The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/wi/if_wi.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1997, 1998, 1999
    3  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. All advertising materials mentioning features or use of this software
   14  *    must display the following acknowledgement:
   15  *      This product includes software developed by Bill Paul.
   16  * 4. Neither the name of the author nor the names of any co-contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   30  * THE POSSIBILITY OF SUCH DAMAGE.
   31  */
   32 
   33 /*
   34  * Lucent WaveLAN/IEEE 802.11 PCMCIA driver.
   35  *
   36  * Original FreeBSD driver written by Bill Paul <wpaul@ctr.columbia.edu>
   37  * Electrical Engineering Department
   38  * Columbia University, New York City
   39  */
   40 
   41 /*
   42  * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
   43  * from Lucent. Unlike the older cards, the new ones are programmed
   44  * entirely via a firmware-driven controller called the Hermes.
   45  * Unfortunately, Lucent will not release the Hermes programming manual
   46  * without an NDA (if at all). What they do release is an API library
   47  * called the HCF (Hardware Control Functions) which is supposed to
   48  * do the device-specific operations of a device driver for you. The
   49  * publically available version of the HCF library (the 'HCF Light') is 
   50  * a) extremely gross, b) lacks certain features, particularly support
   51  * for 802.11 frames, and c) is contaminated by the GNU Public License.
   52  *
   53  * This driver does not use the HCF or HCF Light at all. Instead, it
   54  * programs the Hermes controller directly, using information gleaned
   55  * from the HCF Light code and corresponding documentation.
   56  *
   57  * This driver supports the ISA, PCMCIA and PCI versions of the Lucent
   58  * WaveLan cards (based on the Hermes chipset), as well as the newer
   59  * Prism 2 chipsets with firmware from Intersil and Symbol.
   60  */
   61 
   62 #include <sys/cdefs.h>
   63 __FBSDID("$FreeBSD: releng/10.0/sys/dev/wi/if_wi.c 253756 2013-07-29 05:39:20Z jhibbits $");
   64 
   65 #include "opt_wlan.h"
   66 
   67 #define WI_HERMES_STATS_WAR     /* Work around stats counter bug. */
   68 
   69 #include <sys/param.h>
   70 #include <sys/systm.h>
   71 #include <sys/endian.h>
   72 #include <sys/sockio.h>
   73 #include <sys/mbuf.h>
   74 #include <sys/priv.h>
   75 #include <sys/proc.h>
   76 #include <sys/kernel.h>
   77 #include <sys/socket.h>
   78 #include <sys/module.h>
   79 #include <sys/bus.h>
   80 #include <sys/random.h>
   81 #include <sys/syslog.h>
   82 #include <sys/sysctl.h>
   83 
   84 #include <machine/bus.h>
   85 #include <machine/resource.h>
   86 #include <machine/atomic.h>
   87 #include <sys/rman.h>
   88 
   89 #include <net/if.h>
   90 #include <net/if_arp.h>
   91 #include <net/ethernet.h>
   92 #include <net/if_dl.h>
   93 #include <net/if_llc.h>
   94 #include <net/if_media.h>
   95 #include <net/if_types.h>
   96 
   97 #include <net80211/ieee80211_var.h>
   98 #include <net80211/ieee80211_ioctl.h>
   99 #include <net80211/ieee80211_radiotap.h>
  100 
  101 #include <netinet/in.h>
  102 #include <netinet/in_systm.h>
  103 #include <netinet/in_var.h>
  104 #include <netinet/ip.h>
  105 #include <netinet/if_ether.h>
  106 
  107 #include <net/bpf.h>
  108 
  109 #include <dev/wi/if_wavelan_ieee.h>
  110 #include <dev/wi/if_wireg.h>
  111 #include <dev/wi/if_wivar.h>
  112 
  113 static struct ieee80211vap *wi_vap_create(struct ieee80211com *,
  114                     const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
  115                     const uint8_t [IEEE80211_ADDR_LEN],
  116                     const uint8_t [IEEE80211_ADDR_LEN]);
  117 static void wi_vap_delete(struct ieee80211vap *vap);
  118 static void wi_stop_locked(struct wi_softc *sc, int disable);
  119 static void wi_start_locked(struct ifnet *);
  120 static void wi_start(struct ifnet *);
  121 static int  wi_start_tx(struct ifnet *ifp, struct wi_frame *frmhdr,
  122                 struct mbuf *m0);
  123 static int  wi_raw_xmit(struct ieee80211_node *, struct mbuf *,
  124                 const struct ieee80211_bpf_params *);
  125 static int  wi_newstate_sta(struct ieee80211vap *, enum ieee80211_state, int);
  126 static int  wi_newstate_hostap(struct ieee80211vap *, enum ieee80211_state,
  127                 int);
  128 static void wi_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
  129                 int subtype, int rssi, int nf);
  130 static int  wi_reset(struct wi_softc *);
  131 static void wi_watchdog(void *);
  132 static int  wi_ioctl(struct ifnet *, u_long, caddr_t);
  133 static void wi_media_status(struct ifnet *, struct ifmediareq *);
  134 
  135 static void wi_rx_intr(struct wi_softc *);
  136 static void wi_tx_intr(struct wi_softc *);
  137 static void wi_tx_ex_intr(struct wi_softc *);
  138 
  139 static void wi_info_intr(struct wi_softc *);
  140 
  141 static int  wi_write_txrate(struct wi_softc *, struct ieee80211vap *);
  142 static int  wi_write_wep(struct wi_softc *, struct ieee80211vap *);
  143 static int  wi_write_multi(struct wi_softc *);
  144 static void wi_update_mcast(struct ifnet *);
  145 static void wi_update_promisc(struct ifnet *);
  146 static int  wi_alloc_fid(struct wi_softc *, int, int *);
  147 static void wi_read_nicid(struct wi_softc *);
  148 static int  wi_write_ssid(struct wi_softc *, int, u_int8_t *, int);
  149 
  150 static int  wi_cmd(struct wi_softc *, int, int, int, int);
  151 static int  wi_seek_bap(struct wi_softc *, int, int);
  152 static int  wi_read_bap(struct wi_softc *, int, int, void *, int);
  153 static int  wi_write_bap(struct wi_softc *, int, int, void *, int);
  154 static int  wi_mwrite_bap(struct wi_softc *, int, int, struct mbuf *, int);
  155 static int  wi_read_rid(struct wi_softc *, int, void *, int *);
  156 static int  wi_write_rid(struct wi_softc *, int, void *, int);
  157 static int  wi_write_appie(struct wi_softc *, int, const struct ieee80211_appie *);
  158 
  159 static void wi_scan_start(struct ieee80211com *);
  160 static void wi_scan_end(struct ieee80211com *);
  161 static void wi_set_channel(struct ieee80211com *);
  162         
  163 static __inline int
  164 wi_write_val(struct wi_softc *sc, int rid, u_int16_t val)
  165 {
  166 
  167         val = htole16(val);
  168         return wi_write_rid(sc, rid, &val, sizeof(val));
  169 }
  170 
  171 static SYSCTL_NODE(_hw, OID_AUTO, wi, CTLFLAG_RD, 0,
  172             "Wireless driver parameters");
  173 
  174 static  struct timeval lasttxerror;     /* time of last tx error msg */
  175 static  int curtxeps;                   /* current tx error msgs/sec */
  176 static  int wi_txerate = 0;             /* tx error rate: max msgs/sec */
  177 SYSCTL_INT(_hw_wi, OID_AUTO, txerate, CTLFLAG_RW, &wi_txerate,
  178             0, "max tx error msgs/sec; 0 to disable msgs");
  179 
  180 #define WI_DEBUG
  181 #ifdef WI_DEBUG
  182 static  int wi_debug = 0;
  183 SYSCTL_INT(_hw_wi, OID_AUTO, debug, CTLFLAG_RW, &wi_debug,
  184             0, "control debugging printfs");
  185 #define DPRINTF(X)      if (wi_debug) printf X
  186 #else
  187 #define DPRINTF(X)
  188 #endif
  189 
  190 #define WI_INTRS        (WI_EV_RX | WI_EV_ALLOC | WI_EV_INFO)
  191 
  192 struct wi_card_ident wi_card_ident[] = {
  193         /* CARD_ID                      CARD_NAME               FIRM_TYPE */
  194         { WI_NIC_LUCENT_ID,             WI_NIC_LUCENT_STR,      WI_LUCENT },
  195         { WI_NIC_SONY_ID,               WI_NIC_SONY_STR,        WI_LUCENT },
  196         { WI_NIC_LUCENT_EMB_ID,         WI_NIC_LUCENT_EMB_STR,  WI_LUCENT },
  197         { WI_NIC_EVB2_ID,               WI_NIC_EVB2_STR,        WI_INTERSIL },
  198         { WI_NIC_HWB3763_ID,            WI_NIC_HWB3763_STR,     WI_INTERSIL },
  199         { WI_NIC_HWB3163_ID,            WI_NIC_HWB3163_STR,     WI_INTERSIL },
  200         { WI_NIC_HWB3163B_ID,           WI_NIC_HWB3163B_STR,    WI_INTERSIL },
  201         { WI_NIC_EVB3_ID,               WI_NIC_EVB3_STR,        WI_INTERSIL },
  202         { WI_NIC_HWB1153_ID,            WI_NIC_HWB1153_STR,     WI_INTERSIL },
  203         { WI_NIC_P2_SST_ID,             WI_NIC_P2_SST_STR,      WI_INTERSIL },
  204         { WI_NIC_EVB2_SST_ID,           WI_NIC_EVB2_SST_STR,    WI_INTERSIL },
  205         { WI_NIC_3842_EVA_ID,           WI_NIC_3842_EVA_STR,    WI_INTERSIL },
  206         { WI_NIC_3842_PCMCIA_AMD_ID,    WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
  207         { WI_NIC_3842_PCMCIA_SST_ID,    WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
  208         { WI_NIC_3842_PCMCIA_ATL_ID,    WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
  209         { WI_NIC_3842_PCMCIA_ATS_ID,    WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
  210         { WI_NIC_3842_MINI_AMD_ID,      WI_NIC_3842_MINI_STR,   WI_INTERSIL },
  211         { WI_NIC_3842_MINI_SST_ID,      WI_NIC_3842_MINI_STR,   WI_INTERSIL },
  212         { WI_NIC_3842_MINI_ATL_ID,      WI_NIC_3842_MINI_STR,   WI_INTERSIL },
  213         { WI_NIC_3842_MINI_ATS_ID,      WI_NIC_3842_MINI_STR,   WI_INTERSIL },
  214         { WI_NIC_3842_PCI_AMD_ID,       WI_NIC_3842_PCI_STR,    WI_INTERSIL },
  215         { WI_NIC_3842_PCI_SST_ID,       WI_NIC_3842_PCI_STR,    WI_INTERSIL },
  216         { WI_NIC_3842_PCI_ATS_ID,       WI_NIC_3842_PCI_STR,    WI_INTERSIL },
  217         { WI_NIC_3842_PCI_ATL_ID,       WI_NIC_3842_PCI_STR,    WI_INTERSIL },
  218         { WI_NIC_P3_PCMCIA_AMD_ID,      WI_NIC_P3_PCMCIA_STR,   WI_INTERSIL },
  219         { WI_NIC_P3_PCMCIA_SST_ID,      WI_NIC_P3_PCMCIA_STR,   WI_INTERSIL },
  220         { WI_NIC_P3_PCMCIA_ATL_ID,      WI_NIC_P3_PCMCIA_STR,   WI_INTERSIL },
  221         { WI_NIC_P3_PCMCIA_ATS_ID,      WI_NIC_P3_PCMCIA_STR,   WI_INTERSIL },
  222         { WI_NIC_P3_MINI_AMD_ID,        WI_NIC_P3_MINI_STR,     WI_INTERSIL },
  223         { WI_NIC_P3_MINI_SST_ID,        WI_NIC_P3_MINI_STR,     WI_INTERSIL },
  224         { WI_NIC_P3_MINI_ATL_ID,        WI_NIC_P3_MINI_STR,     WI_INTERSIL },
  225         { WI_NIC_P3_MINI_ATS_ID,        WI_NIC_P3_MINI_STR,     WI_INTERSIL },
  226         { 0,    NULL,   0 },
  227 };
  228 
  229 static char *wi_firmware_names[] = { "none", "Hermes", "Intersil", "Symbol" };
  230 
  231 devclass_t wi_devclass;
  232 
  233 int
  234 wi_attach(device_t dev)
  235 {
  236         struct wi_softc *sc = device_get_softc(dev);
  237         struct ieee80211com *ic;
  238         struct ifnet *ifp;
  239         int i, nrates, buflen;
  240         u_int16_t val;
  241         u_int8_t ratebuf[2 + IEEE80211_RATE_SIZE];
  242         struct ieee80211_rateset *rs;
  243         struct sysctl_ctx_list *sctx;
  244         struct sysctl_oid *soid;
  245         static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
  246                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
  247         };
  248         int error;
  249         uint8_t macaddr[IEEE80211_ADDR_LEN];
  250 
  251         ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
  252         if (ifp == NULL) {
  253                 device_printf(dev, "can not if_alloc\n");
  254                 wi_free(dev);
  255                 return ENOSPC;
  256         }
  257         ic = ifp->if_l2com;
  258 
  259         sc->sc_firmware_type = WI_NOTYPE;
  260         sc->wi_cmd_count = 500;
  261         /* Reset the NIC. */
  262         if (wi_reset(sc) != 0) {
  263                 wi_free(dev);
  264                 return ENXIO;           /* XXX */
  265         }
  266 
  267         /* Read NIC identification */
  268         wi_read_nicid(sc);
  269         switch (sc->sc_firmware_type) {
  270         case WI_LUCENT:
  271                 if (sc->sc_sta_firmware_ver < 60006)
  272                         goto reject;
  273                 break;
  274         case WI_INTERSIL:
  275                 if (sc->sc_sta_firmware_ver < 800)
  276                         goto reject;
  277                 break;
  278         default:
  279         reject:
  280                 device_printf(dev, "Sorry, this card is not supported "
  281                     "(type %d, firmware ver %d)\n",
  282                     sc->sc_firmware_type, sc->sc_sta_firmware_ver);
  283                 wi_free(dev);
  284                 return EOPNOTSUPP; 
  285         }
  286 
  287         /* Export info about the device via sysctl */
  288         sctx = device_get_sysctl_ctx(dev);
  289         soid = device_get_sysctl_tree(dev);
  290         SYSCTL_ADD_STRING(sctx, SYSCTL_CHILDREN(soid), OID_AUTO,
  291             "firmware_type", CTLFLAG_RD,
  292             wi_firmware_names[sc->sc_firmware_type], 0,
  293             "Firmware type string");
  294         SYSCTL_ADD_INT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "sta_version",
  295             CTLFLAG_RD, &sc->sc_sta_firmware_ver, 0,
  296             "Station Firmware version");
  297         if (sc->sc_firmware_type == WI_INTERSIL)
  298                 SYSCTL_ADD_INT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO,
  299                     "pri_version", CTLFLAG_RD, &sc->sc_pri_firmware_ver, 0,
  300                     "Primary Firmware version");
  301         SYSCTL_ADD_UINT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "nic_id",
  302             CTLFLAG_RD, &sc->sc_nic_id, 0, "NIC id");
  303         SYSCTL_ADD_STRING(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "nic_name",
  304             CTLFLAG_RD, sc->sc_nic_name, 0, "NIC name");
  305 
  306         mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
  307             MTX_DEF | MTX_RECURSE);
  308         callout_init_mtx(&sc->sc_watchdog, &sc->sc_mtx, 0);
  309 
  310         /*
  311          * Read the station address.
  312          * And do it twice. I've seen PRISM-based cards that return
  313          * an error when trying to read it the first time, which causes
  314          * the probe to fail.
  315          */
  316         buflen = IEEE80211_ADDR_LEN;
  317         error = wi_read_rid(sc, WI_RID_MAC_NODE, macaddr, &buflen);
  318         if (error != 0) {
  319                 buflen = IEEE80211_ADDR_LEN;
  320                 error = wi_read_rid(sc, WI_RID_MAC_NODE, macaddr, &buflen);
  321         }
  322         if (error || IEEE80211_ADDR_EQ(macaddr, empty_macaddr)) {
  323                 if (error != 0)
  324                         device_printf(dev, "mac read failed %d\n", error);
  325                 else {
  326                         device_printf(dev, "mac read failed (all zeros)\n");
  327                         error = ENXIO;
  328                 }
  329                 wi_free(dev);
  330                 return (error);
  331         }
  332 
  333         ifp->if_softc = sc;
  334         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
  335         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
  336         ifp->if_ioctl = wi_ioctl;
  337         ifp->if_start = wi_start;
  338         ifp->if_init = wi_init;
  339         IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
  340         ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
  341         IFQ_SET_READY(&ifp->if_snd);
  342 
  343         ic->ic_ifp = ifp;
  344         ic->ic_phytype = IEEE80211_T_DS;
  345         ic->ic_opmode = IEEE80211_M_STA;
  346         ic->ic_caps = IEEE80211_C_STA
  347                     | IEEE80211_C_PMGT
  348                     | IEEE80211_C_MONITOR
  349                     ;
  350 
  351         /*
  352          * Query the card for available channels and setup the
  353          * channel table.  We assume these are all 11b channels.
  354          */
  355         buflen = sizeof(val);
  356         if (wi_read_rid(sc, WI_RID_CHANNEL_LIST, &val, &buflen) != 0)
  357                 val = htole16(0x1fff);  /* assume 1-11 */
  358         KASSERT(val != 0, ("wi_attach: no available channels listed!"));
  359 
  360         val <<= 1;                      /* shift for base 1 indices */
  361         for (i = 1; i < 16; i++) {
  362                 struct ieee80211_channel *c;
  363 
  364                 if (!isset((u_int8_t*)&val, i))
  365                         continue;
  366                 c = &ic->ic_channels[ic->ic_nchans++];
  367                 c->ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_B);
  368                 c->ic_flags = IEEE80211_CHAN_B;
  369                 c->ic_ieee = i;
  370                 /* XXX txpowers? */
  371         }
  372 
  373         /*
  374          * Set flags based on firmware version.
  375          */
  376         switch (sc->sc_firmware_type) {
  377         case WI_LUCENT:
  378                 sc->sc_ntxbuf = 1;
  379                 ic->ic_caps |= IEEE80211_C_IBSS;
  380 
  381                 sc->sc_ibss_port = WI_PORTTYPE_BSS;
  382                 sc->sc_monitor_port = WI_PORTTYPE_ADHOC;
  383                 sc->sc_min_rssi = WI_LUCENT_MIN_RSSI;
  384                 sc->sc_max_rssi = WI_LUCENT_MAX_RSSI;
  385                 sc->sc_dbm_offset = WI_LUCENT_DBM_OFFSET;
  386                 break;
  387         case WI_INTERSIL:
  388                 sc->sc_ntxbuf = WI_NTXBUF;
  389                 sc->sc_flags |= WI_FLAGS_HAS_FRAGTHR
  390                              |  WI_FLAGS_HAS_ROAMING;
  391                 /*
  392                  * Old firmware are slow, so give peace a chance.
  393                  */
  394                 if (sc->sc_sta_firmware_ver < 10000)
  395                         sc->wi_cmd_count = 5000;
  396                 if (sc->sc_sta_firmware_ver > 10101)
  397                         sc->sc_flags |= WI_FLAGS_HAS_DBMADJUST;
  398                 ic->ic_caps |= IEEE80211_C_IBSS;
  399                 /*
  400                  * version 0.8.3 and newer are the only ones that are known
  401                  * to currently work.  Earlier versions can be made to work,
  402                  * at least according to the Linux driver but we require
  403                  * monitor mode so this is irrelevant.
  404                  */
  405                 ic->ic_caps |= IEEE80211_C_HOSTAP;
  406                 if (sc->sc_sta_firmware_ver >= 10603)
  407                         sc->sc_flags |= WI_FLAGS_HAS_ENHSECURITY;
  408                 if (sc->sc_sta_firmware_ver >= 10700) {
  409                         /*
  410                          * 1.7.0+ have the necessary support for sta mode WPA.
  411                          */
  412                         sc->sc_flags |= WI_FLAGS_HAS_WPASUPPORT;
  413                         ic->ic_caps |= IEEE80211_C_WPA;
  414                 }
  415 
  416                 sc->sc_ibss_port = WI_PORTTYPE_IBSS;
  417                 sc->sc_monitor_port = WI_PORTTYPE_APSILENT;
  418                 sc->sc_min_rssi = WI_PRISM_MIN_RSSI;
  419                 sc->sc_max_rssi = WI_PRISM_MAX_RSSI;
  420                 sc->sc_dbm_offset = WI_PRISM_DBM_OFFSET;
  421                 break;
  422         }
  423 
  424         /*
  425          * Find out if we support WEP on this card.
  426          */
  427         buflen = sizeof(val);
  428         if (wi_read_rid(sc, WI_RID_WEP_AVAIL, &val, &buflen) == 0 &&
  429             val != htole16(0))
  430                 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
  431 
  432         /* Find supported rates. */
  433         buflen = sizeof(ratebuf);
  434         rs = &ic->ic_sup_rates[IEEE80211_MODE_11B];
  435         if (wi_read_rid(sc, WI_RID_DATA_RATES, ratebuf, &buflen) == 0) {
  436                 nrates = le16toh(*(u_int16_t *)ratebuf);
  437                 if (nrates > IEEE80211_RATE_MAXSIZE)
  438                         nrates = IEEE80211_RATE_MAXSIZE;
  439                 rs->rs_nrates = 0;
  440                 for (i = 0; i < nrates; i++)
  441                         if (ratebuf[2+i])
  442                                 rs->rs_rates[rs->rs_nrates++] = ratebuf[2+i];
  443         } else {
  444                 /* XXX fallback on error? */
  445         }
  446 
  447         buflen = sizeof(val);
  448         if ((sc->sc_flags & WI_FLAGS_HAS_DBMADJUST) &&
  449             wi_read_rid(sc, WI_RID_DBM_ADJUST, &val, &buflen) == 0) {
  450                 sc->sc_dbm_offset = le16toh(val);
  451         }
  452 
  453         sc->sc_portnum = WI_DEFAULT_PORT;
  454 
  455         ieee80211_ifattach(ic, macaddr);
  456         ic->ic_raw_xmit = wi_raw_xmit;
  457         ic->ic_scan_start = wi_scan_start;
  458         ic->ic_scan_end = wi_scan_end;
  459         ic->ic_set_channel = wi_set_channel;
  460 
  461         ic->ic_vap_create = wi_vap_create;
  462         ic->ic_vap_delete = wi_vap_delete;
  463         ic->ic_update_mcast = wi_update_mcast;
  464         ic->ic_update_promisc = wi_update_promisc;
  465 
  466         ieee80211_radiotap_attach(ic,
  467             &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
  468                 WI_TX_RADIOTAP_PRESENT,
  469             &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
  470                 WI_RX_RADIOTAP_PRESENT);
  471 
  472         if (bootverbose)
  473                 ieee80211_announce(ic);
  474 
  475         error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
  476             NULL, wi_intr, sc, &sc->wi_intrhand);
  477         if (error) {
  478                 device_printf(dev, "bus_setup_intr() failed! (%d)\n", error);
  479                 ieee80211_ifdetach(ic);
  480                 if_free(sc->sc_ifp);
  481                 wi_free(dev);
  482                 return error;
  483         }
  484 
  485         return (0);
  486 }
  487 
  488 int
  489 wi_detach(device_t dev)
  490 {
  491         struct wi_softc *sc = device_get_softc(dev);
  492         struct ifnet *ifp = sc->sc_ifp;
  493         struct ieee80211com *ic = ifp->if_l2com;
  494 
  495         WI_LOCK(sc);
  496 
  497         /* check if device was removed */
  498         sc->wi_gone |= !bus_child_present(dev);
  499 
  500         wi_stop_locked(sc, 0);
  501         WI_UNLOCK(sc);
  502         ieee80211_ifdetach(ic);
  503 
  504         bus_teardown_intr(dev, sc->irq, sc->wi_intrhand);
  505         if_free(sc->sc_ifp);
  506         wi_free(dev);
  507         mtx_destroy(&sc->sc_mtx);
  508         return (0);
  509 }
  510 
  511 static struct ieee80211vap *
  512 wi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
  513     enum ieee80211_opmode opmode, int flags,
  514     const uint8_t bssid[IEEE80211_ADDR_LEN],
  515     const uint8_t mac[IEEE80211_ADDR_LEN])
  516 {
  517         struct wi_softc *sc = ic->ic_ifp->if_softc;
  518         struct wi_vap *wvp;
  519         struct ieee80211vap *vap;
  520 
  521         if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
  522                 return NULL;
  523         wvp = (struct wi_vap *) malloc(sizeof(struct wi_vap),
  524             M_80211_VAP, M_NOWAIT | M_ZERO);
  525         if (wvp == NULL)
  526                 return NULL;
  527 
  528         vap = &wvp->wv_vap;
  529         ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
  530 
  531         vap->iv_max_aid = WI_MAX_AID;
  532 
  533         switch (opmode) {
  534         case IEEE80211_M_STA:
  535                 sc->sc_porttype = WI_PORTTYPE_BSS;
  536                 wvp->wv_newstate = vap->iv_newstate;
  537                 vap->iv_newstate = wi_newstate_sta;
  538                 /* need to filter mgt frames to avoid confusing state machine */
  539                 wvp->wv_recv_mgmt = vap->iv_recv_mgmt;
  540                 vap->iv_recv_mgmt = wi_recv_mgmt;
  541                 break;
  542         case IEEE80211_M_IBSS:
  543                 sc->sc_porttype = sc->sc_ibss_port;
  544                 wvp->wv_newstate = vap->iv_newstate;
  545                 vap->iv_newstate = wi_newstate_sta;
  546                 break;
  547         case IEEE80211_M_AHDEMO:
  548                 sc->sc_porttype = WI_PORTTYPE_ADHOC;
  549                 break;
  550         case IEEE80211_M_HOSTAP:
  551                 sc->sc_porttype = WI_PORTTYPE_HOSTAP;
  552                 wvp->wv_newstate = vap->iv_newstate;
  553                 vap->iv_newstate = wi_newstate_hostap;
  554                 break;
  555         case IEEE80211_M_MONITOR:
  556                 sc->sc_porttype = sc->sc_monitor_port;
  557                 break;
  558         default:
  559                 break;
  560         }
  561 
  562         /* complete setup */
  563         ieee80211_vap_attach(vap, ieee80211_media_change, wi_media_status);
  564         ic->ic_opmode = opmode;
  565         return vap;
  566 }
  567 
  568 static void
  569 wi_vap_delete(struct ieee80211vap *vap)
  570 {
  571         struct wi_vap *wvp = WI_VAP(vap);
  572 
  573         ieee80211_vap_detach(vap);
  574         free(wvp, M_80211_VAP);
  575 }
  576 
  577 int
  578 wi_shutdown(device_t dev)
  579 {
  580         struct wi_softc *sc = device_get_softc(dev);
  581 
  582         wi_stop(sc, 1);
  583         return (0);
  584 }
  585 
  586 void
  587 wi_intr(void *arg)
  588 {
  589         struct wi_softc *sc = arg;
  590         struct ifnet *ifp = sc->sc_ifp;
  591         u_int16_t status;
  592 
  593         WI_LOCK(sc);
  594 
  595         if (sc->wi_gone || !sc->sc_enabled || (ifp->if_flags & IFF_UP) == 0) {
  596                 CSR_WRITE_2(sc, WI_INT_EN, 0);
  597                 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
  598                 WI_UNLOCK(sc);
  599                 return;
  600         }
  601 
  602         /* Disable interrupts. */
  603         CSR_WRITE_2(sc, WI_INT_EN, 0);
  604 
  605         status = CSR_READ_2(sc, WI_EVENT_STAT);
  606         if (status & WI_EV_RX)
  607                 wi_rx_intr(sc);
  608         if (status & WI_EV_ALLOC)
  609                 wi_tx_intr(sc);
  610         if (status & WI_EV_TX_EXC)
  611                 wi_tx_ex_intr(sc);
  612         if (status & WI_EV_INFO)
  613                 wi_info_intr(sc);
  614         if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
  615             !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
  616                 wi_start_locked(ifp);
  617 
  618         /* Re-enable interrupts. */
  619         CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
  620 
  621         WI_UNLOCK(sc);
  622 
  623         return;
  624 }
  625 
  626 static void
  627 wi_enable(struct wi_softc *sc)
  628 {
  629         /* Enable interrupts */
  630         CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
  631 
  632         /* enable port */
  633         wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0);
  634         sc->sc_enabled = 1;
  635 }
  636 
  637 static int
  638 wi_setup_locked(struct wi_softc *sc, int porttype, int mode,
  639         uint8_t mac[IEEE80211_ADDR_LEN])
  640 {
  641         int i;
  642 
  643         wi_reset(sc);
  644 
  645         wi_write_val(sc, WI_RID_PORTTYPE, porttype);
  646         wi_write_val(sc, WI_RID_CREATE_IBSS, mode);
  647         wi_write_val(sc, WI_RID_MAX_DATALEN, 2304);
  648         /* XXX IEEE80211_BPF_NOACK wants 0 */
  649         wi_write_val(sc, WI_RID_ALT_RETRY_CNT, 2);
  650         if (sc->sc_flags & WI_FLAGS_HAS_ROAMING)
  651                 wi_write_val(sc, WI_RID_ROAMING_MODE, 3); /* NB: disabled */
  652 
  653         wi_write_rid(sc, WI_RID_MAC_NODE, mac, IEEE80211_ADDR_LEN);
  654 
  655         /* Allocate fids for the card */
  656         sc->sc_buflen = IEEE80211_MAX_LEN + sizeof(struct wi_frame);
  657         for (i = 0; i < sc->sc_ntxbuf; i++) {
  658                 int error = wi_alloc_fid(sc, sc->sc_buflen,
  659                     &sc->sc_txd[i].d_fid);
  660                 if (error) {
  661                         device_printf(sc->sc_dev,
  662                             "tx buffer allocation failed (error %u)\n",
  663                             error);
  664                         return error;
  665                 }
  666                 sc->sc_txd[i].d_len = 0;
  667         }
  668         sc->sc_txcur = sc->sc_txnext = 0;
  669 
  670         return 0;
  671 }
  672 
  673 static void
  674 wi_init_locked(struct wi_softc *sc)
  675 {
  676         struct ifnet *ifp = sc->sc_ifp;
  677         int wasenabled;
  678 
  679         WI_LOCK_ASSERT(sc);
  680 
  681         wasenabled = sc->sc_enabled;
  682         if (wasenabled)
  683                 wi_stop_locked(sc, 1);
  684 
  685         if (wi_setup_locked(sc, sc->sc_porttype, 3, IF_LLADDR(ifp)) != 0) {
  686                 if_printf(ifp, "interface not running\n");
  687                 wi_stop_locked(sc, 1);
  688                 return;
  689         }
  690 
  691         ifp->if_drv_flags |= IFF_DRV_RUNNING;
  692         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
  693 
  694         callout_reset(&sc->sc_watchdog, hz, wi_watchdog, sc);
  695 
  696         wi_enable(sc);                  /* Enable desired port */
  697 }
  698 
  699 void
  700 wi_init(void *arg)
  701 {
  702         struct wi_softc *sc = arg;
  703         struct ifnet *ifp = sc->sc_ifp;
  704         struct ieee80211com *ic = ifp->if_l2com;
  705 
  706         WI_LOCK(sc);
  707         wi_init_locked(sc);
  708         WI_UNLOCK(sc);
  709 
  710         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
  711                 ieee80211_start_all(ic);                /* start all vap's */
  712 }
  713 
  714 static void
  715 wi_stop_locked(struct wi_softc *sc, int disable)
  716 {
  717         struct ifnet *ifp = sc->sc_ifp;
  718 
  719         WI_LOCK_ASSERT(sc);
  720 
  721         if (sc->sc_enabled && !sc->wi_gone) {
  722                 CSR_WRITE_2(sc, WI_INT_EN, 0);
  723                 wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0);
  724                 if (disable)
  725                         sc->sc_enabled = 0;
  726         } else if (sc->wi_gone && disable)      /* gone --> not enabled */
  727                 sc->sc_enabled = 0;
  728 
  729         callout_stop(&sc->sc_watchdog);
  730         sc->sc_tx_timer = 0;
  731         sc->sc_false_syns = 0;
  732 
  733         ifp->if_drv_flags &= ~(IFF_DRV_OACTIVE | IFF_DRV_RUNNING);
  734 }
  735 
  736 void
  737 wi_stop(struct wi_softc *sc, int disable)
  738 {
  739         WI_LOCK(sc);
  740         wi_stop_locked(sc, disable);
  741         WI_UNLOCK(sc);
  742 }
  743 
  744 static void
  745 wi_set_channel(struct ieee80211com *ic)
  746 {
  747         struct ifnet *ifp = ic->ic_ifp;
  748         struct wi_softc *sc = ifp->if_softc;
  749 
  750         DPRINTF(("%s: channel %d, %sscanning\n", __func__,
  751             ieee80211_chan2ieee(ic, ic->ic_curchan),
  752             ic->ic_flags & IEEE80211_F_SCAN ? "" : "!"));
  753 
  754         WI_LOCK(sc);
  755         wi_write_val(sc, WI_RID_OWN_CHNL,
  756             ieee80211_chan2ieee(ic, ic->ic_curchan));
  757         WI_UNLOCK(sc);
  758 }
  759 
  760 static void
  761 wi_scan_start(struct ieee80211com *ic)
  762 {
  763         struct ifnet *ifp = ic->ic_ifp;
  764         struct wi_softc *sc = ifp->if_softc;
  765         struct ieee80211_scan_state *ss = ic->ic_scan;
  766 
  767         DPRINTF(("%s\n", __func__));
  768 
  769         WI_LOCK(sc);
  770         /*
  771          * Switch device to monitor mode.
  772          */
  773         wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_monitor_port);
  774         if (sc->sc_firmware_type == WI_INTERSIL) {
  775                 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
  776                 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
  777         }
  778         /* force full dwell time to compensate for firmware overhead */
  779         ss->ss_mindwell = ss->ss_maxdwell = msecs_to_ticks(400);
  780         WI_UNLOCK(sc);
  781 
  782 }
  783 
  784 static void
  785 wi_scan_end(struct ieee80211com *ic)
  786 {
  787         struct ifnet *ifp = ic->ic_ifp;
  788         struct wi_softc *sc = ifp->if_softc;
  789 
  790         DPRINTF(("%s: restore port type %d\n", __func__, sc->sc_porttype));
  791 
  792         WI_LOCK(sc);
  793         wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_porttype);
  794         if (sc->sc_firmware_type == WI_INTERSIL) {
  795                 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
  796                 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
  797         }
  798         WI_UNLOCK(sc);
  799 }
  800 
  801 static void
  802 wi_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
  803         int subtype, int rssi, int nf)
  804 {
  805         struct ieee80211vap *vap = ni->ni_vap;
  806 
  807         switch (subtype) {
  808         case IEEE80211_FC0_SUBTYPE_AUTH:
  809         case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
  810         case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
  811                 /* NB: filter frames that trigger state changes */
  812                 return;
  813         }
  814         WI_VAP(vap)->wv_recv_mgmt(ni, m, subtype, rssi, nf);
  815 }
  816 
  817 static int
  818 wi_newstate_sta(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
  819 {
  820         struct ieee80211com *ic = vap->iv_ic;
  821         struct ifnet *ifp = ic->ic_ifp;
  822         struct ieee80211_node *bss;
  823         struct wi_softc *sc = ifp->if_softc;
  824 
  825         DPRINTF(("%s: %s -> %s\n", __func__,
  826                 ieee80211_state_name[vap->iv_state],
  827                 ieee80211_state_name[nstate]));
  828 
  829         if (nstate == IEEE80211_S_AUTH) {
  830                 WI_LOCK(sc);
  831                 wi_setup_locked(sc, WI_PORTTYPE_BSS, 3, vap->iv_myaddr);
  832 
  833                 if (vap->iv_flags & IEEE80211_F_PMGTON) {
  834                         wi_write_val(sc, WI_RID_MAX_SLEEP, ic->ic_lintval);
  835                         wi_write_val(sc, WI_RID_PM_ENABLED, 1);
  836                 }
  837                 wi_write_val(sc, WI_RID_RTS_THRESH, vap->iv_rtsthreshold);
  838                 if (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)
  839                         wi_write_val(sc, WI_RID_FRAG_THRESH,
  840                             vap->iv_fragthreshold);
  841                 wi_write_txrate(sc, vap);
  842 
  843                 bss = vap->iv_bss;
  844                 wi_write_ssid(sc, WI_RID_DESIRED_SSID, bss->ni_essid, bss->ni_esslen);
  845                 wi_write_val(sc, WI_RID_OWN_CHNL,
  846                     ieee80211_chan2ieee(ic, bss->ni_chan));
  847 
  848                 /* Configure WEP. */
  849                 if (ic->ic_cryptocaps & IEEE80211_CRYPTO_WEP)
  850                         wi_write_wep(sc, vap);
  851                 else
  852                         sc->sc_encryption = 0;
  853 
  854                 if ((sc->sc_flags & WI_FLAGS_HAS_WPASUPPORT) &&
  855                     (vap->iv_flags & IEEE80211_F_WPA)) {
  856                         wi_write_val(sc, WI_RID_WPA_HANDLING, 1);
  857                         if (vap->iv_appie_wpa != NULL)
  858                                 wi_write_appie(sc, WI_RID_WPA_DATA,
  859                                     vap->iv_appie_wpa);
  860                 }
  861 
  862                 wi_enable(sc);          /* enable port */
  863 
  864                 /* Lucent firmware does not support the JOIN RID. */
  865                 if (sc->sc_firmware_type == WI_INTERSIL) {
  866                         struct wi_joinreq join;
  867 
  868                         memset(&join, 0, sizeof(join));
  869                         IEEE80211_ADDR_COPY(&join.wi_bssid, bss->ni_bssid);
  870                         join.wi_chan = htole16(
  871                             ieee80211_chan2ieee(ic, bss->ni_chan));
  872                         wi_write_rid(sc, WI_RID_JOIN_REQ, &join, sizeof(join));
  873                 }
  874                 WI_UNLOCK(sc);
  875 
  876                 /*
  877                  * NB: don't go through 802.11 layer, it'll send auth frame;
  878                  * instead we drive the state machine from the link status
  879                  * notification we get on association.
  880                  */
  881                 vap->iv_state = nstate;
  882                 return (0);
  883         }
  884         return WI_VAP(vap)->wv_newstate(vap, nstate, arg);
  885 }
  886 
  887 static int
  888 wi_newstate_hostap(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
  889 {
  890         struct ieee80211com *ic = vap->iv_ic;
  891         struct ifnet *ifp = ic->ic_ifp;
  892         struct ieee80211_node *bss;
  893         struct wi_softc *sc = ifp->if_softc;
  894         int error;
  895 
  896         DPRINTF(("%s: %s -> %s\n", __func__,
  897                 ieee80211_state_name[vap->iv_state],
  898                 ieee80211_state_name[nstate]));
  899 
  900         error = WI_VAP(vap)->wv_newstate(vap, nstate, arg);
  901         if (error == 0 && nstate == IEEE80211_S_RUN) {
  902                 WI_LOCK(sc);
  903                 wi_setup_locked(sc, WI_PORTTYPE_HOSTAP, 0, vap->iv_myaddr);
  904 
  905                 bss = vap->iv_bss;
  906                 wi_write_ssid(sc, WI_RID_OWN_SSID,
  907                     bss->ni_essid, bss->ni_esslen);
  908                 wi_write_val(sc, WI_RID_OWN_CHNL,
  909                     ieee80211_chan2ieee(ic, bss->ni_chan));
  910                 wi_write_val(sc, WI_RID_BASIC_RATE, 0x3);
  911                 wi_write_val(sc, WI_RID_SUPPORT_RATE, 0xf);
  912                 wi_write_txrate(sc, vap);
  913 
  914                 wi_write_val(sc, WI_RID_OWN_BEACON_INT, bss->ni_intval);
  915                 wi_write_val(sc, WI_RID_DTIM_PERIOD, vap->iv_dtim_period);
  916 
  917                 wi_write_val(sc, WI_RID_RTS_THRESH, vap->iv_rtsthreshold);
  918                 if (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)
  919                         wi_write_val(sc, WI_RID_FRAG_THRESH,
  920                             vap->iv_fragthreshold);
  921 
  922                 if ((sc->sc_flags & WI_FLAGS_HAS_ENHSECURITY) &&
  923                     (vap->iv_flags & IEEE80211_F_HIDESSID)) {
  924                         /*
  925                          * bit 0 means hide SSID in beacons,
  926                          * bit 1 means don't respond to bcast probe req
  927                          */
  928                         wi_write_val(sc, WI_RID_ENH_SECURITY, 0x3);
  929                 }
  930 
  931                 if ((sc->sc_flags & WI_FLAGS_HAS_WPASUPPORT) &&
  932                     (vap->iv_flags & IEEE80211_F_WPA) && 
  933                     vap->iv_appie_wpa != NULL)
  934                         wi_write_appie(sc, WI_RID_WPA_DATA, vap->iv_appie_wpa);
  935 
  936                 wi_write_val(sc, WI_RID_PROMISC, 0);
  937 
  938                 /* Configure WEP. */
  939                 if (ic->ic_cryptocaps & IEEE80211_CRYPTO_WEP)
  940                         wi_write_wep(sc, vap);
  941                 else
  942                         sc->sc_encryption = 0;
  943 
  944                 wi_enable(sc);          /* enable port */
  945                 WI_UNLOCK(sc);
  946         }
  947         return error;
  948 }
  949 
  950 static void
  951 wi_start_locked(struct ifnet *ifp)
  952 {
  953         struct wi_softc *sc = ifp->if_softc;
  954         struct ieee80211_node *ni;
  955         struct ieee80211_frame *wh;
  956         struct mbuf *m0;
  957         struct ieee80211_key *k;
  958         struct wi_frame frmhdr;
  959         const struct llc *llc;
  960         int cur;
  961 
  962         WI_LOCK_ASSERT(sc);
  963 
  964         if (sc->wi_gone)
  965                 return;
  966 
  967         memset(&frmhdr, 0, sizeof(frmhdr));
  968         cur = sc->sc_txnext;
  969         for (;;) {
  970                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
  971                 if (m0 == NULL)
  972                         break;
  973                 if (sc->sc_txd[cur].d_len != 0) {
  974                         IFQ_DRV_PREPEND(&ifp->if_snd, m0);
  975                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
  976                         break;
  977                 }
  978                 ni = (struct ieee80211_node *) m0->m_pkthdr.rcvif;
  979 
  980                 /* reconstruct 802.3 header */
  981                 wh = mtod(m0, struct ieee80211_frame *);
  982                 switch (wh->i_fc[1]) {
  983                 case IEEE80211_FC1_DIR_TODS:
  984                         IEEE80211_ADDR_COPY(frmhdr.wi_ehdr.ether_shost,
  985                             wh->i_addr2);
  986                         IEEE80211_ADDR_COPY(frmhdr.wi_ehdr.ether_dhost,
  987                             wh->i_addr3);
  988                         break;
  989                 case IEEE80211_FC1_DIR_NODS:
  990                         IEEE80211_ADDR_COPY(frmhdr.wi_ehdr.ether_shost,
  991                             wh->i_addr2);
  992                         IEEE80211_ADDR_COPY(frmhdr.wi_ehdr.ether_dhost,
  993                             wh->i_addr1);
  994                         break;
  995                 case IEEE80211_FC1_DIR_FROMDS:
  996                         IEEE80211_ADDR_COPY(frmhdr.wi_ehdr.ether_shost,
  997                             wh->i_addr3);
  998                         IEEE80211_ADDR_COPY(frmhdr.wi_ehdr.ether_dhost,
  999                             wh->i_addr1);
 1000                         break;
 1001                 }
 1002                 llc = (const struct llc *)(
 1003                     mtod(m0, const uint8_t *) + ieee80211_hdrsize(wh));
 1004                 frmhdr.wi_ehdr.ether_type = llc->llc_snap.ether_type;
 1005                 frmhdr.wi_tx_ctl = htole16(WI_ENC_TX_802_11|WI_TXCNTL_TX_EX);
 1006                 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
 1007                         k = ieee80211_crypto_encap(ni, m0);
 1008                         if (k == NULL) {
 1009                                 ieee80211_free_node(ni);
 1010                                 m_freem(m0);
 1011                                 continue;
 1012                         }
 1013                         frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT);
 1014                 }
 1015 
 1016                 if (ieee80211_radiotap_active_vap(ni->ni_vap)) {
 1017                         sc->sc_tx_th.wt_rate = ni->ni_txrate;
 1018                         ieee80211_radiotap_tx(ni->ni_vap, m0);
 1019                 }
 1020 
 1021                 m_copydata(m0, 0, sizeof(struct ieee80211_frame),
 1022                     (caddr_t)&frmhdr.wi_whdr);
 1023                 m_adj(m0, sizeof(struct ieee80211_frame));
 1024                 frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len);
 1025                 ieee80211_free_node(ni);
 1026                 if (wi_start_tx(ifp, &frmhdr, m0))
 1027                         continue;
 1028 
 1029                 sc->sc_txnext = cur = (cur + 1) % sc->sc_ntxbuf;
 1030                 ifp->if_opackets++;
 1031         }
 1032 }
 1033 
 1034 static void
 1035 wi_start(struct ifnet *ifp)
 1036 {
 1037         struct wi_softc *sc = ifp->if_softc;
 1038 
 1039         WI_LOCK(sc);
 1040         wi_start_locked(ifp);
 1041         WI_UNLOCK(sc);
 1042 }
 1043 
 1044 static int
 1045 wi_start_tx(struct ifnet *ifp, struct wi_frame *frmhdr, struct mbuf *m0)
 1046 {
 1047         struct wi_softc *sc = ifp->if_softc;
 1048         int cur = sc->sc_txnext;
 1049         int fid, off, error;
 1050 
 1051         fid = sc->sc_txd[cur].d_fid;
 1052         off = sizeof(*frmhdr);
 1053         error = wi_write_bap(sc, fid, 0, frmhdr, sizeof(*frmhdr)) != 0
 1054              || wi_mwrite_bap(sc, fid, off, m0, m0->m_pkthdr.len) != 0;
 1055         m_freem(m0);
 1056         if (error) {
 1057                 ifp->if_oerrors++;
 1058                 return -1;
 1059         }
 1060         sc->sc_txd[cur].d_len = off;
 1061         if (sc->sc_txcur == cur) {
 1062                 if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, fid, 0, 0)) {
 1063                         if_printf(ifp, "xmit failed\n");
 1064                         sc->sc_txd[cur].d_len = 0;
 1065                         return -1;
 1066                 }
 1067                 sc->sc_tx_timer = 5;
 1068         }
 1069         return 0;
 1070 }
 1071 
 1072 static int
 1073 wi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m0,
 1074             const struct ieee80211_bpf_params *params)
 1075 {
 1076         struct ieee80211com *ic = ni->ni_ic;
 1077         struct ifnet *ifp = ic->ic_ifp;
 1078         struct ieee80211vap *vap = ni->ni_vap;
 1079         struct wi_softc *sc = ifp->if_softc;
 1080         struct ieee80211_key *k;
 1081         struct ieee80211_frame *wh;
 1082         struct wi_frame frmhdr;
 1083         int cur;
 1084         int rc = 0;
 1085 
 1086         WI_LOCK(sc);
 1087 
 1088         if (sc->wi_gone) {
 1089                 rc = ENETDOWN;
 1090                 goto out;
 1091         }
 1092         memset(&frmhdr, 0, sizeof(frmhdr));
 1093         cur = sc->sc_txnext;
 1094         if (sc->sc_txd[cur].d_len != 0) {
 1095                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 1096                 rc = ENOBUFS;
 1097                 goto out;
 1098         }
 1099         m0->m_pkthdr.rcvif = NULL;
 1100 
 1101         m_copydata(m0, 4, ETHER_ADDR_LEN * 2,
 1102             (caddr_t)&frmhdr.wi_ehdr);
 1103         frmhdr.wi_ehdr.ether_type = 0;
 1104         wh = mtod(m0, struct ieee80211_frame *);
 1105                         
 1106         frmhdr.wi_tx_ctl = htole16(WI_ENC_TX_802_11|WI_TXCNTL_TX_EX);
 1107         if (params && (params->ibp_flags & IEEE80211_BPF_NOACK))
 1108                 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_ALTRTRY);
 1109         if ((wh->i_fc[1] & IEEE80211_FC1_WEP) &&
 1110             (!params || (params && (params->ibp_flags & IEEE80211_BPF_CRYPTO)))) {
 1111                 k = ieee80211_crypto_encap(ni, m0);
 1112                 if (k == NULL) {
 1113                         rc = ENOMEM;
 1114                         goto out;
 1115                 }
 1116                 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT);
 1117         }
 1118         if (ieee80211_radiotap_active_vap(vap)) {
 1119                 sc->sc_tx_th.wt_rate = ni->ni_txrate;
 1120                 ieee80211_radiotap_tx(vap, m0);
 1121         }
 1122         m_copydata(m0, 0, sizeof(struct ieee80211_frame),
 1123             (caddr_t)&frmhdr.wi_whdr);
 1124         m_adj(m0, sizeof(struct ieee80211_frame));
 1125         frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len);
 1126         if (wi_start_tx(ifp, &frmhdr, m0) < 0) {
 1127                 m0 = NULL;
 1128                 rc = EIO;
 1129                 goto out;
 1130         }
 1131         m0 = NULL;
 1132 
 1133         sc->sc_txnext = cur = (cur + 1) % sc->sc_ntxbuf;
 1134 out:
 1135         WI_UNLOCK(sc);
 1136 
 1137         if (m0 != NULL)
 1138                 m_freem(m0);
 1139         ieee80211_free_node(ni);
 1140         return rc;
 1141 }
 1142 
 1143 static int
 1144 wi_reset(struct wi_softc *sc)
 1145 {
 1146 #define WI_INIT_TRIES 3
 1147         int i, error = 0;
 1148 
 1149         for (i = 0; i < WI_INIT_TRIES; i++) {
 1150                 error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0);
 1151                 if (error == 0)
 1152                         break;
 1153                 DELAY(WI_DELAY * 1000);
 1154         }
 1155         sc->sc_reset = 1;
 1156         if (i == WI_INIT_TRIES) {
 1157                 if_printf(sc->sc_ifp, "reset failed\n");
 1158                 return error;
 1159         }
 1160 
 1161         CSR_WRITE_2(sc, WI_INT_EN, 0);
 1162         CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
 1163 
 1164         /* Calibrate timer. */
 1165         wi_write_val(sc, WI_RID_TICK_TIME, 8);
 1166 
 1167         return 0;
 1168 #undef WI_INIT_TRIES
 1169 }
 1170 
 1171 static void
 1172 wi_watchdog(void *arg)
 1173 {
 1174         struct wi_softc *sc = arg;
 1175         struct ifnet *ifp = sc->sc_ifp;
 1176 
 1177         WI_LOCK_ASSERT(sc);
 1178 
 1179         if (!sc->sc_enabled)
 1180                 return;
 1181 
 1182         if (sc->sc_tx_timer && --sc->sc_tx_timer == 0) {
 1183                 if_printf(ifp, "device timeout\n");
 1184                 ifp->if_oerrors++;
 1185                 wi_init_locked(ifp->if_softc);
 1186                 return;
 1187         }
 1188         callout_reset(&sc->sc_watchdog, hz, wi_watchdog, sc);
 1189 }
 1190 
 1191 static int
 1192 wi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
 1193 {
 1194         struct wi_softc *sc = ifp->if_softc;
 1195         struct ieee80211com *ic = ifp->if_l2com;
 1196         struct ifreq *ifr = (struct ifreq *) data;
 1197         int error = 0, startall = 0;
 1198 
 1199         switch (cmd) {
 1200         case SIOCSIFFLAGS:
 1201                 WI_LOCK(sc);
 1202                 /*
 1203                  * Can't do promisc and hostap at the same time.  If all that's
 1204                  * changing is the promisc flag, try to short-circuit a call to
 1205                  * wi_init() by just setting PROMISC in the hardware.
 1206                  */
 1207                 if (ifp->if_flags & IFF_UP) {
 1208                         if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
 1209                             ifp->if_drv_flags & IFF_DRV_RUNNING) {
 1210                                 if ((ifp->if_flags ^ sc->sc_if_flags) & IFF_PROMISC) {
 1211                                         wi_write_val(sc, WI_RID_PROMISC,
 1212                                             (ifp->if_flags & IFF_PROMISC) != 0);
 1213                                 } else {
 1214                                         wi_init_locked(sc);
 1215                                         startall = 1;
 1216                                 }
 1217                         } else {
 1218                                 wi_init_locked(sc);
 1219                                 startall = 1;
 1220                         }
 1221                 } else {
 1222                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 1223                                 wi_stop_locked(sc, 1);
 1224                         sc->wi_gone = 0;
 1225                 }
 1226                 sc->sc_if_flags = ifp->if_flags;
 1227                 WI_UNLOCK(sc);
 1228                 if (startall)
 1229                         ieee80211_start_all(ic);
 1230                 break;
 1231         case SIOCGIFMEDIA:
 1232                 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
 1233                 break;
 1234         case SIOCGIFADDR:
 1235                 error = ether_ioctl(ifp, cmd, data);
 1236                 break;
 1237         default:
 1238                 error = EINVAL;
 1239                 break;
 1240         }
 1241         return error;
 1242 }
 1243 
 1244 static void
 1245 wi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
 1246 {
 1247         struct ieee80211vap *vap = ifp->if_softc;
 1248         struct ieee80211com *ic = vap->iv_ic;
 1249         struct wi_softc *sc = ic->ic_ifp->if_softc;
 1250         u_int16_t val;
 1251         int rate, len;
 1252 
 1253         len = sizeof(val);
 1254         if (sc->sc_enabled &&
 1255             wi_read_rid(sc, WI_RID_CUR_TX_RATE, &val, &len) == 0 &&
 1256             len == sizeof(val)) {
 1257                 /* convert to 802.11 rate */
 1258                 val = le16toh(val);
 1259                 rate = val * 2;
 1260                 if (sc->sc_firmware_type == WI_LUCENT) {
 1261                         if (rate == 10)
 1262                                 rate = 11;      /* 5.5Mbps */
 1263                 } else {
 1264                         if (rate == 4*2)
 1265                                 rate = 11;      /* 5.5Mbps */
 1266                         else if (rate == 8*2)
 1267                                 rate = 22;      /* 11Mbps */
 1268                 }
 1269                 vap->iv_bss->ni_txrate = rate;
 1270         }
 1271         ieee80211_media_status(ifp, imr);
 1272 }
 1273 
 1274 static void
 1275 wi_sync_bssid(struct wi_softc *sc, u_int8_t new_bssid[IEEE80211_ADDR_LEN])
 1276 {
 1277         struct ifnet *ifp = sc->sc_ifp;
 1278         struct ieee80211com *ic = ifp->if_l2com;
 1279         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 1280         struct ieee80211_node *ni = vap->iv_bss;
 1281 
 1282         if (IEEE80211_ADDR_EQ(new_bssid, ni->ni_bssid))
 1283                 return;
 1284 
 1285         DPRINTF(("wi_sync_bssid: bssid %s -> ", ether_sprintf(ni->ni_bssid)));
 1286         DPRINTF(("%s ?\n", ether_sprintf(new_bssid)));
 1287 
 1288         /* In promiscuous mode, the BSSID field is not a reliable
 1289          * indicator of the firmware's BSSID. Damp spurious
 1290          * change-of-BSSID indications.
 1291          */
 1292         if ((ifp->if_flags & IFF_PROMISC) != 0 &&
 1293             !ppsratecheck(&sc->sc_last_syn, &sc->sc_false_syns,
 1294                          WI_MAX_FALSE_SYNS))
 1295                 return;
 1296 
 1297         sc->sc_false_syns = MAX(0, sc->sc_false_syns - 1);
 1298 #if 0
 1299         /*
 1300          * XXX hack; we should create a new node with the new bssid
 1301          * and replace the existing ic_bss with it but since we don't
 1302          * process management frames to collect state we cheat by
 1303          * reusing the existing node as we know wi_newstate will be
 1304          * called and it will overwrite the node state.
 1305          */
 1306         ieee80211_sta_join(ic, ieee80211_ref_node(ni));
 1307 #endif
 1308 }
 1309 
 1310 static __noinline void
 1311 wi_rx_intr(struct wi_softc *sc)
 1312 {
 1313         struct ifnet *ifp = sc->sc_ifp;
 1314         struct ieee80211com *ic = ifp->if_l2com;
 1315         struct wi_frame frmhdr;
 1316         struct mbuf *m;
 1317         struct ieee80211_frame *wh;
 1318         struct ieee80211_node *ni;
 1319         int fid, len, off;
 1320         u_int8_t dir;
 1321         u_int16_t status;
 1322         int8_t rssi, nf;
 1323 
 1324         fid = CSR_READ_2(sc, WI_RX_FID);
 1325 
 1326         /* First read in the frame header */
 1327         if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr))) {
 1328                 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
 1329                 ifp->if_ierrors++;
 1330                 DPRINTF(("wi_rx_intr: read fid %x failed\n", fid));
 1331                 return;
 1332         }
 1333 
 1334         /*
 1335          * Drop undecryptable or packets with receive errors here
 1336          */
 1337         status = le16toh(frmhdr.wi_status);
 1338         if (status & WI_STAT_ERRSTAT) {
 1339                 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
 1340                 ifp->if_ierrors++;
 1341                 DPRINTF(("wi_rx_intr: fid %x error status %x\n", fid, status));
 1342                 return;
 1343         }
 1344 
 1345         len = le16toh(frmhdr.wi_dat_len);
 1346         off = ALIGN(sizeof(struct ieee80211_frame));
 1347 
 1348         /*
 1349          * Sometimes the PRISM2.x returns bogusly large frames. Except
 1350          * in monitor mode, just throw them away.
 1351          */
 1352         if (off + len > MCLBYTES) {
 1353                 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
 1354                         CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
 1355                         ifp->if_ierrors++;
 1356                         DPRINTF(("wi_rx_intr: oversized packet\n"));
 1357                         return;
 1358                 } else
 1359                         len = 0;
 1360         }
 1361 
 1362         if (off + len > MHLEN)
 1363                 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
 1364         else
 1365                 m = m_gethdr(M_NOWAIT, MT_DATA);
 1366         if (m == NULL) {
 1367                 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
 1368                 ifp->if_ierrors++;
 1369                 DPRINTF(("wi_rx_intr: MGET failed\n"));
 1370                 return;
 1371         }
 1372         m->m_data += off - sizeof(struct ieee80211_frame);
 1373         memcpy(m->m_data, &frmhdr.wi_whdr, sizeof(struct ieee80211_frame));
 1374         wi_read_bap(sc, fid, sizeof(frmhdr),
 1375             m->m_data + sizeof(struct ieee80211_frame), len);
 1376         m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + len;
 1377         m->m_pkthdr.rcvif = ifp;
 1378 
 1379         CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
 1380 
 1381         rssi = frmhdr.wi_rx_signal;
 1382         nf = frmhdr.wi_rx_silence;
 1383         if (ieee80211_radiotap_active(ic)) {
 1384                 struct wi_rx_radiotap_header *tap = &sc->sc_rx_th;
 1385                 uint32_t rstamp;
 1386 
 1387                 rstamp = (le16toh(frmhdr.wi_rx_tstamp0) << 16) |
 1388                     le16toh(frmhdr.wi_rx_tstamp1);
 1389                 tap->wr_tsf = htole64((uint64_t)rstamp);
 1390                 /* XXX replace divide by table */
 1391                 tap->wr_rate = frmhdr.wi_rx_rate / 5;
 1392                 tap->wr_flags = 0;
 1393                 if (frmhdr.wi_status & WI_STAT_PCF)
 1394                         tap->wr_flags |= IEEE80211_RADIOTAP_F_CFP;
 1395                 if (m->m_flags & M_WEP)
 1396                         tap->wr_flags |= IEEE80211_RADIOTAP_F_WEP;
 1397                 tap->wr_antsignal = rssi;
 1398                 tap->wr_antnoise = nf;
 1399         }
 1400 
 1401         /* synchronize driver's BSSID with firmware's BSSID */
 1402         wh = mtod(m, struct ieee80211_frame *);
 1403         dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK;
 1404         if (ic->ic_opmode == IEEE80211_M_IBSS && dir == IEEE80211_FC1_DIR_NODS)
 1405                 wi_sync_bssid(sc, wh->i_addr3);
 1406 
 1407         WI_UNLOCK(sc);
 1408 
 1409         ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
 1410         if (ni != NULL) {
 1411                 (void) ieee80211_input(ni, m, rssi, nf);
 1412                 ieee80211_free_node(ni);
 1413         } else
 1414                 (void) ieee80211_input_all(ic, m, rssi, nf);
 1415 
 1416         WI_LOCK(sc);
 1417 }
 1418 
 1419 static __noinline void
 1420 wi_tx_ex_intr(struct wi_softc *sc)
 1421 {
 1422         struct ifnet *ifp = sc->sc_ifp;
 1423         struct wi_frame frmhdr;
 1424         int fid;
 1425 
 1426         fid = CSR_READ_2(sc, WI_TX_CMP_FID);
 1427         /* Read in the frame header */
 1428         if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) == 0) {
 1429                 u_int16_t status = le16toh(frmhdr.wi_status);
 1430                 /*
 1431                  * Spontaneous station disconnects appear as xmit
 1432                  * errors.  Don't announce them and/or count them
 1433                  * as an output error.
 1434                  */
 1435                 if ((status & WI_TXSTAT_DISCONNECT) == 0) {
 1436                         if (ppsratecheck(&lasttxerror, &curtxeps, wi_txerate)) {
 1437                                 if_printf(ifp, "tx failed");
 1438                                 if (status & WI_TXSTAT_RET_ERR)
 1439                                         printf(", retry limit exceeded");
 1440                                 if (status & WI_TXSTAT_AGED_ERR)
 1441                                         printf(", max transmit lifetime exceeded");
 1442                                 if (status & WI_TXSTAT_DISCONNECT)
 1443                                         printf(", port disconnected");
 1444                                 if (status & WI_TXSTAT_FORM_ERR)
 1445                                         printf(", invalid format (data len %u src %6D)",
 1446                                                 le16toh(frmhdr.wi_dat_len),
 1447                                                 frmhdr.wi_ehdr.ether_shost, ":");
 1448                                 if (status & ~0xf)
 1449                                         printf(", status=0x%x", status);
 1450                                 printf("\n");
 1451                         }
 1452                         ifp->if_oerrors++;
 1453                 } else {
 1454                         DPRINTF(("port disconnected\n"));
 1455                         ifp->if_collisions++;   /* XXX */
 1456                 }
 1457         } else
 1458                 DPRINTF(("wi_tx_ex_intr: read fid %x failed\n", fid));
 1459         CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC);
 1460 }
 1461 
 1462 static __noinline void
 1463 wi_tx_intr(struct wi_softc *sc)
 1464 {
 1465         struct ifnet *ifp = sc->sc_ifp;
 1466         int fid, cur;
 1467 
 1468         if (sc->wi_gone)
 1469                 return;
 1470 
 1471         fid = CSR_READ_2(sc, WI_ALLOC_FID);
 1472         CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
 1473 
 1474         cur = sc->sc_txcur;
 1475         if (sc->sc_txd[cur].d_fid != fid) {
 1476                 if_printf(ifp, "bad alloc %x != %x, cur %d nxt %d\n",
 1477                     fid, sc->sc_txd[cur].d_fid, cur, sc->sc_txnext);
 1478                 return;
 1479         }
 1480         sc->sc_tx_timer = 0;
 1481         sc->sc_txd[cur].d_len = 0;
 1482         sc->sc_txcur = cur = (cur + 1) % sc->sc_ntxbuf;
 1483         if (sc->sc_txd[cur].d_len == 0)
 1484                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 1485         else {
 1486                 if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, sc->sc_txd[cur].d_fid,
 1487                     0, 0)) {
 1488                         if_printf(ifp, "xmit failed\n");
 1489                         sc->sc_txd[cur].d_len = 0;
 1490                 } else {
 1491                         sc->sc_tx_timer = 5;
 1492                 }
 1493         }
 1494 }
 1495 
 1496 static __noinline void
 1497 wi_info_intr(struct wi_softc *sc)
 1498 {
 1499         struct ifnet *ifp = sc->sc_ifp;
 1500         struct ieee80211com *ic = ifp->if_l2com;
 1501         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 1502         int i, fid, len, off;
 1503         u_int16_t ltbuf[2];
 1504         u_int16_t stat;
 1505         u_int32_t *ptr;
 1506 
 1507         fid = CSR_READ_2(sc, WI_INFO_FID);
 1508         wi_read_bap(sc, fid, 0, ltbuf, sizeof(ltbuf));
 1509 
 1510         switch (le16toh(ltbuf[1])) {
 1511         case WI_INFO_LINK_STAT:
 1512                 wi_read_bap(sc, fid, sizeof(ltbuf), &stat, sizeof(stat));
 1513                 DPRINTF(("wi_info_intr: LINK_STAT 0x%x\n", le16toh(stat)));
 1514 
 1515                 if (vap == NULL)
 1516                         goto finish;
 1517 
 1518                 switch (le16toh(stat)) {
 1519                 case WI_INFO_LINK_STAT_CONNECTED:
 1520                         if (vap->iv_state == IEEE80211_S_RUN &&
 1521                             vap->iv_opmode != IEEE80211_M_IBSS)
 1522                                 break;
 1523                         /* fall thru... */
 1524                 case WI_INFO_LINK_STAT_AP_CHG:
 1525                         IEEE80211_LOCK(ic);
 1526                         vap->iv_bss->ni_associd = 1 | 0xc000;   /* NB: anything will do */
 1527                         ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
 1528                         IEEE80211_UNLOCK(ic);
 1529                         break;
 1530                 case WI_INFO_LINK_STAT_AP_INR:
 1531                         break;
 1532                 case WI_INFO_LINK_STAT_DISCONNECTED:
 1533                         /* we dropped off the net; e.g. due to deauth/disassoc */
 1534                         IEEE80211_LOCK(ic);
 1535                         vap->iv_bss->ni_associd = 0;
 1536                         vap->iv_stats.is_rx_deauth++;
 1537                         ieee80211_new_state(vap, IEEE80211_S_SCAN, 0);
 1538                         IEEE80211_UNLOCK(ic);
 1539                         break;
 1540                 case WI_INFO_LINK_STAT_AP_OOR:
 1541                         /* XXX does this need to be per-vap? */
 1542                         ieee80211_beacon_miss(ic);
 1543                         break;
 1544                 case WI_INFO_LINK_STAT_ASSOC_FAILED:
 1545                         if (vap->iv_opmode == IEEE80211_M_STA)
 1546                                 ieee80211_new_state(vap, IEEE80211_S_SCAN,
 1547                                     IEEE80211_SCAN_FAIL_TIMEOUT);
 1548                         break;
 1549                 }
 1550                 break;
 1551         case WI_INFO_COUNTERS:
 1552                 /* some card versions have a larger stats structure */
 1553                 len = min(le16toh(ltbuf[0]) - 1, sizeof(sc->sc_stats) / 4);
 1554                 ptr = (u_int32_t *)&sc->sc_stats;
 1555                 off = sizeof(ltbuf);
 1556                 for (i = 0; i < len; i++, off += 2, ptr++) {
 1557                         wi_read_bap(sc, fid, off, &stat, sizeof(stat));
 1558 #ifdef WI_HERMES_STATS_WAR
 1559                         if (stat & 0xf000)
 1560                                 stat = ~stat;
 1561 #endif
 1562                         *ptr += stat;
 1563                 }
 1564                 ifp->if_collisions = sc->sc_stats.wi_tx_single_retries +
 1565                     sc->sc_stats.wi_tx_multi_retries +
 1566                     sc->sc_stats.wi_tx_retry_limit;
 1567                 break;
 1568         default:
 1569                 DPRINTF(("wi_info_intr: got fid %x type %x len %d\n", fid,
 1570                     le16toh(ltbuf[1]), le16toh(ltbuf[0])));
 1571                 break;
 1572         }
 1573 finish:
 1574         CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
 1575 }
 1576 
 1577 static int
 1578 wi_write_multi(struct wi_softc *sc)
 1579 {
 1580         struct ifnet *ifp = sc->sc_ifp;
 1581         int n;
 1582         struct ifmultiaddr *ifma;
 1583         struct wi_mcast mlist;
 1584 
 1585         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
 1586 allmulti:
 1587                 memset(&mlist, 0, sizeof(mlist));
 1588                 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
 1589                     sizeof(mlist));
 1590         }
 1591 
 1592         n = 0;
 1593         if_maddr_rlock(ifp);
 1594         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 1595                 if (ifma->ifma_addr->sa_family != AF_LINK)
 1596                         continue;
 1597                 if (n >= 16)
 1598                         goto allmulti;
 1599                 IEEE80211_ADDR_COPY(&mlist.wi_mcast[n],
 1600                     (LLADDR((struct sockaddr_dl *)ifma->ifma_addr)));
 1601                 n++;
 1602         }
 1603         if_maddr_runlock(ifp);
 1604         return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
 1605             IEEE80211_ADDR_LEN * n);
 1606 }
 1607 
 1608 static void
 1609 wi_update_mcast(struct ifnet *ifp)
 1610 {
 1611         wi_write_multi(ifp->if_softc);
 1612 }
 1613 
 1614 static void
 1615 wi_update_promisc(struct ifnet *ifp)
 1616 {
 1617         struct wi_softc *sc = ifp->if_softc;
 1618         struct ieee80211com *ic = ifp->if_l2com;
 1619 
 1620         WI_LOCK(sc);
 1621         /* XXX handle WEP special case handling? */
 1622         wi_write_val(sc, WI_RID_PROMISC, 
 1623             (ic->ic_opmode == IEEE80211_M_MONITOR ||
 1624              (ifp->if_flags & IFF_PROMISC)));
 1625         WI_UNLOCK(sc);
 1626 }
 1627 
 1628 static void
 1629 wi_read_nicid(struct wi_softc *sc)
 1630 {
 1631         struct wi_card_ident *id;
 1632         char *p;
 1633         int len;
 1634         u_int16_t ver[4];
 1635 
 1636         /* getting chip identity */
 1637         memset(ver, 0, sizeof(ver));
 1638         len = sizeof(ver);
 1639         wi_read_rid(sc, WI_RID_CARD_ID, ver, &len);
 1640 
 1641         sc->sc_firmware_type = WI_NOTYPE;
 1642         sc->sc_nic_id = le16toh(ver[0]);
 1643         for (id = wi_card_ident; id->card_name != NULL; id++) {
 1644                 if (sc->sc_nic_id == id->card_id) {
 1645                         sc->sc_nic_name = id->card_name;
 1646                         sc->sc_firmware_type = id->firm_type;
 1647                         break;
 1648                 }
 1649         }
 1650         if (sc->sc_firmware_type == WI_NOTYPE) {
 1651                 if (sc->sc_nic_id & 0x8000) {
 1652                         sc->sc_firmware_type = WI_INTERSIL;
 1653                         sc->sc_nic_name = "Unknown Prism chip";
 1654                 } else {
 1655                         sc->sc_firmware_type = WI_LUCENT;
 1656                         sc->sc_nic_name = "Unknown Lucent chip";
 1657                 }
 1658         }
 1659         if (bootverbose)
 1660                 device_printf(sc->sc_dev, "using %s\n", sc->sc_nic_name);
 1661 
 1662         /* get primary firmware version (Only Prism chips) */
 1663         if (sc->sc_firmware_type != WI_LUCENT) {
 1664                 memset(ver, 0, sizeof(ver));
 1665                 len = sizeof(ver);
 1666                 wi_read_rid(sc, WI_RID_PRI_IDENTITY, ver, &len);
 1667                 sc->sc_pri_firmware_ver = le16toh(ver[2]) * 10000 +
 1668                     le16toh(ver[3]) * 100 + le16toh(ver[1]);
 1669         }
 1670 
 1671         /* get station firmware version */
 1672         memset(ver, 0, sizeof(ver));
 1673         len = sizeof(ver);
 1674         wi_read_rid(sc, WI_RID_STA_IDENTITY, ver, &len);
 1675         sc->sc_sta_firmware_ver = le16toh(ver[2]) * 10000 +
 1676             le16toh(ver[3]) * 100 + le16toh(ver[1]);
 1677         if (sc->sc_firmware_type == WI_INTERSIL &&
 1678             (sc->sc_sta_firmware_ver == 10102 ||
 1679              sc->sc_sta_firmware_ver == 20102)) {
 1680                 char ident[12];
 1681                 memset(ident, 0, sizeof(ident));
 1682                 len = sizeof(ident);
 1683                 /* value should be the format like "V2.00-11" */
 1684                 if (wi_read_rid(sc, WI_RID_SYMBOL_IDENTITY, ident, &len) == 0 &&
 1685                     *(p = (char *)ident) >= 'A' &&
 1686                     p[2] == '.' && p[5] == '-' && p[8] == '\0') {
 1687                         sc->sc_firmware_type = WI_SYMBOL;
 1688                         sc->sc_sta_firmware_ver = (p[1] - '') * 10000 +
 1689                             (p[3] - '') * 1000 + (p[4] - '') * 100 +
 1690                             (p[6] - '') * 10 + (p[7] - '');
 1691                 }
 1692         }
 1693         if (bootverbose) {
 1694                 device_printf(sc->sc_dev, "%s Firmware: ",
 1695                     wi_firmware_names[sc->sc_firmware_type]);
 1696                 if (sc->sc_firmware_type != WI_LUCENT)  /* XXX */
 1697                         printf("Primary (%u.%u.%u), ",
 1698                             sc->sc_pri_firmware_ver / 10000,
 1699                             (sc->sc_pri_firmware_ver % 10000) / 100,
 1700                             sc->sc_pri_firmware_ver % 100);
 1701                 printf("Station (%u.%u.%u)\n",
 1702                     sc->sc_sta_firmware_ver / 10000,
 1703                     (sc->sc_sta_firmware_ver % 10000) / 100,
 1704                     sc->sc_sta_firmware_ver % 100);
 1705         }
 1706 }
 1707 
 1708 static int
 1709 wi_write_ssid(struct wi_softc *sc, int rid, u_int8_t *buf, int buflen)
 1710 {
 1711         struct wi_ssid ssid;
 1712 
 1713         if (buflen > IEEE80211_NWID_LEN)
 1714                 return ENOBUFS;
 1715         memset(&ssid, 0, sizeof(ssid));
 1716         ssid.wi_len = htole16(buflen);
 1717         memcpy(ssid.wi_ssid, buf, buflen);
 1718         return wi_write_rid(sc, rid, &ssid, sizeof(ssid));
 1719 }
 1720 
 1721 static int
 1722 wi_write_txrate(struct wi_softc *sc, struct ieee80211vap *vap)
 1723 {
 1724         static const uint16_t lucent_rates[12] = {
 1725             [ 0] = 3,   /* auto */
 1726             [ 1] = 1,   /* 1Mb/s */
 1727             [ 2] = 2,   /* 2Mb/s */
 1728             [ 5] = 4,   /* 5.5Mb/s */
 1729             [11] = 5    /* 11Mb/s */
 1730         };
 1731         static const uint16_t intersil_rates[12] = {
 1732             [ 0] = 0xf, /* auto */
 1733             [ 1] = 0,   /* 1Mb/s */
 1734             [ 2] = 1,   /* 2Mb/s */
 1735             [ 5] = 2,   /* 5.5Mb/s */
 1736             [11] = 3,   /* 11Mb/s */
 1737         };
 1738         const uint16_t *rates = sc->sc_firmware_type == WI_LUCENT ?
 1739             lucent_rates : intersil_rates;
 1740         struct ieee80211com *ic = vap->iv_ic;
 1741         const struct ieee80211_txparam *tp;
 1742 
 1743         tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)];
 1744         return wi_write_val(sc, WI_RID_TX_RATE,
 1745             (tp->ucastrate == IEEE80211_FIXED_RATE_NONE ?
 1746                 rates[0] : rates[tp->ucastrate / 2]));
 1747 }
 1748 
 1749 static int
 1750 wi_write_wep(struct wi_softc *sc, struct ieee80211vap *vap)
 1751 {
 1752         int error = 0;
 1753         int i, keylen;
 1754         u_int16_t val;
 1755         struct wi_key wkey[IEEE80211_WEP_NKID];
 1756 
 1757         switch (sc->sc_firmware_type) {
 1758         case WI_LUCENT:
 1759                 val = (vap->iv_flags & IEEE80211_F_PRIVACY) ? 1 : 0;
 1760                 error = wi_write_val(sc, WI_RID_ENCRYPTION, val);
 1761                 if (error)
 1762                         break;
 1763                 if ((vap->iv_flags & IEEE80211_F_PRIVACY) == 0)
 1764                         break;
 1765                 error = wi_write_val(sc, WI_RID_TX_CRYPT_KEY, vap->iv_def_txkey);
 1766                 if (error)
 1767                         break;
 1768                 memset(wkey, 0, sizeof(wkey));
 1769                 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
 1770                         keylen = vap->iv_nw_keys[i].wk_keylen;
 1771                         wkey[i].wi_keylen = htole16(keylen);
 1772                         memcpy(wkey[i].wi_keydat, vap->iv_nw_keys[i].wk_key,
 1773                             keylen);
 1774                 }
 1775                 error = wi_write_rid(sc, WI_RID_DEFLT_CRYPT_KEYS,
 1776                     wkey, sizeof(wkey));
 1777                 sc->sc_encryption = 0;
 1778                 break;
 1779 
 1780         case WI_INTERSIL:
 1781                 val = HOST_ENCRYPT | HOST_DECRYPT;
 1782                 if (vap->iv_flags & IEEE80211_F_PRIVACY) {
 1783                         /*
 1784                          * ONLY HWB3163 EVAL-CARD Firmware version
 1785                          * less than 0.8 variant2
 1786                          *
 1787                          *   If promiscuous mode disable, Prism2 chip
 1788                          *  does not work with WEP .
 1789                          * It is under investigation for details.
 1790                          * (ichiro@netbsd.org)
 1791                          */
 1792                         if (sc->sc_sta_firmware_ver < 802 ) {
 1793                                 /* firm ver < 0.8 variant 2 */
 1794                                 wi_write_val(sc, WI_RID_PROMISC, 1);
 1795                         }
 1796                         wi_write_val(sc, WI_RID_CNFAUTHMODE,
 1797                             vap->iv_bss->ni_authmode);
 1798                         val |= PRIVACY_INVOKED;
 1799                 } else {
 1800                         wi_write_val(sc, WI_RID_CNFAUTHMODE, IEEE80211_AUTH_OPEN);
 1801                 }
 1802                 error = wi_write_val(sc, WI_RID_P2_ENCRYPTION, val);
 1803                 if (error)
 1804                         break;
 1805                 sc->sc_encryption = val;
 1806                 if ((val & PRIVACY_INVOKED) == 0)
 1807                         break;
 1808                 error = wi_write_val(sc, WI_RID_P2_TX_CRYPT_KEY, vap->iv_def_txkey);
 1809                 break;
 1810         }
 1811         return error;
 1812 }
 1813 
 1814 static int
 1815 wi_cmd(struct wi_softc *sc, int cmd, int val0, int val1, int val2)
 1816 {
 1817         int i, s = 0;
 1818 
 1819         if (sc->wi_gone)
 1820                 return (ENODEV);
 1821 
 1822         /* wait for the busy bit to clear */
 1823         for (i = sc->wi_cmd_count; i > 0; i--) {        /* 500ms */
 1824                 if (!(CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY))
 1825                         break;
 1826                 DELAY(1*1000);  /* 1ms */
 1827         }
 1828         if (i == 0) {
 1829                 device_printf(sc->sc_dev, "%s: busy bit won't clear, cmd 0x%x\n",
 1830                    __func__, cmd);
 1831                 sc->wi_gone = 1;
 1832                 return(ETIMEDOUT);
 1833         }
 1834 
 1835         CSR_WRITE_2(sc, WI_PARAM0, val0);
 1836         CSR_WRITE_2(sc, WI_PARAM1, val1);
 1837         CSR_WRITE_2(sc, WI_PARAM2, val2);
 1838         CSR_WRITE_2(sc, WI_COMMAND, cmd);
 1839 
 1840         if (cmd == WI_CMD_INI) {
 1841                 /* XXX: should sleep here. */
 1842                 DELAY(100*1000);                /* 100ms delay for init */
 1843         }
 1844         for (i = 0; i < WI_TIMEOUT; i++) {
 1845                 /*
 1846                  * Wait for 'command complete' bit to be
 1847                  * set in the event status register.
 1848                  */
 1849                 s = CSR_READ_2(sc, WI_EVENT_STAT);
 1850                 if (s & WI_EV_CMD) {
 1851                         /* Ack the event and read result code. */
 1852                         s = CSR_READ_2(sc, WI_STATUS);
 1853                         CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
 1854                         if (s & WI_STAT_CMD_RESULT) {
 1855                                 return(EIO);
 1856                         }
 1857                         break;
 1858                 }
 1859                 DELAY(WI_DELAY);
 1860         }
 1861 
 1862         if (i == WI_TIMEOUT) {
 1863                 device_printf(sc->sc_dev, "%s: timeout on cmd 0x%04x; "
 1864                     "event status 0x%04x\n", __func__, cmd, s);
 1865                 if (s == 0xffff)
 1866                         sc->wi_gone = 1;
 1867                 return(ETIMEDOUT);
 1868         }
 1869         return (0);
 1870 }
 1871 
 1872 static int
 1873 wi_seek_bap(struct wi_softc *sc, int id, int off)
 1874 {
 1875         int i, status;
 1876 
 1877         CSR_WRITE_2(sc, WI_SEL0, id);
 1878         CSR_WRITE_2(sc, WI_OFF0, off);
 1879 
 1880         for (i = 0; ; i++) {
 1881                 status = CSR_READ_2(sc, WI_OFF0);
 1882                 if ((status & WI_OFF_BUSY) == 0)
 1883                         break;
 1884                 if (i == WI_TIMEOUT) {
 1885                         device_printf(sc->sc_dev, "%s: timeout, id %x off %x\n",
 1886                             __func__, id, off);
 1887                         sc->sc_bap_off = WI_OFF_ERR;    /* invalidate */
 1888                         if (status == 0xffff)
 1889                                 sc->wi_gone = 1;
 1890                         return ETIMEDOUT;
 1891                 }
 1892                 DELAY(1);
 1893         }
 1894         if (status & WI_OFF_ERR) {
 1895                 device_printf(sc->sc_dev, "%s: error, id %x off %x\n",
 1896                     __func__, id, off);
 1897                 sc->sc_bap_off = WI_OFF_ERR;    /* invalidate */
 1898                 return EIO;
 1899         }
 1900         sc->sc_bap_id = id;
 1901         sc->sc_bap_off = off;
 1902         return 0;
 1903 }
 1904 
 1905 static int
 1906 wi_read_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
 1907 {
 1908         int error, cnt;
 1909 
 1910         if (buflen == 0)
 1911                 return 0;
 1912         if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
 1913                 if ((error = wi_seek_bap(sc, id, off)) != 0)
 1914                         return error;
 1915         }
 1916         cnt = (buflen + 1) / 2;
 1917         CSR_READ_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
 1918         sc->sc_bap_off += cnt * 2;
 1919         return 0;
 1920 }
 1921 
 1922 static int
 1923 wi_write_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
 1924 {
 1925         int error, cnt;
 1926 
 1927         if (buflen == 0)
 1928                 return 0;
 1929 
 1930         if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
 1931                 if ((error = wi_seek_bap(sc, id, off)) != 0)
 1932                         return error;
 1933         }
 1934         cnt = (buflen + 1) / 2;
 1935         CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
 1936         sc->sc_bap_off += cnt * 2;
 1937 
 1938         return 0;
 1939 }
 1940 
 1941 static int
 1942 wi_mwrite_bap(struct wi_softc *sc, int id, int off, struct mbuf *m0, int totlen)
 1943 {
 1944         int error, len;
 1945         struct mbuf *m;
 1946 
 1947         for (m = m0; m != NULL && totlen > 0; m = m->m_next) {
 1948                 if (m->m_len == 0)
 1949                         continue;
 1950 
 1951                 len = min(m->m_len, totlen);
 1952 
 1953                 if (((u_long)m->m_data) % 2 != 0 || len % 2 != 0) {
 1954                         m_copydata(m, 0, totlen, (caddr_t)&sc->sc_txbuf);
 1955                         return wi_write_bap(sc, id, off, (caddr_t)&sc->sc_txbuf,
 1956                             totlen);
 1957                 }
 1958 
 1959                 if ((error = wi_write_bap(sc, id, off, m->m_data, len)) != 0)
 1960                         return error;
 1961 
 1962                 off += m->m_len;
 1963                 totlen -= len;
 1964         }
 1965         return 0;
 1966 }
 1967 
 1968 static int
 1969 wi_alloc_fid(struct wi_softc *sc, int len, int *idp)
 1970 {
 1971         int i;
 1972 
 1973         if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) {
 1974                 device_printf(sc->sc_dev, "%s: failed to allocate %d bytes on NIC\n",
 1975                     __func__, len);
 1976                 return ENOMEM;
 1977         }
 1978 
 1979         for (i = 0; i < WI_TIMEOUT; i++) {
 1980                 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
 1981                         break;
 1982                 DELAY(1);
 1983         }
 1984         if (i == WI_TIMEOUT) {
 1985                 device_printf(sc->sc_dev, "%s: timeout in alloc\n", __func__);
 1986                 return ETIMEDOUT;
 1987         }
 1988         *idp = CSR_READ_2(sc, WI_ALLOC_FID);
 1989         CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
 1990         return 0;
 1991 }
 1992 
 1993 static int
 1994 wi_read_rid(struct wi_softc *sc, int rid, void *buf, int *buflenp)
 1995 {
 1996         int error, len;
 1997         u_int16_t ltbuf[2];
 1998 
 1999         /* Tell the NIC to enter record read mode. */
 2000         error = wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_READ, rid, 0, 0);
 2001         if (error)
 2002                 return error;
 2003 
 2004         error = wi_read_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
 2005         if (error)
 2006                 return error;
 2007 
 2008         if (le16toh(ltbuf[1]) != rid) {
 2009                 device_printf(sc->sc_dev, "record read mismatch, rid=%x, got=%x\n",
 2010                     rid, le16toh(ltbuf[1]));
 2011                 return EIO;
 2012         }
 2013         len = (le16toh(ltbuf[0]) - 1) * 2;       /* already got rid */
 2014         if (*buflenp < len) {
 2015                 device_printf(sc->sc_dev, "record buffer is too small, "
 2016                     "rid=%x, size=%d, len=%d\n",
 2017                     rid, *buflenp, len);
 2018                 return ENOSPC;
 2019         }
 2020         *buflenp = len;
 2021         return wi_read_bap(sc, rid, sizeof(ltbuf), buf, len);
 2022 }
 2023 
 2024 static int
 2025 wi_write_rid(struct wi_softc *sc, int rid, void *buf, int buflen)
 2026 {
 2027         int error;
 2028         u_int16_t ltbuf[2];
 2029 
 2030         ltbuf[0] = htole16((buflen + 1) / 2 + 1);        /* includes rid */
 2031         ltbuf[1] = htole16(rid);
 2032 
 2033         error = wi_write_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
 2034         if (error) {
 2035                 device_printf(sc->sc_dev, "%s: bap0 write failure, rid 0x%x\n",
 2036                     __func__, rid);
 2037                 return error;
 2038         }
 2039         error = wi_write_bap(sc, rid, sizeof(ltbuf), buf, buflen);
 2040         if (error) {
 2041                 device_printf(sc->sc_dev, "%s: bap1 write failure, rid 0x%x\n",
 2042                     __func__, rid);
 2043                 return error;
 2044         }
 2045 
 2046         return wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_WRITE, rid, 0, 0);
 2047 }
 2048 
 2049 static int
 2050 wi_write_appie(struct wi_softc *sc, int rid, const struct ieee80211_appie *ie)
 2051 {
 2052         /* NB: 42 bytes is probably ok to have on the stack */
 2053         char buf[sizeof(uint16_t) + 40];
 2054 
 2055         if (ie->ie_len > 40)
 2056                 return EINVAL;
 2057         /* NB: firmware requires 16-bit ie length before ie data */
 2058         *(uint16_t *) buf = htole16(ie->ie_len);
 2059         memcpy(buf + sizeof(uint16_t), ie->ie_data, ie->ie_len);
 2060         return wi_write_rid(sc, rid, buf, ie->ie_len + sizeof(uint16_t));
 2061 }
 2062 
 2063 int
 2064 wi_alloc(device_t dev, int rid)
 2065 {
 2066         struct wi_softc *sc = device_get_softc(dev);
 2067 
 2068         if (sc->wi_bus_type != WI_BUS_PCI_NATIVE) {
 2069                 sc->iobase_rid = rid;
 2070                 sc->iobase = bus_alloc_resource(dev, SYS_RES_IOPORT,
 2071                     &sc->iobase_rid, 0, ~0, (1 << 6),
 2072                     rman_make_alignment_flags(1 << 6) | RF_ACTIVE);
 2073                 if (sc->iobase == NULL) {
 2074                         device_printf(dev, "No I/O space?!\n");
 2075                         return ENXIO;
 2076                 }
 2077 
 2078                 sc->wi_io_addr = rman_get_start(sc->iobase);
 2079                 sc->wi_btag = rman_get_bustag(sc->iobase);
 2080                 sc->wi_bhandle = rman_get_bushandle(sc->iobase);
 2081         } else {
 2082                 sc->mem_rid = rid;
 2083                 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
 2084                     &sc->mem_rid, RF_ACTIVE);
 2085                 if (sc->mem == NULL) {
 2086                         device_printf(dev, "No Mem space on prism2.5?\n");
 2087                         return ENXIO;
 2088                 }
 2089 
 2090                 sc->wi_btag = rman_get_bustag(sc->mem);
 2091                 sc->wi_bhandle = rman_get_bushandle(sc->mem);
 2092         }
 2093 
 2094         sc->irq_rid = 0;
 2095         sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
 2096             RF_ACTIVE |
 2097             ((sc->wi_bus_type == WI_BUS_PCCARD) ? 0 : RF_SHAREABLE));
 2098         if (sc->irq == NULL) {
 2099                 wi_free(dev);
 2100                 device_printf(dev, "No irq?!\n");
 2101                 return ENXIO;
 2102         }
 2103 
 2104         sc->sc_dev = dev;
 2105         sc->sc_unit = device_get_unit(dev);
 2106         return 0;
 2107 }
 2108 
 2109 void
 2110 wi_free(device_t dev)
 2111 {
 2112         struct wi_softc *sc = device_get_softc(dev);
 2113 
 2114         if (sc->iobase != NULL) {
 2115                 bus_release_resource(dev, SYS_RES_IOPORT, sc->iobase_rid, sc->iobase);
 2116                 sc->iobase = NULL;
 2117         }
 2118         if (sc->irq != NULL) {
 2119                 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
 2120                 sc->irq = NULL;
 2121         }
 2122         if (sc->mem != NULL) {
 2123                 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
 2124                 sc->mem = NULL;
 2125         }
 2126 }

Cache object: ffa9cc23719d8b5cb49877ba370f670f


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.