The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/wi/if_wi.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1997, 1998, 1999
    3  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. All advertising materials mentioning features or use of this software
   14  *    must display the following acknowledgement:
   15  *      This product includes software developed by Bill Paul.
   16  * 4. Neither the name of the author nor the names of any co-contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   30  * THE POSSIBILITY OF SUCH DAMAGE.
   31  */
   32 
   33 /*
   34  * Lucent WaveLAN/IEEE 802.11 PCMCIA driver.
   35  *
   36  * Original FreeBSD driver written by Bill Paul <wpaul@ctr.columbia.edu>
   37  * Electrical Engineering Department
   38  * Columbia University, New York City
   39  */
   40 
   41 /*
   42  * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
   43  * from Lucent. Unlike the older cards, the new ones are programmed
   44  * entirely via a firmware-driven controller called the Hermes.
   45  * Unfortunately, Lucent will not release the Hermes programming manual
   46  * without an NDA (if at all). What they do release is an API library
   47  * called the HCF (Hardware Control Functions) which is supposed to
   48  * do the device-specific operations of a device driver for you. The
   49  * publically available version of the HCF library (the 'HCF Light') is 
   50  * a) extremely gross, b) lacks certain features, particularly support
   51  * for 802.11 frames, and c) is contaminated by the GNU Public License.
   52  *
   53  * This driver does not use the HCF or HCF Light at all. Instead, it
   54  * programs the Hermes controller directly, using information gleaned
   55  * from the HCF Light code and corresponding documentation.
   56  *
   57  * This driver supports the ISA, PCMCIA and PCI versions of the Lucent
   58  * WaveLan cards (based on the Hermes chipset), as well as the newer
   59  * Prism 2 chipsets with firmware from Intersil and Symbol.
   60  */
   61 
   62 #include <sys/cdefs.h>
   63 __FBSDID("$FreeBSD: releng/8.3/sys/dev/wi/if_wi.c 215342 2010-11-15 17:48:13Z sobomax $");
   64 
   65 #define WI_HERMES_STATS_WAR     /* Work around stats counter bug. */
   66 
   67 #include <sys/param.h>
   68 #include <sys/systm.h>
   69 #include <sys/endian.h>
   70 #include <sys/sockio.h>
   71 #include <sys/mbuf.h>
   72 #include <sys/priv.h>
   73 #include <sys/proc.h>
   74 #include <sys/kernel.h>
   75 #include <sys/socket.h>
   76 #include <sys/module.h>
   77 #include <sys/bus.h>
   78 #include <sys/random.h>
   79 #include <sys/syslog.h>
   80 #include <sys/sysctl.h>
   81 
   82 #include <machine/bus.h>
   83 #include <machine/resource.h>
   84 #include <machine/atomic.h>
   85 #include <sys/rman.h>
   86 
   87 #include <net/if.h>
   88 #include <net/if_arp.h>
   89 #include <net/ethernet.h>
   90 #include <net/if_dl.h>
   91 #include <net/if_llc.h>
   92 #include <net/if_media.h>
   93 #include <net/if_types.h>
   94 
   95 #include <net80211/ieee80211_var.h>
   96 #include <net80211/ieee80211_ioctl.h>
   97 #include <net80211/ieee80211_radiotap.h>
   98 
   99 #include <netinet/in.h>
  100 #include <netinet/in_systm.h>
  101 #include <netinet/in_var.h>
  102 #include <netinet/ip.h>
  103 #include <netinet/if_ether.h>
  104 
  105 #include <net/bpf.h>
  106 
  107 #include <dev/wi/if_wavelan_ieee.h>
  108 #include <dev/wi/if_wireg.h>
  109 #include <dev/wi/if_wivar.h>
  110 
  111 static struct ieee80211vap *wi_vap_create(struct ieee80211com *ic,
  112                 const char name[IFNAMSIZ], int unit, int opmode, int flags,
  113                 const uint8_t bssid[IEEE80211_ADDR_LEN],
  114                 const uint8_t mac[IEEE80211_ADDR_LEN]);
  115 static void wi_vap_delete(struct ieee80211vap *vap);
  116 static void wi_stop_locked(struct wi_softc *sc, int disable);
  117 static void wi_start_locked(struct ifnet *);
  118 static void wi_start(struct ifnet *);
  119 static int  wi_start_tx(struct ifnet *ifp, struct wi_frame *frmhdr,
  120                 struct mbuf *m0);
  121 static int  wi_raw_xmit(struct ieee80211_node *, struct mbuf *,
  122                 const struct ieee80211_bpf_params *);
  123 static int  wi_newstate_sta(struct ieee80211vap *, enum ieee80211_state, int);
  124 static int  wi_newstate_hostap(struct ieee80211vap *, enum ieee80211_state,
  125                 int);
  126 static void wi_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
  127                 int subtype, int rssi, int nf);
  128 static int  wi_reset(struct wi_softc *);
  129 static void wi_watchdog(void *);
  130 static int  wi_ioctl(struct ifnet *, u_long, caddr_t);
  131 static void wi_media_status(struct ifnet *, struct ifmediareq *);
  132 
  133 static void wi_rx_intr(struct wi_softc *);
  134 static void wi_tx_intr(struct wi_softc *);
  135 static void wi_tx_ex_intr(struct wi_softc *);
  136 
  137 static void wi_info_intr(struct wi_softc *);
  138 
  139 static int  wi_write_txrate(struct wi_softc *, struct ieee80211vap *);
  140 static int  wi_write_wep(struct wi_softc *, struct ieee80211vap *);
  141 static int  wi_write_multi(struct wi_softc *);
  142 static void wi_update_mcast(struct ifnet *);
  143 static void wi_update_promisc(struct ifnet *);
  144 static int  wi_alloc_fid(struct wi_softc *, int, int *);
  145 static void wi_read_nicid(struct wi_softc *);
  146 static int  wi_write_ssid(struct wi_softc *, int, u_int8_t *, int);
  147 
  148 static int  wi_cmd(struct wi_softc *, int, int, int, int);
  149 static int  wi_seek_bap(struct wi_softc *, int, int);
  150 static int  wi_read_bap(struct wi_softc *, int, int, void *, int);
  151 static int  wi_write_bap(struct wi_softc *, int, int, void *, int);
  152 static int  wi_mwrite_bap(struct wi_softc *, int, int, struct mbuf *, int);
  153 static int  wi_read_rid(struct wi_softc *, int, void *, int *);
  154 static int  wi_write_rid(struct wi_softc *, int, void *, int);
  155 static int  wi_write_appie(struct wi_softc *, int, const struct ieee80211_appie *);
  156 
  157 static void wi_scan_start(struct ieee80211com *);
  158 static void wi_scan_end(struct ieee80211com *);
  159 static void wi_set_channel(struct ieee80211com *);
  160         
  161 static __inline int
  162 wi_write_val(struct wi_softc *sc, int rid, u_int16_t val)
  163 {
  164 
  165         val = htole16(val);
  166         return wi_write_rid(sc, rid, &val, sizeof(val));
  167 }
  168 
  169 SYSCTL_NODE(_hw, OID_AUTO, wi, CTLFLAG_RD, 0, "Wireless driver parameters");
  170 
  171 static  struct timeval lasttxerror;     /* time of last tx error msg */
  172 static  int curtxeps;                   /* current tx error msgs/sec */
  173 static  int wi_txerate = 0;             /* tx error rate: max msgs/sec */
  174 SYSCTL_INT(_hw_wi, OID_AUTO, txerate, CTLFLAG_RW, &wi_txerate,
  175             0, "max tx error msgs/sec; 0 to disable msgs");
  176 
  177 #define WI_DEBUG
  178 #ifdef WI_DEBUG
  179 static  int wi_debug = 0;
  180 SYSCTL_INT(_hw_wi, OID_AUTO, debug, CTLFLAG_RW, &wi_debug,
  181             0, "control debugging printfs");
  182 #define DPRINTF(X)      if (wi_debug) printf X
  183 #else
  184 #define DPRINTF(X)
  185 #endif
  186 
  187 #define WI_INTRS        (WI_EV_RX | WI_EV_ALLOC | WI_EV_INFO)
  188 
  189 struct wi_card_ident wi_card_ident[] = {
  190         /* CARD_ID                      CARD_NAME               FIRM_TYPE */
  191         { WI_NIC_LUCENT_ID,             WI_NIC_LUCENT_STR,      WI_LUCENT },
  192         { WI_NIC_SONY_ID,               WI_NIC_SONY_STR,        WI_LUCENT },
  193         { WI_NIC_LUCENT_EMB_ID,         WI_NIC_LUCENT_EMB_STR,  WI_LUCENT },
  194         { WI_NIC_EVB2_ID,               WI_NIC_EVB2_STR,        WI_INTERSIL },
  195         { WI_NIC_HWB3763_ID,            WI_NIC_HWB3763_STR,     WI_INTERSIL },
  196         { WI_NIC_HWB3163_ID,            WI_NIC_HWB3163_STR,     WI_INTERSIL },
  197         { WI_NIC_HWB3163B_ID,           WI_NIC_HWB3163B_STR,    WI_INTERSIL },
  198         { WI_NIC_EVB3_ID,               WI_NIC_EVB3_STR,        WI_INTERSIL },
  199         { WI_NIC_HWB1153_ID,            WI_NIC_HWB1153_STR,     WI_INTERSIL },
  200         { WI_NIC_P2_SST_ID,             WI_NIC_P2_SST_STR,      WI_INTERSIL },
  201         { WI_NIC_EVB2_SST_ID,           WI_NIC_EVB2_SST_STR,    WI_INTERSIL },
  202         { WI_NIC_3842_EVA_ID,           WI_NIC_3842_EVA_STR,    WI_INTERSIL },
  203         { WI_NIC_3842_PCMCIA_AMD_ID,    WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
  204         { WI_NIC_3842_PCMCIA_SST_ID,    WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
  205         { WI_NIC_3842_PCMCIA_ATL_ID,    WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
  206         { WI_NIC_3842_PCMCIA_ATS_ID,    WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
  207         { WI_NIC_3842_MINI_AMD_ID,      WI_NIC_3842_MINI_STR,   WI_INTERSIL },
  208         { WI_NIC_3842_MINI_SST_ID,      WI_NIC_3842_MINI_STR,   WI_INTERSIL },
  209         { WI_NIC_3842_MINI_ATL_ID,      WI_NIC_3842_MINI_STR,   WI_INTERSIL },
  210         { WI_NIC_3842_MINI_ATS_ID,      WI_NIC_3842_MINI_STR,   WI_INTERSIL },
  211         { WI_NIC_3842_PCI_AMD_ID,       WI_NIC_3842_PCI_STR,    WI_INTERSIL },
  212         { WI_NIC_3842_PCI_SST_ID,       WI_NIC_3842_PCI_STR,    WI_INTERSIL },
  213         { WI_NIC_3842_PCI_ATS_ID,       WI_NIC_3842_PCI_STR,    WI_INTERSIL },
  214         { WI_NIC_3842_PCI_ATL_ID,       WI_NIC_3842_PCI_STR,    WI_INTERSIL },
  215         { WI_NIC_P3_PCMCIA_AMD_ID,      WI_NIC_P3_PCMCIA_STR,   WI_INTERSIL },
  216         { WI_NIC_P3_PCMCIA_SST_ID,      WI_NIC_P3_PCMCIA_STR,   WI_INTERSIL },
  217         { WI_NIC_P3_PCMCIA_ATL_ID,      WI_NIC_P3_PCMCIA_STR,   WI_INTERSIL },
  218         { WI_NIC_P3_PCMCIA_ATS_ID,      WI_NIC_P3_PCMCIA_STR,   WI_INTERSIL },
  219         { WI_NIC_P3_MINI_AMD_ID,        WI_NIC_P3_MINI_STR,     WI_INTERSIL },
  220         { WI_NIC_P3_MINI_SST_ID,        WI_NIC_P3_MINI_STR,     WI_INTERSIL },
  221         { WI_NIC_P3_MINI_ATL_ID,        WI_NIC_P3_MINI_STR,     WI_INTERSIL },
  222         { WI_NIC_P3_MINI_ATS_ID,        WI_NIC_P3_MINI_STR,     WI_INTERSIL },
  223         { 0,    NULL,   0 },
  224 };
  225 
  226 static char *wi_firmware_names[] = { "none", "Hermes", "Intersil", "Symbol" };
  227 
  228 devclass_t wi_devclass;
  229 
  230 int
  231 wi_attach(device_t dev)
  232 {
  233         struct wi_softc *sc = device_get_softc(dev);
  234         struct ieee80211com *ic;
  235         struct ifnet *ifp;
  236         int i, nrates, buflen;
  237         u_int16_t val;
  238         u_int8_t ratebuf[2 + IEEE80211_RATE_SIZE];
  239         struct ieee80211_rateset *rs;
  240         struct sysctl_ctx_list *sctx;
  241         struct sysctl_oid *soid;
  242         static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
  243                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
  244         };
  245         int error;
  246         uint8_t macaddr[IEEE80211_ADDR_LEN];
  247 
  248         ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
  249         if (ifp == NULL) {
  250                 device_printf(dev, "can not if_alloc\n");
  251                 wi_free(dev);
  252                 return ENOSPC;
  253         }
  254         ic = ifp->if_l2com;
  255 
  256         sc->sc_firmware_type = WI_NOTYPE;
  257         sc->wi_cmd_count = 500;
  258         /* Reset the NIC. */
  259         if (wi_reset(sc) != 0) {
  260                 wi_free(dev);
  261                 return ENXIO;           /* XXX */
  262         }
  263 
  264         /* Read NIC identification */
  265         wi_read_nicid(sc);
  266         switch (sc->sc_firmware_type) {
  267         case WI_LUCENT:
  268                 if (sc->sc_sta_firmware_ver < 60006)
  269                         goto reject;
  270                 break;
  271         case WI_INTERSIL:
  272                 if (sc->sc_sta_firmware_ver < 800)
  273                         goto reject;
  274                 break;
  275         default:
  276         reject:
  277                 device_printf(dev, "Sorry, this card is not supported "
  278                     "(type %d, firmware ver %d)\n",
  279                     sc->sc_firmware_type, sc->sc_sta_firmware_ver);
  280                 wi_free(dev);
  281                 return EOPNOTSUPP; 
  282         }
  283 
  284         /* Export info about the device via sysctl */
  285         sctx = device_get_sysctl_ctx(dev);
  286         soid = device_get_sysctl_tree(dev);
  287         SYSCTL_ADD_STRING(sctx, SYSCTL_CHILDREN(soid), OID_AUTO,
  288             "firmware_type", CTLFLAG_RD,
  289             wi_firmware_names[sc->sc_firmware_type], 0,
  290             "Firmware type string");
  291         SYSCTL_ADD_INT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "sta_version",
  292             CTLFLAG_RD, &sc->sc_sta_firmware_ver, 0,
  293             "Station Firmware version");
  294         if (sc->sc_firmware_type == WI_INTERSIL)
  295                 SYSCTL_ADD_INT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO,
  296                     "pri_version", CTLFLAG_RD, &sc->sc_pri_firmware_ver, 0,
  297                     "Primary Firmware version");
  298         SYSCTL_ADD_XINT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "nic_id",
  299             CTLFLAG_RD, &sc->sc_nic_id, 0, "NIC id");
  300         SYSCTL_ADD_STRING(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "nic_name",
  301             CTLFLAG_RD, sc->sc_nic_name, 0, "NIC name");
  302 
  303         mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
  304             MTX_DEF | MTX_RECURSE);
  305         callout_init_mtx(&sc->sc_watchdog, &sc->sc_mtx, 0);
  306 
  307         /*
  308          * Read the station address.
  309          * And do it twice. I've seen PRISM-based cards that return
  310          * an error when trying to read it the first time, which causes
  311          * the probe to fail.
  312          */
  313         buflen = IEEE80211_ADDR_LEN;
  314         error = wi_read_rid(sc, WI_RID_MAC_NODE, macaddr, &buflen);
  315         if (error != 0) {
  316                 buflen = IEEE80211_ADDR_LEN;
  317                 error = wi_read_rid(sc, WI_RID_MAC_NODE, macaddr, &buflen);
  318         }
  319         if (error || IEEE80211_ADDR_EQ(macaddr, empty_macaddr)) {
  320                 if (error != 0)
  321                         device_printf(dev, "mac read failed %d\n", error);
  322                 else {
  323                         device_printf(dev, "mac read failed (all zeros)\n");
  324                         error = ENXIO;
  325                 }
  326                 wi_free(dev);
  327                 return (error);
  328         }
  329 
  330         ifp->if_softc = sc;
  331         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
  332         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
  333         ifp->if_ioctl = wi_ioctl;
  334         ifp->if_start = wi_start;
  335         ifp->if_init = wi_init;
  336         IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
  337         ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
  338         IFQ_SET_READY(&ifp->if_snd);
  339 
  340         ic->ic_ifp = ifp;
  341         ic->ic_phytype = IEEE80211_T_DS;
  342         ic->ic_opmode = IEEE80211_M_STA;
  343         ic->ic_caps = IEEE80211_C_STA
  344                     | IEEE80211_C_PMGT
  345                     | IEEE80211_C_MONITOR
  346                     ;
  347 
  348         /*
  349          * Query the card for available channels and setup the
  350          * channel table.  We assume these are all 11b channels.
  351          */
  352         buflen = sizeof(val);
  353         if (wi_read_rid(sc, WI_RID_CHANNEL_LIST, &val, &buflen) != 0)
  354                 val = htole16(0x1fff);  /* assume 1-11 */
  355         KASSERT(val != 0, ("wi_attach: no available channels listed!"));
  356 
  357         val <<= 1;                      /* shift for base 1 indices */
  358         for (i = 1; i < 16; i++) {
  359                 struct ieee80211_channel *c;
  360 
  361                 if (!isset((u_int8_t*)&val, i))
  362                         continue;
  363                 c = &ic->ic_channels[ic->ic_nchans++];
  364                 c->ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_B);
  365                 c->ic_flags = IEEE80211_CHAN_B;
  366                 c->ic_ieee = i;
  367                 /* XXX txpowers? */
  368         }
  369 
  370         /*
  371          * Set flags based on firmware version.
  372          */
  373         switch (sc->sc_firmware_type) {
  374         case WI_LUCENT:
  375                 sc->sc_ntxbuf = 1;
  376                 ic->ic_caps |= IEEE80211_C_IBSS;
  377 
  378                 sc->sc_ibss_port = WI_PORTTYPE_BSS;
  379                 sc->sc_monitor_port = WI_PORTTYPE_ADHOC;
  380                 sc->sc_min_rssi = WI_LUCENT_MIN_RSSI;
  381                 sc->sc_max_rssi = WI_LUCENT_MAX_RSSI;
  382                 sc->sc_dbm_offset = WI_LUCENT_DBM_OFFSET;
  383                 break;
  384         case WI_INTERSIL:
  385                 sc->sc_ntxbuf = WI_NTXBUF;
  386                 sc->sc_flags |= WI_FLAGS_HAS_FRAGTHR
  387                              |  WI_FLAGS_HAS_ROAMING;
  388                 /*
  389                  * Old firmware are slow, so give peace a chance.
  390                  */
  391                 if (sc->sc_sta_firmware_ver < 10000)
  392                         sc->wi_cmd_count = 5000;
  393                 if (sc->sc_sta_firmware_ver > 10101)
  394                         sc->sc_flags |= WI_FLAGS_HAS_DBMADJUST;
  395                 ic->ic_caps |= IEEE80211_C_IBSS;
  396                 /*
  397                  * version 0.8.3 and newer are the only ones that are known
  398                  * to currently work.  Earlier versions can be made to work,
  399                  * at least according to the Linux driver but we require
  400                  * monitor mode so this is irrelevant.
  401                  */
  402                 ic->ic_caps |= IEEE80211_C_HOSTAP;
  403                 if (sc->sc_sta_firmware_ver >= 10603)
  404                         sc->sc_flags |= WI_FLAGS_HAS_ENHSECURITY;
  405                 if (sc->sc_sta_firmware_ver >= 10700) {
  406                         /*
  407                          * 1.7.0+ have the necessary support for sta mode WPA.
  408                          */
  409                         sc->sc_flags |= WI_FLAGS_HAS_WPASUPPORT;
  410                         ic->ic_caps |= IEEE80211_C_WPA;
  411                 }
  412 
  413                 sc->sc_ibss_port = WI_PORTTYPE_IBSS;
  414                 sc->sc_monitor_port = WI_PORTTYPE_APSILENT;
  415                 sc->sc_min_rssi = WI_PRISM_MIN_RSSI;
  416                 sc->sc_max_rssi = WI_PRISM_MAX_RSSI;
  417                 sc->sc_dbm_offset = WI_PRISM_DBM_OFFSET;
  418                 break;
  419         }
  420 
  421         /*
  422          * Find out if we support WEP on this card.
  423          */
  424         buflen = sizeof(val);
  425         if (wi_read_rid(sc, WI_RID_WEP_AVAIL, &val, &buflen) == 0 &&
  426             val != htole16(0))
  427                 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
  428 
  429         /* Find supported rates. */
  430         buflen = sizeof(ratebuf);
  431         rs = &ic->ic_sup_rates[IEEE80211_MODE_11B];
  432         if (wi_read_rid(sc, WI_RID_DATA_RATES, ratebuf, &buflen) == 0) {
  433                 nrates = le16toh(*(u_int16_t *)ratebuf);
  434                 if (nrates > IEEE80211_RATE_MAXSIZE)
  435                         nrates = IEEE80211_RATE_MAXSIZE;
  436                 rs->rs_nrates = 0;
  437                 for (i = 0; i < nrates; i++)
  438                         if (ratebuf[2+i])
  439                                 rs->rs_rates[rs->rs_nrates++] = ratebuf[2+i];
  440         } else {
  441                 /* XXX fallback on error? */
  442         }
  443 
  444         buflen = sizeof(val);
  445         if ((sc->sc_flags & WI_FLAGS_HAS_DBMADJUST) &&
  446             wi_read_rid(sc, WI_RID_DBM_ADJUST, &val, &buflen) == 0) {
  447                 sc->sc_dbm_offset = le16toh(val);
  448         }
  449 
  450         sc->sc_portnum = WI_DEFAULT_PORT;
  451 
  452         ieee80211_ifattach(ic, macaddr);
  453         ic->ic_raw_xmit = wi_raw_xmit;
  454         ic->ic_scan_start = wi_scan_start;
  455         ic->ic_scan_end = wi_scan_end;
  456         ic->ic_set_channel = wi_set_channel;
  457 
  458         ic->ic_vap_create = wi_vap_create;
  459         ic->ic_vap_delete = wi_vap_delete;
  460         ic->ic_update_mcast = wi_update_mcast;
  461         ic->ic_update_promisc = wi_update_promisc;
  462 
  463         ieee80211_radiotap_attach(ic,
  464             &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
  465                 WI_TX_RADIOTAP_PRESENT,
  466             &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
  467                 WI_RX_RADIOTAP_PRESENT);
  468 
  469         if (bootverbose)
  470                 ieee80211_announce(ic);
  471 
  472         error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
  473             NULL, wi_intr, sc, &sc->wi_intrhand);
  474         if (error) {
  475                 device_printf(dev, "bus_setup_intr() failed! (%d)\n", error);
  476                 ieee80211_ifdetach(ic);
  477                 if_free(sc->sc_ifp);
  478                 wi_free(dev);
  479                 return error;
  480         }
  481 
  482         return (0);
  483 }
  484 
  485 int
  486 wi_detach(device_t dev)
  487 {
  488         struct wi_softc *sc = device_get_softc(dev);
  489         struct ifnet *ifp = sc->sc_ifp;
  490         struct ieee80211com *ic = ifp->if_l2com;
  491 
  492         WI_LOCK(sc);
  493 
  494         /* check if device was removed */
  495         sc->wi_gone |= !bus_child_present(dev);
  496 
  497         wi_stop_locked(sc, 0);
  498         WI_UNLOCK(sc);
  499         ieee80211_ifdetach(ic);
  500 
  501         bus_teardown_intr(dev, sc->irq, sc->wi_intrhand);
  502         if_free(sc->sc_ifp);
  503         wi_free(dev);
  504         mtx_destroy(&sc->sc_mtx);
  505         return (0);
  506 }
  507 
  508 static struct ieee80211vap *
  509 wi_vap_create(struct ieee80211com *ic,
  510         const char name[IFNAMSIZ], int unit, int opmode, int flags,
  511         const uint8_t bssid[IEEE80211_ADDR_LEN],
  512         const uint8_t mac[IEEE80211_ADDR_LEN])
  513 {
  514         struct wi_softc *sc = ic->ic_ifp->if_softc;
  515         struct wi_vap *wvp;
  516         struct ieee80211vap *vap;
  517 
  518         if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
  519                 return NULL;
  520         wvp = (struct wi_vap *) malloc(sizeof(struct wi_vap),
  521             M_80211_VAP, M_NOWAIT | M_ZERO);
  522         if (wvp == NULL)
  523                 return NULL;
  524 
  525         vap = &wvp->wv_vap;
  526         ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
  527 
  528         vap->iv_max_aid = WI_MAX_AID;
  529 
  530         switch (opmode) {
  531         case IEEE80211_M_STA:
  532                 sc->sc_porttype = WI_PORTTYPE_BSS;
  533                 wvp->wv_newstate = vap->iv_newstate;
  534                 vap->iv_newstate = wi_newstate_sta;
  535                 /* need to filter mgt frames to avoid confusing state machine */
  536                 wvp->wv_recv_mgmt = vap->iv_recv_mgmt;
  537                 vap->iv_recv_mgmt = wi_recv_mgmt;
  538                 break;
  539         case IEEE80211_M_IBSS:
  540                 sc->sc_porttype = sc->sc_ibss_port;
  541                 wvp->wv_newstate = vap->iv_newstate;
  542                 vap->iv_newstate = wi_newstate_sta;
  543                 break;
  544         case IEEE80211_M_AHDEMO:
  545                 sc->sc_porttype = WI_PORTTYPE_ADHOC;
  546                 break;
  547         case IEEE80211_M_HOSTAP:
  548                 sc->sc_porttype = WI_PORTTYPE_HOSTAP;
  549                 wvp->wv_newstate = vap->iv_newstate;
  550                 vap->iv_newstate = wi_newstate_hostap;
  551                 break;
  552         case IEEE80211_M_MONITOR:
  553                 sc->sc_porttype = sc->sc_monitor_port;
  554                 break;
  555         default:
  556                 break;
  557         }
  558 
  559         /* complete setup */
  560         ieee80211_vap_attach(vap, ieee80211_media_change, wi_media_status);
  561         ic->ic_opmode = opmode;
  562         return vap;
  563 }
  564 
  565 static void
  566 wi_vap_delete(struct ieee80211vap *vap)
  567 {
  568         struct wi_vap *wvp = WI_VAP(vap);
  569 
  570         ieee80211_vap_detach(vap);
  571         free(wvp, M_80211_VAP);
  572 }
  573 
  574 int
  575 wi_shutdown(device_t dev)
  576 {
  577         struct wi_softc *sc = device_get_softc(dev);
  578 
  579         wi_stop(sc, 1);
  580         return (0);
  581 }
  582 
  583 void
  584 wi_intr(void *arg)
  585 {
  586         struct wi_softc *sc = arg;
  587         struct ifnet *ifp = sc->sc_ifp;
  588         u_int16_t status;
  589 
  590         WI_LOCK(sc);
  591 
  592         if (sc->wi_gone || !sc->sc_enabled || (ifp->if_flags & IFF_UP) == 0) {
  593                 CSR_WRITE_2(sc, WI_INT_EN, 0);
  594                 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
  595                 WI_UNLOCK(sc);
  596                 return;
  597         }
  598 
  599         /* Disable interrupts. */
  600         CSR_WRITE_2(sc, WI_INT_EN, 0);
  601 
  602         status = CSR_READ_2(sc, WI_EVENT_STAT);
  603         if (status & WI_EV_RX)
  604                 wi_rx_intr(sc);
  605         if (status & WI_EV_ALLOC)
  606                 wi_tx_intr(sc);
  607         if (status & WI_EV_TX_EXC)
  608                 wi_tx_ex_intr(sc);
  609         if (status & WI_EV_INFO)
  610                 wi_info_intr(sc);
  611         if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
  612             !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
  613                 wi_start_locked(ifp);
  614 
  615         /* Re-enable interrupts. */
  616         CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
  617 
  618         WI_UNLOCK(sc);
  619 
  620         return;
  621 }
  622 
  623 static void
  624 wi_enable(struct wi_softc *sc)
  625 {
  626         /* Enable interrupts */
  627         CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
  628 
  629         /* enable port */
  630         wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0);
  631         sc->sc_enabled = 1;
  632 }
  633 
  634 static int
  635 wi_setup_locked(struct wi_softc *sc, int porttype, int mode,
  636         uint8_t mac[IEEE80211_ADDR_LEN])
  637 {
  638         int i;
  639 
  640         wi_reset(sc);
  641 
  642         wi_write_val(sc, WI_RID_PORTTYPE, porttype);
  643         wi_write_val(sc, WI_RID_CREATE_IBSS, mode);
  644         wi_write_val(sc, WI_RID_MAX_DATALEN, 2304);
  645         /* XXX IEEE80211_BPF_NOACK wants 0 */
  646         wi_write_val(sc, WI_RID_ALT_RETRY_CNT, 2);
  647         if (sc->sc_flags & WI_FLAGS_HAS_ROAMING)
  648                 wi_write_val(sc, WI_RID_ROAMING_MODE, 3); /* NB: disabled */
  649 
  650         wi_write_rid(sc, WI_RID_MAC_NODE, mac, IEEE80211_ADDR_LEN);
  651 
  652         /* Allocate fids for the card */
  653         sc->sc_buflen = IEEE80211_MAX_LEN + sizeof(struct wi_frame);
  654         for (i = 0; i < sc->sc_ntxbuf; i++) {
  655                 int error = wi_alloc_fid(sc, sc->sc_buflen,
  656                     &sc->sc_txd[i].d_fid);
  657                 if (error) {
  658                         device_printf(sc->sc_dev,
  659                             "tx buffer allocation failed (error %u)\n",
  660                             error);
  661                         return error;
  662                 }
  663                 sc->sc_txd[i].d_len = 0;
  664         }
  665         sc->sc_txcur = sc->sc_txnext = 0;
  666 
  667         return 0;
  668 }
  669 
  670 static void
  671 wi_init_locked(struct wi_softc *sc)
  672 {
  673         struct ifnet *ifp = sc->sc_ifp;
  674         int wasenabled;
  675 
  676         WI_LOCK_ASSERT(sc);
  677 
  678         wasenabled = sc->sc_enabled;
  679         if (wasenabled)
  680                 wi_stop_locked(sc, 1);
  681 
  682         if (wi_setup_locked(sc, sc->sc_porttype, 3, IF_LLADDR(ifp)) != 0) {
  683                 if_printf(ifp, "interface not running\n");
  684                 wi_stop_locked(sc, 1);
  685                 return;
  686         }
  687 
  688         ifp->if_drv_flags |= IFF_DRV_RUNNING;
  689         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
  690 
  691         callout_reset(&sc->sc_watchdog, hz, wi_watchdog, sc);
  692 
  693         wi_enable(sc);                  /* Enable desired port */
  694 }
  695 
  696 void
  697 wi_init(void *arg)
  698 {
  699         struct wi_softc *sc = arg;
  700         struct ifnet *ifp = sc->sc_ifp;
  701         struct ieee80211com *ic = ifp->if_l2com;
  702 
  703         WI_LOCK(sc);
  704         wi_init_locked(sc);
  705         WI_UNLOCK(sc);
  706 
  707         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
  708                 ieee80211_start_all(ic);                /* start all vap's */
  709 }
  710 
  711 static void
  712 wi_stop_locked(struct wi_softc *sc, int disable)
  713 {
  714         struct ifnet *ifp = sc->sc_ifp;
  715 
  716         WI_LOCK_ASSERT(sc);
  717 
  718         if (sc->sc_enabled && !sc->wi_gone) {
  719                 CSR_WRITE_2(sc, WI_INT_EN, 0);
  720                 wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0);
  721                 if (disable)
  722                         sc->sc_enabled = 0;
  723         } else if (sc->wi_gone && disable)      /* gone --> not enabled */
  724                 sc->sc_enabled = 0;
  725 
  726         callout_stop(&sc->sc_watchdog);
  727         sc->sc_tx_timer = 0;
  728         sc->sc_false_syns = 0;
  729 
  730         ifp->if_drv_flags &= ~(IFF_DRV_OACTIVE | IFF_DRV_RUNNING);
  731 }
  732 
  733 void
  734 wi_stop(struct wi_softc *sc, int disable)
  735 {
  736         WI_LOCK(sc);
  737         wi_stop_locked(sc, disable);
  738         WI_UNLOCK(sc);
  739 }
  740 
  741 static void
  742 wi_set_channel(struct ieee80211com *ic)
  743 {
  744         struct ifnet *ifp = ic->ic_ifp;
  745         struct wi_softc *sc = ifp->if_softc;
  746 
  747         DPRINTF(("%s: channel %d, %sscanning\n", __func__,
  748             ieee80211_chan2ieee(ic, ic->ic_curchan),
  749             ic->ic_flags & IEEE80211_F_SCAN ? "" : "!"));
  750 
  751         WI_LOCK(sc);
  752         wi_write_val(sc, WI_RID_OWN_CHNL,
  753             ieee80211_chan2ieee(ic, ic->ic_curchan));
  754         WI_UNLOCK(sc);
  755 }
  756 
  757 static void
  758 wi_scan_start(struct ieee80211com *ic)
  759 {
  760         struct ifnet *ifp = ic->ic_ifp;
  761         struct wi_softc *sc = ifp->if_softc;
  762         struct ieee80211_scan_state *ss = ic->ic_scan;
  763 
  764         DPRINTF(("%s\n", __func__));
  765 
  766         WI_LOCK(sc);
  767         /*
  768          * Switch device to monitor mode.
  769          */
  770         wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_monitor_port);
  771         if (sc->sc_firmware_type == WI_INTERSIL) {
  772                 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
  773                 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
  774         }
  775         /* force full dwell time to compensate for firmware overhead */
  776         ss->ss_mindwell = ss->ss_maxdwell = msecs_to_ticks(400);
  777         WI_UNLOCK(sc);
  778 
  779 }
  780 
  781 static void
  782 wi_scan_end(struct ieee80211com *ic)
  783 {
  784         struct ifnet *ifp = ic->ic_ifp;
  785         struct wi_softc *sc = ifp->if_softc;
  786 
  787         DPRINTF(("%s: restore port type %d\n", __func__, sc->sc_porttype));
  788 
  789         WI_LOCK(sc);
  790         wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_porttype);
  791         if (sc->sc_firmware_type == WI_INTERSIL) {
  792                 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
  793                 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
  794         }
  795         WI_UNLOCK(sc);
  796 }
  797 
  798 static void
  799 wi_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
  800         int subtype, int rssi, int nf)
  801 {
  802         struct ieee80211vap *vap = ni->ni_vap;
  803 
  804         switch (subtype) {
  805         case IEEE80211_FC0_SUBTYPE_AUTH:
  806         case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
  807         case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
  808                 /* NB: filter frames that trigger state changes */
  809                 return;
  810         }
  811         WI_VAP(vap)->wv_recv_mgmt(ni, m, subtype, rssi, nf);
  812 }
  813 
  814 static int
  815 wi_newstate_sta(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
  816 {
  817         struct ieee80211com *ic = vap->iv_ic;
  818         struct ifnet *ifp = ic->ic_ifp;
  819         struct ieee80211_node *bss;
  820         struct wi_softc *sc = ifp->if_softc;
  821 
  822         DPRINTF(("%s: %s -> %s\n", __func__,
  823                 ieee80211_state_name[vap->iv_state],
  824                 ieee80211_state_name[nstate]));
  825 
  826         if (nstate == IEEE80211_S_AUTH) {
  827                 WI_LOCK(sc);
  828                 wi_setup_locked(sc, WI_PORTTYPE_BSS, 3, vap->iv_myaddr);
  829 
  830                 if (vap->iv_flags & IEEE80211_F_PMGTON) {
  831                         wi_write_val(sc, WI_RID_MAX_SLEEP, ic->ic_lintval);
  832                         wi_write_val(sc, WI_RID_PM_ENABLED, 1);
  833                 }
  834                 wi_write_val(sc, WI_RID_RTS_THRESH, vap->iv_rtsthreshold);
  835                 if (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)
  836                         wi_write_val(sc, WI_RID_FRAG_THRESH,
  837                             vap->iv_fragthreshold);
  838                 wi_write_txrate(sc, vap);
  839 
  840                 bss = vap->iv_bss;
  841                 wi_write_ssid(sc, WI_RID_DESIRED_SSID, bss->ni_essid, bss->ni_esslen);
  842                 wi_write_val(sc, WI_RID_OWN_CHNL,
  843                     ieee80211_chan2ieee(ic, bss->ni_chan));
  844 
  845                 /* Configure WEP. */
  846                 if (ic->ic_cryptocaps & IEEE80211_CRYPTO_WEP)
  847                         wi_write_wep(sc, vap);
  848                 else
  849                         sc->sc_encryption = 0;
  850 
  851                 if ((sc->sc_flags & WI_FLAGS_HAS_WPASUPPORT) &&
  852                     (vap->iv_flags & IEEE80211_F_WPA)) {
  853                         wi_write_val(sc, WI_RID_WPA_HANDLING, 1);
  854                         if (vap->iv_appie_wpa != NULL)
  855                                 wi_write_appie(sc, WI_RID_WPA_DATA,
  856                                     vap->iv_appie_wpa);
  857                 }
  858 
  859                 wi_enable(sc);          /* enable port */
  860 
  861                 /* Lucent firmware does not support the JOIN RID. */
  862                 if (sc->sc_firmware_type == WI_INTERSIL) {
  863                         struct wi_joinreq join;
  864 
  865                         memset(&join, 0, sizeof(join));
  866                         IEEE80211_ADDR_COPY(&join.wi_bssid, bss->ni_bssid);
  867                         join.wi_chan = htole16(
  868                             ieee80211_chan2ieee(ic, bss->ni_chan));
  869                         wi_write_rid(sc, WI_RID_JOIN_REQ, &join, sizeof(join));
  870                 }
  871                 WI_UNLOCK(sc);
  872 
  873                 /*
  874                  * NB: don't go through 802.11 layer, it'll send auth frame;
  875                  * instead we drive the state machine from the link status
  876                  * notification we get on association.
  877                  */
  878                 vap->iv_state = nstate;
  879                 return (0);
  880         }
  881         return WI_VAP(vap)->wv_newstate(vap, nstate, arg);
  882 }
  883 
  884 static int
  885 wi_newstate_hostap(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
  886 {
  887         struct ieee80211com *ic = vap->iv_ic;
  888         struct ifnet *ifp = ic->ic_ifp;
  889         struct ieee80211_node *bss;
  890         struct wi_softc *sc = ifp->if_softc;
  891         int error;
  892 
  893         DPRINTF(("%s: %s -> %s\n", __func__,
  894                 ieee80211_state_name[vap->iv_state],
  895                 ieee80211_state_name[nstate]));
  896 
  897         error = WI_VAP(vap)->wv_newstate(vap, nstate, arg);
  898         if (error == 0 && nstate == IEEE80211_S_RUN) {
  899                 WI_LOCK(sc);
  900                 wi_setup_locked(sc, WI_PORTTYPE_HOSTAP, 0, vap->iv_myaddr);
  901 
  902                 bss = vap->iv_bss;
  903                 wi_write_ssid(sc, WI_RID_OWN_SSID,
  904                     bss->ni_essid, bss->ni_esslen);
  905                 wi_write_val(sc, WI_RID_OWN_CHNL,
  906                     ieee80211_chan2ieee(ic, bss->ni_chan));
  907                 wi_write_val(sc, WI_RID_BASIC_RATE, 0x3);
  908                 wi_write_val(sc, WI_RID_SUPPORT_RATE, 0xf);
  909                 wi_write_txrate(sc, vap);
  910 
  911                 wi_write_val(sc, WI_RID_OWN_BEACON_INT, bss->ni_intval);
  912                 wi_write_val(sc, WI_RID_DTIM_PERIOD, vap->iv_dtim_period);
  913 
  914                 wi_write_val(sc, WI_RID_RTS_THRESH, vap->iv_rtsthreshold);
  915                 if (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)
  916                         wi_write_val(sc, WI_RID_FRAG_THRESH,
  917                             vap->iv_fragthreshold);
  918 
  919                 if ((sc->sc_flags & WI_FLAGS_HAS_ENHSECURITY) &&
  920                     (vap->iv_flags & IEEE80211_F_HIDESSID)) {
  921                         /*
  922                          * bit 0 means hide SSID in beacons,
  923                          * bit 1 means don't respond to bcast probe req
  924                          */
  925                         wi_write_val(sc, WI_RID_ENH_SECURITY, 0x3);
  926                 }
  927 
  928                 if ((sc->sc_flags & WI_FLAGS_HAS_WPASUPPORT) &&
  929                     (vap->iv_flags & IEEE80211_F_WPA) && 
  930                     vap->iv_appie_wpa != NULL)
  931                         wi_write_appie(sc, WI_RID_WPA_DATA, vap->iv_appie_wpa);
  932 
  933                 wi_write_val(sc, WI_RID_PROMISC, 0);
  934 
  935                 /* Configure WEP. */
  936                 if (ic->ic_cryptocaps & IEEE80211_CRYPTO_WEP)
  937                         wi_write_wep(sc, vap);
  938                 else
  939                         sc->sc_encryption = 0;
  940 
  941                 wi_enable(sc);          /* enable port */
  942                 WI_UNLOCK(sc);
  943         }
  944         return error;
  945 }
  946 
  947 static void
  948 wi_start_locked(struct ifnet *ifp)
  949 {
  950         struct wi_softc *sc = ifp->if_softc;
  951         struct ieee80211_node *ni;
  952         struct ieee80211_frame *wh;
  953         struct mbuf *m0;
  954         struct ieee80211_key *k;
  955         struct wi_frame frmhdr;
  956         const struct llc *llc;
  957         int cur;
  958 
  959         WI_LOCK_ASSERT(sc);
  960 
  961         if (sc->wi_gone)
  962                 return;
  963 
  964         memset(&frmhdr, 0, sizeof(frmhdr));
  965         cur = sc->sc_txnext;
  966         for (;;) {
  967                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
  968                 if (m0 == NULL)
  969                         break;
  970                 if (sc->sc_txd[cur].d_len != 0) {
  971                         IFQ_DRV_PREPEND(&ifp->if_snd, m0);
  972                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
  973                         break;
  974                 }
  975                 ni = (struct ieee80211_node *) m0->m_pkthdr.rcvif;
  976 
  977                 /* reconstruct 802.3 header */
  978                 wh = mtod(m0, struct ieee80211_frame *);
  979                 switch (wh->i_fc[1]) {
  980                 case IEEE80211_FC1_DIR_TODS:
  981                         IEEE80211_ADDR_COPY(frmhdr.wi_ehdr.ether_shost,
  982                             wh->i_addr2);
  983                         IEEE80211_ADDR_COPY(frmhdr.wi_ehdr.ether_dhost,
  984                             wh->i_addr3);
  985                         break;
  986                 case IEEE80211_FC1_DIR_NODS:
  987                         IEEE80211_ADDR_COPY(frmhdr.wi_ehdr.ether_shost,
  988                             wh->i_addr2);
  989                         IEEE80211_ADDR_COPY(frmhdr.wi_ehdr.ether_dhost,
  990                             wh->i_addr1);
  991                         break;
  992                 case IEEE80211_FC1_DIR_FROMDS:
  993                         IEEE80211_ADDR_COPY(frmhdr.wi_ehdr.ether_shost,
  994                             wh->i_addr3);
  995                         IEEE80211_ADDR_COPY(frmhdr.wi_ehdr.ether_dhost,
  996                             wh->i_addr1);
  997                         break;
  998                 }
  999                 llc = (const struct llc *)(
 1000                     mtod(m0, const uint8_t *) + ieee80211_hdrsize(wh));
 1001                 frmhdr.wi_ehdr.ether_type = llc->llc_snap.ether_type;
 1002                 frmhdr.wi_tx_ctl = htole16(WI_ENC_TX_802_11|WI_TXCNTL_TX_EX);
 1003                 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
 1004                         k = ieee80211_crypto_encap(ni, m0);
 1005                         if (k == NULL) {
 1006                                 ieee80211_free_node(ni);
 1007                                 m_freem(m0);
 1008                                 continue;
 1009                         }
 1010                         frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT);
 1011                 }
 1012 
 1013                 if (ieee80211_radiotap_active_vap(ni->ni_vap)) {
 1014                         sc->sc_tx_th.wt_rate = ni->ni_txrate;
 1015                         ieee80211_radiotap_tx(ni->ni_vap, m0);
 1016                 }
 1017 
 1018                 m_copydata(m0, 0, sizeof(struct ieee80211_frame),
 1019                     (caddr_t)&frmhdr.wi_whdr);
 1020                 m_adj(m0, sizeof(struct ieee80211_frame));
 1021                 frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len);
 1022                 ieee80211_free_node(ni);
 1023                 if (wi_start_tx(ifp, &frmhdr, m0))
 1024                         continue;
 1025 
 1026                 sc->sc_txnext = cur = (cur + 1) % sc->sc_ntxbuf;
 1027                 ifp->if_opackets++;
 1028         }
 1029 }
 1030 
 1031 static void
 1032 wi_start(struct ifnet *ifp)
 1033 {
 1034         struct wi_softc *sc = ifp->if_softc;
 1035 
 1036         WI_LOCK(sc);
 1037         wi_start_locked(ifp);
 1038         WI_UNLOCK(sc);
 1039 }
 1040 
 1041 static int
 1042 wi_start_tx(struct ifnet *ifp, struct wi_frame *frmhdr, struct mbuf *m0)
 1043 {
 1044         struct wi_softc *sc = ifp->if_softc;
 1045         int cur = sc->sc_txnext;
 1046         int fid, off, error;
 1047 
 1048         fid = sc->sc_txd[cur].d_fid;
 1049         off = sizeof(*frmhdr);
 1050         error = wi_write_bap(sc, fid, 0, frmhdr, sizeof(*frmhdr)) != 0
 1051              || wi_mwrite_bap(sc, fid, off, m0, m0->m_pkthdr.len) != 0;
 1052         m_freem(m0);
 1053         if (error) {
 1054                 ifp->if_oerrors++;
 1055                 return -1;
 1056         }
 1057         sc->sc_txd[cur].d_len = off;
 1058         if (sc->sc_txcur == cur) {
 1059                 if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, fid, 0, 0)) {
 1060                         if_printf(ifp, "xmit failed\n");
 1061                         sc->sc_txd[cur].d_len = 0;
 1062                         return -1;
 1063                 }
 1064                 sc->sc_tx_timer = 5;
 1065         }
 1066         return 0;
 1067 }
 1068 
 1069 static int
 1070 wi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m0,
 1071             const struct ieee80211_bpf_params *params)
 1072 {
 1073         struct ieee80211com *ic = ni->ni_ic;
 1074         struct ifnet *ifp = ic->ic_ifp;
 1075         struct ieee80211vap *vap = ni->ni_vap;
 1076         struct wi_softc *sc = ifp->if_softc;
 1077         struct ieee80211_key *k;
 1078         struct ieee80211_frame *wh;
 1079         struct wi_frame frmhdr;
 1080         int cur;
 1081         int rc = 0;
 1082 
 1083         WI_LOCK(sc);
 1084 
 1085         if (sc->wi_gone) {
 1086                 rc = ENETDOWN;
 1087                 goto out;
 1088         }
 1089         memset(&frmhdr, 0, sizeof(frmhdr));
 1090         cur = sc->sc_txnext;
 1091         if (sc->sc_txd[cur].d_len != 0) {
 1092                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 1093                 rc = ENOBUFS;
 1094                 goto out;
 1095         }
 1096         m0->m_pkthdr.rcvif = NULL;
 1097 
 1098         m_copydata(m0, 4, ETHER_ADDR_LEN * 2,
 1099             (caddr_t)&frmhdr.wi_ehdr);
 1100         frmhdr.wi_ehdr.ether_type = 0;
 1101         wh = mtod(m0, struct ieee80211_frame *);
 1102                         
 1103         frmhdr.wi_tx_ctl = htole16(WI_ENC_TX_802_11|WI_TXCNTL_TX_EX);
 1104         if (params && (params->ibp_flags & IEEE80211_BPF_NOACK))
 1105                 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_ALTRTRY);
 1106         if ((wh->i_fc[1] & IEEE80211_FC1_WEP) &&
 1107             (!params || (params && (params->ibp_flags & IEEE80211_BPF_CRYPTO)))) {
 1108                 k = ieee80211_crypto_encap(ni, m0);
 1109                 if (k == NULL) {
 1110                         rc = ENOMEM;
 1111                         goto out;
 1112                 }
 1113                 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT);
 1114         }
 1115         if (ieee80211_radiotap_active_vap(vap)) {
 1116                 sc->sc_tx_th.wt_rate = ni->ni_txrate;
 1117                 ieee80211_radiotap_tx(vap, m0);
 1118         }
 1119         m_copydata(m0, 0, sizeof(struct ieee80211_frame),
 1120             (caddr_t)&frmhdr.wi_whdr);
 1121         m_adj(m0, sizeof(struct ieee80211_frame));
 1122         frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len);
 1123         if (wi_start_tx(ifp, &frmhdr, m0) < 0) {
 1124                 m0 = NULL;
 1125                 rc = EIO;
 1126                 goto out;
 1127         }
 1128         m0 = NULL;
 1129 
 1130         sc->sc_txnext = cur = (cur + 1) % sc->sc_ntxbuf;
 1131 out:
 1132         WI_UNLOCK(sc);
 1133 
 1134         if (m0 != NULL)
 1135                 m_freem(m0);
 1136         ieee80211_free_node(ni);
 1137         return rc;
 1138 }
 1139 
 1140 static int
 1141 wi_reset(struct wi_softc *sc)
 1142 {
 1143 #define WI_INIT_TRIES 3
 1144         int i, error = 0;
 1145 
 1146         for (i = 0; i < WI_INIT_TRIES; i++) {
 1147                 error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0);
 1148                 if (error == 0)
 1149                         break;
 1150                 DELAY(WI_DELAY * 1000);
 1151         }
 1152         sc->sc_reset = 1;
 1153         if (i == WI_INIT_TRIES) {
 1154                 if_printf(sc->sc_ifp, "reset failed\n");
 1155                 return error;
 1156         }
 1157 
 1158         CSR_WRITE_2(sc, WI_INT_EN, 0);
 1159         CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
 1160 
 1161         /* Calibrate timer. */
 1162         wi_write_val(sc, WI_RID_TICK_TIME, 8);
 1163 
 1164         return 0;
 1165 #undef WI_INIT_TRIES
 1166 }
 1167 
 1168 static void
 1169 wi_watchdog(void *arg)
 1170 {
 1171         struct wi_softc *sc = arg;
 1172         struct ifnet *ifp = sc->sc_ifp;
 1173 
 1174         WI_LOCK_ASSERT(sc);
 1175 
 1176         if (!sc->sc_enabled)
 1177                 return;
 1178 
 1179         if (sc->sc_tx_timer && --sc->sc_tx_timer == 0) {
 1180                 if_printf(ifp, "device timeout\n");
 1181                 ifp->if_oerrors++;
 1182                 wi_init_locked(ifp->if_softc);
 1183                 return;
 1184         }
 1185         callout_reset(&sc->sc_watchdog, hz, wi_watchdog, sc);
 1186 }
 1187 
 1188 static int
 1189 wi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
 1190 {
 1191         struct wi_softc *sc = ifp->if_softc;
 1192         struct ieee80211com *ic = ifp->if_l2com;
 1193         struct ifreq *ifr = (struct ifreq *) data;
 1194         int error = 0, startall = 0;
 1195 
 1196         switch (cmd) {
 1197         case SIOCSIFFLAGS:
 1198                 WI_LOCK(sc);
 1199                 /*
 1200                  * Can't do promisc and hostap at the same time.  If all that's
 1201                  * changing is the promisc flag, try to short-circuit a call to
 1202                  * wi_init() by just setting PROMISC in the hardware.
 1203                  */
 1204                 if (ifp->if_flags & IFF_UP) {
 1205                         if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
 1206                             ifp->if_drv_flags & IFF_DRV_RUNNING) {
 1207                                 if ((ifp->if_flags ^ sc->sc_if_flags) & IFF_PROMISC) {
 1208                                         wi_write_val(sc, WI_RID_PROMISC,
 1209                                             (ifp->if_flags & IFF_PROMISC) != 0);
 1210                                 } else {
 1211                                         wi_init_locked(sc);
 1212                                         startall = 1;
 1213                                 }
 1214                         } else {
 1215                                 wi_init_locked(sc);
 1216                                 startall = 1;
 1217                         }
 1218                 } else {
 1219                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 1220                                 wi_stop_locked(sc, 1);
 1221                         sc->wi_gone = 0;
 1222                 }
 1223                 sc->sc_if_flags = ifp->if_flags;
 1224                 WI_UNLOCK(sc);
 1225                 if (startall)
 1226                         ieee80211_start_all(ic);
 1227                 break;
 1228         case SIOCGIFMEDIA:
 1229                 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
 1230                 break;
 1231         case SIOCGIFADDR:
 1232                 error = ether_ioctl(ifp, cmd, data);
 1233                 break;
 1234         default:
 1235                 error = EINVAL;
 1236                 break;
 1237         }
 1238         return error;
 1239 }
 1240 
 1241 static void
 1242 wi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
 1243 {
 1244         struct ieee80211vap *vap = ifp->if_softc;
 1245         struct ieee80211com *ic = vap->iv_ic;
 1246         struct wi_softc *sc = ic->ic_ifp->if_softc;
 1247         u_int16_t val;
 1248         int rate, len;
 1249 
 1250         len = sizeof(val);
 1251         if (sc->sc_enabled &&
 1252             wi_read_rid(sc, WI_RID_CUR_TX_RATE, &val, &len) == 0 &&
 1253             len == sizeof(val)) {
 1254                 /* convert to 802.11 rate */
 1255                 val = le16toh(val);
 1256                 rate = val * 2;
 1257                 if (sc->sc_firmware_type == WI_LUCENT) {
 1258                         if (rate == 10)
 1259                                 rate = 11;      /* 5.5Mbps */
 1260                 } else {
 1261                         if (rate == 4*2)
 1262                                 rate = 11;      /* 5.5Mbps */
 1263                         else if (rate == 8*2)
 1264                                 rate = 22;      /* 11Mbps */
 1265                 }
 1266                 vap->iv_bss->ni_txrate = rate;
 1267         }
 1268         ieee80211_media_status(ifp, imr);
 1269 }
 1270 
 1271 static void
 1272 wi_sync_bssid(struct wi_softc *sc, u_int8_t new_bssid[IEEE80211_ADDR_LEN])
 1273 {
 1274         struct ifnet *ifp = sc->sc_ifp;
 1275         struct ieee80211com *ic = ifp->if_l2com;
 1276         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 1277         struct ieee80211_node *ni = vap->iv_bss;
 1278 
 1279         if (IEEE80211_ADDR_EQ(new_bssid, ni->ni_bssid))
 1280                 return;
 1281 
 1282         DPRINTF(("wi_sync_bssid: bssid %s -> ", ether_sprintf(ni->ni_bssid)));
 1283         DPRINTF(("%s ?\n", ether_sprintf(new_bssid)));
 1284 
 1285         /* In promiscuous mode, the BSSID field is not a reliable
 1286          * indicator of the firmware's BSSID. Damp spurious
 1287          * change-of-BSSID indications.
 1288          */
 1289         if ((ifp->if_flags & IFF_PROMISC) != 0 &&
 1290             !ppsratecheck(&sc->sc_last_syn, &sc->sc_false_syns,
 1291                          WI_MAX_FALSE_SYNS))
 1292                 return;
 1293 
 1294         sc->sc_false_syns = MAX(0, sc->sc_false_syns - 1);
 1295 #if 0
 1296         /*
 1297          * XXX hack; we should create a new node with the new bssid
 1298          * and replace the existing ic_bss with it but since we don't
 1299          * process management frames to collect state we cheat by
 1300          * reusing the existing node as we know wi_newstate will be
 1301          * called and it will overwrite the node state.
 1302          */
 1303         ieee80211_sta_join(ic, ieee80211_ref_node(ni));
 1304 #endif
 1305 }
 1306 
 1307 static __noinline void
 1308 wi_rx_intr(struct wi_softc *sc)
 1309 {
 1310         struct ifnet *ifp = sc->sc_ifp;
 1311         struct ieee80211com *ic = ifp->if_l2com;
 1312         struct wi_frame frmhdr;
 1313         struct mbuf *m;
 1314         struct ieee80211_frame *wh;
 1315         struct ieee80211_node *ni;
 1316         int fid, len, off;
 1317         u_int8_t dir;
 1318         u_int16_t status;
 1319         int8_t rssi, nf;
 1320 
 1321         fid = CSR_READ_2(sc, WI_RX_FID);
 1322 
 1323         /* First read in the frame header */
 1324         if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr))) {
 1325                 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
 1326                 ifp->if_ierrors++;
 1327                 DPRINTF(("wi_rx_intr: read fid %x failed\n", fid));
 1328                 return;
 1329         }
 1330 
 1331         /*
 1332          * Drop undecryptable or packets with receive errors here
 1333          */
 1334         status = le16toh(frmhdr.wi_status);
 1335         if (status & WI_STAT_ERRSTAT) {
 1336                 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
 1337                 ifp->if_ierrors++;
 1338                 DPRINTF(("wi_rx_intr: fid %x error status %x\n", fid, status));
 1339                 return;
 1340         }
 1341 
 1342         len = le16toh(frmhdr.wi_dat_len);
 1343         off = ALIGN(sizeof(struct ieee80211_frame));
 1344 
 1345         /*
 1346          * Sometimes the PRISM2.x returns bogusly large frames. Except
 1347          * in monitor mode, just throw them away.
 1348          */
 1349         if (off + len > MCLBYTES) {
 1350                 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
 1351                         CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
 1352                         ifp->if_ierrors++;
 1353                         DPRINTF(("wi_rx_intr: oversized packet\n"));
 1354                         return;
 1355                 } else
 1356                         len = 0;
 1357         }
 1358 
 1359         if (off + len > MHLEN)
 1360                 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
 1361         else
 1362                 m = m_gethdr(M_DONTWAIT, MT_DATA);
 1363         if (m == NULL) {
 1364                 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
 1365                 ifp->if_ierrors++;
 1366                 DPRINTF(("wi_rx_intr: MGET failed\n"));
 1367                 return;
 1368         }
 1369         m->m_data += off - sizeof(struct ieee80211_frame);
 1370         memcpy(m->m_data, &frmhdr.wi_whdr, sizeof(struct ieee80211_frame));
 1371         wi_read_bap(sc, fid, sizeof(frmhdr),
 1372             m->m_data + sizeof(struct ieee80211_frame), len);
 1373         m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + len;
 1374         m->m_pkthdr.rcvif = ifp;
 1375 
 1376         CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
 1377 
 1378         rssi = frmhdr.wi_rx_signal;
 1379         nf = frmhdr.wi_rx_silence;
 1380         if (ieee80211_radiotap_active(ic)) {
 1381                 struct wi_rx_radiotap_header *tap = &sc->sc_rx_th;
 1382                 uint32_t rstamp;
 1383 
 1384                 rstamp = (le16toh(frmhdr.wi_rx_tstamp0) << 16) |
 1385                     le16toh(frmhdr.wi_rx_tstamp1);
 1386                 tap->wr_tsf = htole64((uint64_t)rstamp);
 1387                 /* XXX replace divide by table */
 1388                 tap->wr_rate = frmhdr.wi_rx_rate / 5;
 1389                 tap->wr_flags = 0;
 1390                 if (frmhdr.wi_status & WI_STAT_PCF)
 1391                         tap->wr_flags |= IEEE80211_RADIOTAP_F_CFP;
 1392                 if (m->m_flags & M_WEP)
 1393                         tap->wr_flags |= IEEE80211_RADIOTAP_F_WEP;
 1394                 tap->wr_antsignal = rssi;
 1395                 tap->wr_antnoise = nf;
 1396         }
 1397 
 1398         /* synchronize driver's BSSID with firmware's BSSID */
 1399         wh = mtod(m, struct ieee80211_frame *);
 1400         dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK;
 1401         if (ic->ic_opmode == IEEE80211_M_IBSS && dir == IEEE80211_FC1_DIR_NODS)
 1402                 wi_sync_bssid(sc, wh->i_addr3);
 1403 
 1404         WI_UNLOCK(sc);
 1405 
 1406         ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
 1407         if (ni != NULL) {
 1408                 (void) ieee80211_input(ni, m, rssi, nf);
 1409                 ieee80211_free_node(ni);
 1410         } else
 1411                 (void) ieee80211_input_all(ic, m, rssi, nf);
 1412 
 1413         WI_LOCK(sc);
 1414 }
 1415 
 1416 static __noinline void
 1417 wi_tx_ex_intr(struct wi_softc *sc)
 1418 {
 1419         struct ifnet *ifp = sc->sc_ifp;
 1420         struct wi_frame frmhdr;
 1421         int fid;
 1422 
 1423         fid = CSR_READ_2(sc, WI_TX_CMP_FID);
 1424         /* Read in the frame header */
 1425         if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) == 0) {
 1426                 u_int16_t status = le16toh(frmhdr.wi_status);
 1427                 /*
 1428                  * Spontaneous station disconnects appear as xmit
 1429                  * errors.  Don't announce them and/or count them
 1430                  * as an output error.
 1431                  */
 1432                 if ((status & WI_TXSTAT_DISCONNECT) == 0) {
 1433                         if (ppsratecheck(&lasttxerror, &curtxeps, wi_txerate)) {
 1434                                 if_printf(ifp, "tx failed");
 1435                                 if (status & WI_TXSTAT_RET_ERR)
 1436                                         printf(", retry limit exceeded");
 1437                                 if (status & WI_TXSTAT_AGED_ERR)
 1438                                         printf(", max transmit lifetime exceeded");
 1439                                 if (status & WI_TXSTAT_DISCONNECT)
 1440                                         printf(", port disconnected");
 1441                                 if (status & WI_TXSTAT_FORM_ERR)
 1442                                         printf(", invalid format (data len %u src %6D)",
 1443                                                 le16toh(frmhdr.wi_dat_len),
 1444                                                 frmhdr.wi_ehdr.ether_shost, ":");
 1445                                 if (status & ~0xf)
 1446                                         printf(", status=0x%x", status);
 1447                                 printf("\n");
 1448                         }
 1449                         ifp->if_oerrors++;
 1450                 } else {
 1451                         DPRINTF(("port disconnected\n"));
 1452                         ifp->if_collisions++;   /* XXX */
 1453                 }
 1454         } else
 1455                 DPRINTF(("wi_tx_ex_intr: read fid %x failed\n", fid));
 1456         CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC);
 1457 }
 1458 
 1459 static __noinline void
 1460 wi_tx_intr(struct wi_softc *sc)
 1461 {
 1462         struct ifnet *ifp = sc->sc_ifp;
 1463         int fid, cur;
 1464 
 1465         if (sc->wi_gone)
 1466                 return;
 1467 
 1468         fid = CSR_READ_2(sc, WI_ALLOC_FID);
 1469         CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
 1470 
 1471         cur = sc->sc_txcur;
 1472         if (sc->sc_txd[cur].d_fid != fid) {
 1473                 if_printf(ifp, "bad alloc %x != %x, cur %d nxt %d\n",
 1474                     fid, sc->sc_txd[cur].d_fid, cur, sc->sc_txnext);
 1475                 return;
 1476         }
 1477         sc->sc_tx_timer = 0;
 1478         sc->sc_txd[cur].d_len = 0;
 1479         sc->sc_txcur = cur = (cur + 1) % sc->sc_ntxbuf;
 1480         if (sc->sc_txd[cur].d_len == 0)
 1481                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 1482         else {
 1483                 if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, sc->sc_txd[cur].d_fid,
 1484                     0, 0)) {
 1485                         if_printf(ifp, "xmit failed\n");
 1486                         sc->sc_txd[cur].d_len = 0;
 1487                 } else {
 1488                         sc->sc_tx_timer = 5;
 1489                 }
 1490         }
 1491 }
 1492 
 1493 static __noinline void
 1494 wi_info_intr(struct wi_softc *sc)
 1495 {
 1496         struct ifnet *ifp = sc->sc_ifp;
 1497         struct ieee80211com *ic = ifp->if_l2com;
 1498         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 1499         int i, fid, len, off;
 1500         u_int16_t ltbuf[2];
 1501         u_int16_t stat;
 1502         u_int32_t *ptr;
 1503 
 1504         fid = CSR_READ_2(sc, WI_INFO_FID);
 1505         wi_read_bap(sc, fid, 0, ltbuf, sizeof(ltbuf));
 1506 
 1507         switch (le16toh(ltbuf[1])) {
 1508         case WI_INFO_LINK_STAT:
 1509                 wi_read_bap(sc, fid, sizeof(ltbuf), &stat, sizeof(stat));
 1510                 DPRINTF(("wi_info_intr: LINK_STAT 0x%x\n", le16toh(stat)));
 1511                 switch (le16toh(stat)) {
 1512                 case WI_INFO_LINK_STAT_CONNECTED:
 1513                         if (vap->iv_state == IEEE80211_S_RUN &&
 1514                             vap->iv_opmode != IEEE80211_M_IBSS)
 1515                                 break;
 1516                         /* fall thru... */
 1517                 case WI_INFO_LINK_STAT_AP_CHG:
 1518                         IEEE80211_LOCK(ic);
 1519                         vap->iv_bss->ni_associd = 1 | 0xc000;   /* NB: anything will do */
 1520                         ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
 1521                         IEEE80211_UNLOCK(ic);
 1522                         break;
 1523                 case WI_INFO_LINK_STAT_AP_INR:
 1524                         break;
 1525                 case WI_INFO_LINK_STAT_DISCONNECTED:
 1526                         /* we dropped off the net; e.g. due to deauth/disassoc */
 1527                         IEEE80211_LOCK(ic);
 1528                         vap->iv_bss->ni_associd = 0;
 1529                         vap->iv_stats.is_rx_deauth++;
 1530                         ieee80211_new_state(vap, IEEE80211_S_SCAN, 0);
 1531                         IEEE80211_UNLOCK(ic);
 1532                         break;
 1533                 case WI_INFO_LINK_STAT_AP_OOR:
 1534                         /* XXX does this need to be per-vap? */
 1535                         ieee80211_beacon_miss(ic);
 1536                         break;
 1537                 case WI_INFO_LINK_STAT_ASSOC_FAILED:
 1538                         if (vap->iv_opmode == IEEE80211_M_STA)
 1539                                 ieee80211_new_state(vap, IEEE80211_S_SCAN,
 1540                                     IEEE80211_SCAN_FAIL_TIMEOUT);
 1541                         break;
 1542                 }
 1543                 break;
 1544         case WI_INFO_COUNTERS:
 1545                 /* some card versions have a larger stats structure */
 1546                 len = min(le16toh(ltbuf[0]) - 1, sizeof(sc->sc_stats) / 4);
 1547                 ptr = (u_int32_t *)&sc->sc_stats;
 1548                 off = sizeof(ltbuf);
 1549                 for (i = 0; i < len; i++, off += 2, ptr++) {
 1550                         wi_read_bap(sc, fid, off, &stat, sizeof(stat));
 1551 #ifdef WI_HERMES_STATS_WAR
 1552                         if (stat & 0xf000)
 1553                                 stat = ~stat;
 1554 #endif
 1555                         *ptr += stat;
 1556                 }
 1557                 ifp->if_collisions = sc->sc_stats.wi_tx_single_retries +
 1558                     sc->sc_stats.wi_tx_multi_retries +
 1559                     sc->sc_stats.wi_tx_retry_limit;
 1560                 break;
 1561         default:
 1562                 DPRINTF(("wi_info_intr: got fid %x type %x len %d\n", fid,
 1563                     le16toh(ltbuf[1]), le16toh(ltbuf[0])));
 1564                 break;
 1565         }
 1566         CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
 1567 }
 1568 
 1569 static int
 1570 wi_write_multi(struct wi_softc *sc)
 1571 {
 1572         struct ifnet *ifp = sc->sc_ifp;
 1573         int n;
 1574         struct ifmultiaddr *ifma;
 1575         struct wi_mcast mlist;
 1576 
 1577         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
 1578 allmulti:
 1579                 memset(&mlist, 0, sizeof(mlist));
 1580                 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
 1581                     sizeof(mlist));
 1582         }
 1583 
 1584         n = 0;
 1585         if_maddr_rlock(ifp);
 1586         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 1587                 if (ifma->ifma_addr->sa_family != AF_LINK)
 1588                         continue;
 1589                 if (n >= 16)
 1590                         goto allmulti;
 1591                 IEEE80211_ADDR_COPY(&mlist.wi_mcast[n],
 1592                     (LLADDR((struct sockaddr_dl *)ifma->ifma_addr)));
 1593                 n++;
 1594         }
 1595         if_maddr_runlock(ifp);
 1596         return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
 1597             IEEE80211_ADDR_LEN * n);
 1598 }
 1599 
 1600 static void
 1601 wi_update_mcast(struct ifnet *ifp)
 1602 {
 1603         wi_write_multi(ifp->if_softc);
 1604 }
 1605 
 1606 static void
 1607 wi_update_promisc(struct ifnet *ifp)
 1608 {
 1609         struct wi_softc *sc = ifp->if_softc;
 1610         struct ieee80211com *ic = ifp->if_l2com;
 1611 
 1612         WI_LOCK(sc);
 1613         /* XXX handle WEP special case handling? */
 1614         wi_write_val(sc, WI_RID_PROMISC, 
 1615             (ic->ic_opmode == IEEE80211_M_MONITOR ||
 1616              (ifp->if_flags & IFF_PROMISC)));
 1617         WI_UNLOCK(sc);
 1618 }
 1619 
 1620 static void
 1621 wi_read_nicid(struct wi_softc *sc)
 1622 {
 1623         struct wi_card_ident *id;
 1624         char *p;
 1625         int len;
 1626         u_int16_t ver[4];
 1627 
 1628         /* getting chip identity */
 1629         memset(ver, 0, sizeof(ver));
 1630         len = sizeof(ver);
 1631         wi_read_rid(sc, WI_RID_CARD_ID, ver, &len);
 1632 
 1633         sc->sc_firmware_type = WI_NOTYPE;
 1634         sc->sc_nic_id = le16toh(ver[0]);
 1635         for (id = wi_card_ident; id->card_name != NULL; id++) {
 1636                 if (sc->sc_nic_id == id->card_id) {
 1637                         sc->sc_nic_name = id->card_name;
 1638                         sc->sc_firmware_type = id->firm_type;
 1639                         break;
 1640                 }
 1641         }
 1642         if (sc->sc_firmware_type == WI_NOTYPE) {
 1643                 if (sc->sc_nic_id & 0x8000) {
 1644                         sc->sc_firmware_type = WI_INTERSIL;
 1645                         sc->sc_nic_name = "Unknown Prism chip";
 1646                 } else {
 1647                         sc->sc_firmware_type = WI_LUCENT;
 1648                         sc->sc_nic_name = "Unknown Lucent chip";
 1649                 }
 1650         }
 1651         if (bootverbose)
 1652                 device_printf(sc->sc_dev, "using %s\n", sc->sc_nic_name);
 1653 
 1654         /* get primary firmware version (Only Prism chips) */
 1655         if (sc->sc_firmware_type != WI_LUCENT) {
 1656                 memset(ver, 0, sizeof(ver));
 1657                 len = sizeof(ver);
 1658                 wi_read_rid(sc, WI_RID_PRI_IDENTITY, ver, &len);
 1659                 sc->sc_pri_firmware_ver = le16toh(ver[2]) * 10000 +
 1660                     le16toh(ver[3]) * 100 + le16toh(ver[1]);
 1661         }
 1662 
 1663         /* get station firmware version */
 1664         memset(ver, 0, sizeof(ver));
 1665         len = sizeof(ver);
 1666         wi_read_rid(sc, WI_RID_STA_IDENTITY, ver, &len);
 1667         sc->sc_sta_firmware_ver = le16toh(ver[2]) * 10000 +
 1668             le16toh(ver[3]) * 100 + le16toh(ver[1]);
 1669         if (sc->sc_firmware_type == WI_INTERSIL &&
 1670             (sc->sc_sta_firmware_ver == 10102 ||
 1671              sc->sc_sta_firmware_ver == 20102)) {
 1672                 char ident[12];
 1673                 memset(ident, 0, sizeof(ident));
 1674                 len = sizeof(ident);
 1675                 /* value should be the format like "V2.00-11" */
 1676                 if (wi_read_rid(sc, WI_RID_SYMBOL_IDENTITY, ident, &len) == 0 &&
 1677                     *(p = (char *)ident) >= 'A' &&
 1678                     p[2] == '.' && p[5] == '-' && p[8] == '\0') {
 1679                         sc->sc_firmware_type = WI_SYMBOL;
 1680                         sc->sc_sta_firmware_ver = (p[1] - '') * 10000 +
 1681                             (p[3] - '') * 1000 + (p[4] - '') * 100 +
 1682                             (p[6] - '') * 10 + (p[7] - '');
 1683                 }
 1684         }
 1685         if (bootverbose) {
 1686                 device_printf(sc->sc_dev, "%s Firmware: ",
 1687                     wi_firmware_names[sc->sc_firmware_type]);
 1688                 if (sc->sc_firmware_type != WI_LUCENT)  /* XXX */
 1689                         printf("Primary (%u.%u.%u), ",
 1690                             sc->sc_pri_firmware_ver / 10000,
 1691                             (sc->sc_pri_firmware_ver % 10000) / 100,
 1692                             sc->sc_pri_firmware_ver % 100);
 1693                 printf("Station (%u.%u.%u)\n",
 1694                     sc->sc_sta_firmware_ver / 10000,
 1695                     (sc->sc_sta_firmware_ver % 10000) / 100,
 1696                     sc->sc_sta_firmware_ver % 100);
 1697         }
 1698 }
 1699 
 1700 static int
 1701 wi_write_ssid(struct wi_softc *sc, int rid, u_int8_t *buf, int buflen)
 1702 {
 1703         struct wi_ssid ssid;
 1704 
 1705         if (buflen > IEEE80211_NWID_LEN)
 1706                 return ENOBUFS;
 1707         memset(&ssid, 0, sizeof(ssid));
 1708         ssid.wi_len = htole16(buflen);
 1709         memcpy(ssid.wi_ssid, buf, buflen);
 1710         return wi_write_rid(sc, rid, &ssid, sizeof(ssid));
 1711 }
 1712 
 1713 static int
 1714 wi_write_txrate(struct wi_softc *sc, struct ieee80211vap *vap)
 1715 {
 1716         static const uint16_t lucent_rates[12] = {
 1717             [ 0] = 3,   /* auto */
 1718             [ 1] = 1,   /* 1Mb/s */
 1719             [ 2] = 2,   /* 2Mb/s */
 1720             [ 5] = 4,   /* 5.5Mb/s */
 1721             [11] = 5    /* 11Mb/s */
 1722         };
 1723         static const uint16_t intersil_rates[12] = {
 1724             [ 0] = 0xf, /* auto */
 1725             [ 1] = 0,   /* 1Mb/s */
 1726             [ 2] = 1,   /* 2Mb/s */
 1727             [ 5] = 2,   /* 5.5Mb/s */
 1728             [11] = 3,   /* 11Mb/s */
 1729         };
 1730         const uint16_t *rates = sc->sc_firmware_type == WI_LUCENT ?
 1731             lucent_rates : intersil_rates;
 1732         struct ieee80211com *ic = vap->iv_ic;
 1733         const struct ieee80211_txparam *tp;
 1734 
 1735         tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)];
 1736         return wi_write_val(sc, WI_RID_TX_RATE,
 1737             (tp->ucastrate == IEEE80211_FIXED_RATE_NONE ?
 1738                 rates[0] : rates[tp->ucastrate / 2]));
 1739 }
 1740 
 1741 static int
 1742 wi_write_wep(struct wi_softc *sc, struct ieee80211vap *vap)
 1743 {
 1744         int error = 0;
 1745         int i, keylen;
 1746         u_int16_t val;
 1747         struct wi_key wkey[IEEE80211_WEP_NKID];
 1748 
 1749         switch (sc->sc_firmware_type) {
 1750         case WI_LUCENT:
 1751                 val = (vap->iv_flags & IEEE80211_F_PRIVACY) ? 1 : 0;
 1752                 error = wi_write_val(sc, WI_RID_ENCRYPTION, val);
 1753                 if (error)
 1754                         break;
 1755                 if ((vap->iv_flags & IEEE80211_F_PRIVACY) == 0)
 1756                         break;
 1757                 error = wi_write_val(sc, WI_RID_TX_CRYPT_KEY, vap->iv_def_txkey);
 1758                 if (error)
 1759                         break;
 1760                 memset(wkey, 0, sizeof(wkey));
 1761                 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
 1762                         keylen = vap->iv_nw_keys[i].wk_keylen;
 1763                         wkey[i].wi_keylen = htole16(keylen);
 1764                         memcpy(wkey[i].wi_keydat, vap->iv_nw_keys[i].wk_key,
 1765                             keylen);
 1766                 }
 1767                 error = wi_write_rid(sc, WI_RID_DEFLT_CRYPT_KEYS,
 1768                     wkey, sizeof(wkey));
 1769                 sc->sc_encryption = 0;
 1770                 break;
 1771 
 1772         case WI_INTERSIL:
 1773                 val = HOST_ENCRYPT | HOST_DECRYPT;
 1774                 if (vap->iv_flags & IEEE80211_F_PRIVACY) {
 1775                         /*
 1776                          * ONLY HWB3163 EVAL-CARD Firmware version
 1777                          * less than 0.8 variant2
 1778                          *
 1779                          *   If promiscuous mode disable, Prism2 chip
 1780                          *  does not work with WEP .
 1781                          * It is under investigation for details.
 1782                          * (ichiro@netbsd.org)
 1783                          */
 1784                         if (sc->sc_sta_firmware_ver < 802 ) {
 1785                                 /* firm ver < 0.8 variant 2 */
 1786                                 wi_write_val(sc, WI_RID_PROMISC, 1);
 1787                         }
 1788                         wi_write_val(sc, WI_RID_CNFAUTHMODE,
 1789                             vap->iv_bss->ni_authmode);
 1790                         val |= PRIVACY_INVOKED;
 1791                 } else {
 1792                         wi_write_val(sc, WI_RID_CNFAUTHMODE, IEEE80211_AUTH_OPEN);
 1793                 }
 1794                 error = wi_write_val(sc, WI_RID_P2_ENCRYPTION, val);
 1795                 if (error)
 1796                         break;
 1797                 sc->sc_encryption = val;
 1798                 if ((val & PRIVACY_INVOKED) == 0)
 1799                         break;
 1800                 error = wi_write_val(sc, WI_RID_P2_TX_CRYPT_KEY, vap->iv_def_txkey);
 1801                 break;
 1802         }
 1803         return error;
 1804 }
 1805 
 1806 static int
 1807 wi_cmd(struct wi_softc *sc, int cmd, int val0, int val1, int val2)
 1808 {
 1809         int i, s = 0;
 1810 
 1811         if (sc->wi_gone)
 1812                 return (ENODEV);
 1813 
 1814         /* wait for the busy bit to clear */
 1815         for (i = sc->wi_cmd_count; i > 0; i--) {        /* 500ms */
 1816                 if (!(CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY))
 1817                         break;
 1818                 DELAY(1*1000);  /* 1ms */
 1819         }
 1820         if (i == 0) {
 1821                 device_printf(sc->sc_dev, "%s: busy bit won't clear, cmd 0x%x\n",
 1822                    __func__, cmd);
 1823                 sc->wi_gone = 1;
 1824                 return(ETIMEDOUT);
 1825         }
 1826 
 1827         CSR_WRITE_2(sc, WI_PARAM0, val0);
 1828         CSR_WRITE_2(sc, WI_PARAM1, val1);
 1829         CSR_WRITE_2(sc, WI_PARAM2, val2);
 1830         CSR_WRITE_2(sc, WI_COMMAND, cmd);
 1831 
 1832         if (cmd == WI_CMD_INI) {
 1833                 /* XXX: should sleep here. */
 1834                 DELAY(100*1000);                /* 100ms delay for init */
 1835         }
 1836         for (i = 0; i < WI_TIMEOUT; i++) {
 1837                 /*
 1838                  * Wait for 'command complete' bit to be
 1839                  * set in the event status register.
 1840                  */
 1841                 s = CSR_READ_2(sc, WI_EVENT_STAT);
 1842                 if (s & WI_EV_CMD) {
 1843                         /* Ack the event and read result code. */
 1844                         s = CSR_READ_2(sc, WI_STATUS);
 1845                         CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
 1846                         if (s & WI_STAT_CMD_RESULT) {
 1847                                 return(EIO);
 1848                         }
 1849                         break;
 1850                 }
 1851                 DELAY(WI_DELAY);
 1852         }
 1853 
 1854         if (i == WI_TIMEOUT) {
 1855                 device_printf(sc->sc_dev, "%s: timeout on cmd 0x%04x; "
 1856                     "event status 0x%04x\n", __func__, cmd, s);
 1857                 if (s == 0xffff)
 1858                         sc->wi_gone = 1;
 1859                 return(ETIMEDOUT);
 1860         }
 1861         return (0);
 1862 }
 1863 
 1864 static int
 1865 wi_seek_bap(struct wi_softc *sc, int id, int off)
 1866 {
 1867         int i, status;
 1868 
 1869         CSR_WRITE_2(sc, WI_SEL0, id);
 1870         CSR_WRITE_2(sc, WI_OFF0, off);
 1871 
 1872         for (i = 0; ; i++) {
 1873                 status = CSR_READ_2(sc, WI_OFF0);
 1874                 if ((status & WI_OFF_BUSY) == 0)
 1875                         break;
 1876                 if (i == WI_TIMEOUT) {
 1877                         device_printf(sc->sc_dev, "%s: timeout, id %x off %x\n",
 1878                             __func__, id, off);
 1879                         sc->sc_bap_off = WI_OFF_ERR;    /* invalidate */
 1880                         if (status == 0xffff)
 1881                                 sc->wi_gone = 1;
 1882                         return ETIMEDOUT;
 1883                 }
 1884                 DELAY(1);
 1885         }
 1886         if (status & WI_OFF_ERR) {
 1887                 device_printf(sc->sc_dev, "%s: error, id %x off %x\n",
 1888                     __func__, id, off);
 1889                 sc->sc_bap_off = WI_OFF_ERR;    /* invalidate */
 1890                 return EIO;
 1891         }
 1892         sc->sc_bap_id = id;
 1893         sc->sc_bap_off = off;
 1894         return 0;
 1895 }
 1896 
 1897 static int
 1898 wi_read_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
 1899 {
 1900         u_int16_t *ptr;
 1901         int i, error, cnt;
 1902 
 1903         if (buflen == 0)
 1904                 return 0;
 1905         if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
 1906                 if ((error = wi_seek_bap(sc, id, off)) != 0)
 1907                         return error;
 1908         }
 1909         cnt = (buflen + 1) / 2;
 1910         ptr = (u_int16_t *)buf;
 1911         for (i = 0; i < cnt; i++)
 1912                 *ptr++ = CSR_READ_2(sc, WI_DATA0);
 1913         sc->sc_bap_off += cnt * 2;
 1914         return 0;
 1915 }
 1916 
 1917 static int
 1918 wi_write_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
 1919 {
 1920         u_int16_t *ptr;
 1921         int i, error, cnt;
 1922 
 1923         if (buflen == 0)
 1924                 return 0;
 1925 
 1926         if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
 1927                 if ((error = wi_seek_bap(sc, id, off)) != 0)
 1928                         return error;
 1929         }
 1930         cnt = (buflen + 1) / 2;
 1931         ptr = (u_int16_t *)buf;
 1932         for (i = 0; i < cnt; i++)
 1933                 CSR_WRITE_2(sc, WI_DATA0, ptr[i]);
 1934         sc->sc_bap_off += cnt * 2;
 1935 
 1936         return 0;
 1937 }
 1938 
 1939 static int
 1940 wi_mwrite_bap(struct wi_softc *sc, int id, int off, struct mbuf *m0, int totlen)
 1941 {
 1942         int error, len;
 1943         struct mbuf *m;
 1944 
 1945         for (m = m0; m != NULL && totlen > 0; m = m->m_next) {
 1946                 if (m->m_len == 0)
 1947                         continue;
 1948 
 1949                 len = min(m->m_len, totlen);
 1950 
 1951                 if (((u_long)m->m_data) % 2 != 0 || len % 2 != 0) {
 1952                         m_copydata(m, 0, totlen, (caddr_t)&sc->sc_txbuf);
 1953                         return wi_write_bap(sc, id, off, (caddr_t)&sc->sc_txbuf,
 1954                             totlen);
 1955                 }
 1956 
 1957                 if ((error = wi_write_bap(sc, id, off, m->m_data, len)) != 0)
 1958                         return error;
 1959 
 1960                 off += m->m_len;
 1961                 totlen -= len;
 1962         }
 1963         return 0;
 1964 }
 1965 
 1966 static int
 1967 wi_alloc_fid(struct wi_softc *sc, int len, int *idp)
 1968 {
 1969         int i;
 1970 
 1971         if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) {
 1972                 device_printf(sc->sc_dev, "%s: failed to allocate %d bytes on NIC\n",
 1973                     __func__, len);
 1974                 return ENOMEM;
 1975         }
 1976 
 1977         for (i = 0; i < WI_TIMEOUT; i++) {
 1978                 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
 1979                         break;
 1980                 DELAY(1);
 1981         }
 1982         if (i == WI_TIMEOUT) {
 1983                 device_printf(sc->sc_dev, "%s: timeout in alloc\n", __func__);
 1984                 return ETIMEDOUT;
 1985         }
 1986         *idp = CSR_READ_2(sc, WI_ALLOC_FID);
 1987         CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
 1988         return 0;
 1989 }
 1990 
 1991 static int
 1992 wi_read_rid(struct wi_softc *sc, int rid, void *buf, int *buflenp)
 1993 {
 1994         int error, len;
 1995         u_int16_t ltbuf[2];
 1996 
 1997         /* Tell the NIC to enter record read mode. */
 1998         error = wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_READ, rid, 0, 0);
 1999         if (error)
 2000                 return error;
 2001 
 2002         error = wi_read_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
 2003         if (error)
 2004                 return error;
 2005 
 2006         if (le16toh(ltbuf[1]) != rid) {
 2007                 device_printf(sc->sc_dev, "record read mismatch, rid=%x, got=%x\n",
 2008                     rid, le16toh(ltbuf[1]));
 2009                 return EIO;
 2010         }
 2011         len = (le16toh(ltbuf[0]) - 1) * 2;       /* already got rid */
 2012         if (*buflenp < len) {
 2013                 device_printf(sc->sc_dev, "record buffer is too small, "
 2014                     "rid=%x, size=%d, len=%d\n",
 2015                     rid, *buflenp, len);
 2016                 return ENOSPC;
 2017         }
 2018         *buflenp = len;
 2019         return wi_read_bap(sc, rid, sizeof(ltbuf), buf, len);
 2020 }
 2021 
 2022 static int
 2023 wi_write_rid(struct wi_softc *sc, int rid, void *buf, int buflen)
 2024 {
 2025         int error;
 2026         u_int16_t ltbuf[2];
 2027 
 2028         ltbuf[0] = htole16((buflen + 1) / 2 + 1);        /* includes rid */
 2029         ltbuf[1] = htole16(rid);
 2030 
 2031         error = wi_write_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
 2032         if (error) {
 2033                 device_printf(sc->sc_dev, "%s: bap0 write failure, rid 0x%x\n",
 2034                     __func__, rid);
 2035                 return error;
 2036         }
 2037         error = wi_write_bap(sc, rid, sizeof(ltbuf), buf, buflen);
 2038         if (error) {
 2039                 device_printf(sc->sc_dev, "%s: bap1 write failure, rid 0x%x\n",
 2040                     __func__, rid);
 2041                 return error;
 2042         }
 2043 
 2044         return wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_WRITE, rid, 0, 0);
 2045 }
 2046 
 2047 static int
 2048 wi_write_appie(struct wi_softc *sc, int rid, const struct ieee80211_appie *ie)
 2049 {
 2050         /* NB: 42 bytes is probably ok to have on the stack */
 2051         char buf[sizeof(uint16_t) + 40];
 2052 
 2053         if (ie->ie_len > 40)
 2054                 return EINVAL;
 2055         /* NB: firmware requires 16-bit ie length before ie data */
 2056         *(uint16_t *) buf = htole16(ie->ie_len);
 2057         memcpy(buf + sizeof(uint16_t), ie->ie_data, ie->ie_len);
 2058         return wi_write_rid(sc, rid, buf, ie->ie_len + sizeof(uint16_t));
 2059 }
 2060 
 2061 int
 2062 wi_alloc(device_t dev, int rid)
 2063 {
 2064         struct wi_softc *sc = device_get_softc(dev);
 2065 
 2066         if (sc->wi_bus_type != WI_BUS_PCI_NATIVE) {
 2067                 sc->iobase_rid = rid;
 2068                 sc->iobase = bus_alloc_resource(dev, SYS_RES_IOPORT,
 2069                     &sc->iobase_rid, 0, ~0, (1 << 6),
 2070                     rman_make_alignment_flags(1 << 6) | RF_ACTIVE);
 2071                 if (sc->iobase == NULL) {
 2072                         device_printf(dev, "No I/O space?!\n");
 2073                         return ENXIO;
 2074                 }
 2075 
 2076                 sc->wi_io_addr = rman_get_start(sc->iobase);
 2077                 sc->wi_btag = rman_get_bustag(sc->iobase);
 2078                 sc->wi_bhandle = rman_get_bushandle(sc->iobase);
 2079         } else {
 2080                 sc->mem_rid = rid;
 2081                 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
 2082                     &sc->mem_rid, RF_ACTIVE);
 2083                 if (sc->mem == NULL) {
 2084                         device_printf(dev, "No Mem space on prism2.5?\n");
 2085                         return ENXIO;
 2086                 }
 2087 
 2088                 sc->wi_btag = rman_get_bustag(sc->mem);
 2089                 sc->wi_bhandle = rman_get_bushandle(sc->mem);
 2090         }
 2091 
 2092         sc->irq_rid = 0;
 2093         sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
 2094             RF_ACTIVE |
 2095             ((sc->wi_bus_type == WI_BUS_PCCARD) ? 0 : RF_SHAREABLE));
 2096         if (sc->irq == NULL) {
 2097                 wi_free(dev);
 2098                 device_printf(dev, "No irq?!\n");
 2099                 return ENXIO;
 2100         }
 2101 
 2102         sc->sc_dev = dev;
 2103         sc->sc_unit = device_get_unit(dev);
 2104         return 0;
 2105 }
 2106 
 2107 void
 2108 wi_free(device_t dev)
 2109 {
 2110         struct wi_softc *sc = device_get_softc(dev);
 2111 
 2112         if (sc->iobase != NULL) {
 2113                 bus_release_resource(dev, SYS_RES_IOPORT, sc->iobase_rid, sc->iobase);
 2114                 sc->iobase = NULL;
 2115         }
 2116         if (sc->irq != NULL) {
 2117                 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
 2118                 sc->irq = NULL;
 2119         }
 2120         if (sc->mem != NULL) {
 2121                 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
 2122                 sc->mem = NULL;
 2123         }
 2124 }

Cache object: 830bc0765cd61a0e1db6737e946690eb


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.