The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/wpi/if_wpi.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2006,2007
    3  *      Damien Bergamini <damien.bergamini@free.fr>
    4  *      Benjamin Close <Benjamin.Close@clearchain.com>
    5  * Copyright (c) 2015 Andriy Voskoboinyk <avos@FreeBSD.org>
    6  *
    7  * Permission to use, copy, modify, and distribute this software for any
    8  * purpose with or without fee is hereby granted, provided that the above
    9  * copyright notice and this permission notice appear in all copies.
   10  *
   11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
   13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
   14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
   15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
   16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
   17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
   18  */
   19 
   20 #include <sys/cdefs.h>
   21 __FBSDID("$FreeBSD$");
   22 
   23 /*
   24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
   25  *
   26  * The 3945ABG network adapter doesn't use traditional hardware as
   27  * many other adaptors do. Instead at run time the eeprom is set into a known
   28  * state and told to load boot firmware. The boot firmware loads an init and a
   29  * main  binary firmware image into SRAM on the card via DMA.
   30  * Once the firmware is loaded, the driver/hw then
   31  * communicate by way of circular dma rings via the SRAM to the firmware.
   32  *
   33  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
   34  * The 4 tx data rings allow for prioritization QoS.
   35  *
   36  * The rx data ring consists of 32 dma buffers. Two registers are used to
   37  * indicate where in the ring the driver and the firmware are up to. The
   38  * driver sets the initial read index (reg1) and the initial write index (reg2),
   39  * the firmware updates the read index (reg1) on rx of a packet and fires an
   40  * interrupt. The driver then processes the buffers starting at reg1 indicating
   41  * to the firmware which buffers have been accessed by updating reg2. At the
   42  * same time allocating new memory for the processed buffer.
   43  *
   44  * A similar thing happens with the tx rings. The difference is the firmware
   45  * stop processing buffers once the queue is full and until confirmation
   46  * of a successful transmition (tx_done) has occurred.
   47  *
   48  * The command ring operates in the same manner as the tx queues.
   49  *
   50  * All communication direct to the card (ie eeprom) is classed as Stage1
   51  * communication
   52  *
   53  * All communication via the firmware to the card is classed as State2.
   54  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
   55  * firmware. The bootstrap firmware and runtime firmware are loaded
   56  * from host memory via dma to the card then told to execute. From this point
   57  * on the majority of communications between the driver and the card goes
   58  * via the firmware.
   59  */
   60 
   61 #include "opt_wlan.h"
   62 #include "opt_wpi.h"
   63 
   64 #include <sys/param.h>
   65 #include <sys/sysctl.h>
   66 #include <sys/sockio.h>
   67 #include <sys/mbuf.h>
   68 #include <sys/kernel.h>
   69 #include <sys/socket.h>
   70 #include <sys/systm.h>
   71 #include <sys/malloc.h>
   72 #include <sys/queue.h>
   73 #include <sys/taskqueue.h>
   74 #include <sys/module.h>
   75 #include <sys/bus.h>
   76 #include <sys/endian.h>
   77 #include <sys/linker.h>
   78 #include <sys/firmware.h>
   79 
   80 #include <machine/bus.h>
   81 #include <machine/resource.h>
   82 #include <sys/rman.h>
   83 
   84 #include <dev/pci/pcireg.h>
   85 #include <dev/pci/pcivar.h>
   86 
   87 #include <net/bpf.h>
   88 #include <net/if.h>
   89 #include <net/if_var.h>
   90 #include <net/if_arp.h>
   91 #include <net/ethernet.h>
   92 #include <net/if_dl.h>
   93 #include <net/if_media.h>
   94 #include <net/if_types.h>
   95 
   96 #include <netinet/in.h>
   97 #include <netinet/in_systm.h>
   98 #include <netinet/in_var.h>
   99 #include <netinet/if_ether.h>
  100 #include <netinet/ip.h>
  101 
  102 #include <net80211/ieee80211_var.h>
  103 #include <net80211/ieee80211_radiotap.h>
  104 #include <net80211/ieee80211_regdomain.h>
  105 #include <net80211/ieee80211_ratectl.h>
  106 
  107 #include <dev/wpi/if_wpireg.h>
  108 #include <dev/wpi/if_wpivar.h>
  109 #include <dev/wpi/if_wpi_debug.h>
  110 
  111 struct wpi_ident {
  112         uint16_t        vendor;
  113         uint16_t        device;
  114         uint16_t        subdevice;
  115         const char      *name;
  116 };
  117 
  118 static const struct wpi_ident wpi_ident_table[] = {
  119         /* The below entries support ABG regardless of the subid */
  120         { 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
  121         { 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
  122         /* The below entries only support BG */
  123         { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
  124         { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
  125         { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
  126         { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
  127         { 0, 0, 0, NULL }
  128 };
  129 
  130 static int      wpi_probe(device_t);
  131 static int      wpi_attach(device_t);
  132 static void     wpi_radiotap_attach(struct wpi_softc *);
  133 static void     wpi_sysctlattach(struct wpi_softc *);
  134 static void     wpi_init_beacon(struct wpi_vap *);
  135 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
  136                     const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
  137                     const uint8_t [IEEE80211_ADDR_LEN],
  138                     const uint8_t [IEEE80211_ADDR_LEN]);
  139 static void     wpi_vap_delete(struct ieee80211vap *);
  140 static int      wpi_detach(device_t);
  141 static int      wpi_shutdown(device_t);
  142 static int      wpi_suspend(device_t);
  143 static int      wpi_resume(device_t);
  144 static int      wpi_nic_lock(struct wpi_softc *);
  145 static int      wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
  146 static void     wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
  147 static int      wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
  148                     void **, bus_size_t, bus_size_t);
  149 static void     wpi_dma_contig_free(struct wpi_dma_info *);
  150 static int      wpi_alloc_shared(struct wpi_softc *);
  151 static void     wpi_free_shared(struct wpi_softc *);
  152 static int      wpi_alloc_fwmem(struct wpi_softc *);
  153 static void     wpi_free_fwmem(struct wpi_softc *);
  154 static int      wpi_alloc_rx_ring(struct wpi_softc *);
  155 static void     wpi_update_rx_ring(struct wpi_softc *);
  156 static void     wpi_update_rx_ring_ps(struct wpi_softc *);
  157 static void     wpi_reset_rx_ring(struct wpi_softc *);
  158 static void     wpi_free_rx_ring(struct wpi_softc *);
  159 static int      wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
  160                     uint8_t);
  161 static void     wpi_update_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
  162 static void     wpi_update_tx_ring_ps(struct wpi_softc *,
  163                     struct wpi_tx_ring *);
  164 static void     wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
  165 static void     wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
  166 static int      wpi_read_eeprom(struct wpi_softc *,
  167                     uint8_t macaddr[IEEE80211_ADDR_LEN]);
  168 static uint32_t wpi_eeprom_channel_flags(struct wpi_eeprom_chan *);
  169 static void     wpi_read_eeprom_band(struct wpi_softc *, uint8_t, int, int *,
  170                     struct ieee80211_channel[]);
  171 static int      wpi_read_eeprom_channels(struct wpi_softc *, uint8_t);
  172 static struct wpi_eeprom_chan *wpi_find_eeprom_channel(struct wpi_softc *,
  173                     struct ieee80211_channel *);
  174 static void     wpi_getradiocaps(struct ieee80211com *, int, int *,
  175                     struct ieee80211_channel[]);
  176 static int      wpi_setregdomain(struct ieee80211com *,
  177                     struct ieee80211_regdomain *, int,
  178                     struct ieee80211_channel[]);
  179 static int      wpi_read_eeprom_group(struct wpi_softc *, uint8_t);
  180 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
  181                     const uint8_t mac[IEEE80211_ADDR_LEN]);
  182 static void     wpi_node_free(struct ieee80211_node *);
  183 static void     wpi_ibss_recv_mgmt(struct ieee80211_node *, struct mbuf *, int,
  184                     const struct ieee80211_rx_stats *,
  185                     int, int);
  186 static void     wpi_restore_node(void *, struct ieee80211_node *);
  187 static void     wpi_restore_node_table(struct wpi_softc *, struct wpi_vap *);
  188 static int      wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
  189 static void     wpi_calib_timeout(void *);
  190 static void     wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *,
  191                     struct wpi_rx_data *);
  192 static void     wpi_rx_statistics(struct wpi_softc *, struct wpi_rx_desc *,
  193                     struct wpi_rx_data *);
  194 static void     wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *);
  195 static void     wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *);
  196 static void     wpi_notif_intr(struct wpi_softc *);
  197 static void     wpi_wakeup_intr(struct wpi_softc *);
  198 #ifdef WPI_DEBUG
  199 static void     wpi_debug_registers(struct wpi_softc *);
  200 #endif
  201 static void     wpi_fatal_intr(struct wpi_softc *);
  202 static void     wpi_intr(void *);
  203 static void     wpi_free_txfrags(struct wpi_softc *, uint16_t);
  204 static int      wpi_cmd2(struct wpi_softc *, struct wpi_buf *);
  205 static int      wpi_tx_data(struct wpi_softc *, struct mbuf *,
  206                     struct ieee80211_node *);
  207 static int      wpi_tx_data_raw(struct wpi_softc *, struct mbuf *,
  208                     struct ieee80211_node *,
  209                     const struct ieee80211_bpf_params *);
  210 static int      wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
  211                     const struct ieee80211_bpf_params *);
  212 static int      wpi_transmit(struct ieee80211com *, struct mbuf *);
  213 static void     wpi_watchdog_rfkill(void *);
  214 static void     wpi_scan_timeout(void *);
  215 static void     wpi_tx_timeout(void *);
  216 static void     wpi_parent(struct ieee80211com *);
  217 static int      wpi_cmd(struct wpi_softc *, uint8_t, const void *, uint16_t,
  218                     int);
  219 static int      wpi_mrr_setup(struct wpi_softc *);
  220 static int      wpi_add_node(struct wpi_softc *, struct ieee80211_node *);
  221 static int      wpi_add_broadcast_node(struct wpi_softc *, int);
  222 static int      wpi_add_ibss_node(struct wpi_softc *, struct ieee80211_node *);
  223 static void     wpi_del_node(struct wpi_softc *, struct ieee80211_node *);
  224 static int      wpi_updateedca(struct ieee80211com *);
  225 static void     wpi_set_promisc(struct wpi_softc *);
  226 static void     wpi_update_promisc(struct ieee80211com *);
  227 static void     wpi_update_mcast(struct ieee80211com *);
  228 static void     wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
  229 static int      wpi_set_timing(struct wpi_softc *, struct ieee80211_node *);
  230 static void     wpi_power_calibration(struct wpi_softc *);
  231 static int      wpi_set_txpower(struct wpi_softc *, int);
  232 static int      wpi_get_power_index(struct wpi_softc *,
  233                     struct wpi_power_group *, uint8_t, int, int);
  234 static int      wpi_set_pslevel(struct wpi_softc *, uint8_t, int, int);
  235 static int      wpi_send_btcoex(struct wpi_softc *);
  236 static int      wpi_send_rxon(struct wpi_softc *, int, int);
  237 static int      wpi_config(struct wpi_softc *);
  238 static uint16_t wpi_get_active_dwell_time(struct wpi_softc *,
  239                     struct ieee80211_channel *, uint8_t);
  240 static uint16_t wpi_limit_dwell(struct wpi_softc *, uint16_t);
  241 static uint16_t wpi_get_passive_dwell_time(struct wpi_softc *,
  242                     struct ieee80211_channel *);
  243 static uint32_t wpi_get_scan_pause_time(uint32_t, uint16_t);
  244 static int      wpi_scan(struct wpi_softc *, struct ieee80211_channel *);
  245 static int      wpi_auth(struct wpi_softc *, struct ieee80211vap *);
  246 static int      wpi_config_beacon(struct wpi_vap *);
  247 static int      wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
  248 static void     wpi_update_beacon(struct ieee80211vap *, int);
  249 static void     wpi_newassoc(struct ieee80211_node *, int);
  250 static int      wpi_run(struct wpi_softc *, struct ieee80211vap *);
  251 static int      wpi_load_key(struct ieee80211_node *,
  252                     const struct ieee80211_key *);
  253 static void     wpi_load_key_cb(void *, struct ieee80211_node *);
  254 static int      wpi_set_global_keys(struct ieee80211_node *);
  255 static int      wpi_del_key(struct ieee80211_node *,
  256                     const struct ieee80211_key *);
  257 static void     wpi_del_key_cb(void *, struct ieee80211_node *);
  258 static int      wpi_process_key(struct ieee80211vap *,
  259                     const struct ieee80211_key *, int);
  260 static int      wpi_key_set(struct ieee80211vap *,
  261                     const struct ieee80211_key *);
  262 static int      wpi_key_delete(struct ieee80211vap *,
  263                     const struct ieee80211_key *);
  264 static int      wpi_post_alive(struct wpi_softc *);
  265 static int      wpi_load_bootcode(struct wpi_softc *, const uint8_t *,
  266                     uint32_t);
  267 static int      wpi_load_firmware(struct wpi_softc *);
  268 static int      wpi_read_firmware(struct wpi_softc *);
  269 static void     wpi_unload_firmware(struct wpi_softc *);
  270 static int      wpi_clock_wait(struct wpi_softc *);
  271 static int      wpi_apm_init(struct wpi_softc *);
  272 static void     wpi_apm_stop_master(struct wpi_softc *);
  273 static void     wpi_apm_stop(struct wpi_softc *);
  274 static void     wpi_nic_config(struct wpi_softc *);
  275 static int      wpi_hw_init(struct wpi_softc *);
  276 static void     wpi_hw_stop(struct wpi_softc *);
  277 static void     wpi_radio_on(void *, int);
  278 static void     wpi_radio_off(void *, int);
  279 static int      wpi_init(struct wpi_softc *);
  280 static void     wpi_stop_locked(struct wpi_softc *);
  281 static void     wpi_stop(struct wpi_softc *);
  282 static void     wpi_scan_start(struct ieee80211com *);
  283 static void     wpi_scan_end(struct ieee80211com *);
  284 static void     wpi_set_channel(struct ieee80211com *);
  285 static void     wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
  286 static void     wpi_scan_mindwell(struct ieee80211_scan_state *);
  287 
  288 static device_method_t wpi_methods[] = {
  289         /* Device interface */
  290         DEVMETHOD(device_probe,         wpi_probe),
  291         DEVMETHOD(device_attach,        wpi_attach),
  292         DEVMETHOD(device_detach,        wpi_detach),
  293         DEVMETHOD(device_shutdown,      wpi_shutdown),
  294         DEVMETHOD(device_suspend,       wpi_suspend),
  295         DEVMETHOD(device_resume,        wpi_resume),
  296 
  297         DEVMETHOD_END
  298 };
  299 
  300 static driver_t wpi_driver = {
  301         "wpi",
  302         wpi_methods,
  303         sizeof (struct wpi_softc)
  304 };
  305 
  306 DRIVER_MODULE(wpi, pci, wpi_driver, NULL, NULL);
  307 
  308 MODULE_VERSION(wpi, 1);
  309 
  310 MODULE_DEPEND(wpi, pci,  1, 1, 1);
  311 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
  312 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
  313 
  314 static int
  315 wpi_probe(device_t dev)
  316 {
  317         const struct wpi_ident *ident;
  318 
  319         for (ident = wpi_ident_table; ident->name != NULL; ident++) {
  320                 if (pci_get_vendor(dev) == ident->vendor &&
  321                     pci_get_device(dev) == ident->device) {
  322                         device_set_desc(dev, ident->name);
  323                         return (BUS_PROBE_DEFAULT);
  324                 }
  325         }
  326         return ENXIO;
  327 }
  328 
  329 static int
  330 wpi_attach(device_t dev)
  331 {
  332         struct wpi_softc *sc = (struct wpi_softc *)device_get_softc(dev);
  333         struct ieee80211com *ic;
  334         uint8_t i;
  335         int error, rid;
  336 #ifdef WPI_DEBUG
  337         int supportsa = 1;
  338         const struct wpi_ident *ident;
  339 #endif
  340 
  341         sc->sc_dev = dev;
  342 
  343 #ifdef WPI_DEBUG
  344         error = resource_int_value(device_get_name(sc->sc_dev),
  345             device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
  346         if (error != 0)
  347                 sc->sc_debug = 0;
  348 #else
  349         sc->sc_debug = 0;
  350 #endif
  351 
  352         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
  353 
  354         /*
  355          * Get the offset of the PCI Express Capability Structure in PCI
  356          * Configuration Space.
  357          */
  358         error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
  359         if (error != 0) {
  360                 device_printf(dev, "PCIe capability structure not found!\n");
  361                 return error;
  362         }
  363 
  364         /*
  365          * Some card's only support 802.11b/g not a, check to see if
  366          * this is one such card. A 0x0 in the subdevice table indicates
  367          * the entire subdevice range is to be ignored.
  368          */
  369 #ifdef WPI_DEBUG
  370         for (ident = wpi_ident_table; ident->name != NULL; ident++) {
  371                 if (ident->subdevice &&
  372                     pci_get_subdevice(dev) == ident->subdevice) {
  373                     supportsa = 0;
  374                     break;
  375                 }
  376         }
  377 #endif
  378 
  379         /* Clear device-specific "PCI retry timeout" register (41h). */
  380         pci_write_config(dev, 0x41, 0, 1);
  381 
  382         /* Enable bus-mastering. */
  383         pci_enable_busmaster(dev);
  384 
  385         rid = PCIR_BAR(0);
  386         sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
  387             RF_ACTIVE);
  388         if (sc->mem == NULL) {
  389                 device_printf(dev, "can't map mem space\n");
  390                 return ENOMEM;
  391         }
  392         sc->sc_st = rman_get_bustag(sc->mem);
  393         sc->sc_sh = rman_get_bushandle(sc->mem);
  394 
  395         rid = 1;
  396         if (pci_alloc_msi(dev, &rid) == 0)
  397                 rid = 1;
  398         else
  399                 rid = 0;
  400         /* Install interrupt handler. */
  401         sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
  402             (rid != 0 ? 0 : RF_SHAREABLE));
  403         if (sc->irq == NULL) {
  404                 device_printf(dev, "can't map interrupt\n");
  405                 error = ENOMEM;
  406                 goto fail;
  407         }
  408 
  409         WPI_LOCK_INIT(sc);
  410         WPI_TX_LOCK_INIT(sc);
  411         WPI_RXON_LOCK_INIT(sc);
  412         WPI_NT_LOCK_INIT(sc);
  413         WPI_TXQ_LOCK_INIT(sc);
  414         WPI_TXQ_STATE_LOCK_INIT(sc);
  415 
  416         /* Allocate DMA memory for firmware transfers. */
  417         if ((error = wpi_alloc_fwmem(sc)) != 0) {
  418                 device_printf(dev,
  419                     "could not allocate memory for firmware, error %d\n",
  420                     error);
  421                 goto fail;
  422         }
  423 
  424         /* Allocate shared page. */
  425         if ((error = wpi_alloc_shared(sc)) != 0) {
  426                 device_printf(dev, "could not allocate shared page\n");
  427                 goto fail;
  428         }
  429 
  430         /* Allocate TX rings - 4 for QoS purposes, 1 for commands. */
  431         for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
  432                 if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
  433                         device_printf(dev,
  434                             "could not allocate TX ring %d, error %d\n", i,
  435                             error);
  436                         goto fail;
  437                 }
  438         }
  439 
  440         /* Allocate RX ring. */
  441         if ((error = wpi_alloc_rx_ring(sc)) != 0) {
  442                 device_printf(dev, "could not allocate RX ring, error %d\n",
  443                     error);
  444                 goto fail;
  445         }
  446 
  447         /* Clear pending interrupts. */
  448         WPI_WRITE(sc, WPI_INT, 0xffffffff);
  449 
  450         ic = &sc->sc_ic;
  451         ic->ic_softc = sc;
  452         ic->ic_name = device_get_nameunit(dev);
  453         ic->ic_phytype = IEEE80211_T_OFDM;      /* not only, but not used */
  454         ic->ic_opmode = IEEE80211_M_STA;        /* default to BSS mode */
  455 
  456         /* Set device capabilities. */
  457         ic->ic_caps =
  458                   IEEE80211_C_STA               /* station mode supported */
  459                 | IEEE80211_C_IBSS              /* IBSS mode supported */
  460                 | IEEE80211_C_HOSTAP            /* Host access point mode */
  461                 | IEEE80211_C_MONITOR           /* monitor mode supported */
  462                 | IEEE80211_C_AHDEMO            /* adhoc demo mode */
  463                 | IEEE80211_C_BGSCAN            /* capable of bg scanning */
  464                 | IEEE80211_C_TXFRAG            /* handle tx frags */
  465                 | IEEE80211_C_TXPMGT            /* tx power management */
  466                 | IEEE80211_C_SHSLOT            /* short slot time supported */
  467                 | IEEE80211_C_WPA               /* 802.11i */
  468                 | IEEE80211_C_SHPREAMBLE        /* short preamble supported */
  469                 | IEEE80211_C_WME               /* 802.11e */
  470                 | IEEE80211_C_PMGT              /* Station-side power mgmt */
  471                 ;
  472 
  473         ic->ic_cryptocaps =
  474                   IEEE80211_CRYPTO_AES_CCM;
  475 
  476         /*
  477          * Read in the eeprom and also setup the channels for
  478          * net80211. We don't set the rates as net80211 does this for us
  479          */
  480         if ((error = wpi_read_eeprom(sc, ic->ic_macaddr)) != 0) {
  481                 device_printf(dev, "could not read EEPROM, error %d\n",
  482                     error);
  483                 goto fail;
  484         }
  485 
  486 #ifdef WPI_DEBUG
  487         if (bootverbose) {
  488                 device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n",
  489                     sc->domain);
  490                 device_printf(sc->sc_dev, "Hardware Type: %c\n",
  491                     sc->type > 1 ? 'B': '?');
  492                 device_printf(sc->sc_dev, "Hardware Revision: %c\n",
  493                     ((sc->rev & 0xf0) == 0xd0) ? 'D': '?');
  494                 device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
  495                     supportsa ? "does" : "does not");
  496 
  497                 /* XXX hw_config uses the PCIDEV for the Hardware rev. Must
  498                    check what sc->rev really represents - benjsc 20070615 */
  499         }
  500 #endif
  501 
  502         ieee80211_ifattach(ic);
  503         ic->ic_vap_create = wpi_vap_create;
  504         ic->ic_vap_delete = wpi_vap_delete;
  505         ic->ic_parent = wpi_parent;
  506         ic->ic_raw_xmit = wpi_raw_xmit;
  507         ic->ic_transmit = wpi_transmit;
  508         ic->ic_node_alloc = wpi_node_alloc;
  509         sc->sc_node_free = ic->ic_node_free;
  510         ic->ic_node_free = wpi_node_free;
  511         ic->ic_wme.wme_update = wpi_updateedca;
  512         ic->ic_update_promisc = wpi_update_promisc;
  513         ic->ic_update_mcast = wpi_update_mcast;
  514         ic->ic_newassoc = wpi_newassoc;
  515         ic->ic_scan_start = wpi_scan_start;
  516         ic->ic_scan_end = wpi_scan_end;
  517         ic->ic_set_channel = wpi_set_channel;
  518         ic->ic_scan_curchan = wpi_scan_curchan;
  519         ic->ic_scan_mindwell = wpi_scan_mindwell;
  520         ic->ic_getradiocaps = wpi_getradiocaps;
  521         ic->ic_setregdomain = wpi_setregdomain;
  522 
  523         sc->sc_update_rx_ring = wpi_update_rx_ring;
  524         sc->sc_update_tx_ring = wpi_update_tx_ring;
  525 
  526         wpi_radiotap_attach(sc);
  527 
  528         /* Setup Tx status flags (constant). */
  529         sc->sc_txs.flags = IEEE80211_RATECTL_STATUS_PKTLEN |
  530             IEEE80211_RATECTL_STATUS_SHORT_RETRY |
  531             IEEE80211_RATECTL_STATUS_LONG_RETRY;
  532 
  533         callout_init_mtx(&sc->calib_to, &sc->rxon_mtx, 0);
  534         callout_init_mtx(&sc->scan_timeout, &sc->rxon_mtx, 0);
  535         callout_init_mtx(&sc->tx_timeout, &sc->txq_state_mtx, 0);
  536         callout_init_mtx(&sc->watchdog_rfkill, &sc->sc_mtx, 0);
  537         TASK_INIT(&sc->sc_radiooff_task, 0, wpi_radio_off, sc);
  538         TASK_INIT(&sc->sc_radioon_task, 0, wpi_radio_on, sc);
  539 
  540         wpi_sysctlattach(sc);
  541 
  542         /*
  543          * Hook our interrupt after all initialization is complete.
  544          */
  545         error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
  546             NULL, wpi_intr, sc, &sc->sc_ih);
  547         if (error != 0) {
  548                 device_printf(dev, "can't establish interrupt, error %d\n",
  549                     error);
  550                 goto fail;
  551         }
  552 
  553         if (bootverbose)
  554                 ieee80211_announce(ic);
  555 
  556 #ifdef WPI_DEBUG
  557         if (sc->sc_debug & WPI_DEBUG_HW)
  558                 ieee80211_announce_channels(ic);
  559 #endif
  560 
  561         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
  562         return 0;
  563 
  564 fail:   wpi_detach(dev);
  565         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
  566         return error;
  567 }
  568 
  569 /*
  570  * Attach the interface to 802.11 radiotap.
  571  */
  572 static void
  573 wpi_radiotap_attach(struct wpi_softc *sc)
  574 {
  575         struct wpi_rx_radiotap_header *rxtap = &sc->sc_rxtap;
  576         struct wpi_tx_radiotap_header *txtap = &sc->sc_txtap;
  577 
  578         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
  579         ieee80211_radiotap_attach(&sc->sc_ic,
  580             &txtap->wt_ihdr, sizeof(*txtap), WPI_TX_RADIOTAP_PRESENT,
  581             &rxtap->wr_ihdr, sizeof(*rxtap), WPI_RX_RADIOTAP_PRESENT);
  582         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
  583 }
  584 
  585 static void
  586 wpi_sysctlattach(struct wpi_softc *sc)
  587 {
  588 #ifdef WPI_DEBUG
  589         struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
  590         struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
  591 
  592         SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
  593             "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
  594                 "control debugging printfs");
  595 #endif
  596 }
  597 
  598 static void
  599 wpi_init_beacon(struct wpi_vap *wvp)
  600 {
  601         struct wpi_buf *bcn = &wvp->wv_bcbuf;
  602         struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
  603 
  604         cmd->id = WPI_ID_BROADCAST;
  605         cmd->ofdm_mask = 0xff;
  606         cmd->cck_mask = 0x0f;
  607         cmd->lifetime = htole32(WPI_LIFETIME_INFINITE);
  608 
  609         /*
  610          * XXX WPI_TX_AUTO_SEQ seems to be ignored - workaround this issue
  611          * XXX by using WPI_TX_NEED_ACK instead (with some side effects).
  612          */
  613         cmd->flags = htole32(WPI_TX_NEED_ACK | WPI_TX_INSERT_TSTAMP);
  614 
  615         bcn->code = WPI_CMD_SET_BEACON;
  616         bcn->ac = WPI_CMD_QUEUE_NUM;
  617         bcn->size = sizeof(struct wpi_cmd_beacon);
  618 }
  619 
  620 static struct ieee80211vap *
  621 wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
  622     enum ieee80211_opmode opmode, int flags,
  623     const uint8_t bssid[IEEE80211_ADDR_LEN],
  624     const uint8_t mac[IEEE80211_ADDR_LEN])
  625 {
  626         struct wpi_vap *wvp;
  627         struct ieee80211vap *vap;
  628 
  629         if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
  630                 return NULL;
  631 
  632         wvp = malloc(sizeof(struct wpi_vap), M_80211_VAP, M_WAITOK | M_ZERO);
  633         vap = &wvp->wv_vap;
  634         ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
  635 
  636         if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
  637                 WPI_VAP_LOCK_INIT(wvp);
  638                 wpi_init_beacon(wvp);
  639         }
  640 
  641         /* Override with driver methods. */
  642         vap->iv_key_set = wpi_key_set;
  643         vap->iv_key_delete = wpi_key_delete;
  644         if (opmode == IEEE80211_M_IBSS) {
  645                 wvp->wv_recv_mgmt = vap->iv_recv_mgmt;
  646                 vap->iv_recv_mgmt = wpi_ibss_recv_mgmt;
  647         }
  648         wvp->wv_newstate = vap->iv_newstate;
  649         vap->iv_newstate = wpi_newstate;
  650         vap->iv_update_beacon = wpi_update_beacon;
  651         vap->iv_max_aid = WPI_ID_IBSS_MAX - WPI_ID_IBSS_MIN + 1;
  652 
  653         ieee80211_ratectl_init(vap);
  654         /* Complete setup. */
  655         ieee80211_vap_attach(vap, ieee80211_media_change,
  656             ieee80211_media_status, mac);
  657         ic->ic_opmode = opmode;
  658         return vap;
  659 }
  660 
  661 static void
  662 wpi_vap_delete(struct ieee80211vap *vap)
  663 {
  664         struct wpi_vap *wvp = WPI_VAP(vap);
  665         struct wpi_buf *bcn = &wvp->wv_bcbuf;
  666         enum ieee80211_opmode opmode = vap->iv_opmode;
  667 
  668         ieee80211_ratectl_deinit(vap);
  669         ieee80211_vap_detach(vap);
  670 
  671         if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
  672                 if (bcn->m != NULL)
  673                         m_freem(bcn->m);
  674 
  675                 WPI_VAP_LOCK_DESTROY(wvp);
  676         }
  677 
  678         free(wvp, M_80211_VAP);
  679 }
  680 
  681 static int
  682 wpi_detach(device_t dev)
  683 {
  684         struct wpi_softc *sc = device_get_softc(dev);
  685         struct ieee80211com *ic = &sc->sc_ic;
  686         uint8_t qid;
  687 
  688         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
  689 
  690         if (ic->ic_vap_create == wpi_vap_create) {
  691                 ieee80211_draintask(ic, &sc->sc_radioon_task);
  692                 ieee80211_draintask(ic, &sc->sc_radiooff_task);
  693 
  694                 wpi_stop(sc);
  695 
  696                 callout_drain(&sc->watchdog_rfkill);
  697                 callout_drain(&sc->tx_timeout);
  698                 callout_drain(&sc->scan_timeout);
  699                 callout_drain(&sc->calib_to);
  700                 ieee80211_ifdetach(ic);
  701         }
  702 
  703         /* Uninstall interrupt handler. */
  704         if (sc->irq != NULL) {
  705                 bus_teardown_intr(dev, sc->irq, sc->sc_ih);
  706                 bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
  707                     sc->irq);
  708                 pci_release_msi(dev);
  709         }
  710 
  711         if (sc->txq[0].data_dmat) {
  712                 /* Free DMA resources. */
  713                 for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++)
  714                         wpi_free_tx_ring(sc, &sc->txq[qid]);
  715 
  716                 wpi_free_rx_ring(sc);
  717                 wpi_free_shared(sc);
  718         }
  719 
  720         if (sc->fw_dma.tag)
  721                 wpi_free_fwmem(sc);
  722                 
  723         if (sc->mem != NULL)
  724                 bus_release_resource(dev, SYS_RES_MEMORY,
  725                     rman_get_rid(sc->mem), sc->mem);
  726 
  727         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
  728         WPI_TXQ_STATE_LOCK_DESTROY(sc);
  729         WPI_TXQ_LOCK_DESTROY(sc);
  730         WPI_NT_LOCK_DESTROY(sc);
  731         WPI_RXON_LOCK_DESTROY(sc);
  732         WPI_TX_LOCK_DESTROY(sc);
  733         WPI_LOCK_DESTROY(sc);
  734         return 0;
  735 }
  736 
  737 static int
  738 wpi_shutdown(device_t dev)
  739 {
  740         struct wpi_softc *sc = device_get_softc(dev);
  741 
  742         wpi_stop(sc);
  743         return 0;
  744 }
  745 
  746 static int
  747 wpi_suspend(device_t dev)
  748 {
  749         struct wpi_softc *sc = device_get_softc(dev);
  750         struct ieee80211com *ic = &sc->sc_ic;
  751 
  752         ieee80211_suspend_all(ic);
  753         return 0;
  754 }
  755 
  756 static int
  757 wpi_resume(device_t dev)
  758 {
  759         struct wpi_softc *sc = device_get_softc(dev);
  760         struct ieee80211com *ic = &sc->sc_ic;
  761 
  762         /* Clear device-specific "PCI retry timeout" register (41h). */
  763         pci_write_config(dev, 0x41, 0, 1);
  764 
  765         ieee80211_resume_all(ic);
  766         return 0;
  767 }
  768 
  769 /*
  770  * Grab exclusive access to NIC memory.
  771  */
  772 static int
  773 wpi_nic_lock(struct wpi_softc *sc)
  774 {
  775         int ntries;
  776 
  777         /* Request exclusive access to NIC. */
  778         WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
  779 
  780         /* Spin until we actually get the lock. */
  781         for (ntries = 0; ntries < 1000; ntries++) {
  782                 if ((WPI_READ(sc, WPI_GP_CNTRL) &
  783                     (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) ==
  784                     WPI_GP_CNTRL_MAC_ACCESS_ENA)
  785                         return 0;
  786                 DELAY(10);
  787         }
  788 
  789         device_printf(sc->sc_dev, "could not lock memory\n");
  790 
  791         return ETIMEDOUT;
  792 }
  793 
  794 /*
  795  * Release lock on NIC memory.
  796  */
  797 static __inline void
  798 wpi_nic_unlock(struct wpi_softc *sc)
  799 {
  800         WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
  801 }
  802 
  803 static __inline uint32_t
  804 wpi_prph_read(struct wpi_softc *sc, uint32_t addr)
  805 {
  806         WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr);
  807         WPI_BARRIER_READ_WRITE(sc);
  808         return WPI_READ(sc, WPI_PRPH_RDATA);
  809 }
  810 
  811 static __inline void
  812 wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
  813 {
  814         WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr);
  815         WPI_BARRIER_WRITE(sc);
  816         WPI_WRITE(sc, WPI_PRPH_WDATA, data);
  817 }
  818 
  819 static __inline void
  820 wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
  821 {
  822         wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask);
  823 }
  824 
  825 static __inline void
  826 wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
  827 {
  828         wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask);
  829 }
  830 
  831 static __inline void
  832 wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr,
  833     const uint32_t *data, uint32_t count)
  834 {
  835         for (; count != 0; count--, data++, addr += 4)
  836                 wpi_prph_write(sc, addr, *data);
  837 }
  838 
  839 static __inline uint32_t
  840 wpi_mem_read(struct wpi_softc *sc, uint32_t addr)
  841 {
  842         WPI_WRITE(sc, WPI_MEM_RADDR, addr);
  843         WPI_BARRIER_READ_WRITE(sc);
  844         return WPI_READ(sc, WPI_MEM_RDATA);
  845 }
  846 
  847 static __inline void
  848 wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data,
  849     int count)
  850 {
  851         for (; count > 0; count--, addr += 4)
  852                 *data++ = wpi_mem_read(sc, addr);
  853 }
  854 
  855 static int
  856 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count)
  857 {
  858         uint8_t *out = data;
  859         uint32_t val;
  860         int error, ntries;
  861 
  862         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
  863 
  864         if ((error = wpi_nic_lock(sc)) != 0)
  865                 return error;
  866 
  867         for (; count > 0; count -= 2, addr++) {
  868                 WPI_WRITE(sc, WPI_EEPROM, addr << 2);
  869                 for (ntries = 0; ntries < 10; ntries++) {
  870                         val = WPI_READ(sc, WPI_EEPROM);
  871                         if (val & WPI_EEPROM_READ_VALID)
  872                                 break;
  873                         DELAY(5);
  874                 }
  875                 if (ntries == 10) {
  876                         device_printf(sc->sc_dev,
  877                             "timeout reading ROM at 0x%x\n", addr);
  878                         return ETIMEDOUT;
  879                 }
  880                 *out++= val >> 16;
  881                 if (count > 1)
  882                         *out ++= val >> 24;
  883         }
  884 
  885         wpi_nic_unlock(sc);
  886 
  887         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
  888 
  889         return 0;
  890 }
  891 
  892 static void
  893 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
  894 {
  895         if (error != 0)
  896                 return;
  897         KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
  898         *(bus_addr_t *)arg = segs[0].ds_addr;
  899 }
  900 
  901 /*
  902  * Allocates a contiguous block of dma memory of the requested size and
  903  * alignment.
  904  */
  905 static int
  906 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
  907     void **kvap, bus_size_t size, bus_size_t alignment)
  908 {
  909         int error;
  910 
  911         dma->tag = NULL;
  912         dma->size = size;
  913 
  914         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
  915             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
  916             1, size, 0, NULL, NULL, &dma->tag);
  917         if (error != 0)
  918                 goto fail;
  919 
  920         error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
  921             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
  922         if (error != 0)
  923                 goto fail;
  924 
  925         error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
  926             wpi_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
  927         if (error != 0)
  928                 goto fail;
  929 
  930         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
  931 
  932         if (kvap != NULL)
  933                 *kvap = dma->vaddr;
  934 
  935         return 0;
  936 
  937 fail:   wpi_dma_contig_free(dma);
  938         return error;
  939 }
  940 
  941 static void
  942 wpi_dma_contig_free(struct wpi_dma_info *dma)
  943 {
  944         if (dma->vaddr != NULL) {
  945                 bus_dmamap_sync(dma->tag, dma->map,
  946                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
  947                 bus_dmamap_unload(dma->tag, dma->map);
  948                 bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
  949                 dma->vaddr = NULL;
  950         }
  951         if (dma->tag != NULL) {
  952                 bus_dma_tag_destroy(dma->tag);
  953                 dma->tag = NULL;
  954         }
  955 }
  956 
  957 /*
  958  * Allocate a shared page between host and NIC.
  959  */
  960 static int
  961 wpi_alloc_shared(struct wpi_softc *sc)
  962 {
  963         /* Shared buffer must be aligned on a 4KB boundary. */
  964         return wpi_dma_contig_alloc(sc, &sc->shared_dma,
  965             (void **)&sc->shared, sizeof (struct wpi_shared), 4096);
  966 }
  967 
  968 static void
  969 wpi_free_shared(struct wpi_softc *sc)
  970 {
  971         wpi_dma_contig_free(&sc->shared_dma);
  972 }
  973 
  974 /*
  975  * Allocate DMA-safe memory for firmware transfer.
  976  */
  977 static int
  978 wpi_alloc_fwmem(struct wpi_softc *sc)
  979 {
  980         /* Must be aligned on a 16-byte boundary. */
  981         return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
  982             WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16);
  983 }
  984 
  985 static void
  986 wpi_free_fwmem(struct wpi_softc *sc)
  987 {
  988         wpi_dma_contig_free(&sc->fw_dma);
  989 }
  990 
  991 static int
  992 wpi_alloc_rx_ring(struct wpi_softc *sc)
  993 {
  994         struct wpi_rx_ring *ring = &sc->rxq;
  995         bus_size_t size;
  996         int i, error;
  997 
  998         ring->cur = 0;
  999         ring->update = 0;
 1000 
 1001         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
 1002 
 1003         /* Allocate RX descriptors (16KB aligned.) */
 1004         size = WPI_RX_RING_COUNT * sizeof (uint32_t);
 1005         error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
 1006             (void **)&ring->desc, size, WPI_RING_DMA_ALIGN);
 1007         if (error != 0) {
 1008                 device_printf(sc->sc_dev,
 1009                     "%s: could not allocate RX ring DMA memory, error %d\n",
 1010                     __func__, error);
 1011                 goto fail;
 1012         }
 1013 
 1014         /* Create RX buffer DMA tag. */
 1015         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 
 1016             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
 1017             MJUMPAGESIZE, 1, MJUMPAGESIZE, 0, NULL, NULL, &ring->data_dmat);
 1018         if (error != 0) {
 1019                 device_printf(sc->sc_dev,
 1020                     "%s: could not create RX buf DMA tag, error %d\n",
 1021                     __func__, error);
 1022                 goto fail;
 1023         }
 1024 
 1025         /*
 1026          * Allocate and map RX buffers.
 1027          */
 1028         for (i = 0; i < WPI_RX_RING_COUNT; i++) {
 1029                 struct wpi_rx_data *data = &ring->data[i];
 1030                 bus_addr_t paddr;
 1031 
 1032                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
 1033                 if (error != 0) {
 1034                         device_printf(sc->sc_dev,
 1035                             "%s: could not create RX buf DMA map, error %d\n",
 1036                             __func__, error);
 1037                         goto fail;
 1038                 }
 1039 
 1040                 data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
 1041                 if (data->m == NULL) {
 1042                         device_printf(sc->sc_dev,
 1043                             "%s: could not allocate RX mbuf\n", __func__);
 1044                         error = ENOBUFS;
 1045                         goto fail;
 1046                 }
 1047 
 1048                 error = bus_dmamap_load(ring->data_dmat, data->map,
 1049                     mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
 1050                     &paddr, BUS_DMA_NOWAIT);
 1051                 if (error != 0 && error != EFBIG) {
 1052                         device_printf(sc->sc_dev,
 1053                             "%s: can't map mbuf (error %d)\n", __func__,
 1054                             error);
 1055                         goto fail;
 1056                 }
 1057 
 1058                 /* Set physical address of RX buffer. */
 1059                 ring->desc[i] = htole32(paddr);
 1060         }
 1061 
 1062         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
 1063             BUS_DMASYNC_PREWRITE);
 1064 
 1065         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
 1066 
 1067         return 0;
 1068 
 1069 fail:   wpi_free_rx_ring(sc);
 1070 
 1071         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
 1072 
 1073         return error;
 1074 }
 1075 
 1076 static void
 1077 wpi_update_rx_ring(struct wpi_softc *sc)
 1078 {
 1079         WPI_WRITE(sc, WPI_FH_RX_WPTR, sc->rxq.cur & ~7);
 1080 }
 1081 
 1082 static void
 1083 wpi_update_rx_ring_ps(struct wpi_softc *sc)
 1084 {
 1085         struct wpi_rx_ring *ring = &sc->rxq;
 1086 
 1087         if (ring->update != 0) {
 1088                 /* Wait for INT_WAKEUP event. */
 1089                 return;
 1090         }
 1091 
 1092         WPI_TXQ_LOCK(sc);
 1093         WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
 1094         if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
 1095                 DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: wakeup request\n",
 1096                     __func__);
 1097                 ring->update = 1;
 1098         } else {
 1099                 wpi_update_rx_ring(sc);
 1100                 WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
 1101         }
 1102         WPI_TXQ_UNLOCK(sc);
 1103 }
 1104 
 1105 static void
 1106 wpi_reset_rx_ring(struct wpi_softc *sc)
 1107 {
 1108         struct wpi_rx_ring *ring = &sc->rxq;
 1109         int ntries;
 1110 
 1111         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 1112 
 1113         if (wpi_nic_lock(sc) == 0) {
 1114                 WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0);
 1115                 for (ntries = 0; ntries < 1000; ntries++) {
 1116                         if (WPI_READ(sc, WPI_FH_RX_STATUS) &
 1117                             WPI_FH_RX_STATUS_IDLE)
 1118                                 break;
 1119                         DELAY(10);
 1120                 }
 1121                 wpi_nic_unlock(sc);
 1122         }
 1123 
 1124         ring->cur = 0;
 1125         ring->update = 0;
 1126 }
 1127 
 1128 static void
 1129 wpi_free_rx_ring(struct wpi_softc *sc)
 1130 {
 1131         struct wpi_rx_ring *ring = &sc->rxq;
 1132         int i;
 1133 
 1134         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 1135 
 1136         wpi_dma_contig_free(&ring->desc_dma);
 1137 
 1138         for (i = 0; i < WPI_RX_RING_COUNT; i++) {
 1139                 struct wpi_rx_data *data = &ring->data[i];
 1140 
 1141                 if (data->m != NULL) {
 1142                         bus_dmamap_sync(ring->data_dmat, data->map,
 1143                             BUS_DMASYNC_POSTREAD);
 1144                         bus_dmamap_unload(ring->data_dmat, data->map);
 1145                         m_freem(data->m);
 1146                         data->m = NULL;
 1147                 }
 1148                 if (data->map != NULL)
 1149                         bus_dmamap_destroy(ring->data_dmat, data->map);
 1150         }
 1151         if (ring->data_dmat != NULL) {
 1152                 bus_dma_tag_destroy(ring->data_dmat);
 1153                 ring->data_dmat = NULL;
 1154         }
 1155 }
 1156 
 1157 static int
 1158 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, uint8_t qid)
 1159 {
 1160         bus_addr_t paddr;
 1161         bus_size_t size;
 1162         int i, error;
 1163 
 1164         ring->qid = qid;
 1165         ring->queued = 0;
 1166         ring->cur = 0;
 1167         ring->pending = 0;
 1168         ring->update = 0;
 1169 
 1170         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
 1171 
 1172         /* Allocate TX descriptors (16KB aligned.) */
 1173         size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc);
 1174         error = wpi_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
 1175             size, WPI_RING_DMA_ALIGN);
 1176         if (error != 0) {
 1177                 device_printf(sc->sc_dev,
 1178                     "%s: could not allocate TX ring DMA memory, error %d\n",
 1179                     __func__, error);
 1180                 goto fail;
 1181         }
 1182 
 1183         /* Update shared area with ring physical address. */
 1184         sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
 1185         bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
 1186             BUS_DMASYNC_PREWRITE);
 1187 
 1188         size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd);
 1189         error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
 1190             size, 4);
 1191         if (error != 0) {
 1192                 device_printf(sc->sc_dev,
 1193                     "%s: could not allocate TX cmd DMA memory, error %d\n",
 1194                     __func__, error);
 1195                 goto fail;
 1196         }
 1197 
 1198         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
 1199             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
 1200             WPI_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
 1201         if (error != 0) {
 1202                 device_printf(sc->sc_dev,
 1203                     "%s: could not create TX buf DMA tag, error %d\n",
 1204                     __func__, error);
 1205                 goto fail;
 1206         }
 1207 
 1208         paddr = ring->cmd_dma.paddr;
 1209         for (i = 0; i < WPI_TX_RING_COUNT; i++) {
 1210                 struct wpi_tx_data *data = &ring->data[i];
 1211 
 1212                 data->cmd_paddr = paddr;
 1213                 paddr += sizeof (struct wpi_tx_cmd);
 1214 
 1215                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
 1216                 if (error != 0) {
 1217                         device_printf(sc->sc_dev,
 1218                             "%s: could not create TX buf DMA map, error %d\n",
 1219                             __func__, error);
 1220                         goto fail;
 1221                 }
 1222         }
 1223 
 1224         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
 1225 
 1226         return 0;
 1227 
 1228 fail:   wpi_free_tx_ring(sc, ring);
 1229         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
 1230         return error;
 1231 }
 1232 
 1233 static void
 1234 wpi_update_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
 1235 {
 1236         WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
 1237 }
 1238 
 1239 static void
 1240 wpi_update_tx_ring_ps(struct wpi_softc *sc, struct wpi_tx_ring *ring)
 1241 {
 1242 
 1243         if (ring->update != 0) {
 1244                 /* Wait for INT_WAKEUP event. */
 1245                 return;
 1246         }
 1247 
 1248         WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
 1249         if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
 1250                 DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s (%d): requesting wakeup\n",
 1251                     __func__, ring->qid);
 1252                 ring->update = 1;
 1253         } else {
 1254                 wpi_update_tx_ring(sc, ring);
 1255                 WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
 1256         }
 1257 }
 1258 
 1259 static void
 1260 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
 1261 {
 1262         int i;
 1263 
 1264         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 1265 
 1266         for (i = 0; i < WPI_TX_RING_COUNT; i++) {
 1267                 struct wpi_tx_data *data = &ring->data[i];
 1268 
 1269                 if (data->m != NULL) {
 1270                         bus_dmamap_sync(ring->data_dmat, data->map,
 1271                             BUS_DMASYNC_POSTWRITE);
 1272                         bus_dmamap_unload(ring->data_dmat, data->map);
 1273                         m_freem(data->m);
 1274                         data->m = NULL;
 1275                 }
 1276                 if (data->ni != NULL) {
 1277                         ieee80211_free_node(data->ni);
 1278                         data->ni = NULL;
 1279                 }
 1280         }
 1281         /* Clear TX descriptors. */
 1282         memset(ring->desc, 0, ring->desc_dma.size);
 1283         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
 1284             BUS_DMASYNC_PREWRITE);
 1285         ring->queued = 0;
 1286         ring->cur = 0;
 1287         ring->pending = 0;
 1288         ring->update = 0;
 1289 }
 1290 
 1291 static void
 1292 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
 1293 {
 1294         int i;
 1295 
 1296         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 1297 
 1298         wpi_dma_contig_free(&ring->desc_dma);
 1299         wpi_dma_contig_free(&ring->cmd_dma);
 1300 
 1301         for (i = 0; i < WPI_TX_RING_COUNT; i++) {
 1302                 struct wpi_tx_data *data = &ring->data[i];
 1303 
 1304                 if (data->m != NULL) {
 1305                         bus_dmamap_sync(ring->data_dmat, data->map,
 1306                             BUS_DMASYNC_POSTWRITE);
 1307                         bus_dmamap_unload(ring->data_dmat, data->map);
 1308                         m_freem(data->m);
 1309                 }
 1310                 if (data->map != NULL)
 1311                         bus_dmamap_destroy(ring->data_dmat, data->map);
 1312         }
 1313         if (ring->data_dmat != NULL) {
 1314                 bus_dma_tag_destroy(ring->data_dmat);
 1315                 ring->data_dmat = NULL;
 1316         }
 1317 }
 1318 
 1319 /*
 1320  * Extract various information from EEPROM.
 1321  */
 1322 static int
 1323 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
 1324 {
 1325 #define WPI_CHK(res) do {               \
 1326         if ((error = res) != 0)         \
 1327                 goto fail;              \
 1328 } while (0)
 1329         uint8_t i;
 1330         int error;
 1331 
 1332         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
 1333 
 1334         /* Adapter has to be powered on for EEPROM access to work. */
 1335         if ((error = wpi_apm_init(sc)) != 0) {
 1336                 device_printf(sc->sc_dev,
 1337                     "%s: could not power ON adapter, error %d\n", __func__,
 1338                     error);
 1339                 return error;
 1340         }
 1341 
 1342         if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) {
 1343                 device_printf(sc->sc_dev, "bad EEPROM signature\n");
 1344                 error = EIO;
 1345                 goto fail;
 1346         }
 1347         /* Clear HW ownership of EEPROM. */
 1348         WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER);
 1349 
 1350         /* Read the hardware capabilities, revision and SKU type. */
 1351         WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_SKU_CAP, &sc->cap,
 1352             sizeof(sc->cap)));
 1353         WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,
 1354             sizeof(sc->rev)));
 1355         WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type,
 1356             sizeof(sc->type)));
 1357 
 1358         sc->rev = le16toh(sc->rev);
 1359         DPRINTF(sc, WPI_DEBUG_EEPROM, "cap=%x rev=%x type=%x\n", sc->cap,
 1360             sc->rev, sc->type);
 1361 
 1362         /* Read the regulatory domain (4 ASCII characters.) */
 1363         WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain,
 1364             sizeof(sc->domain)));
 1365 
 1366         /* Read MAC address. */
 1367         WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr,
 1368             IEEE80211_ADDR_LEN));
 1369 
 1370         /* Read the list of authorized channels. */
 1371         for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
 1372                 WPI_CHK(wpi_read_eeprom_channels(sc, i));
 1373 
 1374         /* Read the list of TX power groups. */
 1375         for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
 1376                 WPI_CHK(wpi_read_eeprom_group(sc, i));
 1377 
 1378 fail:   wpi_apm_stop(sc);       /* Power OFF adapter. */
 1379 
 1380         DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
 1381             __func__);
 1382 
 1383         return error;
 1384 #undef WPI_CHK
 1385 }
 1386 
 1387 /*
 1388  * Translate EEPROM flags to net80211.
 1389  */
 1390 static uint32_t
 1391 wpi_eeprom_channel_flags(struct wpi_eeprom_chan *channel)
 1392 {
 1393         uint32_t nflags;
 1394 
 1395         nflags = 0;
 1396         if ((channel->flags & WPI_EEPROM_CHAN_ACTIVE) == 0)
 1397                 nflags |= IEEE80211_CHAN_PASSIVE;
 1398         if ((channel->flags & WPI_EEPROM_CHAN_IBSS) == 0)
 1399                 nflags |= IEEE80211_CHAN_NOADHOC;
 1400         if (channel->flags & WPI_EEPROM_CHAN_RADAR) {
 1401                 nflags |= IEEE80211_CHAN_DFS;
 1402                 /* XXX apparently IBSS may still be marked */
 1403                 nflags |= IEEE80211_CHAN_NOADHOC;
 1404         }
 1405 
 1406         /* XXX HOSTAP uses WPI_MODE_IBSS */
 1407         if (nflags & IEEE80211_CHAN_NOADHOC)
 1408                 nflags |= IEEE80211_CHAN_NOHOSTAP;
 1409 
 1410         return nflags;
 1411 }
 1412 
 1413 static void
 1414 wpi_read_eeprom_band(struct wpi_softc *sc, uint8_t n, int maxchans,
 1415     int *nchans, struct ieee80211_channel chans[])
 1416 {
 1417         struct wpi_eeprom_chan *channels = sc->eeprom_channels[n];
 1418         const struct wpi_chan_band *band = &wpi_bands[n];
 1419         uint32_t nflags;
 1420         uint8_t bands[IEEE80211_MODE_BYTES];
 1421         uint8_t chan, i;
 1422         int error;
 1423 
 1424         memset(bands, 0, sizeof(bands));
 1425 
 1426         if (n == 0) {
 1427                 setbit(bands, IEEE80211_MODE_11B);
 1428                 setbit(bands, IEEE80211_MODE_11G);
 1429         } else
 1430                 setbit(bands, IEEE80211_MODE_11A);
 1431 
 1432         for (i = 0; i < band->nchan; i++) {
 1433                 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
 1434                         DPRINTF(sc, WPI_DEBUG_EEPROM,
 1435                             "Channel Not Valid: %d, band %d\n",
 1436                              band->chan[i],n);
 1437                         continue;
 1438                 }
 1439 
 1440                 chan = band->chan[i];
 1441                 nflags = wpi_eeprom_channel_flags(&channels[i]);
 1442                 error = ieee80211_add_channel(chans, maxchans, nchans,
 1443                     chan, 0, channels[i].maxpwr, nflags, bands);
 1444                 if (error != 0)
 1445                         break;
 1446 
 1447                 /* Save maximum allowed TX power for this channel. */
 1448                 sc->maxpwr[chan] = channels[i].maxpwr;
 1449 
 1450                 DPRINTF(sc, WPI_DEBUG_EEPROM,
 1451                     "adding chan %d flags=0x%x maxpwr=%d, offset %d\n",
 1452                     chan, channels[i].flags, sc->maxpwr[chan], *nchans);
 1453         }
 1454 }
 1455 
 1456 /**
 1457  * Read the eeprom to find out what channels are valid for the given
 1458  * band and update net80211 with what we find.
 1459  */
 1460 static int
 1461 wpi_read_eeprom_channels(struct wpi_softc *sc, uint8_t n)
 1462 {
 1463         struct ieee80211com *ic = &sc->sc_ic;
 1464         const struct wpi_chan_band *band = &wpi_bands[n];
 1465         int error;
 1466 
 1467         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
 1468 
 1469         error = wpi_read_prom_data(sc, band->addr, &sc->eeprom_channels[n],
 1470             band->nchan * sizeof (struct wpi_eeprom_chan));
 1471         if (error != 0) {
 1472                 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
 1473                 return error;
 1474         }
 1475 
 1476         wpi_read_eeprom_band(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
 1477             ic->ic_channels);
 1478 
 1479         ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
 1480 
 1481         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
 1482 
 1483         return 0;
 1484 }
 1485 
 1486 static struct wpi_eeprom_chan *
 1487 wpi_find_eeprom_channel(struct wpi_softc *sc, struct ieee80211_channel *c)
 1488 {
 1489         int i, j;
 1490 
 1491         for (j = 0; j < WPI_CHAN_BANDS_COUNT; j++)
 1492                 for (i = 0; i < wpi_bands[j].nchan; i++)
 1493                         if (wpi_bands[j].chan[i] == c->ic_ieee &&
 1494                             ((j == 0) ^ IEEE80211_IS_CHAN_A(c)) == 1)
 1495                                 return &sc->eeprom_channels[j][i];
 1496 
 1497         return NULL;
 1498 }
 1499 
 1500 static void
 1501 wpi_getradiocaps(struct ieee80211com *ic,
 1502     int maxchans, int *nchans, struct ieee80211_channel chans[])
 1503 {
 1504         struct wpi_softc *sc = ic->ic_softc;
 1505         int i;
 1506 
 1507         /* Parse the list of authorized channels. */
 1508         for (i = 0; i < WPI_CHAN_BANDS_COUNT && *nchans < maxchans; i++)
 1509                 wpi_read_eeprom_band(sc, i, maxchans, nchans, chans);
 1510 }
 1511 
 1512 /*
 1513  * Enforce flags read from EEPROM.
 1514  */
 1515 static int
 1516 wpi_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
 1517     int nchan, struct ieee80211_channel chans[])
 1518 {
 1519         struct wpi_softc *sc = ic->ic_softc;
 1520         int i;
 1521 
 1522         for (i = 0; i < nchan; i++) {
 1523                 struct ieee80211_channel *c = &chans[i];
 1524                 struct wpi_eeprom_chan *channel;
 1525 
 1526                 channel = wpi_find_eeprom_channel(sc, c);
 1527                 if (channel == NULL) {
 1528                         ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n",
 1529                             __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
 1530                         return EINVAL;
 1531                 }
 1532                 c->ic_flags |= wpi_eeprom_channel_flags(channel);
 1533         }
 1534 
 1535         return 0;
 1536 }
 1537 
 1538 static int
 1539 wpi_read_eeprom_group(struct wpi_softc *sc, uint8_t n)
 1540 {
 1541         struct wpi_power_group *group = &sc->groups[n];
 1542         struct wpi_eeprom_group rgroup;
 1543         int i, error;
 1544 
 1545         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
 1546 
 1547         if ((error = wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32,
 1548             &rgroup, sizeof rgroup)) != 0) {
 1549                 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
 1550                 return error;
 1551         }
 1552 
 1553         /* Save TX power group information. */
 1554         group->chan   = rgroup.chan;
 1555         group->maxpwr = rgroup.maxpwr;
 1556         /* Retrieve temperature at which the samples were taken. */
 1557         group->temp   = (int16_t)le16toh(rgroup.temp);
 1558 
 1559         DPRINTF(sc, WPI_DEBUG_EEPROM,
 1560             "power group %d: chan=%d maxpwr=%d temp=%d\n", n, group->chan,
 1561             group->maxpwr, group->temp);
 1562 
 1563         for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
 1564                 group->samples[i].index = rgroup.samples[i].index;
 1565                 group->samples[i].power = rgroup.samples[i].power;
 1566 
 1567                 DPRINTF(sc, WPI_DEBUG_EEPROM,
 1568                     "\tsample %d: index=%d power=%d\n", i,
 1569                     group->samples[i].index, group->samples[i].power);
 1570         }
 1571 
 1572         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
 1573 
 1574         return 0;
 1575 }
 1576 
 1577 static __inline uint8_t
 1578 wpi_add_node_entry_adhoc(struct wpi_softc *sc)
 1579 {
 1580         uint8_t newid = WPI_ID_IBSS_MIN;
 1581 
 1582         for (; newid <= WPI_ID_IBSS_MAX; newid++) {
 1583                 if ((sc->nodesmsk & (1 << newid)) == 0) {
 1584                         sc->nodesmsk |= 1 << newid;
 1585                         return newid;
 1586                 }
 1587         }
 1588 
 1589         return WPI_ID_UNDEFINED;
 1590 }
 1591 
 1592 static __inline uint8_t
 1593 wpi_add_node_entry_sta(struct wpi_softc *sc)
 1594 {
 1595         sc->nodesmsk |= 1 << WPI_ID_BSS;
 1596 
 1597         return WPI_ID_BSS;
 1598 }
 1599 
 1600 static __inline int
 1601 wpi_check_node_entry(struct wpi_softc *sc, uint8_t id)
 1602 {
 1603         if (id == WPI_ID_UNDEFINED)
 1604                 return 0;
 1605 
 1606         return (sc->nodesmsk >> id) & 1;
 1607 }
 1608 
 1609 static __inline void
 1610 wpi_clear_node_table(struct wpi_softc *sc)
 1611 {
 1612         sc->nodesmsk = 0;
 1613 }
 1614 
 1615 static __inline void
 1616 wpi_del_node_entry(struct wpi_softc *sc, uint8_t id)
 1617 {
 1618         sc->nodesmsk &= ~(1 << id);
 1619 }
 1620 
 1621 static struct ieee80211_node *
 1622 wpi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
 1623 {
 1624         struct wpi_node *wn;
 1625 
 1626         wn = malloc(sizeof (struct wpi_node), M_80211_NODE,
 1627             M_NOWAIT | M_ZERO);
 1628 
 1629         if (wn == NULL)
 1630                 return NULL;
 1631 
 1632         wn->id = WPI_ID_UNDEFINED;
 1633 
 1634         return &wn->ni;
 1635 }
 1636 
 1637 static void
 1638 wpi_node_free(struct ieee80211_node *ni)
 1639 {
 1640         struct wpi_softc *sc = ni->ni_ic->ic_softc;
 1641         struct wpi_node *wn = WPI_NODE(ni);
 1642 
 1643         if (wn->id != WPI_ID_UNDEFINED) {
 1644                 WPI_NT_LOCK(sc);
 1645                 if (wpi_check_node_entry(sc, wn->id)) {
 1646                         wpi_del_node_entry(sc, wn->id);
 1647                         wpi_del_node(sc, ni);
 1648                 }
 1649                 WPI_NT_UNLOCK(sc);
 1650         }
 1651 
 1652         sc->sc_node_free(ni);
 1653 }
 1654 
 1655 static __inline int
 1656 wpi_check_bss_filter(struct wpi_softc *sc)
 1657 {
 1658         return (sc->rxon.filter & htole32(WPI_FILTER_BSS)) != 0;
 1659 }
 1660 
 1661 static void
 1662 wpi_ibss_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype,
 1663     const struct ieee80211_rx_stats *rxs,
 1664     int rssi, int nf)
 1665 {
 1666         struct ieee80211vap *vap = ni->ni_vap;
 1667         struct wpi_softc *sc = vap->iv_ic->ic_softc;
 1668         struct wpi_vap *wvp = WPI_VAP(vap);
 1669         uint64_t ni_tstamp, rx_tstamp;
 1670 
 1671         wvp->wv_recv_mgmt(ni, m, subtype, rxs, rssi, nf);
 1672 
 1673         if (vap->iv_state == IEEE80211_S_RUN &&
 1674             (subtype == IEEE80211_FC0_SUBTYPE_BEACON ||
 1675             subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)) {
 1676                 ni_tstamp = le64toh(ni->ni_tstamp.tsf);
 1677                 rx_tstamp = le64toh(sc->rx_tstamp);
 1678 
 1679                 if (ni_tstamp >= rx_tstamp) {
 1680                         DPRINTF(sc, WPI_DEBUG_STATE,
 1681                             "ibss merge, tsf %ju tstamp %ju\n",
 1682                             (uintmax_t)rx_tstamp, (uintmax_t)ni_tstamp);
 1683                         (void) ieee80211_ibss_merge(ni);
 1684                 }
 1685         }
 1686 }
 1687 
 1688 static void
 1689 wpi_restore_node(void *arg, struct ieee80211_node *ni)
 1690 {
 1691         struct wpi_softc *sc = arg;
 1692         struct wpi_node *wn = WPI_NODE(ni);
 1693         int error;
 1694 
 1695         WPI_NT_LOCK(sc);
 1696         if (wn->id != WPI_ID_UNDEFINED) {
 1697                 wn->id = WPI_ID_UNDEFINED;
 1698                 if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
 1699                         device_printf(sc->sc_dev,
 1700                             "%s: could not add IBSS node, error %d\n",
 1701                             __func__, error);
 1702                 }
 1703         }
 1704         WPI_NT_UNLOCK(sc);
 1705 }
 1706 
 1707 static void
 1708 wpi_restore_node_table(struct wpi_softc *sc, struct wpi_vap *wvp)
 1709 {
 1710         struct ieee80211com *ic = &sc->sc_ic;
 1711 
 1712         /* Set group keys once. */
 1713         WPI_NT_LOCK(sc);
 1714         wvp->wv_gtk = 0;
 1715         WPI_NT_UNLOCK(sc);
 1716 
 1717         ieee80211_iterate_nodes(&ic->ic_sta, wpi_restore_node, sc);
 1718         ieee80211_crypto_reload_keys(ic);
 1719 }
 1720 
 1721 /**
 1722  * Called by net80211 when ever there is a change to 80211 state machine
 1723  */
 1724 static int
 1725 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
 1726 {
 1727         struct wpi_vap *wvp = WPI_VAP(vap);
 1728         struct ieee80211com *ic = vap->iv_ic;
 1729         struct wpi_softc *sc = ic->ic_softc;
 1730         int error = 0;
 1731 
 1732         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
 1733 
 1734         WPI_TXQ_LOCK(sc);
 1735         if (nstate > IEEE80211_S_INIT && sc->sc_running == 0) {
 1736                 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
 1737                 WPI_TXQ_UNLOCK(sc);
 1738 
 1739                 return ENXIO;
 1740         }
 1741         WPI_TXQ_UNLOCK(sc);
 1742 
 1743         DPRINTF(sc, WPI_DEBUG_STATE, "%s: %s -> %s\n", __func__,
 1744                 ieee80211_state_name[vap->iv_state],
 1745                 ieee80211_state_name[nstate]);
 1746 
 1747         if (vap->iv_state == IEEE80211_S_RUN && nstate < IEEE80211_S_RUN) {
 1748                 if ((error = wpi_set_pslevel(sc, 0, 0, 1)) != 0) {
 1749                         device_printf(sc->sc_dev,
 1750                             "%s: could not set power saving level\n",
 1751                             __func__);
 1752                         return error;
 1753                 }
 1754 
 1755                 wpi_set_led(sc, WPI_LED_LINK, 1, 0);
 1756         }
 1757 
 1758         switch (nstate) {
 1759         case IEEE80211_S_SCAN:
 1760                 WPI_RXON_LOCK(sc);
 1761                 if (wpi_check_bss_filter(sc) != 0) {
 1762                         sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
 1763                         if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
 1764                                 device_printf(sc->sc_dev,
 1765                                     "%s: could not send RXON\n", __func__);
 1766                         }
 1767                 }
 1768                 WPI_RXON_UNLOCK(sc);
 1769                 break;
 1770 
 1771         case IEEE80211_S_ASSOC:
 1772                 if (vap->iv_state != IEEE80211_S_RUN)
 1773                         break;
 1774                 /* FALLTHROUGH */
 1775         case IEEE80211_S_AUTH:
 1776                 /*
 1777                  * NB: do not optimize AUTH -> AUTH state transmission -
 1778                  * this will break powersave with non-QoS AP!
 1779                  */
 1780 
 1781                 /*
 1782                  * The node must be registered in the firmware before auth.
 1783                  * Also the associd must be cleared on RUN -> ASSOC
 1784                  * transitions.
 1785                  */
 1786                 if ((error = wpi_auth(sc, vap)) != 0) {
 1787                         device_printf(sc->sc_dev,
 1788                             "%s: could not move to AUTH state, error %d\n",
 1789                             __func__, error);
 1790                 }
 1791                 break;
 1792 
 1793         case IEEE80211_S_RUN:
 1794                 /*
 1795                  * RUN -> RUN transition:
 1796                  * STA mode: Just restart the timers.
 1797                  * IBSS mode: Process IBSS merge.
 1798                  */
 1799                 if (vap->iv_state == IEEE80211_S_RUN) {
 1800                         if (vap->iv_opmode != IEEE80211_M_IBSS) {
 1801                                 WPI_RXON_LOCK(sc);
 1802                                 wpi_calib_timeout(sc);
 1803                                 WPI_RXON_UNLOCK(sc);
 1804                                 break;
 1805                         } else {
 1806                                 /*
 1807                                  * Drop the BSS_FILTER bit
 1808                                  * (there is no another way to change bssid).
 1809                                  */
 1810                                 WPI_RXON_LOCK(sc);
 1811                                 sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
 1812                                 if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
 1813                                         device_printf(sc->sc_dev,
 1814                                             "%s: could not send RXON\n",
 1815                                             __func__);
 1816                                 }
 1817                                 WPI_RXON_UNLOCK(sc);
 1818 
 1819                                 /* Restore all what was lost. */
 1820                                 wpi_restore_node_table(sc, wvp);
 1821 
 1822                                 /* XXX set conditionally? */
 1823                                 wpi_updateedca(ic);
 1824                         }
 1825                 }
 1826 
 1827                 /*
 1828                  * !RUN -> RUN requires setting the association id
 1829                  * which is done with a firmware cmd.  We also defer
 1830                  * starting the timers until that work is done.
 1831                  */
 1832                 if ((error = wpi_run(sc, vap)) != 0) {
 1833                         device_printf(sc->sc_dev,
 1834                             "%s: could not move to RUN state\n", __func__);
 1835                 }
 1836                 break;
 1837 
 1838         default:
 1839                 break;
 1840         }
 1841         if (error != 0) {
 1842                 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
 1843                 return error;
 1844         }
 1845 
 1846         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
 1847 
 1848         return wvp->wv_newstate(vap, nstate, arg);
 1849 }
 1850 
 1851 static void
 1852 wpi_calib_timeout(void *arg)
 1853 {
 1854         struct wpi_softc *sc = arg;
 1855 
 1856         if (wpi_check_bss_filter(sc) == 0)
 1857                 return;
 1858 
 1859         wpi_power_calibration(sc);
 1860 
 1861         callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
 1862 }
 1863 
 1864 static __inline uint8_t
 1865 rate2plcp(const uint8_t rate)
 1866 {
 1867         switch (rate) {
 1868         case 12:        return 0xd;
 1869         case 18:        return 0xf;
 1870         case 24:        return 0x5;
 1871         case 36:        return 0x7;
 1872         case 48:        return 0x9;
 1873         case 72:        return 0xb;
 1874         case 96:        return 0x1;
 1875         case 108:       return 0x3;
 1876         case 2:         return 10;
 1877         case 4:         return 20;
 1878         case 11:        return 55;
 1879         case 22:        return 110;
 1880         default:        return 0;
 1881         }
 1882 }
 1883 
 1884 static __inline uint8_t
 1885 plcp2rate(const uint8_t plcp)
 1886 {
 1887         switch (plcp) {
 1888         case 0xd:       return 12;
 1889         case 0xf:       return 18;
 1890         case 0x5:       return 24;
 1891         case 0x7:       return 36;
 1892         case 0x9:       return 48;
 1893         case 0xb:       return 72;
 1894         case 0x1:       return 96;
 1895         case 0x3:       return 108;
 1896         case 10:        return 2;
 1897         case 20:        return 4;
 1898         case 55:        return 11;
 1899         case 110:       return 22;
 1900         default:        return 0;
 1901         }
 1902 }
 1903 
 1904 /* Quickly determine if a given rate is CCK or OFDM. */
 1905 #define WPI_RATE_IS_OFDM(rate)  ((rate) >= 12 && (rate) != 22)
 1906 
 1907 static void
 1908 wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc,
 1909     struct wpi_rx_data *data)
 1910 {
 1911         struct epoch_tracker et;
 1912         struct ieee80211com *ic = &sc->sc_ic;
 1913         struct wpi_rx_ring *ring = &sc->rxq;
 1914         struct wpi_rx_stat *stat;
 1915         struct wpi_rx_head *head;
 1916         struct wpi_rx_tail *tail;
 1917         struct ieee80211_frame *wh;
 1918         struct ieee80211_node *ni;
 1919         struct mbuf *m, *m1;
 1920         bus_addr_t paddr;
 1921         uint32_t flags;
 1922         uint16_t len;
 1923         int error;
 1924 
 1925         stat = (struct wpi_rx_stat *)(desc + 1);
 1926 
 1927         if (__predict_false(stat->len > WPI_STAT_MAXLEN)) {
 1928                 device_printf(sc->sc_dev, "invalid RX statistic header\n");
 1929                 goto fail1;
 1930         }
 1931 
 1932         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
 1933         head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
 1934         len = le16toh(head->len);
 1935         tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + len);
 1936         flags = le32toh(tail->flags);
 1937 
 1938         DPRINTF(sc, WPI_DEBUG_RECV, "%s: idx %d len %d stat len %u rssi %d"
 1939             " rate %x chan %d tstamp %ju\n", __func__, ring->cur,
 1940             le32toh(desc->len), len, (int8_t)stat->rssi,
 1941             head->plcp, head->chan, (uintmax_t)le64toh(tail->tstamp));
 1942 
 1943         /* Discard frames with a bad FCS early. */
 1944         if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
 1945                 DPRINTF(sc, WPI_DEBUG_RECV, "%s: RX flags error %x\n",
 1946                     __func__, flags);
 1947                 goto fail1;
 1948         }
 1949         /* Discard frames that are too short. */
 1950         if (len < sizeof (struct ieee80211_frame_ack)) {
 1951                 DPRINTF(sc, WPI_DEBUG_RECV, "%s: frame too short: %d\n",
 1952                     __func__, len);
 1953                 goto fail1;
 1954         }
 1955 
 1956         m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
 1957         if (__predict_false(m1 == NULL)) {
 1958                 DPRINTF(sc, WPI_DEBUG_ANY, "%s: no mbuf to restock ring\n",
 1959                     __func__);
 1960                 goto fail1;
 1961         }
 1962         bus_dmamap_unload(ring->data_dmat, data->map);
 1963 
 1964         error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
 1965             MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
 1966         if (__predict_false(error != 0 && error != EFBIG)) {
 1967                 device_printf(sc->sc_dev,
 1968                     "%s: bus_dmamap_load failed, error %d\n", __func__, error);
 1969                 m_freem(m1);
 1970 
 1971                 /* Try to reload the old mbuf. */
 1972                 error = bus_dmamap_load(ring->data_dmat, data->map,
 1973                     mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
 1974                     &paddr, BUS_DMA_NOWAIT);
 1975                 if (error != 0 && error != EFBIG) {
 1976                         panic("%s: could not load old RX mbuf", __func__);
 1977                 }
 1978                 /* Physical address may have changed. */
 1979                 ring->desc[ring->cur] = htole32(paddr);
 1980                 bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
 1981                     BUS_DMASYNC_PREWRITE);
 1982                 goto fail1;
 1983         }
 1984 
 1985         m = data->m;
 1986         data->m = m1;
 1987         /* Update RX descriptor. */
 1988         ring->desc[ring->cur] = htole32(paddr);
 1989         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
 1990             BUS_DMASYNC_PREWRITE);
 1991 
 1992         /* Finalize mbuf. */
 1993         m->m_data = (caddr_t)(head + 1);
 1994         m->m_pkthdr.len = m->m_len = len;
 1995 
 1996         /* Grab a reference to the source node. */
 1997         wh = mtod(m, struct ieee80211_frame *);
 1998 
 1999         if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
 2000             (flags & WPI_RX_CIPHER_MASK) == WPI_RX_CIPHER_CCMP) {
 2001                 /* Check whether decryption was successful or not. */
 2002                 if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) {
 2003                         DPRINTF(sc, WPI_DEBUG_RECV,
 2004                             "CCMP decryption failed 0x%x\n", flags);
 2005                         goto fail2;
 2006                 }
 2007                 m->m_flags |= M_WEP;
 2008         }
 2009 
 2010         if (len >= sizeof(struct ieee80211_frame_min))
 2011                 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
 2012         else
 2013                 ni = NULL;
 2014 
 2015         sc->rx_tstamp = tail->tstamp;
 2016 
 2017         if (ieee80211_radiotap_active(ic)) {
 2018                 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
 2019 
 2020                 tap->wr_flags = 0;
 2021                 if (head->flags & htole16(WPI_STAT_FLAG_SHPREAMBLE))
 2022                         tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
 2023                 tap->wr_dbm_antsignal = (int8_t)(stat->rssi + WPI_RSSI_OFFSET);
 2024                 tap->wr_dbm_antnoise = WPI_RSSI_OFFSET;
 2025                 tap->wr_tsft = tail->tstamp;
 2026                 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
 2027                 tap->wr_rate = plcp2rate(head->plcp);
 2028         }
 2029 
 2030         WPI_UNLOCK(sc);
 2031         NET_EPOCH_ENTER(et);
 2032 
 2033         /* Send the frame to the 802.11 layer. */
 2034         if (ni != NULL) {
 2035                 (void)ieee80211_input(ni, m, stat->rssi, WPI_RSSI_OFFSET);
 2036                 /* Node is no longer needed. */
 2037                 ieee80211_free_node(ni);
 2038         } else
 2039                 (void)ieee80211_input_all(ic, m, stat->rssi, WPI_RSSI_OFFSET);
 2040 
 2041         NET_EPOCH_EXIT(et);
 2042         WPI_LOCK(sc);
 2043 
 2044         return;
 2045 
 2046 fail2:  m_freem(m);
 2047 
 2048 fail1:  counter_u64_add(ic->ic_ierrors, 1);
 2049 }
 2050 
 2051 static void
 2052 wpi_rx_statistics(struct wpi_softc *sc, struct wpi_rx_desc *desc,
 2053     struct wpi_rx_data *data)
 2054 {
 2055         /* Ignore */
 2056 }
 2057 
 2058 static void
 2059 wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
 2060 {
 2061         struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
 2062         struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
 2063         struct wpi_tx_data *data = &ring->data[desc->idx];
 2064         struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
 2065         struct mbuf *m;
 2066         struct ieee80211_node *ni;
 2067         uint32_t status = le32toh(stat->status);
 2068 
 2069         KASSERT(data->ni != NULL, ("no node"));
 2070         KASSERT(data->m != NULL, ("no mbuf"));
 2071 
 2072         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
 2073 
 2074         DPRINTF(sc, WPI_DEBUG_XMIT, "%s: "
 2075             "qid %d idx %d retries %d btkillcnt %d rate %x duration %d "
 2076             "status %x\n", __func__, desc->qid, desc->idx, stat->ackfailcnt,
 2077             stat->btkillcnt, stat->rate, le32toh(stat->duration), status);
 2078 
 2079         /* Unmap and free mbuf. */
 2080         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
 2081         bus_dmamap_unload(ring->data_dmat, data->map);
 2082         m = data->m, data->m = NULL;
 2083         ni = data->ni, data->ni = NULL;
 2084 
 2085         /* Restore frame header. */
 2086         KASSERT(M_LEADINGSPACE(m) >= data->hdrlen, ("no frame header!"));
 2087         M_PREPEND(m, data->hdrlen, M_NOWAIT);
 2088         KASSERT(m != NULL, ("%s: m is NULL\n", __func__));
 2089 
 2090         /*
 2091          * Update rate control statistics for the node.
 2092          */
 2093         txs->pktlen = m->m_pkthdr.len;
 2094         txs->short_retries = stat->rtsfailcnt;
 2095         txs->long_retries = stat->ackfailcnt / WPI_NTRIES_DEFAULT;
 2096         if (!(status & WPI_TX_STATUS_FAIL))
 2097                 txs->status = IEEE80211_RATECTL_TX_SUCCESS;
 2098         else {
 2099                 switch (status & 0xff) {
 2100                 case WPI_TX_STATUS_FAIL_SHORT_LIMIT:
 2101                         txs->status = IEEE80211_RATECTL_TX_FAIL_SHORT;
 2102                         break;
 2103                 case WPI_TX_STATUS_FAIL_LONG_LIMIT:
 2104                         txs->status = IEEE80211_RATECTL_TX_FAIL_LONG;
 2105                         break;
 2106                 case WPI_TX_STATUS_FAIL_LIFE_EXPIRE:
 2107                         txs->status = IEEE80211_RATECTL_TX_FAIL_EXPIRED;
 2108                         break;
 2109                 default:
 2110                         txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
 2111                         break;
 2112                 }
 2113         }
 2114 
 2115         ieee80211_ratectl_tx_complete(ni, txs);
 2116         ieee80211_tx_complete(ni, m, (status & WPI_TX_STATUS_FAIL) != 0);
 2117 
 2118         WPI_TXQ_STATE_LOCK(sc);
 2119         if (--ring->queued > 0)
 2120                 callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc);
 2121         else
 2122                 callout_stop(&sc->tx_timeout);
 2123         WPI_TXQ_STATE_UNLOCK(sc);
 2124 
 2125         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
 2126 }
 2127 
 2128 /*
 2129  * Process a "command done" firmware notification.  This is where we wakeup
 2130  * processes waiting for a synchronous command completion.
 2131  */
 2132 static void
 2133 wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
 2134 {
 2135         struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
 2136         struct wpi_tx_data *data;
 2137         struct wpi_tx_cmd *cmd;
 2138 
 2139         DPRINTF(sc, WPI_DEBUG_CMD, "cmd notification qid %x idx %d flags %x "
 2140                                    "type %s len %d\n", desc->qid, desc->idx,
 2141                                    desc->flags, wpi_cmd_str(desc->type),
 2142                                    le32toh(desc->len));
 2143 
 2144         if ((desc->qid & WPI_RX_DESC_QID_MSK) != WPI_CMD_QUEUE_NUM)
 2145                 return; /* Not a command ack. */
 2146 
 2147         KASSERT(ring->queued == 0, ("ring->queued must be 0"));
 2148 
 2149         data = &ring->data[desc->idx];
 2150         cmd = &ring->cmd[desc->idx];
 2151 
 2152         /* If the command was mapped in an mbuf, free it. */
 2153         if (data->m != NULL) {
 2154                 bus_dmamap_sync(ring->data_dmat, data->map,
 2155                     BUS_DMASYNC_POSTWRITE);
 2156                 bus_dmamap_unload(ring->data_dmat, data->map);
 2157                 m_freem(data->m);
 2158                 data->m = NULL;
 2159         }
 2160 
 2161         wakeup(cmd);
 2162 
 2163         if (desc->type == WPI_CMD_SET_POWER_MODE) {
 2164                 struct wpi_pmgt_cmd *pcmd = (struct wpi_pmgt_cmd *)cmd->data;
 2165 
 2166                 bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
 2167                     BUS_DMASYNC_POSTREAD);
 2168 
 2169                 WPI_TXQ_LOCK(sc);
 2170                 if (le16toh(pcmd->flags) & WPI_PS_ALLOW_SLEEP) {
 2171                         sc->sc_update_rx_ring = wpi_update_rx_ring_ps;
 2172                         sc->sc_update_tx_ring = wpi_update_tx_ring_ps;
 2173                 } else {
 2174                         sc->sc_update_rx_ring = wpi_update_rx_ring;
 2175                         sc->sc_update_tx_ring = wpi_update_tx_ring;
 2176                 }
 2177                 WPI_TXQ_UNLOCK(sc);
 2178         }
 2179 }
 2180 
 2181 static void
 2182 wpi_notif_intr(struct wpi_softc *sc)
 2183 {
 2184         struct ieee80211com *ic = &sc->sc_ic;
 2185         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 2186         uint32_t hw;
 2187 
 2188         bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
 2189             BUS_DMASYNC_POSTREAD);
 2190 
 2191         hw = le32toh(sc->shared->next) & 0xfff;
 2192         hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
 2193 
 2194         while (sc->rxq.cur != hw) {
 2195                 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
 2196 
 2197                 struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
 2198                 struct wpi_rx_desc *desc;
 2199 
 2200                 bus_dmamap_sync(sc->rxq.data_dmat, data->map,
 2201                     BUS_DMASYNC_POSTREAD);
 2202                 desc = mtod(data->m, struct wpi_rx_desc *);
 2203 
 2204                 DPRINTF(sc, WPI_DEBUG_NOTIFY,
 2205                     "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
 2206                     __func__, sc->rxq.cur, desc->qid, desc->idx, desc->flags,
 2207                     desc->type, wpi_cmd_str(desc->type), le32toh(desc->len));
 2208 
 2209                 if (!(desc->qid & WPI_UNSOLICITED_RX_NOTIF)) {
 2210                         /* Reply to a command. */
 2211                         wpi_cmd_done(sc, desc);
 2212                 }
 2213 
 2214                 switch (desc->type) {
 2215                 case WPI_RX_DONE:
 2216                         /* An 802.11 frame has been received. */
 2217                         wpi_rx_done(sc, desc, data);
 2218 
 2219                         if (__predict_false(sc->sc_running == 0)) {
 2220                                 /* wpi_stop() was called. */
 2221                                 return;
 2222                         }
 2223 
 2224                         break;
 2225 
 2226                 case WPI_TX_DONE:
 2227                         /* An 802.11 frame has been transmitted. */
 2228                         wpi_tx_done(sc, desc);
 2229                         break;
 2230 
 2231                 case WPI_RX_STATISTICS:
 2232                 case WPI_BEACON_STATISTICS:
 2233                         wpi_rx_statistics(sc, desc, data);
 2234                         break;
 2235 
 2236                 case WPI_BEACON_MISSED:
 2237                 {
 2238                         struct wpi_beacon_missed *miss =
 2239                             (struct wpi_beacon_missed *)(desc + 1);
 2240                         uint32_t expected, misses, received, threshold;
 2241 
 2242                         bus_dmamap_sync(sc->rxq.data_dmat, data->map,
 2243                             BUS_DMASYNC_POSTREAD);
 2244 
 2245                         misses = le32toh(miss->consecutive);
 2246                         expected = le32toh(miss->expected);
 2247                         received = le32toh(miss->received);
 2248                         threshold = MAX(2, vap->iv_bmissthreshold);
 2249 
 2250                         DPRINTF(sc, WPI_DEBUG_BMISS,
 2251                             "%s: beacons missed %u(%u) (received %u/%u)\n",
 2252                             __func__, misses, le32toh(miss->total), received,
 2253                             expected);
 2254 
 2255                         if (misses >= threshold ||
 2256                             (received == 0 && expected >= threshold)) {
 2257                                 WPI_RXON_LOCK(sc);
 2258                                 if (callout_pending(&sc->scan_timeout)) {
 2259                                         wpi_cmd(sc, WPI_CMD_SCAN_ABORT, NULL,
 2260                                             0, 1);
 2261                                 }
 2262                                 WPI_RXON_UNLOCK(sc);
 2263                                 if (vap->iv_state == IEEE80211_S_RUN &&
 2264                                     (ic->ic_flags & IEEE80211_F_SCAN) == 0)
 2265                                         ieee80211_beacon_miss(ic);
 2266                         }
 2267 
 2268                         break;
 2269                 }
 2270 #ifdef WPI_DEBUG
 2271                 case WPI_BEACON_SENT:
 2272                 {
 2273                         struct wpi_tx_stat *stat =
 2274                             (struct wpi_tx_stat *)(desc + 1);
 2275                         uint64_t *tsf = (uint64_t *)(stat + 1);
 2276                         uint32_t *mode = (uint32_t *)(tsf + 1);
 2277 
 2278                         bus_dmamap_sync(sc->rxq.data_dmat, data->map,
 2279                             BUS_DMASYNC_POSTREAD);
 2280 
 2281                         DPRINTF(sc, WPI_DEBUG_BEACON,
 2282                             "beacon sent: rts %u, ack %u, btkill %u, rate %u, "
 2283                             "duration %u, status %x, tsf %ju, mode %x\n",
 2284                             stat->rtsfailcnt, stat->ackfailcnt,
 2285                             stat->btkillcnt, stat->rate, le32toh(stat->duration),
 2286                             le32toh(stat->status), le64toh(*tsf),
 2287                             le32toh(*mode));
 2288 
 2289                         break;
 2290                 }
 2291 #endif
 2292                 case WPI_UC_READY:
 2293                 {
 2294                         struct wpi_ucode_info *uc =
 2295                             (struct wpi_ucode_info *)(desc + 1);
 2296 
 2297                         /* The microcontroller is ready. */
 2298                         bus_dmamap_sync(sc->rxq.data_dmat, data->map,
 2299                             BUS_DMASYNC_POSTREAD);
 2300                         DPRINTF(sc, WPI_DEBUG_RESET,
 2301                             "microcode alive notification version=%d.%d "
 2302                             "subtype=%x alive=%x\n", uc->major, uc->minor,
 2303                             uc->subtype, le32toh(uc->valid));
 2304 
 2305                         if (le32toh(uc->valid) != 1) {
 2306                                 device_printf(sc->sc_dev,
 2307                                     "microcontroller initialization failed\n");
 2308                                 wpi_stop_locked(sc);
 2309                                 return;
 2310                         }
 2311                         /* Save the address of the error log in SRAM. */
 2312                         sc->errptr = le32toh(uc->errptr);
 2313                         break;
 2314                 }
 2315                 case WPI_STATE_CHANGED:
 2316                 {
 2317                         bus_dmamap_sync(sc->rxq.data_dmat, data->map,
 2318                             BUS_DMASYNC_POSTREAD);
 2319 
 2320                         uint32_t *status = (uint32_t *)(desc + 1);
 2321 
 2322                         DPRINTF(sc, WPI_DEBUG_STATE, "state changed to %x\n",
 2323                             le32toh(*status));
 2324 
 2325                         if (le32toh(*status) & 1) {
 2326                                 WPI_NT_LOCK(sc);
 2327                                 wpi_clear_node_table(sc);
 2328                                 WPI_NT_UNLOCK(sc);
 2329                                 ieee80211_runtask(ic,
 2330                                     &sc->sc_radiooff_task);
 2331                                 return;
 2332                         }
 2333                         break;
 2334                 }
 2335 #ifdef WPI_DEBUG
 2336                 case WPI_START_SCAN:
 2337                 {
 2338                         bus_dmamap_sync(sc->rxq.data_dmat, data->map,
 2339                             BUS_DMASYNC_POSTREAD);
 2340 
 2341                         struct wpi_start_scan *scan =
 2342                             (struct wpi_start_scan *)(desc + 1);
 2343                         DPRINTF(sc, WPI_DEBUG_SCAN,
 2344                             "%s: scanning channel %d status %x\n",
 2345                             __func__, scan->chan, le32toh(scan->status));
 2346 
 2347                         break;
 2348                 }
 2349 #endif
 2350                 case WPI_STOP_SCAN:
 2351                 {
 2352                         bus_dmamap_sync(sc->rxq.data_dmat, data->map,
 2353                             BUS_DMASYNC_POSTREAD);
 2354 
 2355                         struct wpi_stop_scan *scan =
 2356                             (struct wpi_stop_scan *)(desc + 1);
 2357 
 2358                         DPRINTF(sc, WPI_DEBUG_SCAN,
 2359                             "scan finished nchan=%d status=%d chan=%d\n",
 2360                             scan->nchan, scan->status, scan->chan);
 2361 
 2362                         WPI_RXON_LOCK(sc);
 2363                         callout_stop(&sc->scan_timeout);
 2364                         WPI_RXON_UNLOCK(sc);
 2365                         if (scan->status == WPI_SCAN_ABORTED)
 2366                                 ieee80211_cancel_scan(vap);
 2367                         else
 2368                                 ieee80211_scan_next(vap);
 2369                         break;
 2370                 }
 2371                 }
 2372 
 2373                 if (sc->rxq.cur % 8 == 0) {
 2374                         /* Tell the firmware what we have processed. */
 2375                         sc->sc_update_rx_ring(sc);
 2376                 }
 2377         }
 2378 }
 2379 
 2380 /*
 2381  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
 2382  * from power-down sleep mode.
 2383  */
 2384 static void
 2385 wpi_wakeup_intr(struct wpi_softc *sc)
 2386 {
 2387         int qid;
 2388 
 2389         DPRINTF(sc, WPI_DEBUG_PWRSAVE,
 2390             "%s: ucode wakeup from power-down sleep\n", __func__);
 2391 
 2392         /* Wakeup RX and TX rings. */
 2393         if (sc->rxq.update) {
 2394                 sc->rxq.update = 0;
 2395                 wpi_update_rx_ring(sc);
 2396         }
 2397         WPI_TXQ_LOCK(sc);
 2398         for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) {
 2399                 struct wpi_tx_ring *ring = &sc->txq[qid];
 2400 
 2401                 if (ring->update) {
 2402                         ring->update = 0;
 2403                         wpi_update_tx_ring(sc, ring);
 2404                 }
 2405         }
 2406         WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
 2407         WPI_TXQ_UNLOCK(sc);
 2408 }
 2409 
 2410 /*
 2411  * This function prints firmware registers
 2412  */
 2413 #ifdef WPI_DEBUG
 2414 static void
 2415 wpi_debug_registers(struct wpi_softc *sc)
 2416 {
 2417         size_t i;
 2418         static const uint32_t csr_tbl[] = {
 2419                 WPI_HW_IF_CONFIG,
 2420                 WPI_INT,
 2421                 WPI_INT_MASK,
 2422                 WPI_FH_INT,
 2423                 WPI_GPIO_IN,
 2424                 WPI_RESET,
 2425                 WPI_GP_CNTRL,
 2426                 WPI_EEPROM,
 2427                 WPI_EEPROM_GP,
 2428                 WPI_GIO,
 2429                 WPI_UCODE_GP1,
 2430                 WPI_UCODE_GP2,
 2431                 WPI_GIO_CHICKEN,
 2432                 WPI_ANA_PLL,
 2433                 WPI_DBG_HPET_MEM,
 2434         };
 2435         static const uint32_t prph_tbl[] = {
 2436                 WPI_APMG_CLK_CTRL,
 2437                 WPI_APMG_PS,
 2438                 WPI_APMG_PCI_STT,
 2439                 WPI_APMG_RFKILL,
 2440         };
 2441 
 2442         DPRINTF(sc, WPI_DEBUG_REGISTER,"%s","\n");
 2443 
 2444         for (i = 0; i < nitems(csr_tbl); i++) {
 2445                 DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
 2446                     wpi_get_csr_string(csr_tbl[i]), WPI_READ(sc, csr_tbl[i]));
 2447 
 2448                 if ((i + 1) % 2 == 0)
 2449                         DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
 2450         }
 2451         DPRINTF(sc, WPI_DEBUG_REGISTER, "\n\n");
 2452 
 2453         if (wpi_nic_lock(sc) == 0) {
 2454                 for (i = 0; i < nitems(prph_tbl); i++) {
 2455                         DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
 2456                             wpi_get_prph_string(prph_tbl[i]),
 2457                             wpi_prph_read(sc, prph_tbl[i]));
 2458 
 2459                         if ((i + 1) % 2 == 0)
 2460                                 DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
 2461                 }
 2462                 DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
 2463                 wpi_nic_unlock(sc);
 2464         } else {
 2465                 DPRINTF(sc, WPI_DEBUG_REGISTER,
 2466                     "Cannot access internal registers.\n");
 2467         }
 2468 }
 2469 #endif
 2470 
 2471 /*
 2472  * Dump the error log of the firmware when a firmware panic occurs.  Although
 2473  * we can't debug the firmware because it is neither open source nor free, it
 2474  * can help us to identify certain classes of problems.
 2475  */
 2476 static void
 2477 wpi_fatal_intr(struct wpi_softc *sc)
 2478 {
 2479         struct wpi_fw_dump dump;
 2480         uint32_t i, offset, count;
 2481 
 2482         /* Check that the error log address is valid. */
 2483         if (sc->errptr < WPI_FW_DATA_BASE ||
 2484             sc->errptr + sizeof (dump) >
 2485             WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) {
 2486                 printf("%s: bad firmware error log address 0x%08x\n", __func__,
 2487                     sc->errptr);
 2488                 return;
 2489         }
 2490         if (wpi_nic_lock(sc) != 0) {
 2491                 printf("%s: could not read firmware error log\n", __func__);
 2492                 return;
 2493         }
 2494         /* Read number of entries in the log. */
 2495         count = wpi_mem_read(sc, sc->errptr);
 2496         if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) {
 2497                 printf("%s: invalid count field (count = %u)\n", __func__,
 2498                     count);
 2499                 wpi_nic_unlock(sc);
 2500                 return;
 2501         }
 2502         /* Skip "count" field. */
 2503         offset = sc->errptr + sizeof (uint32_t);
 2504         printf("firmware error log (count = %u):\n", count);
 2505         for (i = 0; i < count; i++) {
 2506                 wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump,
 2507                     sizeof (dump) / sizeof (uint32_t));
 2508 
 2509                 printf("  error type = \"%s\" (0x%08X)\n",
 2510                     (dump.desc < nitems(wpi_fw_errmsg)) ?
 2511                         wpi_fw_errmsg[dump.desc] : "UNKNOWN",
 2512                     dump.desc);
 2513                 printf("  error data      = 0x%08X\n",
 2514                     dump.data);
 2515                 printf("  branch link     = 0x%08X%08X\n",
 2516                     dump.blink[0], dump.blink[1]);
 2517                 printf("  interrupt link  = 0x%08X%08X\n",
 2518                     dump.ilink[0], dump.ilink[1]);
 2519                 printf("  time            = %u\n", dump.time);
 2520 
 2521                 offset += sizeof (dump);
 2522         }
 2523         wpi_nic_unlock(sc);
 2524         /* Dump driver status (TX and RX rings) while we're here. */
 2525         printf("driver status:\n");
 2526         WPI_TXQ_LOCK(sc);
 2527         for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
 2528                 struct wpi_tx_ring *ring = &sc->txq[i];
 2529                 printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
 2530                     i, ring->qid, ring->cur, ring->queued);
 2531         }
 2532         WPI_TXQ_UNLOCK(sc);
 2533         printf("  rx ring: cur=%d\n", sc->rxq.cur);
 2534 }
 2535 
 2536 static void
 2537 wpi_intr(void *arg)
 2538 {
 2539         struct wpi_softc *sc = arg;
 2540         uint32_t r1, r2;
 2541 
 2542         WPI_LOCK(sc);
 2543 
 2544         /* Disable interrupts. */
 2545         WPI_WRITE(sc, WPI_INT_MASK, 0);
 2546 
 2547         r1 = WPI_READ(sc, WPI_INT);
 2548 
 2549         if (__predict_false(r1 == 0xffffffff ||
 2550                            (r1 & 0xfffffff0) == 0xa5a5a5a0))
 2551                 goto end;       /* Hardware gone! */
 2552 
 2553         r2 = WPI_READ(sc, WPI_FH_INT);
 2554 
 2555         DPRINTF(sc, WPI_DEBUG_INTR, "%s: reg1=0x%08x reg2=0x%08x\n", __func__,
 2556             r1, r2);
 2557 
 2558         if (r1 == 0 && r2 == 0)
 2559                 goto done;      /* Interrupt not for us. */
 2560 
 2561         /* Acknowledge interrupts. */
 2562         WPI_WRITE(sc, WPI_INT, r1);
 2563         WPI_WRITE(sc, WPI_FH_INT, r2);
 2564 
 2565         if (__predict_false(r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR))) {
 2566                 struct ieee80211com *ic = &sc->sc_ic;
 2567 
 2568                 device_printf(sc->sc_dev, "fatal firmware error\n");
 2569 #ifdef WPI_DEBUG
 2570                 wpi_debug_registers(sc);
 2571 #endif
 2572                 wpi_fatal_intr(sc);
 2573                 DPRINTF(sc, WPI_DEBUG_HW,
 2574                     "(%s)\n", (r1 & WPI_INT_SW_ERR) ? "(Software Error)" :
 2575                     "(Hardware Error)");
 2576                 ieee80211_restart_all(ic);
 2577                 goto end;
 2578         }
 2579 
 2580         if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) ||
 2581             (r2 & WPI_FH_INT_RX))
 2582                 wpi_notif_intr(sc);
 2583 
 2584         if (r1 & WPI_INT_ALIVE)
 2585                 wakeup(sc);     /* Firmware is alive. */
 2586 
 2587         if (r1 & WPI_INT_WAKEUP)
 2588                 wpi_wakeup_intr(sc);
 2589 
 2590 done:
 2591         /* Re-enable interrupts. */
 2592         if (__predict_true(sc->sc_running))
 2593                 WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
 2594 
 2595 end:    WPI_UNLOCK(sc);
 2596 }
 2597 
 2598 static void
 2599 wpi_free_txfrags(struct wpi_softc *sc, uint16_t ac)
 2600 {
 2601         struct wpi_tx_ring *ring;
 2602         struct wpi_tx_data *data;
 2603         uint8_t cur;
 2604 
 2605         WPI_TXQ_LOCK(sc);
 2606         ring = &sc->txq[ac];
 2607 
 2608         while (ring->pending != 0) {
 2609                 ring->pending--;
 2610                 cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT;
 2611                 data = &ring->data[cur];
 2612 
 2613                 bus_dmamap_sync(ring->data_dmat, data->map,
 2614                     BUS_DMASYNC_POSTWRITE);
 2615                 bus_dmamap_unload(ring->data_dmat, data->map);
 2616                 m_freem(data->m);
 2617                 data->m = NULL;
 2618 
 2619                 ieee80211_node_decref(data->ni);
 2620                 data->ni = NULL;
 2621         }
 2622 
 2623         WPI_TXQ_UNLOCK(sc);
 2624 }
 2625 
 2626 static int
 2627 wpi_cmd2(struct wpi_softc *sc, struct wpi_buf *buf)
 2628 {
 2629         struct ieee80211_frame *wh;
 2630         struct wpi_tx_cmd *cmd;
 2631         struct wpi_tx_data *data;
 2632         struct wpi_tx_desc *desc;
 2633         struct wpi_tx_ring *ring;
 2634         struct mbuf *m1;
 2635         bus_dma_segment_t *seg, segs[WPI_MAX_SCATTER];
 2636         uint8_t cur, pad;
 2637         uint16_t hdrlen;
 2638         int error, i, nsegs, totlen, frag;
 2639 
 2640         WPI_TXQ_LOCK(sc);
 2641 
 2642         KASSERT(buf->size <= sizeof(buf->data), ("buffer overflow"));
 2643 
 2644         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
 2645 
 2646         if (__predict_false(sc->sc_running == 0)) {
 2647                 /* wpi_stop() was called */
 2648                 error = ENETDOWN;
 2649                 goto end;
 2650         }
 2651 
 2652         wh = mtod(buf->m, struct ieee80211_frame *);
 2653         hdrlen = ieee80211_anyhdrsize(wh);
 2654         totlen = buf->m->m_pkthdr.len;
 2655         frag = ((buf->m->m_flags & (M_FRAG | M_LASTFRAG)) == M_FRAG);
 2656 
 2657         if (__predict_false(totlen < sizeof(struct ieee80211_frame_min))) {
 2658                 error = EINVAL;
 2659                 goto end;
 2660         }
 2661 
 2662         if (hdrlen & 3) {
 2663                 /* First segment length must be a multiple of 4. */
 2664                 pad = 4 - (hdrlen & 3);
 2665         } else
 2666                 pad = 0;
 2667 
 2668         ring = &sc->txq[buf->ac];
 2669         cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT;
 2670         desc = &ring->desc[cur];
 2671         data = &ring->data[cur];
 2672 
 2673         /* Prepare TX firmware command. */
 2674         cmd = &ring->cmd[cur];
 2675         cmd->code = buf->code;
 2676         cmd->flags = 0;
 2677         cmd->qid = ring->qid;
 2678         cmd->idx = cur;
 2679 
 2680         memcpy(cmd->data, buf->data, buf->size);
 2681 
 2682         /* Save and trim IEEE802.11 header. */
 2683         memcpy((uint8_t *)(cmd->data + buf->size), wh, hdrlen);
 2684         m_adj(buf->m, hdrlen);
 2685 
 2686         error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, buf->m,
 2687             segs, &nsegs, BUS_DMA_NOWAIT);
 2688         if (error != 0 && error != EFBIG) {
 2689                 device_printf(sc->sc_dev,
 2690                     "%s: can't map mbuf (error %d)\n", __func__, error);
 2691                 goto end;
 2692         }
 2693         if (error != 0) {
 2694                 /* Too many DMA segments, linearize mbuf. */
 2695                 m1 = m_collapse(buf->m, M_NOWAIT, WPI_MAX_SCATTER - 1);
 2696                 if (m1 == NULL) {
 2697                         device_printf(sc->sc_dev,
 2698                             "%s: could not defrag mbuf\n", __func__);
 2699                         error = ENOBUFS;
 2700                         goto end;
 2701                 }
 2702                 buf->m = m1;
 2703 
 2704                 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
 2705                     buf->m, segs, &nsegs, BUS_DMA_NOWAIT);
 2706                 if (__predict_false(error != 0)) {
 2707                         /* XXX fix this (applicable to the iwn(4) too) */
 2708                         /*
 2709                          * NB: Do not return error;
 2710                          * original mbuf does not exist anymore.
 2711                          */
 2712                         device_printf(sc->sc_dev,
 2713                             "%s: can't map mbuf (error %d)\n", __func__,
 2714                             error);
 2715                         if (ring->qid < WPI_CMD_QUEUE_NUM) {
 2716                                 if_inc_counter(buf->ni->ni_vap->iv_ifp,
 2717                                     IFCOUNTER_OERRORS, 1);
 2718                                 if (!frag)
 2719                                         ieee80211_free_node(buf->ni);
 2720                         }
 2721                         m_freem(buf->m);
 2722                         error = 0;
 2723                         goto end;
 2724                 }
 2725         }
 2726 
 2727         KASSERT(nsegs < WPI_MAX_SCATTER,
 2728             ("too many DMA segments, nsegs (%d) should be less than %d",
 2729              nsegs, WPI_MAX_SCATTER));
 2730 
 2731         data->m = buf->m;
 2732         data->ni = buf->ni;
 2733         data->hdrlen = hdrlen;
 2734 
 2735         DPRINTF(sc, WPI_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
 2736             __func__, ring->qid, cur, totlen, nsegs);
 2737 
 2738         /* Fill TX descriptor. */
 2739         desc->nsegs = WPI_PAD32(totlen + pad) << 4 | (1 + nsegs);
 2740         /* First DMA segment is used by the TX command. */
 2741         desc->segs[0].addr = htole32(data->cmd_paddr);
 2742         desc->segs[0].len  = htole32(4 + buf->size + hdrlen + pad);
 2743         /* Other DMA segments are for data payload. */
 2744         seg = &segs[0];
 2745         for (i = 1; i <= nsegs; i++) {
 2746                 desc->segs[i].addr = htole32(seg->ds_addr);
 2747                 desc->segs[i].len  = htole32(seg->ds_len);
 2748                 seg++;
 2749         }
 2750 
 2751         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
 2752         bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
 2753             BUS_DMASYNC_PREWRITE);
 2754         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
 2755             BUS_DMASYNC_PREWRITE);
 2756 
 2757         ring->pending += 1;
 2758 
 2759         if (!frag) {
 2760                 if (ring->qid < WPI_CMD_QUEUE_NUM) {
 2761                         WPI_TXQ_STATE_LOCK(sc);
 2762                         ring->queued += ring->pending;
 2763                         callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout,
 2764                             sc);
 2765                         WPI_TXQ_STATE_UNLOCK(sc);
 2766                 }
 2767 
 2768                 /* Kick TX ring. */
 2769                 ring->cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT;
 2770                 ring->pending = 0;
 2771                 sc->sc_update_tx_ring(sc, ring);
 2772         } else
 2773                 ieee80211_node_incref(data->ni);
 2774 
 2775 end:    DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
 2776             __func__);
 2777 
 2778         WPI_TXQ_UNLOCK(sc);
 2779 
 2780         return (error);
 2781 }
 2782 
 2783 /*
 2784  * Construct the data packet for a transmit buffer.
 2785  */
 2786 static int
 2787 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
 2788 {
 2789         const struct ieee80211_txparam *tp = ni->ni_txparms;
 2790         struct ieee80211vap *vap = ni->ni_vap;
 2791         struct ieee80211com *ic = ni->ni_ic;
 2792         struct wpi_node *wn = WPI_NODE(ni);
 2793         struct ieee80211_frame *wh;
 2794         struct ieee80211_key *k = NULL;
 2795         struct wpi_buf tx_data;
 2796         struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
 2797         uint32_t flags;
 2798         uint16_t ac, qos;
 2799         uint8_t tid, type, rate;
 2800         int swcrypt, ismcast, totlen;
 2801 
 2802         wh = mtod(m, struct ieee80211_frame *);
 2803         type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
 2804         ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
 2805         swcrypt = 1;
 2806 
 2807         /* Select EDCA Access Category and TX ring for this frame. */
 2808         if (IEEE80211_QOS_HAS_SEQ(wh)) {
 2809                 qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
 2810                 tid = qos & IEEE80211_QOS_TID;
 2811         } else {
 2812                 qos = 0;
 2813                 tid = 0;
 2814         }
 2815         ac = M_WME_GETAC(m);
 2816 
 2817         /* Choose a TX rate index. */
 2818         if (type == IEEE80211_FC0_TYPE_MGT ||
 2819             type == IEEE80211_FC0_TYPE_CTL ||
 2820             (m->m_flags & M_EAPOL) != 0)
 2821                 rate = tp->mgmtrate;
 2822         else if (ismcast)
 2823                 rate = tp->mcastrate;
 2824         else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
 2825                 rate = tp->ucastrate;
 2826         else {
 2827                 /* XXX pass pktlen */
 2828                 (void) ieee80211_ratectl_rate(ni, NULL, 0);
 2829                 rate = ni->ni_txrate;
 2830         }
 2831 
 2832         /* Encrypt the frame if need be. */
 2833         if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
 2834                 /* Retrieve key for TX. */
 2835                 k = ieee80211_crypto_encap(ni, m);
 2836                 if (k == NULL)
 2837                         return (ENOBUFS);
 2838 
 2839                 swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
 2840 
 2841                 /* 802.11 header may have moved. */
 2842                 wh = mtod(m, struct ieee80211_frame *);
 2843         }
 2844         totlen = m->m_pkthdr.len;
 2845 
 2846         if (ieee80211_radiotap_active_vap(vap)) {
 2847                 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
 2848 
 2849                 tap->wt_flags = 0;
 2850                 tap->wt_rate = rate;
 2851                 if (k != NULL)
 2852                         tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
 2853                 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
 2854                         tap->wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
 2855 
 2856                 ieee80211_radiotap_tx(vap, m);
 2857         }
 2858 
 2859         flags = 0;
 2860         if (!ismcast) {
 2861                 /* Unicast frame, check if an ACK is expected. */
 2862                 if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
 2863                     IEEE80211_QOS_ACKPOLICY_NOACK)
 2864                         flags |= WPI_TX_NEED_ACK;
 2865         }
 2866 
 2867         if (!IEEE80211_QOS_HAS_SEQ(wh))
 2868                 flags |= WPI_TX_AUTO_SEQ;
 2869         if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
 2870                 flags |= WPI_TX_MORE_FRAG;
 2871 
 2872         /* Check if frame must be protected using RTS/CTS or CTS-to-self. */
 2873         if (!ismcast) {
 2874                 /* NB: Group frames are sent using CCK in 802.11b/g. */
 2875                 if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
 2876                         flags |= WPI_TX_NEED_RTS;
 2877                 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
 2878                     WPI_RATE_IS_OFDM(rate)) {
 2879                         if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
 2880                                 flags |= WPI_TX_NEED_CTS;
 2881                         else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
 2882                                 flags |= WPI_TX_NEED_RTS;
 2883                 }
 2884 
 2885                 if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
 2886                         flags |= WPI_TX_FULL_TXOP;
 2887         }
 2888 
 2889         memset(tx, 0, sizeof (struct wpi_cmd_data));
 2890         if (type == IEEE80211_FC0_TYPE_MGT) {
 2891                 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
 2892 
 2893                 /* Tell HW to set timestamp in probe responses. */
 2894                 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
 2895                         flags |= WPI_TX_INSERT_TSTAMP;
 2896                 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
 2897                     subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
 2898                         tx->timeout = htole16(3);
 2899                 else
 2900                         tx->timeout = htole16(2);
 2901         }
 2902 
 2903         if (ismcast || type != IEEE80211_FC0_TYPE_DATA)
 2904                 tx->id = WPI_ID_BROADCAST;
 2905         else {
 2906                 if (wn->id == WPI_ID_UNDEFINED) {
 2907                         device_printf(sc->sc_dev,
 2908                             "%s: undefined node id\n", __func__);
 2909                         return (EINVAL);
 2910                 }
 2911 
 2912                 tx->id = wn->id;
 2913         }
 2914 
 2915         if (!swcrypt) {
 2916                 switch (k->wk_cipher->ic_cipher) {
 2917                 case IEEE80211_CIPHER_AES_CCM:
 2918                         tx->security = WPI_CIPHER_CCMP;
 2919                         break;
 2920 
 2921                 default:
 2922                         break;
 2923                 }
 2924 
 2925                 memcpy(tx->key, k->wk_key, k->wk_keylen);
 2926         }
 2927 
 2928         if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
 2929                 struct mbuf *next = m->m_nextpkt;
 2930 
 2931                 tx->lnext = htole16(next->m_pkthdr.len);
 2932                 tx->fnext = htole32(tx->security |
 2933                                     (flags & WPI_TX_NEED_ACK) |
 2934                                     WPI_NEXT_STA_ID(tx->id));
 2935         }
 2936 
 2937         tx->len = htole16(totlen);
 2938         tx->flags = htole32(flags);
 2939         tx->plcp = rate2plcp(rate);
 2940         tx->tid = tid;
 2941         tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
 2942         tx->ofdm_mask = 0xff;
 2943         tx->cck_mask = 0x0f;
 2944         tx->rts_ntries = 7;
 2945         tx->data_ntries = tp->maxretry;
 2946 
 2947         tx_data.ni = ni;
 2948         tx_data.m = m;
 2949         tx_data.size = sizeof(struct wpi_cmd_data);
 2950         tx_data.code = WPI_CMD_TX_DATA;
 2951         tx_data.ac = ac;
 2952 
 2953         return wpi_cmd2(sc, &tx_data);
 2954 }
 2955 
 2956 static int
 2957 wpi_tx_data_raw(struct wpi_softc *sc, struct mbuf *m,
 2958     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
 2959 {
 2960         struct ieee80211vap *vap = ni->ni_vap;
 2961         struct ieee80211_key *k = NULL;
 2962         struct ieee80211_frame *wh;
 2963         struct wpi_buf tx_data;
 2964         struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
 2965         uint32_t flags;
 2966         uint8_t ac, type, rate;
 2967         int swcrypt, totlen;
 2968 
 2969         wh = mtod(m, struct ieee80211_frame *);
 2970         type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
 2971         swcrypt = 1;
 2972 
 2973         ac = params->ibp_pri & 3;
 2974 
 2975         /* Choose a TX rate index. */
 2976         rate = params->ibp_rate0;
 2977 
 2978         flags = 0;
 2979         if (!IEEE80211_QOS_HAS_SEQ(wh))
 2980                 flags |= WPI_TX_AUTO_SEQ;
 2981         if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
 2982                 flags |= WPI_TX_NEED_ACK;
 2983         if (params->ibp_flags & IEEE80211_BPF_RTS)
 2984                 flags |= WPI_TX_NEED_RTS;
 2985         if (params->ibp_flags & IEEE80211_BPF_CTS)
 2986                 flags |= WPI_TX_NEED_CTS;
 2987         if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
 2988                 flags |= WPI_TX_FULL_TXOP;
 2989 
 2990         /* Encrypt the frame if need be. */
 2991         if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
 2992                 /* Retrieve key for TX. */
 2993                 k = ieee80211_crypto_encap(ni, m);
 2994                 if (k == NULL)
 2995                         return (ENOBUFS);
 2996 
 2997                 swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
 2998 
 2999                 /* 802.11 header may have moved. */
 3000                 wh = mtod(m, struct ieee80211_frame *);
 3001         }
 3002         totlen = m->m_pkthdr.len;
 3003 
 3004         if (ieee80211_radiotap_active_vap(vap)) {
 3005                 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
 3006 
 3007                 tap->wt_flags = 0;
 3008                 tap->wt_rate = rate;
 3009                 if (params->ibp_flags & IEEE80211_BPF_CRYPTO)
 3010                         tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
 3011 
 3012                 ieee80211_radiotap_tx(vap, m);
 3013         }
 3014 
 3015         memset(tx, 0, sizeof (struct wpi_cmd_data));
 3016         if (type == IEEE80211_FC0_TYPE_MGT) {
 3017                 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
 3018 
 3019                 /* Tell HW to set timestamp in probe responses. */
 3020                 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
 3021                         flags |= WPI_TX_INSERT_TSTAMP;
 3022                 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
 3023                     subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
 3024                         tx->timeout = htole16(3);
 3025                 else
 3026                         tx->timeout = htole16(2);
 3027         }
 3028 
 3029         if (!swcrypt) {
 3030                 switch (k->wk_cipher->ic_cipher) {
 3031                 case IEEE80211_CIPHER_AES_CCM:
 3032                         tx->security = WPI_CIPHER_CCMP;
 3033                         break;
 3034 
 3035                 default:
 3036                         break;
 3037                 }
 3038 
 3039                 memcpy(tx->key, k->wk_key, k->wk_keylen);
 3040         }
 3041 
 3042         tx->len = htole16(totlen);
 3043         tx->flags = htole32(flags);
 3044         tx->plcp = rate2plcp(rate);
 3045         tx->id = WPI_ID_BROADCAST;
 3046         tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
 3047         tx->rts_ntries = params->ibp_try1;
 3048         tx->data_ntries = params->ibp_try0;
 3049 
 3050         tx_data.ni = ni;
 3051         tx_data.m = m;
 3052         tx_data.size = sizeof(struct wpi_cmd_data);
 3053         tx_data.code = WPI_CMD_TX_DATA;
 3054         tx_data.ac = ac;
 3055 
 3056         return wpi_cmd2(sc, &tx_data);
 3057 }
 3058 
 3059 static __inline int
 3060 wpi_tx_ring_free_space(struct wpi_softc *sc, uint16_t ac)
 3061 {
 3062         struct wpi_tx_ring *ring = &sc->txq[ac];
 3063         int retval;
 3064 
 3065         WPI_TXQ_STATE_LOCK(sc);
 3066         retval = WPI_TX_RING_HIMARK - ring->queued;
 3067         WPI_TXQ_STATE_UNLOCK(sc);
 3068 
 3069         return retval;
 3070 }
 3071 
 3072 static int
 3073 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
 3074     const struct ieee80211_bpf_params *params)
 3075 {
 3076         struct ieee80211com *ic = ni->ni_ic;
 3077         struct wpi_softc *sc = ic->ic_softc;
 3078         uint16_t ac;
 3079         int error = 0;
 3080 
 3081         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
 3082 
 3083         ac = M_WME_GETAC(m);
 3084 
 3085         WPI_TX_LOCK(sc);
 3086 
 3087         /* NB: no fragments here */
 3088         if (sc->sc_running == 0 || wpi_tx_ring_free_space(sc, ac) < 1) {
 3089                 error = sc->sc_running ? ENOBUFS : ENETDOWN;
 3090                 goto unlock;
 3091         }
 3092 
 3093         if (params == NULL) {
 3094                 /*
 3095                  * Legacy path; interpret frame contents to decide
 3096                  * precisely how to send the frame.
 3097                  */
 3098                 error = wpi_tx_data(sc, m, ni);
 3099         } else {
 3100                 /*
 3101                  * Caller supplied explicit parameters to use in
 3102                  * sending the frame.
 3103                  */
 3104                 error = wpi_tx_data_raw(sc, m, ni, params);
 3105         }
 3106 
 3107 unlock: WPI_TX_UNLOCK(sc);
 3108 
 3109         if (error != 0) {
 3110                 m_freem(m);
 3111                 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
 3112 
 3113                 return error;
 3114         }
 3115 
 3116         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
 3117 
 3118         return 0;
 3119 }
 3120 
 3121 static int
 3122 wpi_transmit(struct ieee80211com *ic, struct mbuf *m)
 3123 {
 3124         struct wpi_softc *sc = ic->ic_softc;
 3125         struct ieee80211_node *ni;
 3126         struct mbuf *mnext;
 3127         uint16_t ac;
 3128         int error, nmbufs;
 3129 
 3130         WPI_TX_LOCK(sc);
 3131         DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__);
 3132 
 3133         /* Check if interface is up & running. */
 3134         if (__predict_false(sc->sc_running == 0)) {
 3135                 error = ENXIO;
 3136                 goto unlock;
 3137         }
 3138 
 3139         nmbufs = 1;
 3140         for (mnext = m->m_nextpkt; mnext != NULL; mnext = mnext->m_nextpkt)
 3141                 nmbufs++;
 3142 
 3143         /* Check for available space. */
 3144         ac = M_WME_GETAC(m);
 3145         if (wpi_tx_ring_free_space(sc, ac) < nmbufs) {
 3146                 error = ENOBUFS;
 3147                 goto unlock;
 3148         }
 3149 
 3150         error = 0;
 3151         ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
 3152         do {
 3153                 mnext = m->m_nextpkt;
 3154                 if (wpi_tx_data(sc, m, ni) != 0) {
 3155                         if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS,
 3156                             nmbufs);
 3157                         wpi_free_txfrags(sc, ac);
 3158                         ieee80211_free_mbuf(m);
 3159                         ieee80211_free_node(ni);
 3160                         break;
 3161                 }
 3162         } while((m = mnext) != NULL);
 3163 
 3164         DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__);
 3165 
 3166 unlock: WPI_TX_UNLOCK(sc);
 3167 
 3168         return (error);
 3169 }
 3170 
 3171 static void
 3172 wpi_watchdog_rfkill(void *arg)
 3173 {
 3174         struct wpi_softc *sc = arg;
 3175         struct ieee80211com *ic = &sc->sc_ic;
 3176 
 3177         DPRINTF(sc, WPI_DEBUG_WATCHDOG, "RFkill Watchdog: tick\n");
 3178 
 3179         /* No need to lock firmware memory. */
 3180         if ((wpi_prph_read(sc, WPI_APMG_RFKILL) & 0x1) == 0) {
 3181                 /* Radio kill switch is still off. */
 3182                 callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
 3183                     sc);
 3184         } else
 3185                 ieee80211_runtask(ic, &sc->sc_radioon_task);
 3186 }
 3187 
 3188 static void
 3189 wpi_scan_timeout(void *arg)
 3190 {
 3191         struct wpi_softc *sc = arg;
 3192         struct ieee80211com *ic = &sc->sc_ic;
 3193 
 3194         ic_printf(ic, "scan timeout\n");
 3195         ieee80211_restart_all(ic);
 3196 }
 3197 
 3198 static void
 3199 wpi_tx_timeout(void *arg)
 3200 {
 3201         struct wpi_softc *sc = arg;
 3202         struct ieee80211com *ic = &sc->sc_ic;
 3203 
 3204         ic_printf(ic, "device timeout\n");
 3205         ieee80211_restart_all(ic);
 3206 }
 3207 
 3208 static void
 3209 wpi_parent(struct ieee80211com *ic)
 3210 {
 3211         struct wpi_softc *sc = ic->ic_softc;
 3212         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 3213 
 3214         if (ic->ic_nrunning > 0) {
 3215                 if (wpi_init(sc) == 0) {
 3216                         ieee80211_notify_radio(ic, 1);
 3217                         ieee80211_start_all(ic);
 3218                 } else {
 3219                         ieee80211_notify_radio(ic, 0);
 3220                         ieee80211_stop(vap);
 3221                 }
 3222         } else {
 3223                 ieee80211_notify_radio(ic, 0);
 3224                 wpi_stop(sc);
 3225         }
 3226 }
 3227 
 3228 /*
 3229  * Send a command to the firmware.
 3230  */
 3231 static int
 3232 wpi_cmd(struct wpi_softc *sc, uint8_t code, const void *buf, uint16_t size,
 3233     int async)
 3234 {
 3235         struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
 3236         struct wpi_tx_desc *desc;
 3237         struct wpi_tx_data *data;
 3238         struct wpi_tx_cmd *cmd;
 3239         struct mbuf *m;
 3240         bus_addr_t paddr;
 3241         uint16_t totlen;
 3242         int error;
 3243 
 3244         WPI_TXQ_LOCK(sc);
 3245 
 3246         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
 3247 
 3248         if (__predict_false(sc->sc_running == 0)) {
 3249                 /* wpi_stop() was called */
 3250                 if (code == WPI_CMD_SCAN)
 3251                         error = ENETDOWN;
 3252                 else
 3253                         error = 0;
 3254 
 3255                 goto fail;
 3256         }
 3257 
 3258         if (async == 0)
 3259                 WPI_LOCK_ASSERT(sc);
 3260 
 3261         DPRINTF(sc, WPI_DEBUG_CMD, "%s: cmd %s size %u async %d\n",
 3262             __func__, wpi_cmd_str(code), size, async);
 3263 
 3264         desc = &ring->desc[ring->cur];
 3265         data = &ring->data[ring->cur];
 3266         totlen = 4 + size;
 3267 
 3268         if (size > sizeof cmd->data) {
 3269                 /* Command is too large to fit in a descriptor. */
 3270                 if (totlen > MCLBYTES) {
 3271                         error = EINVAL;
 3272                         goto fail;
 3273                 }
 3274                 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
 3275                 if (m == NULL) {
 3276                         error = ENOMEM;
 3277                         goto fail;
 3278                 }
 3279                 cmd = mtod(m, struct wpi_tx_cmd *);
 3280                 error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
 3281                     totlen, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
 3282                 if (error != 0) {
 3283                         m_freem(m);
 3284                         goto fail;
 3285                 }
 3286                 data->m = m;
 3287         } else {
 3288                 cmd = &ring->cmd[ring->cur];
 3289                 paddr = data->cmd_paddr;
 3290         }
 3291 
 3292         cmd->code = code;
 3293         cmd->flags = 0;
 3294         cmd->qid = ring->qid;
 3295         cmd->idx = ring->cur;
 3296         memcpy(cmd->data, buf, size);
 3297 
 3298         desc->nsegs = 1 + (WPI_PAD32(size) << 4);
 3299         desc->segs[0].addr = htole32(paddr);
 3300         desc->segs[0].len  = htole32(totlen);
 3301 
 3302         if (size > sizeof cmd->data) {
 3303                 bus_dmamap_sync(ring->data_dmat, data->map,
 3304                     BUS_DMASYNC_PREWRITE);
 3305         } else {
 3306                 bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
 3307                     BUS_DMASYNC_PREWRITE);
 3308         }
 3309         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
 3310             BUS_DMASYNC_PREWRITE);
 3311 
 3312         /* Kick command ring. */
 3313         ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
 3314         sc->sc_update_tx_ring(sc, ring);
 3315 
 3316         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
 3317 
 3318         WPI_TXQ_UNLOCK(sc);
 3319 
 3320         return async ? 0 : mtx_sleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
 3321 
 3322 fail:   DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
 3323 
 3324         WPI_TXQ_UNLOCK(sc);
 3325 
 3326         return error;
 3327 }
 3328 
 3329 /*
 3330  * Configure HW multi-rate retries.
 3331  */
 3332 static int
 3333 wpi_mrr_setup(struct wpi_softc *sc)
 3334 {
 3335         struct ieee80211com *ic = &sc->sc_ic;
 3336         struct wpi_mrr_setup mrr;
 3337         uint8_t i;
 3338         int error;
 3339 
 3340         /* CCK rates (not used with 802.11a). */
 3341         for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) {
 3342                 mrr.rates[i].flags = 0;
 3343                 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
 3344                 /* Fallback to the immediate lower CCK rate (if any.) */
 3345                 mrr.rates[i].next =
 3346                     (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1;
 3347                 /* Try twice at this rate before falling back to "next". */
 3348                 mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
 3349         }
 3350         /* OFDM rates (not used with 802.11b). */
 3351         for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) {
 3352                 mrr.rates[i].flags = 0;
 3353                 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
 3354                 /* Fallback to the immediate lower rate (if any.) */
 3355                 /* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */
 3356                 mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ?
 3357                     ((ic->ic_curmode == IEEE80211_MODE_11A) ?
 3358                         WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) :
 3359                     i - 1;
 3360                 /* Try twice at this rate before falling back to "next". */
 3361                 mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
 3362         }
 3363         /* Setup MRR for control frames. */
 3364         mrr.which = htole32(WPI_MRR_CTL);
 3365         error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
 3366         if (error != 0) {
 3367                 device_printf(sc->sc_dev,
 3368                     "could not setup MRR for control frames\n");
 3369                 return error;
 3370         }
 3371         /* Setup MRR for data frames. */
 3372         mrr.which = htole32(WPI_MRR_DATA);
 3373         error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
 3374         if (error != 0) {
 3375                 device_printf(sc->sc_dev,
 3376                     "could not setup MRR for data frames\n");
 3377                 return error;
 3378         }
 3379         return 0;
 3380 }
 3381 
 3382 static int
 3383 wpi_add_node(struct wpi_softc *sc, struct ieee80211_node *ni)
 3384 {
 3385         struct ieee80211com *ic = ni->ni_ic;
 3386         struct wpi_vap *wvp = WPI_VAP(ni->ni_vap);
 3387         struct wpi_node *wn = WPI_NODE(ni);
 3388         struct wpi_node_info node;
 3389         int error;
 3390 
 3391         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 3392 
 3393         if (wn->id == WPI_ID_UNDEFINED)
 3394                 return EINVAL;
 3395 
 3396         memset(&node, 0, sizeof node);
 3397         IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
 3398         node.id = wn->id;
 3399         node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
 3400             wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
 3401         node.action = htole32(WPI_ACTION_SET_RATE);
 3402         node.antenna = WPI_ANTENNA_BOTH;
 3403 
 3404         DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding node %d (%s)\n", __func__,
 3405             wn->id, ether_sprintf(ni->ni_macaddr));
 3406 
 3407         error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
 3408         if (error != 0) {
 3409                 device_printf(sc->sc_dev,
 3410                     "%s: wpi_cmd() call failed with error code %d\n", __func__,
 3411                     error);
 3412                 return error;
 3413         }
 3414 
 3415         if (wvp->wv_gtk != 0) {
 3416                 error = wpi_set_global_keys(ni);
 3417                 if (error != 0) {
 3418                         device_printf(sc->sc_dev,
 3419                             "%s: error while setting global keys\n", __func__);
 3420                         return ENXIO;
 3421                 }
 3422         }
 3423 
 3424         return 0;
 3425 }
 3426 
 3427 /*
 3428  * Broadcast node is used to send group-addressed and management frames.
 3429  */
 3430 static int
 3431 wpi_add_broadcast_node(struct wpi_softc *sc, int async)
 3432 {
 3433         struct ieee80211com *ic = &sc->sc_ic;
 3434         struct wpi_node_info node;
 3435 
 3436         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 3437 
 3438         memset(&node, 0, sizeof node);
 3439         IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr);
 3440         node.id = WPI_ID_BROADCAST;
 3441         node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
 3442             wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
 3443         node.action = htole32(WPI_ACTION_SET_RATE);
 3444         node.antenna = WPI_ANTENNA_BOTH;
 3445 
 3446         DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding broadcast node\n", __func__);
 3447 
 3448         return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, async);
 3449 }
 3450 
 3451 static int
 3452 wpi_add_sta_node(struct wpi_softc *sc, struct ieee80211_node *ni)
 3453 {
 3454         struct wpi_node *wn = WPI_NODE(ni);
 3455         int error;
 3456 
 3457         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 3458 
 3459         wn->id = wpi_add_node_entry_sta(sc);
 3460 
 3461         if ((error = wpi_add_node(sc, ni)) != 0) {
 3462                 wpi_del_node_entry(sc, wn->id);
 3463                 wn->id = WPI_ID_UNDEFINED;
 3464                 return error;
 3465         }
 3466 
 3467         return 0;
 3468 }
 3469 
 3470 static int
 3471 wpi_add_ibss_node(struct wpi_softc *sc, struct ieee80211_node *ni)
 3472 {
 3473         struct wpi_node *wn = WPI_NODE(ni);
 3474         int error;
 3475 
 3476         KASSERT(wn->id == WPI_ID_UNDEFINED,
 3477             ("the node %d was added before", wn->id));
 3478 
 3479         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 3480 
 3481         if ((wn->id = wpi_add_node_entry_adhoc(sc)) == WPI_ID_UNDEFINED) {
 3482                 device_printf(sc->sc_dev, "%s: h/w table is full\n", __func__);
 3483                 return ENOMEM;
 3484         }
 3485 
 3486         if ((error = wpi_add_node(sc, ni)) != 0) {
 3487                 wpi_del_node_entry(sc, wn->id);
 3488                 wn->id = WPI_ID_UNDEFINED;
 3489                 return error;
 3490         }
 3491 
 3492         return 0;
 3493 }
 3494 
 3495 static void
 3496 wpi_del_node(struct wpi_softc *sc, struct ieee80211_node *ni)
 3497 {
 3498         struct wpi_node *wn = WPI_NODE(ni);
 3499         struct wpi_cmd_del_node node;
 3500         int error;
 3501 
 3502         KASSERT(wn->id != WPI_ID_UNDEFINED, ("undefined node id passed"));
 3503 
 3504         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 3505 
 3506         memset(&node, 0, sizeof node);
 3507         IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
 3508         node.count = 1;
 3509 
 3510         DPRINTF(sc, WPI_DEBUG_NODE, "%s: deleting node %d (%s)\n", __func__,
 3511             wn->id, ether_sprintf(ni->ni_macaddr));
 3512 
 3513         error = wpi_cmd(sc, WPI_CMD_DEL_NODE, &node, sizeof node, 1);
 3514         if (error != 0) {
 3515                 device_printf(sc->sc_dev,
 3516                     "%s: could not delete node %u, error %d\n", __func__,
 3517                     wn->id, error);
 3518         }
 3519 }
 3520 
 3521 static int
 3522 wpi_updateedca(struct ieee80211com *ic)
 3523 {
 3524 #define WPI_EXP2(x)     ((1 << (x)) - 1)        /* CWmin = 2^ECWmin - 1 */
 3525         struct wpi_softc *sc = ic->ic_softc;
 3526         struct chanAccParams chp;
 3527         struct wpi_edca_params cmd;
 3528         int aci, error;
 3529 
 3530         ieee80211_wme_ic_getparams(ic, &chp);
 3531 
 3532         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
 3533 
 3534         memset(&cmd, 0, sizeof cmd);
 3535         cmd.flags = htole32(WPI_EDCA_UPDATE);
 3536         for (aci = 0; aci < WME_NUM_AC; aci++) {
 3537                 const struct wmeParams *ac = &chp.cap_wmeParams[aci];
 3538                 cmd.ac[aci].aifsn = ac->wmep_aifsn;
 3539                 cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->wmep_logcwmin));
 3540                 cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->wmep_logcwmax));
 3541                 cmd.ac[aci].txoplimit = 
 3542                     htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
 3543 
 3544                 DPRINTF(sc, WPI_DEBUG_EDCA,
 3545                     "setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
 3546                     "txoplimit=%d\n", aci, cmd.ac[aci].aifsn,
 3547                     cmd.ac[aci].cwmin, cmd.ac[aci].cwmax,
 3548                     cmd.ac[aci].txoplimit);
 3549         }
 3550         error = wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
 3551 
 3552         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
 3553 
 3554         return error;
 3555 #undef WPI_EXP2
 3556 }
 3557 
 3558 static void
 3559 wpi_set_promisc(struct wpi_softc *sc)
 3560 {
 3561         struct ieee80211com *ic = &sc->sc_ic;
 3562         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 3563         uint32_t promisc_filter;
 3564 
 3565         promisc_filter = WPI_FILTER_CTL;
 3566         if (vap != NULL && vap->iv_opmode != IEEE80211_M_HOSTAP)
 3567                 promisc_filter |= WPI_FILTER_PROMISC;
 3568 
 3569         if (ic->ic_promisc > 0)
 3570                 sc->rxon.filter |= htole32(promisc_filter);
 3571         else
 3572                 sc->rxon.filter &= ~htole32(promisc_filter);
 3573 }
 3574 
 3575 static void
 3576 wpi_update_promisc(struct ieee80211com *ic)
 3577 {
 3578         struct wpi_softc *sc = ic->ic_softc;
 3579 
 3580         WPI_LOCK(sc);
 3581         if (sc->sc_running == 0) {
 3582                 WPI_UNLOCK(sc);
 3583                 return;
 3584         }
 3585         WPI_UNLOCK(sc);
 3586 
 3587         WPI_RXON_LOCK(sc);
 3588         wpi_set_promisc(sc);
 3589 
 3590         if (wpi_send_rxon(sc, 1, 1) != 0) {
 3591                 device_printf(sc->sc_dev, "%s: could not send RXON\n",
 3592                     __func__);
 3593         }
 3594         WPI_RXON_UNLOCK(sc);
 3595 }
 3596 
 3597 static void
 3598 wpi_update_mcast(struct ieee80211com *ic)
 3599 {
 3600         /* Ignore */
 3601 }
 3602 
 3603 static void
 3604 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
 3605 {
 3606         struct wpi_cmd_led led;
 3607 
 3608         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 3609 
 3610         led.which = which;
 3611         led.unit = htole32(100000);     /* on/off in unit of 100ms */
 3612         led.off = off;
 3613         led.on = on;
 3614         (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
 3615 }
 3616 
 3617 static int
 3618 wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni)
 3619 {
 3620         struct wpi_cmd_timing cmd;
 3621         uint64_t val, mod;
 3622 
 3623         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 3624 
 3625         memset(&cmd, 0, sizeof cmd);
 3626         memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
 3627         cmd.bintval = htole16(ni->ni_intval);
 3628         cmd.lintval = htole16(10);
 3629 
 3630         /* Compute remaining time until next beacon. */
 3631         val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
 3632         mod = le64toh(cmd.tstamp) % val;
 3633         cmd.binitval = htole32((uint32_t)(val - mod));
 3634 
 3635         DPRINTF(sc, WPI_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
 3636             ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
 3637 
 3638         return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1);
 3639 }
 3640 
 3641 /*
 3642  * This function is called periodically (every 60 seconds) to adjust output
 3643  * power to temperature changes.
 3644  */
 3645 static void
 3646 wpi_power_calibration(struct wpi_softc *sc)
 3647 {
 3648         int temp;
 3649 
 3650         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 3651 
 3652         /* Update sensor data. */
 3653         temp = (int)WPI_READ(sc, WPI_UCODE_GP2);
 3654         DPRINTF(sc, WPI_DEBUG_TEMP, "Temp in calibration is: %d\n", temp);
 3655 
 3656         /* Sanity-check read value. */
 3657         if (temp < -260 || temp > 25) {
 3658                 /* This can't be correct, ignore. */
 3659                 DPRINTF(sc, WPI_DEBUG_TEMP,
 3660                     "out-of-range temperature reported: %d\n", temp);
 3661                 return;
 3662         }
 3663 
 3664         DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d->%d\n", sc->temp, temp);
 3665 
 3666         /* Adjust Tx power if need be. */
 3667         if (abs(temp - sc->temp) <= 6)
 3668                 return;
 3669 
 3670         sc->temp = temp;
 3671 
 3672         if (wpi_set_txpower(sc, 1) != 0) {
 3673                 /* just warn, too bad for the automatic calibration... */
 3674                 device_printf(sc->sc_dev,"could not adjust Tx power\n");
 3675         }
 3676 }
 3677 
 3678 /*
 3679  * Set TX power for current channel.
 3680  */
 3681 static int
 3682 wpi_set_txpower(struct wpi_softc *sc, int async)
 3683 {
 3684         struct wpi_power_group *group;
 3685         struct wpi_cmd_txpower cmd;
 3686         uint8_t chan;
 3687         int idx, is_chan_5ghz, i;
 3688 
 3689         /* Retrieve current channel from last RXON. */
 3690         chan = sc->rxon.chan;
 3691         is_chan_5ghz = (sc->rxon.flags & htole32(WPI_RXON_24GHZ)) == 0;
 3692 
 3693         /* Find the TX power group to which this channel belongs. */
 3694         if (is_chan_5ghz) {
 3695                 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
 3696                         if (chan <= group->chan)
 3697                                 break;
 3698         } else
 3699                 group = &sc->groups[0];
 3700 
 3701         memset(&cmd, 0, sizeof cmd);
 3702         cmd.band = is_chan_5ghz ? WPI_BAND_5GHZ : WPI_BAND_2GHZ;
 3703         cmd.chan = htole16(chan);
 3704 
 3705         /* Set TX power for all OFDM and CCK rates. */
 3706         for (i = 0; i <= WPI_RIDX_MAX ; i++) {
 3707                 /* Retrieve TX power for this channel/rate. */
 3708                 idx = wpi_get_power_index(sc, group, chan, is_chan_5ghz, i);
 3709 
 3710                 cmd.rates[i].plcp = wpi_ridx_to_plcp[i];
 3711 
 3712                 if (is_chan_5ghz) {
 3713                         cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
 3714                         cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
 3715                 } else {
 3716                         cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
 3717                         cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
 3718                 }
 3719                 DPRINTF(sc, WPI_DEBUG_TEMP,
 3720                     "chan %d/ridx %d: power index %d\n", chan, i, idx);
 3721         }
 3722 
 3723         return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async);
 3724 }
 3725 
 3726 /*
 3727  * Determine Tx power index for a given channel/rate combination.
 3728  * This takes into account the regulatory information from EEPROM and the
 3729  * current temperature.
 3730  */
 3731 static int
 3732 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
 3733     uint8_t chan, int is_chan_5ghz, int ridx)
 3734 {
 3735 /* Fixed-point arithmetic division using a n-bit fractional part. */
 3736 #define fdivround(a, b, n)      \
 3737         ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
 3738 
 3739 /* Linear interpolation. */
 3740 #define interpolate(x, x1, y1, x2, y2, n)       \
 3741         ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
 3742 
 3743         struct wpi_power_sample *sample;
 3744         int pwr, idx;
 3745 
 3746         /* Default TX power is group maximum TX power minus 3dB. */
 3747         pwr = group->maxpwr / 2;
 3748 
 3749         /* Decrease TX power for highest OFDM rates to reduce distortion. */
 3750         switch (ridx) {
 3751         case WPI_RIDX_OFDM36:
 3752                 pwr -= is_chan_5ghz ?  5 : 0;
 3753                 break;
 3754         case WPI_RIDX_OFDM48:
 3755                 pwr -= is_chan_5ghz ? 10 : 7;
 3756                 break;
 3757         case WPI_RIDX_OFDM54:
 3758                 pwr -= is_chan_5ghz ? 12 : 9;
 3759                 break;
 3760         }
 3761 
 3762         /* Never exceed the channel maximum allowed TX power. */
 3763         pwr = min(pwr, sc->maxpwr[chan]);
 3764 
 3765         /* Retrieve TX power index into gain tables from samples. */
 3766         for (sample = group->samples; sample < &group->samples[3]; sample++)
 3767                 if (pwr > sample[1].power)
 3768                         break;
 3769         /* Fixed-point linear interpolation using a 19-bit fractional part. */
 3770         idx = interpolate(pwr, sample[0].power, sample[0].index,
 3771             sample[1].power, sample[1].index, 19);
 3772 
 3773         /*-
 3774          * Adjust power index based on current temperature:
 3775          * - if cooler than factory-calibrated: decrease output power
 3776          * - if warmer than factory-calibrated: increase output power
 3777          */
 3778         idx -= (sc->temp - group->temp) * 11 / 100;
 3779 
 3780         /* Decrease TX power for CCK rates (-5dB). */
 3781         if (ridx >= WPI_RIDX_CCK1)
 3782                 idx += 10;
 3783 
 3784         /* Make sure idx stays in a valid range. */
 3785         if (idx < 0)
 3786                 return 0;
 3787         if (idx > WPI_MAX_PWR_INDEX)
 3788                 return WPI_MAX_PWR_INDEX;
 3789         return idx;
 3790 
 3791 #undef interpolate
 3792 #undef fdivround
 3793 }
 3794 
 3795 /*
 3796  * Set STA mode power saving level (between 0 and 5).
 3797  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
 3798  */
 3799 static int
 3800 wpi_set_pslevel(struct wpi_softc *sc, uint8_t dtim, int level, int async)
 3801 {
 3802         struct wpi_pmgt_cmd cmd;
 3803         const struct wpi_pmgt *pmgt;
 3804         uint32_t max, reg;
 3805         uint8_t skip_dtim;
 3806         int i;
 3807 
 3808         DPRINTF(sc, WPI_DEBUG_PWRSAVE,
 3809             "%s: dtim=%d, level=%d, async=%d\n",
 3810             __func__, dtim, level, async);
 3811 
 3812         /* Select which PS parameters to use. */
 3813         if (dtim <= 10)
 3814                 pmgt = &wpi_pmgt[0][level];
 3815         else
 3816                 pmgt = &wpi_pmgt[1][level];
 3817 
 3818         memset(&cmd, 0, sizeof cmd);
 3819         if (level != 0) /* not CAM */
 3820                 cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP);
 3821         /* Retrieve PCIe Active State Power Management (ASPM). */
 3822         reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 1);
 3823         if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S))  /* L0s Entry disabled. */
 3824                 cmd.flags |= htole16(WPI_PS_PCI_PMGT);
 3825 
 3826         cmd.rxtimeout = htole32(pmgt->rxtimeout * IEEE80211_DUR_TU);
 3827         cmd.txtimeout = htole32(pmgt->txtimeout * IEEE80211_DUR_TU);
 3828 
 3829         if (dtim == 0) {
 3830                 dtim = 1;
 3831                 skip_dtim = 0;
 3832         } else
 3833                 skip_dtim = pmgt->skip_dtim;
 3834 
 3835         if (skip_dtim != 0) {
 3836                 cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM);
 3837                 max = pmgt->intval[4];
 3838                 if (max == (uint32_t)-1)
 3839                         max = dtim * (skip_dtim + 1);
 3840                 else if (max > dtim)
 3841                         max = rounddown(max, dtim);
 3842         } else
 3843                 max = dtim;
 3844 
 3845         for (i = 0; i < 5; i++)
 3846                 cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
 3847 
 3848         return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
 3849 }
 3850 
 3851 static int
 3852 wpi_send_btcoex(struct wpi_softc *sc)
 3853 {
 3854         struct wpi_bluetooth cmd;
 3855 
 3856         memset(&cmd, 0, sizeof cmd);
 3857         cmd.flags = WPI_BT_COEX_MODE_4WIRE;
 3858         cmd.lead_time = WPI_BT_LEAD_TIME_DEF;
 3859         cmd.max_kill = WPI_BT_MAX_KILL_DEF;
 3860         DPRINTF(sc, WPI_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
 3861             __func__);
 3862         return wpi_cmd(sc, WPI_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
 3863 }
 3864 
 3865 static int
 3866 wpi_send_rxon(struct wpi_softc *sc, int assoc, int async)
 3867 {
 3868         int error;
 3869 
 3870         if (async)
 3871                 WPI_RXON_LOCK_ASSERT(sc);
 3872 
 3873         if (assoc && wpi_check_bss_filter(sc) != 0) {
 3874                 struct wpi_assoc rxon_assoc;
 3875 
 3876                 rxon_assoc.flags = sc->rxon.flags;
 3877                 rxon_assoc.filter = sc->rxon.filter;
 3878                 rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
 3879                 rxon_assoc.cck_mask = sc->rxon.cck_mask;
 3880                 rxon_assoc.reserved = 0;
 3881 
 3882                 error = wpi_cmd(sc, WPI_CMD_RXON_ASSOC, &rxon_assoc,
 3883                     sizeof (struct wpi_assoc), async);
 3884                 if (error != 0) {
 3885                         device_printf(sc->sc_dev,
 3886                             "RXON_ASSOC command failed, error %d\n", error);
 3887                         return error;
 3888                 }
 3889         } else {
 3890                 if (async) {
 3891                         WPI_NT_LOCK(sc);
 3892                         error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
 3893                             sizeof (struct wpi_rxon), async);
 3894                         if (error == 0)
 3895                                 wpi_clear_node_table(sc);
 3896                         WPI_NT_UNLOCK(sc);
 3897                 } else {
 3898                         error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
 3899                             sizeof (struct wpi_rxon), async);
 3900                         if (error == 0)
 3901                                 wpi_clear_node_table(sc);
 3902                 }
 3903 
 3904                 if (error != 0) {
 3905                         device_printf(sc->sc_dev,
 3906                             "RXON command failed, error %d\n", error);
 3907                         return error;
 3908                 }
 3909 
 3910                 /* Add broadcast node. */
 3911                 error = wpi_add_broadcast_node(sc, async);
 3912                 if (error != 0) {
 3913                         device_printf(sc->sc_dev,
 3914                             "could not add broadcast node, error %d\n", error);
 3915                         return error;
 3916                 }
 3917         }
 3918 
 3919         /* Configuration has changed, set Tx power accordingly. */
 3920         if ((error = wpi_set_txpower(sc, async)) != 0) {
 3921                 device_printf(sc->sc_dev,
 3922                     "%s: could not set TX power, error %d\n", __func__, error);
 3923                 return error;
 3924         }
 3925 
 3926         return 0;
 3927 }
 3928 
 3929 /**
 3930  * Configure the card to listen to a particular channel, this transisions the
 3931  * card in to being able to receive frames from remote devices.
 3932  */
 3933 static int
 3934 wpi_config(struct wpi_softc *sc)
 3935 {
 3936         struct ieee80211com *ic = &sc->sc_ic;
 3937         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 3938         struct ieee80211_channel *c = ic->ic_curchan;
 3939         int error;
 3940 
 3941         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
 3942 
 3943         /* Set power saving level to CAM during initialization. */
 3944         if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) {
 3945                 device_printf(sc->sc_dev,
 3946                     "%s: could not set power saving level\n", __func__);
 3947                 return error;
 3948         }
 3949 
 3950         /* Configure bluetooth coexistence. */
 3951         if ((error = wpi_send_btcoex(sc)) != 0) {
 3952                 device_printf(sc->sc_dev,
 3953                     "could not configure bluetooth coexistence\n");
 3954                 return error;
 3955         }
 3956 
 3957         /* Configure adapter. */
 3958         memset(&sc->rxon, 0, sizeof (struct wpi_rxon));
 3959         IEEE80211_ADDR_COPY(sc->rxon.myaddr, vap->iv_myaddr);
 3960 
 3961         /* Set default channel. */
 3962         sc->rxon.chan = ieee80211_chan2ieee(ic, c);
 3963         sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
 3964         if (IEEE80211_IS_CHAN_2GHZ(c))
 3965                 sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
 3966 
 3967         sc->rxon.filter = WPI_FILTER_MULTICAST;
 3968         switch (ic->ic_opmode) {
 3969         case IEEE80211_M_STA:
 3970                 sc->rxon.mode = WPI_MODE_STA;
 3971                 break;
 3972         case IEEE80211_M_IBSS:
 3973                 sc->rxon.mode = WPI_MODE_IBSS;
 3974                 sc->rxon.filter |= WPI_FILTER_BEACON;
 3975                 break;
 3976         case IEEE80211_M_HOSTAP:
 3977                 /* XXX workaround for beaconing */
 3978                 sc->rxon.mode = WPI_MODE_IBSS;
 3979                 sc->rxon.filter |= WPI_FILTER_ASSOC | WPI_FILTER_PROMISC;
 3980                 break;
 3981         case IEEE80211_M_AHDEMO:
 3982                 sc->rxon.mode = WPI_MODE_HOSTAP;
 3983                 break;
 3984         case IEEE80211_M_MONITOR:
 3985                 sc->rxon.mode = WPI_MODE_MONITOR;
 3986                 break;
 3987         default:
 3988                 device_printf(sc->sc_dev, "unknown opmode %d\n",
 3989                     ic->ic_opmode);
 3990                 return EINVAL;
 3991         }
 3992         sc->rxon.filter = htole32(sc->rxon.filter);
 3993         wpi_set_promisc(sc);
 3994         sc->rxon.cck_mask  = 0x0f;      /* not yet negotiated */
 3995         sc->rxon.ofdm_mask = 0xff;      /* not yet negotiated */
 3996 
 3997         if ((error = wpi_send_rxon(sc, 0, 0)) != 0) {
 3998                 device_printf(sc->sc_dev, "%s: could not send RXON\n",
 3999                     __func__);
 4000                 return error;
 4001         }
 4002 
 4003         /* Setup rate scalling. */
 4004         if ((error = wpi_mrr_setup(sc)) != 0) {
 4005                 device_printf(sc->sc_dev, "could not setup MRR, error %d\n",
 4006                     error);
 4007                 return error;
 4008         }
 4009 
 4010         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
 4011 
 4012         return 0;
 4013 }
 4014 
 4015 static uint16_t
 4016 wpi_get_active_dwell_time(struct wpi_softc *sc,
 4017     struct ieee80211_channel *c, uint8_t n_probes)
 4018 {
 4019         /* No channel? Default to 2GHz settings. */
 4020         if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
 4021                 return (WPI_ACTIVE_DWELL_TIME_2GHZ +
 4022                 WPI_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
 4023         }
 4024 
 4025         /* 5GHz dwell time. */
 4026         return (WPI_ACTIVE_DWELL_TIME_5GHZ +
 4027             WPI_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
 4028 }
 4029 
 4030 /*
 4031  * Limit the total dwell time.
 4032  *
 4033  * Returns the dwell time in milliseconds.
 4034  */
 4035 static uint16_t
 4036 wpi_limit_dwell(struct wpi_softc *sc, uint16_t dwell_time)
 4037 {
 4038         struct ieee80211com *ic = &sc->sc_ic;
 4039         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 4040         uint16_t bintval = 0;
 4041 
 4042         /* bintval is in TU (1.024mS) */
 4043         if (vap != NULL)
 4044                 bintval = vap->iv_bss->ni_intval;
 4045 
 4046         /*
 4047          * If it's non-zero, we should calculate the minimum of
 4048          * it and the DWELL_BASE.
 4049          *
 4050          * XXX Yes, the math should take into account that bintval
 4051          * is 1.024mS, not 1mS..
 4052          */
 4053         if (bintval > 0) {
 4054                 DPRINTF(sc, WPI_DEBUG_SCAN, "%s: bintval=%d\n", __func__,
 4055                     bintval);
 4056                 return (MIN(dwell_time, bintval - WPI_CHANNEL_TUNE_TIME * 2));
 4057         }
 4058 
 4059         /* No association context? Default. */
 4060         return dwell_time;
 4061 }
 4062 
 4063 static uint16_t
 4064 wpi_get_passive_dwell_time(struct wpi_softc *sc, struct ieee80211_channel *c)
 4065 {
 4066         uint16_t passive;
 4067 
 4068         if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c))
 4069                 passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_2GHZ;
 4070         else
 4071                 passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_5GHZ;
 4072 
 4073         /* Clamp to the beacon interval if we're associated. */
 4074         return (wpi_limit_dwell(sc, passive));
 4075 }
 4076 
 4077 static uint32_t
 4078 wpi_get_scan_pause_time(uint32_t time, uint16_t bintval)
 4079 {
 4080         uint32_t mod = (time % bintval) * IEEE80211_DUR_TU;
 4081         uint32_t nbeacons = time / bintval;
 4082 
 4083         if (mod > WPI_PAUSE_MAX_TIME)
 4084                 mod = WPI_PAUSE_MAX_TIME;
 4085 
 4086         return WPI_PAUSE_SCAN(nbeacons, mod);
 4087 }
 4088 
 4089 /*
 4090  * Send a scan request to the firmware.
 4091  */
 4092 static int
 4093 wpi_scan(struct wpi_softc *sc, struct ieee80211_channel *c)
 4094 {
 4095         struct ieee80211com *ic = &sc->sc_ic;
 4096         struct ieee80211_scan_state *ss = ic->ic_scan;
 4097         struct ieee80211vap *vap = ss->ss_vap;
 4098         struct wpi_scan_hdr *hdr;
 4099         struct wpi_cmd_data *tx;
 4100         struct wpi_scan_essid *essids;
 4101         struct wpi_scan_chan *chan;
 4102         struct ieee80211_frame *wh;
 4103         struct ieee80211_rateset *rs;
 4104         uint16_t bintval, buflen, dwell_active, dwell_passive;
 4105         uint8_t *buf, *frm, i, nssid;
 4106         int bgscan, error;
 4107 
 4108         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
 4109 
 4110         /*
 4111          * We are absolutely not allowed to send a scan command when another
 4112          * scan command is pending.
 4113          */
 4114         if (callout_pending(&sc->scan_timeout)) {
 4115                 device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
 4116                     __func__);
 4117                 error = EAGAIN;
 4118                 goto fail;
 4119         }
 4120 
 4121         bgscan = wpi_check_bss_filter(sc);
 4122         bintval = vap->iv_bss->ni_intval;
 4123         if (bgscan != 0 &&
 4124             bintval < WPI_QUIET_TIME_DEFAULT + WPI_CHANNEL_TUNE_TIME * 2) {
 4125                 error = EOPNOTSUPP;
 4126                 goto fail;
 4127         }
 4128 
 4129         buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
 4130         if (buf == NULL) {
 4131                 device_printf(sc->sc_dev,
 4132                     "%s: could not allocate buffer for scan command\n",
 4133                     __func__);
 4134                 error = ENOMEM;
 4135                 goto fail;
 4136         }
 4137         hdr = (struct wpi_scan_hdr *)buf;
 4138 
 4139         /*
 4140          * Move to the next channel if no packets are received within 10 msecs
 4141          * after sending the probe request.
 4142          */
 4143         hdr->quiet_time = htole16(WPI_QUIET_TIME_DEFAULT);
 4144         hdr->quiet_threshold = htole16(1);
 4145 
 4146         if (bgscan != 0) {
 4147                 /*
 4148                  * Max needs to be greater than active and passive and quiet!
 4149                  * It's also in microseconds!
 4150                  */
 4151                 hdr->max_svc = htole32(250 * IEEE80211_DUR_TU);
 4152                 hdr->pause_svc = htole32(wpi_get_scan_pause_time(100,
 4153                     bintval));
 4154         }
 4155 
 4156         hdr->filter = htole32(WPI_FILTER_MULTICAST | WPI_FILTER_BEACON);
 4157 
 4158         tx = (struct wpi_cmd_data *)(hdr + 1);
 4159         tx->flags = htole32(WPI_TX_AUTO_SEQ);
 4160         tx->id = WPI_ID_BROADCAST;
 4161         tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
 4162 
 4163         if (IEEE80211_IS_CHAN_5GHZ(c)) {
 4164                 /* Send probe requests at 6Mbps. */
 4165                 tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_OFDM6];
 4166                 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
 4167         } else {
 4168                 hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO);
 4169                 /* Send probe requests at 1Mbps. */
 4170                 tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_CCK1];
 4171                 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
 4172         }
 4173 
 4174         essids = (struct wpi_scan_essid *)(tx + 1);
 4175         nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
 4176         for (i = 0; i < nssid; i++) {
 4177                 essids[i].id = IEEE80211_ELEMID_SSID;
 4178                 essids[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN);
 4179                 memcpy(essids[i].data, ss->ss_ssid[i].ssid, essids[i].len);
 4180 #ifdef WPI_DEBUG
 4181                 if (sc->sc_debug & WPI_DEBUG_SCAN) {
 4182                         printf("Scanning Essid: ");
 4183                         ieee80211_print_essid(essids[i].data, essids[i].len);
 4184                         printf("\n");
 4185                 }
 4186 #endif
 4187         }
 4188 
 4189         /*
 4190          * Build a probe request frame.  Most of the following code is a
 4191          * copy & paste of what is done in net80211.
 4192          */
 4193         wh = (struct ieee80211_frame *)(essids + WPI_SCAN_MAX_ESSIDS);
 4194         wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
 4195                 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
 4196         wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
 4197         IEEE80211_ADDR_COPY(wh->i_addr1, ieee80211broadcastaddr);
 4198         IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
 4199         IEEE80211_ADDR_COPY(wh->i_addr3, ieee80211broadcastaddr);
 4200 
 4201         frm = (uint8_t *)(wh + 1);
 4202         frm = ieee80211_add_ssid(frm, NULL, 0);
 4203         frm = ieee80211_add_rates(frm, rs);
 4204         if (rs->rs_nrates > IEEE80211_RATE_SIZE)
 4205                 frm = ieee80211_add_xrates(frm, rs);
 4206 
 4207         /* Set length of probe request. */
 4208         tx->len = htole16(frm - (uint8_t *)wh);
 4209 
 4210         /*
 4211          * Construct information about the channel that we
 4212          * want to scan. The firmware expects this to be directly
 4213          * after the scan probe request
 4214          */
 4215         chan = (struct wpi_scan_chan *)frm;
 4216         chan->chan = ieee80211_chan2ieee(ic, c);
 4217         chan->flags = 0;
 4218         if (nssid) {
 4219                 hdr->crc_threshold = WPI_SCAN_CRC_TH_DEFAULT;
 4220                 chan->flags |= WPI_CHAN_NPBREQS(nssid);
 4221         } else
 4222                 hdr->crc_threshold = WPI_SCAN_CRC_TH_NEVER;
 4223 
 4224         if (!IEEE80211_IS_CHAN_PASSIVE(c))
 4225                 chan->flags |= WPI_CHAN_ACTIVE;
 4226 
 4227         /*
 4228          * Calculate the active/passive dwell times.
 4229          */
 4230         dwell_active = wpi_get_active_dwell_time(sc, c, nssid);
 4231         dwell_passive = wpi_get_passive_dwell_time(sc, c);
 4232 
 4233         /* Make sure they're valid. */
 4234         if (dwell_active > dwell_passive)
 4235                 dwell_active = dwell_passive;
 4236 
 4237         chan->active = htole16(dwell_active);
 4238         chan->passive = htole16(dwell_passive);
 4239 
 4240         chan->dsp_gain = 0x6e;  /* Default level */
 4241 
 4242         if (IEEE80211_IS_CHAN_5GHZ(c))
 4243                 chan->rf_gain = 0x3b;
 4244         else
 4245                 chan->rf_gain = 0x28;
 4246 
 4247         DPRINTF(sc, WPI_DEBUG_SCAN, "Scanning %u Passive: %d\n",
 4248             chan->chan, IEEE80211_IS_CHAN_PASSIVE(c));
 4249 
 4250         hdr->nchan++;
 4251 
 4252         if (hdr->nchan == 1 && sc->rxon.chan == chan->chan) {
 4253                 /* XXX Force probe request transmission. */
 4254                 memcpy(chan + 1, chan, sizeof (struct wpi_scan_chan));
 4255 
 4256                 chan++;
 4257 
 4258                 /* Reduce unnecessary delay. */
 4259                 chan->flags = 0;
 4260                 chan->passive = chan->active = hdr->quiet_time;
 4261 
 4262                 hdr->nchan++;
 4263         }
 4264 
 4265         chan++;
 4266 
 4267         buflen = (uint8_t *)chan - buf;
 4268         hdr->len = htole16(buflen);
 4269 
 4270         DPRINTF(sc, WPI_DEBUG_CMD, "sending scan command nchan=%d\n",
 4271             hdr->nchan);
 4272         error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1);
 4273         free(buf, M_DEVBUF);
 4274 
 4275         if (error != 0)
 4276                 goto fail;
 4277 
 4278         callout_reset(&sc->scan_timeout, 5*hz, wpi_scan_timeout, sc);
 4279 
 4280         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
 4281 
 4282         return 0;
 4283 
 4284 fail:   DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
 4285 
 4286         return error;
 4287 }
 4288 
 4289 static int
 4290 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
 4291 {
 4292         struct ieee80211com *ic = vap->iv_ic;
 4293         struct ieee80211_node *ni = vap->iv_bss;
 4294         struct ieee80211_channel *c = ni->ni_chan;
 4295         int error;
 4296 
 4297         WPI_RXON_LOCK(sc);
 4298 
 4299         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
 4300 
 4301         /* Update adapter configuration. */
 4302         sc->rxon.associd = 0;
 4303         sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
 4304         IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
 4305         sc->rxon.chan = ieee80211_chan2ieee(ic, c);
 4306         sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
 4307         if (IEEE80211_IS_CHAN_2GHZ(c))
 4308                 sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
 4309         if (ic->ic_flags & IEEE80211_F_SHSLOT)
 4310                 sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
 4311         if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
 4312                 sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
 4313         if (IEEE80211_IS_CHAN_A(c)) {
 4314                 sc->rxon.cck_mask  = 0;
 4315                 sc->rxon.ofdm_mask = 0x15;
 4316         } else if (IEEE80211_IS_CHAN_B(c)) {
 4317                 sc->rxon.cck_mask  = 0x03;
 4318                 sc->rxon.ofdm_mask = 0;
 4319         } else {
 4320                 /* Assume 802.11b/g. */
 4321                 sc->rxon.cck_mask  = 0x0f;
 4322                 sc->rxon.ofdm_mask = 0x15;
 4323         }
 4324 
 4325         DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
 4326             sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
 4327             sc->rxon.ofdm_mask);
 4328 
 4329         if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
 4330                 device_printf(sc->sc_dev, "%s: could not send RXON\n",
 4331                     __func__);
 4332         }
 4333 
 4334         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
 4335 
 4336         WPI_RXON_UNLOCK(sc);
 4337 
 4338         return error;
 4339 }
 4340 
 4341 static int
 4342 wpi_config_beacon(struct wpi_vap *wvp)
 4343 {
 4344         struct ieee80211vap *vap = &wvp->wv_vap;
 4345         struct ieee80211com *ic = vap->iv_ic;
 4346         struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
 4347         struct wpi_buf *bcn = &wvp->wv_bcbuf;
 4348         struct wpi_softc *sc = ic->ic_softc;
 4349         struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
 4350         struct ieee80211_tim_ie *tie;
 4351         struct mbuf *m;
 4352         uint8_t *ptr;
 4353         int error;
 4354 
 4355         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 4356 
 4357         WPI_VAP_LOCK_ASSERT(wvp);
 4358 
 4359         cmd->len = htole16(bcn->m->m_pkthdr.len);
 4360         cmd->plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
 4361             wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
 4362 
 4363         /* XXX seems to be unused */
 4364         if (*(bo->bo_tim) == IEEE80211_ELEMID_TIM) {
 4365                 tie = (struct ieee80211_tim_ie *) bo->bo_tim;
 4366                 ptr = mtod(bcn->m, uint8_t *);
 4367 
 4368                 cmd->tim = htole16(bo->bo_tim - ptr);
 4369                 cmd->timsz = tie->tim_len;
 4370         }
 4371 
 4372         /* Necessary for recursion in ieee80211_beacon_update(). */
 4373         m = bcn->m;
 4374         bcn->m = m_dup(m, M_NOWAIT);
 4375         if (bcn->m == NULL) {
 4376                 device_printf(sc->sc_dev,
 4377                     "%s: could not copy beacon frame\n", __func__);
 4378                 error = ENOMEM;
 4379                 goto end;
 4380         }
 4381 
 4382         if ((error = wpi_cmd2(sc, bcn)) != 0) {
 4383                 device_printf(sc->sc_dev,
 4384                     "%s: could not update beacon frame, error %d", __func__,
 4385                     error);
 4386                 m_freem(bcn->m);
 4387         }
 4388 
 4389         /* Restore mbuf. */
 4390 end:    bcn->m = m;
 4391 
 4392         return error;
 4393 }
 4394 
 4395 static int
 4396 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
 4397 {
 4398         struct ieee80211vap *vap = ni->ni_vap;
 4399         struct wpi_vap *wvp = WPI_VAP(vap);
 4400         struct wpi_buf *bcn = &wvp->wv_bcbuf;
 4401         struct mbuf *m;
 4402         int error;
 4403 
 4404         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 4405 
 4406         if (ni->ni_chan == IEEE80211_CHAN_ANYC)
 4407                 return EINVAL;
 4408 
 4409         m = ieee80211_beacon_alloc(ni);
 4410         if (m == NULL) {
 4411                 device_printf(sc->sc_dev,
 4412                     "%s: could not allocate beacon frame\n", __func__);
 4413                 return ENOMEM;
 4414         }
 4415 
 4416         WPI_VAP_LOCK(wvp);
 4417         if (bcn->m != NULL)
 4418                 m_freem(bcn->m);
 4419 
 4420         bcn->m = m;
 4421 
 4422         error = wpi_config_beacon(wvp);
 4423         WPI_VAP_UNLOCK(wvp);
 4424 
 4425         return error;
 4426 }
 4427 
 4428 static void
 4429 wpi_update_beacon(struct ieee80211vap *vap, int item)
 4430 {
 4431         struct wpi_softc *sc = vap->iv_ic->ic_softc;
 4432         struct wpi_vap *wvp = WPI_VAP(vap);
 4433         struct wpi_buf *bcn = &wvp->wv_bcbuf;
 4434         struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
 4435         struct ieee80211_node *ni = vap->iv_bss;
 4436         int mcast = 0;
 4437 
 4438         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
 4439 
 4440         WPI_VAP_LOCK(wvp);
 4441         if (bcn->m == NULL) {
 4442                 bcn->m = ieee80211_beacon_alloc(ni);
 4443                 if (bcn->m == NULL) {
 4444                         device_printf(sc->sc_dev,
 4445                             "%s: could not allocate beacon frame\n", __func__);
 4446 
 4447                         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR,
 4448                             __func__);
 4449 
 4450                         WPI_VAP_UNLOCK(wvp);
 4451                         return;
 4452                 }
 4453         }
 4454         WPI_VAP_UNLOCK(wvp);
 4455 
 4456         if (item == IEEE80211_BEACON_TIM)
 4457                 mcast = 1;      /* TODO */
 4458 
 4459         setbit(bo->bo_flags, item);
 4460         ieee80211_beacon_update(ni, bcn->m, mcast);
 4461 
 4462         WPI_VAP_LOCK(wvp);
 4463         wpi_config_beacon(wvp);
 4464         WPI_VAP_UNLOCK(wvp);
 4465 
 4466         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
 4467 }
 4468 
 4469 static void
 4470 wpi_newassoc(struct ieee80211_node *ni, int isnew)
 4471 {
 4472         struct ieee80211vap *vap = ni->ni_vap;
 4473         struct wpi_softc *sc = ni->ni_ic->ic_softc;
 4474         struct wpi_node *wn = WPI_NODE(ni);
 4475         int error;
 4476 
 4477         WPI_NT_LOCK(sc);
 4478 
 4479         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 4480 
 4481         if (vap->iv_opmode != IEEE80211_M_STA && wn->id == WPI_ID_UNDEFINED) {
 4482                 if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
 4483                         device_printf(sc->sc_dev,
 4484                             "%s: could not add IBSS node, error %d\n",
 4485                             __func__, error);
 4486                 }
 4487         }
 4488         WPI_NT_UNLOCK(sc);
 4489 }
 4490 
 4491 static int
 4492 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
 4493 {
 4494         struct ieee80211com *ic = vap->iv_ic;
 4495         struct ieee80211_node *ni = vap->iv_bss;
 4496         struct ieee80211_channel *c = ni->ni_chan;
 4497         int error;
 4498 
 4499         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
 4500 
 4501         if (vap->iv_opmode == IEEE80211_M_MONITOR) {
 4502                 /* Link LED blinks while monitoring. */
 4503                 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
 4504                 return 0;
 4505         }
 4506 
 4507         /* XXX kernel panic workaround */
 4508         if (c == IEEE80211_CHAN_ANYC) {
 4509                 device_printf(sc->sc_dev, "%s: incomplete configuration\n",
 4510                     __func__);
 4511                 return EINVAL;
 4512         }
 4513 
 4514         if ((error = wpi_set_timing(sc, ni)) != 0) {
 4515                 device_printf(sc->sc_dev,
 4516                     "%s: could not set timing, error %d\n", __func__, error);
 4517                 return error;
 4518         }
 4519 
 4520         /* Update adapter configuration. */
 4521         WPI_RXON_LOCK(sc);
 4522         IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
 4523         sc->rxon.associd = htole16(IEEE80211_NODE_AID(ni));
 4524         sc->rxon.chan = ieee80211_chan2ieee(ic, c);
 4525         sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
 4526         if (IEEE80211_IS_CHAN_2GHZ(c))
 4527                 sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
 4528         if (ic->ic_flags & IEEE80211_F_SHSLOT)
 4529                 sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
 4530         if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
 4531                 sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
 4532         if (IEEE80211_IS_CHAN_A(c)) {
 4533                 sc->rxon.cck_mask  = 0;
 4534                 sc->rxon.ofdm_mask = 0x15;
 4535         } else if (IEEE80211_IS_CHAN_B(c)) {
 4536                 sc->rxon.cck_mask  = 0x03;
 4537                 sc->rxon.ofdm_mask = 0;
 4538         } else {
 4539                 /* Assume 802.11b/g. */
 4540                 sc->rxon.cck_mask  = 0x0f;
 4541                 sc->rxon.ofdm_mask = 0x15;
 4542         }
 4543         sc->rxon.filter |= htole32(WPI_FILTER_BSS);
 4544 
 4545         DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x\n",
 4546             sc->rxon.chan, sc->rxon.flags);
 4547 
 4548         if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
 4549                 WPI_RXON_UNLOCK(sc);
 4550                 device_printf(sc->sc_dev, "%s: could not send RXON\n",
 4551                     __func__);
 4552                 return error;
 4553         }
 4554 
 4555         /* Start periodic calibration timer. */
 4556         callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
 4557 
 4558         WPI_RXON_UNLOCK(sc);
 4559 
 4560         if (vap->iv_opmode == IEEE80211_M_IBSS ||
 4561             vap->iv_opmode == IEEE80211_M_HOSTAP) {
 4562                 if ((error = wpi_setup_beacon(sc, ni)) != 0) {
 4563                         device_printf(sc->sc_dev,
 4564                             "%s: could not setup beacon, error %d\n", __func__,
 4565                             error);
 4566                         return error;
 4567                 }
 4568         }
 4569 
 4570         if (vap->iv_opmode == IEEE80211_M_STA) {
 4571                 /* Add BSS node. */
 4572                 WPI_NT_LOCK(sc);
 4573                 error = wpi_add_sta_node(sc, ni);
 4574                 WPI_NT_UNLOCK(sc);
 4575                 if (error != 0) {
 4576                         device_printf(sc->sc_dev,
 4577                             "%s: could not add BSS node, error %d\n", __func__,
 4578                             error);
 4579                         return error;
 4580                 }
 4581         }
 4582 
 4583         /* Link LED always on while associated. */
 4584         wpi_set_led(sc, WPI_LED_LINK, 0, 1);
 4585 
 4586         /* Enable power-saving mode if requested by user. */
 4587         if ((vap->iv_flags & IEEE80211_F_PMGTON) &&
 4588             vap->iv_opmode != IEEE80211_M_IBSS)
 4589                 (void)wpi_set_pslevel(sc, 0, 3, 1);
 4590 
 4591         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
 4592 
 4593         return 0;
 4594 }
 4595 
 4596 static int
 4597 wpi_load_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
 4598 {
 4599         const struct ieee80211_cipher *cip = k->wk_cipher;
 4600         struct ieee80211vap *vap = ni->ni_vap;
 4601         struct wpi_softc *sc = ni->ni_ic->ic_softc;
 4602         struct wpi_node *wn = WPI_NODE(ni);
 4603         struct wpi_node_info node;
 4604         uint16_t kflags;
 4605         int error;
 4606 
 4607         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 4608 
 4609         if (wpi_check_node_entry(sc, wn->id) == 0) {
 4610                 device_printf(sc->sc_dev, "%s: node does not exist\n",
 4611                     __func__);
 4612                 return 0;
 4613         }
 4614 
 4615         switch (cip->ic_cipher) {
 4616         case IEEE80211_CIPHER_AES_CCM:
 4617                 kflags = WPI_KFLAG_CCMP;
 4618                 break;
 4619 
 4620         default:
 4621                 device_printf(sc->sc_dev, "%s: unknown cipher %d\n", __func__,
 4622                     cip->ic_cipher);
 4623                 return 0;
 4624         }
 4625 
 4626         kflags |= WPI_KFLAG_KID(k->wk_keyix);
 4627         if (k->wk_flags & IEEE80211_KEY_GROUP)
 4628                 kflags |= WPI_KFLAG_MULTICAST;
 4629 
 4630         memset(&node, 0, sizeof node);
 4631         node.id = wn->id;
 4632         node.control = WPI_NODE_UPDATE;
 4633         node.flags = WPI_FLAG_KEY_SET;
 4634         node.kflags = htole16(kflags);
 4635         memcpy(node.key, k->wk_key, k->wk_keylen);
 4636 again:
 4637         DPRINTF(sc, WPI_DEBUG_KEY,
 4638             "%s: setting %s key id %d for node %d (%s)\n", __func__,
 4639             (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast", k->wk_keyix,
 4640             node.id, ether_sprintf(ni->ni_macaddr));
 4641 
 4642         error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
 4643         if (error != 0) {
 4644                 device_printf(sc->sc_dev, "can't update node info, error %d\n",
 4645                     error);
 4646                 return !error;
 4647         }
 4648 
 4649         if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
 4650             k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
 4651                 kflags |= WPI_KFLAG_MULTICAST;
 4652                 node.kflags = htole16(kflags);
 4653 
 4654                 goto again;
 4655         }
 4656 
 4657         return 1;
 4658 }
 4659 
 4660 static void
 4661 wpi_load_key_cb(void *arg, struct ieee80211_node *ni)
 4662 {
 4663         const struct ieee80211_key *k = arg;
 4664         struct ieee80211vap *vap = ni->ni_vap;
 4665         struct wpi_softc *sc = ni->ni_ic->ic_softc;
 4666         struct wpi_node *wn = WPI_NODE(ni);
 4667         int error;
 4668 
 4669         if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
 4670                 return;
 4671 
 4672         WPI_NT_LOCK(sc);
 4673         error = wpi_load_key(ni, k);
 4674         WPI_NT_UNLOCK(sc);
 4675 
 4676         if (error == 0) {
 4677                 device_printf(sc->sc_dev, "%s: error while setting key\n",
 4678                     __func__);
 4679         }
 4680 }
 4681 
 4682 static int
 4683 wpi_set_global_keys(struct ieee80211_node *ni)
 4684 {
 4685         struct ieee80211vap *vap = ni->ni_vap;
 4686         struct ieee80211_key *wk = &vap->iv_nw_keys[0];
 4687         int error = 1;
 4688 
 4689         for (; wk < &vap->iv_nw_keys[IEEE80211_WEP_NKID] && error; wk++)
 4690                 if (wk->wk_keyix != IEEE80211_KEYIX_NONE)
 4691                         error = wpi_load_key(ni, wk);
 4692 
 4693         return !error;
 4694 }
 4695 
 4696 static int
 4697 wpi_del_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
 4698 {
 4699         struct ieee80211vap *vap = ni->ni_vap;
 4700         struct wpi_softc *sc = ni->ni_ic->ic_softc;
 4701         struct wpi_node *wn = WPI_NODE(ni);
 4702         struct wpi_node_info node;
 4703         uint16_t kflags;
 4704         int error;
 4705 
 4706         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 4707 
 4708         if (wpi_check_node_entry(sc, wn->id) == 0) {
 4709                 DPRINTF(sc, WPI_DEBUG_KEY, "%s: node was removed\n", __func__);
 4710                 return 1;       /* Nothing to do. */
 4711         }
 4712 
 4713         kflags = WPI_KFLAG_KID(k->wk_keyix);
 4714         if (k->wk_flags & IEEE80211_KEY_GROUP)
 4715                 kflags |= WPI_KFLAG_MULTICAST;
 4716 
 4717         memset(&node, 0, sizeof node);
 4718         node.id = wn->id;
 4719         node.control = WPI_NODE_UPDATE;
 4720         node.flags = WPI_FLAG_KEY_SET;
 4721         node.kflags = htole16(kflags);
 4722 again:
 4723         DPRINTF(sc, WPI_DEBUG_KEY, "%s: deleting %s key %d for node %d (%s)\n",
 4724             __func__, (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast",
 4725             k->wk_keyix, node.id, ether_sprintf(ni->ni_macaddr));
 4726 
 4727         error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
 4728         if (error != 0) {
 4729                 device_printf(sc->sc_dev, "can't update node info, error %d\n",
 4730                     error);
 4731                 return !error;
 4732         }
 4733 
 4734         if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
 4735             k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
 4736                 kflags |= WPI_KFLAG_MULTICAST;
 4737                 node.kflags = htole16(kflags);
 4738 
 4739                 goto again;
 4740         }
 4741 
 4742         return 1;
 4743 }
 4744 
 4745 static void
 4746 wpi_del_key_cb(void *arg, struct ieee80211_node *ni)
 4747 {
 4748         const struct ieee80211_key *k = arg;
 4749         struct ieee80211vap *vap = ni->ni_vap;
 4750         struct wpi_softc *sc = ni->ni_ic->ic_softc;
 4751         struct wpi_node *wn = WPI_NODE(ni);
 4752         int error;
 4753 
 4754         if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
 4755                 return;
 4756 
 4757         WPI_NT_LOCK(sc);
 4758         error = wpi_del_key(ni, k);
 4759         WPI_NT_UNLOCK(sc);
 4760 
 4761         if (error == 0) {
 4762                 device_printf(sc->sc_dev, "%s: error while deleting key\n",
 4763                     __func__);
 4764         }
 4765 }
 4766 
 4767 static int
 4768 wpi_process_key(struct ieee80211vap *vap, const struct ieee80211_key *k,
 4769     int set)
 4770 {
 4771         struct ieee80211com *ic = vap->iv_ic;
 4772         struct wpi_softc *sc = ic->ic_softc;
 4773         struct wpi_vap *wvp = WPI_VAP(vap);
 4774         struct ieee80211_node *ni;
 4775         int error, ni_ref = 0;
 4776 
 4777         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 4778 
 4779         if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
 4780                 /* Not for us. */
 4781                 return 1;
 4782         }
 4783 
 4784         if (!(k->wk_flags & IEEE80211_KEY_RECV)) {
 4785                 /* XMIT keys are handled in wpi_tx_data(). */
 4786                 return 1;
 4787         }
 4788 
 4789         /* Handle group keys. */
 4790         if (&vap->iv_nw_keys[0] <= k &&
 4791             k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
 4792                 WPI_NT_LOCK(sc);
 4793                 if (set)
 4794                         wvp->wv_gtk |= WPI_VAP_KEY(k->wk_keyix);
 4795                 else
 4796                         wvp->wv_gtk &= ~WPI_VAP_KEY(k->wk_keyix);
 4797                 WPI_NT_UNLOCK(sc);
 4798 
 4799                 if (vap->iv_state == IEEE80211_S_RUN) {
 4800                         ieee80211_iterate_nodes(&ic->ic_sta,
 4801                             set ? wpi_load_key_cb : wpi_del_key_cb,
 4802                             __DECONST(void *, k));
 4803                 }
 4804 
 4805                 return 1;
 4806         }
 4807 
 4808         switch (vap->iv_opmode) {
 4809         case IEEE80211_M_STA:
 4810                 ni = vap->iv_bss;
 4811                 break;
 4812 
 4813         case IEEE80211_M_IBSS:
 4814         case IEEE80211_M_AHDEMO:
 4815         case IEEE80211_M_HOSTAP:
 4816                 ni = ieee80211_find_vap_node(&ic->ic_sta, vap, k->wk_macaddr);
 4817                 if (ni == NULL)
 4818                         return 0;       /* should not happen */
 4819 
 4820                 ni_ref = 1;
 4821                 break;
 4822 
 4823         default:
 4824                 device_printf(sc->sc_dev, "%s: unknown opmode %d\n", __func__,
 4825                     vap->iv_opmode);
 4826                 return 0;
 4827         }
 4828 
 4829         WPI_NT_LOCK(sc);
 4830         if (set)
 4831                 error = wpi_load_key(ni, k);
 4832         else
 4833                 error = wpi_del_key(ni, k);
 4834         WPI_NT_UNLOCK(sc);
 4835 
 4836         if (ni_ref)
 4837                 ieee80211_node_decref(ni);
 4838 
 4839         return error;
 4840 }
 4841 
 4842 static int
 4843 wpi_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k)
 4844 {
 4845         return wpi_process_key(vap, k, 1);
 4846 }
 4847 
 4848 static int
 4849 wpi_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
 4850 {
 4851         return wpi_process_key(vap, k, 0);
 4852 }
 4853 
 4854 /*
 4855  * This function is called after the runtime firmware notifies us of its
 4856  * readiness (called in a process context).
 4857  */
 4858 static int
 4859 wpi_post_alive(struct wpi_softc *sc)
 4860 {
 4861         int ntries, error;
 4862 
 4863         /* Check (again) that the radio is not disabled. */
 4864         if ((error = wpi_nic_lock(sc)) != 0)
 4865                 return error;
 4866 
 4867         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 4868 
 4869         /* NB: Runtime firmware must be up and running. */
 4870         if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) {
 4871                 device_printf(sc->sc_dev,
 4872                     "RF switch: radio disabled (%s)\n", __func__);
 4873                 wpi_nic_unlock(sc);
 4874                 return EPERM;   /* :-) */
 4875         }
 4876         wpi_nic_unlock(sc);
 4877 
 4878         /* Wait for thermal sensor to calibrate. */
 4879         for (ntries = 0; ntries < 1000; ntries++) {
 4880                 if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0)
 4881                         break;
 4882                 DELAY(10);
 4883         }
 4884 
 4885         if (ntries == 1000) {
 4886                 device_printf(sc->sc_dev,
 4887                     "timeout waiting for thermal sensor calibration\n");
 4888                 return ETIMEDOUT;
 4889         }
 4890 
 4891         DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d\n", sc->temp);
 4892         return 0;
 4893 }
 4894 
 4895 /*
 4896  * The firmware boot code is small and is intended to be copied directly into
 4897  * the NIC internal memory (no DMA transfer).
 4898  */
 4899 static int
 4900 wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, uint32_t size)
 4901 {
 4902         int error, ntries;
 4903 
 4904         DPRINTF(sc, WPI_DEBUG_HW, "Loading microcode size 0x%x\n", size);
 4905 
 4906         size /= sizeof (uint32_t);
 4907 
 4908         if ((error = wpi_nic_lock(sc)) != 0)
 4909                 return error;
 4910 
 4911         /* Copy microcode image into NIC memory. */
 4912         wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE,
 4913             (const uint32_t *)ucode, size);
 4914 
 4915         wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0);
 4916         wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE);
 4917         wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size);
 4918 
 4919         /* Start boot load now. */
 4920         wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START);
 4921 
 4922         /* Wait for transfer to complete. */
 4923         for (ntries = 0; ntries < 1000; ntries++) {
 4924                 uint32_t status = WPI_READ(sc, WPI_FH_TX_STATUS);
 4925                 DPRINTF(sc, WPI_DEBUG_HW,
 4926                     "firmware status=0x%x, val=0x%x, result=0x%x\n", status,
 4927                     WPI_FH_TX_STATUS_IDLE(6),
 4928                     status & WPI_FH_TX_STATUS_IDLE(6));
 4929                 if (status & WPI_FH_TX_STATUS_IDLE(6)) {
 4930                         DPRINTF(sc, WPI_DEBUG_HW,
 4931                             "Status Match! - ntries = %d\n", ntries);
 4932                         break;
 4933                 }
 4934                 DELAY(10);
 4935         }
 4936         if (ntries == 1000) {
 4937                 device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
 4938                     __func__);
 4939                 wpi_nic_unlock(sc);
 4940                 return ETIMEDOUT;
 4941         }
 4942 
 4943         /* Enable boot after power up. */
 4944         wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN);
 4945 
 4946         wpi_nic_unlock(sc);
 4947         return 0;
 4948 }
 4949 
 4950 static int
 4951 wpi_load_firmware(struct wpi_softc *sc)
 4952 {
 4953         struct wpi_fw_info *fw = &sc->fw;
 4954         struct wpi_dma_info *dma = &sc->fw_dma;
 4955         int error;
 4956 
 4957         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 4958 
 4959         /* Copy initialization sections into pre-allocated DMA-safe memory. */
 4960         memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
 4961         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
 4962         memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz);
 4963         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
 4964 
 4965         /* Tell adapter where to find initialization sections. */
 4966         if ((error = wpi_nic_lock(sc)) != 0)
 4967                 return error;
 4968         wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
 4969         wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz);
 4970         wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
 4971             dma->paddr + WPI_FW_DATA_MAXSZ);
 4972         wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
 4973         wpi_nic_unlock(sc);
 4974 
 4975         /* Load firmware boot code. */
 4976         error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
 4977         if (error != 0) {
 4978                 device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
 4979                     __func__);
 4980                 return error;
 4981         }
 4982 
 4983         /* Now press "execute". */
 4984         WPI_WRITE(sc, WPI_RESET, 0);
 4985 
 4986         /* Wait at most one second for first alive notification. */
 4987         if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
 4988                 device_printf(sc->sc_dev,
 4989                     "%s: timeout waiting for adapter to initialize, error %d\n",
 4990                     __func__, error);
 4991                 return error;
 4992         }
 4993 
 4994         /* Copy runtime sections into pre-allocated DMA-safe memory. */
 4995         memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
 4996         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
 4997         memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz);
 4998         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
 4999 
 5000         /* Tell adapter where to find runtime sections. */
 5001         if ((error = wpi_nic_lock(sc)) != 0)
 5002                 return error;
 5003         wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
 5004         wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz);
 5005         wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
 5006             dma->paddr + WPI_FW_DATA_MAXSZ);
 5007         wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE,
 5008             WPI_FW_UPDATED | fw->main.textsz);
 5009         wpi_nic_unlock(sc);
 5010 
 5011         return 0;
 5012 }
 5013 
 5014 static int
 5015 wpi_read_firmware(struct wpi_softc *sc)
 5016 {
 5017         const struct firmware *fp;
 5018         struct wpi_fw_info *fw = &sc->fw;
 5019         const struct wpi_firmware_hdr *hdr;
 5020         int error;
 5021 
 5022         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 5023 
 5024         DPRINTF(sc, WPI_DEBUG_FIRMWARE,
 5025             "Attempting Loading Firmware from %s module\n", WPI_FW_NAME);
 5026 
 5027         WPI_UNLOCK(sc);
 5028         fp = firmware_get(WPI_FW_NAME);
 5029         WPI_LOCK(sc);
 5030 
 5031         if (fp == NULL) {
 5032                 device_printf(sc->sc_dev,
 5033                     "could not load firmware image '%s'\n", WPI_FW_NAME);
 5034                 return EINVAL;
 5035         }
 5036 
 5037         sc->fw_fp = fp;
 5038 
 5039         if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
 5040                 device_printf(sc->sc_dev,
 5041                     "firmware file too short: %zu bytes\n", fp->datasize);
 5042                 error = EINVAL;
 5043                 goto fail;
 5044         }
 5045 
 5046         fw->size = fp->datasize;
 5047         fw->data = (const uint8_t *)fp->data;
 5048 
 5049         /* Extract firmware header information. */
 5050         hdr = (const struct wpi_firmware_hdr *)fw->data;
 5051 
 5052         /*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
 5053            |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
 5054 
 5055         fw->main.textsz = le32toh(hdr->rtextsz);
 5056         fw->main.datasz = le32toh(hdr->rdatasz);
 5057         fw->init.textsz = le32toh(hdr->itextsz);
 5058         fw->init.datasz = le32toh(hdr->idatasz);
 5059         fw->boot.textsz = le32toh(hdr->btextsz);
 5060         fw->boot.datasz = 0;
 5061 
 5062         /* Sanity-check firmware header. */
 5063         if (fw->main.textsz > WPI_FW_TEXT_MAXSZ ||
 5064             fw->main.datasz > WPI_FW_DATA_MAXSZ ||
 5065             fw->init.textsz > WPI_FW_TEXT_MAXSZ ||
 5066             fw->init.datasz > WPI_FW_DATA_MAXSZ ||
 5067             fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
 5068             (fw->boot.textsz & 3) != 0) {
 5069                 device_printf(sc->sc_dev, "invalid firmware header\n");
 5070                 error = EINVAL;
 5071                 goto fail;
 5072         }
 5073 
 5074         /* Check that all firmware sections fit. */
 5075         if (fw->size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
 5076             fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
 5077                 device_printf(sc->sc_dev,
 5078                     "firmware file too short: %zu bytes\n", fw->size);
 5079                 error = EINVAL;
 5080                 goto fail;
 5081         }
 5082 
 5083         /* Get pointers to firmware sections. */
 5084         fw->main.text = (const uint8_t *)(hdr + 1);
 5085         fw->main.data = fw->main.text + fw->main.textsz;
 5086         fw->init.text = fw->main.data + fw->main.datasz;
 5087         fw->init.data = fw->init.text + fw->init.textsz;
 5088         fw->boot.text = fw->init.data + fw->init.datasz;
 5089 
 5090         DPRINTF(sc, WPI_DEBUG_FIRMWARE,
 5091             "Firmware Version: Major %d, Minor %d, Driver %d, \n"
 5092             "runtime (text: %u, data: %u) init (text: %u, data %u) "
 5093             "boot (text %u)\n", hdr->major, hdr->minor, le32toh(hdr->driver),
 5094             fw->main.textsz, fw->main.datasz,
 5095             fw->init.textsz, fw->init.datasz, fw->boot.textsz);
 5096 
 5097         DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.text %p\n", fw->main.text);
 5098         DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.data %p\n", fw->main.data);
 5099         DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.text %p\n", fw->init.text);
 5100         DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.data %p\n", fw->init.data);
 5101         DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->boot.text %p\n", fw->boot.text);
 5102 
 5103         return 0;
 5104 
 5105 fail:   wpi_unload_firmware(sc);
 5106         return error;
 5107 }
 5108 
 5109 /**
 5110  * Free the referenced firmware image
 5111  */
 5112 static void
 5113 wpi_unload_firmware(struct wpi_softc *sc)
 5114 {
 5115         if (sc->fw_fp != NULL) {
 5116                 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
 5117                 sc->fw_fp = NULL;
 5118         }
 5119 }
 5120 
 5121 static int
 5122 wpi_clock_wait(struct wpi_softc *sc)
 5123 {
 5124         int ntries;
 5125 
 5126         /* Set "initialization complete" bit. */
 5127         WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
 5128 
 5129         /* Wait for clock stabilization. */
 5130         for (ntries = 0; ntries < 2500; ntries++) {
 5131                 if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY)
 5132                         return 0;
 5133                 DELAY(100);
 5134         }
 5135         device_printf(sc->sc_dev,
 5136             "%s: timeout waiting for clock stabilization\n", __func__);
 5137 
 5138         return ETIMEDOUT;
 5139 }
 5140 
 5141 static int
 5142 wpi_apm_init(struct wpi_softc *sc)
 5143 {
 5144         uint32_t reg;
 5145         int error;
 5146 
 5147         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 5148 
 5149         /* Disable L0s exit timer (NMI bug workaround). */
 5150         WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_DIS_L0S_TIMER);
 5151         /* Don't wait for ICH L0s (ICH bug workaround). */
 5152         WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX);
 5153 
 5154         /* Set FH wait threshold to max (HW bug under stress workaround). */
 5155         WPI_SETBITS(sc, WPI_DBG_HPET_MEM, 0xffff0000);
 5156 
 5157         /* Retrieve PCIe Active State Power Management (ASPM). */
 5158         reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 1);
 5159         /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
 5160         if (reg & PCIEM_LINK_CTL_ASPMC_L1)      /* L1 Entry enabled. */
 5161                 WPI_SETBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
 5162         else
 5163                 WPI_CLRBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
 5164 
 5165         WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT);
 5166 
 5167         /* Wait for clock stabilization before accessing prph. */
 5168         if ((error = wpi_clock_wait(sc)) != 0)
 5169                 return error;
 5170 
 5171         if ((error = wpi_nic_lock(sc)) != 0)
 5172                 return error;
 5173         /* Cleanup. */
 5174         wpi_prph_write(sc, WPI_APMG_CLK_DIS, 0x00000400);
 5175         wpi_prph_clrbits(sc, WPI_APMG_PS, 0x00000200);
 5176 
 5177         /* Enable DMA and BSM (Bootstrap State Machine). */
 5178         wpi_prph_write(sc, WPI_APMG_CLK_EN,
 5179             WPI_APMG_CLK_CTRL_DMA_CLK_RQT | WPI_APMG_CLK_CTRL_BSM_CLK_RQT);
 5180         DELAY(20);
 5181         /* Disable L1-Active. */
 5182         wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS);
 5183         wpi_nic_unlock(sc);
 5184 
 5185         return 0;
 5186 }
 5187 
 5188 static void
 5189 wpi_apm_stop_master(struct wpi_softc *sc)
 5190 {
 5191         int ntries;
 5192 
 5193         /* Stop busmaster DMA activity. */
 5194         WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER);
 5195 
 5196         if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) ==
 5197             WPI_GP_CNTRL_MAC_PS)
 5198                 return; /* Already asleep. */
 5199 
 5200         for (ntries = 0; ntries < 100; ntries++) {
 5201                 if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED)
 5202                         return;
 5203                 DELAY(10);
 5204         }
 5205         device_printf(sc->sc_dev, "%s: timeout waiting for master\n",
 5206             __func__);
 5207 }
 5208 
 5209 static void
 5210 wpi_apm_stop(struct wpi_softc *sc)
 5211 {
 5212         wpi_apm_stop_master(sc);
 5213 
 5214         /* Reset the entire device. */
 5215         WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW);
 5216         DELAY(10);
 5217         /* Clear "initialization complete" bit. */
 5218         WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
 5219 }
 5220 
 5221 static void
 5222 wpi_nic_config(struct wpi_softc *sc)
 5223 {
 5224         uint32_t rev;
 5225 
 5226         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 5227 
 5228         /* voodoo from the Linux "driver".. */
 5229         rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
 5230         if ((rev & 0xc0) == 0x40)
 5231                 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB);
 5232         else if (!(rev & 0x80))
 5233                 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM);
 5234 
 5235         if (sc->cap == 0x80)
 5236                 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC);
 5237 
 5238         if ((sc->rev & 0xf0) == 0xd0)
 5239                 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
 5240         else
 5241                 WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
 5242 
 5243         if (sc->type > 1)
 5244                 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B);
 5245 }
 5246 
 5247 static int
 5248 wpi_hw_init(struct wpi_softc *sc)
 5249 {
 5250         uint8_t chnl;
 5251         int ntries, error;
 5252 
 5253         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
 5254 
 5255         /* Clear pending interrupts. */
 5256         WPI_WRITE(sc, WPI_INT, 0xffffffff);
 5257 
 5258         if ((error = wpi_apm_init(sc)) != 0) {
 5259                 device_printf(sc->sc_dev,
 5260                     "%s: could not power ON adapter, error %d\n", __func__,
 5261                     error);
 5262                 return error;
 5263         }
 5264 
 5265         /* Select VMAIN power source. */
 5266         if ((error = wpi_nic_lock(sc)) != 0)
 5267                 return error;
 5268         wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK);
 5269         wpi_nic_unlock(sc);
 5270         /* Spin until VMAIN gets selected. */
 5271         for (ntries = 0; ntries < 5000; ntries++) {
 5272                 if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN)
 5273                         break;
 5274                 DELAY(10);
 5275         }
 5276         if (ntries == 5000) {
 5277                 device_printf(sc->sc_dev, "timeout selecting power source\n");
 5278                 return ETIMEDOUT;
 5279         }
 5280 
 5281         /* Perform adapter initialization. */
 5282         wpi_nic_config(sc);
 5283 
 5284         /* Initialize RX ring. */
 5285         if ((error = wpi_nic_lock(sc)) != 0)
 5286                 return error;
 5287         /* Set physical address of RX ring. */
 5288         WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr);
 5289         /* Set physical address of RX read pointer. */
 5290         WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr +
 5291             offsetof(struct wpi_shared, next));
 5292         WPI_WRITE(sc, WPI_FH_RX_WPTR, 0);
 5293         /* Enable RX. */
 5294         WPI_WRITE(sc, WPI_FH_RX_CONFIG,
 5295             WPI_FH_RX_CONFIG_DMA_ENA |
 5296             WPI_FH_RX_CONFIG_RDRBD_ENA |
 5297             WPI_FH_RX_CONFIG_WRSTATUS_ENA |
 5298             WPI_FH_RX_CONFIG_MAXFRAG |
 5299             WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) |
 5300             WPI_FH_RX_CONFIG_IRQ_DST_HOST |
 5301             WPI_FH_RX_CONFIG_IRQ_TIMEOUT(1));
 5302         (void)WPI_READ(sc, WPI_FH_RSSR_TBL);    /* barrier */
 5303         wpi_nic_unlock(sc);
 5304         WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7);
 5305 
 5306         /* Initialize TX rings. */
 5307         if ((error = wpi_nic_lock(sc)) != 0)
 5308                 return error;
 5309         wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2);      /* bypass mode */
 5310         wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1);   /* enable RA0 */
 5311         /* Enable all 6 TX rings. */
 5312         wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f);
 5313         wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000);
 5314         wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002);
 5315         wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4);
 5316         wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5);
 5317         /* Set physical address of TX rings. */
 5318         WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr);
 5319         WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5);
 5320 
 5321         /* Enable all DMA channels. */
 5322         for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
 5323                 WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0);
 5324                 WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0);
 5325                 WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008);
 5326         }
 5327         wpi_nic_unlock(sc);
 5328         (void)WPI_READ(sc, WPI_FH_TX_BASE);     /* barrier */
 5329 
 5330         /* Clear "radio off" and "commands blocked" bits. */
 5331         WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
 5332         WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED);
 5333 
 5334         /* Clear pending interrupts. */
 5335         WPI_WRITE(sc, WPI_INT, 0xffffffff);
 5336         /* Enable interrupts. */
 5337         WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
 5338 
 5339         /* _Really_ make sure "radio off" bit is cleared! */
 5340         WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
 5341         WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
 5342 
 5343         if ((error = wpi_load_firmware(sc)) != 0) {
 5344                 device_printf(sc->sc_dev,
 5345                     "%s: could not load firmware, error %d\n", __func__,
 5346                     error);
 5347                 return error;
 5348         }
 5349         /* Wait at most one second for firmware alive notification. */
 5350         if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
 5351                 device_printf(sc->sc_dev,
 5352                     "%s: timeout waiting for adapter to initialize, error %d\n",
 5353                     __func__, error);
 5354                 return error;
 5355         }
 5356 
 5357         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
 5358 
 5359         /* Do post-firmware initialization. */
 5360         return wpi_post_alive(sc);
 5361 }
 5362 
 5363 static void
 5364 wpi_hw_stop(struct wpi_softc *sc)
 5365 {
 5366         uint8_t chnl, qid;
 5367         int ntries;
 5368 
 5369         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 5370 
 5371         if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP)
 5372                 wpi_nic_lock(sc);
 5373 
 5374         WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO);
 5375 
 5376         /* Disable interrupts. */
 5377         WPI_WRITE(sc, WPI_INT_MASK, 0);
 5378         WPI_WRITE(sc, WPI_INT, 0xffffffff);
 5379         WPI_WRITE(sc, WPI_FH_INT, 0xffffffff);
 5380 
 5381         /* Make sure we no longer hold the NIC lock. */
 5382         wpi_nic_unlock(sc);
 5383 
 5384         if (wpi_nic_lock(sc) == 0) {
 5385                 /* Stop TX scheduler. */
 5386                 wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0);
 5387                 wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0);
 5388 
 5389                 /* Stop all DMA channels. */
 5390                 for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
 5391                         WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0);
 5392                         for (ntries = 0; ntries < 200; ntries++) {
 5393                                 if (WPI_READ(sc, WPI_FH_TX_STATUS) &
 5394                                     WPI_FH_TX_STATUS_IDLE(chnl))
 5395                                         break;
 5396                                 DELAY(10);
 5397                         }
 5398                 }
 5399                 wpi_nic_unlock(sc);
 5400         }
 5401 
 5402         /* Stop RX ring. */
 5403         wpi_reset_rx_ring(sc);
 5404 
 5405         /* Reset all TX rings. */
 5406         for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++)
 5407                 wpi_reset_tx_ring(sc, &sc->txq[qid]);
 5408 
 5409         if (wpi_nic_lock(sc) == 0) {
 5410                 wpi_prph_write(sc, WPI_APMG_CLK_DIS,
 5411                     WPI_APMG_CLK_CTRL_DMA_CLK_RQT);
 5412                 wpi_nic_unlock(sc);
 5413         }
 5414         DELAY(5);
 5415         /* Power OFF adapter. */
 5416         wpi_apm_stop(sc);
 5417 }
 5418 
 5419 static void
 5420 wpi_radio_on(void *arg0, int pending)
 5421 {
 5422         struct wpi_softc *sc = arg0;
 5423         struct ieee80211com *ic = &sc->sc_ic;
 5424         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 5425 
 5426         device_printf(sc->sc_dev, "RF switch: radio enabled\n");
 5427 
 5428         WPI_LOCK(sc);
 5429         callout_stop(&sc->watchdog_rfkill);
 5430         WPI_UNLOCK(sc);
 5431 
 5432         if (vap != NULL)
 5433                 ieee80211_init(vap);
 5434 }
 5435 
 5436 static void
 5437 wpi_radio_off(void *arg0, int pending)
 5438 {
 5439         struct wpi_softc *sc = arg0;
 5440         struct ieee80211com *ic = &sc->sc_ic;
 5441         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 5442 
 5443         device_printf(sc->sc_dev, "RF switch: radio disabled\n");
 5444 
 5445         ieee80211_notify_radio(ic, 0);
 5446         wpi_stop(sc);
 5447         if (vap != NULL)
 5448                 ieee80211_stop(vap);
 5449 
 5450         WPI_LOCK(sc);
 5451         callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, sc);
 5452         WPI_UNLOCK(sc);
 5453 }
 5454 
 5455 static int
 5456 wpi_init(struct wpi_softc *sc)
 5457 {
 5458         int error = 0;
 5459 
 5460         WPI_LOCK(sc);
 5461 
 5462         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
 5463 
 5464         if (sc->sc_running != 0)
 5465                 goto end;
 5466 
 5467         /* Check that the radio is not disabled by hardware switch. */
 5468         if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) {
 5469                 device_printf(sc->sc_dev,
 5470                     "RF switch: radio disabled (%s)\n", __func__);
 5471                 callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
 5472                     sc);
 5473                 error = EINPROGRESS;
 5474                 goto end;
 5475         }
 5476 
 5477         /* Read firmware images from the filesystem. */
 5478         if ((error = wpi_read_firmware(sc)) != 0) {
 5479                 device_printf(sc->sc_dev,
 5480                     "%s: could not read firmware, error %d\n", __func__,
 5481                     error);
 5482                 goto end;
 5483         }
 5484 
 5485         sc->sc_running = 1;
 5486 
 5487         /* Initialize hardware and upload firmware. */
 5488         error = wpi_hw_init(sc);
 5489         wpi_unload_firmware(sc);
 5490         if (error != 0) {
 5491                 device_printf(sc->sc_dev,
 5492                     "%s: could not initialize hardware, error %d\n", __func__,
 5493                     error);
 5494                 goto fail;
 5495         }
 5496 
 5497         /* Configure adapter now that it is ready. */
 5498         if ((error = wpi_config(sc)) != 0) {
 5499                 device_printf(sc->sc_dev,
 5500                     "%s: could not configure device, error %d\n", __func__,
 5501                     error);
 5502                 goto fail;
 5503         }
 5504 
 5505         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
 5506 
 5507         WPI_UNLOCK(sc);
 5508 
 5509         return 0;
 5510 
 5511 fail:   wpi_stop_locked(sc);
 5512 
 5513 end:    DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
 5514         WPI_UNLOCK(sc);
 5515 
 5516         return error;
 5517 }
 5518 
 5519 static void
 5520 wpi_stop_locked(struct wpi_softc *sc)
 5521 {
 5522 
 5523         WPI_LOCK_ASSERT(sc);
 5524 
 5525         if (sc->sc_running == 0)
 5526                 return;
 5527 
 5528         WPI_TX_LOCK(sc);
 5529         WPI_TXQ_LOCK(sc);
 5530         sc->sc_running = 0;
 5531         WPI_TXQ_UNLOCK(sc);
 5532         WPI_TX_UNLOCK(sc);
 5533 
 5534         WPI_TXQ_STATE_LOCK(sc);
 5535         callout_stop(&sc->tx_timeout);
 5536         WPI_TXQ_STATE_UNLOCK(sc);
 5537 
 5538         WPI_RXON_LOCK(sc);
 5539         callout_stop(&sc->scan_timeout);
 5540         callout_stop(&sc->calib_to);
 5541         WPI_RXON_UNLOCK(sc);
 5542 
 5543         /* Power OFF hardware. */
 5544         wpi_hw_stop(sc);
 5545 }
 5546 
 5547 static void
 5548 wpi_stop(struct wpi_softc *sc)
 5549 {
 5550         WPI_LOCK(sc);
 5551         wpi_stop_locked(sc);
 5552         WPI_UNLOCK(sc);
 5553 }
 5554 
 5555 /*
 5556  * Callback from net80211 to start a scan.
 5557  */
 5558 static void
 5559 wpi_scan_start(struct ieee80211com *ic)
 5560 {
 5561         struct wpi_softc *sc = ic->ic_softc;
 5562 
 5563         wpi_set_led(sc, WPI_LED_LINK, 20, 2);
 5564 }
 5565 
 5566 /*
 5567  * Callback from net80211 to terminate a scan.
 5568  */
 5569 static void
 5570 wpi_scan_end(struct ieee80211com *ic)
 5571 {
 5572         struct wpi_softc *sc = ic->ic_softc;
 5573         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 5574 
 5575         if (vap->iv_state == IEEE80211_S_RUN)
 5576                 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
 5577 }
 5578 
 5579 /**
 5580  * Called by the net80211 framework to indicate to the driver
 5581  * that the channel should be changed
 5582  */
 5583 static void
 5584 wpi_set_channel(struct ieee80211com *ic)
 5585 {
 5586         const struct ieee80211_channel *c = ic->ic_curchan;
 5587         struct wpi_softc *sc = ic->ic_softc;
 5588         int error;
 5589 
 5590         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 5591 
 5592         WPI_LOCK(sc);
 5593         sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
 5594         sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
 5595         WPI_UNLOCK(sc);
 5596         WPI_TX_LOCK(sc);
 5597         sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
 5598         sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
 5599         WPI_TX_UNLOCK(sc);
 5600 
 5601         /*
 5602          * Only need to set the channel in Monitor mode. AP scanning and auth
 5603          * are already taken care of by their respective firmware commands.
 5604          */
 5605         if (ic->ic_opmode == IEEE80211_M_MONITOR) {
 5606                 WPI_RXON_LOCK(sc);
 5607                 sc->rxon.chan = ieee80211_chan2ieee(ic, c);
 5608                 if (IEEE80211_IS_CHAN_2GHZ(c)) {
 5609                         sc->rxon.flags |= htole32(WPI_RXON_AUTO |
 5610                             WPI_RXON_24GHZ);
 5611                 } else {
 5612                         sc->rxon.flags &= ~htole32(WPI_RXON_AUTO |
 5613                             WPI_RXON_24GHZ);
 5614                 }
 5615                 if ((error = wpi_send_rxon(sc, 0, 1)) != 0)
 5616                         device_printf(sc->sc_dev,
 5617                             "%s: error %d setting channel\n", __func__,
 5618                             error);
 5619                 WPI_RXON_UNLOCK(sc);
 5620         }
 5621 }
 5622 
 5623 /**
 5624  * Called by net80211 to indicate that we need to scan the current
 5625  * channel. The channel is previously be set via the wpi_set_channel
 5626  * callback.
 5627  */
 5628 static void
 5629 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
 5630 {
 5631         struct ieee80211vap *vap = ss->ss_vap;
 5632         struct ieee80211com *ic = vap->iv_ic;
 5633         struct wpi_softc *sc = ic->ic_softc;
 5634         int error;
 5635 
 5636         WPI_RXON_LOCK(sc);
 5637         error = wpi_scan(sc, ic->ic_curchan);
 5638         WPI_RXON_UNLOCK(sc);
 5639         if (error != 0)
 5640                 ieee80211_cancel_scan(vap);
 5641 }
 5642 
 5643 /**
 5644  * Called by the net80211 framework to indicate
 5645  * the minimum dwell time has been met, terminate the scan.
 5646  * We don't actually terminate the scan as the firmware will notify
 5647  * us when it's finished and we have no way to interrupt it.
 5648  */
 5649 static void
 5650 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
 5651 {
 5652         /* NB: don't try to abort scan; wait for firmware to finish */
 5653 }

Cache object: 8b05b93a4c91c086a8cfbf7a15cc28a0


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.