The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/wpi/if_wpi.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2006,2007
    3  *      Damien Bergamini <damien.bergamini@free.fr>
    4  *      Benjamin Close <Benjamin.Close@clearchain.com>
    5  *
    6  * Permission to use, copy, modify, and distribute this software for any
    7  * purpose with or without fee is hereby granted, provided that the above
    8  * copyright notice and this permission notice appear in all copies.
    9  *
   10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
   12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
   13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
   14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
   15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
   16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
   17  */
   18 
   19 #define VERSION "20071127"
   20 
   21 #include <sys/cdefs.h>
   22 __FBSDID("$FreeBSD: releng/8.3/sys/dev/wpi/if_wpi.c 218992 2011-02-24 10:23:22Z brucec $");
   23 
   24 /*
   25  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
   26  *
   27  * The 3945ABG network adapter doesn't use traditional hardware as
   28  * many other adaptors do. Instead at run time the eeprom is set into a known
   29  * state and told to load boot firmware. The boot firmware loads an init and a
   30  * main  binary firmware image into SRAM on the card via DMA.
   31  * Once the firmware is loaded, the driver/hw then
   32  * communicate by way of circular dma rings via the SRAM to the firmware.
   33  *
   34  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
   35  * The 4 tx data rings allow for prioritization QoS.
   36  *
   37  * The rx data ring consists of 32 dma buffers. Two registers are used to
   38  * indicate where in the ring the driver and the firmware are up to. The
   39  * driver sets the initial read index (reg1) and the initial write index (reg2),
   40  * the firmware updates the read index (reg1) on rx of a packet and fires an
   41  * interrupt. The driver then processes the buffers starting at reg1 indicating
   42  * to the firmware which buffers have been accessed by updating reg2. At the
   43  * same time allocating new memory for the processed buffer.
   44  *
   45  * A similar thing happens with the tx rings. The difference is the firmware
   46  * stop processing buffers once the queue is full and until confirmation
   47  * of a successful transmition (tx_intr) has occurred.
   48  *
   49  * The command ring operates in the same manner as the tx queues.
   50  *
   51  * All communication direct to the card (ie eeprom) is classed as Stage1
   52  * communication
   53  *
   54  * All communication via the firmware to the card is classed as State2.
   55  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
   56  * firmware. The bootstrap firmware and runtime firmware are loaded
   57  * from host memory via dma to the card then told to execute. From this point
   58  * on the majority of communications between the driver and the card goes
   59  * via the firmware.
   60  */
   61 
   62 #include <sys/param.h>
   63 #include <sys/sysctl.h>
   64 #include <sys/sockio.h>
   65 #include <sys/mbuf.h>
   66 #include <sys/kernel.h>
   67 #include <sys/socket.h>
   68 #include <sys/systm.h>
   69 #include <sys/malloc.h>
   70 #include <sys/queue.h>
   71 #include <sys/taskqueue.h>
   72 #include <sys/module.h>
   73 #include <sys/bus.h>
   74 #include <sys/endian.h>
   75 #include <sys/linker.h>
   76 #include <sys/firmware.h>
   77 
   78 #include <machine/bus.h>
   79 #include <machine/resource.h>
   80 #include <sys/rman.h>
   81 
   82 #include <dev/pci/pcireg.h>
   83 #include <dev/pci/pcivar.h>
   84 
   85 #include <net/bpf.h>
   86 #include <net/if.h>
   87 #include <net/if_arp.h>
   88 #include <net/ethernet.h>
   89 #include <net/if_dl.h>
   90 #include <net/if_media.h>
   91 #include <net/if_types.h>
   92 
   93 #include <net80211/ieee80211_var.h>
   94 #include <net80211/ieee80211_radiotap.h>
   95 #include <net80211/ieee80211_regdomain.h>
   96 #include <net80211/ieee80211_ratectl.h>
   97 
   98 #include <netinet/in.h>
   99 #include <netinet/in_systm.h>
  100 #include <netinet/in_var.h>
  101 #include <netinet/ip.h>
  102 #include <netinet/if_ether.h>
  103 
  104 #include <dev/wpi/if_wpireg.h>
  105 #include <dev/wpi/if_wpivar.h>
  106 
  107 #define WPI_DEBUG
  108 
  109 #ifdef WPI_DEBUG
  110 #define DPRINTF(x)      do { if (wpi_debug != 0) printf x; } while (0)
  111 #define DPRINTFN(n, x)  do { if (wpi_debug & n) printf x; } while (0)
  112 #define WPI_DEBUG_SET   (wpi_debug != 0)
  113 
  114 enum {
  115         WPI_DEBUG_UNUSED        = 0x00000001,   /* Unused */
  116         WPI_DEBUG_HW            = 0x00000002,   /* Stage 1 (eeprom) debugging */
  117         WPI_DEBUG_TX            = 0x00000004,   /* Stage 2 TX intrp debugging*/
  118         WPI_DEBUG_RX            = 0x00000008,   /* Stage 2 RX intrp debugging */
  119         WPI_DEBUG_CMD           = 0x00000010,   /* Stage 2 CMD intrp debugging*/
  120         WPI_DEBUG_FIRMWARE      = 0x00000020,   /* firmware(9) loading debug  */
  121         WPI_DEBUG_DMA           = 0x00000040,   /* DMA (de)allocations/syncs  */
  122         WPI_DEBUG_SCANNING      = 0x00000080,   /* Stage 2 Scanning debugging */
  123         WPI_DEBUG_NOTIFY        = 0x00000100,   /* State 2 Noftif intr debug */
  124         WPI_DEBUG_TEMP          = 0x00000200,   /* TXPower/Temp Calibration */
  125         WPI_DEBUG_OPS           = 0x00000400,   /* wpi_ops taskq debug */
  126         WPI_DEBUG_WATCHDOG      = 0x00000800,   /* Watch dog debug */
  127         WPI_DEBUG_ANY           = 0xffffffff
  128 };
  129 
  130 static int wpi_debug = 0;
  131 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
  132 TUNABLE_INT("debug.wpi", &wpi_debug);
  133 
  134 #else
  135 #define DPRINTF(x)
  136 #define DPRINTFN(n, x)
  137 #define WPI_DEBUG_SET   0
  138 #endif
  139 
  140 struct wpi_ident {
  141         uint16_t        vendor;
  142         uint16_t        device;
  143         uint16_t        subdevice;
  144         const char      *name;
  145 };
  146 
  147 static const struct wpi_ident wpi_ident_table[] = {
  148         /* The below entries support ABG regardless of the subid */
  149         { 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
  150         { 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
  151         /* The below entries only support BG */
  152         { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
  153         { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
  154         { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
  155         { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
  156         { 0, 0, 0, NULL }
  157 };
  158 
  159 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
  160                     const char name[IFNAMSIZ], int unit, int opmode,
  161                     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
  162                     const uint8_t mac[IEEE80211_ADDR_LEN]);
  163 static void     wpi_vap_delete(struct ieee80211vap *);
  164 static int      wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
  165                     void **, bus_size_t, bus_size_t, int);
  166 static void     wpi_dma_contig_free(struct wpi_dma_info *);
  167 static void     wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
  168 static int      wpi_alloc_shared(struct wpi_softc *);
  169 static void     wpi_free_shared(struct wpi_softc *);
  170 static int      wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
  171 static void     wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
  172 static void     wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
  173 static int      wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
  174                     int, int);
  175 static void     wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
  176 static void     wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
  177 static int      wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
  178 static void     wpi_mem_lock(struct wpi_softc *);
  179 static void     wpi_mem_unlock(struct wpi_softc *);
  180 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
  181 static void     wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
  182 static void     wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
  183                     const uint32_t *, int);
  184 static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
  185 static int      wpi_alloc_fwmem(struct wpi_softc *);
  186 static void     wpi_free_fwmem(struct wpi_softc *);
  187 static int      wpi_load_firmware(struct wpi_softc *);
  188 static void     wpi_unload_firmware(struct wpi_softc *);
  189 static int      wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
  190 static void     wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
  191                     struct wpi_rx_data *);
  192 static void     wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
  193 static void     wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
  194 static void     wpi_notif_intr(struct wpi_softc *);
  195 static void     wpi_intr(void *);
  196 static uint8_t  wpi_plcp_signal(int);
  197 static void     wpi_watchdog(void *);
  198 static int      wpi_tx_data(struct wpi_softc *, struct mbuf *,
  199                     struct ieee80211_node *, int);
  200 static void     wpi_start(struct ifnet *);
  201 static void     wpi_start_locked(struct ifnet *);
  202 static int      wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
  203                     const struct ieee80211_bpf_params *);
  204 static void     wpi_scan_start(struct ieee80211com *);
  205 static void     wpi_scan_end(struct ieee80211com *);
  206 static void     wpi_set_channel(struct ieee80211com *);
  207 static void     wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
  208 static void     wpi_scan_mindwell(struct ieee80211_scan_state *);
  209 static int      wpi_ioctl(struct ifnet *, u_long, caddr_t);
  210 static void     wpi_read_eeprom(struct wpi_softc *,
  211                     uint8_t macaddr[IEEE80211_ADDR_LEN]);
  212 static void     wpi_read_eeprom_channels(struct wpi_softc *, int);
  213 static void     wpi_read_eeprom_group(struct wpi_softc *, int);
  214 static int      wpi_cmd(struct wpi_softc *, int, const void *, int, int);
  215 static int      wpi_wme_update(struct ieee80211com *);
  216 static int      wpi_mrr_setup(struct wpi_softc *);
  217 static void     wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
  218 static void     wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
  219 #if 0
  220 static int      wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
  221 #endif
  222 static int      wpi_auth(struct wpi_softc *, struct ieee80211vap *);
  223 static int      wpi_run(struct wpi_softc *, struct ieee80211vap *);
  224 static int      wpi_scan(struct wpi_softc *);
  225 static int      wpi_config(struct wpi_softc *);
  226 static void     wpi_stop_master(struct wpi_softc *);
  227 static int      wpi_power_up(struct wpi_softc *);
  228 static int      wpi_reset(struct wpi_softc *);
  229 static void     wpi_hwreset(void *, int);
  230 static void     wpi_rfreset(void *, int);
  231 static void     wpi_hw_config(struct wpi_softc *);
  232 static void     wpi_init(void *);
  233 static void     wpi_init_locked(struct wpi_softc *, int);
  234 static void     wpi_stop(struct wpi_softc *);
  235 static void     wpi_stop_locked(struct wpi_softc *);
  236 
  237 static int      wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
  238                     int);
  239 static void     wpi_calib_timeout(void *);
  240 static void     wpi_power_calibration(struct wpi_softc *, int);
  241 static int      wpi_get_power_index(struct wpi_softc *,
  242                     struct wpi_power_group *, struct ieee80211_channel *, int);
  243 #ifdef WPI_DEBUG
  244 static const char *wpi_cmd_str(int);
  245 #endif
  246 static int wpi_probe(device_t);
  247 static int wpi_attach(device_t);
  248 static int wpi_detach(device_t);
  249 static int wpi_shutdown(device_t);
  250 static int wpi_suspend(device_t);
  251 static int wpi_resume(device_t);
  252 
  253 
  254 static device_method_t wpi_methods[] = {
  255         /* Device interface */
  256         DEVMETHOD(device_probe,         wpi_probe),
  257         DEVMETHOD(device_attach,        wpi_attach),
  258         DEVMETHOD(device_detach,        wpi_detach),
  259         DEVMETHOD(device_shutdown,      wpi_shutdown),
  260         DEVMETHOD(device_suspend,       wpi_suspend),
  261         DEVMETHOD(device_resume,        wpi_resume),
  262 
  263         { 0, 0 }
  264 };
  265 
  266 static driver_t wpi_driver = {
  267         "wpi",
  268         wpi_methods,
  269         sizeof (struct wpi_softc)
  270 };
  271 
  272 static devclass_t wpi_devclass;
  273 
  274 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
  275 
  276 static const uint8_t wpi_ridx_to_plcp[] = {
  277         /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
  278         /* R1-R4 (ral/ural is R4-R1) */
  279         0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
  280         /* CCK: device-dependent */
  281         10, 20, 55, 110
  282 };
  283 static const uint8_t wpi_ridx_to_rate[] = {
  284         12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
  285         2, 4, 11, 22 /*CCK */
  286 };
  287 
  288 
  289 static int
  290 wpi_probe(device_t dev)
  291 {
  292         const struct wpi_ident *ident;
  293 
  294         for (ident = wpi_ident_table; ident->name != NULL; ident++) {
  295                 if (pci_get_vendor(dev) == ident->vendor &&
  296                     pci_get_device(dev) == ident->device) {
  297                         device_set_desc(dev, ident->name);
  298                         return 0;
  299                 }
  300         }
  301         return ENXIO;
  302 }
  303 
  304 /**
  305  * Load the firmare image from disk to the allocated dma buffer.
  306  * we also maintain the reference to the firmware pointer as there
  307  * is times where we may need to reload the firmware but we are not
  308  * in a context that can access the filesystem (ie taskq cause by restart)
  309  *
  310  * @return 0 on success, an errno on failure
  311  */
  312 static int
  313 wpi_load_firmware(struct wpi_softc *sc)
  314 {
  315         const struct firmware *fp;
  316         struct wpi_dma_info *dma = &sc->fw_dma;
  317         const struct wpi_firmware_hdr *hdr;
  318         const uint8_t *itext, *idata, *rtext, *rdata, *btext;
  319         uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
  320         int error;
  321 
  322         DPRINTFN(WPI_DEBUG_FIRMWARE,
  323             ("Attempting Loading Firmware from wpi_fw module\n"));
  324 
  325         WPI_UNLOCK(sc);
  326 
  327         if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
  328                 device_printf(sc->sc_dev,
  329                     "could not load firmware image 'wpifw'\n");
  330                 error = ENOENT;
  331                 WPI_LOCK(sc);
  332                 goto fail;
  333         }
  334 
  335         fp = sc->fw_fp;
  336 
  337         WPI_LOCK(sc);
  338 
  339         /* Validate the firmware is minimum a particular version */
  340         if (fp->version < WPI_FW_MINVERSION) {
  341             device_printf(sc->sc_dev,
  342                            "firmware version is too old. Need %d, got %d\n",
  343                            WPI_FW_MINVERSION,
  344                            fp->version);
  345             error = ENXIO;
  346             goto fail;
  347         }
  348 
  349         if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
  350                 device_printf(sc->sc_dev,
  351                     "firmware file too short: %zu bytes\n", fp->datasize);
  352                 error = ENXIO;
  353                 goto fail;
  354         }
  355 
  356         hdr = (const struct wpi_firmware_hdr *)fp->data;
  357 
  358         /*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
  359            |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
  360 
  361         rtextsz = le32toh(hdr->rtextsz);
  362         rdatasz = le32toh(hdr->rdatasz);
  363         itextsz = le32toh(hdr->itextsz);
  364         idatasz = le32toh(hdr->idatasz);
  365         btextsz = le32toh(hdr->btextsz);
  366 
  367         /* check that all firmware segments are present */
  368         if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
  369                 rtextsz + rdatasz + itextsz + idatasz + btextsz) {
  370                 device_printf(sc->sc_dev,
  371                     "firmware file too short: %zu bytes\n", fp->datasize);
  372                 error = ENXIO; /* XXX appropriate error code? */
  373                 goto fail;
  374         }
  375 
  376         /* get pointers to firmware segments */
  377         rtext = (const uint8_t *)(hdr + 1);
  378         rdata = rtext + rtextsz;
  379         itext = rdata + rdatasz;
  380         idata = itext + itextsz;
  381         btext = idata + idatasz;
  382 
  383         DPRINTFN(WPI_DEBUG_FIRMWARE,
  384             ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
  385              "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
  386              (le32toh(hdr->version) & 0xff000000) >> 24,
  387              (le32toh(hdr->version) & 0x00ff0000) >> 16,
  388              (le32toh(hdr->version) & 0x0000ffff),
  389              rtextsz, rdatasz,
  390              itextsz, idatasz, btextsz));
  391 
  392         DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
  393         DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
  394         DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
  395         DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
  396         DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
  397 
  398         /* sanity checks */
  399         if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
  400             rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
  401             itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
  402             idatasz > WPI_FW_INIT_DATA_MAXSZ ||
  403             btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
  404             (btextsz & 3) != 0) {
  405                 device_printf(sc->sc_dev, "firmware invalid\n");
  406                 error = EINVAL;
  407                 goto fail;
  408         }
  409 
  410         /* copy initialization images into pre-allocated DMA-safe memory */
  411         memcpy(dma->vaddr, idata, idatasz);
  412         memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
  413 
  414         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
  415 
  416         /* tell adapter where to find initialization images */
  417         wpi_mem_lock(sc);
  418         wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
  419         wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
  420         wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
  421             dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
  422         wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
  423         wpi_mem_unlock(sc);
  424 
  425         /* load firmware boot code */
  426         if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
  427             device_printf(sc->sc_dev, "Failed to load microcode\n");
  428             goto fail;
  429         }
  430 
  431         /* now press "execute" */
  432         WPI_WRITE(sc, WPI_RESET, 0);
  433 
  434         /* wait at most one second for the first alive notification */
  435         if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
  436                 device_printf(sc->sc_dev,
  437                     "timeout waiting for adapter to initialize\n");
  438                 goto fail;
  439         }
  440 
  441         /* copy runtime images into pre-allocated DMA-sage memory */
  442         memcpy(dma->vaddr, rdata, rdatasz);
  443         memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
  444         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
  445 
  446         /* tell adapter where to find runtime images */
  447         wpi_mem_lock(sc);
  448         wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
  449         wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
  450         wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
  451             dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
  452         wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
  453         wpi_mem_unlock(sc);
  454 
  455         /* wait at most one second for the first alive notification */
  456         if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
  457                 device_printf(sc->sc_dev,
  458                     "timeout waiting for adapter to initialize2\n");
  459                 goto fail;
  460         }
  461 
  462         DPRINTFN(WPI_DEBUG_FIRMWARE,
  463             ("Firmware loaded to driver successfully\n"));
  464         return error;
  465 fail:
  466         wpi_unload_firmware(sc);
  467         return error;
  468 }
  469 
  470 /**
  471  * Free the referenced firmware image
  472  */
  473 static void
  474 wpi_unload_firmware(struct wpi_softc *sc)
  475 {
  476 
  477         if (sc->fw_fp) {
  478                 WPI_UNLOCK(sc);
  479                 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
  480                 WPI_LOCK(sc);
  481                 sc->fw_fp = NULL;
  482         }
  483 }
  484 
  485 static int
  486 wpi_attach(device_t dev)
  487 {
  488         struct wpi_softc *sc = device_get_softc(dev);
  489         struct ifnet *ifp;
  490         struct ieee80211com *ic;
  491         int ac, error, supportsa = 1;
  492         uint32_t tmp;
  493         const struct wpi_ident *ident;
  494         uint8_t macaddr[IEEE80211_ADDR_LEN];
  495 
  496         sc->sc_dev = dev;
  497 
  498         if (bootverbose || WPI_DEBUG_SET)
  499             device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
  500 
  501         /*
  502          * Some card's only support 802.11b/g not a, check to see if
  503          * this is one such card. A 0x0 in the subdevice table indicates
  504          * the entire subdevice range is to be ignored.
  505          */
  506         for (ident = wpi_ident_table; ident->name != NULL; ident++) {
  507                 if (ident->subdevice &&
  508                     pci_get_subdevice(dev) == ident->subdevice) {
  509                     supportsa = 0;
  510                     break;
  511                 }
  512         }
  513 
  514         /* Create the tasks that can be queued */
  515         TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
  516         TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
  517 
  518         WPI_LOCK_INIT(sc);
  519 
  520         callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
  521         callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
  522 
  523         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
  524                 device_printf(dev, "chip is in D%d power mode "
  525                     "-- setting to D0\n", pci_get_powerstate(dev));
  526                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
  527         }
  528 
  529         /* disable the retry timeout register */
  530         pci_write_config(dev, 0x41, 0, 1);
  531 
  532         /* enable bus-mastering */
  533         pci_enable_busmaster(dev);
  534 
  535         sc->mem_rid = PCIR_BAR(0);
  536         sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
  537             RF_ACTIVE);
  538         if (sc->mem == NULL) {
  539                 device_printf(dev, "could not allocate memory resource\n");
  540                 error = ENOMEM;
  541                 goto fail;
  542         }
  543 
  544         sc->sc_st = rman_get_bustag(sc->mem);
  545         sc->sc_sh = rman_get_bushandle(sc->mem);
  546 
  547         sc->irq_rid = 0;
  548         sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
  549             RF_ACTIVE | RF_SHAREABLE);
  550         if (sc->irq == NULL) {
  551                 device_printf(dev, "could not allocate interrupt resource\n");
  552                 error = ENOMEM;
  553                 goto fail;
  554         }
  555 
  556         /*
  557          * Allocate DMA memory for firmware transfers.
  558          */
  559         if ((error = wpi_alloc_fwmem(sc)) != 0) {
  560                 printf(": could not allocate firmware memory\n");
  561                 error = ENOMEM;
  562                 goto fail;
  563         }
  564 
  565         /*
  566          * Put adapter into a known state.
  567          */
  568         if ((error = wpi_reset(sc)) != 0) {
  569                 device_printf(dev, "could not reset adapter\n");
  570                 goto fail;
  571         }
  572 
  573         wpi_mem_lock(sc);
  574         tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
  575         if (bootverbose || WPI_DEBUG_SET)
  576             device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
  577 
  578         wpi_mem_unlock(sc);
  579 
  580         /* Allocate shared page */
  581         if ((error = wpi_alloc_shared(sc)) != 0) {
  582                 device_printf(dev, "could not allocate shared page\n");
  583                 goto fail;
  584         }
  585 
  586         /* tx data queues  - 4 for QoS purposes */
  587         for (ac = 0; ac < WME_NUM_AC; ac++) {
  588                 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
  589                 if (error != 0) {
  590                     device_printf(dev, "could not allocate Tx ring %d\n",ac);
  591                     goto fail;
  592                 }
  593         }
  594 
  595         /* command queue to talk to the card's firmware */
  596         error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
  597         if (error != 0) {
  598                 device_printf(dev, "could not allocate command ring\n");
  599                 goto fail;
  600         }
  601 
  602         /* receive data queue */
  603         error = wpi_alloc_rx_ring(sc, &sc->rxq);
  604         if (error != 0) {
  605                 device_printf(dev, "could not allocate Rx ring\n");
  606                 goto fail;
  607         }
  608 
  609         ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
  610         if (ifp == NULL) {
  611                 device_printf(dev, "can not if_alloc()\n");
  612                 error = ENOMEM;
  613                 goto fail;
  614         }
  615         ic = ifp->if_l2com;
  616 
  617         ic->ic_ifp = ifp;
  618         ic->ic_phytype = IEEE80211_T_OFDM;      /* not only, but not used */
  619         ic->ic_opmode = IEEE80211_M_STA;        /* default to BSS mode */
  620 
  621         /* set device capabilities */
  622         ic->ic_caps =
  623                   IEEE80211_C_STA               /* station mode supported */
  624                 | IEEE80211_C_MONITOR           /* monitor mode supported */
  625                 | IEEE80211_C_TXPMGT            /* tx power management */
  626                 | IEEE80211_C_SHSLOT            /* short slot time supported */
  627                 | IEEE80211_C_SHPREAMBLE        /* short preamble supported */
  628                 | IEEE80211_C_WPA               /* 802.11i */
  629 /* XXX looks like WME is partly supported? */
  630 #if 0
  631                 | IEEE80211_C_IBSS              /* IBSS mode support */
  632                 | IEEE80211_C_BGSCAN            /* capable of bg scanning */
  633                 | IEEE80211_C_WME               /* 802.11e */
  634                 | IEEE80211_C_HOSTAP            /* Host access point mode */
  635 #endif
  636                 ;
  637 
  638         /*
  639          * Read in the eeprom and also setup the channels for
  640          * net80211. We don't set the rates as net80211 does this for us
  641          */
  642         wpi_read_eeprom(sc, macaddr);
  643 
  644         if (bootverbose || WPI_DEBUG_SET) {
  645             device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
  646             device_printf(sc->sc_dev, "Hardware Type: %c\n",
  647                           sc->type > 1 ? 'B': '?');
  648             device_printf(sc->sc_dev, "Hardware Revision: %c\n",
  649                           ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
  650             device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
  651                           supportsa ? "does" : "does not");
  652 
  653             /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
  654                what sc->rev really represents - benjsc 20070615 */
  655         }
  656 
  657         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
  658         ifp->if_softc = sc;
  659         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
  660         ifp->if_init = wpi_init;
  661         ifp->if_ioctl = wpi_ioctl;
  662         ifp->if_start = wpi_start;
  663         IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
  664         ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
  665         IFQ_SET_READY(&ifp->if_snd);
  666 
  667         ieee80211_ifattach(ic, macaddr);
  668         /* override default methods */
  669         ic->ic_raw_xmit = wpi_raw_xmit;
  670         ic->ic_wme.wme_update = wpi_wme_update;
  671         ic->ic_scan_start = wpi_scan_start;
  672         ic->ic_scan_end = wpi_scan_end;
  673         ic->ic_set_channel = wpi_set_channel;
  674         ic->ic_scan_curchan = wpi_scan_curchan;
  675         ic->ic_scan_mindwell = wpi_scan_mindwell;
  676 
  677         ic->ic_vap_create = wpi_vap_create;
  678         ic->ic_vap_delete = wpi_vap_delete;
  679 
  680         ieee80211_radiotap_attach(ic,
  681             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
  682                 WPI_TX_RADIOTAP_PRESENT,
  683             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
  684                 WPI_RX_RADIOTAP_PRESENT);
  685 
  686         /*
  687          * Hook our interrupt after all initialization is complete.
  688          */
  689         error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
  690             NULL, wpi_intr, sc, &sc->sc_ih);
  691         if (error != 0) {
  692                 device_printf(dev, "could not set up interrupt\n");
  693                 goto fail;
  694         }
  695 
  696         if (bootverbose)
  697                 ieee80211_announce(ic);
  698 #ifdef XXX_DEBUG
  699         ieee80211_announce_channels(ic);
  700 #endif
  701         return 0;
  702 
  703 fail:   wpi_detach(dev);
  704         return ENXIO;
  705 }
  706 
  707 static int
  708 wpi_detach(device_t dev)
  709 {
  710         struct wpi_softc *sc = device_get_softc(dev);
  711         struct ifnet *ifp = sc->sc_ifp;
  712         struct ieee80211com *ic;
  713         int ac;
  714 
  715         if (ifp != NULL) {
  716                 ic = ifp->if_l2com;
  717 
  718                 ieee80211_draintask(ic, &sc->sc_restarttask);
  719                 ieee80211_draintask(ic, &sc->sc_radiotask);
  720                 wpi_stop(sc);
  721                 callout_drain(&sc->watchdog_to);
  722                 callout_drain(&sc->calib_to);
  723                 ieee80211_ifdetach(ic);
  724         }
  725 
  726         WPI_LOCK(sc);
  727         if (sc->txq[0].data_dmat) {
  728                 for (ac = 0; ac < WME_NUM_AC; ac++)
  729                         wpi_free_tx_ring(sc, &sc->txq[ac]);
  730 
  731                 wpi_free_tx_ring(sc, &sc->cmdq);
  732                 wpi_free_rx_ring(sc, &sc->rxq);
  733                 wpi_free_shared(sc);
  734         }
  735 
  736         if (sc->fw_fp != NULL) {
  737                 wpi_unload_firmware(sc);
  738         }
  739 
  740         if (sc->fw_dma.tag)
  741                 wpi_free_fwmem(sc);
  742         WPI_UNLOCK(sc);
  743 
  744         if (sc->irq != NULL) {
  745                 bus_teardown_intr(dev, sc->irq, sc->sc_ih);
  746                 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
  747         }
  748 
  749         if (sc->mem != NULL)
  750                 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
  751 
  752         if (ifp != NULL)
  753                 if_free(ifp);
  754 
  755         WPI_LOCK_DESTROY(sc);
  756 
  757         return 0;
  758 }
  759 
  760 static struct ieee80211vap *
  761 wpi_vap_create(struct ieee80211com *ic,
  762         const char name[IFNAMSIZ], int unit, int opmode, int flags,
  763         const uint8_t bssid[IEEE80211_ADDR_LEN],
  764         const uint8_t mac[IEEE80211_ADDR_LEN])
  765 {
  766         struct wpi_vap *wvp;
  767         struct ieee80211vap *vap;
  768 
  769         if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
  770                 return NULL;
  771         wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
  772             M_80211_VAP, M_NOWAIT | M_ZERO);
  773         if (wvp == NULL)
  774                 return NULL;
  775         vap = &wvp->vap;
  776         ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
  777         /* override with driver methods */
  778         wvp->newstate = vap->iv_newstate;
  779         vap->iv_newstate = wpi_newstate;
  780 
  781         ieee80211_ratectl_init(vap);
  782         /* complete setup */
  783         ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
  784         ic->ic_opmode = opmode;
  785         return vap;
  786 }
  787 
  788 static void
  789 wpi_vap_delete(struct ieee80211vap *vap)
  790 {
  791         struct wpi_vap *wvp = WPI_VAP(vap);
  792 
  793         ieee80211_ratectl_deinit(vap);
  794         ieee80211_vap_detach(vap);
  795         free(wvp, M_80211_VAP);
  796 }
  797 
  798 static void
  799 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
  800 {
  801         if (error != 0)
  802                 return;
  803 
  804         KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
  805 
  806         *(bus_addr_t *)arg = segs[0].ds_addr;
  807 }
  808 
  809 /*
  810  * Allocates a contiguous block of dma memory of the requested size and
  811  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
  812  * allocations greater than 4096 may fail. Hence if the requested alignment is
  813  * greater we allocate 'alignment' size extra memory and shift the vaddr and
  814  * paddr after the dma load. This bypasses the problem at the cost of a little
  815  * more memory.
  816  */
  817 static int
  818 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
  819     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
  820 {
  821         int error;
  822         bus_size_t align;
  823         bus_size_t reqsize;
  824 
  825         DPRINTFN(WPI_DEBUG_DMA,
  826             ("Size: %zd - alignment %zd\n", size, alignment));
  827 
  828         dma->size = size;
  829         dma->tag = NULL;
  830 
  831         if (alignment > 4096) {
  832                 align = PAGE_SIZE;
  833                 reqsize = size + alignment;
  834         } else {
  835                 align = alignment;
  836                 reqsize = size;
  837         }
  838         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
  839             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
  840             NULL, NULL, reqsize,
  841             1, reqsize, flags,
  842             NULL, NULL, &dma->tag);
  843         if (error != 0) {
  844                 device_printf(sc->sc_dev,
  845                     "could not create shared page DMA tag\n");
  846                 goto fail;
  847         }
  848         error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
  849             flags | BUS_DMA_ZERO, &dma->map);
  850         if (error != 0) {
  851                 device_printf(sc->sc_dev,
  852                     "could not allocate shared page DMA memory\n");
  853                 goto fail;
  854         }
  855 
  856         error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
  857             reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
  858 
  859         /* Save the original pointers so we can free all the memory */
  860         dma->paddr = dma->paddr_start;
  861         dma->vaddr = dma->vaddr_start;
  862 
  863         /*
  864          * Check the alignment and increment by 4096 until we get the
  865          * requested alignment. Fail if can't obtain the alignment
  866          * we requested.
  867          */
  868         if ((dma->paddr & (alignment -1 )) != 0) {
  869                 int i;
  870 
  871                 for (i = 0; i < alignment / 4096; i++) {
  872                         if ((dma->paddr & (alignment - 1 )) == 0)
  873                                 break;
  874                         dma->paddr += 4096;
  875                         dma->vaddr += 4096;
  876                 }
  877                 if (i == alignment / 4096) {
  878                         device_printf(sc->sc_dev,
  879                             "alignment requirement was not satisfied\n");
  880                         goto fail;
  881                 }
  882         }
  883 
  884         if (error != 0) {
  885                 device_printf(sc->sc_dev,
  886                     "could not load shared page DMA map\n");
  887                 goto fail;
  888         }
  889 
  890         if (kvap != NULL)
  891                 *kvap = dma->vaddr;
  892 
  893         return 0;
  894 
  895 fail:
  896         wpi_dma_contig_free(dma);
  897         return error;
  898 }
  899 
  900 static void
  901 wpi_dma_contig_free(struct wpi_dma_info *dma)
  902 {
  903         if (dma->tag) {
  904                 if (dma->map != NULL) {
  905                         if (dma->paddr_start != 0) {
  906                                 bus_dmamap_sync(dma->tag, dma->map,
  907                                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
  908                                 bus_dmamap_unload(dma->tag, dma->map);
  909                         }
  910                         bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
  911                 }
  912                 bus_dma_tag_destroy(dma->tag);
  913         }
  914 }
  915 
  916 /*
  917  * Allocate a shared page between host and NIC.
  918  */
  919 static int
  920 wpi_alloc_shared(struct wpi_softc *sc)
  921 {
  922         int error;
  923 
  924         error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
  925             (void **)&sc->shared, sizeof (struct wpi_shared),
  926             PAGE_SIZE,
  927             BUS_DMA_NOWAIT);
  928 
  929         if (error != 0) {
  930                 device_printf(sc->sc_dev,
  931                     "could not allocate shared area DMA memory\n");
  932         }
  933 
  934         return error;
  935 }
  936 
  937 static void
  938 wpi_free_shared(struct wpi_softc *sc)
  939 {
  940         wpi_dma_contig_free(&sc->shared_dma);
  941 }
  942 
  943 static int
  944 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
  945 {
  946 
  947         int i, error;
  948 
  949         ring->cur = 0;
  950 
  951         error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
  952             (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
  953             WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
  954 
  955         if (error != 0) {
  956                 device_printf(sc->sc_dev,
  957                     "%s: could not allocate rx ring DMA memory, error %d\n",
  958                     __func__, error);
  959                 goto fail;
  960         }
  961 
  962         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 
  963             BUS_SPACE_MAXADDR_32BIT,
  964             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
  965             MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
  966         if (error != 0) {
  967                 device_printf(sc->sc_dev,
  968                     "%s: bus_dma_tag_create_failed, error %d\n",
  969                     __func__, error);
  970                 goto fail;
  971         }
  972 
  973         /*
  974          * Setup Rx buffers.
  975          */
  976         for (i = 0; i < WPI_RX_RING_COUNT; i++) {
  977                 struct wpi_rx_data *data = &ring->data[i];
  978                 struct mbuf *m;
  979                 bus_addr_t paddr;
  980 
  981                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
  982                 if (error != 0) {
  983                         device_printf(sc->sc_dev,
  984                             "%s: bus_dmamap_create failed, error %d\n",
  985                             __func__, error);
  986                         goto fail;
  987                 }
  988                 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
  989                 if (m == NULL) {
  990                         device_printf(sc->sc_dev,
  991                            "%s: could not allocate rx mbuf\n", __func__);
  992                         error = ENOMEM;
  993                         goto fail;
  994                 }
  995                 /* map page */
  996                 error = bus_dmamap_load(ring->data_dmat, data->map,
  997                     mtod(m, caddr_t), MJUMPAGESIZE,
  998                     wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
  999                 if (error != 0 && error != EFBIG) {
 1000                         device_printf(sc->sc_dev,
 1001                             "%s: bus_dmamap_load failed, error %d\n",
 1002                             __func__, error);
 1003                         m_freem(m);
 1004                         error = ENOMEM; /* XXX unique code */
 1005                         goto fail;
 1006                 }
 1007                 bus_dmamap_sync(ring->data_dmat, data->map, 
 1008                     BUS_DMASYNC_PREWRITE);
 1009 
 1010                 data->m = m;
 1011                 ring->desc[i] = htole32(paddr);
 1012         }
 1013         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
 1014             BUS_DMASYNC_PREWRITE);
 1015         return 0;
 1016 fail:
 1017         wpi_free_rx_ring(sc, ring);
 1018         return error;
 1019 }
 1020 
 1021 static void
 1022 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
 1023 {
 1024         int ntries;
 1025 
 1026         wpi_mem_lock(sc);
 1027 
 1028         WPI_WRITE(sc, WPI_RX_CONFIG, 0);
 1029 
 1030         for (ntries = 0; ntries < 100; ntries++) {
 1031                 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
 1032                         break;
 1033                 DELAY(10);
 1034         }
 1035 
 1036         wpi_mem_unlock(sc);
 1037 
 1038 #ifdef WPI_DEBUG
 1039         if (ntries == 100 && wpi_debug > 0)
 1040                 device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
 1041 #endif
 1042 
 1043         ring->cur = 0;
 1044 }
 1045 
 1046 static void
 1047 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
 1048 {
 1049         int i;
 1050 
 1051         wpi_dma_contig_free(&ring->desc_dma);
 1052 
 1053         for (i = 0; i < WPI_RX_RING_COUNT; i++) {
 1054                 struct wpi_rx_data *data = &ring->data[i];
 1055 
 1056                 if (data->m != NULL) {
 1057                         bus_dmamap_sync(ring->data_dmat, data->map,
 1058                             BUS_DMASYNC_POSTREAD);
 1059                         bus_dmamap_unload(ring->data_dmat, data->map);
 1060                         m_freem(data->m);
 1061                 }
 1062                 if (data->map != NULL)
 1063                         bus_dmamap_destroy(ring->data_dmat, data->map);
 1064         }
 1065 }
 1066 
 1067 static int
 1068 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
 1069         int qid)
 1070 {
 1071         struct wpi_tx_data *data;
 1072         int i, error;
 1073 
 1074         ring->qid = qid;
 1075         ring->count = count;
 1076         ring->queued = 0;
 1077         ring->cur = 0;
 1078         ring->data = NULL;
 1079 
 1080         error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
 1081                 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
 1082                 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
 1083 
 1084         if (error != 0) {
 1085             device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
 1086             goto fail;
 1087         }
 1088 
 1089         /* update shared page with ring's base address */
 1090         sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
 1091 
 1092         error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
 1093                 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
 1094                 BUS_DMA_NOWAIT);
 1095 
 1096         if (error != 0) {
 1097                 device_printf(sc->sc_dev,
 1098                     "could not allocate tx command DMA memory\n");
 1099                 goto fail;
 1100         }
 1101 
 1102         ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
 1103             M_NOWAIT | M_ZERO);
 1104         if (ring->data == NULL) {
 1105                 device_printf(sc->sc_dev,
 1106                     "could not allocate tx data slots\n");
 1107                 goto fail;
 1108         }
 1109 
 1110         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
 1111             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
 1112             WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
 1113             &ring->data_dmat);
 1114         if (error != 0) {
 1115                 device_printf(sc->sc_dev, "could not create data DMA tag\n");
 1116                 goto fail;
 1117         }
 1118 
 1119         for (i = 0; i < count; i++) {
 1120                 data = &ring->data[i];
 1121 
 1122                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
 1123                 if (error != 0) {
 1124                         device_printf(sc->sc_dev,
 1125                             "could not create tx buf DMA map\n");
 1126                         goto fail;
 1127                 }
 1128                 bus_dmamap_sync(ring->data_dmat, data->map,
 1129                     BUS_DMASYNC_PREWRITE);
 1130         }
 1131 
 1132         return 0;
 1133 
 1134 fail:
 1135         wpi_free_tx_ring(sc, ring);
 1136         return error;
 1137 }
 1138 
 1139 static void
 1140 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
 1141 {
 1142         struct wpi_tx_data *data;
 1143         int i, ntries;
 1144 
 1145         wpi_mem_lock(sc);
 1146 
 1147         WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
 1148         for (ntries = 0; ntries < 100; ntries++) {
 1149                 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
 1150                         break;
 1151                 DELAY(10);
 1152         }
 1153 #ifdef WPI_DEBUG
 1154         if (ntries == 100 && wpi_debug > 0)
 1155                 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
 1156                     ring->qid);
 1157 #endif
 1158         wpi_mem_unlock(sc);
 1159 
 1160         for (i = 0; i < ring->count; i++) {
 1161                 data = &ring->data[i];
 1162 
 1163                 if (data->m != NULL) {
 1164                         bus_dmamap_unload(ring->data_dmat, data->map);
 1165                         m_freem(data->m);
 1166                         data->m = NULL;
 1167                 }
 1168         }
 1169 
 1170         ring->queued = 0;
 1171         ring->cur = 0;
 1172 }
 1173 
 1174 static void
 1175 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
 1176 {
 1177         struct wpi_tx_data *data;
 1178         int i;
 1179 
 1180         wpi_dma_contig_free(&ring->desc_dma);
 1181         wpi_dma_contig_free(&ring->cmd_dma);
 1182 
 1183         if (ring->data != NULL) {
 1184                 for (i = 0; i < ring->count; i++) {
 1185                         data = &ring->data[i];
 1186 
 1187                         if (data->m != NULL) {
 1188                                 bus_dmamap_sync(ring->data_dmat, data->map,
 1189                                     BUS_DMASYNC_POSTWRITE);
 1190                                 bus_dmamap_unload(ring->data_dmat, data->map);
 1191                                 m_freem(data->m);
 1192                                 data->m = NULL;
 1193                         }
 1194                 }
 1195                 free(ring->data, M_DEVBUF);
 1196         }
 1197 
 1198         if (ring->data_dmat != NULL)
 1199                 bus_dma_tag_destroy(ring->data_dmat);
 1200 }
 1201 
 1202 static int
 1203 wpi_shutdown(device_t dev)
 1204 {
 1205         struct wpi_softc *sc = device_get_softc(dev);
 1206 
 1207         WPI_LOCK(sc);
 1208         wpi_stop_locked(sc);
 1209         wpi_unload_firmware(sc);
 1210         WPI_UNLOCK(sc);
 1211 
 1212         return 0;
 1213 }
 1214 
 1215 static int
 1216 wpi_suspend(device_t dev)
 1217 {
 1218         struct wpi_softc *sc = device_get_softc(dev);
 1219 
 1220         wpi_stop(sc);
 1221         return 0;
 1222 }
 1223 
 1224 static int
 1225 wpi_resume(device_t dev)
 1226 {
 1227         struct wpi_softc *sc = device_get_softc(dev);
 1228         struct ifnet *ifp = sc->sc_ifp;
 1229 
 1230         pci_write_config(dev, 0x41, 0, 1);
 1231 
 1232         if (ifp->if_flags & IFF_UP) {
 1233                 wpi_init(ifp->if_softc);
 1234                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 1235                         wpi_start(ifp);
 1236         }
 1237         return 0;
 1238 }
 1239 
 1240 /**
 1241  * Called by net80211 when ever there is a change to 80211 state machine
 1242  */
 1243 static int
 1244 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
 1245 {
 1246         struct wpi_vap *wvp = WPI_VAP(vap);
 1247         struct ieee80211com *ic = vap->iv_ic;
 1248         struct ifnet *ifp = ic->ic_ifp;
 1249         struct wpi_softc *sc = ifp->if_softc;
 1250         int error;
 1251 
 1252         DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
 1253                 ieee80211_state_name[vap->iv_state],
 1254                 ieee80211_state_name[nstate], sc->flags));
 1255 
 1256         IEEE80211_UNLOCK(ic);
 1257         WPI_LOCK(sc);
 1258         if (nstate == IEEE80211_S_SCAN && vap->iv_state != IEEE80211_S_INIT) {
 1259                 /*
 1260                  * On !INIT -> SCAN transitions, we need to clear any possible
 1261                  * knowledge about associations.
 1262                  */
 1263                 error = wpi_config(sc);
 1264                 if (error != 0) {
 1265                         device_printf(sc->sc_dev,
 1266                             "%s: device config failed, error %d\n",
 1267                             __func__, error);
 1268                 }
 1269         }
 1270         if (nstate == IEEE80211_S_AUTH ||
 1271             (nstate == IEEE80211_S_ASSOC && vap->iv_state == IEEE80211_S_RUN)) {
 1272                 /*
 1273                  * The node must be registered in the firmware before auth.
 1274                  * Also the associd must be cleared on RUN -> ASSOC
 1275                  * transitions.
 1276                  */
 1277                 error = wpi_auth(sc, vap);
 1278                 if (error != 0) {
 1279                         device_printf(sc->sc_dev,
 1280                             "%s: could not move to auth state, error %d\n",
 1281                             __func__, error);
 1282                 }
 1283         }
 1284         if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
 1285                 error = wpi_run(sc, vap);
 1286                 if (error != 0) {
 1287                         device_printf(sc->sc_dev,
 1288                             "%s: could not move to run state, error %d\n",
 1289                             __func__, error);
 1290                 }
 1291         }
 1292         if (nstate == IEEE80211_S_RUN) {
 1293                 /* RUN -> RUN transition; just restart the timers */
 1294                 wpi_calib_timeout(sc);
 1295                 /* XXX split out rate control timer */
 1296         }
 1297         WPI_UNLOCK(sc);
 1298         IEEE80211_LOCK(ic);
 1299         return wvp->newstate(vap, nstate, arg);
 1300 }
 1301 
 1302 /*
 1303  * Grab exclusive access to NIC memory.
 1304  */
 1305 static void
 1306 wpi_mem_lock(struct wpi_softc *sc)
 1307 {
 1308         int ntries;
 1309         uint32_t tmp;
 1310 
 1311         tmp = WPI_READ(sc, WPI_GPIO_CTL);
 1312         WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
 1313 
 1314         /* spin until we actually get the lock */
 1315         for (ntries = 0; ntries < 100; ntries++) {
 1316                 if ((WPI_READ(sc, WPI_GPIO_CTL) &
 1317                         (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
 1318                         break;
 1319                 DELAY(10);
 1320         }
 1321         if (ntries == 100)
 1322                 device_printf(sc->sc_dev, "could not lock memory\n");
 1323 }
 1324 
 1325 /*
 1326  * Release lock on NIC memory.
 1327  */
 1328 static void
 1329 wpi_mem_unlock(struct wpi_softc *sc)
 1330 {
 1331         uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
 1332         WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
 1333 }
 1334 
 1335 static uint32_t
 1336 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
 1337 {
 1338         WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
 1339         return WPI_READ(sc, WPI_READ_MEM_DATA);
 1340 }
 1341 
 1342 static void
 1343 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
 1344 {
 1345         WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
 1346         WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
 1347 }
 1348 
 1349 static void
 1350 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
 1351     const uint32_t *data, int wlen)
 1352 {
 1353         for (; wlen > 0; wlen--, data++, addr+=4)
 1354                 wpi_mem_write(sc, addr, *data);
 1355 }
 1356 
 1357 /*
 1358  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
 1359  * using the traditional bit-bang method. Data is read up until len bytes have
 1360  * been obtained.
 1361  */
 1362 static uint16_t
 1363 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
 1364 {
 1365         int ntries;
 1366         uint32_t val;
 1367         uint8_t *out = data;
 1368 
 1369         wpi_mem_lock(sc);
 1370 
 1371         for (; len > 0; len -= 2, addr++) {
 1372                 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
 1373 
 1374                 for (ntries = 0; ntries < 10; ntries++) {
 1375                         if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
 1376                                 break;
 1377                         DELAY(5);
 1378                 }
 1379 
 1380                 if (ntries == 10) {
 1381                         device_printf(sc->sc_dev, "could not read EEPROM\n");
 1382                         return ETIMEDOUT;
 1383                 }
 1384 
 1385                 *out++= val >> 16;
 1386                 if (len > 1)
 1387                         *out ++= val >> 24;
 1388         }
 1389 
 1390         wpi_mem_unlock(sc);
 1391 
 1392         return 0;
 1393 }
 1394 
 1395 /*
 1396  * The firmware text and data segments are transferred to the NIC using DMA.
 1397  * The driver just copies the firmware into DMA-safe memory and tells the NIC
 1398  * where to find it.  Once the NIC has copied the firmware into its internal
 1399  * memory, we can free our local copy in the driver.
 1400  */
 1401 static int
 1402 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
 1403 {
 1404         int error, ntries;
 1405 
 1406         DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
 1407 
 1408         size /= sizeof(uint32_t);
 1409 
 1410         wpi_mem_lock(sc);
 1411 
 1412         wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
 1413             (const uint32_t *)fw, size);
 1414 
 1415         wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
 1416         wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
 1417         wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
 1418 
 1419         /* run microcode */
 1420         wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
 1421 
 1422         /* wait while the adapter is busy copying the firmware */
 1423         for (error = 0, ntries = 0; ntries < 1000; ntries++) {
 1424                 uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
 1425                 DPRINTFN(WPI_DEBUG_HW,
 1426                     ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
 1427                      WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
 1428                 if (status & WPI_TX_IDLE(6)) {
 1429                         DPRINTFN(WPI_DEBUG_HW,
 1430                             ("Status Match! - ntries = %d\n", ntries));
 1431                         break;
 1432                 }
 1433                 DELAY(10);
 1434         }
 1435         if (ntries == 1000) {
 1436                 device_printf(sc->sc_dev, "timeout transferring firmware\n");
 1437                 error = ETIMEDOUT;
 1438         }
 1439 
 1440         /* start the microcode executing */
 1441         wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
 1442 
 1443         wpi_mem_unlock(sc);
 1444 
 1445         return (error);
 1446 }
 1447 
 1448 static void
 1449 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
 1450         struct wpi_rx_data *data)
 1451 {
 1452         struct ifnet *ifp = sc->sc_ifp;
 1453         struct ieee80211com *ic = ifp->if_l2com;
 1454         struct wpi_rx_ring *ring = &sc->rxq;
 1455         struct wpi_rx_stat *stat;
 1456         struct wpi_rx_head *head;
 1457         struct wpi_rx_tail *tail;
 1458         struct ieee80211_node *ni;
 1459         struct mbuf *m, *mnew;
 1460         bus_addr_t paddr;
 1461         int error;
 1462 
 1463         stat = (struct wpi_rx_stat *)(desc + 1);
 1464 
 1465         if (stat->len > WPI_STAT_MAXLEN) {
 1466                 device_printf(sc->sc_dev, "invalid rx statistic header\n");
 1467                 ifp->if_ierrors++;
 1468                 return;
 1469         }
 1470 
 1471         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
 1472         head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
 1473         tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
 1474 
 1475         DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
 1476             "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
 1477             le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
 1478             (uintmax_t)le64toh(tail->tstamp)));
 1479 
 1480         /* discard Rx frames with bad CRC early */
 1481         if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
 1482                 DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
 1483                     le32toh(tail->flags)));
 1484                 ifp->if_ierrors++;
 1485                 return;
 1486         }
 1487         if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
 1488                 DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
 1489                     le16toh(head->len)));
 1490                 ifp->if_ierrors++;
 1491                 return;
 1492         }
 1493 
 1494         /* XXX don't need mbuf, just dma buffer */
 1495         mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
 1496         if (mnew == NULL) {
 1497                 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
 1498                     __func__));
 1499                 ifp->if_ierrors++;
 1500                 return;
 1501         }
 1502         bus_dmamap_unload(ring->data_dmat, data->map);
 1503 
 1504         error = bus_dmamap_load(ring->data_dmat, data->map,
 1505             mtod(mnew, caddr_t), MJUMPAGESIZE,
 1506             wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
 1507         if (error != 0 && error != EFBIG) {
 1508                 device_printf(sc->sc_dev,
 1509                     "%s: bus_dmamap_load failed, error %d\n", __func__, error);
 1510                 m_freem(mnew);
 1511                 ifp->if_ierrors++;
 1512                 return;
 1513         }
 1514         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
 1515 
 1516         /* finalize mbuf and swap in new one */
 1517         m = data->m;
 1518         m->m_pkthdr.rcvif = ifp;
 1519         m->m_data = (caddr_t)(head + 1);
 1520         m->m_pkthdr.len = m->m_len = le16toh(head->len);
 1521 
 1522         data->m = mnew;
 1523         /* update Rx descriptor */
 1524         ring->desc[ring->cur] = htole32(paddr);
 1525 
 1526         if (ieee80211_radiotap_active(ic)) {
 1527                 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
 1528 
 1529                 tap->wr_flags = 0;
 1530                 tap->wr_chan_freq =
 1531                         htole16(ic->ic_channels[head->chan].ic_freq);
 1532                 tap->wr_chan_flags =
 1533                         htole16(ic->ic_channels[head->chan].ic_flags);
 1534                 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
 1535                 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
 1536                 tap->wr_tsft = tail->tstamp;
 1537                 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
 1538                 switch (head->rate) {
 1539                 /* CCK rates */
 1540                 case  10: tap->wr_rate =   2; break;
 1541                 case  20: tap->wr_rate =   4; break;
 1542                 case  55: tap->wr_rate =  11; break;
 1543                 case 110: tap->wr_rate =  22; break;
 1544                 /* OFDM rates */
 1545                 case 0xd: tap->wr_rate =  12; break;
 1546                 case 0xf: tap->wr_rate =  18; break;
 1547                 case 0x5: tap->wr_rate =  24; break;
 1548                 case 0x7: tap->wr_rate =  36; break;
 1549                 case 0x9: tap->wr_rate =  48; break;
 1550                 case 0xb: tap->wr_rate =  72; break;
 1551                 case 0x1: tap->wr_rate =  96; break;
 1552                 case 0x3: tap->wr_rate = 108; break;
 1553                 /* unknown rate: should not happen */
 1554                 default:  tap->wr_rate =   0;
 1555                 }
 1556                 if (le16toh(head->flags) & 0x4)
 1557                         tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
 1558         }
 1559 
 1560         WPI_UNLOCK(sc);
 1561 
 1562         ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
 1563         if (ni != NULL) {
 1564                 (void) ieee80211_input(ni, m, stat->rssi, 0);
 1565                 ieee80211_free_node(ni);
 1566         } else
 1567                 (void) ieee80211_input_all(ic, m, stat->rssi, 0);
 1568 
 1569         WPI_LOCK(sc);
 1570 }
 1571 
 1572 static void
 1573 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
 1574 {
 1575         struct ifnet *ifp = sc->sc_ifp;
 1576         struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
 1577         struct wpi_tx_data *txdata = &ring->data[desc->idx];
 1578         struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
 1579         struct ieee80211_node *ni = txdata->ni;
 1580         struct ieee80211vap *vap = ni->ni_vap;
 1581         int retrycnt = 0;
 1582 
 1583         DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
 1584             "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
 1585             stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
 1586             le32toh(stat->status)));
 1587 
 1588         /*
 1589          * Update rate control statistics for the node.
 1590          * XXX we should not count mgmt frames since they're always sent at
 1591          * the lowest available bit-rate.
 1592          * XXX frames w/o ACK shouldn't be used either
 1593          */
 1594         if (stat->ntries > 0) {
 1595                 DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
 1596                 retrycnt = 1;
 1597         }
 1598         ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
 1599             &retrycnt, NULL);
 1600 
 1601         /* XXX oerrors should only count errors !maxtries */
 1602         if ((le32toh(stat->status) & 0xff) != 1)
 1603                 ifp->if_oerrors++;
 1604         else
 1605                 ifp->if_opackets++;
 1606 
 1607         bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
 1608         bus_dmamap_unload(ring->data_dmat, txdata->map);
 1609         /* XXX handle M_TXCB? */
 1610         m_freem(txdata->m);
 1611         txdata->m = NULL;
 1612         ieee80211_free_node(txdata->ni);
 1613         txdata->ni = NULL;
 1614 
 1615         ring->queued--;
 1616 
 1617         sc->sc_tx_timer = 0;
 1618         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 1619         wpi_start_locked(ifp);
 1620 }
 1621 
 1622 static void
 1623 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
 1624 {
 1625         struct wpi_tx_ring *ring = &sc->cmdq;
 1626         struct wpi_tx_data *data;
 1627 
 1628         DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
 1629                                  "type=%s len=%d\n", desc->qid, desc->idx,
 1630                                  desc->flags, wpi_cmd_str(desc->type),
 1631                                  le32toh(desc->len)));
 1632 
 1633         if ((desc->qid & 7) != 4)
 1634                 return; /* not a command ack */
 1635 
 1636         data = &ring->data[desc->idx];
 1637 
 1638         /* if the command was mapped in a mbuf, free it */
 1639         if (data->m != NULL) {
 1640                 bus_dmamap_unload(ring->data_dmat, data->map);
 1641                 m_freem(data->m);
 1642                 data->m = NULL;
 1643         }
 1644 
 1645         sc->flags &= ~WPI_FLAG_BUSY;
 1646         wakeup(&ring->cmd[desc->idx]);
 1647 }
 1648 
 1649 static void
 1650 wpi_notif_intr(struct wpi_softc *sc)
 1651 {
 1652         struct ifnet *ifp = sc->sc_ifp;
 1653         struct ieee80211com *ic = ifp->if_l2com;
 1654         struct wpi_rx_desc *desc;
 1655         struct wpi_rx_data *data;
 1656         uint32_t hw;
 1657 
 1658         bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
 1659             BUS_DMASYNC_POSTREAD);
 1660 
 1661         hw = le32toh(sc->shared->next);
 1662         while (sc->rxq.cur != hw) {
 1663                 data = &sc->rxq.data[sc->rxq.cur];
 1664 
 1665                 bus_dmamap_sync(sc->rxq.data_dmat, data->map,
 1666                     BUS_DMASYNC_POSTREAD);
 1667                 desc = (void *)data->m->m_ext.ext_buf;
 1668 
 1669                 DPRINTFN(WPI_DEBUG_NOTIFY,
 1670                          ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
 1671                           desc->qid,
 1672                           desc->idx,
 1673                           desc->flags,
 1674                           desc->type,
 1675                           le32toh(desc->len)));
 1676 
 1677                 if (!(desc->qid & 0x80))        /* reply to a command */
 1678                         wpi_cmd_intr(sc, desc);
 1679 
 1680                 switch (desc->type) {
 1681                 case WPI_RX_DONE:
 1682                         /* a 802.11 frame was received */
 1683                         wpi_rx_intr(sc, desc, data);
 1684                         break;
 1685 
 1686                 case WPI_TX_DONE:
 1687                         /* a 802.11 frame has been transmitted */
 1688                         wpi_tx_intr(sc, desc);
 1689                         break;
 1690 
 1691                 case WPI_UC_READY:
 1692                 {
 1693                         struct wpi_ucode_info *uc =
 1694                                 (struct wpi_ucode_info *)(desc + 1);
 1695 
 1696                         /* the microcontroller is ready */
 1697                         DPRINTF(("microcode alive notification version %x "
 1698                                 "alive %x\n", le32toh(uc->version),
 1699                                 le32toh(uc->valid)));
 1700 
 1701                         if (le32toh(uc->valid) != 1) {
 1702                                 device_printf(sc->sc_dev,
 1703                                     "microcontroller initialization failed\n");
 1704                                 wpi_stop_locked(sc);
 1705                         }
 1706                         break;
 1707                 }
 1708                 case WPI_STATE_CHANGED:
 1709                 {
 1710                         uint32_t *status = (uint32_t *)(desc + 1);
 1711 
 1712                         /* enabled/disabled notification */
 1713                         DPRINTF(("state changed to %x\n", le32toh(*status)));
 1714 
 1715                         if (le32toh(*status) & 1) {
 1716                                 device_printf(sc->sc_dev,
 1717                                     "Radio transmitter is switched off\n");
 1718                                 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
 1719                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1720                                 /* Disable firmware commands */
 1721                                 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
 1722                         }
 1723                         break;
 1724                 }
 1725                 case WPI_START_SCAN:
 1726                 {
 1727 #ifdef WPI_DEBUG
 1728                         struct wpi_start_scan *scan =
 1729                                 (struct wpi_start_scan *)(desc + 1);
 1730 #endif
 1731 
 1732                         DPRINTFN(WPI_DEBUG_SCANNING,
 1733                                  ("scanning channel %d status %x\n",
 1734                             scan->chan, le32toh(scan->status)));
 1735                         break;
 1736                 }
 1737                 case WPI_STOP_SCAN:
 1738                 {
 1739 #ifdef WPI_DEBUG
 1740                         struct wpi_stop_scan *scan =
 1741                                 (struct wpi_stop_scan *)(desc + 1);
 1742 #endif
 1743                         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 1744 
 1745                         DPRINTFN(WPI_DEBUG_SCANNING,
 1746                             ("scan finished nchan=%d status=%d chan=%d\n",
 1747                              scan->nchan, scan->status, scan->chan));
 1748 
 1749                         sc->sc_scan_timer = 0;
 1750                         ieee80211_scan_next(vap);
 1751                         break;
 1752                 }
 1753                 case WPI_MISSED_BEACON:
 1754                 {
 1755                         struct wpi_missed_beacon *beacon =
 1756                                 (struct wpi_missed_beacon *)(desc + 1);
 1757                         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 1758 
 1759                         if (le32toh(beacon->consecutive) >=
 1760                             vap->iv_bmissthreshold) {
 1761                                 DPRINTF(("Beacon miss: %u >= %u\n",
 1762                                          le32toh(beacon->consecutive),
 1763                                          vap->iv_bmissthreshold));
 1764                                 ieee80211_beacon_miss(ic);
 1765                         }
 1766                         break;
 1767                 }
 1768                 }
 1769 
 1770                 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
 1771         }
 1772 
 1773         /* tell the firmware what we have processed */
 1774         hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
 1775         WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
 1776 }
 1777 
 1778 static void
 1779 wpi_intr(void *arg)
 1780 {
 1781         struct wpi_softc *sc = arg;
 1782         uint32_t r;
 1783 
 1784         WPI_LOCK(sc);
 1785 
 1786         r = WPI_READ(sc, WPI_INTR);
 1787         if (r == 0 || r == 0xffffffff) {
 1788                 WPI_UNLOCK(sc);
 1789                 return;
 1790         }
 1791 
 1792         /* disable interrupts */
 1793         WPI_WRITE(sc, WPI_MASK, 0);
 1794         /* ack interrupts */
 1795         WPI_WRITE(sc, WPI_INTR, r);
 1796 
 1797         if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
 1798                 struct ifnet *ifp = sc->sc_ifp;
 1799                 struct ieee80211com *ic = ifp->if_l2com;
 1800                 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 1801 
 1802                 device_printf(sc->sc_dev, "fatal firmware error\n");
 1803                 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
 1804                                 "(Hardware Error)"));
 1805                 if (vap != NULL)
 1806                         ieee80211_cancel_scan(vap);
 1807                 ieee80211_runtask(ic, &sc->sc_restarttask);
 1808                 sc->flags &= ~WPI_FLAG_BUSY;
 1809                 WPI_UNLOCK(sc);
 1810                 return;
 1811         }
 1812 
 1813         if (r & WPI_RX_INTR)
 1814                 wpi_notif_intr(sc);
 1815 
 1816         if (r & WPI_ALIVE_INTR) /* firmware initialized */
 1817                 wakeup(sc);
 1818 
 1819         /* re-enable interrupts */
 1820         if (sc->sc_ifp->if_flags & IFF_UP)
 1821                 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
 1822 
 1823         WPI_UNLOCK(sc);
 1824 }
 1825 
 1826 static uint8_t
 1827 wpi_plcp_signal(int rate)
 1828 {
 1829         switch (rate) {
 1830         /* CCK rates (returned values are device-dependent) */
 1831         case 2:         return 10;
 1832         case 4:         return 20;
 1833         case 11:        return 55;
 1834         case 22:        return 110;
 1835 
 1836         /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
 1837         /* R1-R4 (ral/ural is R4-R1) */
 1838         case 12:        return 0xd;
 1839         case 18:        return 0xf;
 1840         case 24:        return 0x5;
 1841         case 36:        return 0x7;
 1842         case 48:        return 0x9;
 1843         case 72:        return 0xb;
 1844         case 96:        return 0x1;
 1845         case 108:       return 0x3;
 1846 
 1847         /* unsupported rates (should not get there) */
 1848         default:        return 0;
 1849         }
 1850 }
 1851 
 1852 /* quickly determine if a given rate is CCK or OFDM */
 1853 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
 1854 
 1855 /*
 1856  * Construct the data packet for a transmit buffer and acutally put
 1857  * the buffer onto the transmit ring, kicking the card to process the
 1858  * the buffer.
 1859  */
 1860 static int
 1861 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
 1862         int ac)
 1863 {
 1864         struct ieee80211vap *vap = ni->ni_vap;
 1865         struct ifnet *ifp = sc->sc_ifp;
 1866         struct ieee80211com *ic = ifp->if_l2com;
 1867         const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
 1868         struct wpi_tx_ring *ring = &sc->txq[ac];
 1869         struct wpi_tx_desc *desc;
 1870         struct wpi_tx_data *data;
 1871         struct wpi_tx_cmd *cmd;
 1872         struct wpi_cmd_data *tx;
 1873         struct ieee80211_frame *wh;
 1874         const struct ieee80211_txparam *tp;
 1875         struct ieee80211_key *k;
 1876         struct mbuf *mnew;
 1877         int i, error, nsegs, rate, hdrlen, ismcast;
 1878         bus_dma_segment_t segs[WPI_MAX_SCATTER];
 1879 
 1880         desc = &ring->desc[ring->cur];
 1881         data = &ring->data[ring->cur];
 1882 
 1883         wh = mtod(m0, struct ieee80211_frame *);
 1884 
 1885         hdrlen = ieee80211_hdrsize(wh);
 1886         ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
 1887 
 1888         if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
 1889                 k = ieee80211_crypto_encap(ni, m0);
 1890                 if (k == NULL) {
 1891                         m_freem(m0);
 1892                         return ENOBUFS;
 1893                 }
 1894                 /* packet header may have moved, reset our local pointer */
 1895                 wh = mtod(m0, struct ieee80211_frame *);
 1896         }
 1897 
 1898         cmd = &ring->cmd[ring->cur];
 1899         cmd->code = WPI_CMD_TX_DATA;
 1900         cmd->flags = 0;
 1901         cmd->qid = ring->qid;
 1902         cmd->idx = ring->cur;
 1903 
 1904         tx = (struct wpi_cmd_data *)cmd->data;
 1905         tx->flags = htole32(WPI_TX_AUTO_SEQ);
 1906         tx->timeout = htole16(0);
 1907         tx->ofdm_mask = 0xff;
 1908         tx->cck_mask = 0x0f;
 1909         tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
 1910         tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
 1911         tx->len = htole16(m0->m_pkthdr.len);
 1912 
 1913         if (!ismcast) {
 1914                 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
 1915                     !cap->cap_wmeParams[ac].wmep_noackPolicy)
 1916                         tx->flags |= htole32(WPI_TX_NEED_ACK);
 1917                 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
 1918                         tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
 1919                         tx->rts_ntries = 7;
 1920                 }
 1921         }
 1922         /* pick a rate */
 1923         tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
 1924         if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
 1925                 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
 1926                 /* tell h/w to set timestamp in probe responses */
 1927                 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
 1928                         tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
 1929                 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
 1930                     subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
 1931                         tx->timeout = htole16(3);
 1932                 else
 1933                         tx->timeout = htole16(2);
 1934                 rate = tp->mgmtrate;
 1935         } else if (ismcast) {
 1936                 rate = tp->mcastrate;
 1937         } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
 1938                 rate = tp->ucastrate;
 1939         } else {
 1940                 (void) ieee80211_ratectl_rate(ni, NULL, 0);
 1941                 rate = ni->ni_txrate;
 1942         }
 1943         tx->rate = wpi_plcp_signal(rate);
 1944 
 1945         /* be very persistant at sending frames out */
 1946 #if 0
 1947         tx->data_ntries = tp->maxretry;
 1948 #else
 1949         tx->data_ntries = 15;           /* XXX way too high */
 1950 #endif
 1951 
 1952         if (ieee80211_radiotap_active_vap(vap)) {
 1953                 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
 1954                 tap->wt_flags = 0;
 1955                 tap->wt_rate = rate;
 1956                 tap->wt_hwqueue = ac;
 1957                 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
 1958                         tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
 1959 
 1960                 ieee80211_radiotap_tx(vap, m0);
 1961         }
 1962 
 1963         /* save and trim IEEE802.11 header */
 1964         m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
 1965         m_adj(m0, hdrlen);
 1966 
 1967         error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
 1968             &nsegs, BUS_DMA_NOWAIT);
 1969         if (error != 0 && error != EFBIG) {
 1970                 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
 1971                     error);
 1972                 m_freem(m0);
 1973                 return error;
 1974         }
 1975         if (error != 0) {
 1976                 /* XXX use m_collapse */
 1977                 mnew = m_defrag(m0, M_DONTWAIT);
 1978                 if (mnew == NULL) {
 1979                         device_printf(sc->sc_dev,
 1980                             "could not defragment mbuf\n");
 1981                         m_freem(m0);
 1982                         return ENOBUFS;
 1983                 }
 1984                 m0 = mnew;
 1985 
 1986                 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
 1987                     m0, segs, &nsegs, BUS_DMA_NOWAIT);
 1988                 if (error != 0) {
 1989                         device_printf(sc->sc_dev,
 1990                             "could not map mbuf (error %d)\n", error);
 1991                         m_freem(m0);
 1992                         return error;
 1993                 }
 1994         }
 1995 
 1996         data->m = m0;
 1997         data->ni = ni;
 1998 
 1999         DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
 2000             ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
 2001 
 2002         /* first scatter/gather segment is used by the tx data command */
 2003         desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
 2004             (1 + nsegs) << 24);
 2005         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
 2006             ring->cur * sizeof (struct wpi_tx_cmd));
 2007         desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
 2008         for (i = 1; i <= nsegs; i++) {
 2009                 desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
 2010                 desc->segs[i].len  = htole32(segs[i - 1].ds_len);
 2011         }
 2012 
 2013         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
 2014         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
 2015             BUS_DMASYNC_PREWRITE);
 2016 
 2017         ring->queued++;
 2018 
 2019         /* kick ring */
 2020         ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
 2021         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
 2022 
 2023         return 0;
 2024 }
 2025 
 2026 /**
 2027  * Process data waiting to be sent on the IFNET output queue
 2028  */
 2029 static void
 2030 wpi_start(struct ifnet *ifp)
 2031 {
 2032         struct wpi_softc *sc = ifp->if_softc;
 2033 
 2034         WPI_LOCK(sc);
 2035         wpi_start_locked(ifp);
 2036         WPI_UNLOCK(sc);
 2037 }
 2038 
 2039 static void
 2040 wpi_start_locked(struct ifnet *ifp)
 2041 {
 2042         struct wpi_softc *sc = ifp->if_softc;
 2043         struct ieee80211_node *ni;
 2044         struct mbuf *m;
 2045         int ac;
 2046 
 2047         WPI_LOCK_ASSERT(sc);
 2048 
 2049         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
 2050                 return;
 2051 
 2052         for (;;) {
 2053                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
 2054                 if (m == NULL)
 2055                         break;
 2056                 ac = M_WME_GETAC(m);
 2057                 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
 2058                         /* there is no place left in this ring */
 2059                         IFQ_DRV_PREPEND(&ifp->if_snd, m);
 2060                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 2061                         break;
 2062                 }
 2063                 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
 2064                 if (wpi_tx_data(sc, m, ni, ac) != 0) {
 2065                         ieee80211_free_node(ni);
 2066                         ifp->if_oerrors++;
 2067                         break;
 2068                 }
 2069                 sc->sc_tx_timer = 5;
 2070         }
 2071 }
 2072 
 2073 static int
 2074 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
 2075         const struct ieee80211_bpf_params *params)
 2076 {
 2077         struct ieee80211com *ic = ni->ni_ic;
 2078         struct ifnet *ifp = ic->ic_ifp;
 2079         struct wpi_softc *sc = ifp->if_softc;
 2080 
 2081         /* prevent management frames from being sent if we're not ready */
 2082         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
 2083                 m_freem(m);
 2084                 ieee80211_free_node(ni);
 2085                 return ENETDOWN;
 2086         }
 2087         WPI_LOCK(sc);
 2088 
 2089         /* management frames go into ring 0 */
 2090         if (sc->txq[0].queued > sc->txq[0].count - 8) {
 2091                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 2092                 m_freem(m);
 2093                 WPI_UNLOCK(sc);
 2094                 ieee80211_free_node(ni);
 2095                 return ENOBUFS;         /* XXX */
 2096         }
 2097 
 2098         ifp->if_opackets++;
 2099         if (wpi_tx_data(sc, m, ni, 0) != 0)
 2100                 goto bad;
 2101         sc->sc_tx_timer = 5;
 2102         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
 2103 
 2104         WPI_UNLOCK(sc);
 2105         return 0;
 2106 bad:
 2107         ifp->if_oerrors++;
 2108         WPI_UNLOCK(sc);
 2109         ieee80211_free_node(ni);
 2110         return EIO;             /* XXX */
 2111 }
 2112 
 2113 static int
 2114 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
 2115 {
 2116         struct wpi_softc *sc = ifp->if_softc;
 2117         struct ieee80211com *ic = ifp->if_l2com;
 2118         struct ifreq *ifr = (struct ifreq *) data;
 2119         int error = 0, startall = 0;
 2120 
 2121         switch (cmd) {
 2122         case SIOCSIFFLAGS:
 2123                 WPI_LOCK(sc);
 2124                 if ((ifp->if_flags & IFF_UP)) {
 2125                         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
 2126                                 wpi_init_locked(sc, 0);
 2127                                 startall = 1;
 2128                         }
 2129                 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
 2130                            (sc->flags & WPI_FLAG_HW_RADIO_OFF))
 2131                         wpi_stop_locked(sc);
 2132                 WPI_UNLOCK(sc);
 2133                 if (startall)
 2134                         ieee80211_start_all(ic);
 2135                 break;
 2136         case SIOCGIFMEDIA:
 2137                 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
 2138                 break;
 2139         case SIOCGIFADDR:
 2140                 error = ether_ioctl(ifp, cmd, data);
 2141                 break;
 2142         default:
 2143                 error = EINVAL;
 2144                 break;
 2145         }
 2146         return error;
 2147 }
 2148 
 2149 /*
 2150  * Extract various information from EEPROM.
 2151  */
 2152 static void
 2153 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
 2154 {
 2155         int i;
 2156 
 2157         /* read the hardware capabilities, revision and SKU type */
 2158         wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
 2159         wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
 2160         wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
 2161 
 2162         /* read the regulatory domain */
 2163         wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
 2164 
 2165         /* read in the hw MAC address */
 2166         wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
 2167 
 2168         /* read the list of authorized channels */
 2169         for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
 2170                 wpi_read_eeprom_channels(sc,i);
 2171 
 2172         /* read the power level calibration info for each group */
 2173         for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
 2174                 wpi_read_eeprom_group(sc,i);
 2175 }
 2176 
 2177 /*
 2178  * Send a command to the firmware.
 2179  */
 2180 static int
 2181 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
 2182 {
 2183         struct wpi_tx_ring *ring = &sc->cmdq;
 2184         struct wpi_tx_desc *desc;
 2185         struct wpi_tx_cmd *cmd;
 2186 
 2187 #ifdef WPI_DEBUG
 2188         if (!async) {
 2189                 WPI_LOCK_ASSERT(sc);
 2190         }
 2191 #endif
 2192 
 2193         DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
 2194                     async));
 2195 
 2196         if (sc->flags & WPI_FLAG_BUSY) {
 2197                 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
 2198                     __func__, code);
 2199                 return EAGAIN;
 2200         }
 2201         sc->flags|= WPI_FLAG_BUSY;
 2202 
 2203         KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
 2204             code, size));
 2205 
 2206         desc = &ring->desc[ring->cur];
 2207         cmd = &ring->cmd[ring->cur];
 2208 
 2209         cmd->code = code;
 2210         cmd->flags = 0;
 2211         cmd->qid = ring->qid;
 2212         cmd->idx = ring->cur;
 2213         memcpy(cmd->data, buf, size);
 2214 
 2215         desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
 2216         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
 2217                 ring->cur * sizeof (struct wpi_tx_cmd));
 2218         desc->segs[0].len  = htole32(4 + size);
 2219 
 2220         /* kick cmd ring */
 2221         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
 2222         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
 2223 
 2224         if (async) {
 2225                 sc->flags &= ~ WPI_FLAG_BUSY;
 2226                 return 0;
 2227         }
 2228 
 2229         return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
 2230 }
 2231 
 2232 static int
 2233 wpi_wme_update(struct ieee80211com *ic)
 2234 {
 2235 #define WPI_EXP2(v)     htole16((1 << (v)) - 1)
 2236 #define WPI_USEC(v)     htole16(IEEE80211_TXOP_TO_US(v))
 2237         struct wpi_softc *sc = ic->ic_ifp->if_softc;
 2238         const struct wmeParams *wmep;
 2239         struct wpi_wme_setup wme;
 2240         int ac;
 2241 
 2242         /* don't override default WME values if WME is not actually enabled */
 2243         if (!(ic->ic_flags & IEEE80211_F_WME))
 2244                 return 0;
 2245 
 2246         wme.flags = 0;
 2247         for (ac = 0; ac < WME_NUM_AC; ac++) {
 2248                 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
 2249                 wme.ac[ac].aifsn = wmep->wmep_aifsn;
 2250                 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
 2251                 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
 2252                 wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
 2253 
 2254                 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
 2255                     "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
 2256                     wme.ac[ac].cwmax, wme.ac[ac].txop));
 2257         }
 2258         return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
 2259 #undef WPI_USEC
 2260 #undef WPI_EXP2
 2261 }
 2262 
 2263 /*
 2264  * Configure h/w multi-rate retries.
 2265  */
 2266 static int
 2267 wpi_mrr_setup(struct wpi_softc *sc)
 2268 {
 2269         struct ifnet *ifp = sc->sc_ifp;
 2270         struct ieee80211com *ic = ifp->if_l2com;
 2271         struct wpi_mrr_setup mrr;
 2272         int i, error;
 2273 
 2274         memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
 2275 
 2276         /* CCK rates (not used with 802.11a) */
 2277         for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
 2278                 mrr.rates[i].flags = 0;
 2279                 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
 2280                 /* fallback to the immediate lower CCK rate (if any) */
 2281                 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
 2282                 /* try one time at this rate before falling back to "next" */
 2283                 mrr.rates[i].ntries = 1;
 2284         }
 2285 
 2286         /* OFDM rates (not used with 802.11b) */
 2287         for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
 2288                 mrr.rates[i].flags = 0;
 2289                 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
 2290                 /* fallback to the immediate lower OFDM rate (if any) */
 2291                 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
 2292                 mrr.rates[i].next = (i == WPI_OFDM6) ?
 2293                     ((ic->ic_curmode == IEEE80211_MODE_11A) ?
 2294                         WPI_OFDM6 : WPI_CCK2) :
 2295                     i - 1;
 2296                 /* try one time at this rate before falling back to "next" */
 2297                 mrr.rates[i].ntries = 1;
 2298         }
 2299 
 2300         /* setup MRR for control frames */
 2301         mrr.which = htole32(WPI_MRR_CTL);
 2302         error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
 2303         if (error != 0) {
 2304                 device_printf(sc->sc_dev,
 2305                     "could not setup MRR for control frames\n");
 2306                 return error;
 2307         }
 2308 
 2309         /* setup MRR for data frames */
 2310         mrr.which = htole32(WPI_MRR_DATA);
 2311         error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
 2312         if (error != 0) {
 2313                 device_printf(sc->sc_dev,
 2314                     "could not setup MRR for data frames\n");
 2315                 return error;
 2316         }
 2317 
 2318         return 0;
 2319 }
 2320 
 2321 static void
 2322 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
 2323 {
 2324         struct wpi_cmd_led led;
 2325 
 2326         led.which = which;
 2327         led.unit = htole32(100000);     /* on/off in unit of 100ms */
 2328         led.off = off;
 2329         led.on = on;
 2330 
 2331         (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
 2332 }
 2333 
 2334 static void
 2335 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
 2336 {
 2337         struct wpi_cmd_tsf tsf;
 2338         uint64_t val, mod;
 2339 
 2340         memset(&tsf, 0, sizeof tsf);
 2341         memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
 2342         tsf.bintval = htole16(ni->ni_intval);
 2343         tsf.lintval = htole16(10);
 2344 
 2345         /* compute remaining time until next beacon */
 2346         val = (uint64_t)ni->ni_intval  * 1024;  /* msec -> usec */
 2347         mod = le64toh(tsf.tstamp) % val;
 2348         tsf.binitval = htole32((uint32_t)(val - mod));
 2349 
 2350         if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
 2351                 device_printf(sc->sc_dev, "could not enable TSF\n");
 2352 }
 2353 
 2354 #if 0
 2355 /*
 2356  * Build a beacon frame that the firmware will broadcast periodically in
 2357  * IBSS or HostAP modes.
 2358  */
 2359 static int
 2360 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
 2361 {
 2362         struct ifnet *ifp = sc->sc_ifp;
 2363         struct ieee80211com *ic = ifp->if_l2com;
 2364         struct wpi_tx_ring *ring = &sc->cmdq;
 2365         struct wpi_tx_desc *desc;
 2366         struct wpi_tx_data *data;
 2367         struct wpi_tx_cmd *cmd;
 2368         struct wpi_cmd_beacon *bcn;
 2369         struct ieee80211_beacon_offsets bo;
 2370         struct mbuf *m0;
 2371         bus_addr_t physaddr;
 2372         int error;
 2373 
 2374         desc = &ring->desc[ring->cur];
 2375         data = &ring->data[ring->cur];
 2376 
 2377         m0 = ieee80211_beacon_alloc(ic, ni, &bo);
 2378         if (m0 == NULL) {
 2379                 device_printf(sc->sc_dev, "could not allocate beacon frame\n");
 2380                 return ENOMEM;
 2381         }
 2382 
 2383         cmd = &ring->cmd[ring->cur];
 2384         cmd->code = WPI_CMD_SET_BEACON;
 2385         cmd->flags = 0;
 2386         cmd->qid = ring->qid;
 2387         cmd->idx = ring->cur;
 2388 
 2389         bcn = (struct wpi_cmd_beacon *)cmd->data;
 2390         memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
 2391         bcn->id = WPI_ID_BROADCAST;
 2392         bcn->ofdm_mask = 0xff;
 2393         bcn->cck_mask = 0x0f;
 2394         bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
 2395         bcn->len = htole16(m0->m_pkthdr.len);
 2396         bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
 2397                 wpi_plcp_signal(12) : wpi_plcp_signal(2);
 2398         bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
 2399 
 2400         /* save and trim IEEE802.11 header */
 2401         m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
 2402         m_adj(m0, sizeof (struct ieee80211_frame));
 2403 
 2404         /* assume beacon frame is contiguous */
 2405         error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
 2406             m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
 2407         if (error != 0) {
 2408                 device_printf(sc->sc_dev, "could not map beacon\n");
 2409                 m_freem(m0);
 2410                 return error;
 2411         }
 2412 
 2413         data->m = m0;
 2414 
 2415         /* first scatter/gather segment is used by the beacon command */
 2416         desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
 2417         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
 2418                 ring->cur * sizeof (struct wpi_tx_cmd));
 2419         desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
 2420         desc->segs[1].addr = htole32(physaddr);
 2421         desc->segs[1].len  = htole32(m0->m_pkthdr.len);
 2422 
 2423         /* kick cmd ring */
 2424         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
 2425         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
 2426 
 2427         return 0;
 2428 }
 2429 #endif
 2430 
 2431 static int
 2432 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
 2433 {
 2434         struct ieee80211com *ic = vap->iv_ic;
 2435         struct ieee80211_node *ni = vap->iv_bss;
 2436         struct wpi_node_info node;
 2437         int error;
 2438 
 2439 
 2440         /* update adapter's configuration */
 2441         sc->config.associd = 0;
 2442         sc->config.filter &= ~htole32(WPI_FILTER_BSS);
 2443         IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
 2444         sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
 2445         if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
 2446                 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
 2447                     WPI_CONFIG_24GHZ);
 2448         } else {
 2449                 sc->config.flags &= ~htole32(WPI_CONFIG_AUTO |
 2450                     WPI_CONFIG_24GHZ);
 2451         }
 2452         if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
 2453                 sc->config.cck_mask  = 0;
 2454                 sc->config.ofdm_mask = 0x15;
 2455         } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
 2456                 sc->config.cck_mask  = 0x03;
 2457                 sc->config.ofdm_mask = 0;
 2458         } else {
 2459                 /* XXX assume 802.11b/g */
 2460                 sc->config.cck_mask  = 0x0f;
 2461                 sc->config.ofdm_mask = 0x15;
 2462         }
 2463 
 2464         DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
 2465                 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
 2466         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
 2467                 sizeof (struct wpi_config), 1);
 2468         if (error != 0) {
 2469                 device_printf(sc->sc_dev, "could not configure\n");
 2470                 return error;
 2471         }
 2472 
 2473         /* configuration has changed, set Tx power accordingly */
 2474         if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
 2475                 device_printf(sc->sc_dev, "could not set Tx power\n");
 2476                 return error;
 2477         }
 2478 
 2479         /* add default node */
 2480         memset(&node, 0, sizeof node);
 2481         IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
 2482         node.id = WPI_ID_BSS;
 2483         node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
 2484             wpi_plcp_signal(12) : wpi_plcp_signal(2);
 2485         node.action = htole32(WPI_ACTION_SET_RATE);
 2486         node.antenna = WPI_ANTENNA_BOTH;
 2487         error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
 2488         if (error != 0)
 2489                 device_printf(sc->sc_dev, "could not add BSS node\n");
 2490 
 2491         return (error);
 2492 }
 2493 
 2494 static int
 2495 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
 2496 {
 2497         struct ieee80211com *ic = vap->iv_ic;
 2498         struct ieee80211_node *ni = vap->iv_bss;
 2499         int error;
 2500 
 2501         if (vap->iv_opmode == IEEE80211_M_MONITOR) {
 2502                 /* link LED blinks while monitoring */
 2503                 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
 2504                 return 0;
 2505         }
 2506 
 2507         wpi_enable_tsf(sc, ni);
 2508 
 2509         /* update adapter's configuration */
 2510         sc->config.associd = htole16(ni->ni_associd & ~0xc000);
 2511         /* short preamble/slot time are negotiated when associating */
 2512         sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
 2513             WPI_CONFIG_SHSLOT);
 2514         if (ic->ic_flags & IEEE80211_F_SHSLOT)
 2515                 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
 2516         if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
 2517                 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
 2518         sc->config.filter |= htole32(WPI_FILTER_BSS);
 2519 
 2520         /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
 2521 
 2522         DPRINTF(("config chan %d flags %x\n", sc->config.chan,
 2523                     sc->config.flags));
 2524         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
 2525                     wpi_config), 1);
 2526         if (error != 0) {
 2527                 device_printf(sc->sc_dev, "could not update configuration\n");
 2528                 return error;
 2529         }
 2530 
 2531         error = wpi_set_txpower(sc, ni->ni_chan, 1);
 2532         if (error != 0) {
 2533                 device_printf(sc->sc_dev, "could set txpower\n");
 2534                 return error;
 2535         }
 2536 
 2537         /* link LED always on while associated */
 2538         wpi_set_led(sc, WPI_LED_LINK, 0, 1);
 2539 
 2540         /* start automatic rate control timer */
 2541         callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
 2542 
 2543         return (error);
 2544 }
 2545 
 2546 /*
 2547  * Send a scan request to the firmware.  Since this command is huge, we map it
 2548  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
 2549  * much of this code is similar to that in wpi_cmd but because we must manually
 2550  * construct the probe & channels, we duplicate what's needed here. XXX In the
 2551  * future, this function should be modified to use wpi_cmd to help cleanup the
 2552  * code base.
 2553  */
 2554 static int
 2555 wpi_scan(struct wpi_softc *sc)
 2556 {
 2557         struct ifnet *ifp = sc->sc_ifp;
 2558         struct ieee80211com *ic = ifp->if_l2com;
 2559         struct ieee80211_scan_state *ss = ic->ic_scan;
 2560         struct wpi_tx_ring *ring = &sc->cmdq;
 2561         struct wpi_tx_desc *desc;
 2562         struct wpi_tx_data *data;
 2563         struct wpi_tx_cmd *cmd;
 2564         struct wpi_scan_hdr *hdr;
 2565         struct wpi_scan_chan *chan;
 2566         struct ieee80211_frame *wh;
 2567         struct ieee80211_rateset *rs;
 2568         struct ieee80211_channel *c;
 2569         enum ieee80211_phymode mode;
 2570         uint8_t *frm;
 2571         int nrates, pktlen, error, i, nssid;
 2572         bus_addr_t physaddr;
 2573 
 2574         desc = &ring->desc[ring->cur];
 2575         data = &ring->data[ring->cur];
 2576 
 2577         data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
 2578         if (data->m == NULL) {
 2579                 device_printf(sc->sc_dev,
 2580                     "could not allocate mbuf for scan command\n");
 2581                 return ENOMEM;
 2582         }
 2583 
 2584         cmd = mtod(data->m, struct wpi_tx_cmd *);
 2585         cmd->code = WPI_CMD_SCAN;
 2586         cmd->flags = 0;
 2587         cmd->qid = ring->qid;
 2588         cmd->idx = ring->cur;
 2589 
 2590         hdr = (struct wpi_scan_hdr *)cmd->data;
 2591         memset(hdr, 0, sizeof(struct wpi_scan_hdr));
 2592 
 2593         /*
 2594          * Move to the next channel if no packets are received within 5 msecs
 2595          * after sending the probe request (this helps to reduce the duration
 2596          * of active scans).
 2597          */
 2598         hdr->quiet = htole16(5);
 2599         hdr->threshold = htole16(1);
 2600 
 2601         if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
 2602                 /* send probe requests at 6Mbps */
 2603                 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
 2604 
 2605                 /* Enable crc checking */
 2606                 hdr->promotion = htole16(1);
 2607         } else {
 2608                 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
 2609                 /* send probe requests at 1Mbps */
 2610                 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
 2611         }
 2612         hdr->tx.id = WPI_ID_BROADCAST;
 2613         hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
 2614         hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
 2615 
 2616         memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
 2617         nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
 2618         for (i = 0; i < nssid; i++) {
 2619                 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
 2620                 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
 2621                 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
 2622                     hdr->scan_essids[i].esslen);
 2623 #ifdef WPI_DEBUG
 2624                 if (wpi_debug & WPI_DEBUG_SCANNING) {
 2625                         printf("Scanning Essid: ");
 2626                         ieee80211_print_essid(hdr->scan_essids[i].essid,
 2627                             hdr->scan_essids[i].esslen);
 2628                         printf("\n");
 2629                 }
 2630 #endif
 2631         }
 2632 
 2633         /*
 2634          * Build a probe request frame.  Most of the following code is a
 2635          * copy & paste of what is done in net80211.
 2636          */
 2637         wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
 2638         wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
 2639                 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
 2640         wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
 2641         IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
 2642         IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
 2643         IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
 2644         *(u_int16_t *)&wh->i_dur[0] = 0;        /* filled by h/w */
 2645         *(u_int16_t *)&wh->i_seq[0] = 0;        /* filled by h/w */
 2646 
 2647         frm = (uint8_t *)(wh + 1);
 2648 
 2649         /* add essid IE, the hardware will fill this in for us */
 2650         *frm++ = IEEE80211_ELEMID_SSID;
 2651         *frm++ = 0;
 2652 
 2653         mode = ieee80211_chan2mode(ic->ic_curchan);
 2654         rs = &ic->ic_sup_rates[mode];
 2655 
 2656         /* add supported rates IE */
 2657         *frm++ = IEEE80211_ELEMID_RATES;
 2658         nrates = rs->rs_nrates;
 2659         if (nrates > IEEE80211_RATE_SIZE)
 2660                 nrates = IEEE80211_RATE_SIZE;
 2661         *frm++ = nrates;
 2662         memcpy(frm, rs->rs_rates, nrates);
 2663         frm += nrates;
 2664 
 2665         /* add supported xrates IE */
 2666         if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
 2667                 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
 2668                 *frm++ = IEEE80211_ELEMID_XRATES;
 2669                 *frm++ = nrates;
 2670                 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
 2671                 frm += nrates;
 2672         }
 2673 
 2674         /* setup length of probe request */
 2675         hdr->tx.len = htole16(frm - (uint8_t *)wh);
 2676 
 2677         /*
 2678          * Construct information about the channel that we
 2679          * want to scan. The firmware expects this to be directly
 2680          * after the scan probe request
 2681          */
 2682         c = ic->ic_curchan;
 2683         chan = (struct wpi_scan_chan *)frm;
 2684         chan->chan = ieee80211_chan2ieee(ic, c);
 2685         chan->flags = 0;
 2686         if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
 2687                 chan->flags |= WPI_CHAN_ACTIVE;
 2688                 if (nssid != 0)
 2689                         chan->flags |= WPI_CHAN_DIRECT;
 2690         }
 2691         chan->gain_dsp = 0x6e; /* Default level */
 2692         if (IEEE80211_IS_CHAN_5GHZ(c)) {
 2693                 chan->active = htole16(10);
 2694                 chan->passive = htole16(ss->ss_maxdwell);
 2695                 chan->gain_radio = 0x3b;
 2696         } else {
 2697                 chan->active = htole16(20);
 2698                 chan->passive = htole16(ss->ss_maxdwell);
 2699                 chan->gain_radio = 0x28;
 2700         }
 2701 
 2702         DPRINTFN(WPI_DEBUG_SCANNING,
 2703             ("Scanning %u Passive: %d\n",
 2704              chan->chan,
 2705              c->ic_flags & IEEE80211_CHAN_PASSIVE));
 2706 
 2707         hdr->nchan++;
 2708         chan++;
 2709 
 2710         frm += sizeof (struct wpi_scan_chan);
 2711 #if 0
 2712         // XXX All Channels....
 2713         for (c  = &ic->ic_channels[1];
 2714              c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
 2715                 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
 2716                         continue;
 2717 
 2718                 chan->chan = ieee80211_chan2ieee(ic, c);
 2719                 chan->flags = 0;
 2720                 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
 2721                     chan->flags |= WPI_CHAN_ACTIVE;
 2722                     if (ic->ic_des_ssid[0].len != 0)
 2723                         chan->flags |= WPI_CHAN_DIRECT;
 2724                 }
 2725                 chan->gain_dsp = 0x6e; /* Default level */
 2726                 if (IEEE80211_IS_CHAN_5GHZ(c)) {
 2727                         chan->active = htole16(10);
 2728                         chan->passive = htole16(110);
 2729                         chan->gain_radio = 0x3b;
 2730                 } else {
 2731                         chan->active = htole16(20);
 2732                         chan->passive = htole16(120);
 2733                         chan->gain_radio = 0x28;
 2734                 }
 2735 
 2736                 DPRINTFN(WPI_DEBUG_SCANNING,
 2737                          ("Scanning %u Passive: %d\n",
 2738                           chan->chan,
 2739                           c->ic_flags & IEEE80211_CHAN_PASSIVE));
 2740 
 2741                 hdr->nchan++;
 2742                 chan++;
 2743 
 2744                 frm += sizeof (struct wpi_scan_chan);
 2745         }
 2746 #endif
 2747 
 2748         hdr->len = htole16(frm - (uint8_t *)hdr);
 2749         pktlen = frm - (uint8_t *)cmd;
 2750 
 2751         error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
 2752             wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
 2753         if (error != 0) {
 2754                 device_printf(sc->sc_dev, "could not map scan command\n");
 2755                 m_freem(data->m);
 2756                 data->m = NULL;
 2757                 return error;
 2758         }
 2759 
 2760         desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
 2761         desc->segs[0].addr = htole32(physaddr);
 2762         desc->segs[0].len  = htole32(pktlen);
 2763 
 2764         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
 2765             BUS_DMASYNC_PREWRITE);
 2766         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
 2767 
 2768         /* kick cmd ring */
 2769         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
 2770         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
 2771 
 2772         sc->sc_scan_timer = 5;
 2773         return 0;       /* will be notified async. of failure/success */
 2774 }
 2775 
 2776 /**
 2777  * Configure the card to listen to a particular channel, this transisions the
 2778  * card in to being able to receive frames from remote devices.
 2779  */
 2780 static int
 2781 wpi_config(struct wpi_softc *sc)
 2782 {
 2783         struct ifnet *ifp = sc->sc_ifp;
 2784         struct ieee80211com *ic = ifp->if_l2com;
 2785         struct wpi_power power;
 2786         struct wpi_bluetooth bluetooth;
 2787         struct wpi_node_info node;
 2788         int error;
 2789 
 2790         /* set power mode */
 2791         memset(&power, 0, sizeof power);
 2792         power.flags = htole32(WPI_POWER_CAM|0x8);
 2793         error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
 2794         if (error != 0) {
 2795                 device_printf(sc->sc_dev, "could not set power mode\n");
 2796                 return error;
 2797         }
 2798 
 2799         /* configure bluetooth coexistence */
 2800         memset(&bluetooth, 0, sizeof bluetooth);
 2801         bluetooth.flags = 3;
 2802         bluetooth.lead = 0xaa;
 2803         bluetooth.kill = 1;
 2804         error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
 2805             0);
 2806         if (error != 0) {
 2807                 device_printf(sc->sc_dev,
 2808                     "could not configure bluetooth coexistence\n");
 2809                 return error;
 2810         }
 2811 
 2812         /* configure adapter */
 2813         memset(&sc->config, 0, sizeof (struct wpi_config));
 2814         IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
 2815         /*set default channel*/
 2816         sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
 2817         sc->config.flags = htole32(WPI_CONFIG_TSF);
 2818         if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
 2819                 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
 2820                     WPI_CONFIG_24GHZ);
 2821         }
 2822         sc->config.filter = 0;
 2823         switch (ic->ic_opmode) {
 2824         case IEEE80211_M_STA:
 2825         case IEEE80211_M_WDS:   /* No know setup, use STA for now */
 2826                 sc->config.mode = WPI_MODE_STA;
 2827                 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
 2828                 break;
 2829         case IEEE80211_M_IBSS:
 2830         case IEEE80211_M_AHDEMO:
 2831                 sc->config.mode = WPI_MODE_IBSS;
 2832                 sc->config.filter |= htole32(WPI_FILTER_BEACON |
 2833                                              WPI_FILTER_MULTICAST);
 2834                 break;
 2835         case IEEE80211_M_HOSTAP:
 2836                 sc->config.mode = WPI_MODE_HOSTAP;
 2837                 break;
 2838         case IEEE80211_M_MONITOR:
 2839                 sc->config.mode = WPI_MODE_MONITOR;
 2840                 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
 2841                         WPI_FILTER_CTL | WPI_FILTER_PROMISC);
 2842                 break;
 2843         default:
 2844                 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
 2845                 return EINVAL;
 2846         }
 2847         sc->config.cck_mask  = 0x0f;    /* not yet negotiated */
 2848         sc->config.ofdm_mask = 0xff;    /* not yet negotiated */
 2849         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
 2850                 sizeof (struct wpi_config), 0);
 2851         if (error != 0) {
 2852                 device_printf(sc->sc_dev, "configure command failed\n");
 2853                 return error;
 2854         }
 2855 
 2856         /* configuration has changed, set Tx power accordingly */
 2857         if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
 2858             device_printf(sc->sc_dev, "could not set Tx power\n");
 2859             return error;
 2860         }
 2861 
 2862         /* add broadcast node */
 2863         memset(&node, 0, sizeof node);
 2864         IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
 2865         node.id = WPI_ID_BROADCAST;
 2866         node.rate = wpi_plcp_signal(2);
 2867         error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
 2868         if (error != 0) {
 2869                 device_printf(sc->sc_dev, "could not add broadcast node\n");
 2870                 return error;
 2871         }
 2872 
 2873         /* Setup rate scalling */
 2874         error = wpi_mrr_setup(sc);
 2875         if (error != 0) {
 2876                 device_printf(sc->sc_dev, "could not setup MRR\n");
 2877                 return error;
 2878         }
 2879 
 2880         return 0;
 2881 }
 2882 
 2883 static void
 2884 wpi_stop_master(struct wpi_softc *sc)
 2885 {
 2886         uint32_t tmp;
 2887         int ntries;
 2888 
 2889         DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
 2890 
 2891         tmp = WPI_READ(sc, WPI_RESET);
 2892         WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
 2893 
 2894         tmp = WPI_READ(sc, WPI_GPIO_CTL);
 2895         if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
 2896                 return; /* already asleep */
 2897 
 2898         for (ntries = 0; ntries < 100; ntries++) {
 2899                 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
 2900                         break;
 2901                 DELAY(10);
 2902         }
 2903         if (ntries == 100) {
 2904                 device_printf(sc->sc_dev, "timeout waiting for master\n");
 2905         }
 2906 }
 2907 
 2908 static int
 2909 wpi_power_up(struct wpi_softc *sc)
 2910 {
 2911         uint32_t tmp;
 2912         int ntries;
 2913 
 2914         wpi_mem_lock(sc);
 2915         tmp = wpi_mem_read(sc, WPI_MEM_POWER);
 2916         wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
 2917         wpi_mem_unlock(sc);
 2918 
 2919         for (ntries = 0; ntries < 5000; ntries++) {
 2920                 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
 2921                         break;
 2922                 DELAY(10);
 2923         }
 2924         if (ntries == 5000) {
 2925                 device_printf(sc->sc_dev,
 2926                     "timeout waiting for NIC to power up\n");
 2927                 return ETIMEDOUT;
 2928         }
 2929         return 0;
 2930 }
 2931 
 2932 static int
 2933 wpi_reset(struct wpi_softc *sc)
 2934 {
 2935         uint32_t tmp;
 2936         int ntries;
 2937 
 2938         DPRINTFN(WPI_DEBUG_HW,
 2939             ("Resetting the card - clearing any uploaded firmware\n"));
 2940 
 2941         /* clear any pending interrupts */
 2942         WPI_WRITE(sc, WPI_INTR, 0xffffffff);
 2943 
 2944         tmp = WPI_READ(sc, WPI_PLL_CTL);
 2945         WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
 2946 
 2947         tmp = WPI_READ(sc, WPI_CHICKEN);
 2948         WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
 2949 
 2950         tmp = WPI_READ(sc, WPI_GPIO_CTL);
 2951         WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
 2952 
 2953         /* wait for clock stabilization */
 2954         for (ntries = 0; ntries < 25000; ntries++) {
 2955                 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
 2956                         break;
 2957                 DELAY(10);
 2958         }
 2959         if (ntries == 25000) {
 2960                 device_printf(sc->sc_dev,
 2961                     "timeout waiting for clock stabilization\n");
 2962                 return ETIMEDOUT;
 2963         }
 2964 
 2965         /* initialize EEPROM */
 2966         tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
 2967 
 2968         if ((tmp & WPI_EEPROM_VERSION) == 0) {
 2969                 device_printf(sc->sc_dev, "EEPROM not found\n");
 2970                 return EIO;
 2971         }
 2972         WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
 2973 
 2974         return 0;
 2975 }
 2976 
 2977 static void
 2978 wpi_hw_config(struct wpi_softc *sc)
 2979 {
 2980         uint32_t rev, hw;
 2981 
 2982         /* voodoo from the Linux "driver".. */
 2983         hw = WPI_READ(sc, WPI_HWCONFIG);
 2984 
 2985         rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
 2986         if ((rev & 0xc0) == 0x40)
 2987                 hw |= WPI_HW_ALM_MB;
 2988         else if (!(rev & 0x80))
 2989                 hw |= WPI_HW_ALM_MM;
 2990 
 2991         if (sc->cap == 0x80)
 2992                 hw |= WPI_HW_SKU_MRC;
 2993 
 2994         hw &= ~WPI_HW_REV_D;
 2995         if ((le16toh(sc->rev) & 0xf0) == 0xd0)
 2996                 hw |= WPI_HW_REV_D;
 2997 
 2998         if (sc->type > 1)
 2999                 hw |= WPI_HW_TYPE_B;
 3000 
 3001         WPI_WRITE(sc, WPI_HWCONFIG, hw);
 3002 }
 3003 
 3004 static void
 3005 wpi_rfkill_resume(struct wpi_softc *sc)
 3006 {
 3007         struct ifnet *ifp = sc->sc_ifp;
 3008         struct ieee80211com *ic = ifp->if_l2com;
 3009         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 3010         int ntries;
 3011 
 3012         /* enable firmware again */
 3013         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
 3014         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
 3015 
 3016         /* wait for thermal sensors to calibrate */
 3017         for (ntries = 0; ntries < 1000; ntries++) {
 3018                 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
 3019                         break;
 3020                 DELAY(10);
 3021         }
 3022 
 3023         if (ntries == 1000) {
 3024                 device_printf(sc->sc_dev,
 3025                     "timeout waiting for thermal calibration\n");
 3026                 return;
 3027         }
 3028         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
 3029 
 3030         if (wpi_config(sc) != 0) {
 3031                 device_printf(sc->sc_dev, "device config failed\n");
 3032                 return;
 3033         }
 3034 
 3035         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 3036         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 3037         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
 3038 
 3039         if (vap != NULL) {
 3040                 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
 3041                         if (vap->iv_opmode != IEEE80211_M_MONITOR) {
 3042                                 ieee80211_beacon_miss(ic);
 3043                                 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
 3044                         } else
 3045                                 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
 3046                 } else {
 3047                         ieee80211_scan_next(vap);
 3048                         wpi_set_led(sc, WPI_LED_LINK, 20, 2);
 3049                 }
 3050         }
 3051 
 3052         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
 3053 }
 3054 
 3055 static void
 3056 wpi_init_locked(struct wpi_softc *sc, int force)
 3057 {
 3058         struct ifnet *ifp = sc->sc_ifp;
 3059         uint32_t tmp;
 3060         int ntries, qid;
 3061 
 3062         wpi_stop_locked(sc);
 3063         (void)wpi_reset(sc);
 3064 
 3065         wpi_mem_lock(sc);
 3066         wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
 3067         DELAY(20);
 3068         tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
 3069         wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
 3070         wpi_mem_unlock(sc);
 3071 
 3072         (void)wpi_power_up(sc);
 3073         wpi_hw_config(sc);
 3074 
 3075         /* init Rx ring */
 3076         wpi_mem_lock(sc);
 3077         WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
 3078         WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
 3079             offsetof(struct wpi_shared, next));
 3080         WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
 3081         WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
 3082         wpi_mem_unlock(sc);
 3083 
 3084         /* init Tx rings */
 3085         wpi_mem_lock(sc);
 3086         wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
 3087         wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
 3088         wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
 3089         wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
 3090         wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
 3091         wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
 3092         wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
 3093 
 3094         WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
 3095         WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
 3096 
 3097         for (qid = 0; qid < 6; qid++) {
 3098                 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
 3099                 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
 3100                 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
 3101         }
 3102         wpi_mem_unlock(sc);
 3103 
 3104         /* clear "radio off" and "disable command" bits (reversed logic) */
 3105         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
 3106         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
 3107         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
 3108 
 3109         /* clear any pending interrupts */
 3110         WPI_WRITE(sc, WPI_INTR, 0xffffffff);
 3111 
 3112         /* enable interrupts */
 3113         WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
 3114 
 3115         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
 3116         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
 3117 
 3118         if ((wpi_load_firmware(sc)) != 0) {
 3119             device_printf(sc->sc_dev,
 3120                 "A problem occurred loading the firmware to the driver\n");
 3121             return;
 3122         }
 3123 
 3124         /* At this point the firmware is up and running. If the hardware
 3125          * RF switch is turned off thermal calibration will fail, though
 3126          * the card is still happy to continue to accept commands, catch
 3127          * this case and schedule a task to watch for it to be turned on.
 3128          */
 3129         wpi_mem_lock(sc);
 3130         tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
 3131         wpi_mem_unlock(sc);
 3132 
 3133         if (!(tmp & 0x1)) {
 3134                 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
 3135                 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
 3136                 goto out;
 3137         }
 3138 
 3139         /* wait for thermal sensors to calibrate */
 3140         for (ntries = 0; ntries < 1000; ntries++) {
 3141                 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
 3142                         break;
 3143                 DELAY(10);
 3144         }
 3145 
 3146         if (ntries == 1000) {
 3147                 device_printf(sc->sc_dev,
 3148                     "timeout waiting for thermal sensors calibration\n");
 3149                 return;
 3150         }
 3151         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
 3152 
 3153         if (wpi_config(sc) != 0) {
 3154                 device_printf(sc->sc_dev, "device config failed\n");
 3155                 return;
 3156         }
 3157 
 3158         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 3159         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 3160 out:
 3161         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
 3162 }
 3163 
 3164 static void
 3165 wpi_init(void *arg)
 3166 {
 3167         struct wpi_softc *sc = arg;
 3168         struct ifnet *ifp = sc->sc_ifp;
 3169         struct ieee80211com *ic = ifp->if_l2com;
 3170 
 3171         WPI_LOCK(sc);
 3172         wpi_init_locked(sc, 0);
 3173         WPI_UNLOCK(sc);
 3174 
 3175         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 3176                 ieee80211_start_all(ic);                /* start all vaps */
 3177 }
 3178 
 3179 static void
 3180 wpi_stop_locked(struct wpi_softc *sc)
 3181 {
 3182         struct ifnet *ifp = sc->sc_ifp;
 3183         uint32_t tmp;
 3184         int ac;
 3185 
 3186         sc->sc_tx_timer = 0;
 3187         sc->sc_scan_timer = 0;
 3188         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 3189         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
 3190         callout_stop(&sc->watchdog_to);
 3191         callout_stop(&sc->calib_to);
 3192 
 3193 
 3194         /* disable interrupts */
 3195         WPI_WRITE(sc, WPI_MASK, 0);
 3196         WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
 3197         WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
 3198         WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
 3199 
 3200         wpi_mem_lock(sc);
 3201         wpi_mem_write(sc, WPI_MEM_MODE, 0);
 3202         wpi_mem_unlock(sc);
 3203 
 3204         /* reset all Tx rings */
 3205         for (ac = 0; ac < 4; ac++)
 3206                 wpi_reset_tx_ring(sc, &sc->txq[ac]);
 3207         wpi_reset_tx_ring(sc, &sc->cmdq);
 3208 
 3209         /* reset Rx ring */
 3210         wpi_reset_rx_ring(sc, &sc->rxq);
 3211 
 3212         wpi_mem_lock(sc);
 3213         wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
 3214         wpi_mem_unlock(sc);
 3215 
 3216         DELAY(5);
 3217 
 3218         wpi_stop_master(sc);
 3219 
 3220         tmp = WPI_READ(sc, WPI_RESET);
 3221         WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
 3222         sc->flags &= ~WPI_FLAG_BUSY;
 3223 }
 3224 
 3225 static void
 3226 wpi_stop(struct wpi_softc *sc)
 3227 {
 3228         WPI_LOCK(sc);
 3229         wpi_stop_locked(sc);
 3230         WPI_UNLOCK(sc);
 3231 }
 3232 
 3233 static void
 3234 wpi_calib_timeout(void *arg)
 3235 {
 3236         struct wpi_softc *sc = arg;
 3237         struct ifnet *ifp = sc->sc_ifp;
 3238         struct ieee80211com *ic = ifp->if_l2com;
 3239         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 3240         int temp;
 3241 
 3242         if (vap->iv_state != IEEE80211_S_RUN)
 3243                 return;
 3244 
 3245         /* update sensor data */
 3246         temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
 3247         DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
 3248 
 3249         wpi_power_calibration(sc, temp);
 3250 
 3251         callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
 3252 }
 3253 
 3254 /*
 3255  * This function is called periodically (every 60 seconds) to adjust output
 3256  * power to temperature changes.
 3257  */
 3258 static void
 3259 wpi_power_calibration(struct wpi_softc *sc, int temp)
 3260 {
 3261         struct ifnet *ifp = sc->sc_ifp;
 3262         struct ieee80211com *ic = ifp->if_l2com;
 3263         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 3264 
 3265         /* sanity-check read value */
 3266         if (temp < -260 || temp > 25) {
 3267                 /* this can't be correct, ignore */
 3268                 DPRINTFN(WPI_DEBUG_TEMP,
 3269                     ("out-of-range temperature reported: %d\n", temp));
 3270                 return;
 3271         }
 3272 
 3273         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
 3274 
 3275         /* adjust Tx power if need be */
 3276         if (abs(temp - sc->temp) <= 6)
 3277                 return;
 3278 
 3279         sc->temp = temp;
 3280 
 3281         if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
 3282                 /* just warn, too bad for the automatic calibration... */
 3283                 device_printf(sc->sc_dev,"could not adjust Tx power\n");
 3284         }
 3285 }
 3286 
 3287 /**
 3288  * Read the eeprom to find out what channels are valid for the given
 3289  * band and update net80211 with what we find.
 3290  */
 3291 static void
 3292 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
 3293 {
 3294         struct ifnet *ifp = sc->sc_ifp;
 3295         struct ieee80211com *ic = ifp->if_l2com;
 3296         const struct wpi_chan_band *band = &wpi_bands[n];
 3297         struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
 3298         struct ieee80211_channel *c;
 3299         int chan, i, passive;
 3300 
 3301         wpi_read_prom_data(sc, band->addr, channels,
 3302             band->nchan * sizeof (struct wpi_eeprom_chan));
 3303 
 3304         for (i = 0; i < band->nchan; i++) {
 3305                 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
 3306                         DPRINTFN(WPI_DEBUG_HW,
 3307                             ("Channel Not Valid: %d, band %d\n",
 3308                              band->chan[i],n));
 3309                         continue;
 3310                 }
 3311 
 3312                 passive = 0;
 3313                 chan = band->chan[i];
 3314                 c = &ic->ic_channels[ic->ic_nchans++];
 3315 
 3316                 /* is active scan allowed on this channel? */
 3317                 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
 3318                         passive = IEEE80211_CHAN_PASSIVE;
 3319                 }
 3320 
 3321                 if (n == 0) {   /* 2GHz band */
 3322                         c->ic_ieee = chan;
 3323                         c->ic_freq = ieee80211_ieee2mhz(chan,
 3324                             IEEE80211_CHAN_2GHZ);
 3325                         c->ic_flags = IEEE80211_CHAN_B | passive;
 3326 
 3327                         c = &ic->ic_channels[ic->ic_nchans++];
 3328                         c->ic_ieee = chan;
 3329                         c->ic_freq = ieee80211_ieee2mhz(chan,
 3330                             IEEE80211_CHAN_2GHZ);
 3331                         c->ic_flags = IEEE80211_CHAN_G | passive;
 3332 
 3333                 } else {        /* 5GHz band */
 3334                         /*
 3335                          * Some 3945ABG adapters support channels 7, 8, 11
 3336                          * and 12 in the 2GHz *and* 5GHz bands.
 3337                          * Because of limitations in our net80211(9) stack,
 3338                          * we can't support these channels in 5GHz band.
 3339                          * XXX not true; just need to map to proper frequency
 3340                          */
 3341                         if (chan <= 14)
 3342                                 continue;
 3343 
 3344                         c->ic_ieee = chan;
 3345                         c->ic_freq = ieee80211_ieee2mhz(chan,
 3346                             IEEE80211_CHAN_5GHZ);
 3347                         c->ic_flags = IEEE80211_CHAN_A | passive;
 3348                 }
 3349 
 3350                 /* save maximum allowed power for this channel */
 3351                 sc->maxpwr[chan] = channels[i].maxpwr;
 3352 
 3353 #if 0
 3354                 // XXX We can probably use this an get rid of maxpwr - ben 20070617
 3355                 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
 3356                 //ic->ic_channels[chan].ic_minpower...
 3357                 //ic->ic_channels[chan].ic_maxregtxpower...
 3358 #endif
 3359 
 3360                 DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
 3361                     " passive=%d, offset %d\n", chan, c->ic_freq,
 3362                     channels[i].flags, sc->maxpwr[chan],
 3363                     (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
 3364                     ic->ic_nchans));
 3365         }
 3366 }
 3367 
 3368 static void
 3369 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
 3370 {
 3371         struct wpi_power_group *group = &sc->groups[n];
 3372         struct wpi_eeprom_group rgroup;
 3373         int i;
 3374 
 3375         wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
 3376             sizeof rgroup);
 3377 
 3378         /* save power group information */
 3379         group->chan   = rgroup.chan;
 3380         group->maxpwr = rgroup.maxpwr;
 3381         /* temperature at which the samples were taken */
 3382         group->temp   = (int16_t)le16toh(rgroup.temp);
 3383 
 3384         DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
 3385                     group->chan, group->maxpwr, group->temp));
 3386 
 3387         for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
 3388                 group->samples[i].index = rgroup.samples[i].index;
 3389                 group->samples[i].power = rgroup.samples[i].power;
 3390 
 3391                 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
 3392                             group->samples[i].index, group->samples[i].power));
 3393         }
 3394 }
 3395 
 3396 /*
 3397  * Update Tx power to match what is defined for channel `c'.
 3398  */
 3399 static int
 3400 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
 3401 {
 3402         struct ifnet *ifp = sc->sc_ifp;
 3403         struct ieee80211com *ic = ifp->if_l2com;
 3404         struct wpi_power_group *group;
 3405         struct wpi_cmd_txpower txpower;
 3406         u_int chan;
 3407         int i;
 3408 
 3409         /* get channel number */
 3410         chan = ieee80211_chan2ieee(ic, c);
 3411 
 3412         /* find the power group to which this channel belongs */
 3413         if (IEEE80211_IS_CHAN_5GHZ(c)) {
 3414                 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
 3415                         if (chan <= group->chan)
 3416                                 break;
 3417         } else
 3418                 group = &sc->groups[0];
 3419 
 3420         memset(&txpower, 0, sizeof txpower);
 3421         txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
 3422         txpower.channel = htole16(chan);
 3423 
 3424         /* set Tx power for all OFDM and CCK rates */
 3425         for (i = 0; i <= 11 ; i++) {
 3426                 /* retrieve Tx power for this channel/rate combination */
 3427                 int idx = wpi_get_power_index(sc, group, c,
 3428                     wpi_ridx_to_rate[i]);
 3429 
 3430                 txpower.rates[i].rate = wpi_ridx_to_plcp[i];
 3431 
 3432                 if (IEEE80211_IS_CHAN_5GHZ(c)) {
 3433                         txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
 3434                         txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
 3435                 } else {
 3436                         txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
 3437                         txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
 3438                 }
 3439                 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
 3440                             chan, wpi_ridx_to_rate[i], idx));
 3441         }
 3442 
 3443         return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
 3444 }
 3445 
 3446 /*
 3447  * Determine Tx power index for a given channel/rate combination.
 3448  * This takes into account the regulatory information from EEPROM and the
 3449  * current temperature.
 3450  */
 3451 static int
 3452 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
 3453     struct ieee80211_channel *c, int rate)
 3454 {
 3455 /* fixed-point arithmetic division using a n-bit fractional part */
 3456 #define fdivround(a, b, n)      \
 3457         ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
 3458 
 3459 /* linear interpolation */
 3460 #define interpolate(x, x1, y1, x2, y2, n)       \
 3461         ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
 3462 
 3463         struct ifnet *ifp = sc->sc_ifp;
 3464         struct ieee80211com *ic = ifp->if_l2com;
 3465         struct wpi_power_sample *sample;
 3466         int pwr, idx;
 3467         u_int chan;
 3468 
 3469         /* get channel number */
 3470         chan = ieee80211_chan2ieee(ic, c);
 3471 
 3472         /* default power is group's maximum power - 3dB */
 3473         pwr = group->maxpwr / 2;
 3474 
 3475         /* decrease power for highest OFDM rates to reduce distortion */
 3476         switch (rate) {
 3477                 case 72:        /* 36Mb/s */
 3478                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
 3479                         break;
 3480                 case 96:        /* 48Mb/s */
 3481                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
 3482                         break;
 3483                 case 108:       /* 54Mb/s */
 3484                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
 3485                         break;
 3486         }
 3487 
 3488         /* never exceed channel's maximum allowed Tx power */
 3489         pwr = min(pwr, sc->maxpwr[chan]);
 3490 
 3491         /* retrieve power index into gain tables from samples */
 3492         for (sample = group->samples; sample < &group->samples[3]; sample++)
 3493                 if (pwr > sample[1].power)
 3494                         break;
 3495         /* fixed-point linear interpolation using a 19-bit fractional part */
 3496         idx = interpolate(pwr, sample[0].power, sample[0].index,
 3497             sample[1].power, sample[1].index, 19);
 3498 
 3499         /*
 3500          *  Adjust power index based on current temperature
 3501          *      - if colder than factory-calibrated: decreate output power
 3502          *      - if warmer than factory-calibrated: increase output power
 3503          */
 3504         idx -= (sc->temp - group->temp) * 11 / 100;
 3505 
 3506         /* decrease power for CCK rates (-5dB) */
 3507         if (!WPI_RATE_IS_OFDM(rate))
 3508                 idx += 10;
 3509 
 3510         /* keep power index in a valid range */
 3511         if (idx < 0)
 3512                 return 0;
 3513         if (idx > WPI_MAX_PWR_INDEX)
 3514                 return WPI_MAX_PWR_INDEX;
 3515         return idx;
 3516 
 3517 #undef interpolate
 3518 #undef fdivround
 3519 }
 3520 
 3521 /**
 3522  * Called by net80211 framework to indicate that a scan
 3523  * is starting. This function doesn't actually do the scan,
 3524  * wpi_scan_curchan starts things off. This function is more
 3525  * of an early warning from the framework we should get ready
 3526  * for the scan.
 3527  */
 3528 static void
 3529 wpi_scan_start(struct ieee80211com *ic)
 3530 {
 3531         struct ifnet *ifp = ic->ic_ifp;
 3532         struct wpi_softc *sc = ifp->if_softc;
 3533 
 3534         WPI_LOCK(sc);
 3535         wpi_set_led(sc, WPI_LED_LINK, 20, 2);
 3536         WPI_UNLOCK(sc);
 3537 }
 3538 
 3539 /**
 3540  * Called by the net80211 framework, indicates that the
 3541  * scan has ended. If there is a scan in progress on the card
 3542  * then it should be aborted.
 3543  */
 3544 static void
 3545 wpi_scan_end(struct ieee80211com *ic)
 3546 {
 3547         /* XXX ignore */
 3548 }
 3549 
 3550 /**
 3551  * Called by the net80211 framework to indicate to the driver
 3552  * that the channel should be changed
 3553  */
 3554 static void
 3555 wpi_set_channel(struct ieee80211com *ic)
 3556 {
 3557         struct ifnet *ifp = ic->ic_ifp;
 3558         struct wpi_softc *sc = ifp->if_softc;
 3559         int error;
 3560 
 3561         /*
 3562          * Only need to set the channel in Monitor mode. AP scanning and auth
 3563          * are already taken care of by their respective firmware commands.
 3564          */
 3565         if (ic->ic_opmode == IEEE80211_M_MONITOR) {
 3566                 WPI_LOCK(sc);
 3567                 error = wpi_config(sc);
 3568                 WPI_UNLOCK(sc);
 3569                 if (error != 0)
 3570                         device_printf(sc->sc_dev,
 3571                             "error %d settting channel\n", error);
 3572         }
 3573 }
 3574 
 3575 /**
 3576  * Called by net80211 to indicate that we need to scan the current
 3577  * channel. The channel is previously be set via the wpi_set_channel
 3578  * callback.
 3579  */
 3580 static void
 3581 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
 3582 {
 3583         struct ieee80211vap *vap = ss->ss_vap;
 3584         struct ifnet *ifp = vap->iv_ic->ic_ifp;
 3585         struct wpi_softc *sc = ifp->if_softc;
 3586 
 3587         WPI_LOCK(sc);
 3588         if (wpi_scan(sc))
 3589                 ieee80211_cancel_scan(vap);
 3590         WPI_UNLOCK(sc);
 3591 }
 3592 
 3593 /**
 3594  * Called by the net80211 framework to indicate
 3595  * the minimum dwell time has been met, terminate the scan.
 3596  * We don't actually terminate the scan as the firmware will notify
 3597  * us when it's finished and we have no way to interrupt it.
 3598  */
 3599 static void
 3600 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
 3601 {
 3602         /* NB: don't try to abort scan; wait for firmware to finish */
 3603 }
 3604 
 3605 static void
 3606 wpi_hwreset(void *arg, int pending)
 3607 {
 3608         struct wpi_softc *sc = arg;
 3609 
 3610         WPI_LOCK(sc);
 3611         wpi_init_locked(sc, 0);
 3612         WPI_UNLOCK(sc);
 3613 }
 3614 
 3615 static void
 3616 wpi_rfreset(void *arg, int pending)
 3617 {
 3618         struct wpi_softc *sc = arg;
 3619 
 3620         WPI_LOCK(sc);
 3621         wpi_rfkill_resume(sc);
 3622         WPI_UNLOCK(sc);
 3623 }
 3624 
 3625 /*
 3626  * Allocate DMA-safe memory for firmware transfer.
 3627  */
 3628 static int
 3629 wpi_alloc_fwmem(struct wpi_softc *sc)
 3630 {
 3631         /* allocate enough contiguous space to store text and data */
 3632         return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
 3633             WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
 3634             BUS_DMA_NOWAIT);
 3635 }
 3636 
 3637 static void
 3638 wpi_free_fwmem(struct wpi_softc *sc)
 3639 {
 3640         wpi_dma_contig_free(&sc->fw_dma);
 3641 }
 3642 
 3643 /**
 3644  * Called every second, wpi_watchdog used by the watch dog timer
 3645  * to check that the card is still alive
 3646  */
 3647 static void
 3648 wpi_watchdog(void *arg)
 3649 {
 3650         struct wpi_softc *sc = arg;
 3651         struct ifnet *ifp = sc->sc_ifp;
 3652         struct ieee80211com *ic = ifp->if_l2com;
 3653         uint32_t tmp;
 3654 
 3655         DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
 3656 
 3657         if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
 3658                 /* No need to lock firmware memory */
 3659                 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
 3660 
 3661                 if ((tmp & 0x1) == 0) {
 3662                         /* Radio kill switch is still off */
 3663                         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
 3664                         return;
 3665                 }
 3666 
 3667                 device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
 3668                 ieee80211_runtask(ic, &sc->sc_radiotask);
 3669                 return;
 3670         }
 3671 
 3672         if (sc->sc_tx_timer > 0) {
 3673                 if (--sc->sc_tx_timer == 0) {
 3674                         device_printf(sc->sc_dev,"device timeout\n");
 3675                         ifp->if_oerrors++;
 3676                         ieee80211_runtask(ic, &sc->sc_restarttask);
 3677                 }
 3678         }
 3679         if (sc->sc_scan_timer > 0) {
 3680                 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 3681                 if (--sc->sc_scan_timer == 0 && vap != NULL) {
 3682                         device_printf(sc->sc_dev,"scan timeout\n");
 3683                         ieee80211_cancel_scan(vap);
 3684                         ieee80211_runtask(ic, &sc->sc_restarttask);
 3685                 }
 3686         }
 3687 
 3688         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 3689                 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
 3690 }
 3691 
 3692 #ifdef WPI_DEBUG
 3693 static const char *wpi_cmd_str(int cmd)
 3694 {
 3695         switch (cmd) {
 3696         case WPI_DISABLE_CMD:   return "WPI_DISABLE_CMD";
 3697         case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE";
 3698         case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE";
 3699         case WPI_CMD_SET_WME:   return "WPI_CMD_SET_WME";
 3700         case WPI_CMD_TSF:       return "WPI_CMD_TSF";
 3701         case WPI_CMD_ADD_NODE:  return "WPI_CMD_ADD_NODE";
 3702         case WPI_CMD_TX_DATA:   return "WPI_CMD_TX_DATA";
 3703         case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP";
 3704         case WPI_CMD_SET_LED:   return "WPI_CMD_SET_LED";
 3705         case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
 3706         case WPI_CMD_SCAN:      return "WPI_CMD_SCAN";
 3707         case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
 3708         case WPI_CMD_TXPOWER:   return "WPI_CMD_TXPOWER";
 3709         case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH";
 3710 
 3711         default:
 3712                 KASSERT(1, ("Unknown Command: %d\n", cmd));
 3713                 return "UNKNOWN CMD";   /* Make the compiler happy */
 3714         }
 3715 }
 3716 #endif
 3717 
 3718 MODULE_DEPEND(wpi, pci,  1, 1, 1);
 3719 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
 3720 MODULE_DEPEND(wpi, firmware, 1, 1, 1);

Cache object: 5d077ae87b6034da3693933b9444e3c0


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.