line
276 * used as a room for rbuf_info structure.
277 */
278 mbuf->m_len = mbuf->m_pkthdr.len = buf_len;
279
280 err = bus_dmamap_load_mbuf_sg(rbdr->rbdr_buff_dmat, dmap, mbuf, segs,
281 &nsegs, BUS_DMA_NOWAIT);
282 if (err != 0) {
283 device_printf(nic->dev,
284 "Failed to map mbuf into DMA visible memory, err: %d\n",
285 err);
286 m_freem(mbuf);
287 bus_dmamap_destroy(rbdr->rbdr_buff_dmat, dmap);
288 return (err);
289 }
290 if (nsegs != 1)
291 panic("Unexpected number of DMA segments for RB: %d", nsegs);
292 /*
293 * Now use the room for rbuf_info structure
294 * and adjust mbuf data and length.
295 */
296 rinfo = (struct rbuf_info *)mbuf->m_data;
297 m_adj(mbuf, NICVF_RCV_BUF_ALIGN_BYTES);
298
299 rinfo->dmat = rbdr->rbdr_buff_dmat;
300 rinfo->dmap = dmap;
301 rinfo->mbuf = mbuf;
302
303 *rbuf = segs[0].ds_addr + NICVF_RCV_BUF_ALIGN_BYTES;
304
305 return (0);
306 }
307
308 /* Retrieve mbuf for received packet */
309 static struct mbuf *
310 nicvf_rb_ptr_to_mbuf(struct nicvf *nic, bus_addr_t rb_ptr)
311 {
312 struct mbuf *mbuf;
313 struct rbuf_info *rinfo;
314
315 /* Get buffer start address and alignment offset */
316 rinfo = GET_RBUF_INFO(PHYS_TO_DMAP(rb_ptr));
317
318 /* Now retrieve mbuf to give to stack */
319 mbuf = rinfo->mbuf;
320 if (__predict_false(mbuf == NULL)) {
321 panic("%s: Received packet fragment with NULL mbuf",
322 device_get_nameunit(nic->dev));
323 }
324 /*
325 * Clear the mbuf in the descriptor to indicate
326 * that this slot is processed and free to use.
327 */
328 rinfo->mbuf = NULL;
329
330 bus_dmamap_sync(rinfo->dmat, rinfo->dmap, BUS_DMASYNC_POSTREAD);
331 bus_dmamap_unload(rinfo->dmat, rinfo->dmap);
332
333 return (mbuf);
334 }
335
336 /* Allocate RBDR ring and populate receive buffers */
337 static int
338 nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr, int ring_len,
339 int buf_size, int qidx)
340 {
341 bus_dmamap_t dmap;
342 bus_addr_t rbuf;
343 struct rbdr_entry_t *desc;
344 int idx;
345 int err;
346
347 /* Allocate rbdr descriptors ring */
348 err = nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len,
349 sizeof(struct rbdr_entry_t), NICVF_RCV_BUF_ALIGN_BYTES);
350 if (err != 0) {
351 device_printf(nic->dev,
352 "Failed to create RBDR descriptors ring\n");
353 return (err);
354 }
355
356 rbdr->desc = rbdr->dmem.base;
357 /*
358 * Buffer size has to be in multiples of 128 bytes.
359 * Make room for metadata of size of one line (128 bytes).
360 */
361 rbdr->dma_size = buf_size - NICVF_RCV_BUF_ALIGN_BYTES;
362 rbdr->enable = TRUE;
363 rbdr->thresh = RBDR_THRESH;
364 rbdr->nic = nic;
365 rbdr->idx = qidx;
366
367 /*
368 * Create DMA tag for Rx buffers.
369 * Each map created using this tag is intended to store Rx payload for
370 * one fragment and one header structure containing rbuf_info (thus
371 * additional 128 byte line since RB must be a multiple of 128 byte
372 * cache line).
373 */
374 if (buf_size > MCLBYTES) {
375 device_printf(nic->dev,
376 "Buffer size to large for mbuf cluster\n");
377 return (EINVAL);
378 }
379 err = bus_dma_tag_create(
380 bus_get_dma_tag(nic->dev), /* parent tag */
381 NICVF_RCV_BUF_ALIGN_BYTES, /* alignment */
382 0, /* boundary */
383 DMAP_MAX_PHYSADDR, /* lowaddr */
384 DMAP_MIN_PHYSADDR, /* highaddr */
385 NULL, NULL, /* filtfunc, filtfuncarg */
386 roundup2(buf_size, MCLBYTES), /* maxsize */
387 1, /* nsegments */
388 roundup2(buf_size, MCLBYTES), /* maxsegsize */
389 0, /* flags */
390 NULL, NULL, /* lockfunc, lockfuncarg */
391 &rbdr->rbdr_buff_dmat); /* dmat */
392
393 if (err != 0) {
394 device_printf(nic->dev,
395 "Failed to create busdma tag for RBDR buffers\n");
396 return (err);
397 }
398
399 rbdr->rbdr_buff_dmaps = malloc(sizeof(*rbdr->rbdr_buff_dmaps) *
400 ring_len, M_NICVF, (M_WAITOK | M_ZERO));
401
402 for (idx = 0; idx < ring_len; idx++) {
403 err = bus_dmamap_create(rbdr->rbdr_buff_dmat, 0, &dmap);
404 if (err != 0) {
405 device_printf(nic->dev,
406 "Failed to create DMA map for RB\n");
407 return (err);
408 }
409 rbdr->rbdr_buff_dmaps[idx] = dmap;
410
411 err = nicvf_alloc_rcv_buffer(nic, rbdr, dmap, M_WAITOK,
412 DMA_BUFFER_LEN, &rbuf);
413 if (err != 0)
414 return (err);
415
416 desc = GET_RBDR_DESC(rbdr, idx);
417 desc->buf_addr = (rbuf >> NICVF_RCV_BUF_ALIGN);
418 }
419
420 /* Allocate taskqueue */
421 TASK_INIT(&rbdr->rbdr_task, 0, nicvf_rbdr_task, rbdr);
422 TASK_INIT(&rbdr->rbdr_task_nowait, 0, nicvf_rbdr_task_nowait, rbdr);
423 rbdr->rbdr_taskq = taskqueue_create_fast("nicvf_rbdr_taskq", M_WAITOK,
424 taskqueue_thread_enqueue, &rbdr->rbdr_taskq);
425 taskqueue_start_threads(&rbdr->rbdr_taskq, 1, PI_NET, "%s: rbdr_taskq",
426 device_get_nameunit(nic->dev));
427
428 return (0);
429 }
430
431 /* Free RBDR ring and its receive buffers */
432 static void
433 nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr)
434 {
435 struct mbuf *mbuf;
436 struct queue_set *qs;
437 struct rbdr_entry_t *desc;
438 struct rbuf_info *rinfo;
439 bus_addr_t buf_addr;
440 int head, tail, idx;
441 int err;
442
443 qs = nic->qs;
444
445 if ((qs == NULL) || (rbdr == NULL))
446 return;
447
448 rbdr->enable = FALSE;
449 if (rbdr->rbdr_taskq != NULL) {
450 /* Remove tasks */
451 while (taskqueue_cancel(rbdr->rbdr_taskq,
452 &rbdr->rbdr_task_nowait, NULL) != 0) {
453 /* Finish the nowait task first */
454 taskqueue_drain(rbdr->rbdr_taskq,
455 &rbdr->rbdr_task_nowait);
456 }
457 taskqueue_free(rbdr->rbdr_taskq);
458 rbdr->rbdr_taskq = NULL;
459
460 while (taskqueue_cancel(taskqueue_thread,
461 &rbdr->rbdr_task, NULL) != 0) {
462 /* Now finish the sleepable task */
463 taskqueue_drain(taskqueue_thread, &rbdr->rbdr_task);
464 }
465 }
466
467 /*
468 * Free all of the memory under the RB descriptors.
469 * There are assumptions here:
470 * 1. Corresponding RBDR is disabled
471 * - it is safe to operate using head and tail indexes
472 * 2. All bffers that were received are properly freed by
473 * the receive handler
474 * - there is no need to unload DMA map and free MBUF for other
475 * descriptors than unused ones
476 */
477 if (rbdr->rbdr_buff_dmat != NULL) {
478 head = rbdr->head;
479 tail = rbdr->tail;
480 while (head != tail) {
481 desc = GET_RBDR_DESC(rbdr, head);
482 buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
483 rinfo = GET_RBUF_INFO(PHYS_TO_DMAP(buf_addr));
484 bus_dmamap_unload(rbdr->rbdr_buff_dmat, rinfo->dmap);
485 mbuf = rinfo->mbuf;
486 /* This will destroy everything including rinfo! */
487 m_freem(mbuf);
488 head++;
489 head &= (rbdr->dmem.q_len - 1);
490 }
491 /* Free tail descriptor */
492 desc = GET_RBDR_DESC(rbdr, tail);
493 buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
494 rinfo = GET_RBUF_INFO(PHYS_TO_DMAP(buf_addr));
495 bus_dmamap_unload(rbdr->rbdr_buff_dmat, rinfo->dmap);
496 mbuf = rinfo->mbuf;
497 /* This will destroy everything including rinfo! */
498 m_freem(mbuf);
499
500 /* Destroy DMA maps */
501 for (idx = 0; idx < qs->rbdr_len; idx++) {
502 if (rbdr->rbdr_buff_dmaps[idx] == NULL)
503 continue;
504 err = bus_dmamap_destroy(rbdr->rbdr_buff_dmat,
505 rbdr->rbdr_buff_dmaps[idx]);
506 KASSERT(err == 0,
507 ("%s: Could not destroy DMA map for RB, desc: %d",
508 __func__, idx));
509 rbdr->rbdr_buff_dmaps[idx] = NULL;
510 }
511
512 /* Now destroy the tag */
513 err = bus_dma_tag_destroy(rbdr->rbdr_buff_dmat);
514 KASSERT(err == 0,
515 ("%s: Trying to destroy BUSY DMA tag", __func__));
516
517 rbdr->head = 0;
518 rbdr->tail = 0;
519 }
520
521 /* Free RBDR ring */
522 nicvf_free_q_desc_mem(nic, &rbdr->dmem);
523 }
524
525 /*
526 * Refill receive buffer descriptors with new buffers.
527 */
528 static int
529 nicvf_refill_rbdr(struct rbdr *rbdr, int mflags)
530 {
531 struct nicvf *nic;
532 struct queue_set *qs;
533 int rbdr_idx;
534 int tail, qcount;
535 int refill_rb_cnt;
536 struct rbdr_entry_t *desc;
537 bus_dmamap_t dmap;
538 bus_addr_t rbuf;
539 boolean_t rb_alloc_fail;
540 int new_rb;
541
542 rb_alloc_fail = TRUE;
543 new_rb = 0;
544 nic = rbdr->nic;
545 qs = nic->qs;
546 rbdr_idx = rbdr->idx;
547
548 /* Check if it's enabled */
549 if (!rbdr->enable)
550 return (0);
551
552 /* Get no of desc's to be refilled */
553 qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx);
554 qcount &= 0x7FFFF;
555 /* Doorbell can be ringed with a max of ring size minus 1 */
556 if (qcount >= (qs->rbdr_len - 1)) {
557 rb_alloc_fail = FALSE;
558 goto out;
559 } else
560 refill_rb_cnt = qs->rbdr_len - qcount - 1;
561
562 /* Start filling descs from tail */
563 tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx) >> 3;
564 while (refill_rb_cnt) {
565 tail++;
566 tail &= (rbdr->dmem.q_len - 1);
567
568 dmap = rbdr->rbdr_buff_dmaps[tail];
569 if (nicvf_alloc_rcv_buffer(nic, rbdr, dmap, mflags,
570 DMA_BUFFER_LEN, &rbuf)) {
571 /* Something went wrong. Resign */
572 break;
573 }
574 desc = GET_RBDR_DESC(rbdr, tail);
575 desc->buf_addr = (rbuf >> NICVF_RCV_BUF_ALIGN);
576 refill_rb_cnt--;
577 new_rb++;
578 }
579
580 /* make sure all memory stores are done before ringing doorbell */
581 wmb();
582
583 /* Check if buffer allocation failed */
584 if (refill_rb_cnt == 0)
585 rb_alloc_fail = FALSE;
586
587 /* Notify HW */
588 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
589 rbdr_idx, new_rb);
590 out:
591 if (!rb_alloc_fail) {
592 /*
593 * Re-enable RBDR interrupts only
594 * if buffer allocation is success.
595 */
596 nicvf_enable_intr(nic, NICVF_INTR_RBDR, rbdr_idx);
597
598 return (0);
599 }
600
601 return (ENOMEM);
602 }
603
604 /* Refill RBs even if sleep is needed to reclaim memory */
605 static void
606 nicvf_rbdr_task(void *arg, int pending)
607 {
608 struct rbdr *rbdr;
609 int err;
610
611 rbdr = (struct rbdr *)arg;
612
613 err = nicvf_refill_rbdr(rbdr, M_WAITOK);
614 if (__predict_false(err != 0)) {
615 panic("%s: Failed to refill RBs even when sleep enabled",
616 __func__);
617 }
618 }
619
620 /* Refill RBs as soon as possible without waiting */
621 static void
622 nicvf_rbdr_task_nowait(void *arg, int pending)
623 {
624 struct rbdr *rbdr;
625 int err;
626
627 rbdr = (struct rbdr *)arg;
628
629 err = nicvf_refill_rbdr(rbdr, M_NOWAIT);
630 if (err != 0) {
631 /*
632 * Schedule another, sleepable kernel thread
633 * that will for sure refill the buffers.
634 */
635 taskqueue_enqueue(taskqueue_thread, &rbdr->rbdr_task);
636 }
637 }
638
639 static int
640 nicvf_rcv_pkt_handler(struct nicvf *nic, struct cmp_queue *cq,
641 struct cqe_rx_t *cqe_rx, int cqe_type)
642 {
643 struct mbuf *mbuf;
644 struct rcv_queue *rq;
645 int rq_idx;
646 int err = 0;
647
648 rq_idx = cqe_rx->rq_idx;
649 rq = &nic->qs->rq[rq_idx];
650
651 /* Check for errors */
652 err = nicvf_check_cqe_rx_errs(nic, cq, cqe_rx);
653 if (err && !cqe_rx->rb_cnt)
654 return (0);
655
656 mbuf = nicvf_get_rcv_mbuf(nic, cqe_rx);
657 if (mbuf == NULL) {
658 dprintf(nic->dev, "Packet not received\n");
659 return (0);
660 }
661
662 /* If error packet */
663 if (err != 0) {
664 m_freem(mbuf);
665 return (0);
666 }
667
668 if (rq->lro_enabled &&
669 ((cqe_rx->l3_type == L3TYPE_IPV4) && (cqe_rx->l4_type == L4TYPE_TCP)) &&
670 (mbuf->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) ==
671 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) {
672 /*
673 * At this point it is known that there are no errors in the
674 * packet. Attempt to LRO enqueue. Send to stack if no resources
675 * or enqueue error.
676 */
677 if ((rq->lro.lro_cnt != 0) &&
678 (tcp_lro_rx(&rq->lro, mbuf, 0) == 0))
679 return (0);
680 }
681 /*
682 * Push this packet to the stack later to avoid
683 * unlocking completion task in the middle of work.
684 */
685 err = buf_ring_enqueue(cq->rx_br, mbuf);
686 if (err != 0) {
687 /*
688 * Failed to enqueue this mbuf.
689 * We don't drop it, just schedule another task.
690 */
691 return (err);
692 }
693
694 return (0);
695 }
696
697 static void
698 nicvf_snd_pkt_handler(struct nicvf *nic, struct cmp_queue *cq,
699 struct cqe_send_t *cqe_tx, int cqe_type)
700 {
701 bus_dmamap_t dmap;
702 struct mbuf *mbuf;
703 struct snd_queue *sq;
704 struct sq_hdr_subdesc *hdr;
705
706 mbuf = NULL;
707 sq = &nic->qs->sq[cqe_tx->sq_idx];
708
709 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, cqe_tx->sqe_ptr);
710 if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER)
711 return;
712
713 dprintf(nic->dev,
714 "%s Qset #%d SQ #%d SQ ptr #%d subdesc count %d\n",
715 __func__, cqe_tx->sq_qs, cqe_tx->sq_idx,
716 cqe_tx->sqe_ptr, hdr->subdesc_cnt);
717
718 dmap = (bus_dmamap_t)sq->snd_buff[cqe_tx->sqe_ptr].dmap;
719 bus_dmamap_unload(sq->snd_buff_dmat, dmap);
720
721 mbuf = (struct mbuf *)sq->snd_buff[cqe_tx->sqe_ptr].mbuf;
722 if (mbuf != NULL) {
723 m_freem(mbuf);
724 sq->snd_buff[cqe_tx->sqe_ptr].mbuf = NULL;
725 nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
726 }
727
728 nicvf_check_cqe_tx_errs(nic, cq, cqe_tx);
729 }
730
731 static int
732 nicvf_cq_intr_handler(struct nicvf *nic, uint8_t cq_idx)
733 {
734 struct mbuf *mbuf;
735 struct ifnet *ifp;
736 int processed_cqe, work_done = 0, tx_done = 0;
737 int cqe_count, cqe_head;
738 struct queue_set *qs = nic->qs;
739 struct cmp_queue *cq = &qs->cq[cq_idx];
740 struct snd_queue *sq = &qs->sq[cq_idx];
741 struct rcv_queue *rq;
742 struct cqe_rx_t *cq_desc;
743 struct lro_ctrl *lro;
744 int rq_idx;
745 int cmp_err;
746
747 NICVF_CMP_LOCK(cq);
748 cmp_err = 0;
749 processed_cqe = 0;
750 /* Get no of valid CQ entries to process */
751 cqe_count = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS, cq_idx);
752 cqe_count &= CQ_CQE_COUNT;
753 if (cqe_count == 0)
754 goto out;
755
756 /* Get head of the valid CQ entries */
757 cqe_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD, cq_idx) >> 9;
758 cqe_head &= 0xFFFF;
759
760 dprintf(nic->dev, "%s CQ%d cqe_count %d cqe_head %d\n",
761 __func__, cq_idx, cqe_count, cqe_head);
762 while (processed_cqe < cqe_count) {
763 /* Get the CQ descriptor */
764 cq_desc = (struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head);
765 cqe_head++;
766 cqe_head &= (cq->dmem.q_len - 1);
767 /* Prefetch next CQ descriptor */
768 __builtin_prefetch((struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head));
769
770 dprintf(nic->dev, "CQ%d cq_desc->cqe_type %d\n", cq_idx,
771 cq_desc->cqe_type);
772 switch (cq_desc->cqe_type) {
773 case CQE_TYPE_RX:
774 cmp_err = nicvf_rcv_pkt_handler(nic, cq, cq_desc,
775 CQE_TYPE_RX);
776 if (__predict_false(cmp_err != 0)) {
777 /*
778 * Ups. Cannot finish now.
779 * Let's try again later.
780 */
781 goto done;
782 }
783 work_done++;
784 break;
785 case CQE_TYPE_SEND:
786 nicvf_snd_pkt_handler(nic, cq, (void *)cq_desc,
787 CQE_TYPE_SEND);
788 tx_done++;
789 break;
790 case CQE_TYPE_INVALID:
791 case CQE_TYPE_RX_SPLIT:
792 case CQE_TYPE_RX_TCP:
793 case CQE_TYPE_SEND_PTP:
794 /* Ignore for now */
795 break;
796 }
797 processed_cqe++;
798 }
799 done:
800 dprintf(nic->dev,
801 "%s CQ%d processed_cqe %d work_done %d\n",
802 __func__, cq_idx, processed_cqe, work_done);
803
804 /* Ring doorbell to inform H/W to reuse processed CQEs */
805 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_DOOR, cq_idx, processed_cqe);
806
807 if ((tx_done > 0) &&
808 ((if_getdrvflags(nic->ifp) & IFF_DRV_RUNNING) != 0)) {
809 /* Reenable TXQ if its stopped earlier due to SQ full */
810 if_setdrvflagbits(nic->ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
811 taskqueue_enqueue(sq->snd_taskq, &sq->snd_task);
812 }
813 out:
814 /*
815 * Flush any outstanding LRO work
816 */
817 rq_idx = cq_idx;
818 rq = &nic->qs->rq[rq_idx];
819 lro = &rq->lro;
820 tcp_lro_flush_all(lro);
821
822 NICVF_CMP_UNLOCK(cq);
823
824 ifp = nic->ifp;
825 /* Push received MBUFs to the stack */
826 while (!buf_ring_empty(cq->rx_br)) {
827 mbuf = buf_ring_dequeue_mc(cq->rx_br);
828 if (__predict_true(mbuf != NULL))
829 (*ifp->if_input)(ifp, mbuf);
830 }
831
832 return (cmp_err);
833 }
834
835 /*
836 * Qset error interrupt handler
837 *
838 * As of now only CQ errors are handled
839 */
840 static void
841 nicvf_qs_err_task(void *arg, int pending)
842 {
843 struct nicvf *nic;
844 struct queue_set *qs;
845 int qidx;
846 uint64_t status;
847 boolean_t enable = TRUE;
848
849 nic = (struct nicvf *)arg;
850 qs = nic->qs;
851
852 /* Deactivate network interface */
853 if_setdrvflagbits(nic->ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING);
854
855 /* Check if it is CQ err */
856 for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
857 status = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS,
858 qidx);
859 if ((status & CQ_ERR_MASK) == 0)
860 continue;
861 /* Process already queued CQEs and reconfig CQ */
862 nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
863 nicvf_sq_disable(nic, qidx);
864 (void)nicvf_cq_intr_handler(nic, qidx);
865 nicvf_cmp_queue_config(nic, qs, qidx, enable);
866 nicvf_sq_free_used_descs(nic, &qs->sq[qidx], qidx);
867 nicvf_sq_enable(nic, &qs->sq[qidx], qidx);
868 nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
869 }
870
871 if_setdrvflagbits(nic->ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
872 /* Re-enable Qset error interrupt */
873 nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
874 }
875
876 static void
877 nicvf_cmp_task(void *arg, int pending)
878 {
879 struct cmp_queue *cq;
880 struct nicvf *nic;
881 int cmp_err;
882
883 cq = (struct cmp_queue *)arg;
884 nic = cq->nic;
885
886 /* Handle CQ descriptors */
887 cmp_err = nicvf_cq_intr_handler(nic, cq->idx);
888 if (__predict_false(cmp_err != 0)) {
889 /*
890 * Schedule another thread here since we did not
891 * process the entire CQ due to Tx or Rx CQ parse error.
892 */
893 taskqueue_enqueue(cq->cmp_taskq, &cq->cmp_task);
894 }
895
896 nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->idx);
897 /* Reenable interrupt (previously disabled in nicvf_intr_handler() */
898 nicvf_enable_intr(nic, NICVF_INTR_CQ, cq->idx);
899
900 }
901
902 /* Initialize completion queue */
903 static int
904 nicvf_init_cmp_queue(struct nicvf *nic, struct cmp_queue *cq, int q_len,
905 int qidx)
906 {
907 int err;
908
909 /* Initizalize lock */
910 snprintf(cq->mtx_name, sizeof(cq->mtx_name), "%s: CQ(%d) lock",
911 device_get_nameunit(nic->dev), qidx);
912 mtx_init(&cq->mtx, cq->mtx_name, NULL, MTX_DEF);
913
914 err = nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len, CMP_QUEUE_DESC_SIZE,
915 NICVF_CQ_BASE_ALIGN_BYTES);
916
917 if (err != 0) {
918 device_printf(nic->dev,
919 "Could not allocate DMA memory for CQ\n");
920 return (err);
921 }
922
923 cq->desc = cq->dmem.base;
924 cq->thresh = pass1_silicon(nic->dev) ? 0 : CMP_QUEUE_CQE_THRESH;
925 cq->nic = nic;
926 cq->idx = qidx;
927 nic->cq_coalesce_usecs = (CMP_QUEUE_TIMER_THRESH * 0.05) - 1;
928
929 cq->rx_br = buf_ring_alloc(CMP_QUEUE_LEN * 8, M_DEVBUF, M_WAITOK,
930 &cq->mtx);
931
932 /* Allocate taskqueue */
933 NET_TASK_INIT(&cq->cmp_task, 0, nicvf_cmp_task, cq);
934 cq->cmp_taskq = taskqueue_create_fast("nicvf_cmp_taskq", M_WAITOK,
935 taskqueue_thread_enqueue, &cq->cmp_taskq);
936 taskqueue_start_threads(&cq->cmp_taskq, 1, PI_NET, "%s: cmp_taskq(%d)",
937 device_get_nameunit(nic->dev), qidx);
938
939 return (0);
940 }
941
942 static void
943 nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq)
944 {
945
946 if (cq == NULL)
947 return;
948 /*
949 * The completion queue itself should be disabled by now
950 * (ref. nicvf_snd_queue_config()).
951 * Ensure that it is safe to disable it or panic.
952 */
953 if (cq->enable)
954 panic("%s: Trying to free working CQ(%d)", __func__, cq->idx);
955
956 if (cq->cmp_taskq != NULL) {
957 /* Remove task */
958 while (taskqueue_cancel(cq->cmp_taskq, &cq->cmp_task, NULL) != 0)
959 taskqueue_drain(cq->cmp_taskq, &cq->cmp_task);
960
961 taskqueue_free(cq->cmp_taskq);
962 cq->cmp_taskq = NULL;
963 }
964 /*
965 * Completion interrupt will possibly enable interrupts again
966 * so disable interrupting now after we finished processing
967 * completion task. It is safe to do so since the corresponding CQ
968 * was already disabled.
969 */
970 nicvf_disable_intr(nic, NICVF_INTR_CQ, cq->idx);
971 nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->idx);
972
973 NICVF_CMP_LOCK(cq);
974 nicvf_free_q_desc_mem(nic, &cq->dmem);
975 drbr_free(cq->rx_br, M_DEVBUF);
976 NICVF_CMP_UNLOCK(cq);
977 mtx_destroy(&cq->mtx);
978 memset(cq->mtx_name, 0, sizeof(cq->mtx_name));
979 }
980
981 int
982 nicvf_xmit_locked(struct snd_queue *sq)
983 {
984 struct nicvf *nic;
985 struct ifnet *ifp;
986 struct mbuf *next;
987 int err;
988
989 NICVF_TX_LOCK_ASSERT(sq);
990
991 nic = sq->nic;
992 ifp = nic->ifp;
993 err = 0;
994
995 while ((next = drbr_peek(ifp, sq->br)) != NULL) {
996 /* Send a copy of the frame to the BPF listener */
997 ETHER_BPF_MTAP(ifp, next);
998
999 err = nicvf_tx_mbuf_locked(sq, &next);
1000 if (err != 0) {
1001 if (next == NULL)
1002 drbr_advance(ifp, sq->br);
1003 else
1004 drbr_putback(ifp, sq->br, next);
1005
1006 break;
1007 }
1008 drbr_advance(ifp, sq->br);
1009 }
1010 return (err);
1011 }
1012
1013 static void
1014 nicvf_snd_task(void *arg, int pending)
1015 {
1016 struct snd_queue *sq = (struct snd_queue *)arg;
1017 struct nicvf *nic;
1018 struct ifnet *ifp;
1019 int err;
1020
1021 nic = sq->nic;
1022 ifp = nic->ifp;
1023
1024 /*
1025 * Skip sending anything if the driver is not running,
1026 * SQ full or link is down.
1027 */
1028 if (((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1029 IFF_DRV_RUNNING) || !nic->link_up)
1030 return;
1031
1032 NICVF_TX_LOCK(sq);
1033 err = nicvf_xmit_locked(sq);
1034 NICVF_TX_UNLOCK(sq);
1035 /* Try again */
1036 if (err != 0)
1037 taskqueue_enqueue(sq->snd_taskq, &sq->snd_task);
1038 }
1039
1040 /* Initialize transmit queue */
1041 static int
1042 nicvf_init_snd_queue(struct nicvf *nic, struct snd_queue *sq, int q_len,
1043 int qidx)
1044 {
1045 size_t i;
1046 int err;
1047
1048 /* Initizalize TX lock for this queue */
1049 snprintf(sq->mtx_name, sizeof(sq->mtx_name), "%s: SQ(%d) lock",
1050 device_get_nameunit(nic->dev), qidx);
1051 mtx_init(&sq->mtx, sq->mtx_name, NULL, MTX_DEF);
1052
1053 NICVF_TX_LOCK(sq);
1054 /* Allocate buffer ring */
1055 sq->br = buf_ring_alloc(q_len / MIN_SQ_DESC_PER_PKT_XMIT, M_DEVBUF,
1056 M_NOWAIT, &sq->mtx);
1057 if (sq->br == NULL) {
1058 device_printf(nic->dev,
1059 "ERROR: Could not set up buf ring for SQ(%d)\n", qidx);
1060 err = ENOMEM;
1061 goto error;
1062 }
1063
1064 /* Allocate DMA memory for Tx descriptors */
1065 err = nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len, SND_QUEUE_DESC_SIZE,
1066 NICVF_SQ_BASE_ALIGN_BYTES);
1067 if (err != 0) {
1068 device_printf(nic->dev,
1069 "Could not allocate DMA memory for SQ\n");
1070 goto error;
1071 }
1072
1073 sq->desc = sq->dmem.base;
1074 sq->head = sq->tail = 0;
1075 atomic_store_rel_int(&sq->free_cnt, q_len - 1);
1076 sq->thresh = SND_QUEUE_THRESH;
1077 sq->idx = qidx;
1078 sq->nic = nic;
1079
1080 /*
1081 * Allocate DMA maps for Tx buffers
1082 */
1083
1084 /* Create DMA tag first */
1085 err = bus_dma_tag_create(
1086 bus_get_dma_tag(nic->dev), /* parent tag */
1087 1, /* alignment */
1088 0, /* boundary */
1089 BUS_SPACE_MAXADDR, /* lowaddr */
1090 BUS_SPACE_MAXADDR, /* highaddr */
1091 NULL, NULL, /* filtfunc, filtfuncarg */
1092 NICVF_TSO_MAXSIZE, /* maxsize */
1093 NICVF_TSO_NSEGS, /* nsegments */
1094 MCLBYTES, /* maxsegsize */
1095 0, /* flags */
1096 NULL, NULL, /* lockfunc, lockfuncarg */
1097 &sq->snd_buff_dmat); /* dmat */
1098
1099 if (err != 0) {
1100 device_printf(nic->dev,
1101 "Failed to create busdma tag for Tx buffers\n");
1102 goto error;
1103 }
1104
1105 /* Allocate send buffers array */
1106 sq->snd_buff = malloc(sizeof(*sq->snd_buff) * q_len, M_NICVF,
1107 (M_NOWAIT | M_ZERO));
1108 if (sq->snd_buff == NULL) {
1109 device_printf(nic->dev,
1110 "Could not allocate memory for Tx buffers array\n");
1111 err = ENOMEM;
1112 goto error;
1113 }
1114
1115 /* Now populate maps */
1116 for (i = 0; i < q_len; i++) {
1117 err = bus_dmamap_create(sq->snd_buff_dmat, 0,
1118 &sq->snd_buff[i].dmap);
1119 if (err != 0) {
1120 device_printf(nic->dev,
1121 "Failed to create DMA maps for Tx buffers\n");
1122 goto error;
1123 }
1124 }
1125 NICVF_TX_UNLOCK(sq);
1126
1127 /* Allocate taskqueue */
1128 TASK_INIT(&sq->snd_task, 0, nicvf_snd_task, sq);
1129 sq->snd_taskq = taskqueue_create_fast("nicvf_snd_taskq", M_WAITOK,
1130 taskqueue_thread_enqueue, &sq->snd_taskq);
1131 taskqueue_start_threads(&sq->snd_taskq, 1, PI_NET, "%s: snd_taskq(%d)",
1132 device_get_nameunit(nic->dev), qidx);
1133
1134 return (0);
1135 error:
1136 NICVF_TX_UNLOCK(sq);
1137 return (err);
1138 }
1139
1140 static void
1141 nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq)
1142 {
1143 struct queue_set *qs = nic->qs;
1144 size_t i;
1145 int err;
1146
1147 if (sq == NULL)
1148 return;
1149
1150 if (sq->snd_taskq != NULL) {
1151 /* Remove task */
1152 while (taskqueue_cancel(sq->snd_taskq, &sq->snd_task, NULL) != 0)
1153 taskqueue_drain(sq->snd_taskq, &sq->snd_task);
1154
1155 taskqueue_free(sq->snd_taskq);
1156 sq->snd_taskq = NULL;
1157 }
1158
1159 NICVF_TX_LOCK(sq);
1160 if (sq->snd_buff_dmat != NULL) {
1161 if (sq->snd_buff != NULL) {
1162 for (i = 0; i < qs->sq_len; i++) {
1163 m_freem(sq->snd_buff[i].mbuf);
1164 sq->snd_buff[i].mbuf = NULL;
1165
1166 bus_dmamap_unload(sq->snd_buff_dmat,
1167 sq->snd_buff[i].dmap);
1168 err = bus_dmamap_destroy(sq->snd_buff_dmat,
1169 sq->snd_buff[i].dmap);
1170 /*
1171 * If bus_dmamap_destroy fails it can cause
1172 * random panic later if the tag is also
1173 * destroyed in the process.
1174 */
1175 KASSERT(err == 0,
1176 ("%s: Could not destroy DMA map for SQ",
1177 __func__));
1178 }
1179 }
1180
1181 free(sq->snd_buff, M_NICVF);
1182
1183 err = bus_dma_tag_destroy(sq->snd_buff_dmat);
1184 KASSERT(err == 0,
1185 ("%s: Trying to destroy BUSY DMA tag", __func__));
1186 }
1187
1188 /* Free private driver ring for this send queue */
1189 if (sq->br != NULL)
1190 drbr_free(sq->br, M_DEVBUF);
1191
1192 if (sq->dmem.base != NULL)
1193 nicvf_free_q_desc_mem(nic, &sq->dmem);
1194
1195 NICVF_TX_UNLOCK(sq);
1196 /* Destroy Tx lock */
1197 mtx_destroy(&sq->mtx);
1198 memset(sq->mtx_name, 0, sizeof(sq->mtx_name));
1199 }
1200
1201 static void
1202 nicvf_reclaim_snd_queue(struct nicvf *nic, struct queue_set *qs, int qidx)
1203 {
1204
1205 /* Disable send queue */
1206 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0);
1207 /* Check if SQ is stopped */
1208 if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01))
1209 return;
1210 /* Reset send queue */
1211 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
1212 }
1213
1214 static void
1215 nicvf_reclaim_rcv_queue(struct nicvf *nic, struct queue_set *qs, int qidx)
1216 {
1217 union nic_mbx mbx = {};
1218
1219 /* Make sure all packets in the pipeline are written back into mem */
1220 mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC;
1221 nicvf_send_msg_to_pf(nic, &mbx);
1222 }
1223
1224 static void
1225 nicvf_reclaim_cmp_queue(struct nicvf *nic, struct queue_set *qs, int qidx)
1226 {
1227
1228 /* Disable timer threshold (doesn't get reset upon CQ reset */
1229 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0);
1230 /* Disable completion queue */
1231 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0);
1232 /* Reset completion queue */
1233 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
1234 }
1235
1236 static void
1237 nicvf_reclaim_rbdr(struct nicvf *nic, struct rbdr *rbdr, int qidx)
1238 {
1239 uint64_t tmp, fifo_state;
1240 int timeout = 10;
1241
1242 /* Save head and tail pointers for feeing up buffers */
1243 rbdr->head =
1244 nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_HEAD, qidx) >> 3;
1245 rbdr->tail =
1246 nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, qidx) >> 3;
1247
1248 /*
1249 * If RBDR FIFO is in 'FAIL' state then do a reset first
1250 * before relaiming.
1251 */
1252 fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx);
1253 if (((fifo_state >> 62) & 0x03) == 0x3) {
1254 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
1255 qidx, NICVF_RBDR_RESET);
1256 }
1257
1258 /* Disable RBDR */
1259 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0);
1260 if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
1261 return;
1262 while (1) {
1263 tmp = nicvf_queue_reg_read(nic,
1264 NIC_QSET_RBDR_0_1_PREFETCH_STATUS, qidx);
1265 if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF))
1266 break;
1267
1268 DELAY(1000);
1269 timeout--;
1270 if (!timeout) {
1271 device_printf(nic->dev,
1272 "Failed polling on prefetch status\n");
1273 return;
1274 }
1275 }
1276 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx,
1277 NICVF_RBDR_RESET);
1278
1279 if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02))
1280 return;
1281 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00);
1282 if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
1283 return;
1284 }
1285
1286 /* Configures receive queue */
1287 static void
1288 nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs,
1289 int qidx, bool enable)
1290 {
1291 union nic_mbx mbx = {};
1292 struct rcv_queue *rq;
1293 struct rq_cfg rq_cfg;
1294 struct ifnet *ifp;
1295 struct lro_ctrl *lro;
1296
1297 ifp = nic->ifp;
1298
1299 rq = &qs->rq[qidx];
1300 rq->enable = enable;
1301
1302 lro = &rq->lro;
1303
1304 /* Disable receive queue */
1305 nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0);
1306
1307 if (!rq->enable) {
1308 nicvf_reclaim_rcv_queue(nic, qs, qidx);
1309 /* Free LRO memory */
1310 tcp_lro_free(lro);
1311 rq->lro_enabled = FALSE;
1312 return;
1313 }
1314
1315 /* Configure LRO if enabled */
1316 rq->lro_enabled = FALSE;
1317 if ((if_getcapenable(ifp) & IFCAP_LRO) != 0) {
1318 if (tcp_lro_init(lro) != 0) {
1319 device_printf(nic->dev,
1320 "Failed to initialize LRO for RXQ%d\n", qidx);
1321 } else {
1322 rq->lro_enabled = TRUE;
1323 lro->ifp = nic->ifp;
1324 }
1325 }
1326
1327 rq->cq_qs = qs->vnic_id;
1328 rq->cq_idx = qidx;
1329 rq->start_rbdr_qs = qs->vnic_id;
1330 rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1;
1331 rq->cont_rbdr_qs = qs->vnic_id;
1332 rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1;
1333 /* all writes of RBDR data to be loaded into L2 Cache as well*/
1334 rq->caching = 1;
1335
1336 /* Send a mailbox msg to PF to config RQ */
1337 mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG;
1338 mbx.rq.qs_num = qs->vnic_id;
1339 mbx.rq.rq_num = qidx;
1340 mbx.rq.cfg = (rq->caching << 26) | (rq->cq_qs << 19) |
1341 (rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) |
1342 (rq->cont_qs_rbdr_idx << 8) | (rq->start_rbdr_qs << 1) |
1343 (rq->start_qs_rbdr_idx);
1344 nicvf_send_msg_to_pf(nic, &mbx);
1345
1346 mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG;
1347 mbx.rq.cfg = (1UL << 63) | (1UL << 62) | (qs->vnic_id << 0);
1348 nicvf_send_msg_to_pf(nic, &mbx);
1349
1350 /*
1351 * RQ drop config
1352 * Enable CQ drop to reserve sufficient CQEs for all tx packets
1353 */
1354 mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG;
1355 mbx.rq.cfg = (1UL << 62) | (RQ_CQ_DROP << 8);
1356 nicvf_send_msg_to_pf(nic, &mbx);
1357
1358 nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0, 0x00);
1359
1360 /* Enable Receive queue */
1361 rq_cfg.ena = 1;
1362 rq_cfg.tcp_ena = 0;
1363 nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx,
1364 *(uint64_t *)&rq_cfg);
1365 }
1366
1367 /* Configures completion queue */
1368 static void
1369 nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs,
1370 int qidx, boolean_t enable)
1371 {
1372 struct cmp_queue *cq;
1373 struct cq_cfg cq_cfg;
1374
1375 cq = &qs->cq[qidx];
1376 cq->enable = enable;
1377
1378 if (!cq->enable) {
1379 nicvf_reclaim_cmp_queue(nic, qs, qidx);
1380 return;
1381 }
1382
1383 /* Reset completion queue */
1384 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
1385
1386 /* Set completion queue base address */
1387 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE, qidx,
1388 (uint64_t)(cq->dmem.phys_base));
1389
1390 /* Enable Completion queue */
1391 cq_cfg.ena = 1;
1392 cq_cfg.reset = 0;
1393 cq_cfg.caching = 0;
1394 cq_cfg.qsize = CMP_QSIZE;
1395 cq_cfg.avg_con = 0;
1396 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, *(uint64_t *)&cq_cfg);
1397
1398 /* Set threshold value for interrupt generation */
1399 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh);
1400 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx,
1401 nic->cq_coalesce_usecs);
1402 }
1403
1404 /* Configures transmit queue */
1405 static void
1406 nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs, int qidx,
1407 boolean_t enable)
1408 {
1409 union nic_mbx mbx = {};
1410 struct snd_queue *sq;
1411 struct sq_cfg sq_cfg;
1412
1413 sq = &qs->sq[qidx];
1414 sq->enable = enable;
1415
1416 if (!sq->enable) {
1417 nicvf_reclaim_snd_queue(nic, qs, qidx);
1418 return;
1419 }
1420
1421 /* Reset send queue */
1422 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
1423
1424 sq->cq_qs = qs->vnic_id;
1425 sq->cq_idx = qidx;
1426
1427 /* Send a mailbox msg to PF to config SQ */
1428 mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG;
1429 mbx.sq.qs_num = qs->vnic_id;
1430 mbx.sq.sq_num = qidx;
1431 mbx.sq.sqs_mode = nic->sqs_mode;
1432 mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx;
1433 nicvf_send_msg_to_pf(nic, &mbx);
1434
1435 /* Set queue base address */
1436 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE, qidx,
1437 (uint64_t)(sq->dmem.phys_base));
1438
1439 /* Enable send queue & set queue size */
1440 sq_cfg.ena = 1;
1441 sq_cfg.reset = 0;
1442 sq_cfg.ldwb = 0;
1443 sq_cfg.qsize = SND_QSIZE;
1444 sq_cfg.tstmp_bgx_intf = 0;
1445 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, *(uint64_t *)&sq_cfg);
1446
1447 /* Set threshold value for interrupt generation */
1448 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh);
1449 }
1450
1451 /* Configures receive buffer descriptor ring */
1452 static void
1453 nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs, int qidx,
1454 boolean_t enable)
1455 {
1456 struct rbdr *rbdr;
1457 struct rbdr_cfg rbdr_cfg;
1458
1459 rbdr = &qs->rbdr[qidx];
1460 nicvf_reclaim_rbdr(nic, rbdr, qidx);
1461 if (!enable)
1462 return;
1463
1464 /* Set descriptor base address */
1465 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE, qidx,
1466 (uint64_t)(rbdr->dmem.phys_base));
1467
1468 /* Enable RBDR & set queue size */
1469 /* Buffer size should be in multiples of 128 bytes */
1470 rbdr_cfg.ena = 1;
1471 rbdr_cfg.reset = 0;
1472 rbdr_cfg.ldwb = 0;
1473 rbdr_cfg.qsize = RBDR_SIZE;
1474 rbdr_cfg.avg_con = 0;
1475 rbdr_cfg.lines = rbdr->dma_size / 128;
1476 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx,
1477 *(uint64_t *)&rbdr_cfg);
1478
1479 /* Notify HW */
1480 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR, qidx,
1481 qs->rbdr_len - 1);
1482
1483 /* Set threshold value for interrupt generation */
1484 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH, qidx,
1485 rbdr->thresh - 1);
1486 }
1487
1488 /* Requests PF to assign and enable Qset */
1489 void
1490 nicvf_qset_config(struct nicvf *nic, boolean_t enable)
1491 {
1492 union nic_mbx mbx = {};
1493 struct queue_set *qs;
1494 struct qs_cfg *qs_cfg;
1495
1496 qs = nic->qs;
1497 if (qs == NULL) {
1498 device_printf(nic->dev,
1499 "Qset is still not allocated, don't init queues\n");
1500 return;
1501 }
1502
1503 qs->enable = enable;
1504 qs->vnic_id = nic->vf_id;
1505
1506 /* Send a mailbox msg to PF to config Qset */
1507 mbx.qs.msg = NIC_MBOX_MSG_QS_CFG;
1508 mbx.qs.num = qs->vnic_id;
1509
1510 mbx.qs.cfg = 0;
1511 qs_cfg = (struct qs_cfg *)&mbx.qs.cfg;
1512 if (qs->enable) {
1513 qs_cfg->ena = 1;
1514 qs_cfg->vnic = qs->vnic_id;
1515 }
1516 nicvf_send_msg_to_pf(nic, &mbx);
1517 }
1518
1519 static void
1520 nicvf_free_resources(struct nicvf *nic)
1521 {
1522 int qidx;
1523 struct queue_set *qs;
1524
1525 qs = nic->qs;
1526 /*
1527 * Remove QS error task first since it has to be dead
1528 * to safely free completion queue tasks.
1529 */
1530 if (qs->qs_err_taskq != NULL) {
1531 /* Shut down QS error tasks */
1532 while (taskqueue_cancel(qs->qs_err_taskq,
1533 &qs->qs_err_task, NULL) != 0) {
1534 taskqueue_drain(qs->qs_err_taskq, &qs->qs_err_task);
1535 }
1536 taskqueue_free(qs->qs_err_taskq);
1537 qs->qs_err_taskq = NULL;
1538 }
1539 /* Free receive buffer descriptor ring */
1540 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1541 nicvf_free_rbdr(nic, &qs->rbdr[qidx]);
1542
1543 /* Free completion queue */
1544 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1545 nicvf_free_cmp_queue(nic, &qs->cq[qidx]);
1546
1547 /* Free send queue */
1548 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1549 nicvf_free_snd_queue(nic, &qs->sq[qidx]);
1550 }
1551
1552 static int
1553 nicvf_alloc_resources(struct nicvf *nic)
1554 {
1555 struct queue_set *qs = nic->qs;
1556 int qidx;
1557
1558 /* Alloc receive buffer descriptor ring */
1559 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
1560 if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len,
1561 DMA_BUFFER_LEN, qidx))
1562 goto alloc_fail;
1563 }
1564
1565 /* Alloc send queue */
1566 for (qidx = 0; qidx < qs->sq_cnt; qidx++) {
1567 if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len, qidx))
1568 goto alloc_fail;
1569 }
1570
1571 /* Alloc completion queue */
1572 for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1573 if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len, qidx))
1574 goto alloc_fail;
1575 }
1576
1577 /* Allocate QS error taskqueue */
1578 NET_TASK_INIT(&qs->qs_err_task, 0, nicvf_qs_err_task, nic);
1579 qs->qs_err_taskq = taskqueue_create_fast("nicvf_qs_err_taskq", M_WAITOK,
1580 taskqueue_thread_enqueue, &qs->qs_err_taskq);
1581 taskqueue_start_threads(&qs->qs_err_taskq, 1, PI_NET, "%s: qs_taskq",
1582 device_get_nameunit(nic->dev));
1583
1584 return (0);
1585 alloc_fail:
1586 nicvf_free_resources(nic);
1587 return (ENOMEM);
1588 }
1589
1590 int
1591 nicvf_set_qset_resources(struct nicvf *nic)
1592 {
1593 struct queue_set *qs;
1594
1595 qs = malloc(sizeof(*qs), M_NICVF, (M_ZERO | M_WAITOK));
1596 nic->qs = qs;
1597
1598 /* Set count of each queue */
1599 qs->rbdr_cnt = RBDR_CNT;
1600 qs->rq_cnt = RCV_QUEUE_CNT;
1601
1602 qs->sq_cnt = SND_QUEUE_CNT;
1603 qs->cq_cnt = CMP_QUEUE_CNT;
1604
1605 /* Set queue lengths */
1606 qs->rbdr_len = RCV_BUF_COUNT;
1607 qs->sq_len = SND_QUEUE_LEN;
1608 qs->cq_len = CMP_QUEUE_LEN;
1609
1610 nic->rx_queues = qs->rq_cnt;
1611 nic->tx_queues = qs->sq_cnt;
1612
1613 return (0);
1614 }
1615
1616 int
1617 nicvf_config_data_transfer(struct nicvf *nic, boolean_t enable)
1618 {
1619 boolean_t disable = FALSE;
1620 struct queue_set *qs;
1621 int qidx;
1622
1623 qs = nic->qs;
1624 if (qs == NULL)
1625 return (0);
1626
1627 if (enable) {
1628 if (nicvf_alloc_resources(nic) != 0)
1629 return (ENOMEM);
1630
1631 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1632 nicvf_snd_queue_config(nic, qs, qidx, enable);
1633 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1634 nicvf_cmp_queue_config(nic, qs, qidx, enable);
1635 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1636 nicvf_rbdr_config(nic, qs, qidx, enable);
1637 for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1638 nicvf_rcv_queue_config(nic, qs, qidx, enable);
1639 } else {
1640 for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1641 nicvf_rcv_queue_config(nic, qs, qidx, disable);
1642 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1643 nicvf_rbdr_config(nic, qs, qidx, disable);
1644 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1645 nicvf_snd_queue_config(nic, qs, qidx, disable);
1646 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1647 nicvf_cmp_queue_config(nic, qs, qidx, disable);
1648
1649 nicvf_free_resources(nic);
1650 }
1651
1652 return (0);
1653 }
1654
1655 /*
1656 * Get a free desc from SQ
1657 * returns descriptor ponter & descriptor number
1658 */
1659 static __inline int
1660 nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt)
1661 {
1662 int qentry;
1663
1664 qentry = sq->tail;
1665 atomic_subtract_int(&sq->free_cnt, desc_cnt);
1666 sq->tail += desc_cnt;
1667 sq->tail &= (sq->dmem.q_len - 1);
1668
1669 return (qentry);
1670 }
1671
1672 /* Free descriptor back to SQ for future use */
1673 static void
1674 nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt)
1675 {
1676
1677 atomic_add_int(&sq->free_cnt, desc_cnt);
1678 sq->head += desc_cnt;
1679 sq->head &= (sq->dmem.q_len - 1);
1680 }
1681
1682 static __inline int
1683 nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry)
1684 {
1685 qentry++;
1686 qentry &= (sq->dmem.q_len - 1);
1687 return (qentry);
1688 }
1689
1690 static void
1691 nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx)
1692 {
1693 uint64_t sq_cfg;
1694
1695 sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1696 sq_cfg |= NICVF_SQ_EN;
1697 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1698 /* Ring doorbell so that H/W restarts processing SQEs */
1699 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0);
1700 }
1701
1702 static void
1703 nicvf_sq_disable(struct nicvf *nic, int qidx)
1704 {
1705 uint64_t sq_cfg;
1706
1707 sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1708 sq_cfg &= ~NICVF_SQ_EN;
1709 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1710 }
1711
1712 static void
1713 nicvf_sq_free_used_descs(struct nicvf *nic, struct snd_queue *sq, int qidx)
1714 {
1715 uint64_t head;
1716 struct snd_buff *snd_buff;
1717 struct sq_hdr_subdesc *hdr;
1718
1719 NICVF_TX_LOCK(sq);
1720 head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4;
1721 while (sq->head != head) {
1722 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
1723 if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
1724 nicvf_put_sq_desc(sq, 1);
1725 continue;
1726 }
1727 snd_buff = &sq->snd_buff[sq->head];
1728 if (snd_buff->mbuf != NULL) {
1729 bus_dmamap_unload(sq->snd_buff_dmat, snd_buff->dmap);
1730 m_freem(snd_buff->mbuf);
1731 sq->snd_buff[sq->head].mbuf = NULL;
1732 }
1733 nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
1734 }
1735 NICVF_TX_UNLOCK(sq);
1736 }
1737
1738 /*
1739 * Add SQ HEADER subdescriptor.
1740 * First subdescriptor for every send descriptor.
1741 */
1742 static __inline int
1743 nicvf_sq_add_hdr_subdesc(struct snd_queue *sq, int qentry,
1744 int subdesc_cnt, struct mbuf *mbuf, int len)
1745 {
1746 struct nicvf *nic;
1747 struct sq_hdr_subdesc *hdr;
1748 struct ether_vlan_header *eh;
1749 #ifdef INET
1750 struct ip *ip;
1751 struct tcphdr *th;
1752 #endif
1753 uint16_t etype;
1754 int ehdrlen, iphlen, poff, proto;
1755
1756 nic = sq->nic;
1757
1758 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1759 sq->snd_buff[qentry].mbuf = mbuf;
1760
1761 memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1762 hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1763 /* Enable notification via CQE after processing SQE */
1764 hdr->post_cqe = 1;
1765 /* No of subdescriptors following this */
1766 hdr->subdesc_cnt = subdesc_cnt;
1767 hdr->tot_len = len;
1768
1769 eh = mtod(mbuf, struct ether_vlan_header *);
1770 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
1771 ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1772 etype = ntohs(eh->evl_proto);
1773 } else {
1774 ehdrlen = ETHER_HDR_LEN;
1775 etype = ntohs(eh->evl_encap_proto);
1776 }
1777
1778 poff = proto = -1;
1779 switch (etype) {
1780 #ifdef INET6
1781 case ETHERTYPE_IPV6:
1782 if (mbuf->m_len < ehdrlen + sizeof(struct ip6_hdr)) {
1783 mbuf = m_pullup(mbuf, ehdrlen +sizeof(struct ip6_hdr));
1784 sq->snd_buff[qentry].mbuf = NULL;
1785 if (mbuf == NULL)
1786 return (ENOBUFS);
1787 }
1788 poff = ip6_lasthdr(mbuf, ehdrlen, IPPROTO_IPV6, &proto);
1789 if (poff < 0)
1790 return (ENOBUFS);
1791 poff += ehdrlen;
1792 break;
1793 #endif
1794 #ifdef INET
1795 case ETHERTYPE_IP:
1796 if (mbuf->m_len < ehdrlen + sizeof(struct ip)) {
1797 mbuf = m_pullup(mbuf, ehdrlen + sizeof(struct ip));
1798 sq->snd_buff[qentry].mbuf = mbuf;
1799 if (mbuf == NULL)
1800 return (ENOBUFS);
1801 }
1802 if (mbuf->m_pkthdr.csum_flags & CSUM_IP)
1803 hdr->csum_l3 = 1; /* Enable IP csum calculation */
1804
1805 ip = (struct ip *)(mbuf->m_data + ehdrlen);
1806 iphlen = ip->ip_hl << 2;
1807 poff = ehdrlen + iphlen;
1808 proto = ip->ip_p;
1809 break;
1810 #endif
1811 }
1812
1813 #if defined(INET6) || defined(INET)
1814 if (poff > 0 && mbuf->m_pkthdr.csum_flags != 0) {
1815 switch (proto) {
1816 case IPPROTO_TCP:
1817 if ((mbuf->m_pkthdr.csum_flags & CSUM_TCP) == 0)
1818 break;
1819
1820 if (mbuf->m_len < (poff + sizeof(struct tcphdr))) {
1821 mbuf = m_pullup(mbuf, poff + sizeof(struct tcphdr));
1822 sq->snd_buff[qentry].mbuf = mbuf;
1823 if (mbuf == NULL)
1824 return (ENOBUFS);
1825 }
1826 hdr->csum_l4 = SEND_L4_CSUM_TCP;
1827 break;
1828 case IPPROTO_UDP:
1829 if ((mbuf->m_pkthdr.csum_flags & CSUM_UDP) == 0)
1830 break;
1831
1832 if (mbuf->m_len < (poff + sizeof(struct udphdr))) {
1833 mbuf = m_pullup(mbuf, poff + sizeof(struct udphdr));
1834 sq->snd_buff[qentry].mbuf = mbuf;
1835 if (mbuf == NULL)
1836 return (ENOBUFS);
1837 }
1838 hdr->csum_l4 = SEND_L4_CSUM_UDP;
1839 break;
1840 case IPPROTO_SCTP:
1841 if ((mbuf->m_pkthdr.csum_flags & CSUM_SCTP) == 0)
1842 break;
1843
1844 if (mbuf->m_len < (poff + sizeof(struct sctphdr))) {
1845 mbuf = m_pullup(mbuf, poff + sizeof(struct sctphdr));
1846 sq->snd_buff[qentry].mbuf = mbuf;
1847 if (mbuf == NULL)
1848 return (ENOBUFS);
1849 }
1850 hdr->csum_l4 = SEND_L4_CSUM_SCTP;
1851 break;
1852 default:
1853 break;
1854 }
1855 hdr->l3_offset = ehdrlen;
1856 hdr->l4_offset = poff;
1857 }
1858
1859 if ((mbuf->m_pkthdr.tso_segsz != 0) && nic->hw_tso) {
1860 th = (struct tcphdr *)((caddr_t)(mbuf->m_data + poff));
1861
1862 hdr->tso = 1;
1863 hdr->tso_start = poff + (th->th_off * 4);
1864 hdr->tso_max_paysize = mbuf->m_pkthdr.tso_segsz;
1865 hdr->inner_l3_offset = ehdrlen - 2;
1866 nic->drv_stats.tx_tso++;
1867 }
1868 #endif
1869
1870 return (0);
1871 }
1872
1873 /*
1874 * SQ GATHER subdescriptor
1875 * Must follow HDR descriptor
1876 */
1877 static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
1878 int size, uint64_t data)
1879 {
1880 struct sq_gather_subdesc *gather;
1881
1882 qentry &= (sq->dmem.q_len - 1);
1883 gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry);
1884
1885 memset(gather, 0, SND_QUEUE_DESC_SIZE);
1886 gather->subdesc_type = SQ_DESC_TYPE_GATHER;
1887 gather->ld_type = NIC_SEND_LD_TYPE_E_LDD;
1888 gather->size = size;
1889 gather->addr = data;
1890 }
1891
1892 /* Put an mbuf to a SQ for packet transfer. */
1893 static int
1894 nicvf_tx_mbuf_locked(struct snd_queue *sq, struct mbuf **mbufp)
1895 {
1896 bus_dma_segment_t segs[256];
1897 struct snd_buff *snd_buff;
1898 size_t seg;
1899 int nsegs, qentry;
1900 int subdesc_cnt;
1901 int err;
1902
1903 NICVF_TX_LOCK_ASSERT(sq);
1904
1905 if (sq->free_cnt == 0)
1906 return (ENOBUFS);
1907
1908 snd_buff = &sq->snd_buff[sq->tail];
1909
1910 err = bus_dmamap_load_mbuf_sg(sq->snd_buff_dmat, snd_buff->dmap,
1911 *mbufp, segs, &nsegs, BUS_DMA_NOWAIT);
1912 if (__predict_false(err != 0)) {
1913 /* ARM64TODO: Add mbuf defragmenting if we lack maps */
1914 m_freem(*mbufp);
1915 *mbufp = NULL;
1916 return (err);
1917 }
1918
1919 /* Set how many subdescriptors is required */
1920 subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT + nsegs - 1;
1921 if (subdesc_cnt > sq->free_cnt) {
1922 /* ARM64TODO: Add mbuf defragmentation if we lack descriptors */
1923 bus_dmamap_unload(sq->snd_buff_dmat, snd_buff->dmap);
1924 return (ENOBUFS);
1925 }
1926
1927 qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1928
1929 /* Add SQ header subdesc */
1930 err = nicvf_sq_add_hdr_subdesc(sq, qentry, subdesc_cnt - 1, *mbufp,
1931 (*mbufp)->m_pkthdr.len);
1932 if (err != 0) {
1933 nicvf_put_sq_desc(sq, subdesc_cnt);
1934 bus_dmamap_unload(sq->snd_buff_dmat, snd_buff->dmap);
1935 if (err == ENOBUFS) {
1936 m_freem(*mbufp);
1937 *mbufp = NULL;
1938 }
1939 return (err);
1940 }
1941
1942 /* Add SQ gather subdescs */
1943 for (seg = 0; seg < nsegs; seg++) {
1944 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1945 nicvf_sq_add_gather_subdesc(sq, qentry, segs[seg].ds_len,
1946 segs[seg].ds_addr);
1947 }
1948
1949 /* make sure all memory stores are done before ringing doorbell */
1950 bus_dmamap_sync(sq->dmem.dmat, sq->dmem.dmap, BUS_DMASYNC_PREWRITE);
1951
1952 dprintf(sq->nic->dev, "%s: sq->idx: %d, subdesc_cnt: %d\n",
1953 __func__, sq->idx, subdesc_cnt);
1954 /* Inform HW to xmit new packet */
1955 nicvf_queue_reg_write(sq->nic, NIC_QSET_SQ_0_7_DOOR,
1956 sq->idx, subdesc_cnt);
1957 return (0);
1958 }
1959
1960 static __inline u_int
1961 frag_num(u_int i)
1962 {
1963 #if BYTE_ORDER == BIG_ENDIAN
1964 return ((i & ~3) + 3 - (i & 3));
1965 #else
1966 return (i);
1967 #endif
1968 }
1969
1970 /* Returns MBUF for a received packet */
1971 struct mbuf *
1972 nicvf_get_rcv_mbuf(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
1973 {
1974 int frag;
1975 int payload_len = 0;
1976 struct mbuf *mbuf;
1977 struct mbuf *mbuf_frag;
1978 uint16_t *rb_lens = NULL;
1979 uint64_t *rb_ptrs = NULL;
1980
1981 mbuf = NULL;
1982 rb_lens = (uint16_t *)((uint8_t *)cqe_rx + (3 * sizeof(uint64_t)));
1983 rb_ptrs = (uint64_t *)((uint8_t *)cqe_rx + (6 * sizeof(uint64_t)));
1984
1985 dprintf(nic->dev, "%s rb_cnt %d rb0_ptr %lx rb0_sz %d\n",
1986 __func__, cqe_rx->rb_cnt, cqe_rx->rb0_ptr, cqe_rx->rb0_sz);
1987
1988 for (frag = 0; frag < cqe_rx->rb_cnt; frag++) {
1989 payload_len = rb_lens[frag_num(frag)];
1990 if (frag == 0) {
1991 /* First fragment */
1992 mbuf = nicvf_rb_ptr_to_mbuf(nic,
1993 (*rb_ptrs - cqe_rx->align_pad));
1994 mbuf->m_len = payload_len;
1995 mbuf->m_data += cqe_rx->align_pad;
1996 if_setrcvif(mbuf, nic->ifp);
1997 } else {
1998 /* Add fragments */
1999 mbuf_frag = nicvf_rb_ptr_to_mbuf(nic, *rb_ptrs);
2000 m_append(mbuf, payload_len, mbuf_frag->m_data);
2001 m_freem(mbuf_frag);
2002 }
2003 /* Next buffer pointer */
2004 rb_ptrs++;
2005 }
2006
2007 if (__predict_true(mbuf != NULL)) {
2008 m_fixhdr(mbuf);
2009 mbuf->m_pkthdr.flowid = cqe_rx->rq_idx;
2010 M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE);
2011 if (__predict_true((if_getcapenable(nic->ifp) & IFCAP_RXCSUM) != 0)) {
2012 /*
2013 * HW by default verifies IP & TCP/UDP/SCTP checksums
2014 */
2015 if (__predict_true(cqe_rx->l3_type == L3TYPE_IPV4)) {
2016 mbuf->m_pkthdr.csum_flags =
2017 (CSUM_IP_CHECKED | CSUM_IP_VALID);
2018 }
2019
2020 switch (cqe_rx->l4_type) {
2021 case L4TYPE_UDP:
2022 case L4TYPE_TCP: /* fall through */
2023 mbuf->m_pkthdr.csum_flags |=
2024 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
2025 mbuf->m_pkthdr.csum_data = 0xffff;
2026 break;
2027 case L4TYPE_SCTP:
2028 mbuf->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
2029 break;
2030 default:
2031 break;
2032 }
2033 }
2034 }
2035
2036 return (mbuf);
2037 }
2038
2039 /* Enable interrupt */
2040 void
2041 nicvf_enable_intr(struct nicvf *nic, int int_type, int q_idx)
2042 {
2043 uint64_t reg_val;
2044
2045 reg_val = nicvf_reg_read(nic, NIC_VF_ENA_W1S);
2046
2047 switch (int_type) {
2048 case NICVF_INTR_CQ:
2049 reg_val |= ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2050 break;
2051 case NICVF_INTR_SQ:
2052 reg_val |= ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2053 break;
2054 case NICVF_INTR_RBDR:
2055 reg_val |= ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2056 break;
2057 case NICVF_INTR_PKT_DROP:
2058 reg_val |= (1UL << NICVF_INTR_PKT_DROP_SHIFT);
2059 break;
2060 case NICVF_INTR_TCP_TIMER:
2061 reg_val |= (1UL << NICVF_INTR_TCP_TIMER_SHIFT);
2062 break;
2063 case NICVF_INTR_MBOX:
2064 reg_val |= (1UL << NICVF_INTR_MBOX_SHIFT);
2065 break;
2066 case NICVF_INTR_QS_ERR:
2067 reg_val |= (1UL << NICVF_INTR_QS_ERR_SHIFT);
2068 break;
2069 default:
2070 device_printf(nic->dev,
2071 "Failed to enable interrupt: unknown type\n");
2072 break;
2073 }
2074
2075 nicvf_reg_write(nic, NIC_VF_ENA_W1S, reg_val);
2076 }
2077
2078 /* Disable interrupt */
2079 void
2080 nicvf_disable_intr(struct nicvf *nic, int int_type, int q_idx)
2081 {
2082 uint64_t reg_val = 0;
2083
2084 switch (int_type) {
2085 case NICVF_INTR_CQ:
2086 reg_val |= ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2087 break;
2088 case NICVF_INTR_SQ:
2089 reg_val |= ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2090 break;
2091 case NICVF_INTR_RBDR:
2092 reg_val |= ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2093 break;
2094 case NICVF_INTR_PKT_DROP:
2095 reg_val |= (1UL << NICVF_INTR_PKT_DROP_SHIFT);
2096 break;
2097 case NICVF_INTR_TCP_TIMER:
2098 reg_val |= (1UL << NICVF_INTR_TCP_TIMER_SHIFT);
2099 break;
2100 case NICVF_INTR_MBOX:
2101 reg_val |= (1UL << NICVF_INTR_MBOX_SHIFT);
2102 break;
2103 case NICVF_INTR_QS_ERR:
2104 reg_val |= (1UL << NICVF_INTR_QS_ERR_SHIFT);
2105 break;
2106 default:
2107 device_printf(nic->dev,
2108 "Failed to disable interrupt: unknown type\n");
2109 break;
2110 }
2111
2112 nicvf_reg_write(nic, NIC_VF_ENA_W1C, reg_val);
2113 }
2114
2115 /* Clear interrupt */
2116 void
2117 nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx)
2118 {
2119 uint64_t reg_val = 0;
2120
2121 switch (int_type) {
2122 case NICVF_INTR_CQ:
2123 reg_val = ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2124 break;
2125 case NICVF_INTR_SQ:
2126 reg_val = ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2127 break;
2128 case NICVF_INTR_RBDR:
2129 reg_val = ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2130 break;
2131 case NICVF_INTR_PKT_DROP:
2132 reg_val = (1UL << NICVF_INTR_PKT_DROP_SHIFT);
2133 break;
2134 case NICVF_INTR_TCP_TIMER:
2135 reg_val = (1UL << NICVF_INTR_TCP_TIMER_SHIFT);
2136 break;
2137 case NICVF_INTR_MBOX:
2138 reg_val = (1UL << NICVF_INTR_MBOX_SHIFT);
2139 break;
2140 case NICVF_INTR_QS_ERR:
2141 reg_val |= (1UL << NICVF_INTR_QS_ERR_SHIFT);
2142 break;
2143 default:
2144 device_printf(nic->dev,
2145 "Failed to clear interrupt: unknown type\n");
2146 break;
2147 }
2148
2149 nicvf_reg_write(nic, NIC_VF_INT, reg_val);
2150 }
2151
2152 /* Check if interrupt is enabled */
2153 int
2154 nicvf_is_intr_enabled(struct nicvf *nic, int int_type, int q_idx)
2155 {
2156 uint64_t reg_val;
2157 uint64_t mask = 0xff;
2158
2159 reg_val = nicvf_reg_read(nic, NIC_VF_ENA_W1S);
2160
2161 switch (int_type) {
2162 case NICVF_INTR_CQ:
2163 mask = ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2164 break;
2165 case NICVF_INTR_SQ:
2166 mask = ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2167 break;
2168 case NICVF_INTR_RBDR:
2169 mask = ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2170 break;
2171 case NICVF_INTR_PKT_DROP:
2172 mask = NICVF_INTR_PKT_DROP_MASK;
2173 break;
2174 case NICVF_INTR_TCP_TIMER:
2175 mask = NICVF_INTR_TCP_TIMER_MASK;
2176 break;
2177 case NICVF_INTR_MBOX:
2178 mask = NICVF_INTR_MBOX_MASK;
2179 break;
2180 case NICVF_INTR_QS_ERR:
2181 mask = NICVF_INTR_QS_ERR_MASK;
2182 break;
2183 default:
2184 device_printf(nic->dev,
2185 "Failed to check interrupt enable: unknown type\n");
2186 break;
2187 }
2188
2189 return (reg_val & mask);
2190 }
2191
2192 void
2193 nicvf_update_rq_stats(struct nicvf *nic, int rq_idx)
2194 {
2195 struct rcv_queue *rq;
2196
2197 #define GET_RQ_STATS(reg) \
2198 nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\
2199 (rq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
2200
2201 rq = &nic->qs->rq[rq_idx];
2202 rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS);
2203 rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS);
2204 }
2205
2206 void
2207 nicvf_update_sq_stats(struct nicvf *nic, int sq_idx)
2208 {
2209 struct snd_queue *sq;
2210
2211 #define GET_SQ_STATS(reg) \
2212 nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\
2213 (sq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
2214
2215 sq = &nic->qs->sq[sq_idx];
2216 sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS);
2217 sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS);
2218 }
2219
2220 /* Check for errors in the receive cmp.queue entry */
2221 int
2222 nicvf_check_cqe_rx_errs(struct nicvf *nic, struct cmp_queue *cq,
2223 struct cqe_rx_t *cqe_rx)
2224 {
2225 struct nicvf_hw_stats *stats = &nic->hw_stats;
2226 struct nicvf_drv_stats *drv_stats = &nic->drv_stats;
2227
2228 if (!cqe_rx->err_level && !cqe_rx->err_opcode) {
2229 drv_stats->rx_frames_ok++;
2230 return (0);
2231 }
2232
2233 switch (cqe_rx->err_opcode) {
2234 case CQ_RX_ERROP_RE_PARTIAL:
2235 stats->rx_bgx_truncated_pkts++;
2236 break;
2237 case CQ_RX_ERROP_RE_JABBER:
2238 stats->rx_jabber_errs++;
2239 break;
2240 case CQ_RX_ERROP_RE_FCS:
2241 stats->rx_fcs_errs++;
2242 break;
2243 case CQ_RX_ERROP_RE_RX_CTL:
2244 stats->rx_bgx_errs++;
2245 break;
2246 case CQ_RX_ERROP_PREL2_ERR:
2247 stats->rx_prel2_errs++;
2248 break;
2249 case CQ_RX_ERROP_L2_MAL:
2250 stats->rx_l2_hdr_malformed++;
2251 break;
2252 case CQ_RX_ERROP_L2_OVERSIZE:
2253 stats->rx_oversize++;
2254 break;
2255 case CQ_RX_ERROP_L2_UNDERSIZE:
2256 stats->rx_undersize++;
2257 break;
2258 case CQ_RX_ERROP_L2_LENMISM:
2259 stats->rx_l2_len_mismatch++;
2260 break;
2261 case CQ_RX_ERROP_L2_PCLP:
2262 stats->rx_l2_pclp++;
2263 break;
2264 case CQ_RX_ERROP_IP_NOT:
2265 stats->rx_ip_ver_errs++;
2266 break;
2267 case CQ_RX_ERROP_IP_CSUM_ERR:
2268 stats->rx_ip_csum_errs++;
2269 break;
2270 case CQ_RX_ERROP_IP_MAL:
2271 stats->rx_ip_hdr_malformed++;
2272 break;
2273 case CQ_RX_ERROP_IP_MALD:
2274 stats->rx_ip_payload_malformed++;
2275 break;
2276 case CQ_RX_ERROP_IP_HOP:
2277 stats->rx_ip_ttl_errs++;
2278 break;
2279 case CQ_RX_ERROP_L3_PCLP:
2280 stats->rx_l3_pclp++;
2281 break;
2282 case CQ_RX_ERROP_L4_MAL:
2283 stats->rx_l4_malformed++;
2284 break;
2285 case CQ_RX_ERROP_L4_CHK:
2286 stats->rx_l4_csum_errs++;
2287 break;
2288 case CQ_RX_ERROP_UDP_LEN:
2289 stats->rx_udp_len_errs++;
2290 break;
2291 case CQ_RX_ERROP_L4_PORT:
2292 stats->rx_l4_port_errs++;
2293 break;
2294 case CQ_RX_ERROP_TCP_FLAG:
2295 stats->rx_tcp_flag_errs++;
2296 break;
2297 case CQ_RX_ERROP_TCP_OFFSET:
2298 stats->rx_tcp_offset_errs++;
2299 break;
2300 case CQ_RX_ERROP_L4_PCLP:
2301 stats->rx_l4_pclp++;
2302 break;
2303 case CQ_RX_ERROP_RBDR_TRUNC:
2304 stats->rx_truncated_pkts++;
2305 break;
2306 }
2307
2308 return (1);
2309 }
2310
2311 /* Check for errors in the send cmp.queue entry */
2312 int
2313 nicvf_check_cqe_tx_errs(struct nicvf *nic, struct cmp_queue *cq,
2314 struct cqe_send_t *cqe_tx)
2315 {
2316 struct cmp_queue_stats *stats = &cq->stats;
2317
2318 switch (cqe_tx->send_status) {
2319 case CQ_TX_ERROP_GOOD:
2320 stats->tx.good++;
2321 return (0);
2322 case CQ_TX_ERROP_DESC_FAULT:
2323 stats->tx.desc_fault++;
2324 break;
2325 case CQ_TX_ERROP_HDR_CONS_ERR:
2326 stats->tx.hdr_cons_err++;
2327 break;
2328 case CQ_TX_ERROP_SUBDC_ERR:
2329 stats->tx.subdesc_err++;
2330 break;
2331 case CQ_TX_ERROP_IMM_SIZE_OFLOW:
2332 stats->tx.imm_size_oflow++;
2333 break;
2334 case CQ_TX_ERROP_DATA_SEQUENCE_ERR:
2335 stats->tx.data_seq_err++;
2336 break;
2337 case CQ_TX_ERROP_MEM_SEQUENCE_ERR:
2338 stats->tx.mem_seq_err++;
2339 break;
2340 case CQ_TX_ERROP_LOCK_VIOL:
2341 stats->tx.lock_viol++;
2342 break;
2343 case CQ_TX_ERROP_DATA_FAULT:
2344 stats->tx.data_fault++;
2345 break;
2346 case CQ_TX_ERROP_TSTMP_CONFLICT:
2347 stats->tx.tstmp_conflict++;
2348 break;
2349 case CQ_TX_ERROP_TSTMP_TIMEOUT:
2350 stats->tx.tstmp_timeout++;
2351 break;
2352 case CQ_TX_ERROP_MEM_FAULT:
2353 stats->tx.mem_fault++;
2354 break;
2355 case CQ_TX_ERROP_CK_OVERLAP:
2356 stats->tx.csum_overlap++;
2357 break;
2358 case CQ_TX_ERROP_CK_OFLOW:
2359 stats->tx.csum_overflow++;
2360 break;
2361 }
2362
2363 return (1);
2364 }
Cache object: 84d33fe097f01048e95a5f59f1457048
|