The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/wpi/if_wpi.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2006,2007
    3  *      Damien Bergamini <damien.bergamini@free.fr>
    4  *      Benjamin Close <Benjamin.Close@clearchain.com>
    5  * Copyright (c) 2015 Andriy Voskoboinyk <avos@FreeBSD.org>
    6  *
    7  * Permission to use, copy, modify, and distribute this software for any
    8  * purpose with or without fee is hereby granted, provided that the above
    9  * copyright notice and this permission notice appear in all copies.
   10  *
   11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
   13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
   14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
   15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
   16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
   17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
   18  */
   19 
   20 #include <sys/cdefs.h>
   21 __FBSDID("$FreeBSD$");
   22 
   23 /*
   24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
   25  *
   26  * The 3945ABG network adapter doesn't use traditional hardware as
   27  * many other adaptors do. Instead at run time the eeprom is set into a known
   28  * state and told to load boot firmware. The boot firmware loads an init and a
   29  * main  binary firmware image into SRAM on the card via DMA.
   30  * Once the firmware is loaded, the driver/hw then
   31  * communicate by way of circular dma rings via the SRAM to the firmware.
   32  *
   33  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
   34  * The 4 tx data rings allow for prioritization QoS.
   35  *
   36  * The rx data ring consists of 32 dma buffers. Two registers are used to
   37  * indicate where in the ring the driver and the firmware are up to. The
   38  * driver sets the initial read index (reg1) and the initial write index (reg2),
   39  * the firmware updates the read index (reg1) on rx of a packet and fires an
   40  * interrupt. The driver then processes the buffers starting at reg1 indicating
   41  * to the firmware which buffers have been accessed by updating reg2. At the
   42  * same time allocating new memory for the processed buffer.
   43  *
   44  * A similar thing happens with the tx rings. The difference is the firmware
   45  * stop processing buffers once the queue is full and until confirmation
   46  * of a successful transmition (tx_done) has occurred.
   47  *
   48  * The command ring operates in the same manner as the tx queues.
   49  *
   50  * All communication direct to the card (ie eeprom) is classed as Stage1
   51  * communication
   52  *
   53  * All communication via the firmware to the card is classed as State2.
   54  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
   55  * firmware. The bootstrap firmware and runtime firmware are loaded
   56  * from host memory via dma to the card then told to execute. From this point
   57  * on the majority of communications between the driver and the card goes
   58  * via the firmware.
   59  */
   60 
   61 #include "opt_wlan.h"
   62 #include "opt_wpi.h"
   63 
   64 #include <sys/param.h>
   65 #include <sys/sysctl.h>
   66 #include <sys/sockio.h>
   67 #include <sys/mbuf.h>
   68 #include <sys/kernel.h>
   69 #include <sys/socket.h>
   70 #include <sys/systm.h>
   71 #include <sys/malloc.h>
   72 #include <sys/queue.h>
   73 #include <sys/taskqueue.h>
   74 #include <sys/module.h>
   75 #include <sys/bus.h>
   76 #include <sys/endian.h>
   77 #include <sys/linker.h>
   78 #include <sys/firmware.h>
   79 
   80 #include <machine/bus.h>
   81 #include <machine/resource.h>
   82 #include <sys/rman.h>
   83 
   84 #include <dev/pci/pcireg.h>
   85 #include <dev/pci/pcivar.h>
   86 
   87 #include <net/bpf.h>
   88 #include <net/if.h>
   89 #include <net/if_var.h>
   90 #include <net/if_arp.h>
   91 #include <net/ethernet.h>
   92 #include <net/if_dl.h>
   93 #include <net/if_media.h>
   94 #include <net/if_types.h>
   95 
   96 #include <netinet/in.h>
   97 #include <netinet/in_systm.h>
   98 #include <netinet/in_var.h>
   99 #include <netinet/if_ether.h>
  100 #include <netinet/ip.h>
  101 
  102 #include <net80211/ieee80211_var.h>
  103 #include <net80211/ieee80211_radiotap.h>
  104 #include <net80211/ieee80211_regdomain.h>
  105 #include <net80211/ieee80211_ratectl.h>
  106 
  107 #include <dev/wpi/if_wpireg.h>
  108 #include <dev/wpi/if_wpivar.h>
  109 #include <dev/wpi/if_wpi_debug.h>
  110 
  111 struct wpi_ident {
  112         uint16_t        vendor;
  113         uint16_t        device;
  114         uint16_t        subdevice;
  115         const char      *name;
  116 };
  117 
  118 static const struct wpi_ident wpi_ident_table[] = {
  119         /* The below entries support ABG regardless of the subid */
  120         { 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
  121         { 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
  122         /* The below entries only support BG */
  123         { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
  124         { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
  125         { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
  126         { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
  127         { 0, 0, 0, NULL }
  128 };
  129 
  130 static int      wpi_probe(device_t);
  131 static int      wpi_attach(device_t);
  132 static void     wpi_radiotap_attach(struct wpi_softc *);
  133 static void     wpi_sysctlattach(struct wpi_softc *);
  134 static void     wpi_init_beacon(struct wpi_vap *);
  135 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
  136                     const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
  137                     const uint8_t [IEEE80211_ADDR_LEN],
  138                     const uint8_t [IEEE80211_ADDR_LEN]);
  139 static void     wpi_vap_delete(struct ieee80211vap *);
  140 static int      wpi_detach(device_t);
  141 static int      wpi_shutdown(device_t);
  142 static int      wpi_suspend(device_t);
  143 static int      wpi_resume(device_t);
  144 static int      wpi_nic_lock(struct wpi_softc *);
  145 static int      wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
  146 static void     wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
  147 static int      wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
  148                     void **, bus_size_t, bus_size_t);
  149 static void     wpi_dma_contig_free(struct wpi_dma_info *);
  150 static int      wpi_alloc_shared(struct wpi_softc *);
  151 static void     wpi_free_shared(struct wpi_softc *);
  152 static int      wpi_alloc_fwmem(struct wpi_softc *);
  153 static void     wpi_free_fwmem(struct wpi_softc *);
  154 static int      wpi_alloc_rx_ring(struct wpi_softc *);
  155 static void     wpi_update_rx_ring(struct wpi_softc *);
  156 static void     wpi_update_rx_ring_ps(struct wpi_softc *);
  157 static void     wpi_reset_rx_ring(struct wpi_softc *);
  158 static void     wpi_free_rx_ring(struct wpi_softc *);
  159 static int      wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
  160                     uint8_t);
  161 static void     wpi_update_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
  162 static void     wpi_update_tx_ring_ps(struct wpi_softc *,
  163                     struct wpi_tx_ring *);
  164 static void     wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
  165 static void     wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
  166 static int      wpi_read_eeprom(struct wpi_softc *,
  167                     uint8_t macaddr[IEEE80211_ADDR_LEN]);
  168 static uint32_t wpi_eeprom_channel_flags(struct wpi_eeprom_chan *);
  169 static void     wpi_read_eeprom_band(struct wpi_softc *, uint8_t, int, int *,
  170                     struct ieee80211_channel[]);
  171 static int      wpi_read_eeprom_channels(struct wpi_softc *, uint8_t);
  172 static struct wpi_eeprom_chan *wpi_find_eeprom_channel(struct wpi_softc *,
  173                     struct ieee80211_channel *);
  174 static void     wpi_getradiocaps(struct ieee80211com *, int, int *,
  175                     struct ieee80211_channel[]);
  176 static int      wpi_setregdomain(struct ieee80211com *,
  177                     struct ieee80211_regdomain *, int,
  178                     struct ieee80211_channel[]);
  179 static int      wpi_read_eeprom_group(struct wpi_softc *, uint8_t);
  180 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
  181                     const uint8_t mac[IEEE80211_ADDR_LEN]);
  182 static void     wpi_node_free(struct ieee80211_node *);
  183 static void     wpi_ibss_recv_mgmt(struct ieee80211_node *, struct mbuf *, int,
  184                     const struct ieee80211_rx_stats *,
  185                     int, int);
  186 static void     wpi_restore_node(void *, struct ieee80211_node *);
  187 static void     wpi_restore_node_table(struct wpi_softc *, struct wpi_vap *);
  188 static int      wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
  189 static void     wpi_calib_timeout(void *);
  190 static void     wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *,
  191                     struct wpi_rx_data *);
  192 static void     wpi_rx_statistics(struct wpi_softc *, struct wpi_rx_desc *,
  193                     struct wpi_rx_data *);
  194 static void     wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *);
  195 static void     wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *);
  196 static void     wpi_notif_intr(struct wpi_softc *);
  197 static void     wpi_wakeup_intr(struct wpi_softc *);
  198 #ifdef WPI_DEBUG
  199 static void     wpi_debug_registers(struct wpi_softc *);
  200 #endif
  201 static void     wpi_fatal_intr(struct wpi_softc *);
  202 static void     wpi_intr(void *);
  203 static void     wpi_free_txfrags(struct wpi_softc *, uint16_t);
  204 static int      wpi_cmd2(struct wpi_softc *, struct wpi_buf *);
  205 static int      wpi_tx_data(struct wpi_softc *, struct mbuf *,
  206                     struct ieee80211_node *);
  207 static int      wpi_tx_data_raw(struct wpi_softc *, struct mbuf *,
  208                     struct ieee80211_node *,
  209                     const struct ieee80211_bpf_params *);
  210 static int      wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
  211                     const struct ieee80211_bpf_params *);
  212 static int      wpi_transmit(struct ieee80211com *, struct mbuf *);
  213 static void     wpi_watchdog_rfkill(void *);
  214 static void     wpi_scan_timeout(void *);
  215 static void     wpi_tx_timeout(void *);
  216 static void     wpi_parent(struct ieee80211com *);
  217 static int      wpi_cmd(struct wpi_softc *, uint8_t, const void *, uint16_t,
  218                     int);
  219 static int      wpi_mrr_setup(struct wpi_softc *);
  220 static int      wpi_add_node(struct wpi_softc *, struct ieee80211_node *);
  221 static int      wpi_add_broadcast_node(struct wpi_softc *, int);
  222 static int      wpi_add_ibss_node(struct wpi_softc *, struct ieee80211_node *);
  223 static void     wpi_del_node(struct wpi_softc *, struct ieee80211_node *);
  224 static int      wpi_updateedca(struct ieee80211com *);
  225 static void     wpi_set_promisc(struct wpi_softc *);
  226 static void     wpi_update_promisc(struct ieee80211com *);
  227 static void     wpi_update_mcast(struct ieee80211com *);
  228 static void     wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
  229 static int      wpi_set_timing(struct wpi_softc *, struct ieee80211_node *);
  230 static void     wpi_power_calibration(struct wpi_softc *);
  231 static int      wpi_set_txpower(struct wpi_softc *, int);
  232 static int      wpi_get_power_index(struct wpi_softc *,
  233                     struct wpi_power_group *, uint8_t, int, int);
  234 static int      wpi_set_pslevel(struct wpi_softc *, uint8_t, int, int);
  235 static int      wpi_send_btcoex(struct wpi_softc *);
  236 static int      wpi_send_rxon(struct wpi_softc *, int, int);
  237 static int      wpi_config(struct wpi_softc *);
  238 static uint16_t wpi_get_active_dwell_time(struct wpi_softc *,
  239                     struct ieee80211_channel *, uint8_t);
  240 static uint16_t wpi_limit_dwell(struct wpi_softc *, uint16_t);
  241 static uint16_t wpi_get_passive_dwell_time(struct wpi_softc *,
  242                     struct ieee80211_channel *);
  243 static uint32_t wpi_get_scan_pause_time(uint32_t, uint16_t);
  244 static int      wpi_scan(struct wpi_softc *, struct ieee80211_channel *);
  245 static int      wpi_auth(struct wpi_softc *, struct ieee80211vap *);
  246 static int      wpi_config_beacon(struct wpi_vap *);
  247 static int      wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
  248 static void     wpi_update_beacon(struct ieee80211vap *, int);
  249 static void     wpi_newassoc(struct ieee80211_node *, int);
  250 static int      wpi_run(struct wpi_softc *, struct ieee80211vap *);
  251 static int      wpi_load_key(struct ieee80211_node *,
  252                     const struct ieee80211_key *);
  253 static void     wpi_load_key_cb(void *, struct ieee80211_node *);
  254 static int      wpi_set_global_keys(struct ieee80211_node *);
  255 static int      wpi_del_key(struct ieee80211_node *,
  256                     const struct ieee80211_key *);
  257 static void     wpi_del_key_cb(void *, struct ieee80211_node *);
  258 static int      wpi_process_key(struct ieee80211vap *,
  259                     const struct ieee80211_key *, int);
  260 static int      wpi_key_set(struct ieee80211vap *,
  261                     const struct ieee80211_key *);
  262 static int      wpi_key_delete(struct ieee80211vap *,
  263                     const struct ieee80211_key *);
  264 static int      wpi_post_alive(struct wpi_softc *);
  265 static int      wpi_load_bootcode(struct wpi_softc *, const uint8_t *,
  266                     uint32_t);
  267 static int      wpi_load_firmware(struct wpi_softc *);
  268 static int      wpi_read_firmware(struct wpi_softc *);
  269 static void     wpi_unload_firmware(struct wpi_softc *);
  270 static int      wpi_clock_wait(struct wpi_softc *);
  271 static int      wpi_apm_init(struct wpi_softc *);
  272 static void     wpi_apm_stop_master(struct wpi_softc *);
  273 static void     wpi_apm_stop(struct wpi_softc *);
  274 static void     wpi_nic_config(struct wpi_softc *);
  275 static int      wpi_hw_init(struct wpi_softc *);
  276 static void     wpi_hw_stop(struct wpi_softc *);
  277 static void     wpi_radio_on(void *, int);
  278 static void     wpi_radio_off(void *, int);
  279 static int      wpi_init(struct wpi_softc *);
  280 static void     wpi_stop_locked(struct wpi_softc *);
  281 static void     wpi_stop(struct wpi_softc *);
  282 static void     wpi_scan_start(struct ieee80211com *);
  283 static void     wpi_scan_end(struct ieee80211com *);
  284 static void     wpi_set_channel(struct ieee80211com *);
  285 static void     wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
  286 static void     wpi_scan_mindwell(struct ieee80211_scan_state *);
  287 
  288 static device_method_t wpi_methods[] = {
  289         /* Device interface */
  290         DEVMETHOD(device_probe,         wpi_probe),
  291         DEVMETHOD(device_attach,        wpi_attach),
  292         DEVMETHOD(device_detach,        wpi_detach),
  293         DEVMETHOD(device_shutdown,      wpi_shutdown),
  294         DEVMETHOD(device_suspend,       wpi_suspend),
  295         DEVMETHOD(device_resume,        wpi_resume),
  296 
  297         DEVMETHOD_END
  298 };
  299 
  300 static driver_t wpi_driver = {
  301         "wpi",
  302         wpi_methods,
  303         sizeof (struct wpi_softc)
  304 };
  305 static devclass_t wpi_devclass;
  306 
  307 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
  308 
  309 MODULE_VERSION(wpi, 1);
  310 
  311 MODULE_DEPEND(wpi, pci,  1, 1, 1);
  312 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
  313 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
  314 
  315 static int
  316 wpi_probe(device_t dev)
  317 {
  318         const struct wpi_ident *ident;
  319 
  320         for (ident = wpi_ident_table; ident->name != NULL; ident++) {
  321                 if (pci_get_vendor(dev) == ident->vendor &&
  322                     pci_get_device(dev) == ident->device) {
  323                         device_set_desc(dev, ident->name);
  324                         return (BUS_PROBE_DEFAULT);
  325                 }
  326         }
  327         return ENXIO;
  328 }
  329 
  330 static int
  331 wpi_attach(device_t dev)
  332 {
  333         struct wpi_softc *sc = (struct wpi_softc *)device_get_softc(dev);
  334         struct ieee80211com *ic;
  335         uint8_t i;
  336         int error, rid;
  337 #ifdef WPI_DEBUG
  338         int supportsa = 1;
  339         const struct wpi_ident *ident;
  340 #endif
  341 
  342         sc->sc_dev = dev;
  343 
  344 #ifdef WPI_DEBUG
  345         error = resource_int_value(device_get_name(sc->sc_dev),
  346             device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
  347         if (error != 0)
  348                 sc->sc_debug = 0;
  349 #else
  350         sc->sc_debug = 0;
  351 #endif
  352 
  353         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
  354 
  355         /*
  356          * Get the offset of the PCI Express Capability Structure in PCI
  357          * Configuration Space.
  358          */
  359         error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
  360         if (error != 0) {
  361                 device_printf(dev, "PCIe capability structure not found!\n");
  362                 return error;
  363         }
  364 
  365         /*
  366          * Some card's only support 802.11b/g not a, check to see if
  367          * this is one such card. A 0x0 in the subdevice table indicates
  368          * the entire subdevice range is to be ignored.
  369          */
  370 #ifdef WPI_DEBUG
  371         for (ident = wpi_ident_table; ident->name != NULL; ident++) {
  372                 if (ident->subdevice &&
  373                     pci_get_subdevice(dev) == ident->subdevice) {
  374                     supportsa = 0;
  375                     break;
  376                 }
  377         }
  378 #endif
  379 
  380         /* Clear device-specific "PCI retry timeout" register (41h). */
  381         pci_write_config(dev, 0x41, 0, 1);
  382 
  383         /* Enable bus-mastering. */
  384         pci_enable_busmaster(dev);
  385 
  386         rid = PCIR_BAR(0);
  387         sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
  388             RF_ACTIVE);
  389         if (sc->mem == NULL) {
  390                 device_printf(dev, "can't map mem space\n");
  391                 return ENOMEM;
  392         }
  393         sc->sc_st = rman_get_bustag(sc->mem);
  394         sc->sc_sh = rman_get_bushandle(sc->mem);
  395 
  396         rid = 1;
  397         if (pci_alloc_msi(dev, &rid) == 0)
  398                 rid = 1;
  399         else
  400                 rid = 0;
  401         /* Install interrupt handler. */
  402         sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
  403             (rid != 0 ? 0 : RF_SHAREABLE));
  404         if (sc->irq == NULL) {
  405                 device_printf(dev, "can't map interrupt\n");
  406                 error = ENOMEM;
  407                 goto fail;
  408         }
  409 
  410         WPI_LOCK_INIT(sc);
  411         WPI_TX_LOCK_INIT(sc);
  412         WPI_RXON_LOCK_INIT(sc);
  413         WPI_NT_LOCK_INIT(sc);
  414         WPI_TXQ_LOCK_INIT(sc);
  415         WPI_TXQ_STATE_LOCK_INIT(sc);
  416 
  417         /* Allocate DMA memory for firmware transfers. */
  418         if ((error = wpi_alloc_fwmem(sc)) != 0) {
  419                 device_printf(dev,
  420                     "could not allocate memory for firmware, error %d\n",
  421                     error);
  422                 goto fail;
  423         }
  424 
  425         /* Allocate shared page. */
  426         if ((error = wpi_alloc_shared(sc)) != 0) {
  427                 device_printf(dev, "could not allocate shared page\n");
  428                 goto fail;
  429         }
  430 
  431         /* Allocate TX rings - 4 for QoS purposes, 1 for commands. */
  432         for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
  433                 if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
  434                         device_printf(dev,
  435                             "could not allocate TX ring %d, error %d\n", i,
  436                             error);
  437                         goto fail;
  438                 }
  439         }
  440 
  441         /* Allocate RX ring. */
  442         if ((error = wpi_alloc_rx_ring(sc)) != 0) {
  443                 device_printf(dev, "could not allocate RX ring, error %d\n",
  444                     error);
  445                 goto fail;
  446         }
  447 
  448         /* Clear pending interrupts. */
  449         WPI_WRITE(sc, WPI_INT, 0xffffffff);
  450 
  451         ic = &sc->sc_ic;
  452         ic->ic_softc = sc;
  453         ic->ic_name = device_get_nameunit(dev);
  454         ic->ic_phytype = IEEE80211_T_OFDM;      /* not only, but not used */
  455         ic->ic_opmode = IEEE80211_M_STA;        /* default to BSS mode */
  456 
  457         /* Set device capabilities. */
  458         ic->ic_caps =
  459                   IEEE80211_C_STA               /* station mode supported */
  460                 | IEEE80211_C_IBSS              /* IBSS mode supported */
  461                 | IEEE80211_C_HOSTAP            /* Host access point mode */
  462                 | IEEE80211_C_MONITOR           /* monitor mode supported */
  463                 | IEEE80211_C_AHDEMO            /* adhoc demo mode */
  464                 | IEEE80211_C_BGSCAN            /* capable of bg scanning */
  465                 | IEEE80211_C_TXFRAG            /* handle tx frags */
  466                 | IEEE80211_C_TXPMGT            /* tx power management */
  467                 | IEEE80211_C_SHSLOT            /* short slot time supported */
  468                 | IEEE80211_C_WPA               /* 802.11i */
  469                 | IEEE80211_C_SHPREAMBLE        /* short preamble supported */
  470                 | IEEE80211_C_WME               /* 802.11e */
  471                 | IEEE80211_C_PMGT              /* Station-side power mgmt */
  472                 ;
  473 
  474         ic->ic_cryptocaps =
  475                   IEEE80211_CRYPTO_AES_CCM;
  476 
  477         /*
  478          * Read in the eeprom and also setup the channels for
  479          * net80211. We don't set the rates as net80211 does this for us
  480          */
  481         if ((error = wpi_read_eeprom(sc, ic->ic_macaddr)) != 0) {
  482                 device_printf(dev, "could not read EEPROM, error %d\n",
  483                     error);
  484                 goto fail;
  485         }
  486 
  487 #ifdef WPI_DEBUG
  488         if (bootverbose) {
  489                 device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n",
  490                     sc->domain);
  491                 device_printf(sc->sc_dev, "Hardware Type: %c\n",
  492                     sc->type > 1 ? 'B': '?');
  493                 device_printf(sc->sc_dev, "Hardware Revision: %c\n",
  494                     ((sc->rev & 0xf0) == 0xd0) ? 'D': '?');
  495                 device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
  496                     supportsa ? "does" : "does not");
  497 
  498                 /* XXX hw_config uses the PCIDEV for the Hardware rev. Must
  499                    check what sc->rev really represents - benjsc 20070615 */
  500         }
  501 #endif
  502 
  503         ieee80211_ifattach(ic);
  504         ic->ic_vap_create = wpi_vap_create;
  505         ic->ic_vap_delete = wpi_vap_delete;
  506         ic->ic_parent = wpi_parent;
  507         ic->ic_raw_xmit = wpi_raw_xmit;
  508         ic->ic_transmit = wpi_transmit;
  509         ic->ic_node_alloc = wpi_node_alloc;
  510         sc->sc_node_free = ic->ic_node_free;
  511         ic->ic_node_free = wpi_node_free;
  512         ic->ic_wme.wme_update = wpi_updateedca;
  513         ic->ic_update_promisc = wpi_update_promisc;
  514         ic->ic_update_mcast = wpi_update_mcast;
  515         ic->ic_newassoc = wpi_newassoc;
  516         ic->ic_scan_start = wpi_scan_start;
  517         ic->ic_scan_end = wpi_scan_end;
  518         ic->ic_set_channel = wpi_set_channel;
  519         ic->ic_scan_curchan = wpi_scan_curchan;
  520         ic->ic_scan_mindwell = wpi_scan_mindwell;
  521         ic->ic_getradiocaps = wpi_getradiocaps;
  522         ic->ic_setregdomain = wpi_setregdomain;
  523 
  524         sc->sc_update_rx_ring = wpi_update_rx_ring;
  525         sc->sc_update_tx_ring = wpi_update_tx_ring;
  526 
  527         wpi_radiotap_attach(sc);
  528 
  529         callout_init_mtx(&sc->calib_to, &sc->rxon_mtx, 0);
  530         callout_init_mtx(&sc->scan_timeout, &sc->rxon_mtx, 0);
  531         callout_init_mtx(&sc->tx_timeout, &sc->txq_state_mtx, 0);
  532         callout_init_mtx(&sc->watchdog_rfkill, &sc->sc_mtx, 0);
  533         TASK_INIT(&sc->sc_radiooff_task, 0, wpi_radio_off, sc);
  534         TASK_INIT(&sc->sc_radioon_task, 0, wpi_radio_on, sc);
  535 
  536         wpi_sysctlattach(sc);
  537 
  538         /*
  539          * Hook our interrupt after all initialization is complete.
  540          */
  541         error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
  542             NULL, wpi_intr, sc, &sc->sc_ih);
  543         if (error != 0) {
  544                 device_printf(dev, "can't establish interrupt, error %d\n",
  545                     error);
  546                 goto fail;
  547         }
  548 
  549         if (bootverbose)
  550                 ieee80211_announce(ic);
  551 
  552 #ifdef WPI_DEBUG
  553         if (sc->sc_debug & WPI_DEBUG_HW)
  554                 ieee80211_announce_channels(ic);
  555 #endif
  556 
  557         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
  558         return 0;
  559 
  560 fail:   wpi_detach(dev);
  561         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
  562         return error;
  563 }
  564 
  565 /*
  566  * Attach the interface to 802.11 radiotap.
  567  */
  568 static void
  569 wpi_radiotap_attach(struct wpi_softc *sc)
  570 {
  571         struct wpi_rx_radiotap_header *rxtap = &sc->sc_rxtap;
  572         struct wpi_tx_radiotap_header *txtap = &sc->sc_txtap;
  573 
  574         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
  575         ieee80211_radiotap_attach(&sc->sc_ic,
  576             &txtap->wt_ihdr, sizeof(*txtap), WPI_TX_RADIOTAP_PRESENT,
  577             &rxtap->wr_ihdr, sizeof(*rxtap), WPI_RX_RADIOTAP_PRESENT);
  578         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
  579 }
  580 
  581 static void
  582 wpi_sysctlattach(struct wpi_softc *sc)
  583 {
  584 #ifdef WPI_DEBUG
  585         struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
  586         struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
  587 
  588         SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
  589             "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
  590                 "control debugging printfs");
  591 #endif
  592 }
  593 
  594 static void
  595 wpi_init_beacon(struct wpi_vap *wvp)
  596 {
  597         struct wpi_buf *bcn = &wvp->wv_bcbuf;
  598         struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
  599 
  600         cmd->id = WPI_ID_BROADCAST;
  601         cmd->ofdm_mask = 0xff;
  602         cmd->cck_mask = 0x0f;
  603         cmd->lifetime = htole32(WPI_LIFETIME_INFINITE);
  604 
  605         /*
  606          * XXX WPI_TX_AUTO_SEQ seems to be ignored - workaround this issue
  607          * XXX by using WPI_TX_NEED_ACK instead (with some side effects).
  608          */
  609         cmd->flags = htole32(WPI_TX_NEED_ACK | WPI_TX_INSERT_TSTAMP);
  610 
  611         bcn->code = WPI_CMD_SET_BEACON;
  612         bcn->ac = WPI_CMD_QUEUE_NUM;
  613         bcn->size = sizeof(struct wpi_cmd_beacon);
  614 }
  615 
  616 static struct ieee80211vap *
  617 wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
  618     enum ieee80211_opmode opmode, int flags,
  619     const uint8_t bssid[IEEE80211_ADDR_LEN],
  620     const uint8_t mac[IEEE80211_ADDR_LEN])
  621 {
  622         struct wpi_vap *wvp;
  623         struct ieee80211vap *vap;
  624 
  625         if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
  626                 return NULL;
  627 
  628         wvp = malloc(sizeof(struct wpi_vap), M_80211_VAP, M_WAITOK | M_ZERO);
  629         vap = &wvp->wv_vap;
  630         ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
  631 
  632         if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
  633                 WPI_VAP_LOCK_INIT(wvp);
  634                 wpi_init_beacon(wvp);
  635         }
  636 
  637         /* Override with driver methods. */
  638         vap->iv_key_set = wpi_key_set;
  639         vap->iv_key_delete = wpi_key_delete;
  640         if (opmode == IEEE80211_M_IBSS) {
  641                 wvp->wv_recv_mgmt = vap->iv_recv_mgmt;
  642                 vap->iv_recv_mgmt = wpi_ibss_recv_mgmt;
  643         }
  644         wvp->wv_newstate = vap->iv_newstate;
  645         vap->iv_newstate = wpi_newstate;
  646         vap->iv_update_beacon = wpi_update_beacon;
  647         vap->iv_max_aid = WPI_ID_IBSS_MAX - WPI_ID_IBSS_MIN + 1;
  648 
  649         ieee80211_ratectl_init(vap);
  650         /* Complete setup. */
  651         ieee80211_vap_attach(vap, ieee80211_media_change,
  652             ieee80211_media_status, mac);
  653         ic->ic_opmode = opmode;
  654         return vap;
  655 }
  656 
  657 static void
  658 wpi_vap_delete(struct ieee80211vap *vap)
  659 {
  660         struct wpi_vap *wvp = WPI_VAP(vap);
  661         struct wpi_buf *bcn = &wvp->wv_bcbuf;
  662         enum ieee80211_opmode opmode = vap->iv_opmode;
  663 
  664         ieee80211_ratectl_deinit(vap);
  665         ieee80211_vap_detach(vap);
  666 
  667         if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
  668                 if (bcn->m != NULL)
  669                         m_freem(bcn->m);
  670 
  671                 WPI_VAP_LOCK_DESTROY(wvp);
  672         }
  673 
  674         free(wvp, M_80211_VAP);
  675 }
  676 
  677 static int
  678 wpi_detach(device_t dev)
  679 {
  680         struct wpi_softc *sc = device_get_softc(dev);
  681         struct ieee80211com *ic = &sc->sc_ic;
  682         uint8_t qid;
  683 
  684         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
  685 
  686         if (ic->ic_vap_create == wpi_vap_create) {
  687                 ieee80211_draintask(ic, &sc->sc_radioon_task);
  688                 ieee80211_draintask(ic, &sc->sc_radiooff_task);
  689 
  690                 wpi_stop(sc);
  691 
  692                 callout_drain(&sc->watchdog_rfkill);
  693                 callout_drain(&sc->tx_timeout);
  694                 callout_drain(&sc->scan_timeout);
  695                 callout_drain(&sc->calib_to);
  696                 ieee80211_ifdetach(ic);
  697         }
  698 
  699         /* Uninstall interrupt handler. */
  700         if (sc->irq != NULL) {
  701                 bus_teardown_intr(dev, sc->irq, sc->sc_ih);
  702                 bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
  703                     sc->irq);
  704                 pci_release_msi(dev);
  705         }
  706 
  707         if (sc->txq[0].data_dmat) {
  708                 /* Free DMA resources. */
  709                 for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++)
  710                         wpi_free_tx_ring(sc, &sc->txq[qid]);
  711 
  712                 wpi_free_rx_ring(sc);
  713                 wpi_free_shared(sc);
  714         }
  715 
  716         if (sc->fw_dma.tag)
  717                 wpi_free_fwmem(sc);
  718                 
  719         if (sc->mem != NULL)
  720                 bus_release_resource(dev, SYS_RES_MEMORY,
  721                     rman_get_rid(sc->mem), sc->mem);
  722 
  723         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
  724         WPI_TXQ_STATE_LOCK_DESTROY(sc);
  725         WPI_TXQ_LOCK_DESTROY(sc);
  726         WPI_NT_LOCK_DESTROY(sc);
  727         WPI_RXON_LOCK_DESTROY(sc);
  728         WPI_TX_LOCK_DESTROY(sc);
  729         WPI_LOCK_DESTROY(sc);
  730         return 0;
  731 }
  732 
  733 static int
  734 wpi_shutdown(device_t dev)
  735 {
  736         struct wpi_softc *sc = device_get_softc(dev);
  737 
  738         wpi_stop(sc);
  739         return 0;
  740 }
  741 
  742 static int
  743 wpi_suspend(device_t dev)
  744 {
  745         struct wpi_softc *sc = device_get_softc(dev);
  746         struct ieee80211com *ic = &sc->sc_ic;
  747 
  748         ieee80211_suspend_all(ic);
  749         return 0;
  750 }
  751 
  752 static int
  753 wpi_resume(device_t dev)
  754 {
  755         struct wpi_softc *sc = device_get_softc(dev);
  756         struct ieee80211com *ic = &sc->sc_ic;
  757 
  758         /* Clear device-specific "PCI retry timeout" register (41h). */
  759         pci_write_config(dev, 0x41, 0, 1);
  760 
  761         ieee80211_resume_all(ic);
  762         return 0;
  763 }
  764 
  765 /*
  766  * Grab exclusive access to NIC memory.
  767  */
  768 static int
  769 wpi_nic_lock(struct wpi_softc *sc)
  770 {
  771         int ntries;
  772 
  773         /* Request exclusive access to NIC. */
  774         WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
  775 
  776         /* Spin until we actually get the lock. */
  777         for (ntries = 0; ntries < 1000; ntries++) {
  778                 if ((WPI_READ(sc, WPI_GP_CNTRL) &
  779                     (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) ==
  780                     WPI_GP_CNTRL_MAC_ACCESS_ENA)
  781                         return 0;
  782                 DELAY(10);
  783         }
  784 
  785         device_printf(sc->sc_dev, "could not lock memory\n");
  786 
  787         return ETIMEDOUT;
  788 }
  789 
  790 /*
  791  * Release lock on NIC memory.
  792  */
  793 static __inline void
  794 wpi_nic_unlock(struct wpi_softc *sc)
  795 {
  796         WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
  797 }
  798 
  799 static __inline uint32_t
  800 wpi_prph_read(struct wpi_softc *sc, uint32_t addr)
  801 {
  802         WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr);
  803         WPI_BARRIER_READ_WRITE(sc);
  804         return WPI_READ(sc, WPI_PRPH_RDATA);
  805 }
  806 
  807 static __inline void
  808 wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
  809 {
  810         WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr);
  811         WPI_BARRIER_WRITE(sc);
  812         WPI_WRITE(sc, WPI_PRPH_WDATA, data);
  813 }
  814 
  815 static __inline void
  816 wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
  817 {
  818         wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask);
  819 }
  820 
  821 static __inline void
  822 wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
  823 {
  824         wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask);
  825 }
  826 
  827 static __inline void
  828 wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr,
  829     const uint32_t *data, uint32_t count)
  830 {
  831         for (; count != 0; count--, data++, addr += 4)
  832                 wpi_prph_write(sc, addr, *data);
  833 }
  834 
  835 static __inline uint32_t
  836 wpi_mem_read(struct wpi_softc *sc, uint32_t addr)
  837 {
  838         WPI_WRITE(sc, WPI_MEM_RADDR, addr);
  839         WPI_BARRIER_READ_WRITE(sc);
  840         return WPI_READ(sc, WPI_MEM_RDATA);
  841 }
  842 
  843 static __inline void
  844 wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data,
  845     int count)
  846 {
  847         for (; count > 0; count--, addr += 4)
  848                 *data++ = wpi_mem_read(sc, addr);
  849 }
  850 
  851 static int
  852 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count)
  853 {
  854         uint8_t *out = data;
  855         uint32_t val;
  856         int error, ntries;
  857 
  858         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
  859 
  860         if ((error = wpi_nic_lock(sc)) != 0)
  861                 return error;
  862 
  863         for (; count > 0; count -= 2, addr++) {
  864                 WPI_WRITE(sc, WPI_EEPROM, addr << 2);
  865                 for (ntries = 0; ntries < 10; ntries++) {
  866                         val = WPI_READ(sc, WPI_EEPROM);
  867                         if (val & WPI_EEPROM_READ_VALID)
  868                                 break;
  869                         DELAY(5);
  870                 }
  871                 if (ntries == 10) {
  872                         device_printf(sc->sc_dev,
  873                             "timeout reading ROM at 0x%x\n", addr);
  874                         return ETIMEDOUT;
  875                 }
  876                 *out++= val >> 16;
  877                 if (count > 1)
  878                         *out ++= val >> 24;
  879         }
  880 
  881         wpi_nic_unlock(sc);
  882 
  883         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
  884 
  885         return 0;
  886 }
  887 
  888 static void
  889 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
  890 {
  891         if (error != 0)
  892                 return;
  893         KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
  894         *(bus_addr_t *)arg = segs[0].ds_addr;
  895 }
  896 
  897 /*
  898  * Allocates a contiguous block of dma memory of the requested size and
  899  * alignment.
  900  */
  901 static int
  902 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
  903     void **kvap, bus_size_t size, bus_size_t alignment)
  904 {
  905         int error;
  906 
  907         dma->tag = NULL;
  908         dma->size = size;
  909 
  910         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
  911             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
  912             1, size, 0, NULL, NULL, &dma->tag);
  913         if (error != 0)
  914                 goto fail;
  915 
  916         error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
  917             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
  918         if (error != 0)
  919                 goto fail;
  920 
  921         error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
  922             wpi_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
  923         if (error != 0)
  924                 goto fail;
  925 
  926         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
  927 
  928         if (kvap != NULL)
  929                 *kvap = dma->vaddr;
  930 
  931         return 0;
  932 
  933 fail:   wpi_dma_contig_free(dma);
  934         return error;
  935 }
  936 
  937 static void
  938 wpi_dma_contig_free(struct wpi_dma_info *dma)
  939 {
  940         if (dma->vaddr != NULL) {
  941                 bus_dmamap_sync(dma->tag, dma->map,
  942                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
  943                 bus_dmamap_unload(dma->tag, dma->map);
  944                 bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
  945                 dma->vaddr = NULL;
  946         }
  947         if (dma->tag != NULL) {
  948                 bus_dma_tag_destroy(dma->tag);
  949                 dma->tag = NULL;
  950         }
  951 }
  952 
  953 /*
  954  * Allocate a shared page between host and NIC.
  955  */
  956 static int
  957 wpi_alloc_shared(struct wpi_softc *sc)
  958 {
  959         /* Shared buffer must be aligned on a 4KB boundary. */
  960         return wpi_dma_contig_alloc(sc, &sc->shared_dma,
  961             (void **)&sc->shared, sizeof (struct wpi_shared), 4096);
  962 }
  963 
  964 static void
  965 wpi_free_shared(struct wpi_softc *sc)
  966 {
  967         wpi_dma_contig_free(&sc->shared_dma);
  968 }
  969 
  970 /*
  971  * Allocate DMA-safe memory for firmware transfer.
  972  */
  973 static int
  974 wpi_alloc_fwmem(struct wpi_softc *sc)
  975 {
  976         /* Must be aligned on a 16-byte boundary. */
  977         return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
  978             WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16);
  979 }
  980 
  981 static void
  982 wpi_free_fwmem(struct wpi_softc *sc)
  983 {
  984         wpi_dma_contig_free(&sc->fw_dma);
  985 }
  986 
  987 static int
  988 wpi_alloc_rx_ring(struct wpi_softc *sc)
  989 {
  990         struct wpi_rx_ring *ring = &sc->rxq;
  991         bus_size_t size;
  992         int i, error;
  993 
  994         ring->cur = 0;
  995         ring->update = 0;
  996 
  997         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
  998 
  999         /* Allocate RX descriptors (16KB aligned.) */
 1000         size = WPI_RX_RING_COUNT * sizeof (uint32_t);
 1001         error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
 1002             (void **)&ring->desc, size, WPI_RING_DMA_ALIGN);
 1003         if (error != 0) {
 1004                 device_printf(sc->sc_dev,
 1005                     "%s: could not allocate RX ring DMA memory, error %d\n",
 1006                     __func__, error);
 1007                 goto fail;
 1008         }
 1009 
 1010         /* Create RX buffer DMA tag. */
 1011         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 
 1012             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
 1013             MJUMPAGESIZE, 1, MJUMPAGESIZE, 0, NULL, NULL, &ring->data_dmat);
 1014         if (error != 0) {
 1015                 device_printf(sc->sc_dev,
 1016                     "%s: could not create RX buf DMA tag, error %d\n",
 1017                     __func__, error);
 1018                 goto fail;
 1019         }
 1020 
 1021         /*
 1022          * Allocate and map RX buffers.
 1023          */
 1024         for (i = 0; i < WPI_RX_RING_COUNT; i++) {
 1025                 struct wpi_rx_data *data = &ring->data[i];
 1026                 bus_addr_t paddr;
 1027 
 1028                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
 1029                 if (error != 0) {
 1030                         device_printf(sc->sc_dev,
 1031                             "%s: could not create RX buf DMA map, error %d\n",
 1032                             __func__, error);
 1033                         goto fail;
 1034                 }
 1035 
 1036                 data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
 1037                 if (data->m == NULL) {
 1038                         device_printf(sc->sc_dev,
 1039                             "%s: could not allocate RX mbuf\n", __func__);
 1040                         error = ENOBUFS;
 1041                         goto fail;
 1042                 }
 1043 
 1044                 error = bus_dmamap_load(ring->data_dmat, data->map,
 1045                     mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
 1046                     &paddr, BUS_DMA_NOWAIT);
 1047                 if (error != 0 && error != EFBIG) {
 1048                         device_printf(sc->sc_dev,
 1049                             "%s: can't map mbuf (error %d)\n", __func__,
 1050                             error);
 1051                         goto fail;
 1052                 }
 1053 
 1054                 /* Set physical address of RX buffer. */
 1055                 ring->desc[i] = htole32(paddr);
 1056         }
 1057 
 1058         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
 1059             BUS_DMASYNC_PREWRITE);
 1060 
 1061         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
 1062 
 1063         return 0;
 1064 
 1065 fail:   wpi_free_rx_ring(sc);
 1066 
 1067         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
 1068 
 1069         return error;
 1070 }
 1071 
 1072 static void
 1073 wpi_update_rx_ring(struct wpi_softc *sc)
 1074 {
 1075         WPI_WRITE(sc, WPI_FH_RX_WPTR, sc->rxq.cur & ~7);
 1076 }
 1077 
 1078 static void
 1079 wpi_update_rx_ring_ps(struct wpi_softc *sc)
 1080 {
 1081         struct wpi_rx_ring *ring = &sc->rxq;
 1082 
 1083         if (ring->update != 0) {
 1084                 /* Wait for INT_WAKEUP event. */
 1085                 return;
 1086         }
 1087 
 1088         WPI_TXQ_LOCK(sc);
 1089         WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
 1090         if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
 1091                 DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: wakeup request\n",
 1092                     __func__);
 1093                 ring->update = 1;
 1094         } else {
 1095                 wpi_update_rx_ring(sc);
 1096                 WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
 1097         }
 1098         WPI_TXQ_UNLOCK(sc);
 1099 }
 1100 
 1101 static void
 1102 wpi_reset_rx_ring(struct wpi_softc *sc)
 1103 {
 1104         struct wpi_rx_ring *ring = &sc->rxq;
 1105         int ntries;
 1106 
 1107         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 1108 
 1109         if (wpi_nic_lock(sc) == 0) {
 1110                 WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0);
 1111                 for (ntries = 0; ntries < 1000; ntries++) {
 1112                         if (WPI_READ(sc, WPI_FH_RX_STATUS) &
 1113                             WPI_FH_RX_STATUS_IDLE)
 1114                                 break;
 1115                         DELAY(10);
 1116                 }
 1117                 wpi_nic_unlock(sc);
 1118         }
 1119 
 1120         ring->cur = 0;
 1121         ring->update = 0;
 1122 }
 1123 
 1124 static void
 1125 wpi_free_rx_ring(struct wpi_softc *sc)
 1126 {
 1127         struct wpi_rx_ring *ring = &sc->rxq;
 1128         int i;
 1129 
 1130         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 1131 
 1132         wpi_dma_contig_free(&ring->desc_dma);
 1133 
 1134         for (i = 0; i < WPI_RX_RING_COUNT; i++) {
 1135                 struct wpi_rx_data *data = &ring->data[i];
 1136 
 1137                 if (data->m != NULL) {
 1138                         bus_dmamap_sync(ring->data_dmat, data->map,
 1139                             BUS_DMASYNC_POSTREAD);
 1140                         bus_dmamap_unload(ring->data_dmat, data->map);
 1141                         m_freem(data->m);
 1142                         data->m = NULL;
 1143                 }
 1144                 if (data->map != NULL)
 1145                         bus_dmamap_destroy(ring->data_dmat, data->map);
 1146         }
 1147         if (ring->data_dmat != NULL) {
 1148                 bus_dma_tag_destroy(ring->data_dmat);
 1149                 ring->data_dmat = NULL;
 1150         }
 1151 }
 1152 
 1153 static int
 1154 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, uint8_t qid)
 1155 {
 1156         bus_addr_t paddr;
 1157         bus_size_t size;
 1158         int i, error;
 1159 
 1160         ring->qid = qid;
 1161         ring->queued = 0;
 1162         ring->cur = 0;
 1163         ring->pending = 0;
 1164         ring->update = 0;
 1165 
 1166         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
 1167 
 1168         /* Allocate TX descriptors (16KB aligned.) */
 1169         size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc);
 1170         error = wpi_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
 1171             size, WPI_RING_DMA_ALIGN);
 1172         if (error != 0) {
 1173                 device_printf(sc->sc_dev,
 1174                     "%s: could not allocate TX ring DMA memory, error %d\n",
 1175                     __func__, error);
 1176                 goto fail;
 1177         }
 1178 
 1179         /* Update shared area with ring physical address. */
 1180         sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
 1181         bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
 1182             BUS_DMASYNC_PREWRITE);
 1183 
 1184         size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd);
 1185         error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
 1186             size, 4);
 1187         if (error != 0) {
 1188                 device_printf(sc->sc_dev,
 1189                     "%s: could not allocate TX cmd DMA memory, error %d\n",
 1190                     __func__, error);
 1191                 goto fail;
 1192         }
 1193 
 1194         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
 1195             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
 1196             WPI_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
 1197         if (error != 0) {
 1198                 device_printf(sc->sc_dev,
 1199                     "%s: could not create TX buf DMA tag, error %d\n",
 1200                     __func__, error);
 1201                 goto fail;
 1202         }
 1203 
 1204         paddr = ring->cmd_dma.paddr;
 1205         for (i = 0; i < WPI_TX_RING_COUNT; i++) {
 1206                 struct wpi_tx_data *data = &ring->data[i];
 1207 
 1208                 data->cmd_paddr = paddr;
 1209                 paddr += sizeof (struct wpi_tx_cmd);
 1210 
 1211                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
 1212                 if (error != 0) {
 1213                         device_printf(sc->sc_dev,
 1214                             "%s: could not create TX buf DMA map, error %d\n",
 1215                             __func__, error);
 1216                         goto fail;
 1217                 }
 1218         }
 1219 
 1220         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
 1221 
 1222         return 0;
 1223 
 1224 fail:   wpi_free_tx_ring(sc, ring);
 1225         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
 1226         return error;
 1227 }
 1228 
 1229 static void
 1230 wpi_update_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
 1231 {
 1232         WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
 1233 }
 1234 
 1235 static void
 1236 wpi_update_tx_ring_ps(struct wpi_softc *sc, struct wpi_tx_ring *ring)
 1237 {
 1238 
 1239         if (ring->update != 0) {
 1240                 /* Wait for INT_WAKEUP event. */
 1241                 return;
 1242         }
 1243 
 1244         WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
 1245         if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
 1246                 DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s (%d): requesting wakeup\n",
 1247                     __func__, ring->qid);
 1248                 ring->update = 1;
 1249         } else {
 1250                 wpi_update_tx_ring(sc, ring);
 1251                 WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
 1252         }
 1253 }
 1254 
 1255 static void
 1256 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
 1257 {
 1258         int i;
 1259 
 1260         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 1261 
 1262         for (i = 0; i < WPI_TX_RING_COUNT; i++) {
 1263                 struct wpi_tx_data *data = &ring->data[i];
 1264 
 1265                 if (data->m != NULL) {
 1266                         bus_dmamap_sync(ring->data_dmat, data->map,
 1267                             BUS_DMASYNC_POSTWRITE);
 1268                         bus_dmamap_unload(ring->data_dmat, data->map);
 1269                         m_freem(data->m);
 1270                         data->m = NULL;
 1271                 }
 1272                 if (data->ni != NULL) {
 1273                         ieee80211_free_node(data->ni);
 1274                         data->ni = NULL;
 1275                 }
 1276         }
 1277         /* Clear TX descriptors. */
 1278         memset(ring->desc, 0, ring->desc_dma.size);
 1279         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
 1280             BUS_DMASYNC_PREWRITE);
 1281         ring->queued = 0;
 1282         ring->cur = 0;
 1283         ring->pending = 0;
 1284         ring->update = 0;
 1285 }
 1286 
 1287 static void
 1288 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
 1289 {
 1290         int i;
 1291 
 1292         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 1293 
 1294         wpi_dma_contig_free(&ring->desc_dma);
 1295         wpi_dma_contig_free(&ring->cmd_dma);
 1296 
 1297         for (i = 0; i < WPI_TX_RING_COUNT; i++) {
 1298                 struct wpi_tx_data *data = &ring->data[i];
 1299 
 1300                 if (data->m != NULL) {
 1301                         bus_dmamap_sync(ring->data_dmat, data->map,
 1302                             BUS_DMASYNC_POSTWRITE);
 1303                         bus_dmamap_unload(ring->data_dmat, data->map);
 1304                         m_freem(data->m);
 1305                 }
 1306                 if (data->map != NULL)
 1307                         bus_dmamap_destroy(ring->data_dmat, data->map);
 1308         }
 1309         if (ring->data_dmat != NULL) {
 1310                 bus_dma_tag_destroy(ring->data_dmat);
 1311                 ring->data_dmat = NULL;
 1312         }
 1313 }
 1314 
 1315 /*
 1316  * Extract various information from EEPROM.
 1317  */
 1318 static int
 1319 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
 1320 {
 1321 #define WPI_CHK(res) do {               \
 1322         if ((error = res) != 0)         \
 1323                 goto fail;              \
 1324 } while (0)
 1325         uint8_t i;
 1326         int error;
 1327 
 1328         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
 1329 
 1330         /* Adapter has to be powered on for EEPROM access to work. */
 1331         if ((error = wpi_apm_init(sc)) != 0) {
 1332                 device_printf(sc->sc_dev,
 1333                     "%s: could not power ON adapter, error %d\n", __func__,
 1334                     error);
 1335                 return error;
 1336         }
 1337 
 1338         if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) {
 1339                 device_printf(sc->sc_dev, "bad EEPROM signature\n");
 1340                 error = EIO;
 1341                 goto fail;
 1342         }
 1343         /* Clear HW ownership of EEPROM. */
 1344         WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER);
 1345 
 1346         /* Read the hardware capabilities, revision and SKU type. */
 1347         WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_SKU_CAP, &sc->cap,
 1348             sizeof(sc->cap)));
 1349         WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,
 1350             sizeof(sc->rev)));
 1351         WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type,
 1352             sizeof(sc->type)));
 1353 
 1354         sc->rev = le16toh(sc->rev);
 1355         DPRINTF(sc, WPI_DEBUG_EEPROM, "cap=%x rev=%x type=%x\n", sc->cap,
 1356             sc->rev, sc->type);
 1357 
 1358         /* Read the regulatory domain (4 ASCII characters.) */
 1359         WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain,
 1360             sizeof(sc->domain)));
 1361 
 1362         /* Read MAC address. */
 1363         WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr,
 1364             IEEE80211_ADDR_LEN));
 1365 
 1366         /* Read the list of authorized channels. */
 1367         for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
 1368                 WPI_CHK(wpi_read_eeprom_channels(sc, i));
 1369 
 1370         /* Read the list of TX power groups. */
 1371         for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
 1372                 WPI_CHK(wpi_read_eeprom_group(sc, i));
 1373 
 1374 fail:   wpi_apm_stop(sc);       /* Power OFF adapter. */
 1375 
 1376         DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
 1377             __func__);
 1378 
 1379         return error;
 1380 #undef WPI_CHK
 1381 }
 1382 
 1383 /*
 1384  * Translate EEPROM flags to net80211.
 1385  */
 1386 static uint32_t
 1387 wpi_eeprom_channel_flags(struct wpi_eeprom_chan *channel)
 1388 {
 1389         uint32_t nflags;
 1390 
 1391         nflags = 0;
 1392         if ((channel->flags & WPI_EEPROM_CHAN_ACTIVE) == 0)
 1393                 nflags |= IEEE80211_CHAN_PASSIVE;
 1394         if ((channel->flags & WPI_EEPROM_CHAN_IBSS) == 0)
 1395                 nflags |= IEEE80211_CHAN_NOADHOC;
 1396         if (channel->flags & WPI_EEPROM_CHAN_RADAR) {
 1397                 nflags |= IEEE80211_CHAN_DFS;
 1398                 /* XXX apparently IBSS may still be marked */
 1399                 nflags |= IEEE80211_CHAN_NOADHOC;
 1400         }
 1401 
 1402         /* XXX HOSTAP uses WPI_MODE_IBSS */
 1403         if (nflags & IEEE80211_CHAN_NOADHOC)
 1404                 nflags |= IEEE80211_CHAN_NOHOSTAP;
 1405 
 1406         return nflags;
 1407 }
 1408 
 1409 static void
 1410 wpi_read_eeprom_band(struct wpi_softc *sc, uint8_t n, int maxchans,
 1411     int *nchans, struct ieee80211_channel chans[])
 1412 {
 1413         struct wpi_eeprom_chan *channels = sc->eeprom_channels[n];
 1414         const struct wpi_chan_band *band = &wpi_bands[n];
 1415         uint32_t nflags;
 1416         uint8_t bands[IEEE80211_MODE_BYTES];
 1417         uint8_t chan, i;
 1418         int error;
 1419 
 1420         memset(bands, 0, sizeof(bands));
 1421 
 1422         if (n == 0) {
 1423                 setbit(bands, IEEE80211_MODE_11B);
 1424                 setbit(bands, IEEE80211_MODE_11G);
 1425         } else
 1426                 setbit(bands, IEEE80211_MODE_11A);
 1427 
 1428         for (i = 0; i < band->nchan; i++) {
 1429                 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
 1430                         DPRINTF(sc, WPI_DEBUG_EEPROM,
 1431                             "Channel Not Valid: %d, band %d\n",
 1432                              band->chan[i],n);
 1433                         continue;
 1434                 }
 1435 
 1436                 chan = band->chan[i];
 1437                 nflags = wpi_eeprom_channel_flags(&channels[i]);
 1438                 error = ieee80211_add_channel(chans, maxchans, nchans,
 1439                     chan, 0, channels[i].maxpwr, nflags, bands);
 1440                 if (error != 0)
 1441                         break;
 1442 
 1443                 /* Save maximum allowed TX power for this channel. */
 1444                 sc->maxpwr[chan] = channels[i].maxpwr;
 1445 
 1446                 DPRINTF(sc, WPI_DEBUG_EEPROM,
 1447                     "adding chan %d flags=0x%x maxpwr=%d, offset %d\n",
 1448                     chan, channels[i].flags, sc->maxpwr[chan], *nchans);
 1449         }
 1450 }
 1451 
 1452 /**
 1453  * Read the eeprom to find out what channels are valid for the given
 1454  * band and update net80211 with what we find.
 1455  */
 1456 static int
 1457 wpi_read_eeprom_channels(struct wpi_softc *sc, uint8_t n)
 1458 {
 1459         struct ieee80211com *ic = &sc->sc_ic;
 1460         const struct wpi_chan_band *band = &wpi_bands[n];
 1461         int error;
 1462 
 1463         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
 1464 
 1465         error = wpi_read_prom_data(sc, band->addr, &sc->eeprom_channels[n],
 1466             band->nchan * sizeof (struct wpi_eeprom_chan));
 1467         if (error != 0) {
 1468                 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
 1469                 return error;
 1470         }
 1471 
 1472         wpi_read_eeprom_band(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
 1473             ic->ic_channels);
 1474 
 1475         ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
 1476 
 1477         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
 1478 
 1479         return 0;
 1480 }
 1481 
 1482 static struct wpi_eeprom_chan *
 1483 wpi_find_eeprom_channel(struct wpi_softc *sc, struct ieee80211_channel *c)
 1484 {
 1485         int i, j;
 1486 
 1487         for (j = 0; j < WPI_CHAN_BANDS_COUNT; j++)
 1488                 for (i = 0; i < wpi_bands[j].nchan; i++)
 1489                         if (wpi_bands[j].chan[i] == c->ic_ieee &&
 1490                             ((j == 0) ^ IEEE80211_IS_CHAN_A(c)) == 1)
 1491                                 return &sc->eeprom_channels[j][i];
 1492 
 1493         return NULL;
 1494 }
 1495 
 1496 static void
 1497 wpi_getradiocaps(struct ieee80211com *ic,
 1498     int maxchans, int *nchans, struct ieee80211_channel chans[])
 1499 {
 1500         struct wpi_softc *sc = ic->ic_softc;
 1501         int i;
 1502 
 1503         /* Parse the list of authorized channels. */
 1504         for (i = 0; i < WPI_CHAN_BANDS_COUNT && *nchans < maxchans; i++)
 1505                 wpi_read_eeprom_band(sc, i, maxchans, nchans, chans);
 1506 }
 1507 
 1508 /*
 1509  * Enforce flags read from EEPROM.
 1510  */
 1511 static int
 1512 wpi_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
 1513     int nchan, struct ieee80211_channel chans[])
 1514 {
 1515         struct wpi_softc *sc = ic->ic_softc;
 1516         int i;
 1517 
 1518         for (i = 0; i < nchan; i++) {
 1519                 struct ieee80211_channel *c = &chans[i];
 1520                 struct wpi_eeprom_chan *channel;
 1521 
 1522                 channel = wpi_find_eeprom_channel(sc, c);
 1523                 if (channel == NULL) {
 1524                         ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n",
 1525                             __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
 1526                         return EINVAL;
 1527                 }
 1528                 c->ic_flags |= wpi_eeprom_channel_flags(channel);
 1529         }
 1530 
 1531         return 0;
 1532 }
 1533 
 1534 static int
 1535 wpi_read_eeprom_group(struct wpi_softc *sc, uint8_t n)
 1536 {
 1537         struct wpi_power_group *group = &sc->groups[n];
 1538         struct wpi_eeprom_group rgroup;
 1539         int i, error;
 1540 
 1541         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
 1542 
 1543         if ((error = wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32,
 1544             &rgroup, sizeof rgroup)) != 0) {
 1545                 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
 1546                 return error;
 1547         }
 1548 
 1549         /* Save TX power group information. */
 1550         group->chan   = rgroup.chan;
 1551         group->maxpwr = rgroup.maxpwr;
 1552         /* Retrieve temperature at which the samples were taken. */
 1553         group->temp   = (int16_t)le16toh(rgroup.temp);
 1554 
 1555         DPRINTF(sc, WPI_DEBUG_EEPROM,
 1556             "power group %d: chan=%d maxpwr=%d temp=%d\n", n, group->chan,
 1557             group->maxpwr, group->temp);
 1558 
 1559         for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
 1560                 group->samples[i].index = rgroup.samples[i].index;
 1561                 group->samples[i].power = rgroup.samples[i].power;
 1562 
 1563                 DPRINTF(sc, WPI_DEBUG_EEPROM,
 1564                     "\tsample %d: index=%d power=%d\n", i,
 1565                     group->samples[i].index, group->samples[i].power);
 1566         }
 1567 
 1568         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
 1569 
 1570         return 0;
 1571 }
 1572 
 1573 static __inline uint8_t
 1574 wpi_add_node_entry_adhoc(struct wpi_softc *sc)
 1575 {
 1576         uint8_t newid = WPI_ID_IBSS_MIN;
 1577 
 1578         for (; newid <= WPI_ID_IBSS_MAX; newid++) {
 1579                 if ((sc->nodesmsk & (1 << newid)) == 0) {
 1580                         sc->nodesmsk |= 1 << newid;
 1581                         return newid;
 1582                 }
 1583         }
 1584 
 1585         return WPI_ID_UNDEFINED;
 1586 }
 1587 
 1588 static __inline uint8_t
 1589 wpi_add_node_entry_sta(struct wpi_softc *sc)
 1590 {
 1591         sc->nodesmsk |= 1 << WPI_ID_BSS;
 1592 
 1593         return WPI_ID_BSS;
 1594 }
 1595 
 1596 static __inline int
 1597 wpi_check_node_entry(struct wpi_softc *sc, uint8_t id)
 1598 {
 1599         if (id == WPI_ID_UNDEFINED)
 1600                 return 0;
 1601 
 1602         return (sc->nodesmsk >> id) & 1;
 1603 }
 1604 
 1605 static __inline void
 1606 wpi_clear_node_table(struct wpi_softc *sc)
 1607 {
 1608         sc->nodesmsk = 0;
 1609 }
 1610 
 1611 static __inline void
 1612 wpi_del_node_entry(struct wpi_softc *sc, uint8_t id)
 1613 {
 1614         sc->nodesmsk &= ~(1 << id);
 1615 }
 1616 
 1617 static struct ieee80211_node *
 1618 wpi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
 1619 {
 1620         struct wpi_node *wn;
 1621 
 1622         wn = malloc(sizeof (struct wpi_node), M_80211_NODE,
 1623             M_NOWAIT | M_ZERO);
 1624 
 1625         if (wn == NULL)
 1626                 return NULL;
 1627 
 1628         wn->id = WPI_ID_UNDEFINED;
 1629 
 1630         return &wn->ni;
 1631 }
 1632 
 1633 static void
 1634 wpi_node_free(struct ieee80211_node *ni)
 1635 {
 1636         struct wpi_softc *sc = ni->ni_ic->ic_softc;
 1637         struct wpi_node *wn = WPI_NODE(ni);
 1638 
 1639         if (wn->id != WPI_ID_UNDEFINED) {
 1640                 WPI_NT_LOCK(sc);
 1641                 if (wpi_check_node_entry(sc, wn->id)) {
 1642                         wpi_del_node_entry(sc, wn->id);
 1643                         wpi_del_node(sc, ni);
 1644                 }
 1645                 WPI_NT_UNLOCK(sc);
 1646         }
 1647 
 1648         sc->sc_node_free(ni);
 1649 }
 1650 
 1651 static __inline int
 1652 wpi_check_bss_filter(struct wpi_softc *sc)
 1653 {
 1654         return (sc->rxon.filter & htole32(WPI_FILTER_BSS)) != 0;
 1655 }
 1656 
 1657 static void
 1658 wpi_ibss_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype,
 1659     const struct ieee80211_rx_stats *rxs,
 1660     int rssi, int nf)
 1661 {
 1662         struct ieee80211vap *vap = ni->ni_vap;
 1663         struct wpi_softc *sc = vap->iv_ic->ic_softc;
 1664         struct wpi_vap *wvp = WPI_VAP(vap);
 1665         uint64_t ni_tstamp, rx_tstamp;
 1666 
 1667         wvp->wv_recv_mgmt(ni, m, subtype, rxs, rssi, nf);
 1668 
 1669         if (vap->iv_state == IEEE80211_S_RUN &&
 1670             (subtype == IEEE80211_FC0_SUBTYPE_BEACON ||
 1671             subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)) {
 1672                 ni_tstamp = le64toh(ni->ni_tstamp.tsf);
 1673                 rx_tstamp = le64toh(sc->rx_tstamp);
 1674 
 1675                 if (ni_tstamp >= rx_tstamp) {
 1676                         DPRINTF(sc, WPI_DEBUG_STATE,
 1677                             "ibss merge, tsf %ju tstamp %ju\n",
 1678                             (uintmax_t)rx_tstamp, (uintmax_t)ni_tstamp);
 1679                         (void) ieee80211_ibss_merge(ni);
 1680                 }
 1681         }
 1682 }
 1683 
 1684 static void
 1685 wpi_restore_node(void *arg, struct ieee80211_node *ni)
 1686 {
 1687         struct wpi_softc *sc = arg;
 1688         struct wpi_node *wn = WPI_NODE(ni);
 1689         int error;
 1690 
 1691         WPI_NT_LOCK(sc);
 1692         if (wn->id != WPI_ID_UNDEFINED) {
 1693                 wn->id = WPI_ID_UNDEFINED;
 1694                 if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
 1695                         device_printf(sc->sc_dev,
 1696                             "%s: could not add IBSS node, error %d\n",
 1697                             __func__, error);
 1698                 }
 1699         }
 1700         WPI_NT_UNLOCK(sc);
 1701 }
 1702 
 1703 static void
 1704 wpi_restore_node_table(struct wpi_softc *sc, struct wpi_vap *wvp)
 1705 {
 1706         struct ieee80211com *ic = &sc->sc_ic;
 1707 
 1708         /* Set group keys once. */
 1709         WPI_NT_LOCK(sc);
 1710         wvp->wv_gtk = 0;
 1711         WPI_NT_UNLOCK(sc);
 1712 
 1713         ieee80211_iterate_nodes(&ic->ic_sta, wpi_restore_node, sc);
 1714         ieee80211_crypto_reload_keys(ic);
 1715 }
 1716 
 1717 /**
 1718  * Called by net80211 when ever there is a change to 80211 state machine
 1719  */
 1720 static int
 1721 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
 1722 {
 1723         struct wpi_vap *wvp = WPI_VAP(vap);
 1724         struct ieee80211com *ic = vap->iv_ic;
 1725         struct wpi_softc *sc = ic->ic_softc;
 1726         int error = 0;
 1727 
 1728         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
 1729 
 1730         WPI_TXQ_LOCK(sc);
 1731         if (nstate > IEEE80211_S_INIT && sc->sc_running == 0) {
 1732                 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
 1733                 WPI_TXQ_UNLOCK(sc);
 1734 
 1735                 return ENXIO;
 1736         }
 1737         WPI_TXQ_UNLOCK(sc);
 1738 
 1739         DPRINTF(sc, WPI_DEBUG_STATE, "%s: %s -> %s\n", __func__,
 1740                 ieee80211_state_name[vap->iv_state],
 1741                 ieee80211_state_name[nstate]);
 1742 
 1743         if (vap->iv_state == IEEE80211_S_RUN && nstate < IEEE80211_S_RUN) {
 1744                 if ((error = wpi_set_pslevel(sc, 0, 0, 1)) != 0) {
 1745                         device_printf(sc->sc_dev,
 1746                             "%s: could not set power saving level\n",
 1747                             __func__);
 1748                         return error;
 1749                 }
 1750 
 1751                 wpi_set_led(sc, WPI_LED_LINK, 1, 0);
 1752         }
 1753 
 1754         switch (nstate) {
 1755         case IEEE80211_S_SCAN:
 1756                 WPI_RXON_LOCK(sc);
 1757                 if (wpi_check_bss_filter(sc) != 0) {
 1758                         sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
 1759                         if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
 1760                                 device_printf(sc->sc_dev,
 1761                                     "%s: could not send RXON\n", __func__);
 1762                         }
 1763                 }
 1764                 WPI_RXON_UNLOCK(sc);
 1765                 break;
 1766 
 1767         case IEEE80211_S_ASSOC:
 1768                 if (vap->iv_state != IEEE80211_S_RUN)
 1769                         break;
 1770                 /* FALLTHROUGH */
 1771         case IEEE80211_S_AUTH:
 1772                 /*
 1773                  * NB: do not optimize AUTH -> AUTH state transmission -
 1774                  * this will break powersave with non-QoS AP!
 1775                  */
 1776 
 1777                 /*
 1778                  * The node must be registered in the firmware before auth.
 1779                  * Also the associd must be cleared on RUN -> ASSOC
 1780                  * transitions.
 1781                  */
 1782                 if ((error = wpi_auth(sc, vap)) != 0) {
 1783                         device_printf(sc->sc_dev,
 1784                             "%s: could not move to AUTH state, error %d\n",
 1785                             __func__, error);
 1786                 }
 1787                 break;
 1788 
 1789         case IEEE80211_S_RUN:
 1790                 /*
 1791                  * RUN -> RUN transition:
 1792                  * STA mode: Just restart the timers.
 1793                  * IBSS mode: Process IBSS merge.
 1794                  */
 1795                 if (vap->iv_state == IEEE80211_S_RUN) {
 1796                         if (vap->iv_opmode != IEEE80211_M_IBSS) {
 1797                                 WPI_RXON_LOCK(sc);
 1798                                 wpi_calib_timeout(sc);
 1799                                 WPI_RXON_UNLOCK(sc);
 1800                                 break;
 1801                         } else {
 1802                                 /*
 1803                                  * Drop the BSS_FILTER bit
 1804                                  * (there is no another way to change bssid).
 1805                                  */
 1806                                 WPI_RXON_LOCK(sc);
 1807                                 sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
 1808                                 if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
 1809                                         device_printf(sc->sc_dev,
 1810                                             "%s: could not send RXON\n",
 1811                                             __func__);
 1812                                 }
 1813                                 WPI_RXON_UNLOCK(sc);
 1814 
 1815                                 /* Restore all what was lost. */
 1816                                 wpi_restore_node_table(sc, wvp);
 1817 
 1818                                 /* XXX set conditionally? */
 1819                                 wpi_updateedca(ic);
 1820                         }
 1821                 }
 1822 
 1823                 /*
 1824                  * !RUN -> RUN requires setting the association id
 1825                  * which is done with a firmware cmd.  We also defer
 1826                  * starting the timers until that work is done.
 1827                  */
 1828                 if ((error = wpi_run(sc, vap)) != 0) {
 1829                         device_printf(sc->sc_dev,
 1830                             "%s: could not move to RUN state\n", __func__);
 1831                 }
 1832                 break;
 1833 
 1834         default:
 1835                 break;
 1836         }
 1837         if (error != 0) {
 1838                 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
 1839                 return error;
 1840         }
 1841 
 1842         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
 1843 
 1844         return wvp->wv_newstate(vap, nstate, arg);
 1845 }
 1846 
 1847 static void
 1848 wpi_calib_timeout(void *arg)
 1849 {
 1850         struct wpi_softc *sc = arg;
 1851 
 1852         if (wpi_check_bss_filter(sc) == 0)
 1853                 return;
 1854 
 1855         wpi_power_calibration(sc);
 1856 
 1857         callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
 1858 }
 1859 
 1860 static __inline uint8_t
 1861 rate2plcp(const uint8_t rate)
 1862 {
 1863         switch (rate) {
 1864         case 12:        return 0xd;
 1865         case 18:        return 0xf;
 1866         case 24:        return 0x5;
 1867         case 36:        return 0x7;
 1868         case 48:        return 0x9;
 1869         case 72:        return 0xb;
 1870         case 96:        return 0x1;
 1871         case 108:       return 0x3;
 1872         case 2:         return 10;
 1873         case 4:         return 20;
 1874         case 11:        return 55;
 1875         case 22:        return 110;
 1876         default:        return 0;
 1877         }
 1878 }
 1879 
 1880 static __inline uint8_t
 1881 plcp2rate(const uint8_t plcp)
 1882 {
 1883         switch (plcp) {
 1884         case 0xd:       return 12;
 1885         case 0xf:       return 18;
 1886         case 0x5:       return 24;
 1887         case 0x7:       return 36;
 1888         case 0x9:       return 48;
 1889         case 0xb:       return 72;
 1890         case 0x1:       return 96;
 1891         case 0x3:       return 108;
 1892         case 10:        return 2;
 1893         case 20:        return 4;
 1894         case 55:        return 11;
 1895         case 110:       return 22;
 1896         default:        return 0;
 1897         }
 1898 }
 1899 
 1900 /* Quickly determine if a given rate is CCK or OFDM. */
 1901 #define WPI_RATE_IS_OFDM(rate)  ((rate) >= 12 && (rate) != 22)
 1902 
 1903 static void
 1904 wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc,
 1905     struct wpi_rx_data *data)
 1906 {
 1907         struct ieee80211com *ic = &sc->sc_ic;
 1908         struct wpi_rx_ring *ring = &sc->rxq;
 1909         struct wpi_rx_stat *stat;
 1910         struct wpi_rx_head *head;
 1911         struct wpi_rx_tail *tail;
 1912         struct ieee80211_frame *wh;
 1913         struct ieee80211_node *ni;
 1914         struct mbuf *m, *m1;
 1915         bus_addr_t paddr;
 1916         uint32_t flags;
 1917         uint16_t len;
 1918         int error;
 1919 
 1920         stat = (struct wpi_rx_stat *)(desc + 1);
 1921 
 1922         if (__predict_false(stat->len > WPI_STAT_MAXLEN)) {
 1923                 device_printf(sc->sc_dev, "invalid RX statistic header\n");
 1924                 goto fail1;
 1925         }
 1926 
 1927         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
 1928         head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
 1929         len = le16toh(head->len);
 1930         tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + len);
 1931         flags = le32toh(tail->flags);
 1932 
 1933         DPRINTF(sc, WPI_DEBUG_RECV, "%s: idx %d len %d stat len %u rssi %d"
 1934             " rate %x chan %d tstamp %ju\n", __func__, ring->cur,
 1935             le32toh(desc->len), len, (int8_t)stat->rssi,
 1936             head->plcp, head->chan, (uintmax_t)le64toh(tail->tstamp));
 1937 
 1938         /* Discard frames with a bad FCS early. */
 1939         if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
 1940                 DPRINTF(sc, WPI_DEBUG_RECV, "%s: RX flags error %x\n",
 1941                     __func__, flags);
 1942                 goto fail1;
 1943         }
 1944         /* Discard frames that are too short. */
 1945         if (len < sizeof (struct ieee80211_frame_ack)) {
 1946                 DPRINTF(sc, WPI_DEBUG_RECV, "%s: frame too short: %d\n",
 1947                     __func__, len);
 1948                 goto fail1;
 1949         }
 1950 
 1951         m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
 1952         if (__predict_false(m1 == NULL)) {
 1953                 DPRINTF(sc, WPI_DEBUG_ANY, "%s: no mbuf to restock ring\n",
 1954                     __func__);
 1955                 goto fail1;
 1956         }
 1957         bus_dmamap_unload(ring->data_dmat, data->map);
 1958 
 1959         error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
 1960             MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
 1961         if (__predict_false(error != 0 && error != EFBIG)) {
 1962                 device_printf(sc->sc_dev,
 1963                     "%s: bus_dmamap_load failed, error %d\n", __func__, error);
 1964                 m_freem(m1);
 1965 
 1966                 /* Try to reload the old mbuf. */
 1967                 error = bus_dmamap_load(ring->data_dmat, data->map,
 1968                     mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
 1969                     &paddr, BUS_DMA_NOWAIT);
 1970                 if (error != 0 && error != EFBIG) {
 1971                         panic("%s: could not load old RX mbuf", __func__);
 1972                 }
 1973                 /* Physical address may have changed. */
 1974                 ring->desc[ring->cur] = htole32(paddr);
 1975                 bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
 1976                     BUS_DMASYNC_PREWRITE);
 1977                 goto fail1;
 1978         }
 1979 
 1980         m = data->m;
 1981         data->m = m1;
 1982         /* Update RX descriptor. */
 1983         ring->desc[ring->cur] = htole32(paddr);
 1984         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
 1985             BUS_DMASYNC_PREWRITE);
 1986 
 1987         /* Finalize mbuf. */
 1988         m->m_data = (caddr_t)(head + 1);
 1989         m->m_pkthdr.len = m->m_len = len;
 1990 
 1991         /* Grab a reference to the source node. */
 1992         wh = mtod(m, struct ieee80211_frame *);
 1993 
 1994         if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
 1995             (flags & WPI_RX_CIPHER_MASK) == WPI_RX_CIPHER_CCMP) {
 1996                 /* Check whether decryption was successful or not. */
 1997                 if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) {
 1998                         DPRINTF(sc, WPI_DEBUG_RECV,
 1999                             "CCMP decryption failed 0x%x\n", flags);
 2000                         goto fail2;
 2001                 }
 2002                 m->m_flags |= M_WEP;
 2003         }
 2004 
 2005         if (len >= sizeof(struct ieee80211_frame_min))
 2006                 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
 2007         else
 2008                 ni = NULL;
 2009 
 2010         sc->rx_tstamp = tail->tstamp;
 2011 
 2012         if (ieee80211_radiotap_active(ic)) {
 2013                 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
 2014 
 2015                 tap->wr_flags = 0;
 2016                 if (head->flags & htole16(WPI_STAT_FLAG_SHPREAMBLE))
 2017                         tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
 2018                 tap->wr_dbm_antsignal = (int8_t)(stat->rssi + WPI_RSSI_OFFSET);
 2019                 tap->wr_dbm_antnoise = WPI_RSSI_OFFSET;
 2020                 tap->wr_tsft = tail->tstamp;
 2021                 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
 2022                 tap->wr_rate = plcp2rate(head->plcp);
 2023         }
 2024 
 2025         WPI_UNLOCK(sc);
 2026 
 2027         /* Send the frame to the 802.11 layer. */
 2028         if (ni != NULL) {
 2029                 (void)ieee80211_input(ni, m, stat->rssi, WPI_RSSI_OFFSET);
 2030                 /* Node is no longer needed. */
 2031                 ieee80211_free_node(ni);
 2032         } else
 2033                 (void)ieee80211_input_all(ic, m, stat->rssi, WPI_RSSI_OFFSET);
 2034 
 2035         WPI_LOCK(sc);
 2036 
 2037         return;
 2038 
 2039 fail2:  m_freem(m);
 2040 
 2041 fail1:  counter_u64_add(ic->ic_ierrors, 1);
 2042 }
 2043 
 2044 static void
 2045 wpi_rx_statistics(struct wpi_softc *sc, struct wpi_rx_desc *desc,
 2046     struct wpi_rx_data *data)
 2047 {
 2048         /* Ignore */
 2049 }
 2050 
 2051 static void
 2052 wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
 2053 {
 2054         struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
 2055         struct wpi_tx_data *data = &ring->data[desc->idx];
 2056         struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
 2057         struct mbuf *m;
 2058         struct ieee80211_node *ni;
 2059         struct ieee80211vap *vap;
 2060         uint32_t status = le32toh(stat->status);
 2061         int ackfailcnt = stat->ackfailcnt / WPI_NTRIES_DEFAULT;
 2062 
 2063         KASSERT(data->ni != NULL, ("no node"));
 2064         KASSERT(data->m != NULL, ("no mbuf"));
 2065 
 2066         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
 2067 
 2068         DPRINTF(sc, WPI_DEBUG_XMIT, "%s: "
 2069             "qid %d idx %d retries %d btkillcnt %d rate %x duration %d "
 2070             "status %x\n", __func__, desc->qid, desc->idx, stat->ackfailcnt,
 2071             stat->btkillcnt, stat->rate, le32toh(stat->duration), status);
 2072 
 2073         /* Unmap and free mbuf. */
 2074         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
 2075         bus_dmamap_unload(ring->data_dmat, data->map);
 2076         m = data->m, data->m = NULL;
 2077         ni = data->ni, data->ni = NULL;
 2078         vap = ni->ni_vap;
 2079 
 2080         /*
 2081          * Update rate control statistics for the node.
 2082          */
 2083         if (status & WPI_TX_STATUS_FAIL) {
 2084                 ieee80211_ratectl_tx_complete(vap, ni,
 2085                     IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
 2086         } else
 2087                 ieee80211_ratectl_tx_complete(vap, ni,
 2088                     IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
 2089 
 2090         ieee80211_tx_complete(ni, m, (status & WPI_TX_STATUS_FAIL) != 0);
 2091 
 2092         WPI_TXQ_STATE_LOCK(sc);
 2093         if (--ring->queued > 0)
 2094                 callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc);
 2095         else
 2096                 callout_stop(&sc->tx_timeout);
 2097         WPI_TXQ_STATE_UNLOCK(sc);
 2098 
 2099         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
 2100 }
 2101 
 2102 /*
 2103  * Process a "command done" firmware notification.  This is where we wakeup
 2104  * processes waiting for a synchronous command completion.
 2105  */
 2106 static void
 2107 wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
 2108 {
 2109         struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
 2110         struct wpi_tx_data *data;
 2111         struct wpi_tx_cmd *cmd;
 2112 
 2113         DPRINTF(sc, WPI_DEBUG_CMD, "cmd notification qid %x idx %d flags %x "
 2114                                    "type %s len %d\n", desc->qid, desc->idx,
 2115                                    desc->flags, wpi_cmd_str(desc->type),
 2116                                    le32toh(desc->len));
 2117 
 2118         if ((desc->qid & WPI_RX_DESC_QID_MSK) != WPI_CMD_QUEUE_NUM)
 2119                 return; /* Not a command ack. */
 2120 
 2121         KASSERT(ring->queued == 0, ("ring->queued must be 0"));
 2122 
 2123         data = &ring->data[desc->idx];
 2124         cmd = &ring->cmd[desc->idx];
 2125 
 2126         /* If the command was mapped in an mbuf, free it. */
 2127         if (data->m != NULL) {
 2128                 bus_dmamap_sync(ring->data_dmat, data->map,
 2129                     BUS_DMASYNC_POSTWRITE);
 2130                 bus_dmamap_unload(ring->data_dmat, data->map);
 2131                 m_freem(data->m);
 2132                 data->m = NULL;
 2133         }
 2134 
 2135         wakeup(cmd);
 2136 
 2137         if (desc->type == WPI_CMD_SET_POWER_MODE) {
 2138                 struct wpi_pmgt_cmd *pcmd = (struct wpi_pmgt_cmd *)cmd->data;
 2139 
 2140                 bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
 2141                     BUS_DMASYNC_POSTREAD);
 2142 
 2143                 WPI_TXQ_LOCK(sc);
 2144                 if (le16toh(pcmd->flags) & WPI_PS_ALLOW_SLEEP) {
 2145                         sc->sc_update_rx_ring = wpi_update_rx_ring_ps;
 2146                         sc->sc_update_tx_ring = wpi_update_tx_ring_ps;
 2147                 } else {
 2148                         sc->sc_update_rx_ring = wpi_update_rx_ring;
 2149                         sc->sc_update_tx_ring = wpi_update_tx_ring;
 2150                 }
 2151                 WPI_TXQ_UNLOCK(sc);
 2152         }
 2153 }
 2154 
 2155 static void
 2156 wpi_notif_intr(struct wpi_softc *sc)
 2157 {
 2158         struct ieee80211com *ic = &sc->sc_ic;
 2159         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 2160         uint32_t hw;
 2161 
 2162         bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
 2163             BUS_DMASYNC_POSTREAD);
 2164 
 2165         hw = le32toh(sc->shared->next) & 0xfff;
 2166         hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
 2167 
 2168         while (sc->rxq.cur != hw) {
 2169                 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
 2170 
 2171                 struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
 2172                 struct wpi_rx_desc *desc;
 2173 
 2174                 bus_dmamap_sync(sc->rxq.data_dmat, data->map,
 2175                     BUS_DMASYNC_POSTREAD);
 2176                 desc = mtod(data->m, struct wpi_rx_desc *);
 2177 
 2178                 DPRINTF(sc, WPI_DEBUG_NOTIFY,
 2179                     "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
 2180                     __func__, sc->rxq.cur, desc->qid, desc->idx, desc->flags,
 2181                     desc->type, wpi_cmd_str(desc->type), le32toh(desc->len));
 2182 
 2183                 if (!(desc->qid & WPI_UNSOLICITED_RX_NOTIF)) {
 2184                         /* Reply to a command. */
 2185                         wpi_cmd_done(sc, desc);
 2186                 }
 2187 
 2188                 switch (desc->type) {
 2189                 case WPI_RX_DONE:
 2190                         /* An 802.11 frame has been received. */
 2191                         wpi_rx_done(sc, desc, data);
 2192 
 2193                         if (__predict_false(sc->sc_running == 0)) {
 2194                                 /* wpi_stop() was called. */
 2195                                 return;
 2196                         }
 2197 
 2198                         break;
 2199 
 2200                 case WPI_TX_DONE:
 2201                         /* An 802.11 frame has been transmitted. */
 2202                         wpi_tx_done(sc, desc);
 2203                         break;
 2204 
 2205                 case WPI_RX_STATISTICS:
 2206                 case WPI_BEACON_STATISTICS:
 2207                         wpi_rx_statistics(sc, desc, data);
 2208                         break;
 2209 
 2210                 case WPI_BEACON_MISSED:
 2211                 {
 2212                         struct wpi_beacon_missed *miss =
 2213                             (struct wpi_beacon_missed *)(desc + 1);
 2214                         uint32_t expected, misses, received, threshold;
 2215 
 2216                         bus_dmamap_sync(sc->rxq.data_dmat, data->map,
 2217                             BUS_DMASYNC_POSTREAD);
 2218 
 2219                         misses = le32toh(miss->consecutive);
 2220                         expected = le32toh(miss->expected);
 2221                         received = le32toh(miss->received);
 2222                         threshold = MAX(2, vap->iv_bmissthreshold);
 2223 
 2224                         DPRINTF(sc, WPI_DEBUG_BMISS,
 2225                             "%s: beacons missed %u(%u) (received %u/%u)\n",
 2226                             __func__, misses, le32toh(miss->total), received,
 2227                             expected);
 2228 
 2229                         if (misses >= threshold ||
 2230                             (received == 0 && expected >= threshold)) {
 2231                                 WPI_RXON_LOCK(sc);
 2232                                 if (callout_pending(&sc->scan_timeout)) {
 2233                                         wpi_cmd(sc, WPI_CMD_SCAN_ABORT, NULL,
 2234                                             0, 1);
 2235                                 }
 2236                                 WPI_RXON_UNLOCK(sc);
 2237                                 if (vap->iv_state == IEEE80211_S_RUN &&
 2238                                     (ic->ic_flags & IEEE80211_F_SCAN) == 0)
 2239                                         ieee80211_beacon_miss(ic);
 2240                         }
 2241 
 2242                         break;
 2243                 }
 2244 #ifdef WPI_DEBUG
 2245                 case WPI_BEACON_SENT:
 2246                 {
 2247                         struct wpi_tx_stat *stat =
 2248                             (struct wpi_tx_stat *)(desc + 1);
 2249                         uint64_t *tsf = (uint64_t *)(stat + 1);
 2250                         uint32_t *mode = (uint32_t *)(tsf + 1);
 2251 
 2252                         bus_dmamap_sync(sc->rxq.data_dmat, data->map,
 2253                             BUS_DMASYNC_POSTREAD);
 2254 
 2255                         DPRINTF(sc, WPI_DEBUG_BEACON,
 2256                             "beacon sent: rts %u, ack %u, btkill %u, rate %u, "
 2257                             "duration %u, status %x, tsf %ju, mode %x\n",
 2258                             stat->rtsfailcnt, stat->ackfailcnt,
 2259                             stat->btkillcnt, stat->rate, le32toh(stat->duration),
 2260                             le32toh(stat->status), le64toh(*tsf),
 2261                             le32toh(*mode));
 2262 
 2263                         break;
 2264                 }
 2265 #endif
 2266                 case WPI_UC_READY:
 2267                 {
 2268                         struct wpi_ucode_info *uc =
 2269                             (struct wpi_ucode_info *)(desc + 1);
 2270 
 2271                         /* The microcontroller is ready. */
 2272                         bus_dmamap_sync(sc->rxq.data_dmat, data->map,
 2273                             BUS_DMASYNC_POSTREAD);
 2274                         DPRINTF(sc, WPI_DEBUG_RESET,
 2275                             "microcode alive notification version=%d.%d "
 2276                             "subtype=%x alive=%x\n", uc->major, uc->minor,
 2277                             uc->subtype, le32toh(uc->valid));
 2278 
 2279                         if (le32toh(uc->valid) != 1) {
 2280                                 device_printf(sc->sc_dev,
 2281                                     "microcontroller initialization failed\n");
 2282                                 wpi_stop_locked(sc);
 2283                                 return;
 2284                         }
 2285                         /* Save the address of the error log in SRAM. */
 2286                         sc->errptr = le32toh(uc->errptr);
 2287                         break;
 2288                 }
 2289                 case WPI_STATE_CHANGED:
 2290                 {
 2291                         bus_dmamap_sync(sc->rxq.data_dmat, data->map,
 2292                             BUS_DMASYNC_POSTREAD);
 2293 
 2294                         uint32_t *status = (uint32_t *)(desc + 1);
 2295 
 2296                         DPRINTF(sc, WPI_DEBUG_STATE, "state changed to %x\n",
 2297                             le32toh(*status));
 2298 
 2299                         if (le32toh(*status) & 1) {
 2300                                 WPI_NT_LOCK(sc);
 2301                                 wpi_clear_node_table(sc);
 2302                                 WPI_NT_UNLOCK(sc);
 2303                                 ieee80211_runtask(ic,
 2304                                     &sc->sc_radiooff_task);
 2305                                 return;
 2306                         }
 2307                         break;
 2308                 }
 2309 #ifdef WPI_DEBUG
 2310                 case WPI_START_SCAN:
 2311                 {
 2312                         bus_dmamap_sync(sc->rxq.data_dmat, data->map,
 2313                             BUS_DMASYNC_POSTREAD);
 2314 
 2315                         struct wpi_start_scan *scan =
 2316                             (struct wpi_start_scan *)(desc + 1);
 2317                         DPRINTF(sc, WPI_DEBUG_SCAN,
 2318                             "%s: scanning channel %d status %x\n",
 2319                             __func__, scan->chan, le32toh(scan->status));
 2320 
 2321                         break;
 2322                 }
 2323 #endif
 2324                 case WPI_STOP_SCAN:
 2325                 {
 2326                         bus_dmamap_sync(sc->rxq.data_dmat, data->map,
 2327                             BUS_DMASYNC_POSTREAD);
 2328 
 2329                         struct wpi_stop_scan *scan =
 2330                             (struct wpi_stop_scan *)(desc + 1);
 2331 
 2332                         DPRINTF(sc, WPI_DEBUG_SCAN,
 2333                             "scan finished nchan=%d status=%d chan=%d\n",
 2334                             scan->nchan, scan->status, scan->chan);
 2335 
 2336                         WPI_RXON_LOCK(sc);
 2337                         callout_stop(&sc->scan_timeout);
 2338                         WPI_RXON_UNLOCK(sc);
 2339                         if (scan->status == WPI_SCAN_ABORTED)
 2340                                 ieee80211_cancel_scan(vap);
 2341                         else
 2342                                 ieee80211_scan_next(vap);
 2343                         break;
 2344                 }
 2345                 }
 2346 
 2347                 if (sc->rxq.cur % 8 == 0) {
 2348                         /* Tell the firmware what we have processed. */
 2349                         sc->sc_update_rx_ring(sc);
 2350                 }
 2351         }
 2352 }
 2353 
 2354 /*
 2355  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
 2356  * from power-down sleep mode.
 2357  */
 2358 static void
 2359 wpi_wakeup_intr(struct wpi_softc *sc)
 2360 {
 2361         int qid;
 2362 
 2363         DPRINTF(sc, WPI_DEBUG_PWRSAVE,
 2364             "%s: ucode wakeup from power-down sleep\n", __func__);
 2365 
 2366         /* Wakeup RX and TX rings. */
 2367         if (sc->rxq.update) {
 2368                 sc->rxq.update = 0;
 2369                 wpi_update_rx_ring(sc);
 2370         }
 2371         WPI_TXQ_LOCK(sc);
 2372         for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) {
 2373                 struct wpi_tx_ring *ring = &sc->txq[qid];
 2374 
 2375                 if (ring->update) {
 2376                         ring->update = 0;
 2377                         wpi_update_tx_ring(sc, ring);
 2378                 }
 2379         }
 2380         WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
 2381         WPI_TXQ_UNLOCK(sc);
 2382 }
 2383 
 2384 /*
 2385  * This function prints firmware registers
 2386  */
 2387 #ifdef WPI_DEBUG
 2388 static void
 2389 wpi_debug_registers(struct wpi_softc *sc)
 2390 {
 2391         size_t i;
 2392         static const uint32_t csr_tbl[] = {
 2393                 WPI_HW_IF_CONFIG,
 2394                 WPI_INT,
 2395                 WPI_INT_MASK,
 2396                 WPI_FH_INT,
 2397                 WPI_GPIO_IN,
 2398                 WPI_RESET,
 2399                 WPI_GP_CNTRL,
 2400                 WPI_EEPROM,
 2401                 WPI_EEPROM_GP,
 2402                 WPI_GIO,
 2403                 WPI_UCODE_GP1,
 2404                 WPI_UCODE_GP2,
 2405                 WPI_GIO_CHICKEN,
 2406                 WPI_ANA_PLL,
 2407                 WPI_DBG_HPET_MEM,
 2408         };
 2409         static const uint32_t prph_tbl[] = {
 2410                 WPI_APMG_CLK_CTRL,
 2411                 WPI_APMG_PS,
 2412                 WPI_APMG_PCI_STT,
 2413                 WPI_APMG_RFKILL,
 2414         };
 2415 
 2416         DPRINTF(sc, WPI_DEBUG_REGISTER,"%s","\n");
 2417 
 2418         for (i = 0; i < nitems(csr_tbl); i++) {
 2419                 DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
 2420                     wpi_get_csr_string(csr_tbl[i]), WPI_READ(sc, csr_tbl[i]));
 2421 
 2422                 if ((i + 1) % 2 == 0)
 2423                         DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
 2424         }
 2425         DPRINTF(sc, WPI_DEBUG_REGISTER, "\n\n");
 2426 
 2427         if (wpi_nic_lock(sc) == 0) {
 2428                 for (i = 0; i < nitems(prph_tbl); i++) {
 2429                         DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
 2430                             wpi_get_prph_string(prph_tbl[i]),
 2431                             wpi_prph_read(sc, prph_tbl[i]));
 2432 
 2433                         if ((i + 1) % 2 == 0)
 2434                                 DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
 2435                 }
 2436                 DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
 2437                 wpi_nic_unlock(sc);
 2438         } else {
 2439                 DPRINTF(sc, WPI_DEBUG_REGISTER,
 2440                     "Cannot access internal registers.\n");
 2441         }
 2442 }
 2443 #endif
 2444 
 2445 /*
 2446  * Dump the error log of the firmware when a firmware panic occurs.  Although
 2447  * we can't debug the firmware because it is neither open source nor free, it
 2448  * can help us to identify certain classes of problems.
 2449  */
 2450 static void
 2451 wpi_fatal_intr(struct wpi_softc *sc)
 2452 {
 2453         struct wpi_fw_dump dump;
 2454         uint32_t i, offset, count;
 2455 
 2456         /* Check that the error log address is valid. */
 2457         if (sc->errptr < WPI_FW_DATA_BASE ||
 2458             sc->errptr + sizeof (dump) >
 2459             WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) {
 2460                 printf("%s: bad firmware error log address 0x%08x\n", __func__,
 2461                     sc->errptr);
 2462                 return;
 2463         }
 2464         if (wpi_nic_lock(sc) != 0) {
 2465                 printf("%s: could not read firmware error log\n", __func__);
 2466                 return;
 2467         }
 2468         /* Read number of entries in the log. */
 2469         count = wpi_mem_read(sc, sc->errptr);
 2470         if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) {
 2471                 printf("%s: invalid count field (count = %u)\n", __func__,
 2472                     count);
 2473                 wpi_nic_unlock(sc);
 2474                 return;
 2475         }
 2476         /* Skip "count" field. */
 2477         offset = sc->errptr + sizeof (uint32_t);
 2478         printf("firmware error log (count = %u):\n", count);
 2479         for (i = 0; i < count; i++) {
 2480                 wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump,
 2481                     sizeof (dump) / sizeof (uint32_t));
 2482 
 2483                 printf("  error type = \"%s\" (0x%08X)\n",
 2484                     (dump.desc < nitems(wpi_fw_errmsg)) ?
 2485                         wpi_fw_errmsg[dump.desc] : "UNKNOWN",
 2486                     dump.desc);
 2487                 printf("  error data      = 0x%08X\n",
 2488                     dump.data);
 2489                 printf("  branch link     = 0x%08X%08X\n",
 2490                     dump.blink[0], dump.blink[1]);
 2491                 printf("  interrupt link  = 0x%08X%08X\n",
 2492                     dump.ilink[0], dump.ilink[1]);
 2493                 printf("  time            = %u\n", dump.time);
 2494 
 2495                 offset += sizeof (dump);
 2496         }
 2497         wpi_nic_unlock(sc);
 2498         /* Dump driver status (TX and RX rings) while we're here. */
 2499         printf("driver status:\n");
 2500         WPI_TXQ_LOCK(sc);
 2501         for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
 2502                 struct wpi_tx_ring *ring = &sc->txq[i];
 2503                 printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
 2504                     i, ring->qid, ring->cur, ring->queued);
 2505         }
 2506         WPI_TXQ_UNLOCK(sc);
 2507         printf("  rx ring: cur=%d\n", sc->rxq.cur);
 2508 }
 2509 
 2510 static void
 2511 wpi_intr(void *arg)
 2512 {
 2513         struct wpi_softc *sc = arg;
 2514         uint32_t r1, r2;
 2515 
 2516         WPI_LOCK(sc);
 2517 
 2518         /* Disable interrupts. */
 2519         WPI_WRITE(sc, WPI_INT_MASK, 0);
 2520 
 2521         r1 = WPI_READ(sc, WPI_INT);
 2522 
 2523         if (__predict_false(r1 == 0xffffffff ||
 2524                            (r1 & 0xfffffff0) == 0xa5a5a5a0))
 2525                 goto end;       /* Hardware gone! */
 2526 
 2527         r2 = WPI_READ(sc, WPI_FH_INT);
 2528 
 2529         DPRINTF(sc, WPI_DEBUG_INTR, "%s: reg1=0x%08x reg2=0x%08x\n", __func__,
 2530             r1, r2);
 2531 
 2532         if (r1 == 0 && r2 == 0)
 2533                 goto done;      /* Interrupt not for us. */
 2534 
 2535         /* Acknowledge interrupts. */
 2536         WPI_WRITE(sc, WPI_INT, r1);
 2537         WPI_WRITE(sc, WPI_FH_INT, r2);
 2538 
 2539         if (__predict_false(r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR))) {
 2540                 struct ieee80211com *ic = &sc->sc_ic;
 2541 
 2542                 device_printf(sc->sc_dev, "fatal firmware error\n");
 2543 #ifdef WPI_DEBUG
 2544                 wpi_debug_registers(sc);
 2545 #endif
 2546                 wpi_fatal_intr(sc);
 2547                 DPRINTF(sc, WPI_DEBUG_HW,
 2548                     "(%s)\n", (r1 & WPI_INT_SW_ERR) ? "(Software Error)" :
 2549                     "(Hardware Error)");
 2550                 ieee80211_restart_all(ic);
 2551                 goto end;
 2552         }
 2553 
 2554         if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) ||
 2555             (r2 & WPI_FH_INT_RX))
 2556                 wpi_notif_intr(sc);
 2557 
 2558         if (r1 & WPI_INT_ALIVE)
 2559                 wakeup(sc);     /* Firmware is alive. */
 2560 
 2561         if (r1 & WPI_INT_WAKEUP)
 2562                 wpi_wakeup_intr(sc);
 2563 
 2564 done:
 2565         /* Re-enable interrupts. */
 2566         if (__predict_true(sc->sc_running))
 2567                 WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
 2568 
 2569 end:    WPI_UNLOCK(sc);
 2570 }
 2571 
 2572 static void
 2573 wpi_free_txfrags(struct wpi_softc *sc, uint16_t ac)
 2574 {
 2575         struct wpi_tx_ring *ring;
 2576         struct wpi_tx_data *data;
 2577         uint8_t cur;
 2578 
 2579         WPI_TXQ_LOCK(sc);
 2580         ring = &sc->txq[ac];
 2581 
 2582         while (ring->pending != 0) {
 2583                 ring->pending--;
 2584                 cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT;
 2585                 data = &ring->data[cur];
 2586 
 2587                 bus_dmamap_sync(ring->data_dmat, data->map,
 2588                     BUS_DMASYNC_POSTWRITE);
 2589                 bus_dmamap_unload(ring->data_dmat, data->map);
 2590                 m_freem(data->m);
 2591                 data->m = NULL;
 2592 
 2593                 ieee80211_node_decref(data->ni);
 2594                 data->ni = NULL;
 2595         }
 2596 
 2597         WPI_TXQ_UNLOCK(sc);
 2598 }
 2599 
 2600 static int
 2601 wpi_cmd2(struct wpi_softc *sc, struct wpi_buf *buf)
 2602 {
 2603         struct ieee80211_frame *wh;
 2604         struct wpi_tx_cmd *cmd;
 2605         struct wpi_tx_data *data;
 2606         struct wpi_tx_desc *desc;
 2607         struct wpi_tx_ring *ring;
 2608         struct mbuf *m1;
 2609         bus_dma_segment_t *seg, segs[WPI_MAX_SCATTER];
 2610         uint8_t cur, pad;
 2611         uint16_t hdrlen;
 2612         int error, i, nsegs, totlen, frag;
 2613 
 2614         WPI_TXQ_LOCK(sc);
 2615 
 2616         KASSERT(buf->size <= sizeof(buf->data), ("buffer overflow"));
 2617 
 2618         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
 2619 
 2620         if (__predict_false(sc->sc_running == 0)) {
 2621                 /* wpi_stop() was called */
 2622                 error = ENETDOWN;
 2623                 goto end;
 2624         }
 2625 
 2626         wh = mtod(buf->m, struct ieee80211_frame *);
 2627         hdrlen = ieee80211_anyhdrsize(wh);
 2628         totlen = buf->m->m_pkthdr.len;
 2629         frag = ((buf->m->m_flags & (M_FRAG | M_LASTFRAG)) == M_FRAG);
 2630 
 2631         if (__predict_false(totlen < sizeof(struct ieee80211_frame_min))) {
 2632                 error = EINVAL;
 2633                 goto end;
 2634         }
 2635 
 2636         if (hdrlen & 3) {
 2637                 /* First segment length must be a multiple of 4. */
 2638                 pad = 4 - (hdrlen & 3);
 2639         } else
 2640                 pad = 0;
 2641 
 2642         ring = &sc->txq[buf->ac];
 2643         cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT;
 2644         desc = &ring->desc[cur];
 2645         data = &ring->data[cur];
 2646 
 2647         /* Prepare TX firmware command. */
 2648         cmd = &ring->cmd[cur];
 2649         cmd->code = buf->code;
 2650         cmd->flags = 0;
 2651         cmd->qid = ring->qid;
 2652         cmd->idx = cur;
 2653 
 2654         memcpy(cmd->data, buf->data, buf->size);
 2655 
 2656         /* Save and trim IEEE802.11 header. */
 2657         memcpy((uint8_t *)(cmd->data + buf->size), wh, hdrlen);
 2658         m_adj(buf->m, hdrlen);
 2659 
 2660         error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, buf->m,
 2661             segs, &nsegs, BUS_DMA_NOWAIT);
 2662         if (error != 0 && error != EFBIG) {
 2663                 device_printf(sc->sc_dev,
 2664                     "%s: can't map mbuf (error %d)\n", __func__, error);
 2665                 goto end;
 2666         }
 2667         if (error != 0) {
 2668                 /* Too many DMA segments, linearize mbuf. */
 2669                 m1 = m_collapse(buf->m, M_NOWAIT, WPI_MAX_SCATTER - 1);
 2670                 if (m1 == NULL) {
 2671                         device_printf(sc->sc_dev,
 2672                             "%s: could not defrag mbuf\n", __func__);
 2673                         error = ENOBUFS;
 2674                         goto end;
 2675                 }
 2676                 buf->m = m1;
 2677 
 2678                 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
 2679                     buf->m, segs, &nsegs, BUS_DMA_NOWAIT);
 2680                 if (__predict_false(error != 0)) {
 2681                         /* XXX fix this (applicable to the iwn(4) too) */
 2682                         /*
 2683                          * NB: Do not return error;
 2684                          * original mbuf does not exist anymore.
 2685                          */
 2686                         device_printf(sc->sc_dev,
 2687                             "%s: can't map mbuf (error %d)\n", __func__,
 2688                             error);
 2689                         if (ring->qid < WPI_CMD_QUEUE_NUM) {
 2690                                 if_inc_counter(buf->ni->ni_vap->iv_ifp,
 2691                                     IFCOUNTER_OERRORS, 1);
 2692                                 if (!frag)
 2693                                         ieee80211_free_node(buf->ni);
 2694                         }
 2695                         m_freem(buf->m);
 2696                         error = 0;
 2697                         goto end;
 2698                 }
 2699         }
 2700 
 2701         KASSERT(nsegs < WPI_MAX_SCATTER,
 2702             ("too many DMA segments, nsegs (%d) should be less than %d",
 2703              nsegs, WPI_MAX_SCATTER));
 2704 
 2705         data->m = buf->m;
 2706         data->ni = buf->ni;
 2707 
 2708         DPRINTF(sc, WPI_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
 2709             __func__, ring->qid, cur, totlen, nsegs);
 2710 
 2711         /* Fill TX descriptor. */
 2712         desc->nsegs = WPI_PAD32(totlen + pad) << 4 | (1 + nsegs);
 2713         /* First DMA segment is used by the TX command. */
 2714         desc->segs[0].addr = htole32(data->cmd_paddr);
 2715         desc->segs[0].len  = htole32(4 + buf->size + hdrlen + pad);
 2716         /* Other DMA segments are for data payload. */
 2717         seg = &segs[0];
 2718         for (i = 1; i <= nsegs; i++) {
 2719                 desc->segs[i].addr = htole32(seg->ds_addr);
 2720                 desc->segs[i].len  = htole32(seg->ds_len);
 2721                 seg++;
 2722         }
 2723 
 2724         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
 2725         bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
 2726             BUS_DMASYNC_PREWRITE);
 2727         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
 2728             BUS_DMASYNC_PREWRITE);
 2729 
 2730         ring->pending += 1;
 2731 
 2732         if (!frag) {
 2733                 if (ring->qid < WPI_CMD_QUEUE_NUM) {
 2734                         WPI_TXQ_STATE_LOCK(sc);
 2735                         ring->queued += ring->pending;
 2736                         callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout,
 2737                             sc);
 2738                         WPI_TXQ_STATE_UNLOCK(sc);
 2739                 }
 2740 
 2741                 /* Kick TX ring. */
 2742                 ring->cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT;
 2743                 ring->pending = 0;
 2744                 sc->sc_update_tx_ring(sc, ring);
 2745         } else
 2746                 ieee80211_node_incref(data->ni);
 2747 
 2748 end:    DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
 2749             __func__);
 2750 
 2751         WPI_TXQ_UNLOCK(sc);
 2752 
 2753         return (error);
 2754 }
 2755 
 2756 /*
 2757  * Construct the data packet for a transmit buffer.
 2758  */
 2759 static int
 2760 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
 2761 {
 2762         const struct ieee80211_txparam *tp;
 2763         struct ieee80211vap *vap = ni->ni_vap;
 2764         struct ieee80211com *ic = ni->ni_ic;
 2765         struct wpi_node *wn = WPI_NODE(ni);
 2766         struct ieee80211_channel *chan;
 2767         struct ieee80211_frame *wh;
 2768         struct ieee80211_key *k = NULL;
 2769         struct wpi_buf tx_data;
 2770         struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
 2771         uint32_t flags;
 2772         uint16_t ac, qos;
 2773         uint8_t tid, type, rate;
 2774         int swcrypt, ismcast, totlen;
 2775 
 2776         wh = mtod(m, struct ieee80211_frame *);
 2777         type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
 2778         ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
 2779         swcrypt = 1;
 2780 
 2781         /* Select EDCA Access Category and TX ring for this frame. */
 2782         if (IEEE80211_QOS_HAS_SEQ(wh)) {
 2783                 qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
 2784                 tid = qos & IEEE80211_QOS_TID;
 2785         } else {
 2786                 qos = 0;
 2787                 tid = 0;
 2788         }
 2789         ac = M_WME_GETAC(m);
 2790 
 2791         chan = (ni->ni_chan != IEEE80211_CHAN_ANYC) ?
 2792                 ni->ni_chan : ic->ic_curchan;
 2793         tp = &vap->iv_txparms[ieee80211_chan2mode(chan)];
 2794 
 2795         /* Choose a TX rate index. */
 2796         if (type == IEEE80211_FC0_TYPE_MGT)
 2797                 rate = tp->mgmtrate;
 2798         else if (ismcast)
 2799                 rate = tp->mcastrate;
 2800         else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
 2801                 rate = tp->ucastrate;
 2802         else if (m->m_flags & M_EAPOL)
 2803                 rate = tp->mgmtrate;
 2804         else {
 2805                 /* XXX pass pktlen */
 2806                 (void) ieee80211_ratectl_rate(ni, NULL, 0);
 2807                 rate = ni->ni_txrate;
 2808         }
 2809 
 2810         /* Encrypt the frame if need be. */
 2811         if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
 2812                 /* Retrieve key for TX. */
 2813                 k = ieee80211_crypto_encap(ni, m);
 2814                 if (k == NULL)
 2815                         return (ENOBUFS);
 2816 
 2817                 swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
 2818 
 2819                 /* 802.11 header may have moved. */
 2820                 wh = mtod(m, struct ieee80211_frame *);
 2821         }
 2822         totlen = m->m_pkthdr.len;
 2823 
 2824         if (ieee80211_radiotap_active_vap(vap)) {
 2825                 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
 2826 
 2827                 tap->wt_flags = 0;
 2828                 tap->wt_rate = rate;
 2829                 if (k != NULL)
 2830                         tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
 2831                 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
 2832                         tap->wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
 2833 
 2834                 ieee80211_radiotap_tx(vap, m);
 2835         }
 2836 
 2837         flags = 0;
 2838         if (!ismcast) {
 2839                 /* Unicast frame, check if an ACK is expected. */
 2840                 if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
 2841                     IEEE80211_QOS_ACKPOLICY_NOACK)
 2842                         flags |= WPI_TX_NEED_ACK;
 2843         }
 2844 
 2845         if (!IEEE80211_QOS_HAS_SEQ(wh))
 2846                 flags |= WPI_TX_AUTO_SEQ;
 2847         if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
 2848                 flags |= WPI_TX_MORE_FRAG;
 2849 
 2850         /* Check if frame must be protected using RTS/CTS or CTS-to-self. */
 2851         if (!ismcast) {
 2852                 /* NB: Group frames are sent using CCK in 802.11b/g. */
 2853                 if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
 2854                         flags |= WPI_TX_NEED_RTS;
 2855                 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
 2856                     WPI_RATE_IS_OFDM(rate)) {
 2857                         if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
 2858                                 flags |= WPI_TX_NEED_CTS;
 2859                         else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
 2860                                 flags |= WPI_TX_NEED_RTS;
 2861                 }
 2862 
 2863                 if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
 2864                         flags |= WPI_TX_FULL_TXOP;
 2865         }
 2866 
 2867         memset(tx, 0, sizeof (struct wpi_cmd_data));
 2868         if (type == IEEE80211_FC0_TYPE_MGT) {
 2869                 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
 2870 
 2871                 /* Tell HW to set timestamp in probe responses. */
 2872                 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
 2873                         flags |= WPI_TX_INSERT_TSTAMP;
 2874                 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
 2875                     subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
 2876                         tx->timeout = htole16(3);
 2877                 else
 2878                         tx->timeout = htole16(2);
 2879         }
 2880 
 2881         if (ismcast || type != IEEE80211_FC0_TYPE_DATA)
 2882                 tx->id = WPI_ID_BROADCAST;
 2883         else {
 2884                 if (wn->id == WPI_ID_UNDEFINED) {
 2885                         device_printf(sc->sc_dev,
 2886                             "%s: undefined node id\n", __func__);
 2887                         return (EINVAL);
 2888                 }
 2889 
 2890                 tx->id = wn->id;
 2891         }
 2892 
 2893         if (!swcrypt) {
 2894                 switch (k->wk_cipher->ic_cipher) {
 2895                 case IEEE80211_CIPHER_AES_CCM:
 2896                         tx->security = WPI_CIPHER_CCMP;
 2897                         break;
 2898 
 2899                 default:
 2900                         break;
 2901                 }
 2902 
 2903                 memcpy(tx->key, k->wk_key, k->wk_keylen);
 2904         }
 2905 
 2906         if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
 2907                 struct mbuf *next = m->m_nextpkt;
 2908 
 2909                 tx->lnext = htole16(next->m_pkthdr.len);
 2910                 tx->fnext = htole32(tx->security |
 2911                                     (flags & WPI_TX_NEED_ACK) |
 2912                                     WPI_NEXT_STA_ID(tx->id));
 2913         }
 2914 
 2915         tx->len = htole16(totlen);
 2916         tx->flags = htole32(flags);
 2917         tx->plcp = rate2plcp(rate);
 2918         tx->tid = tid;
 2919         tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
 2920         tx->ofdm_mask = 0xff;
 2921         tx->cck_mask = 0x0f;
 2922         tx->rts_ntries = 7;
 2923         tx->data_ntries = tp->maxretry;
 2924 
 2925         tx_data.ni = ni;
 2926         tx_data.m = m;
 2927         tx_data.size = sizeof(struct wpi_cmd_data);
 2928         tx_data.code = WPI_CMD_TX_DATA;
 2929         tx_data.ac = ac;
 2930 
 2931         return wpi_cmd2(sc, &tx_data);
 2932 }
 2933 
 2934 static int
 2935 wpi_tx_data_raw(struct wpi_softc *sc, struct mbuf *m,
 2936     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
 2937 {
 2938         struct ieee80211vap *vap = ni->ni_vap;
 2939         struct ieee80211_key *k = NULL;
 2940         struct ieee80211_frame *wh;
 2941         struct wpi_buf tx_data;
 2942         struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
 2943         uint32_t flags;
 2944         uint8_t ac, type, rate;
 2945         int swcrypt, totlen;
 2946 
 2947         wh = mtod(m, struct ieee80211_frame *);
 2948         type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
 2949         swcrypt = 1;
 2950 
 2951         ac = params->ibp_pri & 3;
 2952 
 2953         /* Choose a TX rate index. */
 2954         rate = params->ibp_rate0;
 2955 
 2956         flags = 0;
 2957         if (!IEEE80211_QOS_HAS_SEQ(wh))
 2958                 flags |= WPI_TX_AUTO_SEQ;
 2959         if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
 2960                 flags |= WPI_TX_NEED_ACK;
 2961         if (params->ibp_flags & IEEE80211_BPF_RTS)
 2962                 flags |= WPI_TX_NEED_RTS;
 2963         if (params->ibp_flags & IEEE80211_BPF_CTS)
 2964                 flags |= WPI_TX_NEED_CTS;
 2965         if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
 2966                 flags |= WPI_TX_FULL_TXOP;
 2967 
 2968         /* Encrypt the frame if need be. */
 2969         if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
 2970                 /* Retrieve key for TX. */
 2971                 k = ieee80211_crypto_encap(ni, m);
 2972                 if (k == NULL)
 2973                         return (ENOBUFS);
 2974 
 2975                 swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
 2976 
 2977                 /* 802.11 header may have moved. */
 2978                 wh = mtod(m, struct ieee80211_frame *);
 2979         }
 2980         totlen = m->m_pkthdr.len;
 2981 
 2982         if (ieee80211_radiotap_active_vap(vap)) {
 2983                 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
 2984 
 2985                 tap->wt_flags = 0;
 2986                 tap->wt_rate = rate;
 2987                 if (params->ibp_flags & IEEE80211_BPF_CRYPTO)
 2988                         tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
 2989 
 2990                 ieee80211_radiotap_tx(vap, m);
 2991         }
 2992 
 2993         memset(tx, 0, sizeof (struct wpi_cmd_data));
 2994         if (type == IEEE80211_FC0_TYPE_MGT) {
 2995                 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
 2996 
 2997                 /* Tell HW to set timestamp in probe responses. */
 2998                 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
 2999                         flags |= WPI_TX_INSERT_TSTAMP;
 3000                 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
 3001                     subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
 3002                         tx->timeout = htole16(3);
 3003                 else
 3004                         tx->timeout = htole16(2);
 3005         }
 3006 
 3007         if (!swcrypt) {
 3008                 switch (k->wk_cipher->ic_cipher) {
 3009                 case IEEE80211_CIPHER_AES_CCM:
 3010                         tx->security = WPI_CIPHER_CCMP;
 3011                         break;
 3012 
 3013                 default:
 3014                         break;
 3015                 }
 3016 
 3017                 memcpy(tx->key, k->wk_key, k->wk_keylen);
 3018         }
 3019 
 3020         tx->len = htole16(totlen);
 3021         tx->flags = htole32(flags);
 3022         tx->plcp = rate2plcp(rate);
 3023         tx->id = WPI_ID_BROADCAST;
 3024         tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
 3025         tx->rts_ntries = params->ibp_try1;
 3026         tx->data_ntries = params->ibp_try0;
 3027 
 3028         tx_data.ni = ni;
 3029         tx_data.m = m;
 3030         tx_data.size = sizeof(struct wpi_cmd_data);
 3031         tx_data.code = WPI_CMD_TX_DATA;
 3032         tx_data.ac = ac;
 3033 
 3034         return wpi_cmd2(sc, &tx_data);
 3035 }
 3036 
 3037 static __inline int
 3038 wpi_tx_ring_free_space(struct wpi_softc *sc, uint16_t ac)
 3039 {
 3040         struct wpi_tx_ring *ring = &sc->txq[ac];
 3041         int retval;
 3042 
 3043         WPI_TXQ_STATE_LOCK(sc);
 3044         retval = WPI_TX_RING_HIMARK - ring->queued;
 3045         WPI_TXQ_STATE_UNLOCK(sc);
 3046 
 3047         return retval;
 3048 }
 3049 
 3050 static int
 3051 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
 3052     const struct ieee80211_bpf_params *params)
 3053 {
 3054         struct ieee80211com *ic = ni->ni_ic;
 3055         struct wpi_softc *sc = ic->ic_softc;
 3056         uint16_t ac;
 3057         int error = 0;
 3058 
 3059         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
 3060 
 3061         ac = M_WME_GETAC(m);
 3062 
 3063         WPI_TX_LOCK(sc);
 3064 
 3065         /* NB: no fragments here */
 3066         if (sc->sc_running == 0 || wpi_tx_ring_free_space(sc, ac) < 1) {
 3067                 error = sc->sc_running ? ENOBUFS : ENETDOWN;
 3068                 goto unlock;
 3069         }
 3070 
 3071         if (params == NULL) {
 3072                 /*
 3073                  * Legacy path; interpret frame contents to decide
 3074                  * precisely how to send the frame.
 3075                  */
 3076                 error = wpi_tx_data(sc, m, ni);
 3077         } else {
 3078                 /*
 3079                  * Caller supplied explicit parameters to use in
 3080                  * sending the frame.
 3081                  */
 3082                 error = wpi_tx_data_raw(sc, m, ni, params);
 3083         }
 3084 
 3085 unlock: WPI_TX_UNLOCK(sc);
 3086 
 3087         if (error != 0) {
 3088                 m_freem(m);
 3089                 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
 3090 
 3091                 return error;
 3092         }
 3093 
 3094         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
 3095 
 3096         return 0;
 3097 }
 3098 
 3099 static int
 3100 wpi_transmit(struct ieee80211com *ic, struct mbuf *m)
 3101 {
 3102         struct wpi_softc *sc = ic->ic_softc;
 3103         struct ieee80211_node *ni;
 3104         struct mbuf *mnext;
 3105         uint16_t ac;
 3106         int error, nmbufs;
 3107 
 3108         WPI_TX_LOCK(sc);
 3109         DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__);
 3110 
 3111         /* Check if interface is up & running. */
 3112         if (__predict_false(sc->sc_running == 0)) {
 3113                 error = ENXIO;
 3114                 goto unlock;
 3115         }
 3116 
 3117         nmbufs = 1;
 3118         for (mnext = m->m_nextpkt; mnext != NULL; mnext = mnext->m_nextpkt)
 3119                 nmbufs++;
 3120 
 3121         /* Check for available space. */
 3122         ac = M_WME_GETAC(m);
 3123         if (wpi_tx_ring_free_space(sc, ac) < nmbufs) {
 3124                 error = ENOBUFS;
 3125                 goto unlock;
 3126         }
 3127 
 3128         error = 0;
 3129         ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
 3130         do {
 3131                 mnext = m->m_nextpkt;
 3132                 if (wpi_tx_data(sc, m, ni) != 0) {
 3133                         if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS,
 3134                             nmbufs);
 3135                         wpi_free_txfrags(sc, ac);
 3136                         ieee80211_free_mbuf(m);
 3137                         ieee80211_free_node(ni);
 3138                         break;
 3139                 }
 3140         } while((m = mnext) != NULL);
 3141 
 3142         DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__);
 3143 
 3144 unlock: WPI_TX_UNLOCK(sc);
 3145 
 3146         return (error);
 3147 }
 3148 
 3149 static void
 3150 wpi_watchdog_rfkill(void *arg)
 3151 {
 3152         struct wpi_softc *sc = arg;
 3153         struct ieee80211com *ic = &sc->sc_ic;
 3154 
 3155         DPRINTF(sc, WPI_DEBUG_WATCHDOG, "RFkill Watchdog: tick\n");
 3156 
 3157         /* No need to lock firmware memory. */
 3158         if ((wpi_prph_read(sc, WPI_APMG_RFKILL) & 0x1) == 0) {
 3159                 /* Radio kill switch is still off. */
 3160                 callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
 3161                     sc);
 3162         } else
 3163                 ieee80211_runtask(ic, &sc->sc_radioon_task);
 3164 }
 3165 
 3166 static void
 3167 wpi_scan_timeout(void *arg)
 3168 {
 3169         struct wpi_softc *sc = arg;
 3170         struct ieee80211com *ic = &sc->sc_ic;
 3171 
 3172         ic_printf(ic, "scan timeout\n");
 3173         ieee80211_restart_all(ic);
 3174 }
 3175 
 3176 static void
 3177 wpi_tx_timeout(void *arg)
 3178 {
 3179         struct wpi_softc *sc = arg;
 3180         struct ieee80211com *ic = &sc->sc_ic;
 3181 
 3182         ic_printf(ic, "device timeout\n");
 3183         ieee80211_restart_all(ic);
 3184 }
 3185 
 3186 static void
 3187 wpi_parent(struct ieee80211com *ic)
 3188 {
 3189         struct wpi_softc *sc = ic->ic_softc;
 3190         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 3191 
 3192         if (ic->ic_nrunning > 0) {
 3193                 if (wpi_init(sc) == 0) {
 3194                         ieee80211_notify_radio(ic, 1);
 3195                         ieee80211_start_all(ic);
 3196                 } else {
 3197                         ieee80211_notify_radio(ic, 0);
 3198                         ieee80211_stop(vap);
 3199                 }
 3200         } else {
 3201                 ieee80211_notify_radio(ic, 0);
 3202                 wpi_stop(sc);
 3203         }
 3204 }
 3205 
 3206 /*
 3207  * Send a command to the firmware.
 3208  */
 3209 static int
 3210 wpi_cmd(struct wpi_softc *sc, uint8_t code, const void *buf, uint16_t size,
 3211     int async)
 3212 {
 3213         struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
 3214         struct wpi_tx_desc *desc;
 3215         struct wpi_tx_data *data;
 3216         struct wpi_tx_cmd *cmd;
 3217         struct mbuf *m;
 3218         bus_addr_t paddr;
 3219         uint16_t totlen;
 3220         int error;
 3221 
 3222         WPI_TXQ_LOCK(sc);
 3223 
 3224         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
 3225 
 3226         if (__predict_false(sc->sc_running == 0)) {
 3227                 /* wpi_stop() was called */
 3228                 if (code == WPI_CMD_SCAN)
 3229                         error = ENETDOWN;
 3230                 else
 3231                         error = 0;
 3232 
 3233                 goto fail;
 3234         }
 3235 
 3236         if (async == 0)
 3237                 WPI_LOCK_ASSERT(sc);
 3238 
 3239         DPRINTF(sc, WPI_DEBUG_CMD, "%s: cmd %s size %u async %d\n",
 3240             __func__, wpi_cmd_str(code), size, async);
 3241 
 3242         desc = &ring->desc[ring->cur];
 3243         data = &ring->data[ring->cur];
 3244         totlen = 4 + size;
 3245 
 3246         if (size > sizeof cmd->data) {
 3247                 /* Command is too large to fit in a descriptor. */
 3248                 if (totlen > MCLBYTES) {
 3249                         error = EINVAL;
 3250                         goto fail;
 3251                 }
 3252                 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
 3253                 if (m == NULL) {
 3254                         error = ENOMEM;
 3255                         goto fail;
 3256                 }
 3257                 cmd = mtod(m, struct wpi_tx_cmd *);
 3258                 error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
 3259                     totlen, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
 3260                 if (error != 0) {
 3261                         m_freem(m);
 3262                         goto fail;
 3263                 }
 3264                 data->m = m;
 3265         } else {
 3266                 cmd = &ring->cmd[ring->cur];
 3267                 paddr = data->cmd_paddr;
 3268         }
 3269 
 3270         cmd->code = code;
 3271         cmd->flags = 0;
 3272         cmd->qid = ring->qid;
 3273         cmd->idx = ring->cur;
 3274         memcpy(cmd->data, buf, size);
 3275 
 3276         desc->nsegs = 1 + (WPI_PAD32(size) << 4);
 3277         desc->segs[0].addr = htole32(paddr);
 3278         desc->segs[0].len  = htole32(totlen);
 3279 
 3280         if (size > sizeof cmd->data) {
 3281                 bus_dmamap_sync(ring->data_dmat, data->map,
 3282                     BUS_DMASYNC_PREWRITE);
 3283         } else {
 3284                 bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
 3285                     BUS_DMASYNC_PREWRITE);
 3286         }
 3287         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
 3288             BUS_DMASYNC_PREWRITE);
 3289 
 3290         /* Kick command ring. */
 3291         ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
 3292         sc->sc_update_tx_ring(sc, ring);
 3293 
 3294         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
 3295 
 3296         WPI_TXQ_UNLOCK(sc);
 3297 
 3298         return async ? 0 : mtx_sleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
 3299 
 3300 fail:   DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
 3301 
 3302         WPI_TXQ_UNLOCK(sc);
 3303 
 3304         return error;
 3305 }
 3306 
 3307 /*
 3308  * Configure HW multi-rate retries.
 3309  */
 3310 static int
 3311 wpi_mrr_setup(struct wpi_softc *sc)
 3312 {
 3313         struct ieee80211com *ic = &sc->sc_ic;
 3314         struct wpi_mrr_setup mrr;
 3315         uint8_t i;
 3316         int error;
 3317 
 3318         /* CCK rates (not used with 802.11a). */
 3319         for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) {
 3320                 mrr.rates[i].flags = 0;
 3321                 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
 3322                 /* Fallback to the immediate lower CCK rate (if any.) */
 3323                 mrr.rates[i].next =
 3324                     (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1;
 3325                 /* Try twice at this rate before falling back to "next". */
 3326                 mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
 3327         }
 3328         /* OFDM rates (not used with 802.11b). */
 3329         for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) {
 3330                 mrr.rates[i].flags = 0;
 3331                 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
 3332                 /* Fallback to the immediate lower rate (if any.) */
 3333                 /* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */
 3334                 mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ?
 3335                     ((ic->ic_curmode == IEEE80211_MODE_11A) ?
 3336                         WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) :
 3337                     i - 1;
 3338                 /* Try twice at this rate before falling back to "next". */
 3339                 mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
 3340         }
 3341         /* Setup MRR for control frames. */
 3342         mrr.which = htole32(WPI_MRR_CTL);
 3343         error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
 3344         if (error != 0) {
 3345                 device_printf(sc->sc_dev,
 3346                     "could not setup MRR for control frames\n");
 3347                 return error;
 3348         }
 3349         /* Setup MRR for data frames. */
 3350         mrr.which = htole32(WPI_MRR_DATA);
 3351         error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
 3352         if (error != 0) {
 3353                 device_printf(sc->sc_dev,
 3354                     "could not setup MRR for data frames\n");
 3355                 return error;
 3356         }
 3357         return 0;
 3358 }
 3359 
 3360 static int
 3361 wpi_add_node(struct wpi_softc *sc, struct ieee80211_node *ni)
 3362 {
 3363         struct ieee80211com *ic = ni->ni_ic;
 3364         struct wpi_vap *wvp = WPI_VAP(ni->ni_vap);
 3365         struct wpi_node *wn = WPI_NODE(ni);
 3366         struct wpi_node_info node;
 3367         int error;
 3368 
 3369         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 3370 
 3371         if (wn->id == WPI_ID_UNDEFINED)
 3372                 return EINVAL;
 3373 
 3374         memset(&node, 0, sizeof node);
 3375         IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
 3376         node.id = wn->id;
 3377         node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
 3378             wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
 3379         node.action = htole32(WPI_ACTION_SET_RATE);
 3380         node.antenna = WPI_ANTENNA_BOTH;
 3381 
 3382         DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding node %d (%s)\n", __func__,
 3383             wn->id, ether_sprintf(ni->ni_macaddr));
 3384 
 3385         error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
 3386         if (error != 0) {
 3387                 device_printf(sc->sc_dev,
 3388                     "%s: wpi_cmd() call failed with error code %d\n", __func__,
 3389                     error);
 3390                 return error;
 3391         }
 3392 
 3393         if (wvp->wv_gtk != 0) {
 3394                 error = wpi_set_global_keys(ni);
 3395                 if (error != 0) {
 3396                         device_printf(sc->sc_dev,
 3397                             "%s: error while setting global keys\n", __func__);
 3398                         return ENXIO;
 3399                 }
 3400         }
 3401 
 3402         return 0;
 3403 }
 3404 
 3405 /*
 3406  * Broadcast node is used to send group-addressed and management frames.
 3407  */
 3408 static int
 3409 wpi_add_broadcast_node(struct wpi_softc *sc, int async)
 3410 {
 3411         struct ieee80211com *ic = &sc->sc_ic;
 3412         struct wpi_node_info node;
 3413 
 3414         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 3415 
 3416         memset(&node, 0, sizeof node);
 3417         IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr);
 3418         node.id = WPI_ID_BROADCAST;
 3419         node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
 3420             wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
 3421         node.action = htole32(WPI_ACTION_SET_RATE);
 3422         node.antenna = WPI_ANTENNA_BOTH;
 3423 
 3424         DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding broadcast node\n", __func__);
 3425 
 3426         return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, async);
 3427 }
 3428 
 3429 static int
 3430 wpi_add_sta_node(struct wpi_softc *sc, struct ieee80211_node *ni)
 3431 {
 3432         struct wpi_node *wn = WPI_NODE(ni);
 3433         int error;
 3434 
 3435         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 3436 
 3437         wn->id = wpi_add_node_entry_sta(sc);
 3438 
 3439         if ((error = wpi_add_node(sc, ni)) != 0) {
 3440                 wpi_del_node_entry(sc, wn->id);
 3441                 wn->id = WPI_ID_UNDEFINED;
 3442                 return error;
 3443         }
 3444 
 3445         return 0;
 3446 }
 3447 
 3448 static int
 3449 wpi_add_ibss_node(struct wpi_softc *sc, struct ieee80211_node *ni)
 3450 {
 3451         struct wpi_node *wn = WPI_NODE(ni);
 3452         int error;
 3453 
 3454         KASSERT(wn->id == WPI_ID_UNDEFINED,
 3455             ("the node %d was added before", wn->id));
 3456 
 3457         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 3458 
 3459         if ((wn->id = wpi_add_node_entry_adhoc(sc)) == WPI_ID_UNDEFINED) {
 3460                 device_printf(sc->sc_dev, "%s: h/w table is full\n", __func__);
 3461                 return ENOMEM;
 3462         }
 3463 
 3464         if ((error = wpi_add_node(sc, ni)) != 0) {
 3465                 wpi_del_node_entry(sc, wn->id);
 3466                 wn->id = WPI_ID_UNDEFINED;
 3467                 return error;
 3468         }
 3469 
 3470         return 0;
 3471 }
 3472 
 3473 static void
 3474 wpi_del_node(struct wpi_softc *sc, struct ieee80211_node *ni)
 3475 {
 3476         struct wpi_node *wn = WPI_NODE(ni);
 3477         struct wpi_cmd_del_node node;
 3478         int error;
 3479 
 3480         KASSERT(wn->id != WPI_ID_UNDEFINED, ("undefined node id passed"));
 3481 
 3482         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 3483 
 3484         memset(&node, 0, sizeof node);
 3485         IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
 3486         node.count = 1;
 3487 
 3488         DPRINTF(sc, WPI_DEBUG_NODE, "%s: deleting node %d (%s)\n", __func__,
 3489             wn->id, ether_sprintf(ni->ni_macaddr));
 3490 
 3491         error = wpi_cmd(sc, WPI_CMD_DEL_NODE, &node, sizeof node, 1);
 3492         if (error != 0) {
 3493                 device_printf(sc->sc_dev,
 3494                     "%s: could not delete node %u, error %d\n", __func__,
 3495                     wn->id, error);
 3496         }
 3497 }
 3498 
 3499 static int
 3500 wpi_updateedca(struct ieee80211com *ic)
 3501 {
 3502 #define WPI_EXP2(x)     ((1 << (x)) - 1)        /* CWmin = 2^ECWmin - 1 */
 3503         struct wpi_softc *sc = ic->ic_softc;
 3504         struct wpi_edca_params cmd;
 3505         int aci, error;
 3506 
 3507         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
 3508 
 3509         memset(&cmd, 0, sizeof cmd);
 3510         cmd.flags = htole32(WPI_EDCA_UPDATE);
 3511         for (aci = 0; aci < WME_NUM_AC; aci++) {
 3512                 const struct wmeParams *ac =
 3513                     &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
 3514                 cmd.ac[aci].aifsn = ac->wmep_aifsn;
 3515                 cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->wmep_logcwmin));
 3516                 cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->wmep_logcwmax));
 3517                 cmd.ac[aci].txoplimit = 
 3518                     htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
 3519 
 3520                 DPRINTF(sc, WPI_DEBUG_EDCA,
 3521                     "setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
 3522                     "txoplimit=%d\n", aci, cmd.ac[aci].aifsn,
 3523                     cmd.ac[aci].cwmin, cmd.ac[aci].cwmax,
 3524                     cmd.ac[aci].txoplimit);
 3525         }
 3526         error = wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
 3527 
 3528         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
 3529 
 3530         return error;
 3531 #undef WPI_EXP2
 3532 }
 3533 
 3534 static void
 3535 wpi_set_promisc(struct wpi_softc *sc)
 3536 {
 3537         struct ieee80211com *ic = &sc->sc_ic;
 3538         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 3539         uint32_t promisc_filter;
 3540 
 3541         promisc_filter = WPI_FILTER_CTL;
 3542         if (vap != NULL && vap->iv_opmode != IEEE80211_M_HOSTAP)
 3543                 promisc_filter |= WPI_FILTER_PROMISC;
 3544 
 3545         if (ic->ic_promisc > 0)
 3546                 sc->rxon.filter |= htole32(promisc_filter);
 3547         else
 3548                 sc->rxon.filter &= ~htole32(promisc_filter);
 3549 }
 3550 
 3551 static void
 3552 wpi_update_promisc(struct ieee80211com *ic)
 3553 {
 3554         struct wpi_softc *sc = ic->ic_softc;
 3555 
 3556         WPI_LOCK(sc);
 3557         if (sc->sc_running == 0) {
 3558                 WPI_UNLOCK(sc);
 3559                 return;
 3560         }
 3561         WPI_UNLOCK(sc);
 3562 
 3563         WPI_RXON_LOCK(sc);
 3564         wpi_set_promisc(sc);
 3565 
 3566         if (wpi_send_rxon(sc, 1, 1) != 0) {
 3567                 device_printf(sc->sc_dev, "%s: could not send RXON\n",
 3568                     __func__);
 3569         }
 3570         WPI_RXON_UNLOCK(sc);
 3571 }
 3572 
 3573 static void
 3574 wpi_update_mcast(struct ieee80211com *ic)
 3575 {
 3576         /* Ignore */
 3577 }
 3578 
 3579 static void
 3580 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
 3581 {
 3582         struct wpi_cmd_led led;
 3583 
 3584         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 3585 
 3586         led.which = which;
 3587         led.unit = htole32(100000);     /* on/off in unit of 100ms */
 3588         led.off = off;
 3589         led.on = on;
 3590         (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
 3591 }
 3592 
 3593 static int
 3594 wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni)
 3595 {
 3596         struct wpi_cmd_timing cmd;
 3597         uint64_t val, mod;
 3598 
 3599         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 3600 
 3601         memset(&cmd, 0, sizeof cmd);
 3602         memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
 3603         cmd.bintval = htole16(ni->ni_intval);
 3604         cmd.lintval = htole16(10);
 3605 
 3606         /* Compute remaining time until next beacon. */
 3607         val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
 3608         mod = le64toh(cmd.tstamp) % val;
 3609         cmd.binitval = htole32((uint32_t)(val - mod));
 3610 
 3611         DPRINTF(sc, WPI_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
 3612             ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
 3613 
 3614         return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1);
 3615 }
 3616 
 3617 /*
 3618  * This function is called periodically (every 60 seconds) to adjust output
 3619  * power to temperature changes.
 3620  */
 3621 static void
 3622 wpi_power_calibration(struct wpi_softc *sc)
 3623 {
 3624         int temp;
 3625 
 3626         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 3627 
 3628         /* Update sensor data. */
 3629         temp = (int)WPI_READ(sc, WPI_UCODE_GP2);
 3630         DPRINTF(sc, WPI_DEBUG_TEMP, "Temp in calibration is: %d\n", temp);
 3631 
 3632         /* Sanity-check read value. */
 3633         if (temp < -260 || temp > 25) {
 3634                 /* This can't be correct, ignore. */
 3635                 DPRINTF(sc, WPI_DEBUG_TEMP,
 3636                     "out-of-range temperature reported: %d\n", temp);
 3637                 return;
 3638         }
 3639 
 3640         DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d->%d\n", sc->temp, temp);
 3641 
 3642         /* Adjust Tx power if need be. */
 3643         if (abs(temp - sc->temp) <= 6)
 3644                 return;
 3645 
 3646         sc->temp = temp;
 3647 
 3648         if (wpi_set_txpower(sc, 1) != 0) {
 3649                 /* just warn, too bad for the automatic calibration... */
 3650                 device_printf(sc->sc_dev,"could not adjust Tx power\n");
 3651         }
 3652 }
 3653 
 3654 /*
 3655  * Set TX power for current channel.
 3656  */
 3657 static int
 3658 wpi_set_txpower(struct wpi_softc *sc, int async)
 3659 {
 3660         struct wpi_power_group *group;
 3661         struct wpi_cmd_txpower cmd;
 3662         uint8_t chan;
 3663         int idx, is_chan_5ghz, i;
 3664 
 3665         /* Retrieve current channel from last RXON. */
 3666         chan = sc->rxon.chan;
 3667         is_chan_5ghz = (sc->rxon.flags & htole32(WPI_RXON_24GHZ)) == 0;
 3668 
 3669         /* Find the TX power group to which this channel belongs. */
 3670         if (is_chan_5ghz) {
 3671                 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
 3672                         if (chan <= group->chan)
 3673                                 break;
 3674         } else
 3675                 group = &sc->groups[0];
 3676 
 3677         memset(&cmd, 0, sizeof cmd);
 3678         cmd.band = is_chan_5ghz ? WPI_BAND_5GHZ : WPI_BAND_2GHZ;
 3679         cmd.chan = htole16(chan);
 3680 
 3681         /* Set TX power for all OFDM and CCK rates. */
 3682         for (i = 0; i <= WPI_RIDX_MAX ; i++) {
 3683                 /* Retrieve TX power for this channel/rate. */
 3684                 idx = wpi_get_power_index(sc, group, chan, is_chan_5ghz, i);
 3685 
 3686                 cmd.rates[i].plcp = wpi_ridx_to_plcp[i];
 3687 
 3688                 if (is_chan_5ghz) {
 3689                         cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
 3690                         cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
 3691                 } else {
 3692                         cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
 3693                         cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
 3694                 }
 3695                 DPRINTF(sc, WPI_DEBUG_TEMP,
 3696                     "chan %d/ridx %d: power index %d\n", chan, i, idx);
 3697         }
 3698 
 3699         return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async);
 3700 }
 3701 
 3702 /*
 3703  * Determine Tx power index for a given channel/rate combination.
 3704  * This takes into account the regulatory information from EEPROM and the
 3705  * current temperature.
 3706  */
 3707 static int
 3708 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
 3709     uint8_t chan, int is_chan_5ghz, int ridx)
 3710 {
 3711 /* Fixed-point arithmetic division using a n-bit fractional part. */
 3712 #define fdivround(a, b, n)      \
 3713         ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
 3714 
 3715 /* Linear interpolation. */
 3716 #define interpolate(x, x1, y1, x2, y2, n)       \
 3717         ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
 3718 
 3719         struct wpi_power_sample *sample;
 3720         int pwr, idx;
 3721 
 3722         /* Default TX power is group maximum TX power minus 3dB. */
 3723         pwr = group->maxpwr / 2;
 3724 
 3725         /* Decrease TX power for highest OFDM rates to reduce distortion. */
 3726         switch (ridx) {
 3727         case WPI_RIDX_OFDM36:
 3728                 pwr -= is_chan_5ghz ?  5 : 0;
 3729                 break;
 3730         case WPI_RIDX_OFDM48:
 3731                 pwr -= is_chan_5ghz ? 10 : 7;
 3732                 break;
 3733         case WPI_RIDX_OFDM54:
 3734                 pwr -= is_chan_5ghz ? 12 : 9;
 3735                 break;
 3736         }
 3737 
 3738         /* Never exceed the channel maximum allowed TX power. */
 3739         pwr = min(pwr, sc->maxpwr[chan]);
 3740 
 3741         /* Retrieve TX power index into gain tables from samples. */
 3742         for (sample = group->samples; sample < &group->samples[3]; sample++)
 3743                 if (pwr > sample[1].power)
 3744                         break;
 3745         /* Fixed-point linear interpolation using a 19-bit fractional part. */
 3746         idx = interpolate(pwr, sample[0].power, sample[0].index,
 3747             sample[1].power, sample[1].index, 19);
 3748 
 3749         /*-
 3750          * Adjust power index based on current temperature:
 3751          * - if cooler than factory-calibrated: decrease output power
 3752          * - if warmer than factory-calibrated: increase output power
 3753          */
 3754         idx -= (sc->temp - group->temp) * 11 / 100;
 3755 
 3756         /* Decrease TX power for CCK rates (-5dB). */
 3757         if (ridx >= WPI_RIDX_CCK1)
 3758                 idx += 10;
 3759 
 3760         /* Make sure idx stays in a valid range. */
 3761         if (idx < 0)
 3762                 return 0;
 3763         if (idx > WPI_MAX_PWR_INDEX)
 3764                 return WPI_MAX_PWR_INDEX;
 3765         return idx;
 3766 
 3767 #undef interpolate
 3768 #undef fdivround
 3769 }
 3770 
 3771 /*
 3772  * Set STA mode power saving level (between 0 and 5).
 3773  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
 3774  */
 3775 static int
 3776 wpi_set_pslevel(struct wpi_softc *sc, uint8_t dtim, int level, int async)
 3777 {
 3778         struct wpi_pmgt_cmd cmd;
 3779         const struct wpi_pmgt *pmgt;
 3780         uint32_t max, reg;
 3781         uint8_t skip_dtim;
 3782         int i;
 3783 
 3784         DPRINTF(sc, WPI_DEBUG_PWRSAVE,
 3785             "%s: dtim=%d, level=%d, async=%d\n",
 3786             __func__, dtim, level, async);
 3787 
 3788         /* Select which PS parameters to use. */
 3789         if (dtim <= 10)
 3790                 pmgt = &wpi_pmgt[0][level];
 3791         else
 3792                 pmgt = &wpi_pmgt[1][level];
 3793 
 3794         memset(&cmd, 0, sizeof cmd);
 3795         if (level != 0) /* not CAM */
 3796                 cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP);
 3797         /* Retrieve PCIe Active State Power Management (ASPM). */
 3798         reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 1);
 3799         if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S))  /* L0s Entry disabled. */
 3800                 cmd.flags |= htole16(WPI_PS_PCI_PMGT);
 3801 
 3802         cmd.rxtimeout = htole32(pmgt->rxtimeout * IEEE80211_DUR_TU);
 3803         cmd.txtimeout = htole32(pmgt->txtimeout * IEEE80211_DUR_TU);
 3804 
 3805         if (dtim == 0) {
 3806                 dtim = 1;
 3807                 skip_dtim = 0;
 3808         } else
 3809                 skip_dtim = pmgt->skip_dtim;
 3810 
 3811         if (skip_dtim != 0) {
 3812                 cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM);
 3813                 max = pmgt->intval[4];
 3814                 if (max == (uint32_t)-1)
 3815                         max = dtim * (skip_dtim + 1);
 3816                 else if (max > dtim)
 3817                         max = rounddown(max, dtim);
 3818         } else
 3819                 max = dtim;
 3820 
 3821         for (i = 0; i < 5; i++)
 3822                 cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
 3823 
 3824         return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
 3825 }
 3826 
 3827 static int
 3828 wpi_send_btcoex(struct wpi_softc *sc)
 3829 {
 3830         struct wpi_bluetooth cmd;
 3831 
 3832         memset(&cmd, 0, sizeof cmd);
 3833         cmd.flags = WPI_BT_COEX_MODE_4WIRE;
 3834         cmd.lead_time = WPI_BT_LEAD_TIME_DEF;
 3835         cmd.max_kill = WPI_BT_MAX_KILL_DEF;
 3836         DPRINTF(sc, WPI_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
 3837             __func__);
 3838         return wpi_cmd(sc, WPI_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
 3839 }
 3840 
 3841 static int
 3842 wpi_send_rxon(struct wpi_softc *sc, int assoc, int async)
 3843 {
 3844         int error;
 3845 
 3846         if (async)
 3847                 WPI_RXON_LOCK_ASSERT(sc);
 3848 
 3849         if (assoc && wpi_check_bss_filter(sc) != 0) {
 3850                 struct wpi_assoc rxon_assoc;
 3851 
 3852                 rxon_assoc.flags = sc->rxon.flags;
 3853                 rxon_assoc.filter = sc->rxon.filter;
 3854                 rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
 3855                 rxon_assoc.cck_mask = sc->rxon.cck_mask;
 3856                 rxon_assoc.reserved = 0;
 3857 
 3858                 error = wpi_cmd(sc, WPI_CMD_RXON_ASSOC, &rxon_assoc,
 3859                     sizeof (struct wpi_assoc), async);
 3860                 if (error != 0) {
 3861                         device_printf(sc->sc_dev,
 3862                             "RXON_ASSOC command failed, error %d\n", error);
 3863                         return error;
 3864                 }
 3865         } else {
 3866                 if (async) {
 3867                         WPI_NT_LOCK(sc);
 3868                         error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
 3869                             sizeof (struct wpi_rxon), async);
 3870                         if (error == 0)
 3871                                 wpi_clear_node_table(sc);
 3872                         WPI_NT_UNLOCK(sc);
 3873                 } else {
 3874                         error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
 3875                             sizeof (struct wpi_rxon), async);
 3876                         if (error == 0)
 3877                                 wpi_clear_node_table(sc);
 3878                 }
 3879 
 3880                 if (error != 0) {
 3881                         device_printf(sc->sc_dev,
 3882                             "RXON command failed, error %d\n", error);
 3883                         return error;
 3884                 }
 3885 
 3886                 /* Add broadcast node. */
 3887                 error = wpi_add_broadcast_node(sc, async);
 3888                 if (error != 0) {
 3889                         device_printf(sc->sc_dev,
 3890                             "could not add broadcast node, error %d\n", error);
 3891                         return error;
 3892                 }
 3893         }
 3894 
 3895         /* Configuration has changed, set Tx power accordingly. */
 3896         if ((error = wpi_set_txpower(sc, async)) != 0) {
 3897                 device_printf(sc->sc_dev,
 3898                     "%s: could not set TX power, error %d\n", __func__, error);
 3899                 return error;
 3900         }
 3901 
 3902         return 0;
 3903 }
 3904 
 3905 /**
 3906  * Configure the card to listen to a particular channel, this transisions the
 3907  * card in to being able to receive frames from remote devices.
 3908  */
 3909 static int
 3910 wpi_config(struct wpi_softc *sc)
 3911 {
 3912         struct ieee80211com *ic = &sc->sc_ic;
 3913         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 3914         struct ieee80211_channel *c = ic->ic_curchan;
 3915         int error;
 3916 
 3917         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
 3918 
 3919         /* Set power saving level to CAM during initialization. */
 3920         if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) {
 3921                 device_printf(sc->sc_dev,
 3922                     "%s: could not set power saving level\n", __func__);
 3923                 return error;
 3924         }
 3925 
 3926         /* Configure bluetooth coexistence. */
 3927         if ((error = wpi_send_btcoex(sc)) != 0) {
 3928                 device_printf(sc->sc_dev,
 3929                     "could not configure bluetooth coexistence\n");
 3930                 return error;
 3931         }
 3932 
 3933         /* Configure adapter. */
 3934         memset(&sc->rxon, 0, sizeof (struct wpi_rxon));
 3935         IEEE80211_ADDR_COPY(sc->rxon.myaddr, vap->iv_myaddr);
 3936 
 3937         /* Set default channel. */
 3938         sc->rxon.chan = ieee80211_chan2ieee(ic, c);
 3939         sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
 3940         if (IEEE80211_IS_CHAN_2GHZ(c))
 3941                 sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
 3942 
 3943         sc->rxon.filter = WPI_FILTER_MULTICAST;
 3944         switch (ic->ic_opmode) {
 3945         case IEEE80211_M_STA:
 3946                 sc->rxon.mode = WPI_MODE_STA;
 3947                 break;
 3948         case IEEE80211_M_IBSS:
 3949                 sc->rxon.mode = WPI_MODE_IBSS;
 3950                 sc->rxon.filter |= WPI_FILTER_BEACON;
 3951                 break;
 3952         case IEEE80211_M_HOSTAP:
 3953                 /* XXX workaround for beaconing */
 3954                 sc->rxon.mode = WPI_MODE_IBSS;
 3955                 sc->rxon.filter |= WPI_FILTER_ASSOC | WPI_FILTER_PROMISC;
 3956                 break;
 3957         case IEEE80211_M_AHDEMO:
 3958                 sc->rxon.mode = WPI_MODE_HOSTAP;
 3959                 break;
 3960         case IEEE80211_M_MONITOR:
 3961                 sc->rxon.mode = WPI_MODE_MONITOR;
 3962                 break;
 3963         default:
 3964                 device_printf(sc->sc_dev, "unknown opmode %d\n",
 3965                     ic->ic_opmode);
 3966                 return EINVAL;
 3967         }
 3968         sc->rxon.filter = htole32(sc->rxon.filter);
 3969         wpi_set_promisc(sc);
 3970         sc->rxon.cck_mask  = 0x0f;      /* not yet negotiated */
 3971         sc->rxon.ofdm_mask = 0xff;      /* not yet negotiated */
 3972 
 3973         if ((error = wpi_send_rxon(sc, 0, 0)) != 0) {
 3974                 device_printf(sc->sc_dev, "%s: could not send RXON\n",
 3975                     __func__);
 3976                 return error;
 3977         }
 3978 
 3979         /* Setup rate scalling. */
 3980         if ((error = wpi_mrr_setup(sc)) != 0) {
 3981                 device_printf(sc->sc_dev, "could not setup MRR, error %d\n",
 3982                     error);
 3983                 return error;
 3984         }
 3985 
 3986         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
 3987 
 3988         return 0;
 3989 }
 3990 
 3991 static uint16_t
 3992 wpi_get_active_dwell_time(struct wpi_softc *sc,
 3993     struct ieee80211_channel *c, uint8_t n_probes)
 3994 {
 3995         /* No channel? Default to 2GHz settings. */
 3996         if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
 3997                 return (WPI_ACTIVE_DWELL_TIME_2GHZ +
 3998                 WPI_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
 3999         }
 4000 
 4001         /* 5GHz dwell time. */
 4002         return (WPI_ACTIVE_DWELL_TIME_5GHZ +
 4003             WPI_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
 4004 }
 4005 
 4006 /*
 4007  * Limit the total dwell time.
 4008  *
 4009  * Returns the dwell time in milliseconds.
 4010  */
 4011 static uint16_t
 4012 wpi_limit_dwell(struct wpi_softc *sc, uint16_t dwell_time)
 4013 {
 4014         struct ieee80211com *ic = &sc->sc_ic;
 4015         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 4016         uint16_t bintval = 0;
 4017 
 4018         /* bintval is in TU (1.024mS) */
 4019         if (vap != NULL)
 4020                 bintval = vap->iv_bss->ni_intval;
 4021 
 4022         /*
 4023          * If it's non-zero, we should calculate the minimum of
 4024          * it and the DWELL_BASE.
 4025          *
 4026          * XXX Yes, the math should take into account that bintval
 4027          * is 1.024mS, not 1mS..
 4028          */
 4029         if (bintval > 0) {
 4030                 DPRINTF(sc, WPI_DEBUG_SCAN, "%s: bintval=%d\n", __func__,
 4031                     bintval);
 4032                 return (MIN(dwell_time, bintval - WPI_CHANNEL_TUNE_TIME * 2));
 4033         }
 4034 
 4035         /* No association context? Default. */
 4036         return dwell_time;
 4037 }
 4038 
 4039 static uint16_t
 4040 wpi_get_passive_dwell_time(struct wpi_softc *sc, struct ieee80211_channel *c)
 4041 {
 4042         uint16_t passive;
 4043 
 4044         if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c))
 4045                 passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_2GHZ;
 4046         else
 4047                 passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_5GHZ;
 4048 
 4049         /* Clamp to the beacon interval if we're associated. */
 4050         return (wpi_limit_dwell(sc, passive));
 4051 }
 4052 
 4053 static uint32_t
 4054 wpi_get_scan_pause_time(uint32_t time, uint16_t bintval)
 4055 {
 4056         uint32_t mod = (time % bintval) * IEEE80211_DUR_TU;
 4057         uint32_t nbeacons = time / bintval;
 4058 
 4059         if (mod > WPI_PAUSE_MAX_TIME)
 4060                 mod = WPI_PAUSE_MAX_TIME;
 4061 
 4062         return WPI_PAUSE_SCAN(nbeacons, mod);
 4063 }
 4064 
 4065 /*
 4066  * Send a scan request to the firmware.
 4067  */
 4068 static int
 4069 wpi_scan(struct wpi_softc *sc, struct ieee80211_channel *c)
 4070 {
 4071         struct ieee80211com *ic = &sc->sc_ic;
 4072         struct ieee80211_scan_state *ss = ic->ic_scan;
 4073         struct ieee80211vap *vap = ss->ss_vap;
 4074         struct wpi_scan_hdr *hdr;
 4075         struct wpi_cmd_data *tx;
 4076         struct wpi_scan_essid *essids;
 4077         struct wpi_scan_chan *chan;
 4078         struct ieee80211_frame *wh;
 4079         struct ieee80211_rateset *rs;
 4080         uint16_t bintval, buflen, dwell_active, dwell_passive;
 4081         uint8_t *buf, *frm, i, nssid;
 4082         int bgscan, error;
 4083 
 4084         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
 4085 
 4086         /*
 4087          * We are absolutely not allowed to send a scan command when another
 4088          * scan command is pending.
 4089          */
 4090         if (callout_pending(&sc->scan_timeout)) {
 4091                 device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
 4092                     __func__);
 4093                 error = EAGAIN;
 4094                 goto fail;
 4095         }
 4096 
 4097         bgscan = wpi_check_bss_filter(sc);
 4098         bintval = vap->iv_bss->ni_intval;
 4099         if (bgscan != 0 &&
 4100             bintval < WPI_QUIET_TIME_DEFAULT + WPI_CHANNEL_TUNE_TIME * 2) {
 4101                 error = EOPNOTSUPP;
 4102                 goto fail;
 4103         }
 4104 
 4105         buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
 4106         if (buf == NULL) {
 4107                 device_printf(sc->sc_dev,
 4108                     "%s: could not allocate buffer for scan command\n",
 4109                     __func__);
 4110                 error = ENOMEM;
 4111                 goto fail;
 4112         }
 4113         hdr = (struct wpi_scan_hdr *)buf;
 4114 
 4115         /*
 4116          * Move to the next channel if no packets are received within 10 msecs
 4117          * after sending the probe request.
 4118          */
 4119         hdr->quiet_time = htole16(WPI_QUIET_TIME_DEFAULT);
 4120         hdr->quiet_threshold = htole16(1);
 4121 
 4122         if (bgscan != 0) {
 4123                 /*
 4124                  * Max needs to be greater than active and passive and quiet!
 4125                  * It's also in microseconds!
 4126                  */
 4127                 hdr->max_svc = htole32(250 * IEEE80211_DUR_TU);
 4128                 hdr->pause_svc = htole32(wpi_get_scan_pause_time(100,
 4129                     bintval));
 4130         }
 4131 
 4132         hdr->filter = htole32(WPI_FILTER_MULTICAST | WPI_FILTER_BEACON);
 4133 
 4134         tx = (struct wpi_cmd_data *)(hdr + 1);
 4135         tx->flags = htole32(WPI_TX_AUTO_SEQ);
 4136         tx->id = WPI_ID_BROADCAST;
 4137         tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
 4138 
 4139         if (IEEE80211_IS_CHAN_5GHZ(c)) {
 4140                 /* Send probe requests at 6Mbps. */
 4141                 tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_OFDM6];
 4142                 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
 4143         } else {
 4144                 hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO);
 4145                 /* Send probe requests at 1Mbps. */
 4146                 tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_CCK1];
 4147                 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
 4148         }
 4149 
 4150         essids = (struct wpi_scan_essid *)(tx + 1);
 4151         nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
 4152         for (i = 0; i < nssid; i++) {
 4153                 essids[i].id = IEEE80211_ELEMID_SSID;
 4154                 essids[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN);
 4155                 memcpy(essids[i].data, ss->ss_ssid[i].ssid, essids[i].len);
 4156 #ifdef WPI_DEBUG
 4157                 if (sc->sc_debug & WPI_DEBUG_SCAN) {
 4158                         printf("Scanning Essid: ");
 4159                         ieee80211_print_essid(essids[i].data, essids[i].len);
 4160                         printf("\n");
 4161                 }
 4162 #endif
 4163         }
 4164 
 4165         /*
 4166          * Build a probe request frame.  Most of the following code is a
 4167          * copy & paste of what is done in net80211.
 4168          */
 4169         wh = (struct ieee80211_frame *)(essids + WPI_SCAN_MAX_ESSIDS);
 4170         wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
 4171                 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
 4172         wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
 4173         IEEE80211_ADDR_COPY(wh->i_addr1, ieee80211broadcastaddr);
 4174         IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
 4175         IEEE80211_ADDR_COPY(wh->i_addr3, ieee80211broadcastaddr);
 4176 
 4177         frm = (uint8_t *)(wh + 1);
 4178         frm = ieee80211_add_ssid(frm, NULL, 0);
 4179         frm = ieee80211_add_rates(frm, rs);
 4180         if (rs->rs_nrates > IEEE80211_RATE_SIZE)
 4181                 frm = ieee80211_add_xrates(frm, rs);
 4182 
 4183         /* Set length of probe request. */
 4184         tx->len = htole16(frm - (uint8_t *)wh);
 4185 
 4186         /*
 4187          * Construct information about the channel that we
 4188          * want to scan. The firmware expects this to be directly
 4189          * after the scan probe request
 4190          */
 4191         chan = (struct wpi_scan_chan *)frm;
 4192         chan->chan = ieee80211_chan2ieee(ic, c);
 4193         chan->flags = 0;
 4194         if (nssid) {
 4195                 hdr->crc_threshold = WPI_SCAN_CRC_TH_DEFAULT;
 4196                 chan->flags |= WPI_CHAN_NPBREQS(nssid);
 4197         } else
 4198                 hdr->crc_threshold = WPI_SCAN_CRC_TH_NEVER;
 4199 
 4200         if (!IEEE80211_IS_CHAN_PASSIVE(c))
 4201                 chan->flags |= WPI_CHAN_ACTIVE;
 4202 
 4203         /*
 4204          * Calculate the active/passive dwell times.
 4205          */
 4206         dwell_active = wpi_get_active_dwell_time(sc, c, nssid);
 4207         dwell_passive = wpi_get_passive_dwell_time(sc, c);
 4208 
 4209         /* Make sure they're valid. */
 4210         if (dwell_active > dwell_passive)
 4211                 dwell_active = dwell_passive;
 4212 
 4213         chan->active = htole16(dwell_active);
 4214         chan->passive = htole16(dwell_passive);
 4215 
 4216         chan->dsp_gain = 0x6e;  /* Default level */
 4217 
 4218         if (IEEE80211_IS_CHAN_5GHZ(c))
 4219                 chan->rf_gain = 0x3b;
 4220         else
 4221                 chan->rf_gain = 0x28;
 4222 
 4223         DPRINTF(sc, WPI_DEBUG_SCAN, "Scanning %u Passive: %d\n",
 4224             chan->chan, IEEE80211_IS_CHAN_PASSIVE(c));
 4225 
 4226         hdr->nchan++;
 4227 
 4228         if (hdr->nchan == 1 && sc->rxon.chan == chan->chan) {
 4229                 /* XXX Force probe request transmission. */
 4230                 memcpy(chan + 1, chan, sizeof (struct wpi_scan_chan));
 4231 
 4232                 chan++;
 4233 
 4234                 /* Reduce unnecessary delay. */
 4235                 chan->flags = 0;
 4236                 chan->passive = chan->active = hdr->quiet_time;
 4237 
 4238                 hdr->nchan++;
 4239         }
 4240 
 4241         chan++;
 4242 
 4243         buflen = (uint8_t *)chan - buf;
 4244         hdr->len = htole16(buflen);
 4245 
 4246         DPRINTF(sc, WPI_DEBUG_CMD, "sending scan command nchan=%d\n",
 4247             hdr->nchan);
 4248         error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1);
 4249         free(buf, M_DEVBUF);
 4250 
 4251         if (error != 0)
 4252                 goto fail;
 4253 
 4254         callout_reset(&sc->scan_timeout, 5*hz, wpi_scan_timeout, sc);
 4255 
 4256         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
 4257 
 4258         return 0;
 4259 
 4260 fail:   DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
 4261 
 4262         return error;
 4263 }
 4264 
 4265 static int
 4266 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
 4267 {
 4268         struct ieee80211com *ic = vap->iv_ic;
 4269         struct ieee80211_node *ni = vap->iv_bss;
 4270         struct ieee80211_channel *c = ni->ni_chan;
 4271         int error;
 4272 
 4273         WPI_RXON_LOCK(sc);
 4274 
 4275         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
 4276 
 4277         /* Update adapter configuration. */
 4278         sc->rxon.associd = 0;
 4279         sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
 4280         IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
 4281         sc->rxon.chan = ieee80211_chan2ieee(ic, c);
 4282         sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
 4283         if (IEEE80211_IS_CHAN_2GHZ(c))
 4284                 sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
 4285         if (ic->ic_flags & IEEE80211_F_SHSLOT)
 4286                 sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
 4287         if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
 4288                 sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
 4289         if (IEEE80211_IS_CHAN_A(c)) {
 4290                 sc->rxon.cck_mask  = 0;
 4291                 sc->rxon.ofdm_mask = 0x15;
 4292         } else if (IEEE80211_IS_CHAN_B(c)) {
 4293                 sc->rxon.cck_mask  = 0x03;
 4294                 sc->rxon.ofdm_mask = 0;
 4295         } else {
 4296                 /* Assume 802.11b/g. */
 4297                 sc->rxon.cck_mask  = 0x0f;
 4298                 sc->rxon.ofdm_mask = 0x15;
 4299         }
 4300 
 4301         DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
 4302             sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
 4303             sc->rxon.ofdm_mask);
 4304 
 4305         if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
 4306                 device_printf(sc->sc_dev, "%s: could not send RXON\n",
 4307                     __func__);
 4308         }
 4309 
 4310         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
 4311 
 4312         WPI_RXON_UNLOCK(sc);
 4313 
 4314         return error;
 4315 }
 4316 
 4317 static int
 4318 wpi_config_beacon(struct wpi_vap *wvp)
 4319 {
 4320         struct ieee80211vap *vap = &wvp->wv_vap;
 4321         struct ieee80211com *ic = vap->iv_ic;
 4322         struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
 4323         struct wpi_buf *bcn = &wvp->wv_bcbuf;
 4324         struct wpi_softc *sc = ic->ic_softc;
 4325         struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
 4326         struct ieee80211_tim_ie *tie;
 4327         struct mbuf *m;
 4328         uint8_t *ptr;
 4329         int error;
 4330 
 4331         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 4332 
 4333         WPI_VAP_LOCK_ASSERT(wvp);
 4334 
 4335         cmd->len = htole16(bcn->m->m_pkthdr.len);
 4336         cmd->plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
 4337             wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
 4338 
 4339         /* XXX seems to be unused */
 4340         if (*(bo->bo_tim) == IEEE80211_ELEMID_TIM) {
 4341                 tie = (struct ieee80211_tim_ie *) bo->bo_tim;
 4342                 ptr = mtod(bcn->m, uint8_t *);
 4343 
 4344                 cmd->tim = htole16(bo->bo_tim - ptr);
 4345                 cmd->timsz = tie->tim_len;
 4346         }
 4347 
 4348         /* Necessary for recursion in ieee80211_beacon_update(). */
 4349         m = bcn->m;
 4350         bcn->m = m_dup(m, M_NOWAIT);
 4351         if (bcn->m == NULL) {
 4352                 device_printf(sc->sc_dev,
 4353                     "%s: could not copy beacon frame\n", __func__);
 4354                 error = ENOMEM;
 4355                 goto end;
 4356         }
 4357 
 4358         if ((error = wpi_cmd2(sc, bcn)) != 0) {
 4359                 device_printf(sc->sc_dev,
 4360                     "%s: could not update beacon frame, error %d", __func__,
 4361                     error);
 4362                 m_freem(bcn->m);
 4363         }
 4364 
 4365         /* Restore mbuf. */
 4366 end:    bcn->m = m;
 4367 
 4368         return error;
 4369 }
 4370 
 4371 static int
 4372 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
 4373 {
 4374         struct ieee80211vap *vap = ni->ni_vap;
 4375         struct wpi_vap *wvp = WPI_VAP(vap);
 4376         struct wpi_buf *bcn = &wvp->wv_bcbuf;
 4377         struct mbuf *m;
 4378         int error;
 4379 
 4380         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 4381 
 4382         if (ni->ni_chan == IEEE80211_CHAN_ANYC)
 4383                 return EINVAL;
 4384 
 4385         m = ieee80211_beacon_alloc(ni);
 4386         if (m == NULL) {
 4387                 device_printf(sc->sc_dev,
 4388                     "%s: could not allocate beacon frame\n", __func__);
 4389                 return ENOMEM;
 4390         }
 4391 
 4392         WPI_VAP_LOCK(wvp);
 4393         if (bcn->m != NULL)
 4394                 m_freem(bcn->m);
 4395 
 4396         bcn->m = m;
 4397 
 4398         error = wpi_config_beacon(wvp);
 4399         WPI_VAP_UNLOCK(wvp);
 4400 
 4401         return error;
 4402 }
 4403 
 4404 static void
 4405 wpi_update_beacon(struct ieee80211vap *vap, int item)
 4406 {
 4407         struct wpi_softc *sc = vap->iv_ic->ic_softc;
 4408         struct wpi_vap *wvp = WPI_VAP(vap);
 4409         struct wpi_buf *bcn = &wvp->wv_bcbuf;
 4410         struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
 4411         struct ieee80211_node *ni = vap->iv_bss;
 4412         int mcast = 0;
 4413 
 4414         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
 4415 
 4416         WPI_VAP_LOCK(wvp);
 4417         if (bcn->m == NULL) {
 4418                 bcn->m = ieee80211_beacon_alloc(ni);
 4419                 if (bcn->m == NULL) {
 4420                         device_printf(sc->sc_dev,
 4421                             "%s: could not allocate beacon frame\n", __func__);
 4422 
 4423                         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR,
 4424                             __func__);
 4425 
 4426                         WPI_VAP_UNLOCK(wvp);
 4427                         return;
 4428                 }
 4429         }
 4430         WPI_VAP_UNLOCK(wvp);
 4431 
 4432         if (item == IEEE80211_BEACON_TIM)
 4433                 mcast = 1;      /* TODO */
 4434 
 4435         setbit(bo->bo_flags, item);
 4436         ieee80211_beacon_update(ni, bcn->m, mcast);
 4437 
 4438         WPI_VAP_LOCK(wvp);
 4439         wpi_config_beacon(wvp);
 4440         WPI_VAP_UNLOCK(wvp);
 4441 
 4442         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
 4443 }
 4444 
 4445 static void
 4446 wpi_newassoc(struct ieee80211_node *ni, int isnew)
 4447 {
 4448         struct ieee80211vap *vap = ni->ni_vap;
 4449         struct wpi_softc *sc = ni->ni_ic->ic_softc;
 4450         struct wpi_node *wn = WPI_NODE(ni);
 4451         int error;
 4452 
 4453         WPI_NT_LOCK(sc);
 4454 
 4455         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 4456 
 4457         if (vap->iv_opmode != IEEE80211_M_STA && wn->id == WPI_ID_UNDEFINED) {
 4458                 if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
 4459                         device_printf(sc->sc_dev,
 4460                             "%s: could not add IBSS node, error %d\n",
 4461                             __func__, error);
 4462                 }
 4463         }
 4464         WPI_NT_UNLOCK(sc);
 4465 }
 4466 
 4467 static int
 4468 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
 4469 {
 4470         struct ieee80211com *ic = vap->iv_ic;
 4471         struct ieee80211_node *ni = vap->iv_bss;
 4472         struct ieee80211_channel *c = ni->ni_chan;
 4473         int error;
 4474 
 4475         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
 4476 
 4477         if (vap->iv_opmode == IEEE80211_M_MONITOR) {
 4478                 /* Link LED blinks while monitoring. */
 4479                 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
 4480                 return 0;
 4481         }
 4482 
 4483         /* XXX kernel panic workaround */
 4484         if (c == IEEE80211_CHAN_ANYC) {
 4485                 device_printf(sc->sc_dev, "%s: incomplete configuration\n",
 4486                     __func__);
 4487                 return EINVAL;
 4488         }
 4489 
 4490         if ((error = wpi_set_timing(sc, ni)) != 0) {
 4491                 device_printf(sc->sc_dev,
 4492                     "%s: could not set timing, error %d\n", __func__, error);
 4493                 return error;
 4494         }
 4495 
 4496         /* Update adapter configuration. */
 4497         WPI_RXON_LOCK(sc);
 4498         IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
 4499         sc->rxon.associd = htole16(IEEE80211_NODE_AID(ni));
 4500         sc->rxon.chan = ieee80211_chan2ieee(ic, c);
 4501         sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
 4502         if (IEEE80211_IS_CHAN_2GHZ(c))
 4503                 sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
 4504         if (ic->ic_flags & IEEE80211_F_SHSLOT)
 4505                 sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
 4506         if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
 4507                 sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
 4508         if (IEEE80211_IS_CHAN_A(c)) {
 4509                 sc->rxon.cck_mask  = 0;
 4510                 sc->rxon.ofdm_mask = 0x15;
 4511         } else if (IEEE80211_IS_CHAN_B(c)) {
 4512                 sc->rxon.cck_mask  = 0x03;
 4513                 sc->rxon.ofdm_mask = 0;
 4514         } else {
 4515                 /* Assume 802.11b/g. */
 4516                 sc->rxon.cck_mask  = 0x0f;
 4517                 sc->rxon.ofdm_mask = 0x15;
 4518         }
 4519         sc->rxon.filter |= htole32(WPI_FILTER_BSS);
 4520 
 4521         DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x\n",
 4522             sc->rxon.chan, sc->rxon.flags);
 4523 
 4524         if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
 4525                 device_printf(sc->sc_dev, "%s: could not send RXON\n",
 4526                     __func__);
 4527                 return error;
 4528         }
 4529 
 4530         /* Start periodic calibration timer. */
 4531         callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
 4532 
 4533         WPI_RXON_UNLOCK(sc);
 4534 
 4535         if (vap->iv_opmode == IEEE80211_M_IBSS ||
 4536             vap->iv_opmode == IEEE80211_M_HOSTAP) {
 4537                 if ((error = wpi_setup_beacon(sc, ni)) != 0) {
 4538                         device_printf(sc->sc_dev,
 4539                             "%s: could not setup beacon, error %d\n", __func__,
 4540                             error);
 4541                         return error;
 4542                 }
 4543         }
 4544 
 4545         if (vap->iv_opmode == IEEE80211_M_STA) {
 4546                 /* Add BSS node. */
 4547                 WPI_NT_LOCK(sc);
 4548                 error = wpi_add_sta_node(sc, ni);
 4549                 WPI_NT_UNLOCK(sc);
 4550                 if (error != 0) {
 4551                         device_printf(sc->sc_dev,
 4552                             "%s: could not add BSS node, error %d\n", __func__,
 4553                             error);
 4554                         return error;
 4555                 }
 4556         }
 4557 
 4558         /* Link LED always on while associated. */
 4559         wpi_set_led(sc, WPI_LED_LINK, 0, 1);
 4560 
 4561         /* Enable power-saving mode if requested by user. */
 4562         if ((vap->iv_flags & IEEE80211_F_PMGTON) &&
 4563             vap->iv_opmode != IEEE80211_M_IBSS)
 4564                 (void)wpi_set_pslevel(sc, 0, 3, 1);
 4565 
 4566         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
 4567 
 4568         return 0;
 4569 }
 4570 
 4571 static int
 4572 wpi_load_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
 4573 {
 4574         const struct ieee80211_cipher *cip = k->wk_cipher;
 4575         struct ieee80211vap *vap = ni->ni_vap;
 4576         struct wpi_softc *sc = ni->ni_ic->ic_softc;
 4577         struct wpi_node *wn = WPI_NODE(ni);
 4578         struct wpi_node_info node;
 4579         uint16_t kflags;
 4580         int error;
 4581 
 4582         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 4583 
 4584         if (wpi_check_node_entry(sc, wn->id) == 0) {
 4585                 device_printf(sc->sc_dev, "%s: node does not exist\n",
 4586                     __func__);
 4587                 return 0;
 4588         }
 4589 
 4590         switch (cip->ic_cipher) {
 4591         case IEEE80211_CIPHER_AES_CCM:
 4592                 kflags = WPI_KFLAG_CCMP;
 4593                 break;
 4594 
 4595         default:
 4596                 device_printf(sc->sc_dev, "%s: unknown cipher %d\n", __func__,
 4597                     cip->ic_cipher);
 4598                 return 0;
 4599         }
 4600 
 4601         kflags |= WPI_KFLAG_KID(k->wk_keyix);
 4602         if (k->wk_flags & IEEE80211_KEY_GROUP)
 4603                 kflags |= WPI_KFLAG_MULTICAST;
 4604 
 4605         memset(&node, 0, sizeof node);
 4606         node.id = wn->id;
 4607         node.control = WPI_NODE_UPDATE;
 4608         node.flags = WPI_FLAG_KEY_SET;
 4609         node.kflags = htole16(kflags);
 4610         memcpy(node.key, k->wk_key, k->wk_keylen);
 4611 again:
 4612         DPRINTF(sc, WPI_DEBUG_KEY,
 4613             "%s: setting %s key id %d for node %d (%s)\n", __func__,
 4614             (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast", k->wk_keyix,
 4615             node.id, ether_sprintf(ni->ni_macaddr));
 4616 
 4617         error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
 4618         if (error != 0) {
 4619                 device_printf(sc->sc_dev, "can't update node info, error %d\n",
 4620                     error);
 4621                 return !error;
 4622         }
 4623 
 4624         if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
 4625             k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
 4626                 kflags |= WPI_KFLAG_MULTICAST;
 4627                 node.kflags = htole16(kflags);
 4628 
 4629                 goto again;
 4630         }
 4631 
 4632         return 1;
 4633 }
 4634 
 4635 static void
 4636 wpi_load_key_cb(void *arg, struct ieee80211_node *ni)
 4637 {
 4638         const struct ieee80211_key *k = arg;
 4639         struct ieee80211vap *vap = ni->ni_vap;
 4640         struct wpi_softc *sc = ni->ni_ic->ic_softc;
 4641         struct wpi_node *wn = WPI_NODE(ni);
 4642         int error;
 4643 
 4644         if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
 4645                 return;
 4646 
 4647         WPI_NT_LOCK(sc);
 4648         error = wpi_load_key(ni, k);
 4649         WPI_NT_UNLOCK(sc);
 4650 
 4651         if (error == 0) {
 4652                 device_printf(sc->sc_dev, "%s: error while setting key\n",
 4653                     __func__);
 4654         }
 4655 }
 4656 
 4657 static int
 4658 wpi_set_global_keys(struct ieee80211_node *ni)
 4659 {
 4660         struct ieee80211vap *vap = ni->ni_vap;
 4661         struct ieee80211_key *wk = &vap->iv_nw_keys[0];
 4662         int error = 1;
 4663 
 4664         for (; wk < &vap->iv_nw_keys[IEEE80211_WEP_NKID] && error; wk++)
 4665                 if (wk->wk_keyix != IEEE80211_KEYIX_NONE)
 4666                         error = wpi_load_key(ni, wk);
 4667 
 4668         return !error;
 4669 }
 4670 
 4671 static int
 4672 wpi_del_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
 4673 {
 4674         struct ieee80211vap *vap = ni->ni_vap;
 4675         struct wpi_softc *sc = ni->ni_ic->ic_softc;
 4676         struct wpi_node *wn = WPI_NODE(ni);
 4677         struct wpi_node_info node;
 4678         uint16_t kflags;
 4679         int error;
 4680 
 4681         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 4682 
 4683         if (wpi_check_node_entry(sc, wn->id) == 0) {
 4684                 DPRINTF(sc, WPI_DEBUG_KEY, "%s: node was removed\n", __func__);
 4685                 return 1;       /* Nothing to do. */
 4686         }
 4687 
 4688         kflags = WPI_KFLAG_KID(k->wk_keyix);
 4689         if (k->wk_flags & IEEE80211_KEY_GROUP)
 4690                 kflags |= WPI_KFLAG_MULTICAST;
 4691 
 4692         memset(&node, 0, sizeof node);
 4693         node.id = wn->id;
 4694         node.control = WPI_NODE_UPDATE;
 4695         node.flags = WPI_FLAG_KEY_SET;
 4696         node.kflags = htole16(kflags);
 4697 again:
 4698         DPRINTF(sc, WPI_DEBUG_KEY, "%s: deleting %s key %d for node %d (%s)\n",
 4699             __func__, (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast",
 4700             k->wk_keyix, node.id, ether_sprintf(ni->ni_macaddr));
 4701 
 4702         error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
 4703         if (error != 0) {
 4704                 device_printf(sc->sc_dev, "can't update node info, error %d\n",
 4705                     error);
 4706                 return !error;
 4707         }
 4708 
 4709         if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
 4710             k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
 4711                 kflags |= WPI_KFLAG_MULTICAST;
 4712                 node.kflags = htole16(kflags);
 4713 
 4714                 goto again;
 4715         }
 4716 
 4717         return 1;
 4718 }
 4719 
 4720 static void
 4721 wpi_del_key_cb(void *arg, struct ieee80211_node *ni)
 4722 {
 4723         const struct ieee80211_key *k = arg;
 4724         struct ieee80211vap *vap = ni->ni_vap;
 4725         struct wpi_softc *sc = ni->ni_ic->ic_softc;
 4726         struct wpi_node *wn = WPI_NODE(ni);
 4727         int error;
 4728 
 4729         if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
 4730                 return;
 4731 
 4732         WPI_NT_LOCK(sc);
 4733         error = wpi_del_key(ni, k);
 4734         WPI_NT_UNLOCK(sc);
 4735 
 4736         if (error == 0) {
 4737                 device_printf(sc->sc_dev, "%s: error while deleting key\n",
 4738                     __func__);
 4739         }
 4740 }
 4741 
 4742 static int
 4743 wpi_process_key(struct ieee80211vap *vap, const struct ieee80211_key *k,
 4744     int set)
 4745 {
 4746         struct ieee80211com *ic = vap->iv_ic;
 4747         struct wpi_softc *sc = ic->ic_softc;
 4748         struct wpi_vap *wvp = WPI_VAP(vap);
 4749         struct ieee80211_node *ni;
 4750         int error, ni_ref = 0;
 4751 
 4752         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 4753 
 4754         if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
 4755                 /* Not for us. */
 4756                 return 1;
 4757         }
 4758 
 4759         if (!(k->wk_flags & IEEE80211_KEY_RECV)) {
 4760                 /* XMIT keys are handled in wpi_tx_data(). */
 4761                 return 1;
 4762         }
 4763 
 4764         /* Handle group keys. */
 4765         if (&vap->iv_nw_keys[0] <= k &&
 4766             k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
 4767                 WPI_NT_LOCK(sc);
 4768                 if (set)
 4769                         wvp->wv_gtk |= WPI_VAP_KEY(k->wk_keyix);
 4770                 else
 4771                         wvp->wv_gtk &= ~WPI_VAP_KEY(k->wk_keyix);
 4772                 WPI_NT_UNLOCK(sc);
 4773 
 4774                 if (vap->iv_state == IEEE80211_S_RUN) {
 4775                         ieee80211_iterate_nodes(&ic->ic_sta,
 4776                             set ? wpi_load_key_cb : wpi_del_key_cb,
 4777                             __DECONST(void *, k));
 4778                 }
 4779 
 4780                 return 1;
 4781         }
 4782 
 4783         switch (vap->iv_opmode) {
 4784         case IEEE80211_M_STA:
 4785                 ni = vap->iv_bss;
 4786                 break;
 4787 
 4788         case IEEE80211_M_IBSS:
 4789         case IEEE80211_M_AHDEMO:
 4790         case IEEE80211_M_HOSTAP:
 4791                 ni = ieee80211_find_vap_node(&ic->ic_sta, vap, k->wk_macaddr);
 4792                 if (ni == NULL)
 4793                         return 0;       /* should not happen */
 4794 
 4795                 ni_ref = 1;
 4796                 break;
 4797 
 4798         default:
 4799                 device_printf(sc->sc_dev, "%s: unknown opmode %d\n", __func__,
 4800                     vap->iv_opmode);
 4801                 return 0;
 4802         }
 4803 
 4804         WPI_NT_LOCK(sc);
 4805         if (set)
 4806                 error = wpi_load_key(ni, k);
 4807         else
 4808                 error = wpi_del_key(ni, k);
 4809         WPI_NT_UNLOCK(sc);
 4810 
 4811         if (ni_ref)
 4812                 ieee80211_node_decref(ni);
 4813 
 4814         return error;
 4815 }
 4816 
 4817 static int
 4818 wpi_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k)
 4819 {
 4820         return wpi_process_key(vap, k, 1);
 4821 }
 4822 
 4823 static int
 4824 wpi_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
 4825 {
 4826         return wpi_process_key(vap, k, 0);
 4827 }
 4828 
 4829 /*
 4830  * This function is called after the runtime firmware notifies us of its
 4831  * readiness (called in a process context).
 4832  */
 4833 static int
 4834 wpi_post_alive(struct wpi_softc *sc)
 4835 {
 4836         int ntries, error;
 4837 
 4838         /* Check (again) that the radio is not disabled. */
 4839         if ((error = wpi_nic_lock(sc)) != 0)
 4840                 return error;
 4841 
 4842         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 4843 
 4844         /* NB: Runtime firmware must be up and running. */
 4845         if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) {
 4846                 device_printf(sc->sc_dev,
 4847                     "RF switch: radio disabled (%s)\n", __func__);
 4848                 wpi_nic_unlock(sc);
 4849                 return EPERM;   /* :-) */
 4850         }
 4851         wpi_nic_unlock(sc);
 4852 
 4853         /* Wait for thermal sensor to calibrate. */
 4854         for (ntries = 0; ntries < 1000; ntries++) {
 4855                 if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0)
 4856                         break;
 4857                 DELAY(10);
 4858         }
 4859 
 4860         if (ntries == 1000) {
 4861                 device_printf(sc->sc_dev,
 4862                     "timeout waiting for thermal sensor calibration\n");
 4863                 return ETIMEDOUT;
 4864         }
 4865 
 4866         DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d\n", sc->temp);
 4867         return 0;
 4868 }
 4869 
 4870 /*
 4871  * The firmware boot code is small and is intended to be copied directly into
 4872  * the NIC internal memory (no DMA transfer).
 4873  */
 4874 static int
 4875 wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, uint32_t size)
 4876 {
 4877         int error, ntries;
 4878 
 4879         DPRINTF(sc, WPI_DEBUG_HW, "Loading microcode size 0x%x\n", size);
 4880 
 4881         size /= sizeof (uint32_t);
 4882 
 4883         if ((error = wpi_nic_lock(sc)) != 0)
 4884                 return error;
 4885 
 4886         /* Copy microcode image into NIC memory. */
 4887         wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE,
 4888             (const uint32_t *)ucode, size);
 4889 
 4890         wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0);
 4891         wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE);
 4892         wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size);
 4893 
 4894         /* Start boot load now. */
 4895         wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START);
 4896 
 4897         /* Wait for transfer to complete. */
 4898         for (ntries = 0; ntries < 1000; ntries++) {
 4899                 uint32_t status = WPI_READ(sc, WPI_FH_TX_STATUS);
 4900                 DPRINTF(sc, WPI_DEBUG_HW,
 4901                     "firmware status=0x%x, val=0x%x, result=0x%x\n", status,
 4902                     WPI_FH_TX_STATUS_IDLE(6),
 4903                     status & WPI_FH_TX_STATUS_IDLE(6));
 4904                 if (status & WPI_FH_TX_STATUS_IDLE(6)) {
 4905                         DPRINTF(sc, WPI_DEBUG_HW,
 4906                             "Status Match! - ntries = %d\n", ntries);
 4907                         break;
 4908                 }
 4909                 DELAY(10);
 4910         }
 4911         if (ntries == 1000) {
 4912                 device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
 4913                     __func__);
 4914                 wpi_nic_unlock(sc);
 4915                 return ETIMEDOUT;
 4916         }
 4917 
 4918         /* Enable boot after power up. */
 4919         wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN);
 4920 
 4921         wpi_nic_unlock(sc);
 4922         return 0;
 4923 }
 4924 
 4925 static int
 4926 wpi_load_firmware(struct wpi_softc *sc)
 4927 {
 4928         struct wpi_fw_info *fw = &sc->fw;
 4929         struct wpi_dma_info *dma = &sc->fw_dma;
 4930         int error;
 4931 
 4932         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 4933 
 4934         /* Copy initialization sections into pre-allocated DMA-safe memory. */
 4935         memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
 4936         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
 4937         memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz);
 4938         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
 4939 
 4940         /* Tell adapter where to find initialization sections. */
 4941         if ((error = wpi_nic_lock(sc)) != 0)
 4942                 return error;
 4943         wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
 4944         wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz);
 4945         wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
 4946             dma->paddr + WPI_FW_DATA_MAXSZ);
 4947         wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
 4948         wpi_nic_unlock(sc);
 4949 
 4950         /* Load firmware boot code. */
 4951         error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
 4952         if (error != 0) {
 4953                 device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
 4954                     __func__);
 4955                 return error;
 4956         }
 4957 
 4958         /* Now press "execute". */
 4959         WPI_WRITE(sc, WPI_RESET, 0);
 4960 
 4961         /* Wait at most one second for first alive notification. */
 4962         if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
 4963                 device_printf(sc->sc_dev,
 4964                     "%s: timeout waiting for adapter to initialize, error %d\n",
 4965                     __func__, error);
 4966                 return error;
 4967         }
 4968 
 4969         /* Copy runtime sections into pre-allocated DMA-safe memory. */
 4970         memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
 4971         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
 4972         memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz);
 4973         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
 4974 
 4975         /* Tell adapter where to find runtime sections. */
 4976         if ((error = wpi_nic_lock(sc)) != 0)
 4977                 return error;
 4978         wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
 4979         wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz);
 4980         wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
 4981             dma->paddr + WPI_FW_DATA_MAXSZ);
 4982         wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE,
 4983             WPI_FW_UPDATED | fw->main.textsz);
 4984         wpi_nic_unlock(sc);
 4985 
 4986         return 0;
 4987 }
 4988 
 4989 static int
 4990 wpi_read_firmware(struct wpi_softc *sc)
 4991 {
 4992         const struct firmware *fp;
 4993         struct wpi_fw_info *fw = &sc->fw;
 4994         const struct wpi_firmware_hdr *hdr;
 4995         int error;
 4996 
 4997         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 4998 
 4999         DPRINTF(sc, WPI_DEBUG_FIRMWARE,
 5000             "Attempting Loading Firmware from %s module\n", WPI_FW_NAME);
 5001 
 5002         WPI_UNLOCK(sc);
 5003         fp = firmware_get(WPI_FW_NAME);
 5004         WPI_LOCK(sc);
 5005 
 5006         if (fp == NULL) {
 5007                 device_printf(sc->sc_dev,
 5008                     "could not load firmware image '%s'\n", WPI_FW_NAME);
 5009                 return EINVAL;
 5010         }
 5011 
 5012         sc->fw_fp = fp;
 5013 
 5014         if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
 5015                 device_printf(sc->sc_dev,
 5016                     "firmware file too short: %zu bytes\n", fp->datasize);
 5017                 error = EINVAL;
 5018                 goto fail;
 5019         }
 5020 
 5021         fw->size = fp->datasize;
 5022         fw->data = (const uint8_t *)fp->data;
 5023 
 5024         /* Extract firmware header information. */
 5025         hdr = (const struct wpi_firmware_hdr *)fw->data;
 5026 
 5027         /*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
 5028            |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
 5029 
 5030         fw->main.textsz = le32toh(hdr->rtextsz);
 5031         fw->main.datasz = le32toh(hdr->rdatasz);
 5032         fw->init.textsz = le32toh(hdr->itextsz);
 5033         fw->init.datasz = le32toh(hdr->idatasz);
 5034         fw->boot.textsz = le32toh(hdr->btextsz);
 5035         fw->boot.datasz = 0;
 5036 
 5037         /* Sanity-check firmware header. */
 5038         if (fw->main.textsz > WPI_FW_TEXT_MAXSZ ||
 5039             fw->main.datasz > WPI_FW_DATA_MAXSZ ||
 5040             fw->init.textsz > WPI_FW_TEXT_MAXSZ ||
 5041             fw->init.datasz > WPI_FW_DATA_MAXSZ ||
 5042             fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
 5043             (fw->boot.textsz & 3) != 0) {
 5044                 device_printf(sc->sc_dev, "invalid firmware header\n");
 5045                 error = EINVAL;
 5046                 goto fail;
 5047         }
 5048 
 5049         /* Check that all firmware sections fit. */
 5050         if (fw->size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
 5051             fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
 5052                 device_printf(sc->sc_dev,
 5053                     "firmware file too short: %zu bytes\n", fw->size);
 5054                 error = EINVAL;
 5055                 goto fail;
 5056         }
 5057 
 5058         /* Get pointers to firmware sections. */
 5059         fw->main.text = (const uint8_t *)(hdr + 1);
 5060         fw->main.data = fw->main.text + fw->main.textsz;
 5061         fw->init.text = fw->main.data + fw->main.datasz;
 5062         fw->init.data = fw->init.text + fw->init.textsz;
 5063         fw->boot.text = fw->init.data + fw->init.datasz;
 5064 
 5065         DPRINTF(sc, WPI_DEBUG_FIRMWARE,
 5066             "Firmware Version: Major %d, Minor %d, Driver %d, \n"
 5067             "runtime (text: %u, data: %u) init (text: %u, data %u) "
 5068             "boot (text %u)\n", hdr->major, hdr->minor, le32toh(hdr->driver),
 5069             fw->main.textsz, fw->main.datasz,
 5070             fw->init.textsz, fw->init.datasz, fw->boot.textsz);
 5071 
 5072         DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.text %p\n", fw->main.text);
 5073         DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.data %p\n", fw->main.data);
 5074         DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.text %p\n", fw->init.text);
 5075         DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.data %p\n", fw->init.data);
 5076         DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->boot.text %p\n", fw->boot.text);
 5077 
 5078         return 0;
 5079 
 5080 fail:   wpi_unload_firmware(sc);
 5081         return error;
 5082 }
 5083 
 5084 /**
 5085  * Free the referenced firmware image
 5086  */
 5087 static void
 5088 wpi_unload_firmware(struct wpi_softc *sc)
 5089 {
 5090         if (sc->fw_fp != NULL) {
 5091                 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
 5092                 sc->fw_fp = NULL;
 5093         }
 5094 }
 5095 
 5096 static int
 5097 wpi_clock_wait(struct wpi_softc *sc)
 5098 {
 5099         int ntries;
 5100 
 5101         /* Set "initialization complete" bit. */
 5102         WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
 5103 
 5104         /* Wait for clock stabilization. */
 5105         for (ntries = 0; ntries < 2500; ntries++) {
 5106                 if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY)
 5107                         return 0;
 5108                 DELAY(100);
 5109         }
 5110         device_printf(sc->sc_dev,
 5111             "%s: timeout waiting for clock stabilization\n", __func__);
 5112 
 5113         return ETIMEDOUT;
 5114 }
 5115 
 5116 static int
 5117 wpi_apm_init(struct wpi_softc *sc)
 5118 {
 5119         uint32_t reg;
 5120         int error;
 5121 
 5122         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 5123 
 5124         /* Disable L0s exit timer (NMI bug workaround). */
 5125         WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_DIS_L0S_TIMER);
 5126         /* Don't wait for ICH L0s (ICH bug workaround). */
 5127         WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX);
 5128 
 5129         /* Set FH wait threshold to max (HW bug under stress workaround). */
 5130         WPI_SETBITS(sc, WPI_DBG_HPET_MEM, 0xffff0000);
 5131 
 5132         /* Retrieve PCIe Active State Power Management (ASPM). */
 5133         reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 1);
 5134         /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
 5135         if (reg & PCIEM_LINK_CTL_ASPMC_L1)      /* L1 Entry enabled. */
 5136                 WPI_SETBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
 5137         else
 5138                 WPI_CLRBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
 5139 
 5140         WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT);
 5141 
 5142         /* Wait for clock stabilization before accessing prph. */
 5143         if ((error = wpi_clock_wait(sc)) != 0)
 5144                 return error;
 5145 
 5146         if ((error = wpi_nic_lock(sc)) != 0)
 5147                 return error;
 5148         /* Cleanup. */
 5149         wpi_prph_write(sc, WPI_APMG_CLK_DIS, 0x00000400);
 5150         wpi_prph_clrbits(sc, WPI_APMG_PS, 0x00000200);
 5151 
 5152         /* Enable DMA and BSM (Bootstrap State Machine). */
 5153         wpi_prph_write(sc, WPI_APMG_CLK_EN,
 5154             WPI_APMG_CLK_CTRL_DMA_CLK_RQT | WPI_APMG_CLK_CTRL_BSM_CLK_RQT);
 5155         DELAY(20);
 5156         /* Disable L1-Active. */
 5157         wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS);
 5158         wpi_nic_unlock(sc);
 5159 
 5160         return 0;
 5161 }
 5162 
 5163 static void
 5164 wpi_apm_stop_master(struct wpi_softc *sc)
 5165 {
 5166         int ntries;
 5167 
 5168         /* Stop busmaster DMA activity. */
 5169         WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER);
 5170 
 5171         if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) ==
 5172             WPI_GP_CNTRL_MAC_PS)
 5173                 return; /* Already asleep. */
 5174 
 5175         for (ntries = 0; ntries < 100; ntries++) {
 5176                 if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED)
 5177                         return;
 5178                 DELAY(10);
 5179         }
 5180         device_printf(sc->sc_dev, "%s: timeout waiting for master\n",
 5181             __func__);
 5182 }
 5183 
 5184 static void
 5185 wpi_apm_stop(struct wpi_softc *sc)
 5186 {
 5187         wpi_apm_stop_master(sc);
 5188 
 5189         /* Reset the entire device. */
 5190         WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW);
 5191         DELAY(10);
 5192         /* Clear "initialization complete" bit. */
 5193         WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
 5194 }
 5195 
 5196 static void
 5197 wpi_nic_config(struct wpi_softc *sc)
 5198 {
 5199         uint32_t rev;
 5200 
 5201         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 5202 
 5203         /* voodoo from the Linux "driver".. */
 5204         rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
 5205         if ((rev & 0xc0) == 0x40)
 5206                 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB);
 5207         else if (!(rev & 0x80))
 5208                 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM);
 5209 
 5210         if (sc->cap == 0x80)
 5211                 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC);
 5212 
 5213         if ((sc->rev & 0xf0) == 0xd0)
 5214                 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
 5215         else
 5216                 WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
 5217 
 5218         if (sc->type > 1)
 5219                 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B);
 5220 }
 5221 
 5222 static int
 5223 wpi_hw_init(struct wpi_softc *sc)
 5224 {
 5225         uint8_t chnl;
 5226         int ntries, error;
 5227 
 5228         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
 5229 
 5230         /* Clear pending interrupts. */
 5231         WPI_WRITE(sc, WPI_INT, 0xffffffff);
 5232 
 5233         if ((error = wpi_apm_init(sc)) != 0) {
 5234                 device_printf(sc->sc_dev,
 5235                     "%s: could not power ON adapter, error %d\n", __func__,
 5236                     error);
 5237                 return error;
 5238         }
 5239 
 5240         /* Select VMAIN power source. */
 5241         if ((error = wpi_nic_lock(sc)) != 0)
 5242                 return error;
 5243         wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK);
 5244         wpi_nic_unlock(sc);
 5245         /* Spin until VMAIN gets selected. */
 5246         for (ntries = 0; ntries < 5000; ntries++) {
 5247                 if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN)
 5248                         break;
 5249                 DELAY(10);
 5250         }
 5251         if (ntries == 5000) {
 5252                 device_printf(sc->sc_dev, "timeout selecting power source\n");
 5253                 return ETIMEDOUT;
 5254         }
 5255 
 5256         /* Perform adapter initialization. */
 5257         wpi_nic_config(sc);
 5258 
 5259         /* Initialize RX ring. */
 5260         if ((error = wpi_nic_lock(sc)) != 0)
 5261                 return error;
 5262         /* Set physical address of RX ring. */
 5263         WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr);
 5264         /* Set physical address of RX read pointer. */
 5265         WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr +
 5266             offsetof(struct wpi_shared, next));
 5267         WPI_WRITE(sc, WPI_FH_RX_WPTR, 0);
 5268         /* Enable RX. */
 5269         WPI_WRITE(sc, WPI_FH_RX_CONFIG,
 5270             WPI_FH_RX_CONFIG_DMA_ENA |
 5271             WPI_FH_RX_CONFIG_RDRBD_ENA |
 5272             WPI_FH_RX_CONFIG_WRSTATUS_ENA |
 5273             WPI_FH_RX_CONFIG_MAXFRAG |
 5274             WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) |
 5275             WPI_FH_RX_CONFIG_IRQ_DST_HOST |
 5276             WPI_FH_RX_CONFIG_IRQ_TIMEOUT(1));
 5277         (void)WPI_READ(sc, WPI_FH_RSSR_TBL);    /* barrier */
 5278         wpi_nic_unlock(sc);
 5279         WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7);
 5280 
 5281         /* Initialize TX rings. */
 5282         if ((error = wpi_nic_lock(sc)) != 0)
 5283                 return error;
 5284         wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2);      /* bypass mode */
 5285         wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1);   /* enable RA0 */
 5286         /* Enable all 6 TX rings. */
 5287         wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f);
 5288         wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000);
 5289         wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002);
 5290         wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4);
 5291         wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5);
 5292         /* Set physical address of TX rings. */
 5293         WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr);
 5294         WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5);
 5295 
 5296         /* Enable all DMA channels. */
 5297         for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
 5298                 WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0);
 5299                 WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0);
 5300                 WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008);
 5301         }
 5302         wpi_nic_unlock(sc);
 5303         (void)WPI_READ(sc, WPI_FH_TX_BASE);     /* barrier */
 5304 
 5305         /* Clear "radio off" and "commands blocked" bits. */
 5306         WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
 5307         WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED);
 5308 
 5309         /* Clear pending interrupts. */
 5310         WPI_WRITE(sc, WPI_INT, 0xffffffff);
 5311         /* Enable interrupts. */
 5312         WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
 5313 
 5314         /* _Really_ make sure "radio off" bit is cleared! */
 5315         WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
 5316         WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
 5317 
 5318         if ((error = wpi_load_firmware(sc)) != 0) {
 5319                 device_printf(sc->sc_dev,
 5320                     "%s: could not load firmware, error %d\n", __func__,
 5321                     error);
 5322                 return error;
 5323         }
 5324         /* Wait at most one second for firmware alive notification. */
 5325         if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
 5326                 device_printf(sc->sc_dev,
 5327                     "%s: timeout waiting for adapter to initialize, error %d\n",
 5328                     __func__, error);
 5329                 return error;
 5330         }
 5331 
 5332         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
 5333 
 5334         /* Do post-firmware initialization. */
 5335         return wpi_post_alive(sc);
 5336 }
 5337 
 5338 static void
 5339 wpi_hw_stop(struct wpi_softc *sc)
 5340 {
 5341         uint8_t chnl, qid;
 5342         int ntries;
 5343 
 5344         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 5345 
 5346         if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP)
 5347                 wpi_nic_lock(sc);
 5348 
 5349         WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO);
 5350 
 5351         /* Disable interrupts. */
 5352         WPI_WRITE(sc, WPI_INT_MASK, 0);
 5353         WPI_WRITE(sc, WPI_INT, 0xffffffff);
 5354         WPI_WRITE(sc, WPI_FH_INT, 0xffffffff);
 5355 
 5356         /* Make sure we no longer hold the NIC lock. */
 5357         wpi_nic_unlock(sc);
 5358 
 5359         if (wpi_nic_lock(sc) == 0) {
 5360                 /* Stop TX scheduler. */
 5361                 wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0);
 5362                 wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0);
 5363 
 5364                 /* Stop all DMA channels. */
 5365                 for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
 5366                         WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0);
 5367                         for (ntries = 0; ntries < 200; ntries++) {
 5368                                 if (WPI_READ(sc, WPI_FH_TX_STATUS) &
 5369                                     WPI_FH_TX_STATUS_IDLE(chnl))
 5370                                         break;
 5371                                 DELAY(10);
 5372                         }
 5373                 }
 5374                 wpi_nic_unlock(sc);
 5375         }
 5376 
 5377         /* Stop RX ring. */
 5378         wpi_reset_rx_ring(sc);
 5379 
 5380         /* Reset all TX rings. */
 5381         for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++)
 5382                 wpi_reset_tx_ring(sc, &sc->txq[qid]);
 5383 
 5384         if (wpi_nic_lock(sc) == 0) {
 5385                 wpi_prph_write(sc, WPI_APMG_CLK_DIS,
 5386                     WPI_APMG_CLK_CTRL_DMA_CLK_RQT);
 5387                 wpi_nic_unlock(sc);
 5388         }
 5389         DELAY(5);
 5390         /* Power OFF adapter. */
 5391         wpi_apm_stop(sc);
 5392 }
 5393 
 5394 static void
 5395 wpi_radio_on(void *arg0, int pending)
 5396 {
 5397         struct wpi_softc *sc = arg0;
 5398         struct ieee80211com *ic = &sc->sc_ic;
 5399         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 5400 
 5401         device_printf(sc->sc_dev, "RF switch: radio enabled\n");
 5402 
 5403         WPI_LOCK(sc);
 5404         callout_stop(&sc->watchdog_rfkill);
 5405         WPI_UNLOCK(sc);
 5406 
 5407         if (vap != NULL)
 5408                 ieee80211_init(vap);
 5409 }
 5410 
 5411 static void
 5412 wpi_radio_off(void *arg0, int pending)
 5413 {
 5414         struct wpi_softc *sc = arg0;
 5415         struct ieee80211com *ic = &sc->sc_ic;
 5416         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 5417 
 5418         device_printf(sc->sc_dev, "RF switch: radio disabled\n");
 5419 
 5420         ieee80211_notify_radio(ic, 0);
 5421         wpi_stop(sc);
 5422         if (vap != NULL)
 5423                 ieee80211_stop(vap);
 5424 
 5425         WPI_LOCK(sc);
 5426         callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, sc);
 5427         WPI_UNLOCK(sc);
 5428 }
 5429 
 5430 static int
 5431 wpi_init(struct wpi_softc *sc)
 5432 {
 5433         int error = 0;
 5434 
 5435         WPI_LOCK(sc);
 5436 
 5437         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
 5438 
 5439         if (sc->sc_running != 0)
 5440                 goto end;
 5441 
 5442         /* Check that the radio is not disabled by hardware switch. */
 5443         if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) {
 5444                 device_printf(sc->sc_dev,
 5445                     "RF switch: radio disabled (%s)\n", __func__);
 5446                 callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
 5447                     sc);
 5448                 error = EINPROGRESS;
 5449                 goto end;
 5450         }
 5451 
 5452         /* Read firmware images from the filesystem. */
 5453         if ((error = wpi_read_firmware(sc)) != 0) {
 5454                 device_printf(sc->sc_dev,
 5455                     "%s: could not read firmware, error %d\n", __func__,
 5456                     error);
 5457                 goto end;
 5458         }
 5459 
 5460         sc->sc_running = 1;
 5461 
 5462         /* Initialize hardware and upload firmware. */
 5463         error = wpi_hw_init(sc);
 5464         wpi_unload_firmware(sc);
 5465         if (error != 0) {
 5466                 device_printf(sc->sc_dev,
 5467                     "%s: could not initialize hardware, error %d\n", __func__,
 5468                     error);
 5469                 goto fail;
 5470         }
 5471 
 5472         /* Configure adapter now that it is ready. */
 5473         if ((error = wpi_config(sc)) != 0) {
 5474                 device_printf(sc->sc_dev,
 5475                     "%s: could not configure device, error %d\n", __func__,
 5476                     error);
 5477                 goto fail;
 5478         }
 5479 
 5480         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
 5481 
 5482         WPI_UNLOCK(sc);
 5483 
 5484         return 0;
 5485 
 5486 fail:   wpi_stop_locked(sc);
 5487 
 5488 end:    DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
 5489         WPI_UNLOCK(sc);
 5490 
 5491         return error;
 5492 }
 5493 
 5494 static void
 5495 wpi_stop_locked(struct wpi_softc *sc)
 5496 {
 5497 
 5498         WPI_LOCK_ASSERT(sc);
 5499 
 5500         if (sc->sc_running == 0)
 5501                 return;
 5502 
 5503         WPI_TX_LOCK(sc);
 5504         WPI_TXQ_LOCK(sc);
 5505         sc->sc_running = 0;
 5506         WPI_TXQ_UNLOCK(sc);
 5507         WPI_TX_UNLOCK(sc);
 5508 
 5509         WPI_TXQ_STATE_LOCK(sc);
 5510         callout_stop(&sc->tx_timeout);
 5511         WPI_TXQ_STATE_UNLOCK(sc);
 5512 
 5513         WPI_RXON_LOCK(sc);
 5514         callout_stop(&sc->scan_timeout);
 5515         callout_stop(&sc->calib_to);
 5516         WPI_RXON_UNLOCK(sc);
 5517 
 5518         /* Power OFF hardware. */
 5519         wpi_hw_stop(sc);
 5520 }
 5521 
 5522 static void
 5523 wpi_stop(struct wpi_softc *sc)
 5524 {
 5525         WPI_LOCK(sc);
 5526         wpi_stop_locked(sc);
 5527         WPI_UNLOCK(sc);
 5528 }
 5529 
 5530 /*
 5531  * Callback from net80211 to start a scan.
 5532  */
 5533 static void
 5534 wpi_scan_start(struct ieee80211com *ic)
 5535 {
 5536         struct wpi_softc *sc = ic->ic_softc;
 5537 
 5538         wpi_set_led(sc, WPI_LED_LINK, 20, 2);
 5539 }
 5540 
 5541 /*
 5542  * Callback from net80211 to terminate a scan.
 5543  */
 5544 static void
 5545 wpi_scan_end(struct ieee80211com *ic)
 5546 {
 5547         struct wpi_softc *sc = ic->ic_softc;
 5548         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 5549 
 5550         if (vap->iv_state == IEEE80211_S_RUN)
 5551                 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
 5552 }
 5553 
 5554 /**
 5555  * Called by the net80211 framework to indicate to the driver
 5556  * that the channel should be changed
 5557  */
 5558 static void
 5559 wpi_set_channel(struct ieee80211com *ic)
 5560 {
 5561         const struct ieee80211_channel *c = ic->ic_curchan;
 5562         struct wpi_softc *sc = ic->ic_softc;
 5563         int error;
 5564 
 5565         DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
 5566 
 5567         WPI_LOCK(sc);
 5568         sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
 5569         sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
 5570         WPI_UNLOCK(sc);
 5571         WPI_TX_LOCK(sc);
 5572         sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
 5573         sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
 5574         WPI_TX_UNLOCK(sc);
 5575 
 5576         /*
 5577          * Only need to set the channel in Monitor mode. AP scanning and auth
 5578          * are already taken care of by their respective firmware commands.
 5579          */
 5580         if (ic->ic_opmode == IEEE80211_M_MONITOR) {
 5581                 WPI_RXON_LOCK(sc);
 5582                 sc->rxon.chan = ieee80211_chan2ieee(ic, c);
 5583                 if (IEEE80211_IS_CHAN_2GHZ(c)) {
 5584                         sc->rxon.flags |= htole32(WPI_RXON_AUTO |
 5585                             WPI_RXON_24GHZ);
 5586                 } else {
 5587                         sc->rxon.flags &= ~htole32(WPI_RXON_AUTO |
 5588                             WPI_RXON_24GHZ);
 5589                 }
 5590                 if ((error = wpi_send_rxon(sc, 0, 1)) != 0)
 5591                         device_printf(sc->sc_dev,
 5592                             "%s: error %d setting channel\n", __func__,
 5593                             error);
 5594                 WPI_RXON_UNLOCK(sc);
 5595         }
 5596 }
 5597 
 5598 /**
 5599  * Called by net80211 to indicate that we need to scan the current
 5600  * channel. The channel is previously be set via the wpi_set_channel
 5601  * callback.
 5602  */
 5603 static void
 5604 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
 5605 {
 5606         struct ieee80211vap *vap = ss->ss_vap;
 5607         struct ieee80211com *ic = vap->iv_ic;
 5608         struct wpi_softc *sc = ic->ic_softc;
 5609         int error;
 5610 
 5611         WPI_RXON_LOCK(sc);
 5612         error = wpi_scan(sc, ic->ic_curchan);
 5613         WPI_RXON_UNLOCK(sc);
 5614         if (error != 0)
 5615                 ieee80211_cancel_scan(vap);
 5616 }
 5617 
 5618 /**
 5619  * Called by the net80211 framework to indicate
 5620  * the minimum dwell time has been met, terminate the scan.
 5621  * We don't actually terminate the scan as the firmware will notify
 5622  * us when it's finished and we have no way to interrupt it.
 5623  */
 5624 static void
 5625 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
 5626 {
 5627         /* NB: don't try to abort scan; wait for firmware to finish */
 5628 }

Cache object: 0608c61f023b8a00183ebfd7c4ead0b6


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.