FreeBSD/Linux Kernel Cross Reference
sys/dev/wi/if_wi.c
1 /*-
2 * Copyright (c) 1997, 1998, 1999
3 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver.
35 *
36 * Original FreeBSD driver written by Bill Paul <wpaul@ctr.columbia.edu>
37 * Electrical Engineering Department
38 * Columbia University, New York City
39 */
40
41 /*
42 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
43 * from Lucent. Unlike the older cards, the new ones are programmed
44 * entirely via a firmware-driven controller called the Hermes.
45 * Unfortunately, Lucent will not release the Hermes programming manual
46 * without an NDA (if at all). What they do release is an API library
47 * called the HCF (Hardware Control Functions) which is supposed to
48 * do the device-specific operations of a device driver for you. The
49 * publicly available version of the HCF library (the 'HCF Light') is
50 * a) extremely gross, b) lacks certain features, particularly support
51 * for 802.11 frames, and c) is contaminated by the GNU Public License.
52 *
53 * This driver does not use the HCF or HCF Light at all. Instead, it
54 * programs the Hermes controller directly, using information gleaned
55 * from the HCF Light code and corresponding documentation.
56 *
57 * This driver supports the ISA, PCMCIA and PCI versions of the Lucent
58 * WaveLan cards (based on the Hermes chipset), as well as the newer
59 * Prism 2 chipsets with firmware from Intersil and Symbol.
60 */
61
62 #include <sys/cdefs.h>
63 __FBSDID("$FreeBSD$");
64
65 #include "opt_wlan.h"
66
67 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/endian.h>
72 #include <sys/sockio.h>
73 #include <sys/mbuf.h>
74 #include <sys/priv.h>
75 #include <sys/proc.h>
76 #include <sys/kernel.h>
77 #include <sys/malloc.h>
78 #include <sys/socket.h>
79 #include <sys/module.h>
80 #include <sys/bus.h>
81 #include <sys/random.h>
82 #include <sys/syslog.h>
83 #include <sys/sysctl.h>
84
85 #include <machine/bus.h>
86 #include <machine/resource.h>
87 #include <machine/atomic.h>
88 #include <sys/rman.h>
89
90 #include <net/if.h>
91 #include <net/if_var.h>
92 #include <net/if_arp.h>
93 #include <net/ethernet.h>
94 #include <net/if_dl.h>
95 #include <net/if_llc.h>
96 #include <net/if_media.h>
97 #include <net/if_types.h>
98
99 #include <net80211/ieee80211_var.h>
100 #include <net80211/ieee80211_ioctl.h>
101 #include <net80211/ieee80211_radiotap.h>
102
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip.h>
107 #include <netinet/if_ether.h>
108
109 #include <net/bpf.h>
110
111 #include <dev/wi/if_wavelan_ieee.h>
112 #include <dev/wi/if_wireg.h>
113 #include <dev/wi/if_wivar.h>
114
115 static struct ieee80211vap *wi_vap_create(struct ieee80211com *,
116 const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
117 const uint8_t [IEEE80211_ADDR_LEN],
118 const uint8_t [IEEE80211_ADDR_LEN]);
119 static void wi_vap_delete(struct ieee80211vap *vap);
120 static int wi_transmit(struct ieee80211com *, struct mbuf *);
121 static void wi_start(struct wi_softc *);
122 static int wi_start_tx(struct wi_softc *, struct wi_frame *, struct mbuf *);
123 static int wi_raw_xmit(struct ieee80211_node *, struct mbuf *,
124 const struct ieee80211_bpf_params *);
125 static int wi_newstate_sta(struct ieee80211vap *, enum ieee80211_state, int);
126 static int wi_newstate_hostap(struct ieee80211vap *, enum ieee80211_state,
127 int);
128 static void wi_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
129 int subtype, const struct ieee80211_rx_stats *rxs,
130 int rssi, int nf);
131 static int wi_reset(struct wi_softc *);
132 static void wi_watchdog(void *);
133 static void wi_parent(struct ieee80211com *);
134 static void wi_media_status(struct ifnet *, struct ifmediareq *);
135 static void wi_rx_intr(struct wi_softc *);
136 static void wi_tx_intr(struct wi_softc *);
137 static void wi_tx_ex_intr(struct wi_softc *);
138
139 static void wi_info_intr(struct wi_softc *);
140
141 static int wi_write_txrate(struct wi_softc *, struct ieee80211vap *);
142 static int wi_write_wep(struct wi_softc *, struct ieee80211vap *);
143 static int wi_write_multi(struct wi_softc *);
144 static void wi_update_mcast(struct ieee80211com *);
145 static void wi_update_promisc(struct ieee80211com *);
146 static int wi_alloc_fid(struct wi_softc *, int, int *);
147 static void wi_read_nicid(struct wi_softc *);
148 static int wi_write_ssid(struct wi_softc *, int, u_int8_t *, int);
149
150 static int wi_cmd(struct wi_softc *, int, int, int, int);
151 static int wi_seek_bap(struct wi_softc *, int, int);
152 static int wi_read_bap(struct wi_softc *, int, int, void *, int);
153 static int wi_write_bap(struct wi_softc *, int, int, const void *, int);
154 static int wi_mwrite_bap(struct wi_softc *, int, int, struct mbuf *, int);
155 static int wi_read_rid(struct wi_softc *, int, void *, int *);
156 static int wi_write_rid(struct wi_softc *, int, const void *, int);
157 static int wi_write_appie(struct wi_softc *, int, const struct ieee80211_appie *);
158 static u_int16_t wi_read_chanmask(struct wi_softc *);
159
160 static void wi_scan_start(struct ieee80211com *);
161 static void wi_scan_end(struct ieee80211com *);
162 static void wi_getradiocaps(struct ieee80211com *, int, int *,
163 struct ieee80211_channel[]);
164 static void wi_set_channel(struct ieee80211com *);
165
166 static __inline int
167 wi_write_val(struct wi_softc *sc, int rid, u_int16_t val)
168 {
169
170 val = htole16(val);
171 return wi_write_rid(sc, rid, &val, sizeof(val));
172 }
173
174 static SYSCTL_NODE(_hw, OID_AUTO, wi, CTLFLAG_RD, 0,
175 "Wireless driver parameters");
176
177 static struct timeval lasttxerror; /* time of last tx error msg */
178 static int curtxeps; /* current tx error msgs/sec */
179 static int wi_txerate = 0; /* tx error rate: max msgs/sec */
180 SYSCTL_INT(_hw_wi, OID_AUTO, txerate, CTLFLAG_RW, &wi_txerate,
181 0, "max tx error msgs/sec; 0 to disable msgs");
182
183 #define WI_DEBUG
184 #ifdef WI_DEBUG
185 static int wi_debug = 0;
186 SYSCTL_INT(_hw_wi, OID_AUTO, debug, CTLFLAG_RW, &wi_debug,
187 0, "control debugging printfs");
188 #define DPRINTF(X) if (wi_debug) printf X
189 #else
190 #define DPRINTF(X)
191 #endif
192
193 #define WI_INTRS (WI_EV_RX | WI_EV_ALLOC | WI_EV_INFO)
194
195 struct wi_card_ident wi_card_ident[] = {
196 /* CARD_ID CARD_NAME FIRM_TYPE */
197 { WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT },
198 { WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT },
199 { WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT },
200 { WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL },
201 { WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL },
202 { WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL },
203 { WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL },
204 { WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL },
205 { WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL },
206 { WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL },
207 { WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL },
208 { WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL },
209 { WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
210 { WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
211 { WI_NIC_3842_PCMCIA_ATL_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
212 { WI_NIC_3842_PCMCIA_ATS_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
213 { WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
214 { WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
215 { WI_NIC_3842_MINI_ATL_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
216 { WI_NIC_3842_MINI_ATS_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
217 { WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
218 { WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
219 { WI_NIC_3842_PCI_ATS_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
220 { WI_NIC_3842_PCI_ATL_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
221 { WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
222 { WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
223 { WI_NIC_P3_PCMCIA_ATL_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
224 { WI_NIC_P3_PCMCIA_ATS_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
225 { WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
226 { WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
227 { WI_NIC_P3_MINI_ATL_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
228 { WI_NIC_P3_MINI_ATS_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
229 { 0, NULL, 0 },
230 };
231
232 static char *wi_firmware_names[] = { "none", "Hermes", "Intersil", "Symbol" };
233
234 devclass_t wi_devclass;
235
236 int
237 wi_attach(device_t dev)
238 {
239 struct wi_softc *sc = device_get_softc(dev);
240 struct ieee80211com *ic = &sc->sc_ic;
241 int i, nrates, buflen;
242 u_int16_t val;
243 u_int8_t ratebuf[2 + IEEE80211_RATE_SIZE];
244 struct ieee80211_rateset *rs;
245 struct sysctl_ctx_list *sctx;
246 struct sysctl_oid *soid;
247 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
248 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
249 };
250 int error;
251
252 sc->sc_firmware_type = WI_NOTYPE;
253 sc->wi_cmd_count = 500;
254 /* Reset the NIC. */
255 if (wi_reset(sc) != 0) {
256 wi_free(dev);
257 return ENXIO; /* XXX */
258 }
259
260 /* Read NIC identification */
261 wi_read_nicid(sc);
262 switch (sc->sc_firmware_type) {
263 case WI_LUCENT:
264 if (sc->sc_sta_firmware_ver < 60006)
265 goto reject;
266 break;
267 case WI_INTERSIL:
268 if (sc->sc_sta_firmware_ver < 800)
269 goto reject;
270 break;
271 default:
272 reject:
273 device_printf(dev, "Sorry, this card is not supported "
274 "(type %d, firmware ver %d)\n",
275 sc->sc_firmware_type, sc->sc_sta_firmware_ver);
276 wi_free(dev);
277 return EOPNOTSUPP;
278 }
279
280 /* Export info about the device via sysctl */
281 sctx = device_get_sysctl_ctx(dev);
282 soid = device_get_sysctl_tree(dev);
283 SYSCTL_ADD_STRING(sctx, SYSCTL_CHILDREN(soid), OID_AUTO,
284 "firmware_type", CTLFLAG_RD,
285 wi_firmware_names[sc->sc_firmware_type], 0,
286 "Firmware type string");
287 SYSCTL_ADD_INT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "sta_version",
288 CTLFLAG_RD, &sc->sc_sta_firmware_ver, 0,
289 "Station Firmware version");
290 if (sc->sc_firmware_type == WI_INTERSIL)
291 SYSCTL_ADD_INT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO,
292 "pri_version", CTLFLAG_RD, &sc->sc_pri_firmware_ver, 0,
293 "Primary Firmware version");
294 SYSCTL_ADD_UINT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "nic_id",
295 CTLFLAG_RD, &sc->sc_nic_id, 0, "NIC id");
296 SYSCTL_ADD_STRING(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "nic_name",
297 CTLFLAG_RD, sc->sc_nic_name, 0, "NIC name");
298
299 mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
300 MTX_DEF | MTX_RECURSE);
301 callout_init_mtx(&sc->sc_watchdog, &sc->sc_mtx, 0);
302 mbufq_init(&sc->sc_snd, ifqmaxlen);
303
304 /*
305 * Read the station address.
306 * And do it twice. I've seen PRISM-based cards that return
307 * an error when trying to read it the first time, which causes
308 * the probe to fail.
309 */
310 buflen = IEEE80211_ADDR_LEN;
311 error = wi_read_rid(sc, WI_RID_MAC_NODE, &ic->ic_macaddr, &buflen);
312 if (error != 0) {
313 buflen = IEEE80211_ADDR_LEN;
314 error = wi_read_rid(sc, WI_RID_MAC_NODE, &ic->ic_macaddr,
315 &buflen);
316 }
317 if (error || IEEE80211_ADDR_EQ(&ic->ic_macaddr, empty_macaddr)) {
318 if (error != 0)
319 device_printf(dev, "mac read failed %d\n", error);
320 else {
321 device_printf(dev, "mac read failed (all zeros)\n");
322 error = ENXIO;
323 }
324 wi_free(dev);
325 return (error);
326 }
327
328 ic->ic_softc = sc;
329 ic->ic_name = device_get_nameunit(dev);
330 ic->ic_phytype = IEEE80211_T_DS;
331 ic->ic_opmode = IEEE80211_M_STA;
332 ic->ic_caps = IEEE80211_C_STA
333 | IEEE80211_C_PMGT
334 | IEEE80211_C_MONITOR
335 ;
336
337 /*
338 * Query the card for available channels and setup the
339 * channel table. We assume these are all 11b channels.
340 */
341 sc->sc_chanmask = wi_read_chanmask(sc);
342 wi_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
343 ic->ic_channels);
344
345 /*
346 * Set flags based on firmware version.
347 */
348 switch (sc->sc_firmware_type) {
349 case WI_LUCENT:
350 sc->sc_ntxbuf = 1;
351 ic->ic_caps |= IEEE80211_C_IBSS;
352
353 sc->sc_ibss_port = WI_PORTTYPE_BSS;
354 sc->sc_monitor_port = WI_PORTTYPE_ADHOC;
355 sc->sc_min_rssi = WI_LUCENT_MIN_RSSI;
356 sc->sc_max_rssi = WI_LUCENT_MAX_RSSI;
357 sc->sc_dbm_offset = WI_LUCENT_DBM_OFFSET;
358 break;
359 case WI_INTERSIL:
360 sc->sc_ntxbuf = WI_NTXBUF;
361 sc->sc_flags |= WI_FLAGS_HAS_FRAGTHR
362 | WI_FLAGS_HAS_ROAMING;
363 /*
364 * Old firmware are slow, so give peace a chance.
365 */
366 if (sc->sc_sta_firmware_ver < 10000)
367 sc->wi_cmd_count = 5000;
368 if (sc->sc_sta_firmware_ver > 10101)
369 sc->sc_flags |= WI_FLAGS_HAS_DBMADJUST;
370 ic->ic_caps |= IEEE80211_C_IBSS;
371 /*
372 * version 0.8.3 and newer are the only ones that are known
373 * to currently work. Earlier versions can be made to work,
374 * at least according to the Linux driver but we require
375 * monitor mode so this is irrelevant.
376 */
377 ic->ic_caps |= IEEE80211_C_HOSTAP;
378 if (sc->sc_sta_firmware_ver >= 10603)
379 sc->sc_flags |= WI_FLAGS_HAS_ENHSECURITY;
380 if (sc->sc_sta_firmware_ver >= 10700) {
381 /*
382 * 1.7.0+ have the necessary support for sta mode WPA.
383 */
384 sc->sc_flags |= WI_FLAGS_HAS_WPASUPPORT;
385 ic->ic_caps |= IEEE80211_C_WPA;
386 }
387
388 sc->sc_ibss_port = WI_PORTTYPE_IBSS;
389 sc->sc_monitor_port = WI_PORTTYPE_APSILENT;
390 sc->sc_min_rssi = WI_PRISM_MIN_RSSI;
391 sc->sc_max_rssi = WI_PRISM_MAX_RSSI;
392 sc->sc_dbm_offset = WI_PRISM_DBM_OFFSET;
393 break;
394 }
395
396 /*
397 * Find out if we support WEP on this card.
398 */
399 buflen = sizeof(val);
400 if (wi_read_rid(sc, WI_RID_WEP_AVAIL, &val, &buflen) == 0 &&
401 val != htole16(0))
402 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
403
404 /* Find supported rates. */
405 buflen = sizeof(ratebuf);
406 rs = &ic->ic_sup_rates[IEEE80211_MODE_11B];
407 if (wi_read_rid(sc, WI_RID_DATA_RATES, ratebuf, &buflen) == 0) {
408 nrates = le16toh(*(u_int16_t *)ratebuf);
409 if (nrates > IEEE80211_RATE_MAXSIZE)
410 nrates = IEEE80211_RATE_MAXSIZE;
411 rs->rs_nrates = 0;
412 for (i = 0; i < nrates; i++)
413 if (ratebuf[2+i])
414 rs->rs_rates[rs->rs_nrates++] = ratebuf[2+i];
415 } else {
416 /* XXX fallback on error? */
417 }
418
419 buflen = sizeof(val);
420 if ((sc->sc_flags & WI_FLAGS_HAS_DBMADJUST) &&
421 wi_read_rid(sc, WI_RID_DBM_ADJUST, &val, &buflen) == 0) {
422 sc->sc_dbm_offset = le16toh(val);
423 }
424
425 sc->sc_portnum = WI_DEFAULT_PORT;
426
427 ieee80211_ifattach(ic);
428 ic->ic_raw_xmit = wi_raw_xmit;
429 ic->ic_scan_start = wi_scan_start;
430 ic->ic_scan_end = wi_scan_end;
431 ic->ic_getradiocaps = wi_getradiocaps;
432 ic->ic_set_channel = wi_set_channel;
433 ic->ic_vap_create = wi_vap_create;
434 ic->ic_vap_delete = wi_vap_delete;
435 ic->ic_update_mcast = wi_update_mcast;
436 ic->ic_update_promisc = wi_update_promisc;
437 ic->ic_transmit = wi_transmit;
438 ic->ic_parent = wi_parent;
439
440 ieee80211_radiotap_attach(ic,
441 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
442 WI_TX_RADIOTAP_PRESENT,
443 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
444 WI_RX_RADIOTAP_PRESENT);
445
446 if (bootverbose)
447 ieee80211_announce(ic);
448
449 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
450 NULL, wi_intr, sc, &sc->wi_intrhand);
451 if (error) {
452 device_printf(dev, "bus_setup_intr() failed! (%d)\n", error);
453 ieee80211_ifdetach(ic);
454 wi_free(dev);
455 return error;
456 }
457
458 return (0);
459 }
460
461 int
462 wi_detach(device_t dev)
463 {
464 struct wi_softc *sc = device_get_softc(dev);
465 struct ieee80211com *ic = &sc->sc_ic;
466
467 WI_LOCK(sc);
468
469 /* check if device was removed */
470 sc->wi_gone |= !bus_child_present(dev);
471
472 wi_stop(sc, 0);
473 WI_UNLOCK(sc);
474 ieee80211_ifdetach(ic);
475
476 bus_teardown_intr(dev, sc->irq, sc->wi_intrhand);
477 wi_free(dev);
478 mbufq_drain(&sc->sc_snd);
479 mtx_destroy(&sc->sc_mtx);
480 return (0);
481 }
482
483 static struct ieee80211vap *
484 wi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
485 enum ieee80211_opmode opmode, int flags,
486 const uint8_t bssid[IEEE80211_ADDR_LEN],
487 const uint8_t mac[IEEE80211_ADDR_LEN])
488 {
489 struct wi_softc *sc = ic->ic_softc;
490 struct wi_vap *wvp;
491 struct ieee80211vap *vap;
492
493 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */
494 return NULL;
495 wvp = malloc(sizeof(struct wi_vap), M_80211_VAP, M_WAITOK | M_ZERO);
496
497 vap = &wvp->wv_vap;
498 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
499
500 vap->iv_max_aid = WI_MAX_AID;
501
502 switch (opmode) {
503 case IEEE80211_M_STA:
504 sc->sc_porttype = WI_PORTTYPE_BSS;
505 wvp->wv_newstate = vap->iv_newstate;
506 vap->iv_newstate = wi_newstate_sta;
507 /* need to filter mgt frames to avoid confusing state machine */
508 wvp->wv_recv_mgmt = vap->iv_recv_mgmt;
509 vap->iv_recv_mgmt = wi_recv_mgmt;
510 break;
511 case IEEE80211_M_IBSS:
512 sc->sc_porttype = sc->sc_ibss_port;
513 wvp->wv_newstate = vap->iv_newstate;
514 vap->iv_newstate = wi_newstate_sta;
515 break;
516 case IEEE80211_M_AHDEMO:
517 sc->sc_porttype = WI_PORTTYPE_ADHOC;
518 break;
519 case IEEE80211_M_HOSTAP:
520 sc->sc_porttype = WI_PORTTYPE_HOSTAP;
521 wvp->wv_newstate = vap->iv_newstate;
522 vap->iv_newstate = wi_newstate_hostap;
523 break;
524 case IEEE80211_M_MONITOR:
525 sc->sc_porttype = sc->sc_monitor_port;
526 break;
527 default:
528 break;
529 }
530
531 /* complete setup */
532 ieee80211_vap_attach(vap, ieee80211_media_change, wi_media_status, mac);
533 ic->ic_opmode = opmode;
534 return vap;
535 }
536
537 static void
538 wi_vap_delete(struct ieee80211vap *vap)
539 {
540 struct wi_vap *wvp = WI_VAP(vap);
541
542 ieee80211_vap_detach(vap);
543 free(wvp, M_80211_VAP);
544 }
545
546 int
547 wi_shutdown(device_t dev)
548 {
549 struct wi_softc *sc = device_get_softc(dev);
550
551 WI_LOCK(sc);
552 wi_stop(sc, 1);
553 WI_UNLOCK(sc);
554 return (0);
555 }
556
557 void
558 wi_intr(void *arg)
559 {
560 struct wi_softc *sc = arg;
561 u_int16_t status;
562
563 WI_LOCK(sc);
564
565 if (sc->wi_gone || !sc->sc_enabled ||
566 (sc->sc_flags & WI_FLAGS_RUNNING) == 0) {
567 CSR_WRITE_2(sc, WI_INT_EN, 0);
568 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
569 WI_UNLOCK(sc);
570 return;
571 }
572
573 /* Disable interrupts. */
574 CSR_WRITE_2(sc, WI_INT_EN, 0);
575
576 status = CSR_READ_2(sc, WI_EVENT_STAT);
577 if (status & WI_EV_RX)
578 wi_rx_intr(sc);
579 if (status & WI_EV_ALLOC)
580 wi_tx_intr(sc);
581 if (status & WI_EV_TX_EXC)
582 wi_tx_ex_intr(sc);
583 if (status & WI_EV_INFO)
584 wi_info_intr(sc);
585 if (mbufq_first(&sc->sc_snd) != NULL)
586 wi_start(sc);
587
588 /* Re-enable interrupts. */
589 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
590
591 WI_UNLOCK(sc);
592
593 return;
594 }
595
596 static void
597 wi_enable(struct wi_softc *sc)
598 {
599 /* Enable interrupts */
600 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
601
602 /* enable port */
603 wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0);
604 sc->sc_enabled = 1;
605 }
606
607 static int
608 wi_setup_locked(struct wi_softc *sc, int porttype, int mode,
609 const uint8_t mac[IEEE80211_ADDR_LEN])
610 {
611 int i;
612
613 wi_reset(sc);
614
615 wi_write_val(sc, WI_RID_PORTTYPE, porttype);
616 wi_write_val(sc, WI_RID_CREATE_IBSS, mode);
617 wi_write_val(sc, WI_RID_MAX_DATALEN, 2304);
618 /* XXX IEEE80211_BPF_NOACK wants 0 */
619 wi_write_val(sc, WI_RID_ALT_RETRY_CNT, 2);
620 if (sc->sc_flags & WI_FLAGS_HAS_ROAMING)
621 wi_write_val(sc, WI_RID_ROAMING_MODE, 3); /* NB: disabled */
622
623 wi_write_rid(sc, WI_RID_MAC_NODE, mac, IEEE80211_ADDR_LEN);
624
625 /* Allocate fids for the card */
626 sc->sc_buflen = IEEE80211_MAX_LEN + sizeof(struct wi_frame);
627 for (i = 0; i < sc->sc_ntxbuf; i++) {
628 int error = wi_alloc_fid(sc, sc->sc_buflen,
629 &sc->sc_txd[i].d_fid);
630 if (error) {
631 device_printf(sc->sc_dev,
632 "tx buffer allocation failed (error %u)\n",
633 error);
634 return error;
635 }
636 sc->sc_txd[i].d_len = 0;
637 }
638 sc->sc_txcur = sc->sc_txnext = 0;
639
640 return 0;
641 }
642
643 void
644 wi_init(struct wi_softc *sc)
645 {
646 int wasenabled;
647
648 WI_LOCK_ASSERT(sc);
649
650 wasenabled = sc->sc_enabled;
651 if (wasenabled)
652 wi_stop(sc, 1);
653
654 if (wi_setup_locked(sc, sc->sc_porttype, 3,
655 sc->sc_ic.ic_macaddr) != 0) {
656 device_printf(sc->sc_dev, "interface not running\n");
657 wi_stop(sc, 1);
658 return;
659 }
660
661 sc->sc_flags |= WI_FLAGS_RUNNING;
662
663 callout_reset(&sc->sc_watchdog, hz, wi_watchdog, sc);
664
665 wi_enable(sc); /* Enable desired port */
666 }
667
668 void
669 wi_stop(struct wi_softc *sc, int disable)
670 {
671
672 WI_LOCK_ASSERT(sc);
673
674 if (sc->sc_enabled && !sc->wi_gone) {
675 CSR_WRITE_2(sc, WI_INT_EN, 0);
676 wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0);
677 if (disable)
678 sc->sc_enabled = 0;
679 } else if (sc->wi_gone && disable) /* gone --> not enabled */
680 sc->sc_enabled = 0;
681
682 callout_stop(&sc->sc_watchdog);
683 sc->sc_tx_timer = 0;
684 sc->sc_false_syns = 0;
685
686 sc->sc_flags &= ~WI_FLAGS_RUNNING;
687 }
688
689 static void
690 wi_getradiocaps(struct ieee80211com *ic,
691 int maxchans, int *nchans, struct ieee80211_channel chans[])
692 {
693 struct wi_softc *sc = ic->ic_softc;
694 u_int8_t bands[IEEE80211_MODE_BYTES];
695 int i;
696
697 memset(bands, 0, sizeof(bands));
698 setbit(bands, IEEE80211_MODE_11B);
699
700 for (i = 1; i < 16; i++) {
701 if (sc->sc_chanmask & (1 << i)) {
702 /* XXX txpowers? */
703 ieee80211_add_channel(chans, maxchans, nchans,
704 i, 0, 0, 0, bands);
705 }
706 }
707 }
708
709 static void
710 wi_set_channel(struct ieee80211com *ic)
711 {
712 struct wi_softc *sc = ic->ic_softc;
713
714 DPRINTF(("%s: channel %d, %sscanning\n", __func__,
715 ieee80211_chan2ieee(ic, ic->ic_curchan),
716 ic->ic_flags & IEEE80211_F_SCAN ? "" : "!"));
717
718 WI_LOCK(sc);
719 wi_write_val(sc, WI_RID_OWN_CHNL,
720 ieee80211_chan2ieee(ic, ic->ic_curchan));
721 WI_UNLOCK(sc);
722 }
723
724 static void
725 wi_scan_start(struct ieee80211com *ic)
726 {
727 struct wi_softc *sc = ic->ic_softc;
728 struct ieee80211_scan_state *ss = ic->ic_scan;
729
730 DPRINTF(("%s\n", __func__));
731
732 WI_LOCK(sc);
733 /*
734 * Switch device to monitor mode.
735 */
736 wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_monitor_port);
737 if (sc->sc_firmware_type == WI_INTERSIL) {
738 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
739 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
740 }
741 /* force full dwell time to compensate for firmware overhead */
742 ss->ss_mindwell = ss->ss_maxdwell = msecs_to_ticks(400);
743 WI_UNLOCK(sc);
744
745 }
746
747 static void
748 wi_scan_end(struct ieee80211com *ic)
749 {
750 struct wi_softc *sc = ic->ic_softc;
751
752 DPRINTF(("%s: restore port type %d\n", __func__, sc->sc_porttype));
753
754 WI_LOCK(sc);
755 wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_porttype);
756 if (sc->sc_firmware_type == WI_INTERSIL) {
757 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
758 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
759 }
760 WI_UNLOCK(sc);
761 }
762
763 static void
764 wi_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
765 int subtype, const struct ieee80211_rx_stats *rxs, int rssi, int nf)
766 {
767 struct ieee80211vap *vap = ni->ni_vap;
768
769 switch (subtype) {
770 case IEEE80211_FC0_SUBTYPE_AUTH:
771 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
772 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
773 /* NB: filter frames that trigger state changes */
774 return;
775 }
776 WI_VAP(vap)->wv_recv_mgmt(ni, m, subtype, rxs, rssi, nf);
777 }
778
779 static int
780 wi_newstate_sta(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
781 {
782 struct ieee80211com *ic = vap->iv_ic;
783 struct ieee80211_node *bss;
784 struct wi_softc *sc = ic->ic_softc;
785
786 DPRINTF(("%s: %s -> %s\n", __func__,
787 ieee80211_state_name[vap->iv_state],
788 ieee80211_state_name[nstate]));
789
790 if (nstate == IEEE80211_S_AUTH) {
791 WI_LOCK(sc);
792 wi_setup_locked(sc, WI_PORTTYPE_BSS, 3, vap->iv_myaddr);
793
794 if (vap->iv_flags & IEEE80211_F_PMGTON) {
795 wi_write_val(sc, WI_RID_MAX_SLEEP, ic->ic_lintval);
796 wi_write_val(sc, WI_RID_PM_ENABLED, 1);
797 }
798 wi_write_val(sc, WI_RID_RTS_THRESH, vap->iv_rtsthreshold);
799 if (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)
800 wi_write_val(sc, WI_RID_FRAG_THRESH,
801 vap->iv_fragthreshold);
802 wi_write_txrate(sc, vap);
803
804 bss = vap->iv_bss;
805 wi_write_ssid(sc, WI_RID_DESIRED_SSID, bss->ni_essid, bss->ni_esslen);
806 wi_write_val(sc, WI_RID_OWN_CHNL,
807 ieee80211_chan2ieee(ic, bss->ni_chan));
808
809 /* Configure WEP. */
810 if (ic->ic_cryptocaps & IEEE80211_CRYPTO_WEP)
811 wi_write_wep(sc, vap);
812 else
813 sc->sc_encryption = 0;
814
815 if ((sc->sc_flags & WI_FLAGS_HAS_WPASUPPORT) &&
816 (vap->iv_flags & IEEE80211_F_WPA)) {
817 wi_write_val(sc, WI_RID_WPA_HANDLING, 1);
818 if (vap->iv_appie_wpa != NULL)
819 wi_write_appie(sc, WI_RID_WPA_DATA,
820 vap->iv_appie_wpa);
821 }
822
823 wi_enable(sc); /* enable port */
824
825 /* Lucent firmware does not support the JOIN RID. */
826 if (sc->sc_firmware_type == WI_INTERSIL) {
827 struct wi_joinreq join;
828
829 memset(&join, 0, sizeof(join));
830 IEEE80211_ADDR_COPY(&join.wi_bssid, bss->ni_bssid);
831 join.wi_chan = htole16(
832 ieee80211_chan2ieee(ic, bss->ni_chan));
833 wi_write_rid(sc, WI_RID_JOIN_REQ, &join, sizeof(join));
834 }
835 WI_UNLOCK(sc);
836
837 /*
838 * NB: don't go through 802.11 layer, it'll send auth frame;
839 * instead we drive the state machine from the link status
840 * notification we get on association.
841 */
842 vap->iv_state = nstate;
843 return (0);
844 }
845 return WI_VAP(vap)->wv_newstate(vap, nstate, arg);
846 }
847
848 static int
849 wi_newstate_hostap(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
850 {
851 struct ieee80211com *ic = vap->iv_ic;
852 struct ieee80211_node *bss;
853 struct wi_softc *sc = ic->ic_softc;
854 int error;
855
856 DPRINTF(("%s: %s -> %s\n", __func__,
857 ieee80211_state_name[vap->iv_state],
858 ieee80211_state_name[nstate]));
859
860 error = WI_VAP(vap)->wv_newstate(vap, nstate, arg);
861 if (error == 0 && nstate == IEEE80211_S_RUN) {
862 WI_LOCK(sc);
863 wi_setup_locked(sc, WI_PORTTYPE_HOSTAP, 0, vap->iv_myaddr);
864
865 bss = vap->iv_bss;
866 wi_write_ssid(sc, WI_RID_OWN_SSID,
867 bss->ni_essid, bss->ni_esslen);
868 wi_write_val(sc, WI_RID_OWN_CHNL,
869 ieee80211_chan2ieee(ic, bss->ni_chan));
870 wi_write_val(sc, WI_RID_BASIC_RATE, 0x3);
871 wi_write_val(sc, WI_RID_SUPPORT_RATE, 0xf);
872 wi_write_txrate(sc, vap);
873
874 wi_write_val(sc, WI_RID_OWN_BEACON_INT, bss->ni_intval);
875 wi_write_val(sc, WI_RID_DTIM_PERIOD, vap->iv_dtim_period);
876
877 wi_write_val(sc, WI_RID_RTS_THRESH, vap->iv_rtsthreshold);
878 if (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)
879 wi_write_val(sc, WI_RID_FRAG_THRESH,
880 vap->iv_fragthreshold);
881
882 if ((sc->sc_flags & WI_FLAGS_HAS_ENHSECURITY) &&
883 (vap->iv_flags & IEEE80211_F_HIDESSID)) {
884 /*
885 * bit 0 means hide SSID in beacons,
886 * bit 1 means don't respond to bcast probe req
887 */
888 wi_write_val(sc, WI_RID_ENH_SECURITY, 0x3);
889 }
890
891 if ((sc->sc_flags & WI_FLAGS_HAS_WPASUPPORT) &&
892 (vap->iv_flags & IEEE80211_F_WPA) &&
893 vap->iv_appie_wpa != NULL)
894 wi_write_appie(sc, WI_RID_WPA_DATA, vap->iv_appie_wpa);
895
896 wi_write_val(sc, WI_RID_PROMISC, 0);
897
898 /* Configure WEP. */
899 if (ic->ic_cryptocaps & IEEE80211_CRYPTO_WEP)
900 wi_write_wep(sc, vap);
901 else
902 sc->sc_encryption = 0;
903
904 wi_enable(sc); /* enable port */
905 WI_UNLOCK(sc);
906 }
907 return error;
908 }
909
910 static int
911 wi_transmit(struct ieee80211com *ic, struct mbuf *m)
912 {
913 struct wi_softc *sc = ic->ic_softc;
914 int error;
915
916 WI_LOCK(sc);
917 if ((sc->sc_flags & WI_FLAGS_RUNNING) == 0) {
918 WI_UNLOCK(sc);
919 return (ENXIO);
920 }
921 error = mbufq_enqueue(&sc->sc_snd, m);
922 if (error) {
923 WI_UNLOCK(sc);
924 return (error);
925 }
926 wi_start(sc);
927 WI_UNLOCK(sc);
928 return (0);
929 }
930
931 static void
932 wi_start(struct wi_softc *sc)
933 {
934 struct ieee80211_node *ni;
935 struct ieee80211_frame *wh;
936 struct mbuf *m0;
937 struct ieee80211_key *k;
938 struct wi_frame frmhdr;
939 const struct llc *llc;
940 int cur;
941
942 WI_LOCK_ASSERT(sc);
943
944 if (sc->wi_gone)
945 return;
946
947 memset(&frmhdr, 0, sizeof(frmhdr));
948 cur = sc->sc_txnext;
949 while (sc->sc_txd[cur].d_len == 0 &&
950 (m0 = mbufq_dequeue(&sc->sc_snd)) != NULL) {
951 ni = (struct ieee80211_node *) m0->m_pkthdr.rcvif;
952
953 /* reconstruct 802.3 header */
954 wh = mtod(m0, struct ieee80211_frame *);
955 switch (wh->i_fc[1]) {
956 case IEEE80211_FC1_DIR_TODS:
957 IEEE80211_ADDR_COPY(frmhdr.wi_ehdr.ether_shost,
958 wh->i_addr2);
959 IEEE80211_ADDR_COPY(frmhdr.wi_ehdr.ether_dhost,
960 wh->i_addr3);
961 break;
962 case IEEE80211_FC1_DIR_NODS:
963 IEEE80211_ADDR_COPY(frmhdr.wi_ehdr.ether_shost,
964 wh->i_addr2);
965 IEEE80211_ADDR_COPY(frmhdr.wi_ehdr.ether_dhost,
966 wh->i_addr1);
967 break;
968 case IEEE80211_FC1_DIR_FROMDS:
969 IEEE80211_ADDR_COPY(frmhdr.wi_ehdr.ether_shost,
970 wh->i_addr3);
971 IEEE80211_ADDR_COPY(frmhdr.wi_ehdr.ether_dhost,
972 wh->i_addr1);
973 break;
974 }
975 llc = (const struct llc *)(
976 mtod(m0, const uint8_t *) + ieee80211_hdrsize(wh));
977 frmhdr.wi_ehdr.ether_type = llc->llc_snap.ether_type;
978 frmhdr.wi_tx_ctl = htole16(WI_ENC_TX_802_11|WI_TXCNTL_TX_EX);
979 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
980 k = ieee80211_crypto_encap(ni, m0);
981 if (k == NULL) {
982 ieee80211_free_node(ni);
983 m_freem(m0);
984 continue;
985 }
986 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT);
987 }
988
989 if (ieee80211_radiotap_active_vap(ni->ni_vap)) {
990 sc->sc_tx_th.wt_rate = ni->ni_txrate;
991 ieee80211_radiotap_tx(ni->ni_vap, m0);
992 }
993
994 m_copydata(m0, 0, sizeof(struct ieee80211_frame),
995 (caddr_t)&frmhdr.wi_whdr);
996 m_adj(m0, sizeof(struct ieee80211_frame));
997 frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len);
998 ieee80211_free_node(ni);
999 if (wi_start_tx(sc, &frmhdr, m0))
1000 continue;
1001
1002 sc->sc_txnext = cur = (cur + 1) % sc->sc_ntxbuf;
1003 }
1004 }
1005
1006 static int
1007 wi_start_tx(struct wi_softc *sc, struct wi_frame *frmhdr, struct mbuf *m0)
1008 {
1009 int cur = sc->sc_txnext;
1010 int fid, off, error;
1011
1012 fid = sc->sc_txd[cur].d_fid;
1013 off = sizeof(*frmhdr);
1014 error = wi_write_bap(sc, fid, 0, frmhdr, sizeof(*frmhdr)) != 0
1015 || wi_mwrite_bap(sc, fid, off, m0, m0->m_pkthdr.len) != 0;
1016 m_freem(m0);
1017 if (error) {
1018 counter_u64_add(sc->sc_ic.ic_oerrors, 1);
1019 return -1;
1020 }
1021 sc->sc_txd[cur].d_len = off;
1022 if (sc->sc_txcur == cur) {
1023 if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, fid, 0, 0)) {
1024 device_printf(sc->sc_dev, "xmit failed\n");
1025 sc->sc_txd[cur].d_len = 0;
1026 return -1;
1027 }
1028 sc->sc_tx_timer = 5;
1029 }
1030 return 0;
1031 }
1032
1033 static int
1034 wi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m0,
1035 const struct ieee80211_bpf_params *params)
1036 {
1037 struct ieee80211com *ic = ni->ni_ic;
1038 struct ieee80211vap *vap = ni->ni_vap;
1039 struct wi_softc *sc = ic->ic_softc;
1040 struct ieee80211_key *k;
1041 struct ieee80211_frame *wh;
1042 struct wi_frame frmhdr;
1043 int cur;
1044 int rc = 0;
1045
1046 WI_LOCK(sc);
1047
1048 if (sc->wi_gone) {
1049 rc = ENETDOWN;
1050 goto out;
1051 }
1052 memset(&frmhdr, 0, sizeof(frmhdr));
1053 cur = sc->sc_txnext;
1054 if (sc->sc_txd[cur].d_len != 0) {
1055 rc = ENOBUFS;
1056 goto out;
1057 }
1058 m0->m_pkthdr.rcvif = NULL;
1059
1060 m_copydata(m0, 4, ETHER_ADDR_LEN * 2,
1061 (caddr_t)&frmhdr.wi_ehdr);
1062 frmhdr.wi_ehdr.ether_type = 0;
1063 wh = mtod(m0, struct ieee80211_frame *);
1064
1065 frmhdr.wi_tx_ctl = htole16(WI_ENC_TX_802_11|WI_TXCNTL_TX_EX);
1066 if (params && (params->ibp_flags & IEEE80211_BPF_NOACK))
1067 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_ALTRTRY);
1068 if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
1069 (!params || (params && (params->ibp_flags & IEEE80211_BPF_CRYPTO)))) {
1070 k = ieee80211_crypto_encap(ni, m0);
1071 if (k == NULL) {
1072 rc = ENOMEM;
1073 goto out;
1074 }
1075 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT);
1076 }
1077 if (ieee80211_radiotap_active_vap(vap)) {
1078 sc->sc_tx_th.wt_rate = ni->ni_txrate;
1079 ieee80211_radiotap_tx(vap, m0);
1080 }
1081 m_copydata(m0, 0, sizeof(struct ieee80211_frame),
1082 (caddr_t)&frmhdr.wi_whdr);
1083 m_adj(m0, sizeof(struct ieee80211_frame));
1084 frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len);
1085 if (wi_start_tx(sc, &frmhdr, m0) < 0) {
1086 m0 = NULL;
1087 rc = EIO;
1088 goto out;
1089 }
1090 m0 = NULL;
1091 ieee80211_free_node(ni);
1092
1093 sc->sc_txnext = cur = (cur + 1) % sc->sc_ntxbuf;
1094 out:
1095 WI_UNLOCK(sc);
1096
1097 if (m0 != NULL)
1098 m_freem(m0);
1099 return rc;
1100 }
1101
1102 static int
1103 wi_reset(struct wi_softc *sc)
1104 {
1105 #define WI_INIT_TRIES 3
1106 int i, error = 0;
1107
1108 for (i = 0; i < WI_INIT_TRIES; i++) {
1109 error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0);
1110 if (error == 0)
1111 break;
1112 DELAY(WI_DELAY * 1000);
1113 }
1114 sc->sc_reset = 1;
1115 if (i == WI_INIT_TRIES) {
1116 device_printf(sc->sc_dev, "reset failed\n");
1117 return error;
1118 }
1119
1120 CSR_WRITE_2(sc, WI_INT_EN, 0);
1121 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
1122
1123 /* Calibrate timer. */
1124 wi_write_val(sc, WI_RID_TICK_TIME, 8);
1125
1126 return 0;
1127 #undef WI_INIT_TRIES
1128 }
1129
1130 static void
1131 wi_watchdog(void *arg)
1132 {
1133 struct wi_softc *sc = arg;
1134
1135 WI_LOCK_ASSERT(sc);
1136
1137 if (!sc->sc_enabled)
1138 return;
1139
1140 if (sc->sc_tx_timer && --sc->sc_tx_timer == 0) {
1141 device_printf(sc->sc_dev, "device timeout\n");
1142 counter_u64_add(sc->sc_ic.ic_oerrors, 1);
1143 wi_init(sc);
1144 return;
1145 }
1146 callout_reset(&sc->sc_watchdog, hz, wi_watchdog, sc);
1147 }
1148
1149 static void
1150 wi_parent(struct ieee80211com *ic)
1151 {
1152 struct wi_softc *sc = ic->ic_softc;
1153 int startall = 0;
1154
1155 WI_LOCK(sc);
1156 /*
1157 * Can't do promisc and hostap at the same time. If all that's
1158 * changing is the promisc flag, try to short-circuit a call to
1159 * wi_init() by just setting PROMISC in the hardware.
1160 */
1161 if (ic->ic_nrunning > 0) {
1162 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1163 sc->sc_flags & WI_FLAGS_RUNNING) {
1164 if (ic->ic_promisc > 0 &&
1165 (sc->sc_flags & WI_FLAGS_PROMISC) == 0) {
1166 wi_write_val(sc, WI_RID_PROMISC, 1);
1167 sc->sc_flags |= WI_FLAGS_PROMISC;
1168 } else if (ic->ic_promisc == 0 &&
1169 (sc->sc_flags & WI_FLAGS_PROMISC) != 0) {
1170 wi_write_val(sc, WI_RID_PROMISC, 0);
1171 sc->sc_flags &= ~WI_FLAGS_PROMISC;
1172 } else {
1173 wi_init(sc);
1174 startall = 1;
1175 }
1176 } else {
1177 wi_init(sc);
1178 startall = 1;
1179 }
1180 } else if (sc->sc_flags & WI_FLAGS_RUNNING) {
1181 wi_stop(sc, 1);
1182 sc->wi_gone = 0;
1183 }
1184 WI_UNLOCK(sc);
1185 if (startall)
1186 ieee80211_start_all(ic);
1187 }
1188
1189 static void
1190 wi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1191 {
1192 struct ieee80211vap *vap = ifp->if_softc;
1193 struct ieee80211com *ic = vap->iv_ic;
1194 struct wi_softc *sc = ic->ic_softc;
1195 u_int16_t val;
1196 int rate, len;
1197
1198 len = sizeof(val);
1199 if (sc->sc_enabled &&
1200 wi_read_rid(sc, WI_RID_CUR_TX_RATE, &val, &len) == 0 &&
1201 len == sizeof(val)) {
1202 /* convert to 802.11 rate */
1203 val = le16toh(val);
1204 rate = val * 2;
1205 if (sc->sc_firmware_type == WI_LUCENT) {
1206 if (rate == 10)
1207 rate = 11; /* 5.5Mbps */
1208 } else {
1209 if (rate == 4*2)
1210 rate = 11; /* 5.5Mbps */
1211 else if (rate == 8*2)
1212 rate = 22; /* 11Mbps */
1213 }
1214 vap->iv_bss->ni_txrate = rate;
1215 }
1216 ieee80211_media_status(ifp, imr);
1217 }
1218
1219 static void
1220 wi_sync_bssid(struct wi_softc *sc, u_int8_t new_bssid[IEEE80211_ADDR_LEN])
1221 {
1222 struct ieee80211com *ic = &sc->sc_ic;
1223 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1224 struct ieee80211_node *ni = vap->iv_bss;
1225
1226 if (IEEE80211_ADDR_EQ(new_bssid, ni->ni_bssid))
1227 return;
1228
1229 DPRINTF(("wi_sync_bssid: bssid %s -> ", ether_sprintf(ni->ni_bssid)));
1230 DPRINTF(("%s ?\n", ether_sprintf(new_bssid)));
1231
1232 /* In promiscuous mode, the BSSID field is not a reliable
1233 * indicator of the firmware's BSSID. Damp spurious
1234 * change-of-BSSID indications.
1235 */
1236 if (ic->ic_promisc > 0 &&
1237 !ppsratecheck(&sc->sc_last_syn, &sc->sc_false_syns,
1238 WI_MAX_FALSE_SYNS))
1239 return;
1240
1241 sc->sc_false_syns = MAX(0, sc->sc_false_syns - 1);
1242 #if 0
1243 /*
1244 * XXX hack; we should create a new node with the new bssid
1245 * and replace the existing ic_bss with it but since we don't
1246 * process management frames to collect state we cheat by
1247 * reusing the existing node as we know wi_newstate will be
1248 * called and it will overwrite the node state.
1249 */
1250 ieee80211_sta_join(ic, ieee80211_ref_node(ni));
1251 #endif
1252 }
1253
1254 static __noinline void
1255 wi_rx_intr(struct wi_softc *sc)
1256 {
1257 struct ieee80211com *ic = &sc->sc_ic;
1258 struct wi_frame frmhdr;
1259 struct mbuf *m;
1260 struct ieee80211_frame *wh;
1261 struct ieee80211_node *ni;
1262 int fid, len, off;
1263 u_int8_t dir;
1264 u_int16_t status;
1265 int8_t rssi, nf;
1266
1267 fid = CSR_READ_2(sc, WI_RX_FID);
1268
1269 /* First read in the frame header */
1270 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr))) {
1271 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1272 counter_u64_add(ic->ic_ierrors, 1);
1273 DPRINTF(("wi_rx_intr: read fid %x failed\n", fid));
1274 return;
1275 }
1276
1277 /*
1278 * Drop undecryptable or packets with receive errors here
1279 */
1280 status = le16toh(frmhdr.wi_status);
1281 if (status & WI_STAT_ERRSTAT) {
1282 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1283 counter_u64_add(ic->ic_ierrors, 1);
1284 DPRINTF(("wi_rx_intr: fid %x error status %x\n", fid, status));
1285 return;
1286 }
1287
1288 len = le16toh(frmhdr.wi_dat_len);
1289 off = ALIGN(sizeof(struct ieee80211_frame));
1290
1291 /*
1292 * Sometimes the PRISM2.x returns bogusly large frames. Except
1293 * in monitor mode, just throw them away.
1294 */
1295 if (off + len > MCLBYTES) {
1296 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1297 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1298 counter_u64_add(ic->ic_ierrors, 1);
1299 DPRINTF(("wi_rx_intr: oversized packet\n"));
1300 return;
1301 } else
1302 len = 0;
1303 }
1304
1305 if (off + len > MHLEN)
1306 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1307 else
1308 m = m_gethdr(M_NOWAIT, MT_DATA);
1309 if (m == NULL) {
1310 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1311 counter_u64_add(ic->ic_ierrors, 1);
1312 DPRINTF(("wi_rx_intr: MGET failed\n"));
1313 return;
1314 }
1315 m->m_data += off - sizeof(struct ieee80211_frame);
1316 memcpy(m->m_data, &frmhdr.wi_whdr, sizeof(struct ieee80211_frame));
1317 wi_read_bap(sc, fid, sizeof(frmhdr),
1318 m->m_data + sizeof(struct ieee80211_frame), len);
1319 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + len;
1320
1321 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1322
1323 rssi = frmhdr.wi_rx_signal;
1324 nf = frmhdr.wi_rx_silence;
1325 if (ieee80211_radiotap_active(ic)) {
1326 struct wi_rx_radiotap_header *tap = &sc->sc_rx_th;
1327 uint32_t rstamp;
1328
1329 rstamp = (le16toh(frmhdr.wi_rx_tstamp0) << 16) |
1330 le16toh(frmhdr.wi_rx_tstamp1);
1331 tap->wr_tsf = htole64((uint64_t)rstamp);
1332 /* XXX replace divide by table */
1333 tap->wr_rate = frmhdr.wi_rx_rate / 5;
1334 tap->wr_flags = 0;
1335 if (frmhdr.wi_status & WI_STAT_PCF)
1336 tap->wr_flags |= IEEE80211_RADIOTAP_F_CFP;
1337 if (m->m_flags & M_WEP)
1338 tap->wr_flags |= IEEE80211_RADIOTAP_F_WEP;
1339 tap->wr_antsignal = rssi;
1340 tap->wr_antnoise = nf;
1341 }
1342
1343 /* synchronize driver's BSSID with firmware's BSSID */
1344 wh = mtod(m, struct ieee80211_frame *);
1345 dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK;
1346 if (ic->ic_opmode == IEEE80211_M_IBSS && dir == IEEE80211_FC1_DIR_NODS)
1347 wi_sync_bssid(sc, wh->i_addr3);
1348
1349 WI_UNLOCK(sc);
1350
1351 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1352 if (ni != NULL) {
1353 (void) ieee80211_input(ni, m, rssi, nf);
1354 ieee80211_free_node(ni);
1355 } else
1356 (void) ieee80211_input_all(ic, m, rssi, nf);
1357
1358 WI_LOCK(sc);
1359 }
1360
1361 static __noinline void
1362 wi_tx_ex_intr(struct wi_softc *sc)
1363 {
1364 struct wi_frame frmhdr;
1365 int fid;
1366
1367 fid = CSR_READ_2(sc, WI_TX_CMP_FID);
1368 /* Read in the frame header */
1369 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) == 0) {
1370 u_int16_t status = le16toh(frmhdr.wi_status);
1371 /*
1372 * Spontaneous station disconnects appear as xmit
1373 * errors. Don't announce them and/or count them
1374 * as an output error.
1375 */
1376 if ((status & WI_TXSTAT_DISCONNECT) == 0) {
1377 if (ppsratecheck(&lasttxerror, &curtxeps, wi_txerate)) {
1378 device_printf(sc->sc_dev, "tx failed");
1379 if (status & WI_TXSTAT_RET_ERR)
1380 printf(", retry limit exceeded");
1381 if (status & WI_TXSTAT_AGED_ERR)
1382 printf(", max transmit lifetime exceeded");
1383 if (status & WI_TXSTAT_DISCONNECT)
1384 printf(", port disconnected");
1385 if (status & WI_TXSTAT_FORM_ERR)
1386 printf(", invalid format (data len %u src %6D)",
1387 le16toh(frmhdr.wi_dat_len),
1388 frmhdr.wi_ehdr.ether_shost, ":");
1389 if (status & ~0xf)
1390 printf(", status=0x%x", status);
1391 printf("\n");
1392 }
1393 counter_u64_add(sc->sc_ic.ic_oerrors, 1);
1394 } else
1395 DPRINTF(("port disconnected\n"));
1396 } else
1397 DPRINTF(("wi_tx_ex_intr: read fid %x failed\n", fid));
1398 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC);
1399 }
1400
1401 static __noinline void
1402 wi_tx_intr(struct wi_softc *sc)
1403 {
1404 int fid, cur;
1405
1406 if (sc->wi_gone)
1407 return;
1408
1409 fid = CSR_READ_2(sc, WI_ALLOC_FID);
1410 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1411
1412 cur = sc->sc_txcur;
1413 if (sc->sc_txd[cur].d_fid != fid) {
1414 device_printf(sc->sc_dev, "bad alloc %x != %x, cur %d nxt %d\n",
1415 fid, sc->sc_txd[cur].d_fid, cur, sc->sc_txnext);
1416 return;
1417 }
1418 sc->sc_tx_timer = 0;
1419 sc->sc_txd[cur].d_len = 0;
1420 sc->sc_txcur = cur = (cur + 1) % sc->sc_ntxbuf;
1421 if (sc->sc_txd[cur].d_len != 0) {
1422 if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, sc->sc_txd[cur].d_fid,
1423 0, 0)) {
1424 device_printf(sc->sc_dev, "xmit failed\n");
1425 sc->sc_txd[cur].d_len = 0;
1426 } else {
1427 sc->sc_tx_timer = 5;
1428 }
1429 }
1430 }
1431
1432 static __noinline void
1433 wi_info_intr(struct wi_softc *sc)
1434 {
1435 struct ieee80211com *ic = &sc->sc_ic;
1436 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1437 int i, fid, len, off;
1438 u_int16_t ltbuf[2];
1439 u_int16_t stat;
1440 u_int32_t *ptr;
1441
1442 fid = CSR_READ_2(sc, WI_INFO_FID);
1443 wi_read_bap(sc, fid, 0, ltbuf, sizeof(ltbuf));
1444
1445 switch (le16toh(ltbuf[1])) {
1446 case WI_INFO_LINK_STAT:
1447 wi_read_bap(sc, fid, sizeof(ltbuf), &stat, sizeof(stat));
1448 DPRINTF(("wi_info_intr: LINK_STAT 0x%x\n", le16toh(stat)));
1449
1450 if (vap == NULL)
1451 goto finish;
1452
1453 switch (le16toh(stat)) {
1454 case WI_INFO_LINK_STAT_CONNECTED:
1455 if (vap->iv_state == IEEE80211_S_RUN &&
1456 vap->iv_opmode != IEEE80211_M_IBSS)
1457 break;
1458 /* fall thru... */
1459 case WI_INFO_LINK_STAT_AP_CHG:
1460 IEEE80211_LOCK(ic);
1461 vap->iv_bss->ni_associd = 1 | 0xc000; /* NB: anything will do */
1462 ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
1463 IEEE80211_UNLOCK(ic);
1464 break;
1465 case WI_INFO_LINK_STAT_AP_INR:
1466 break;
1467 case WI_INFO_LINK_STAT_DISCONNECTED:
1468 /* we dropped off the net; e.g. due to deauth/disassoc */
1469 IEEE80211_LOCK(ic);
1470 vap->iv_bss->ni_associd = 0;
1471 vap->iv_stats.is_rx_deauth++;
1472 ieee80211_new_state(vap, IEEE80211_S_SCAN, 0);
1473 IEEE80211_UNLOCK(ic);
1474 break;
1475 case WI_INFO_LINK_STAT_AP_OOR:
1476 /* XXX does this need to be per-vap? */
1477 ieee80211_beacon_miss(ic);
1478 break;
1479 case WI_INFO_LINK_STAT_ASSOC_FAILED:
1480 if (vap->iv_opmode == IEEE80211_M_STA)
1481 ieee80211_new_state(vap, IEEE80211_S_SCAN,
1482 IEEE80211_SCAN_FAIL_TIMEOUT);
1483 break;
1484 }
1485 break;
1486 case WI_INFO_COUNTERS:
1487 /* some card versions have a larger stats structure */
1488 len = min(le16toh(ltbuf[0]) - 1, sizeof(sc->sc_stats) / 4);
1489 ptr = (u_int32_t *)&sc->sc_stats;
1490 off = sizeof(ltbuf);
1491 for (i = 0; i < len; i++, off += 2, ptr++) {
1492 wi_read_bap(sc, fid, off, &stat, sizeof(stat));
1493 #ifdef WI_HERMES_STATS_WAR
1494 if (stat & 0xf000)
1495 stat = ~stat;
1496 #endif
1497 *ptr += stat;
1498 }
1499 break;
1500 default:
1501 DPRINTF(("wi_info_intr: got fid %x type %x len %d\n", fid,
1502 le16toh(ltbuf[1]), le16toh(ltbuf[0])));
1503 break;
1504 }
1505 finish:
1506 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
1507 }
1508
1509 struct wi_mcast_ctx {
1510 struct wi_mcast mlist;
1511 int mcnt;
1512 };
1513
1514 static u_int
1515 wi_copy_mcast(void *arg, struct sockaddr_dl *sdl, u_int count)
1516 {
1517 struct wi_mcast_ctx *ctx = arg;
1518
1519 if (ctx->mcnt >= 16)
1520 return (0);
1521 IEEE80211_ADDR_COPY(&ctx->mlist.wi_mcast[ctx->mcnt++], LLADDR(sdl));
1522
1523 return (1);
1524 }
1525
1526 static int
1527 wi_write_multi(struct wi_softc *sc)
1528 {
1529 struct ieee80211com *ic = &sc->sc_ic;
1530 struct ieee80211vap *vap;
1531 struct wi_mcast_ctx ctx;
1532
1533 if (ic->ic_allmulti > 0 || ic->ic_promisc > 0) {
1534 allmulti:
1535 memset(&ctx.mlist, 0, sizeof(ctx.mlist));
1536 return wi_write_rid(sc, WI_RID_MCAST_LIST, &ctx.mlist,
1537 sizeof(ctx.mlist));
1538 }
1539
1540 ctx.mcnt = 0;
1541 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1542 if_foreach_llmaddr(vap->iv_ifp, wi_copy_mcast, &ctx);
1543 if (ctx.mcnt >= 16)
1544 goto allmulti;
1545 }
1546 return wi_write_rid(sc, WI_RID_MCAST_LIST, &ctx.mlist,
1547 IEEE80211_ADDR_LEN * ctx.mcnt);
1548 }
1549
1550 static void
1551 wi_update_mcast(struct ieee80211com *ic)
1552 {
1553
1554 wi_write_multi(ic->ic_softc);
1555 }
1556
1557 static void
1558 wi_update_promisc(struct ieee80211com *ic)
1559 {
1560 struct wi_softc *sc = ic->ic_softc;
1561
1562 WI_LOCK(sc);
1563 /* XXX handle WEP special case handling? */
1564 wi_write_val(sc, WI_RID_PROMISC,
1565 (ic->ic_opmode == IEEE80211_M_MONITOR ||
1566 (ic->ic_promisc > 0)));
1567 WI_UNLOCK(sc);
1568 }
1569
1570 static void
1571 wi_read_nicid(struct wi_softc *sc)
1572 {
1573 struct wi_card_ident *id;
1574 char *p;
1575 int len;
1576 u_int16_t ver[4];
1577
1578 /* getting chip identity */
1579 memset(ver, 0, sizeof(ver));
1580 len = sizeof(ver);
1581 wi_read_rid(sc, WI_RID_CARD_ID, ver, &len);
1582
1583 sc->sc_firmware_type = WI_NOTYPE;
1584 sc->sc_nic_id = le16toh(ver[0]);
1585 for (id = wi_card_ident; id->card_name != NULL; id++) {
1586 if (sc->sc_nic_id == id->card_id) {
1587 sc->sc_nic_name = id->card_name;
1588 sc->sc_firmware_type = id->firm_type;
1589 break;
1590 }
1591 }
1592 if (sc->sc_firmware_type == WI_NOTYPE) {
1593 if (sc->sc_nic_id & 0x8000) {
1594 sc->sc_firmware_type = WI_INTERSIL;
1595 sc->sc_nic_name = "Unknown Prism chip";
1596 } else {
1597 sc->sc_firmware_type = WI_LUCENT;
1598 sc->sc_nic_name = "Unknown Lucent chip";
1599 }
1600 }
1601 if (bootverbose)
1602 device_printf(sc->sc_dev, "using %s\n", sc->sc_nic_name);
1603
1604 /* get primary firmware version (Only Prism chips) */
1605 if (sc->sc_firmware_type != WI_LUCENT) {
1606 memset(ver, 0, sizeof(ver));
1607 len = sizeof(ver);
1608 wi_read_rid(sc, WI_RID_PRI_IDENTITY, ver, &len);
1609 sc->sc_pri_firmware_ver = le16toh(ver[2]) * 10000 +
1610 le16toh(ver[3]) * 100 + le16toh(ver[1]);
1611 }
1612
1613 /* get station firmware version */
1614 memset(ver, 0, sizeof(ver));
1615 len = sizeof(ver);
1616 wi_read_rid(sc, WI_RID_STA_IDENTITY, ver, &len);
1617 sc->sc_sta_firmware_ver = le16toh(ver[2]) * 10000 +
1618 le16toh(ver[3]) * 100 + le16toh(ver[1]);
1619 if (sc->sc_firmware_type == WI_INTERSIL &&
1620 (sc->sc_sta_firmware_ver == 10102 ||
1621 sc->sc_sta_firmware_ver == 20102)) {
1622 char ident[12];
1623 memset(ident, 0, sizeof(ident));
1624 len = sizeof(ident);
1625 /* value should be the format like "V2.00-11" */
1626 if (wi_read_rid(sc, WI_RID_SYMBOL_IDENTITY, ident, &len) == 0 &&
1627 *(p = (char *)ident) >= 'A' &&
1628 p[2] == '.' && p[5] == '-' && p[8] == '\0') {
1629 sc->sc_firmware_type = WI_SYMBOL;
1630 sc->sc_sta_firmware_ver = (p[1] - '') * 10000 +
1631 (p[3] - '') * 1000 + (p[4] - '') * 100 +
1632 (p[6] - '') * 10 + (p[7] - '');
1633 }
1634 }
1635 if (bootverbose) {
1636 device_printf(sc->sc_dev, "%s Firmware: ",
1637 wi_firmware_names[sc->sc_firmware_type]);
1638 if (sc->sc_firmware_type != WI_LUCENT) /* XXX */
1639 printf("Primary (%u.%u.%u), ",
1640 sc->sc_pri_firmware_ver / 10000,
1641 (sc->sc_pri_firmware_ver % 10000) / 100,
1642 sc->sc_pri_firmware_ver % 100);
1643 printf("Station (%u.%u.%u)\n",
1644 sc->sc_sta_firmware_ver / 10000,
1645 (sc->sc_sta_firmware_ver % 10000) / 100,
1646 sc->sc_sta_firmware_ver % 100);
1647 }
1648 }
1649
1650 static int
1651 wi_write_ssid(struct wi_softc *sc, int rid, u_int8_t *buf, int buflen)
1652 {
1653 struct wi_ssid ssid;
1654
1655 if (buflen > IEEE80211_NWID_LEN)
1656 return ENOBUFS;
1657 memset(&ssid, 0, sizeof(ssid));
1658 ssid.wi_len = htole16(buflen);
1659 memcpy(ssid.wi_ssid, buf, buflen);
1660 return wi_write_rid(sc, rid, &ssid, sizeof(ssid));
1661 }
1662
1663 static int
1664 wi_write_txrate(struct wi_softc *sc, struct ieee80211vap *vap)
1665 {
1666 static const uint16_t lucent_rates[12] = {
1667 [ 0] = 3, /* auto */
1668 [ 1] = 1, /* 1Mb/s */
1669 [ 2] = 2, /* 2Mb/s */
1670 [ 5] = 4, /* 5.5Mb/s */
1671 [11] = 5 /* 11Mb/s */
1672 };
1673 static const uint16_t intersil_rates[12] = {
1674 [ 0] = 0xf, /* auto */
1675 [ 1] = 0, /* 1Mb/s */
1676 [ 2] = 1, /* 2Mb/s */
1677 [ 5] = 2, /* 5.5Mb/s */
1678 [11] = 3, /* 11Mb/s */
1679 };
1680 const uint16_t *rates = sc->sc_firmware_type == WI_LUCENT ?
1681 lucent_rates : intersil_rates;
1682 struct ieee80211com *ic = vap->iv_ic;
1683 const struct ieee80211_txparam *tp;
1684
1685 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)];
1686 return wi_write_val(sc, WI_RID_TX_RATE,
1687 (tp->ucastrate == IEEE80211_FIXED_RATE_NONE ?
1688 rates[0] : rates[tp->ucastrate / 2]));
1689 }
1690
1691 static int
1692 wi_write_wep(struct wi_softc *sc, struct ieee80211vap *vap)
1693 {
1694 int error = 0;
1695 int i, keylen;
1696 u_int16_t val;
1697 struct wi_key wkey[IEEE80211_WEP_NKID];
1698
1699 switch (sc->sc_firmware_type) {
1700 case WI_LUCENT:
1701 val = (vap->iv_flags & IEEE80211_F_PRIVACY) ? 1 : 0;
1702 error = wi_write_val(sc, WI_RID_ENCRYPTION, val);
1703 if (error)
1704 break;
1705 if ((vap->iv_flags & IEEE80211_F_PRIVACY) == 0)
1706 break;
1707 error = wi_write_val(sc, WI_RID_TX_CRYPT_KEY, vap->iv_def_txkey);
1708 if (error)
1709 break;
1710 memset(wkey, 0, sizeof(wkey));
1711 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1712 keylen = vap->iv_nw_keys[i].wk_keylen;
1713 wkey[i].wi_keylen = htole16(keylen);
1714 memcpy(wkey[i].wi_keydat, vap->iv_nw_keys[i].wk_key,
1715 keylen);
1716 }
1717 error = wi_write_rid(sc, WI_RID_DEFLT_CRYPT_KEYS,
1718 wkey, sizeof(wkey));
1719 sc->sc_encryption = 0;
1720 break;
1721
1722 case WI_INTERSIL:
1723 val = HOST_ENCRYPT | HOST_DECRYPT;
1724 if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1725 /*
1726 * ONLY HWB3163 EVAL-CARD Firmware version
1727 * less than 0.8 variant2
1728 *
1729 * If promiscuous mode disable, Prism2 chip
1730 * does not work with WEP .
1731 * It is under investigation for details.
1732 * (ichiro@netbsd.org)
1733 */
1734 if (sc->sc_sta_firmware_ver < 802 ) {
1735 /* firm ver < 0.8 variant 2 */
1736 wi_write_val(sc, WI_RID_PROMISC, 1);
1737 }
1738 wi_write_val(sc, WI_RID_CNFAUTHMODE,
1739 vap->iv_bss->ni_authmode);
1740 val |= PRIVACY_INVOKED;
1741 } else {
1742 wi_write_val(sc, WI_RID_CNFAUTHMODE, IEEE80211_AUTH_OPEN);
1743 }
1744 error = wi_write_val(sc, WI_RID_P2_ENCRYPTION, val);
1745 if (error)
1746 break;
1747 sc->sc_encryption = val;
1748 if ((val & PRIVACY_INVOKED) == 0)
1749 break;
1750 error = wi_write_val(sc, WI_RID_P2_TX_CRYPT_KEY, vap->iv_def_txkey);
1751 break;
1752 }
1753 return error;
1754 }
1755
1756 static int
1757 wi_cmd(struct wi_softc *sc, int cmd, int val0, int val1, int val2)
1758 {
1759 int i, s = 0;
1760
1761 if (sc->wi_gone)
1762 return (ENODEV);
1763
1764 /* wait for the busy bit to clear */
1765 for (i = sc->wi_cmd_count; i > 0; i--) { /* 500ms */
1766 if (!(CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY))
1767 break;
1768 DELAY(1*1000); /* 1ms */
1769 }
1770 if (i == 0) {
1771 device_printf(sc->sc_dev, "%s: busy bit won't clear, cmd 0x%x\n",
1772 __func__, cmd);
1773 sc->wi_gone = 1;
1774 return(ETIMEDOUT);
1775 }
1776
1777 CSR_WRITE_2(sc, WI_PARAM0, val0);
1778 CSR_WRITE_2(sc, WI_PARAM1, val1);
1779 CSR_WRITE_2(sc, WI_PARAM2, val2);
1780 CSR_WRITE_2(sc, WI_COMMAND, cmd);
1781
1782 if (cmd == WI_CMD_INI) {
1783 /* XXX: should sleep here. */
1784 DELAY(100*1000); /* 100ms delay for init */
1785 }
1786 for (i = 0; i < WI_TIMEOUT; i++) {
1787 /*
1788 * Wait for 'command complete' bit to be
1789 * set in the event status register.
1790 */
1791 s = CSR_READ_2(sc, WI_EVENT_STAT);
1792 if (s & WI_EV_CMD) {
1793 /* Ack the event and read result code. */
1794 s = CSR_READ_2(sc, WI_STATUS);
1795 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
1796 if (s & WI_STAT_CMD_RESULT) {
1797 return(EIO);
1798 }
1799 break;
1800 }
1801 DELAY(WI_DELAY);
1802 }
1803
1804 if (i == WI_TIMEOUT) {
1805 device_printf(sc->sc_dev, "%s: timeout on cmd 0x%04x; "
1806 "event status 0x%04x\n", __func__, cmd, s);
1807 if (s == 0xffff)
1808 sc->wi_gone = 1;
1809 return(ETIMEDOUT);
1810 }
1811 return (0);
1812 }
1813
1814 static int
1815 wi_seek_bap(struct wi_softc *sc, int id, int off)
1816 {
1817 int i, status;
1818
1819 CSR_WRITE_2(sc, WI_SEL0, id);
1820 CSR_WRITE_2(sc, WI_OFF0, off);
1821
1822 for (i = 0; ; i++) {
1823 status = CSR_READ_2(sc, WI_OFF0);
1824 if ((status & WI_OFF_BUSY) == 0)
1825 break;
1826 if (i == WI_TIMEOUT) {
1827 device_printf(sc->sc_dev, "%s: timeout, id %x off %x\n",
1828 __func__, id, off);
1829 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
1830 if (status == 0xffff)
1831 sc->wi_gone = 1;
1832 return ETIMEDOUT;
1833 }
1834 DELAY(1);
1835 }
1836 if (status & WI_OFF_ERR) {
1837 device_printf(sc->sc_dev, "%s: error, id %x off %x\n",
1838 __func__, id, off);
1839 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
1840 return EIO;
1841 }
1842 sc->sc_bap_id = id;
1843 sc->sc_bap_off = off;
1844 return 0;
1845 }
1846
1847 static int
1848 wi_read_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
1849 {
1850 int error, cnt;
1851
1852 if (buflen == 0)
1853 return 0;
1854 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
1855 if ((error = wi_seek_bap(sc, id, off)) != 0)
1856 return error;
1857 }
1858 cnt = (buflen + 1) / 2;
1859 CSR_READ_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
1860 sc->sc_bap_off += cnt * 2;
1861 return 0;
1862 }
1863
1864 static int
1865 wi_write_bap(struct wi_softc *sc, int id, int off, const void *buf, int buflen)
1866 {
1867 int error, cnt;
1868
1869 if (buflen == 0)
1870 return 0;
1871
1872 if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
1873 if ((error = wi_seek_bap(sc, id, off)) != 0)
1874 return error;
1875 }
1876 cnt = (buflen + 1) / 2;
1877 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, (const uint16_t *)buf, cnt);
1878 sc->sc_bap_off += cnt * 2;
1879
1880 return 0;
1881 }
1882
1883 static int
1884 wi_mwrite_bap(struct wi_softc *sc, int id, int off, struct mbuf *m0, int totlen)
1885 {
1886 int error, len;
1887 struct mbuf *m;
1888
1889 for (m = m0; m != NULL && totlen > 0; m = m->m_next) {
1890 if (m->m_len == 0)
1891 continue;
1892
1893 len = min(m->m_len, totlen);
1894
1895 if (((u_long)m->m_data) % 2 != 0 || len % 2 != 0) {
1896 m_copydata(m, 0, totlen, (caddr_t)&sc->sc_txbuf);
1897 return wi_write_bap(sc, id, off, (caddr_t)&sc->sc_txbuf,
1898 totlen);
1899 }
1900
1901 if ((error = wi_write_bap(sc, id, off, m->m_data, len)) != 0)
1902 return error;
1903
1904 off += m->m_len;
1905 totlen -= len;
1906 }
1907 return 0;
1908 }
1909
1910 static int
1911 wi_alloc_fid(struct wi_softc *sc, int len, int *idp)
1912 {
1913 int i;
1914
1915 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) {
1916 device_printf(sc->sc_dev, "%s: failed to allocate %d bytes on NIC\n",
1917 __func__, len);
1918 return ENOMEM;
1919 }
1920
1921 for (i = 0; i < WI_TIMEOUT; i++) {
1922 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
1923 break;
1924 DELAY(1);
1925 }
1926 if (i == WI_TIMEOUT) {
1927 device_printf(sc->sc_dev, "%s: timeout in alloc\n", __func__);
1928 return ETIMEDOUT;
1929 }
1930 *idp = CSR_READ_2(sc, WI_ALLOC_FID);
1931 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1932 return 0;
1933 }
1934
1935 static int
1936 wi_read_rid(struct wi_softc *sc, int rid, void *buf, int *buflenp)
1937 {
1938 int error, len;
1939 u_int16_t ltbuf[2];
1940
1941 /* Tell the NIC to enter record read mode. */
1942 error = wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_READ, rid, 0, 0);
1943 if (error)
1944 return error;
1945
1946 error = wi_read_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
1947 if (error)
1948 return error;
1949
1950 if (le16toh(ltbuf[1]) != rid) {
1951 device_printf(sc->sc_dev, "record read mismatch, rid=%x, got=%x\n",
1952 rid, le16toh(ltbuf[1]));
1953 return EIO;
1954 }
1955 len = (le16toh(ltbuf[0]) - 1) * 2; /* already got rid */
1956 if (*buflenp < len) {
1957 device_printf(sc->sc_dev, "record buffer is too small, "
1958 "rid=%x, size=%d, len=%d\n",
1959 rid, *buflenp, len);
1960 return ENOSPC;
1961 }
1962 *buflenp = len;
1963 return wi_read_bap(sc, rid, sizeof(ltbuf), buf, len);
1964 }
1965
1966 static int
1967 wi_write_rid(struct wi_softc *sc, int rid, const void *buf, int buflen)
1968 {
1969 int error;
1970 u_int16_t ltbuf[2];
1971
1972 ltbuf[0] = htole16((buflen + 1) / 2 + 1); /* includes rid */
1973 ltbuf[1] = htole16(rid);
1974
1975 error = wi_write_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
1976 if (error) {
1977 device_printf(sc->sc_dev, "%s: bap0 write failure, rid 0x%x\n",
1978 __func__, rid);
1979 return error;
1980 }
1981 error = wi_write_bap(sc, rid, sizeof(ltbuf), buf, buflen);
1982 if (error) {
1983 device_printf(sc->sc_dev, "%s: bap1 write failure, rid 0x%x\n",
1984 __func__, rid);
1985 return error;
1986 }
1987
1988 return wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_WRITE, rid, 0, 0);
1989 }
1990
1991 static int
1992 wi_write_appie(struct wi_softc *sc, int rid, const struct ieee80211_appie *ie)
1993 {
1994 /* NB: 42 bytes is probably ok to have on the stack */
1995 char buf[sizeof(uint16_t) + 40];
1996
1997 if (ie->ie_len > 40)
1998 return EINVAL;
1999 /* NB: firmware requires 16-bit ie length before ie data */
2000 *(uint16_t *) buf = htole16(ie->ie_len);
2001 memcpy(buf + sizeof(uint16_t), ie->ie_data, ie->ie_len);
2002 return wi_write_rid(sc, rid, buf, ie->ie_len + sizeof(uint16_t));
2003 }
2004
2005 static u_int16_t
2006 wi_read_chanmask(struct wi_softc *sc)
2007 {
2008 u_int16_t val;
2009 int buflen;
2010
2011 buflen = sizeof(val);
2012 if (wi_read_rid(sc, WI_RID_CHANNEL_LIST, &val, &buflen) != 0)
2013 val = htole16(0x1fff); /* assume 1-13 */
2014 KASSERT(val != 0, ("%s: no available channels listed!", __func__));
2015
2016 val <<= 1; /* shift for base 1 indices */
2017
2018 return (val);
2019 }
2020
2021 int
2022 wi_alloc(device_t dev, int rid)
2023 {
2024 struct wi_softc *sc = device_get_softc(dev);
2025
2026 if (sc->wi_bus_type != WI_BUS_PCI_NATIVE) {
2027 sc->iobase_rid = rid;
2028 sc->iobase = bus_alloc_resource_anywhere(dev, SYS_RES_IOPORT,
2029 &sc->iobase_rid, (1 << 6),
2030 rman_make_alignment_flags(1 << 6) | RF_ACTIVE);
2031 if (sc->iobase == NULL) {
2032 device_printf(dev, "No I/O space?!\n");
2033 return ENXIO;
2034 }
2035
2036 sc->wi_io_addr = rman_get_start(sc->iobase);
2037 sc->wi_btag = rman_get_bustag(sc->iobase);
2038 sc->wi_bhandle = rman_get_bushandle(sc->iobase);
2039 } else {
2040 sc->mem_rid = rid;
2041 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2042 &sc->mem_rid, RF_ACTIVE);
2043 if (sc->mem == NULL) {
2044 device_printf(dev, "No Mem space on prism2.5?\n");
2045 return ENXIO;
2046 }
2047
2048 sc->wi_btag = rman_get_bustag(sc->mem);
2049 sc->wi_bhandle = rman_get_bushandle(sc->mem);
2050 }
2051
2052 sc->irq_rid = 0;
2053 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
2054 RF_ACTIVE |
2055 ((sc->wi_bus_type == WI_BUS_PCCARD) ? 0 : RF_SHAREABLE));
2056 if (sc->irq == NULL) {
2057 wi_free(dev);
2058 device_printf(dev, "No irq?!\n");
2059 return ENXIO;
2060 }
2061
2062 sc->sc_dev = dev;
2063 sc->sc_unit = device_get_unit(dev);
2064 return 0;
2065 }
2066
2067 void
2068 wi_free(device_t dev)
2069 {
2070 struct wi_softc *sc = device_get_softc(dev);
2071
2072 if (sc->iobase != NULL) {
2073 bus_release_resource(dev, SYS_RES_IOPORT, sc->iobase_rid, sc->iobase);
2074 sc->iobase = NULL;
2075 }
2076 if (sc->irq != NULL) {
2077 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
2078 sc->irq = NULL;
2079 }
2080 if (sc->mem != NULL) {
2081 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
2082 sc->mem = NULL;
2083 }
2084 }
Cache object: cf23c2656e41cf314067371a962092c0
|