The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/wpi/if_wpi.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2006,2007
    3  *      Damien Bergamini <damien.bergamini@free.fr>
    4  *      Benjamin Close <Benjamin.Close@clearchain.com>
    5  *
    6  * Permission to use, copy, modify, and distribute this software for any
    7  * purpose with or without fee is hereby granted, provided that the above
    8  * copyright notice and this permission notice appear in all copies.
    9  *
   10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
   12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
   13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
   14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
   15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
   16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
   17  */
   18 
   19 #define VERSION "20071127"
   20 
   21 #include <sys/cdefs.h>
   22 __FBSDID("$FreeBSD: releng/8.4/sys/dev/wpi/if_wpi.c 234571 2012-04-22 09:19:19Z bschmidt $");
   23 
   24 /*
   25  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
   26  *
   27  * The 3945ABG network adapter doesn't use traditional hardware as
   28  * many other adaptors do. Instead at run time the eeprom is set into a known
   29  * state and told to load boot firmware. The boot firmware loads an init and a
   30  * main  binary firmware image into SRAM on the card via DMA.
   31  * Once the firmware is loaded, the driver/hw then
   32  * communicate by way of circular dma rings via the SRAM to the firmware.
   33  *
   34  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
   35  * The 4 tx data rings allow for prioritization QoS.
   36  *
   37  * The rx data ring consists of 32 dma buffers. Two registers are used to
   38  * indicate where in the ring the driver and the firmware are up to. The
   39  * driver sets the initial read index (reg1) and the initial write index (reg2),
   40  * the firmware updates the read index (reg1) on rx of a packet and fires an
   41  * interrupt. The driver then processes the buffers starting at reg1 indicating
   42  * to the firmware which buffers have been accessed by updating reg2. At the
   43  * same time allocating new memory for the processed buffer.
   44  *
   45  * A similar thing happens with the tx rings. The difference is the firmware
   46  * stop processing buffers once the queue is full and until confirmation
   47  * of a successful transmition (tx_intr) has occurred.
   48  *
   49  * The command ring operates in the same manner as the tx queues.
   50  *
   51  * All communication direct to the card (ie eeprom) is classed as Stage1
   52  * communication
   53  *
   54  * All communication via the firmware to the card is classed as State2.
   55  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
   56  * firmware. The bootstrap firmware and runtime firmware are loaded
   57  * from host memory via dma to the card then told to execute. From this point
   58  * on the majority of communications between the driver and the card goes
   59  * via the firmware.
   60  */
   61 
   62 #include <sys/param.h>
   63 #include <sys/sysctl.h>
   64 #include <sys/sockio.h>
   65 #include <sys/mbuf.h>
   66 #include <sys/kernel.h>
   67 #include <sys/socket.h>
   68 #include <sys/systm.h>
   69 #include <sys/malloc.h>
   70 #include <sys/queue.h>
   71 #include <sys/taskqueue.h>
   72 #include <sys/module.h>
   73 #include <sys/bus.h>
   74 #include <sys/endian.h>
   75 #include <sys/linker.h>
   76 #include <sys/firmware.h>
   77 
   78 #include <machine/bus.h>
   79 #include <machine/resource.h>
   80 #include <sys/rman.h>
   81 
   82 #include <dev/pci/pcireg.h>
   83 #include <dev/pci/pcivar.h>
   84 
   85 #include <net/bpf.h>
   86 #include <net/if.h>
   87 #include <net/if_arp.h>
   88 #include <net/ethernet.h>
   89 #include <net/if_dl.h>
   90 #include <net/if_media.h>
   91 #include <net/if_types.h>
   92 
   93 #include <net80211/ieee80211_var.h>
   94 #include <net80211/ieee80211_radiotap.h>
   95 #include <net80211/ieee80211_regdomain.h>
   96 #include <net80211/ieee80211_ratectl.h>
   97 
   98 #include <netinet/in.h>
   99 #include <netinet/in_systm.h>
  100 #include <netinet/in_var.h>
  101 #include <netinet/ip.h>
  102 #include <netinet/if_ether.h>
  103 
  104 #include <dev/wpi/if_wpireg.h>
  105 #include <dev/wpi/if_wpivar.h>
  106 
  107 #define WPI_DEBUG
  108 
  109 #ifdef WPI_DEBUG
  110 #define DPRINTF(x)      do { if (wpi_debug != 0) printf x; } while (0)
  111 #define DPRINTFN(n, x)  do { if (wpi_debug & n) printf x; } while (0)
  112 #define WPI_DEBUG_SET   (wpi_debug != 0)
  113 
  114 enum {
  115         WPI_DEBUG_UNUSED        = 0x00000001,   /* Unused */
  116         WPI_DEBUG_HW            = 0x00000002,   /* Stage 1 (eeprom) debugging */
  117         WPI_DEBUG_TX            = 0x00000004,   /* Stage 2 TX intrp debugging*/
  118         WPI_DEBUG_RX            = 0x00000008,   /* Stage 2 RX intrp debugging */
  119         WPI_DEBUG_CMD           = 0x00000010,   /* Stage 2 CMD intrp debugging*/
  120         WPI_DEBUG_FIRMWARE      = 0x00000020,   /* firmware(9) loading debug  */
  121         WPI_DEBUG_DMA           = 0x00000040,   /* DMA (de)allocations/syncs  */
  122         WPI_DEBUG_SCANNING      = 0x00000080,   /* Stage 2 Scanning debugging */
  123         WPI_DEBUG_NOTIFY        = 0x00000100,   /* State 2 Noftif intr debug */
  124         WPI_DEBUG_TEMP          = 0x00000200,   /* TXPower/Temp Calibration */
  125         WPI_DEBUG_OPS           = 0x00000400,   /* wpi_ops taskq debug */
  126         WPI_DEBUG_WATCHDOG      = 0x00000800,   /* Watch dog debug */
  127         WPI_DEBUG_ANY           = 0xffffffff
  128 };
  129 
  130 static int wpi_debug = 0;
  131 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
  132 TUNABLE_INT("debug.wpi", &wpi_debug);
  133 
  134 #else
  135 #define DPRINTF(x)
  136 #define DPRINTFN(n, x)
  137 #define WPI_DEBUG_SET   0
  138 #endif
  139 
  140 struct wpi_ident {
  141         uint16_t        vendor;
  142         uint16_t        device;
  143         uint16_t        subdevice;
  144         const char      *name;
  145 };
  146 
  147 static const struct wpi_ident wpi_ident_table[] = {
  148         /* The below entries support ABG regardless of the subid */
  149         { 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
  150         { 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
  151         /* The below entries only support BG */
  152         { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
  153         { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
  154         { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
  155         { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
  156         { 0, 0, 0, NULL }
  157 };
  158 
  159 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
  160                     const char name[IFNAMSIZ], int unit, int opmode,
  161                     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
  162                     const uint8_t mac[IEEE80211_ADDR_LEN]);
  163 static void     wpi_vap_delete(struct ieee80211vap *);
  164 static int      wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
  165                     void **, bus_size_t, bus_size_t, int);
  166 static void     wpi_dma_contig_free(struct wpi_dma_info *);
  167 static void     wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
  168 static int      wpi_alloc_shared(struct wpi_softc *);
  169 static void     wpi_free_shared(struct wpi_softc *);
  170 static int      wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
  171 static void     wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
  172 static void     wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
  173 static int      wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
  174                     int, int);
  175 static void     wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
  176 static void     wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
  177 static int      wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
  178 static void     wpi_mem_lock(struct wpi_softc *);
  179 static void     wpi_mem_unlock(struct wpi_softc *);
  180 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
  181 static void     wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
  182 static void     wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
  183                     const uint32_t *, int);
  184 static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
  185 static int      wpi_alloc_fwmem(struct wpi_softc *);
  186 static void     wpi_free_fwmem(struct wpi_softc *);
  187 static int      wpi_load_firmware(struct wpi_softc *);
  188 static void     wpi_unload_firmware(struct wpi_softc *);
  189 static int      wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
  190 static void     wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
  191                     struct wpi_rx_data *);
  192 static void     wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
  193 static void     wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
  194 static void     wpi_notif_intr(struct wpi_softc *);
  195 static void     wpi_intr(void *);
  196 static uint8_t  wpi_plcp_signal(int);
  197 static void     wpi_watchdog(void *);
  198 static int      wpi_tx_data(struct wpi_softc *, struct mbuf *,
  199                     struct ieee80211_node *, int);
  200 static void     wpi_start(struct ifnet *);
  201 static void     wpi_start_locked(struct ifnet *);
  202 static int      wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
  203                     const struct ieee80211_bpf_params *);
  204 static void     wpi_scan_start(struct ieee80211com *);
  205 static void     wpi_scan_end(struct ieee80211com *);
  206 static void     wpi_set_channel(struct ieee80211com *);
  207 static void     wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
  208 static void     wpi_scan_mindwell(struct ieee80211_scan_state *);
  209 static int      wpi_ioctl(struct ifnet *, u_long, caddr_t);
  210 static void     wpi_read_eeprom(struct wpi_softc *,
  211                     uint8_t macaddr[IEEE80211_ADDR_LEN]);
  212 static void     wpi_read_eeprom_channels(struct wpi_softc *, int);
  213 static void     wpi_read_eeprom_group(struct wpi_softc *, int);
  214 static int      wpi_cmd(struct wpi_softc *, int, const void *, int, int);
  215 static int      wpi_wme_update(struct ieee80211com *);
  216 static int      wpi_mrr_setup(struct wpi_softc *);
  217 static void     wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
  218 static void     wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
  219 #if 0
  220 static int      wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
  221 #endif
  222 static int      wpi_auth(struct wpi_softc *, struct ieee80211vap *);
  223 static int      wpi_run(struct wpi_softc *, struct ieee80211vap *);
  224 static int      wpi_scan(struct wpi_softc *);
  225 static int      wpi_config(struct wpi_softc *);
  226 static void     wpi_stop_master(struct wpi_softc *);
  227 static int      wpi_power_up(struct wpi_softc *);
  228 static int      wpi_reset(struct wpi_softc *);
  229 static void     wpi_hwreset(void *, int);
  230 static void     wpi_rfreset(void *, int);
  231 static void     wpi_hw_config(struct wpi_softc *);
  232 static void     wpi_init(void *);
  233 static void     wpi_init_locked(struct wpi_softc *, int);
  234 static void     wpi_stop(struct wpi_softc *);
  235 static void     wpi_stop_locked(struct wpi_softc *);
  236 
  237 static int      wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
  238                     int);
  239 static void     wpi_calib_timeout(void *);
  240 static void     wpi_power_calibration(struct wpi_softc *, int);
  241 static int      wpi_get_power_index(struct wpi_softc *,
  242                     struct wpi_power_group *, struct ieee80211_channel *, int);
  243 #ifdef WPI_DEBUG
  244 static const char *wpi_cmd_str(int);
  245 #endif
  246 static int wpi_probe(device_t);
  247 static int wpi_attach(device_t);
  248 static int wpi_detach(device_t);
  249 static int wpi_shutdown(device_t);
  250 static int wpi_suspend(device_t);
  251 static int wpi_resume(device_t);
  252 
  253 
  254 static device_method_t wpi_methods[] = {
  255         /* Device interface */
  256         DEVMETHOD(device_probe,         wpi_probe),
  257         DEVMETHOD(device_attach,        wpi_attach),
  258         DEVMETHOD(device_detach,        wpi_detach),
  259         DEVMETHOD(device_shutdown,      wpi_shutdown),
  260         DEVMETHOD(device_suspend,       wpi_suspend),
  261         DEVMETHOD(device_resume,        wpi_resume),
  262 
  263         { 0, 0 }
  264 };
  265 
  266 static driver_t wpi_driver = {
  267         "wpi",
  268         wpi_methods,
  269         sizeof (struct wpi_softc)
  270 };
  271 
  272 static devclass_t wpi_devclass;
  273 
  274 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
  275 
  276 static const uint8_t wpi_ridx_to_plcp[] = {
  277         /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
  278         /* R1-R4 (ral/ural is R4-R1) */
  279         0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
  280         /* CCK: device-dependent */
  281         10, 20, 55, 110
  282 };
  283 static const uint8_t wpi_ridx_to_rate[] = {
  284         12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
  285         2, 4, 11, 22 /*CCK */
  286 };
  287 
  288 
  289 static int
  290 wpi_probe(device_t dev)
  291 {
  292         const struct wpi_ident *ident;
  293 
  294         for (ident = wpi_ident_table; ident->name != NULL; ident++) {
  295                 if (pci_get_vendor(dev) == ident->vendor &&
  296                     pci_get_device(dev) == ident->device) {
  297                         device_set_desc(dev, ident->name);
  298                         return 0;
  299                 }
  300         }
  301         return ENXIO;
  302 }
  303 
  304 /**
  305  * Load the firmare image from disk to the allocated dma buffer.
  306  * we also maintain the reference to the firmware pointer as there
  307  * is times where we may need to reload the firmware but we are not
  308  * in a context that can access the filesystem (ie taskq cause by restart)
  309  *
  310  * @return 0 on success, an errno on failure
  311  */
  312 static int
  313 wpi_load_firmware(struct wpi_softc *sc)
  314 {
  315         const struct firmware *fp;
  316         struct wpi_dma_info *dma = &sc->fw_dma;
  317         const struct wpi_firmware_hdr *hdr;
  318         const uint8_t *itext, *idata, *rtext, *rdata, *btext;
  319         uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
  320         int error;
  321 
  322         DPRINTFN(WPI_DEBUG_FIRMWARE,
  323             ("Attempting Loading Firmware from wpi_fw module\n"));
  324 
  325         WPI_UNLOCK(sc);
  326 
  327         if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
  328                 device_printf(sc->sc_dev,
  329                     "could not load firmware image 'wpifw'\n");
  330                 error = ENOENT;
  331                 WPI_LOCK(sc);
  332                 goto fail;
  333         }
  334 
  335         fp = sc->fw_fp;
  336 
  337         WPI_LOCK(sc);
  338 
  339         /* Validate the firmware is minimum a particular version */
  340         if (fp->version < WPI_FW_MINVERSION) {
  341             device_printf(sc->sc_dev,
  342                            "firmware version is too old. Need %d, got %d\n",
  343                            WPI_FW_MINVERSION,
  344                            fp->version);
  345             error = ENXIO;
  346             goto fail;
  347         }
  348 
  349         if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
  350                 device_printf(sc->sc_dev,
  351                     "firmware file too short: %zu bytes\n", fp->datasize);
  352                 error = ENXIO;
  353                 goto fail;
  354         }
  355 
  356         hdr = (const struct wpi_firmware_hdr *)fp->data;
  357 
  358         /*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
  359            |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
  360 
  361         rtextsz = le32toh(hdr->rtextsz);
  362         rdatasz = le32toh(hdr->rdatasz);
  363         itextsz = le32toh(hdr->itextsz);
  364         idatasz = le32toh(hdr->idatasz);
  365         btextsz = le32toh(hdr->btextsz);
  366 
  367         /* check that all firmware segments are present */
  368         if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
  369                 rtextsz + rdatasz + itextsz + idatasz + btextsz) {
  370                 device_printf(sc->sc_dev,
  371                     "firmware file too short: %zu bytes\n", fp->datasize);
  372                 error = ENXIO; /* XXX appropriate error code? */
  373                 goto fail;
  374         }
  375 
  376         /* get pointers to firmware segments */
  377         rtext = (const uint8_t *)(hdr + 1);
  378         rdata = rtext + rtextsz;
  379         itext = rdata + rdatasz;
  380         idata = itext + itextsz;
  381         btext = idata + idatasz;
  382 
  383         DPRINTFN(WPI_DEBUG_FIRMWARE,
  384             ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
  385              "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
  386              (le32toh(hdr->version) & 0xff000000) >> 24,
  387              (le32toh(hdr->version) & 0x00ff0000) >> 16,
  388              (le32toh(hdr->version) & 0x0000ffff),
  389              rtextsz, rdatasz,
  390              itextsz, idatasz, btextsz));
  391 
  392         DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
  393         DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
  394         DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
  395         DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
  396         DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
  397 
  398         /* sanity checks */
  399         if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
  400             rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
  401             itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
  402             idatasz > WPI_FW_INIT_DATA_MAXSZ ||
  403             btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
  404             (btextsz & 3) != 0) {
  405                 device_printf(sc->sc_dev, "firmware invalid\n");
  406                 error = EINVAL;
  407                 goto fail;
  408         }
  409 
  410         /* copy initialization images into pre-allocated DMA-safe memory */
  411         memcpy(dma->vaddr, idata, idatasz);
  412         memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
  413 
  414         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
  415 
  416         /* tell adapter where to find initialization images */
  417         wpi_mem_lock(sc);
  418         wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
  419         wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
  420         wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
  421             dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
  422         wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
  423         wpi_mem_unlock(sc);
  424 
  425         /* load firmware boot code */
  426         if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
  427             device_printf(sc->sc_dev, "Failed to load microcode\n");
  428             goto fail;
  429         }
  430 
  431         /* now press "execute" */
  432         WPI_WRITE(sc, WPI_RESET, 0);
  433 
  434         /* wait at most one second for the first alive notification */
  435         if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
  436                 device_printf(sc->sc_dev,
  437                     "timeout waiting for adapter to initialize\n");
  438                 goto fail;
  439         }
  440 
  441         /* copy runtime images into pre-allocated DMA-sage memory */
  442         memcpy(dma->vaddr, rdata, rdatasz);
  443         memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
  444         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
  445 
  446         /* tell adapter where to find runtime images */
  447         wpi_mem_lock(sc);
  448         wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
  449         wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
  450         wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
  451             dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
  452         wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
  453         wpi_mem_unlock(sc);
  454 
  455         /* wait at most one second for the first alive notification */
  456         if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
  457                 device_printf(sc->sc_dev,
  458                     "timeout waiting for adapter to initialize2\n");
  459                 goto fail;
  460         }
  461 
  462         DPRINTFN(WPI_DEBUG_FIRMWARE,
  463             ("Firmware loaded to driver successfully\n"));
  464         return error;
  465 fail:
  466         wpi_unload_firmware(sc);
  467         return error;
  468 }
  469 
  470 /**
  471  * Free the referenced firmware image
  472  */
  473 static void
  474 wpi_unload_firmware(struct wpi_softc *sc)
  475 {
  476 
  477         if (sc->fw_fp) {
  478                 WPI_UNLOCK(sc);
  479                 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
  480                 WPI_LOCK(sc);
  481                 sc->fw_fp = NULL;
  482         }
  483 }
  484 
  485 static int
  486 wpi_attach(device_t dev)
  487 {
  488         struct wpi_softc *sc = device_get_softc(dev);
  489         struct ifnet *ifp;
  490         struct ieee80211com *ic;
  491         int ac, error, supportsa = 1;
  492         uint32_t tmp;
  493         const struct wpi_ident *ident;
  494         uint8_t macaddr[IEEE80211_ADDR_LEN];
  495 
  496         sc->sc_dev = dev;
  497 
  498         if (bootverbose || WPI_DEBUG_SET)
  499             device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
  500 
  501         /*
  502          * Some card's only support 802.11b/g not a, check to see if
  503          * this is one such card. A 0x0 in the subdevice table indicates
  504          * the entire subdevice range is to be ignored.
  505          */
  506         for (ident = wpi_ident_table; ident->name != NULL; ident++) {
  507                 if (ident->subdevice &&
  508                     pci_get_subdevice(dev) == ident->subdevice) {
  509                     supportsa = 0;
  510                     break;
  511                 }
  512         }
  513 
  514         /* Create the tasks that can be queued */
  515         TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
  516         TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
  517 
  518         WPI_LOCK_INIT(sc);
  519 
  520         callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
  521         callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
  522 
  523         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
  524                 device_printf(dev, "chip is in D%d power mode "
  525                     "-- setting to D0\n", pci_get_powerstate(dev));
  526                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
  527         }
  528 
  529         /* disable the retry timeout register */
  530         pci_write_config(dev, 0x41, 0, 1);
  531 
  532         /* enable bus-mastering */
  533         pci_enable_busmaster(dev);
  534 
  535         sc->mem_rid = PCIR_BAR(0);
  536         sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
  537             RF_ACTIVE);
  538         if (sc->mem == NULL) {
  539                 device_printf(dev, "could not allocate memory resource\n");
  540                 error = ENOMEM;
  541                 goto fail;
  542         }
  543 
  544         sc->sc_st = rman_get_bustag(sc->mem);
  545         sc->sc_sh = rman_get_bushandle(sc->mem);
  546 
  547         sc->irq_rid = 0;
  548         sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
  549             RF_ACTIVE | RF_SHAREABLE);
  550         if (sc->irq == NULL) {
  551                 device_printf(dev, "could not allocate interrupt resource\n");
  552                 error = ENOMEM;
  553                 goto fail;
  554         }
  555 
  556         /*
  557          * Allocate DMA memory for firmware transfers.
  558          */
  559         if ((error = wpi_alloc_fwmem(sc)) != 0) {
  560                 printf(": could not allocate firmware memory\n");
  561                 error = ENOMEM;
  562                 goto fail;
  563         }
  564 
  565         /*
  566          * Put adapter into a known state.
  567          */
  568         if ((error = wpi_reset(sc)) != 0) {
  569                 device_printf(dev, "could not reset adapter\n");
  570                 goto fail;
  571         }
  572 
  573         wpi_mem_lock(sc);
  574         tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
  575         if (bootverbose || WPI_DEBUG_SET)
  576             device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
  577 
  578         wpi_mem_unlock(sc);
  579 
  580         /* Allocate shared page */
  581         if ((error = wpi_alloc_shared(sc)) != 0) {
  582                 device_printf(dev, "could not allocate shared page\n");
  583                 goto fail;
  584         }
  585 
  586         /* tx data queues  - 4 for QoS purposes */
  587         for (ac = 0; ac < WME_NUM_AC; ac++) {
  588                 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
  589                 if (error != 0) {
  590                     device_printf(dev, "could not allocate Tx ring %d\n",ac);
  591                     goto fail;
  592                 }
  593         }
  594 
  595         /* command queue to talk to the card's firmware */
  596         error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
  597         if (error != 0) {
  598                 device_printf(dev, "could not allocate command ring\n");
  599                 goto fail;
  600         }
  601 
  602         /* receive data queue */
  603         error = wpi_alloc_rx_ring(sc, &sc->rxq);
  604         if (error != 0) {
  605                 device_printf(dev, "could not allocate Rx ring\n");
  606                 goto fail;
  607         }
  608 
  609         ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
  610         if (ifp == NULL) {
  611                 device_printf(dev, "can not if_alloc()\n");
  612                 error = ENOMEM;
  613                 goto fail;
  614         }
  615         ic = ifp->if_l2com;
  616 
  617         ic->ic_ifp = ifp;
  618         ic->ic_phytype = IEEE80211_T_OFDM;      /* not only, but not used */
  619         ic->ic_opmode = IEEE80211_M_STA;        /* default to BSS mode */
  620 
  621         /* set device capabilities */
  622         ic->ic_caps =
  623                   IEEE80211_C_STA               /* station mode supported */
  624                 | IEEE80211_C_MONITOR           /* monitor mode supported */
  625                 | IEEE80211_C_TXPMGT            /* tx power management */
  626                 | IEEE80211_C_SHSLOT            /* short slot time supported */
  627                 | IEEE80211_C_SHPREAMBLE        /* short preamble supported */
  628                 | IEEE80211_C_WPA               /* 802.11i */
  629 /* XXX looks like WME is partly supported? */
  630 #if 0
  631                 | IEEE80211_C_IBSS              /* IBSS mode support */
  632                 | IEEE80211_C_BGSCAN            /* capable of bg scanning */
  633                 | IEEE80211_C_WME               /* 802.11e */
  634                 | IEEE80211_C_HOSTAP            /* Host access point mode */
  635 #endif
  636                 ;
  637 
  638         /*
  639          * Read in the eeprom and also setup the channels for
  640          * net80211. We don't set the rates as net80211 does this for us
  641          */
  642         wpi_read_eeprom(sc, macaddr);
  643 
  644         if (bootverbose || WPI_DEBUG_SET) {
  645             device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
  646             device_printf(sc->sc_dev, "Hardware Type: %c\n",
  647                           sc->type > 1 ? 'B': '?');
  648             device_printf(sc->sc_dev, "Hardware Revision: %c\n",
  649                           ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
  650             device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
  651                           supportsa ? "does" : "does not");
  652 
  653             /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
  654                what sc->rev really represents - benjsc 20070615 */
  655         }
  656 
  657         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
  658         ifp->if_softc = sc;
  659         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
  660         ifp->if_init = wpi_init;
  661         ifp->if_ioctl = wpi_ioctl;
  662         ifp->if_start = wpi_start;
  663         IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
  664         ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
  665         IFQ_SET_READY(&ifp->if_snd);
  666 
  667         ieee80211_ifattach(ic, macaddr);
  668         /* override default methods */
  669         ic->ic_raw_xmit = wpi_raw_xmit;
  670         ic->ic_wme.wme_update = wpi_wme_update;
  671         ic->ic_scan_start = wpi_scan_start;
  672         ic->ic_scan_end = wpi_scan_end;
  673         ic->ic_set_channel = wpi_set_channel;
  674         ic->ic_scan_curchan = wpi_scan_curchan;
  675         ic->ic_scan_mindwell = wpi_scan_mindwell;
  676 
  677         ic->ic_vap_create = wpi_vap_create;
  678         ic->ic_vap_delete = wpi_vap_delete;
  679 
  680         ieee80211_radiotap_attach(ic,
  681             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
  682                 WPI_TX_RADIOTAP_PRESENT,
  683             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
  684                 WPI_RX_RADIOTAP_PRESENT);
  685 
  686         /*
  687          * Hook our interrupt after all initialization is complete.
  688          */
  689         error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
  690             NULL, wpi_intr, sc, &sc->sc_ih);
  691         if (error != 0) {
  692                 device_printf(dev, "could not set up interrupt\n");
  693                 goto fail;
  694         }
  695 
  696         if (bootverbose)
  697                 ieee80211_announce(ic);
  698 #ifdef XXX_DEBUG
  699         ieee80211_announce_channels(ic);
  700 #endif
  701         return 0;
  702 
  703 fail:   wpi_detach(dev);
  704         return ENXIO;
  705 }
  706 
  707 static int
  708 wpi_detach(device_t dev)
  709 {
  710         struct wpi_softc *sc = device_get_softc(dev);
  711         struct ifnet *ifp = sc->sc_ifp;
  712         struct ieee80211com *ic;
  713         int ac;
  714 
  715         if (ifp != NULL) {
  716                 ic = ifp->if_l2com;
  717 
  718                 ieee80211_draintask(ic, &sc->sc_restarttask);
  719                 ieee80211_draintask(ic, &sc->sc_radiotask);
  720                 wpi_stop(sc);
  721                 callout_drain(&sc->watchdog_to);
  722                 callout_drain(&sc->calib_to);
  723                 ieee80211_ifdetach(ic);
  724         }
  725 
  726         WPI_LOCK(sc);
  727         if (sc->txq[0].data_dmat) {
  728                 for (ac = 0; ac < WME_NUM_AC; ac++)
  729                         wpi_free_tx_ring(sc, &sc->txq[ac]);
  730 
  731                 wpi_free_tx_ring(sc, &sc->cmdq);
  732                 wpi_free_rx_ring(sc, &sc->rxq);
  733                 wpi_free_shared(sc);
  734         }
  735 
  736         if (sc->fw_fp != NULL) {
  737                 wpi_unload_firmware(sc);
  738         }
  739 
  740         if (sc->fw_dma.tag)
  741                 wpi_free_fwmem(sc);
  742         WPI_UNLOCK(sc);
  743 
  744         if (sc->irq != NULL) {
  745                 bus_teardown_intr(dev, sc->irq, sc->sc_ih);
  746                 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
  747         }
  748 
  749         if (sc->mem != NULL)
  750                 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
  751 
  752         if (ifp != NULL)
  753                 if_free(ifp);
  754 
  755         WPI_LOCK_DESTROY(sc);
  756 
  757         return 0;
  758 }
  759 
  760 static struct ieee80211vap *
  761 wpi_vap_create(struct ieee80211com *ic,
  762         const char name[IFNAMSIZ], int unit, int opmode, int flags,
  763         const uint8_t bssid[IEEE80211_ADDR_LEN],
  764         const uint8_t mac[IEEE80211_ADDR_LEN])
  765 {
  766         struct wpi_vap *wvp;
  767         struct ieee80211vap *vap;
  768 
  769         if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
  770                 return NULL;
  771         wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
  772             M_80211_VAP, M_NOWAIT | M_ZERO);
  773         if (wvp == NULL)
  774                 return NULL;
  775         vap = &wvp->vap;
  776         ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
  777         /* override with driver methods */
  778         wvp->newstate = vap->iv_newstate;
  779         vap->iv_newstate = wpi_newstate;
  780 
  781         ieee80211_ratectl_init(vap);
  782         /* complete setup */
  783         ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
  784         ic->ic_opmode = opmode;
  785         return vap;
  786 }
  787 
  788 static void
  789 wpi_vap_delete(struct ieee80211vap *vap)
  790 {
  791         struct wpi_vap *wvp = WPI_VAP(vap);
  792 
  793         ieee80211_ratectl_deinit(vap);
  794         ieee80211_vap_detach(vap);
  795         free(wvp, M_80211_VAP);
  796 }
  797 
  798 static void
  799 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
  800 {
  801         if (error != 0)
  802                 return;
  803 
  804         KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
  805 
  806         *(bus_addr_t *)arg = segs[0].ds_addr;
  807 }
  808 
  809 /*
  810  * Allocates a contiguous block of dma memory of the requested size and
  811  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
  812  * allocations greater than 4096 may fail. Hence if the requested alignment is
  813  * greater we allocate 'alignment' size extra memory and shift the vaddr and
  814  * paddr after the dma load. This bypasses the problem at the cost of a little
  815  * more memory.
  816  */
  817 static int
  818 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
  819     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
  820 {
  821         int error;
  822         bus_size_t align;
  823         bus_size_t reqsize;
  824 
  825         DPRINTFN(WPI_DEBUG_DMA,
  826             ("Size: %zd - alignment %zd\n", size, alignment));
  827 
  828         dma->size = size;
  829         dma->tag = NULL;
  830 
  831         if (alignment > 4096) {
  832                 align = PAGE_SIZE;
  833                 reqsize = size + alignment;
  834         } else {
  835                 align = alignment;
  836                 reqsize = size;
  837         }
  838         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
  839             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
  840             NULL, NULL, reqsize,
  841             1, reqsize, flags,
  842             NULL, NULL, &dma->tag);
  843         if (error != 0) {
  844                 device_printf(sc->sc_dev,
  845                     "could not create shared page DMA tag\n");
  846                 goto fail;
  847         }
  848         error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
  849             flags | BUS_DMA_ZERO, &dma->map);
  850         if (error != 0) {
  851                 device_printf(sc->sc_dev,
  852                     "could not allocate shared page DMA memory\n");
  853                 goto fail;
  854         }
  855 
  856         error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
  857             reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
  858 
  859         /* Save the original pointers so we can free all the memory */
  860         dma->paddr = dma->paddr_start;
  861         dma->vaddr = dma->vaddr_start;
  862 
  863         /*
  864          * Check the alignment and increment by 4096 until we get the
  865          * requested alignment. Fail if can't obtain the alignment
  866          * we requested.
  867          */
  868         if ((dma->paddr & (alignment -1 )) != 0) {
  869                 int i;
  870 
  871                 for (i = 0; i < alignment / 4096; i++) {
  872                         if ((dma->paddr & (alignment - 1 )) == 0)
  873                                 break;
  874                         dma->paddr += 4096;
  875                         dma->vaddr += 4096;
  876                 }
  877                 if (i == alignment / 4096) {
  878                         device_printf(sc->sc_dev,
  879                             "alignment requirement was not satisfied\n");
  880                         goto fail;
  881                 }
  882         }
  883 
  884         if (error != 0) {
  885                 device_printf(sc->sc_dev,
  886                     "could not load shared page DMA map\n");
  887                 goto fail;
  888         }
  889 
  890         if (kvap != NULL)
  891                 *kvap = dma->vaddr;
  892 
  893         return 0;
  894 
  895 fail:
  896         wpi_dma_contig_free(dma);
  897         return error;
  898 }
  899 
  900 static void
  901 wpi_dma_contig_free(struct wpi_dma_info *dma)
  902 {
  903         if (dma->tag) {
  904                 if (dma->map != NULL) {
  905                         if (dma->paddr_start != 0) {
  906                                 bus_dmamap_sync(dma->tag, dma->map,
  907                                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
  908                                 bus_dmamap_unload(dma->tag, dma->map);
  909                         }
  910                         bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
  911                 }
  912                 bus_dma_tag_destroy(dma->tag);
  913         }
  914 }
  915 
  916 /*
  917  * Allocate a shared page between host and NIC.
  918  */
  919 static int
  920 wpi_alloc_shared(struct wpi_softc *sc)
  921 {
  922         int error;
  923 
  924         error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
  925             (void **)&sc->shared, sizeof (struct wpi_shared),
  926             PAGE_SIZE,
  927             BUS_DMA_NOWAIT);
  928 
  929         if (error != 0) {
  930                 device_printf(sc->sc_dev,
  931                     "could not allocate shared area DMA memory\n");
  932         }
  933 
  934         return error;
  935 }
  936 
  937 static void
  938 wpi_free_shared(struct wpi_softc *sc)
  939 {
  940         wpi_dma_contig_free(&sc->shared_dma);
  941 }
  942 
  943 static int
  944 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
  945 {
  946 
  947         int i, error;
  948 
  949         ring->cur = 0;
  950 
  951         error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
  952             (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
  953             WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
  954 
  955         if (error != 0) {
  956                 device_printf(sc->sc_dev,
  957                     "%s: could not allocate rx ring DMA memory, error %d\n",
  958                     __func__, error);
  959                 goto fail;
  960         }
  961 
  962         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 
  963             BUS_SPACE_MAXADDR_32BIT,
  964             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
  965             MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
  966         if (error != 0) {
  967                 device_printf(sc->sc_dev,
  968                     "%s: bus_dma_tag_create_failed, error %d\n",
  969                     __func__, error);
  970                 goto fail;
  971         }
  972 
  973         /*
  974          * Setup Rx buffers.
  975          */
  976         for (i = 0; i < WPI_RX_RING_COUNT; i++) {
  977                 struct wpi_rx_data *data = &ring->data[i];
  978                 struct mbuf *m;
  979                 bus_addr_t paddr;
  980 
  981                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
  982                 if (error != 0) {
  983                         device_printf(sc->sc_dev,
  984                             "%s: bus_dmamap_create failed, error %d\n",
  985                             __func__, error);
  986                         goto fail;
  987                 }
  988                 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
  989                 if (m == NULL) {
  990                         device_printf(sc->sc_dev,
  991                            "%s: could not allocate rx mbuf\n", __func__);
  992                         error = ENOMEM;
  993                         goto fail;
  994                 }
  995                 /* map page */
  996                 error = bus_dmamap_load(ring->data_dmat, data->map,
  997                     mtod(m, caddr_t), MJUMPAGESIZE,
  998                     wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
  999                 if (error != 0 && error != EFBIG) {
 1000                         device_printf(sc->sc_dev,
 1001                             "%s: bus_dmamap_load failed, error %d\n",
 1002                             __func__, error);
 1003                         m_freem(m);
 1004                         error = ENOMEM; /* XXX unique code */
 1005                         goto fail;
 1006                 }
 1007                 bus_dmamap_sync(ring->data_dmat, data->map, 
 1008                     BUS_DMASYNC_PREWRITE);
 1009 
 1010                 data->m = m;
 1011                 ring->desc[i] = htole32(paddr);
 1012         }
 1013         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
 1014             BUS_DMASYNC_PREWRITE);
 1015         return 0;
 1016 fail:
 1017         wpi_free_rx_ring(sc, ring);
 1018         return error;
 1019 }
 1020 
 1021 static void
 1022 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
 1023 {
 1024         int ntries;
 1025 
 1026         wpi_mem_lock(sc);
 1027 
 1028         WPI_WRITE(sc, WPI_RX_CONFIG, 0);
 1029 
 1030         for (ntries = 0; ntries < 100; ntries++) {
 1031                 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
 1032                         break;
 1033                 DELAY(10);
 1034         }
 1035 
 1036         wpi_mem_unlock(sc);
 1037 
 1038 #ifdef WPI_DEBUG
 1039         if (ntries == 100 && wpi_debug > 0)
 1040                 device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
 1041 #endif
 1042 
 1043         ring->cur = 0;
 1044 }
 1045 
 1046 static void
 1047 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
 1048 {
 1049         int i;
 1050 
 1051         wpi_dma_contig_free(&ring->desc_dma);
 1052 
 1053         for (i = 0; i < WPI_RX_RING_COUNT; i++) {
 1054                 struct wpi_rx_data *data = &ring->data[i];
 1055 
 1056                 if (data->m != NULL) {
 1057                         bus_dmamap_sync(ring->data_dmat, data->map,
 1058                             BUS_DMASYNC_POSTREAD);
 1059                         bus_dmamap_unload(ring->data_dmat, data->map);
 1060                         m_freem(data->m);
 1061                 }
 1062                 if (data->map != NULL)
 1063                         bus_dmamap_destroy(ring->data_dmat, data->map);
 1064         }
 1065 }
 1066 
 1067 static int
 1068 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
 1069         int qid)
 1070 {
 1071         struct wpi_tx_data *data;
 1072         int i, error;
 1073 
 1074         ring->qid = qid;
 1075         ring->count = count;
 1076         ring->queued = 0;
 1077         ring->cur = 0;
 1078         ring->data = NULL;
 1079 
 1080         error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
 1081                 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
 1082                 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
 1083 
 1084         if (error != 0) {
 1085             device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
 1086             goto fail;
 1087         }
 1088 
 1089         /* update shared page with ring's base address */
 1090         sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
 1091 
 1092         error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
 1093                 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
 1094                 BUS_DMA_NOWAIT);
 1095 
 1096         if (error != 0) {
 1097                 device_printf(sc->sc_dev,
 1098                     "could not allocate tx command DMA memory\n");
 1099                 goto fail;
 1100         }
 1101 
 1102         ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
 1103             M_NOWAIT | M_ZERO);
 1104         if (ring->data == NULL) {
 1105                 device_printf(sc->sc_dev,
 1106                     "could not allocate tx data slots\n");
 1107                 goto fail;
 1108         }
 1109 
 1110         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
 1111             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
 1112             WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
 1113             &ring->data_dmat);
 1114         if (error != 0) {
 1115                 device_printf(sc->sc_dev, "could not create data DMA tag\n");
 1116                 goto fail;
 1117         }
 1118 
 1119         for (i = 0; i < count; i++) {
 1120                 data = &ring->data[i];
 1121 
 1122                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
 1123                 if (error != 0) {
 1124                         device_printf(sc->sc_dev,
 1125                             "could not create tx buf DMA map\n");
 1126                         goto fail;
 1127                 }
 1128                 bus_dmamap_sync(ring->data_dmat, data->map,
 1129                     BUS_DMASYNC_PREWRITE);
 1130         }
 1131 
 1132         return 0;
 1133 
 1134 fail:
 1135         wpi_free_tx_ring(sc, ring);
 1136         return error;
 1137 }
 1138 
 1139 static void
 1140 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
 1141 {
 1142         struct wpi_tx_data *data;
 1143         int i, ntries;
 1144 
 1145         wpi_mem_lock(sc);
 1146 
 1147         WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
 1148         for (ntries = 0; ntries < 100; ntries++) {
 1149                 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
 1150                         break;
 1151                 DELAY(10);
 1152         }
 1153 #ifdef WPI_DEBUG
 1154         if (ntries == 100 && wpi_debug > 0)
 1155                 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
 1156                     ring->qid);
 1157 #endif
 1158         wpi_mem_unlock(sc);
 1159 
 1160         for (i = 0; i < ring->count; i++) {
 1161                 data = &ring->data[i];
 1162 
 1163                 if (data->m != NULL) {
 1164                         bus_dmamap_unload(ring->data_dmat, data->map);
 1165                         m_freem(data->m);
 1166                         data->m = NULL;
 1167                 }
 1168         }
 1169 
 1170         ring->queued = 0;
 1171         ring->cur = 0;
 1172 }
 1173 
 1174 static void
 1175 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
 1176 {
 1177         struct wpi_tx_data *data;
 1178         int i;
 1179 
 1180         wpi_dma_contig_free(&ring->desc_dma);
 1181         wpi_dma_contig_free(&ring->cmd_dma);
 1182 
 1183         if (ring->data != NULL) {
 1184                 for (i = 0; i < ring->count; i++) {
 1185                         data = &ring->data[i];
 1186 
 1187                         if (data->m != NULL) {
 1188                                 bus_dmamap_sync(ring->data_dmat, data->map,
 1189                                     BUS_DMASYNC_POSTWRITE);
 1190                                 bus_dmamap_unload(ring->data_dmat, data->map);
 1191                                 m_freem(data->m);
 1192                                 data->m = NULL;
 1193                         }
 1194                 }
 1195                 free(ring->data, M_DEVBUF);
 1196         }
 1197 
 1198         if (ring->data_dmat != NULL)
 1199                 bus_dma_tag_destroy(ring->data_dmat);
 1200 }
 1201 
 1202 static int
 1203 wpi_shutdown(device_t dev)
 1204 {
 1205         struct wpi_softc *sc = device_get_softc(dev);
 1206 
 1207         WPI_LOCK(sc);
 1208         wpi_stop_locked(sc);
 1209         wpi_unload_firmware(sc);
 1210         WPI_UNLOCK(sc);
 1211 
 1212         return 0;
 1213 }
 1214 
 1215 static int
 1216 wpi_suspend(device_t dev)
 1217 {
 1218         struct wpi_softc *sc = device_get_softc(dev);
 1219         struct ieee80211com *ic = sc->sc_ifp->if_l2com;
 1220 
 1221         ieee80211_suspend_all(ic);
 1222         return 0;
 1223 }
 1224 
 1225 static int
 1226 wpi_resume(device_t dev)
 1227 {
 1228         struct wpi_softc *sc = device_get_softc(dev);
 1229         struct ieee80211com *ic = sc->sc_ifp->if_l2com;
 1230 
 1231         pci_write_config(dev, 0x41, 0, 1);
 1232 
 1233         ieee80211_resume_all(ic);
 1234         return 0;
 1235 }
 1236 
 1237 /**
 1238  * Called by net80211 when ever there is a change to 80211 state machine
 1239  */
 1240 static int
 1241 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
 1242 {
 1243         struct wpi_vap *wvp = WPI_VAP(vap);
 1244         struct ieee80211com *ic = vap->iv_ic;
 1245         struct ifnet *ifp = ic->ic_ifp;
 1246         struct wpi_softc *sc = ifp->if_softc;
 1247         int error;
 1248 
 1249         DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
 1250                 ieee80211_state_name[vap->iv_state],
 1251                 ieee80211_state_name[nstate], sc->flags));
 1252 
 1253         IEEE80211_UNLOCK(ic);
 1254         WPI_LOCK(sc);
 1255         if (nstate == IEEE80211_S_SCAN && vap->iv_state != IEEE80211_S_INIT) {
 1256                 /*
 1257                  * On !INIT -> SCAN transitions, we need to clear any possible
 1258                  * knowledge about associations.
 1259                  */
 1260                 error = wpi_config(sc);
 1261                 if (error != 0) {
 1262                         device_printf(sc->sc_dev,
 1263                             "%s: device config failed, error %d\n",
 1264                             __func__, error);
 1265                 }
 1266         }
 1267         if (nstate == IEEE80211_S_AUTH ||
 1268             (nstate == IEEE80211_S_ASSOC && vap->iv_state == IEEE80211_S_RUN)) {
 1269                 /*
 1270                  * The node must be registered in the firmware before auth.
 1271                  * Also the associd must be cleared on RUN -> ASSOC
 1272                  * transitions.
 1273                  */
 1274                 error = wpi_auth(sc, vap);
 1275                 if (error != 0) {
 1276                         device_printf(sc->sc_dev,
 1277                             "%s: could not move to auth state, error %d\n",
 1278                             __func__, error);
 1279                 }
 1280         }
 1281         if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
 1282                 error = wpi_run(sc, vap);
 1283                 if (error != 0) {
 1284                         device_printf(sc->sc_dev,
 1285                             "%s: could not move to run state, error %d\n",
 1286                             __func__, error);
 1287                 }
 1288         }
 1289         if (nstate == IEEE80211_S_RUN) {
 1290                 /* RUN -> RUN transition; just restart the timers */
 1291                 wpi_calib_timeout(sc);
 1292                 /* XXX split out rate control timer */
 1293         }
 1294         WPI_UNLOCK(sc);
 1295         IEEE80211_LOCK(ic);
 1296         return wvp->newstate(vap, nstate, arg);
 1297 }
 1298 
 1299 /*
 1300  * Grab exclusive access to NIC memory.
 1301  */
 1302 static void
 1303 wpi_mem_lock(struct wpi_softc *sc)
 1304 {
 1305         int ntries;
 1306         uint32_t tmp;
 1307 
 1308         tmp = WPI_READ(sc, WPI_GPIO_CTL);
 1309         WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
 1310 
 1311         /* spin until we actually get the lock */
 1312         for (ntries = 0; ntries < 100; ntries++) {
 1313                 if ((WPI_READ(sc, WPI_GPIO_CTL) &
 1314                         (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
 1315                         break;
 1316                 DELAY(10);
 1317         }
 1318         if (ntries == 100)
 1319                 device_printf(sc->sc_dev, "could not lock memory\n");
 1320 }
 1321 
 1322 /*
 1323  * Release lock on NIC memory.
 1324  */
 1325 static void
 1326 wpi_mem_unlock(struct wpi_softc *sc)
 1327 {
 1328         uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
 1329         WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
 1330 }
 1331 
 1332 static uint32_t
 1333 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
 1334 {
 1335         WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
 1336         return WPI_READ(sc, WPI_READ_MEM_DATA);
 1337 }
 1338 
 1339 static void
 1340 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
 1341 {
 1342         WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
 1343         WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
 1344 }
 1345 
 1346 static void
 1347 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
 1348     const uint32_t *data, int wlen)
 1349 {
 1350         for (; wlen > 0; wlen--, data++, addr+=4)
 1351                 wpi_mem_write(sc, addr, *data);
 1352 }
 1353 
 1354 /*
 1355  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
 1356  * using the traditional bit-bang method. Data is read up until len bytes have
 1357  * been obtained.
 1358  */
 1359 static uint16_t
 1360 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
 1361 {
 1362         int ntries;
 1363         uint32_t val;
 1364         uint8_t *out = data;
 1365 
 1366         wpi_mem_lock(sc);
 1367 
 1368         for (; len > 0; len -= 2, addr++) {
 1369                 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
 1370 
 1371                 for (ntries = 0; ntries < 10; ntries++) {
 1372                         if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
 1373                                 break;
 1374                         DELAY(5);
 1375                 }
 1376 
 1377                 if (ntries == 10) {
 1378                         device_printf(sc->sc_dev, "could not read EEPROM\n");
 1379                         return ETIMEDOUT;
 1380                 }
 1381 
 1382                 *out++= val >> 16;
 1383                 if (len > 1)
 1384                         *out ++= val >> 24;
 1385         }
 1386 
 1387         wpi_mem_unlock(sc);
 1388 
 1389         return 0;
 1390 }
 1391 
 1392 /*
 1393  * The firmware text and data segments are transferred to the NIC using DMA.
 1394  * The driver just copies the firmware into DMA-safe memory and tells the NIC
 1395  * where to find it.  Once the NIC has copied the firmware into its internal
 1396  * memory, we can free our local copy in the driver.
 1397  */
 1398 static int
 1399 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
 1400 {
 1401         int error, ntries;
 1402 
 1403         DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
 1404 
 1405         size /= sizeof(uint32_t);
 1406 
 1407         wpi_mem_lock(sc);
 1408 
 1409         wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
 1410             (const uint32_t *)fw, size);
 1411 
 1412         wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
 1413         wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
 1414         wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
 1415 
 1416         /* run microcode */
 1417         wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
 1418 
 1419         /* wait while the adapter is busy copying the firmware */
 1420         for (error = 0, ntries = 0; ntries < 1000; ntries++) {
 1421                 uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
 1422                 DPRINTFN(WPI_DEBUG_HW,
 1423                     ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
 1424                      WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
 1425                 if (status & WPI_TX_IDLE(6)) {
 1426                         DPRINTFN(WPI_DEBUG_HW,
 1427                             ("Status Match! - ntries = %d\n", ntries));
 1428                         break;
 1429                 }
 1430                 DELAY(10);
 1431         }
 1432         if (ntries == 1000) {
 1433                 device_printf(sc->sc_dev, "timeout transferring firmware\n");
 1434                 error = ETIMEDOUT;
 1435         }
 1436 
 1437         /* start the microcode executing */
 1438         wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
 1439 
 1440         wpi_mem_unlock(sc);
 1441 
 1442         return (error);
 1443 }
 1444 
 1445 static void
 1446 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
 1447         struct wpi_rx_data *data)
 1448 {
 1449         struct ifnet *ifp = sc->sc_ifp;
 1450         struct ieee80211com *ic = ifp->if_l2com;
 1451         struct wpi_rx_ring *ring = &sc->rxq;
 1452         struct wpi_rx_stat *stat;
 1453         struct wpi_rx_head *head;
 1454         struct wpi_rx_tail *tail;
 1455         struct ieee80211_node *ni;
 1456         struct mbuf *m, *mnew;
 1457         bus_addr_t paddr;
 1458         int error;
 1459 
 1460         stat = (struct wpi_rx_stat *)(desc + 1);
 1461 
 1462         if (stat->len > WPI_STAT_MAXLEN) {
 1463                 device_printf(sc->sc_dev, "invalid rx statistic header\n");
 1464                 ifp->if_ierrors++;
 1465                 return;
 1466         }
 1467 
 1468         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
 1469         head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
 1470         tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
 1471 
 1472         DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
 1473             "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
 1474             le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
 1475             (uintmax_t)le64toh(tail->tstamp)));
 1476 
 1477         /* discard Rx frames with bad CRC early */
 1478         if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
 1479                 DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
 1480                     le32toh(tail->flags)));
 1481                 ifp->if_ierrors++;
 1482                 return;
 1483         }
 1484         if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
 1485                 DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
 1486                     le16toh(head->len)));
 1487                 ifp->if_ierrors++;
 1488                 return;
 1489         }
 1490 
 1491         /* XXX don't need mbuf, just dma buffer */
 1492         mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
 1493         if (mnew == NULL) {
 1494                 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
 1495                     __func__));
 1496                 ifp->if_ierrors++;
 1497                 return;
 1498         }
 1499         bus_dmamap_unload(ring->data_dmat, data->map);
 1500 
 1501         error = bus_dmamap_load(ring->data_dmat, data->map,
 1502             mtod(mnew, caddr_t), MJUMPAGESIZE,
 1503             wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
 1504         if (error != 0 && error != EFBIG) {
 1505                 device_printf(sc->sc_dev,
 1506                     "%s: bus_dmamap_load failed, error %d\n", __func__, error);
 1507                 m_freem(mnew);
 1508                 ifp->if_ierrors++;
 1509                 return;
 1510         }
 1511         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
 1512 
 1513         /* finalize mbuf and swap in new one */
 1514         m = data->m;
 1515         m->m_pkthdr.rcvif = ifp;
 1516         m->m_data = (caddr_t)(head + 1);
 1517         m->m_pkthdr.len = m->m_len = le16toh(head->len);
 1518 
 1519         data->m = mnew;
 1520         /* update Rx descriptor */
 1521         ring->desc[ring->cur] = htole32(paddr);
 1522 
 1523         if (ieee80211_radiotap_active(ic)) {
 1524                 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
 1525 
 1526                 tap->wr_flags = 0;
 1527                 tap->wr_chan_freq =
 1528                         htole16(ic->ic_channels[head->chan].ic_freq);
 1529                 tap->wr_chan_flags =
 1530                         htole16(ic->ic_channels[head->chan].ic_flags);
 1531                 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
 1532                 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
 1533                 tap->wr_tsft = tail->tstamp;
 1534                 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
 1535                 switch (head->rate) {
 1536                 /* CCK rates */
 1537                 case  10: tap->wr_rate =   2; break;
 1538                 case  20: tap->wr_rate =   4; break;
 1539                 case  55: tap->wr_rate =  11; break;
 1540                 case 110: tap->wr_rate =  22; break;
 1541                 /* OFDM rates */
 1542                 case 0xd: tap->wr_rate =  12; break;
 1543                 case 0xf: tap->wr_rate =  18; break;
 1544                 case 0x5: tap->wr_rate =  24; break;
 1545                 case 0x7: tap->wr_rate =  36; break;
 1546                 case 0x9: tap->wr_rate =  48; break;
 1547                 case 0xb: tap->wr_rate =  72; break;
 1548                 case 0x1: tap->wr_rate =  96; break;
 1549                 case 0x3: tap->wr_rate = 108; break;
 1550                 /* unknown rate: should not happen */
 1551                 default:  tap->wr_rate =   0;
 1552                 }
 1553                 if (le16toh(head->flags) & 0x4)
 1554                         tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
 1555         }
 1556 
 1557         WPI_UNLOCK(sc);
 1558 
 1559         ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
 1560         if (ni != NULL) {
 1561                 (void) ieee80211_input(ni, m, stat->rssi, 0);
 1562                 ieee80211_free_node(ni);
 1563         } else
 1564                 (void) ieee80211_input_all(ic, m, stat->rssi, 0);
 1565 
 1566         WPI_LOCK(sc);
 1567 }
 1568 
 1569 static void
 1570 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
 1571 {
 1572         struct ifnet *ifp = sc->sc_ifp;
 1573         struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
 1574         struct wpi_tx_data *txdata = &ring->data[desc->idx];
 1575         struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
 1576         struct ieee80211_node *ni = txdata->ni;
 1577         struct ieee80211vap *vap = ni->ni_vap;
 1578         int retrycnt = 0;
 1579 
 1580         DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
 1581             "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
 1582             stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
 1583             le32toh(stat->status)));
 1584 
 1585         /*
 1586          * Update rate control statistics for the node.
 1587          * XXX we should not count mgmt frames since they're always sent at
 1588          * the lowest available bit-rate.
 1589          * XXX frames w/o ACK shouldn't be used either
 1590          */
 1591         if (stat->ntries > 0) {
 1592                 DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
 1593                 retrycnt = 1;
 1594         }
 1595         ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
 1596             &retrycnt, NULL);
 1597 
 1598         /* XXX oerrors should only count errors !maxtries */
 1599         if ((le32toh(stat->status) & 0xff) != 1)
 1600                 ifp->if_oerrors++;
 1601         else
 1602                 ifp->if_opackets++;
 1603 
 1604         bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
 1605         bus_dmamap_unload(ring->data_dmat, txdata->map);
 1606         /* XXX handle M_TXCB? */
 1607         m_freem(txdata->m);
 1608         txdata->m = NULL;
 1609         ieee80211_free_node(txdata->ni);
 1610         txdata->ni = NULL;
 1611 
 1612         ring->queued--;
 1613 
 1614         sc->sc_tx_timer = 0;
 1615         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 1616         wpi_start_locked(ifp);
 1617 }
 1618 
 1619 static void
 1620 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
 1621 {
 1622         struct wpi_tx_ring *ring = &sc->cmdq;
 1623         struct wpi_tx_data *data;
 1624 
 1625         DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
 1626                                  "type=%s len=%d\n", desc->qid, desc->idx,
 1627                                  desc->flags, wpi_cmd_str(desc->type),
 1628                                  le32toh(desc->len)));
 1629 
 1630         if ((desc->qid & 7) != 4)
 1631                 return; /* not a command ack */
 1632 
 1633         data = &ring->data[desc->idx];
 1634 
 1635         /* if the command was mapped in a mbuf, free it */
 1636         if (data->m != NULL) {
 1637                 bus_dmamap_unload(ring->data_dmat, data->map);
 1638                 m_freem(data->m);
 1639                 data->m = NULL;
 1640         }
 1641 
 1642         sc->flags &= ~WPI_FLAG_BUSY;
 1643         wakeup(&ring->cmd[desc->idx]);
 1644 }
 1645 
 1646 static void
 1647 wpi_notif_intr(struct wpi_softc *sc)
 1648 {
 1649         struct ifnet *ifp = sc->sc_ifp;
 1650         struct ieee80211com *ic = ifp->if_l2com;
 1651         struct wpi_rx_desc *desc;
 1652         struct wpi_rx_data *data;
 1653         uint32_t hw;
 1654 
 1655         bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
 1656             BUS_DMASYNC_POSTREAD);
 1657 
 1658         hw = le32toh(sc->shared->next);
 1659         while (sc->rxq.cur != hw) {
 1660                 data = &sc->rxq.data[sc->rxq.cur];
 1661 
 1662                 bus_dmamap_sync(sc->rxq.data_dmat, data->map,
 1663                     BUS_DMASYNC_POSTREAD);
 1664                 desc = (void *)data->m->m_ext.ext_buf;
 1665 
 1666                 DPRINTFN(WPI_DEBUG_NOTIFY,
 1667                          ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
 1668                           desc->qid,
 1669                           desc->idx,
 1670                           desc->flags,
 1671                           desc->type,
 1672                           le32toh(desc->len)));
 1673 
 1674                 if (!(desc->qid & 0x80))        /* reply to a command */
 1675                         wpi_cmd_intr(sc, desc);
 1676 
 1677                 switch (desc->type) {
 1678                 case WPI_RX_DONE:
 1679                         /* a 802.11 frame was received */
 1680                         wpi_rx_intr(sc, desc, data);
 1681                         break;
 1682 
 1683                 case WPI_TX_DONE:
 1684                         /* a 802.11 frame has been transmitted */
 1685                         wpi_tx_intr(sc, desc);
 1686                         break;
 1687 
 1688                 case WPI_UC_READY:
 1689                 {
 1690                         struct wpi_ucode_info *uc =
 1691                                 (struct wpi_ucode_info *)(desc + 1);
 1692 
 1693                         /* the microcontroller is ready */
 1694                         DPRINTF(("microcode alive notification version %x "
 1695                                 "alive %x\n", le32toh(uc->version),
 1696                                 le32toh(uc->valid)));
 1697 
 1698                         if (le32toh(uc->valid) != 1) {
 1699                                 device_printf(sc->sc_dev,
 1700                                     "microcontroller initialization failed\n");
 1701                                 wpi_stop_locked(sc);
 1702                         }
 1703                         break;
 1704                 }
 1705                 case WPI_STATE_CHANGED:
 1706                 {
 1707                         uint32_t *status = (uint32_t *)(desc + 1);
 1708 
 1709                         /* enabled/disabled notification */
 1710                         DPRINTF(("state changed to %x\n", le32toh(*status)));
 1711 
 1712                         if (le32toh(*status) & 1) {
 1713                                 device_printf(sc->sc_dev,
 1714                                     "Radio transmitter is switched off\n");
 1715                                 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
 1716                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1717                                 /* Disable firmware commands */
 1718                                 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
 1719                         }
 1720                         break;
 1721                 }
 1722                 case WPI_START_SCAN:
 1723                 {
 1724 #ifdef WPI_DEBUG
 1725                         struct wpi_start_scan *scan =
 1726                                 (struct wpi_start_scan *)(desc + 1);
 1727 #endif
 1728 
 1729                         DPRINTFN(WPI_DEBUG_SCANNING,
 1730                                  ("scanning channel %d status %x\n",
 1731                             scan->chan, le32toh(scan->status)));
 1732                         break;
 1733                 }
 1734                 case WPI_STOP_SCAN:
 1735                 {
 1736 #ifdef WPI_DEBUG
 1737                         struct wpi_stop_scan *scan =
 1738                                 (struct wpi_stop_scan *)(desc + 1);
 1739 #endif
 1740                         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 1741 
 1742                         DPRINTFN(WPI_DEBUG_SCANNING,
 1743                             ("scan finished nchan=%d status=%d chan=%d\n",
 1744                              scan->nchan, scan->status, scan->chan));
 1745 
 1746                         sc->sc_scan_timer = 0;
 1747                         ieee80211_scan_next(vap);
 1748                         break;
 1749                 }
 1750                 case WPI_MISSED_BEACON:
 1751                 {
 1752                         struct wpi_missed_beacon *beacon =
 1753                                 (struct wpi_missed_beacon *)(desc + 1);
 1754                         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 1755 
 1756                         if (le32toh(beacon->consecutive) >=
 1757                             vap->iv_bmissthreshold) {
 1758                                 DPRINTF(("Beacon miss: %u >= %u\n",
 1759                                          le32toh(beacon->consecutive),
 1760                                          vap->iv_bmissthreshold));
 1761                                 ieee80211_beacon_miss(ic);
 1762                         }
 1763                         break;
 1764                 }
 1765                 }
 1766 
 1767                 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
 1768         }
 1769 
 1770         /* tell the firmware what we have processed */
 1771         hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
 1772         WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
 1773 }
 1774 
 1775 static void
 1776 wpi_intr(void *arg)
 1777 {
 1778         struct wpi_softc *sc = arg;
 1779         uint32_t r;
 1780 
 1781         WPI_LOCK(sc);
 1782 
 1783         r = WPI_READ(sc, WPI_INTR);
 1784         if (r == 0 || r == 0xffffffff) {
 1785                 WPI_UNLOCK(sc);
 1786                 return;
 1787         }
 1788 
 1789         /* disable interrupts */
 1790         WPI_WRITE(sc, WPI_MASK, 0);
 1791         /* ack interrupts */
 1792         WPI_WRITE(sc, WPI_INTR, r);
 1793 
 1794         if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
 1795                 struct ifnet *ifp = sc->sc_ifp;
 1796                 struct ieee80211com *ic = ifp->if_l2com;
 1797                 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 1798 
 1799                 device_printf(sc->sc_dev, "fatal firmware error\n");
 1800                 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
 1801                                 "(Hardware Error)"));
 1802                 if (vap != NULL)
 1803                         ieee80211_cancel_scan(vap);
 1804                 ieee80211_runtask(ic, &sc->sc_restarttask);
 1805                 sc->flags &= ~WPI_FLAG_BUSY;
 1806                 WPI_UNLOCK(sc);
 1807                 return;
 1808         }
 1809 
 1810         if (r & WPI_RX_INTR)
 1811                 wpi_notif_intr(sc);
 1812 
 1813         if (r & WPI_ALIVE_INTR) /* firmware initialized */
 1814                 wakeup(sc);
 1815 
 1816         /* re-enable interrupts */
 1817         if (sc->sc_ifp->if_flags & IFF_UP)
 1818                 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
 1819 
 1820         WPI_UNLOCK(sc);
 1821 }
 1822 
 1823 static uint8_t
 1824 wpi_plcp_signal(int rate)
 1825 {
 1826         switch (rate) {
 1827         /* CCK rates (returned values are device-dependent) */
 1828         case 2:         return 10;
 1829         case 4:         return 20;
 1830         case 11:        return 55;
 1831         case 22:        return 110;
 1832 
 1833         /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
 1834         /* R1-R4 (ral/ural is R4-R1) */
 1835         case 12:        return 0xd;
 1836         case 18:        return 0xf;
 1837         case 24:        return 0x5;
 1838         case 36:        return 0x7;
 1839         case 48:        return 0x9;
 1840         case 72:        return 0xb;
 1841         case 96:        return 0x1;
 1842         case 108:       return 0x3;
 1843 
 1844         /* unsupported rates (should not get there) */
 1845         default:        return 0;
 1846         }
 1847 }
 1848 
 1849 /* quickly determine if a given rate is CCK or OFDM */
 1850 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
 1851 
 1852 /*
 1853  * Construct the data packet for a transmit buffer and acutally put
 1854  * the buffer onto the transmit ring, kicking the card to process the
 1855  * the buffer.
 1856  */
 1857 static int
 1858 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
 1859         int ac)
 1860 {
 1861         struct ieee80211vap *vap = ni->ni_vap;
 1862         struct ifnet *ifp = sc->sc_ifp;
 1863         struct ieee80211com *ic = ifp->if_l2com;
 1864         const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
 1865         struct wpi_tx_ring *ring = &sc->txq[ac];
 1866         struct wpi_tx_desc *desc;
 1867         struct wpi_tx_data *data;
 1868         struct wpi_tx_cmd *cmd;
 1869         struct wpi_cmd_data *tx;
 1870         struct ieee80211_frame *wh;
 1871         const struct ieee80211_txparam *tp;
 1872         struct ieee80211_key *k;
 1873         struct mbuf *mnew;
 1874         int i, error, nsegs, rate, hdrlen, ismcast;
 1875         bus_dma_segment_t segs[WPI_MAX_SCATTER];
 1876 
 1877         desc = &ring->desc[ring->cur];
 1878         data = &ring->data[ring->cur];
 1879 
 1880         wh = mtod(m0, struct ieee80211_frame *);
 1881 
 1882         hdrlen = ieee80211_hdrsize(wh);
 1883         ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
 1884 
 1885         if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
 1886                 k = ieee80211_crypto_encap(ni, m0);
 1887                 if (k == NULL) {
 1888                         m_freem(m0);
 1889                         return ENOBUFS;
 1890                 }
 1891                 /* packet header may have moved, reset our local pointer */
 1892                 wh = mtod(m0, struct ieee80211_frame *);
 1893         }
 1894 
 1895         cmd = &ring->cmd[ring->cur];
 1896         cmd->code = WPI_CMD_TX_DATA;
 1897         cmd->flags = 0;
 1898         cmd->qid = ring->qid;
 1899         cmd->idx = ring->cur;
 1900 
 1901         tx = (struct wpi_cmd_data *)cmd->data;
 1902         tx->flags = htole32(WPI_TX_AUTO_SEQ);
 1903         tx->timeout = htole16(0);
 1904         tx->ofdm_mask = 0xff;
 1905         tx->cck_mask = 0x0f;
 1906         tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
 1907         tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
 1908         tx->len = htole16(m0->m_pkthdr.len);
 1909 
 1910         if (!ismcast) {
 1911                 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
 1912                     !cap->cap_wmeParams[ac].wmep_noackPolicy)
 1913                         tx->flags |= htole32(WPI_TX_NEED_ACK);
 1914                 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
 1915                         tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
 1916                         tx->rts_ntries = 7;
 1917                 }
 1918         }
 1919         /* pick a rate */
 1920         tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
 1921         if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
 1922                 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
 1923                 /* tell h/w to set timestamp in probe responses */
 1924                 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
 1925                         tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
 1926                 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
 1927                     subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
 1928                         tx->timeout = htole16(3);
 1929                 else
 1930                         tx->timeout = htole16(2);
 1931                 rate = tp->mgmtrate;
 1932         } else if (ismcast) {
 1933                 rate = tp->mcastrate;
 1934         } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
 1935                 rate = tp->ucastrate;
 1936         } else {
 1937                 (void) ieee80211_ratectl_rate(ni, NULL, 0);
 1938                 rate = ni->ni_txrate;
 1939         }
 1940         tx->rate = wpi_plcp_signal(rate);
 1941 
 1942         /* be very persistant at sending frames out */
 1943 #if 0
 1944         tx->data_ntries = tp->maxretry;
 1945 #else
 1946         tx->data_ntries = 15;           /* XXX way too high */
 1947 #endif
 1948 
 1949         if (ieee80211_radiotap_active_vap(vap)) {
 1950                 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
 1951                 tap->wt_flags = 0;
 1952                 tap->wt_rate = rate;
 1953                 tap->wt_hwqueue = ac;
 1954                 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
 1955                         tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
 1956 
 1957                 ieee80211_radiotap_tx(vap, m0);
 1958         }
 1959 
 1960         /* save and trim IEEE802.11 header */
 1961         m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
 1962         m_adj(m0, hdrlen);
 1963 
 1964         error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
 1965             &nsegs, BUS_DMA_NOWAIT);
 1966         if (error != 0 && error != EFBIG) {
 1967                 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
 1968                     error);
 1969                 m_freem(m0);
 1970                 return error;
 1971         }
 1972         if (error != 0) {
 1973                 /* XXX use m_collapse */
 1974                 mnew = m_defrag(m0, M_DONTWAIT);
 1975                 if (mnew == NULL) {
 1976                         device_printf(sc->sc_dev,
 1977                             "could not defragment mbuf\n");
 1978                         m_freem(m0);
 1979                         return ENOBUFS;
 1980                 }
 1981                 m0 = mnew;
 1982 
 1983                 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
 1984                     m0, segs, &nsegs, BUS_DMA_NOWAIT);
 1985                 if (error != 0) {
 1986                         device_printf(sc->sc_dev,
 1987                             "could not map mbuf (error %d)\n", error);
 1988                         m_freem(m0);
 1989                         return error;
 1990                 }
 1991         }
 1992 
 1993         data->m = m0;
 1994         data->ni = ni;
 1995 
 1996         DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
 1997             ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
 1998 
 1999         /* first scatter/gather segment is used by the tx data command */
 2000         desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
 2001             (1 + nsegs) << 24);
 2002         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
 2003             ring->cur * sizeof (struct wpi_tx_cmd));
 2004         desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
 2005         for (i = 1; i <= nsegs; i++) {
 2006                 desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
 2007                 desc->segs[i].len  = htole32(segs[i - 1].ds_len);
 2008         }
 2009 
 2010         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
 2011         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
 2012             BUS_DMASYNC_PREWRITE);
 2013 
 2014         ring->queued++;
 2015 
 2016         /* kick ring */
 2017         ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
 2018         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
 2019 
 2020         return 0;
 2021 }
 2022 
 2023 /**
 2024  * Process data waiting to be sent on the IFNET output queue
 2025  */
 2026 static void
 2027 wpi_start(struct ifnet *ifp)
 2028 {
 2029         struct wpi_softc *sc = ifp->if_softc;
 2030 
 2031         WPI_LOCK(sc);
 2032         wpi_start_locked(ifp);
 2033         WPI_UNLOCK(sc);
 2034 }
 2035 
 2036 static void
 2037 wpi_start_locked(struct ifnet *ifp)
 2038 {
 2039         struct wpi_softc *sc = ifp->if_softc;
 2040         struct ieee80211_node *ni;
 2041         struct mbuf *m;
 2042         int ac;
 2043 
 2044         WPI_LOCK_ASSERT(sc);
 2045 
 2046         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
 2047                 return;
 2048 
 2049         for (;;) {
 2050                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
 2051                 if (m == NULL)
 2052                         break;
 2053                 ac = M_WME_GETAC(m);
 2054                 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
 2055                         /* there is no place left in this ring */
 2056                         IFQ_DRV_PREPEND(&ifp->if_snd, m);
 2057                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 2058                         break;
 2059                 }
 2060                 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
 2061                 if (wpi_tx_data(sc, m, ni, ac) != 0) {
 2062                         ieee80211_free_node(ni);
 2063                         ifp->if_oerrors++;
 2064                         break;
 2065                 }
 2066                 sc->sc_tx_timer = 5;
 2067         }
 2068 }
 2069 
 2070 static int
 2071 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
 2072         const struct ieee80211_bpf_params *params)
 2073 {
 2074         struct ieee80211com *ic = ni->ni_ic;
 2075         struct ifnet *ifp = ic->ic_ifp;
 2076         struct wpi_softc *sc = ifp->if_softc;
 2077 
 2078         /* prevent management frames from being sent if we're not ready */
 2079         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
 2080                 m_freem(m);
 2081                 ieee80211_free_node(ni);
 2082                 return ENETDOWN;
 2083         }
 2084         WPI_LOCK(sc);
 2085 
 2086         /* management frames go into ring 0 */
 2087         if (sc->txq[0].queued > sc->txq[0].count - 8) {
 2088                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 2089                 m_freem(m);
 2090                 WPI_UNLOCK(sc);
 2091                 ieee80211_free_node(ni);
 2092                 return ENOBUFS;         /* XXX */
 2093         }
 2094 
 2095         ifp->if_opackets++;
 2096         if (wpi_tx_data(sc, m, ni, 0) != 0)
 2097                 goto bad;
 2098         sc->sc_tx_timer = 5;
 2099         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
 2100 
 2101         WPI_UNLOCK(sc);
 2102         return 0;
 2103 bad:
 2104         ifp->if_oerrors++;
 2105         WPI_UNLOCK(sc);
 2106         ieee80211_free_node(ni);
 2107         return EIO;             /* XXX */
 2108 }
 2109 
 2110 static int
 2111 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
 2112 {
 2113         struct wpi_softc *sc = ifp->if_softc;
 2114         struct ieee80211com *ic = ifp->if_l2com;
 2115         struct ifreq *ifr = (struct ifreq *) data;
 2116         int error = 0, startall = 0;
 2117 
 2118         switch (cmd) {
 2119         case SIOCSIFFLAGS:
 2120                 WPI_LOCK(sc);
 2121                 if ((ifp->if_flags & IFF_UP)) {
 2122                         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
 2123                                 wpi_init_locked(sc, 0);
 2124                                 startall = 1;
 2125                         }
 2126                 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
 2127                            (sc->flags & WPI_FLAG_HW_RADIO_OFF))
 2128                         wpi_stop_locked(sc);
 2129                 WPI_UNLOCK(sc);
 2130                 if (startall)
 2131                         ieee80211_start_all(ic);
 2132                 break;
 2133         case SIOCGIFMEDIA:
 2134                 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
 2135                 break;
 2136         case SIOCGIFADDR:
 2137                 error = ether_ioctl(ifp, cmd, data);
 2138                 break;
 2139         default:
 2140                 error = EINVAL;
 2141                 break;
 2142         }
 2143         return error;
 2144 }
 2145 
 2146 /*
 2147  * Extract various information from EEPROM.
 2148  */
 2149 static void
 2150 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
 2151 {
 2152         int i;
 2153 
 2154         /* read the hardware capabilities, revision and SKU type */
 2155         wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
 2156         wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
 2157         wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
 2158 
 2159         /* read the regulatory domain */
 2160         wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
 2161 
 2162         /* read in the hw MAC address */
 2163         wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
 2164 
 2165         /* read the list of authorized channels */
 2166         for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
 2167                 wpi_read_eeprom_channels(sc,i);
 2168 
 2169         /* read the power level calibration info for each group */
 2170         for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
 2171                 wpi_read_eeprom_group(sc,i);
 2172 }
 2173 
 2174 /*
 2175  * Send a command to the firmware.
 2176  */
 2177 static int
 2178 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
 2179 {
 2180         struct wpi_tx_ring *ring = &sc->cmdq;
 2181         struct wpi_tx_desc *desc;
 2182         struct wpi_tx_cmd *cmd;
 2183 
 2184 #ifdef WPI_DEBUG
 2185         if (!async) {
 2186                 WPI_LOCK_ASSERT(sc);
 2187         }
 2188 #endif
 2189 
 2190         DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
 2191                     async));
 2192 
 2193         if (sc->flags & WPI_FLAG_BUSY) {
 2194                 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
 2195                     __func__, code);
 2196                 return EAGAIN;
 2197         }
 2198         sc->flags|= WPI_FLAG_BUSY;
 2199 
 2200         KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
 2201             code, size));
 2202 
 2203         desc = &ring->desc[ring->cur];
 2204         cmd = &ring->cmd[ring->cur];
 2205 
 2206         cmd->code = code;
 2207         cmd->flags = 0;
 2208         cmd->qid = ring->qid;
 2209         cmd->idx = ring->cur;
 2210         memcpy(cmd->data, buf, size);
 2211 
 2212         desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
 2213         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
 2214                 ring->cur * sizeof (struct wpi_tx_cmd));
 2215         desc->segs[0].len  = htole32(4 + size);
 2216 
 2217         /* kick cmd ring */
 2218         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
 2219         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
 2220 
 2221         if (async) {
 2222                 sc->flags &= ~ WPI_FLAG_BUSY;
 2223                 return 0;
 2224         }
 2225 
 2226         return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
 2227 }
 2228 
 2229 static int
 2230 wpi_wme_update(struct ieee80211com *ic)
 2231 {
 2232 #define WPI_EXP2(v)     htole16((1 << (v)) - 1)
 2233 #define WPI_USEC(v)     htole16(IEEE80211_TXOP_TO_US(v))
 2234         struct wpi_softc *sc = ic->ic_ifp->if_softc;
 2235         const struct wmeParams *wmep;
 2236         struct wpi_wme_setup wme;
 2237         int ac;
 2238 
 2239         /* don't override default WME values if WME is not actually enabled */
 2240         if (!(ic->ic_flags & IEEE80211_F_WME))
 2241                 return 0;
 2242 
 2243         wme.flags = 0;
 2244         for (ac = 0; ac < WME_NUM_AC; ac++) {
 2245                 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
 2246                 wme.ac[ac].aifsn = wmep->wmep_aifsn;
 2247                 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
 2248                 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
 2249                 wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
 2250 
 2251                 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
 2252                     "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
 2253                     wme.ac[ac].cwmax, wme.ac[ac].txop));
 2254         }
 2255         return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
 2256 #undef WPI_USEC
 2257 #undef WPI_EXP2
 2258 }
 2259 
 2260 /*
 2261  * Configure h/w multi-rate retries.
 2262  */
 2263 static int
 2264 wpi_mrr_setup(struct wpi_softc *sc)
 2265 {
 2266         struct ifnet *ifp = sc->sc_ifp;
 2267         struct ieee80211com *ic = ifp->if_l2com;
 2268         struct wpi_mrr_setup mrr;
 2269         int i, error;
 2270 
 2271         memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
 2272 
 2273         /* CCK rates (not used with 802.11a) */
 2274         for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
 2275                 mrr.rates[i].flags = 0;
 2276                 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
 2277                 /* fallback to the immediate lower CCK rate (if any) */
 2278                 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
 2279                 /* try one time at this rate before falling back to "next" */
 2280                 mrr.rates[i].ntries = 1;
 2281         }
 2282 
 2283         /* OFDM rates (not used with 802.11b) */
 2284         for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
 2285                 mrr.rates[i].flags = 0;
 2286                 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
 2287                 /* fallback to the immediate lower OFDM rate (if any) */
 2288                 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
 2289                 mrr.rates[i].next = (i == WPI_OFDM6) ?
 2290                     ((ic->ic_curmode == IEEE80211_MODE_11A) ?
 2291                         WPI_OFDM6 : WPI_CCK2) :
 2292                     i - 1;
 2293                 /* try one time at this rate before falling back to "next" */
 2294                 mrr.rates[i].ntries = 1;
 2295         }
 2296 
 2297         /* setup MRR for control frames */
 2298         mrr.which = htole32(WPI_MRR_CTL);
 2299         error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
 2300         if (error != 0) {
 2301                 device_printf(sc->sc_dev,
 2302                     "could not setup MRR for control frames\n");
 2303                 return error;
 2304         }
 2305 
 2306         /* setup MRR for data frames */
 2307         mrr.which = htole32(WPI_MRR_DATA);
 2308         error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
 2309         if (error != 0) {
 2310                 device_printf(sc->sc_dev,
 2311                     "could not setup MRR for data frames\n");
 2312                 return error;
 2313         }
 2314 
 2315         return 0;
 2316 }
 2317 
 2318 static void
 2319 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
 2320 {
 2321         struct wpi_cmd_led led;
 2322 
 2323         led.which = which;
 2324         led.unit = htole32(100000);     /* on/off in unit of 100ms */
 2325         led.off = off;
 2326         led.on = on;
 2327 
 2328         (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
 2329 }
 2330 
 2331 static void
 2332 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
 2333 {
 2334         struct wpi_cmd_tsf tsf;
 2335         uint64_t val, mod;
 2336 
 2337         memset(&tsf, 0, sizeof tsf);
 2338         memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
 2339         tsf.bintval = htole16(ni->ni_intval);
 2340         tsf.lintval = htole16(10);
 2341 
 2342         /* compute remaining time until next beacon */
 2343         val = (uint64_t)ni->ni_intval  * 1024;  /* msec -> usec */
 2344         mod = le64toh(tsf.tstamp) % val;
 2345         tsf.binitval = htole32((uint32_t)(val - mod));
 2346 
 2347         if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
 2348                 device_printf(sc->sc_dev, "could not enable TSF\n");
 2349 }
 2350 
 2351 #if 0
 2352 /*
 2353  * Build a beacon frame that the firmware will broadcast periodically in
 2354  * IBSS or HostAP modes.
 2355  */
 2356 static int
 2357 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
 2358 {
 2359         struct ifnet *ifp = sc->sc_ifp;
 2360         struct ieee80211com *ic = ifp->if_l2com;
 2361         struct wpi_tx_ring *ring = &sc->cmdq;
 2362         struct wpi_tx_desc *desc;
 2363         struct wpi_tx_data *data;
 2364         struct wpi_tx_cmd *cmd;
 2365         struct wpi_cmd_beacon *bcn;
 2366         struct ieee80211_beacon_offsets bo;
 2367         struct mbuf *m0;
 2368         bus_addr_t physaddr;
 2369         int error;
 2370 
 2371         desc = &ring->desc[ring->cur];
 2372         data = &ring->data[ring->cur];
 2373 
 2374         m0 = ieee80211_beacon_alloc(ic, ni, &bo);
 2375         if (m0 == NULL) {
 2376                 device_printf(sc->sc_dev, "could not allocate beacon frame\n");
 2377                 return ENOMEM;
 2378         }
 2379 
 2380         cmd = &ring->cmd[ring->cur];
 2381         cmd->code = WPI_CMD_SET_BEACON;
 2382         cmd->flags = 0;
 2383         cmd->qid = ring->qid;
 2384         cmd->idx = ring->cur;
 2385 
 2386         bcn = (struct wpi_cmd_beacon *)cmd->data;
 2387         memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
 2388         bcn->id = WPI_ID_BROADCAST;
 2389         bcn->ofdm_mask = 0xff;
 2390         bcn->cck_mask = 0x0f;
 2391         bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
 2392         bcn->len = htole16(m0->m_pkthdr.len);
 2393         bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
 2394                 wpi_plcp_signal(12) : wpi_plcp_signal(2);
 2395         bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
 2396 
 2397         /* save and trim IEEE802.11 header */
 2398         m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
 2399         m_adj(m0, sizeof (struct ieee80211_frame));
 2400 
 2401         /* assume beacon frame is contiguous */
 2402         error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
 2403             m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
 2404         if (error != 0) {
 2405                 device_printf(sc->sc_dev, "could not map beacon\n");
 2406                 m_freem(m0);
 2407                 return error;
 2408         }
 2409 
 2410         data->m = m0;
 2411 
 2412         /* first scatter/gather segment is used by the beacon command */
 2413         desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
 2414         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
 2415                 ring->cur * sizeof (struct wpi_tx_cmd));
 2416         desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
 2417         desc->segs[1].addr = htole32(physaddr);
 2418         desc->segs[1].len  = htole32(m0->m_pkthdr.len);
 2419 
 2420         /* kick cmd ring */
 2421         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
 2422         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
 2423 
 2424         return 0;
 2425 }
 2426 #endif
 2427 
 2428 static int
 2429 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
 2430 {
 2431         struct ieee80211com *ic = vap->iv_ic;
 2432         struct ieee80211_node *ni = vap->iv_bss;
 2433         struct wpi_node_info node;
 2434         int error;
 2435 
 2436 
 2437         /* update adapter's configuration */
 2438         sc->config.associd = 0;
 2439         sc->config.filter &= ~htole32(WPI_FILTER_BSS);
 2440         IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
 2441         sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
 2442         if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
 2443                 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
 2444                     WPI_CONFIG_24GHZ);
 2445         } else {
 2446                 sc->config.flags &= ~htole32(WPI_CONFIG_AUTO |
 2447                     WPI_CONFIG_24GHZ);
 2448         }
 2449         if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
 2450                 sc->config.cck_mask  = 0;
 2451                 sc->config.ofdm_mask = 0x15;
 2452         } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
 2453                 sc->config.cck_mask  = 0x03;
 2454                 sc->config.ofdm_mask = 0;
 2455         } else {
 2456                 /* XXX assume 802.11b/g */
 2457                 sc->config.cck_mask  = 0x0f;
 2458                 sc->config.ofdm_mask = 0x15;
 2459         }
 2460 
 2461         DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
 2462                 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
 2463         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
 2464                 sizeof (struct wpi_config), 1);
 2465         if (error != 0) {
 2466                 device_printf(sc->sc_dev, "could not configure\n");
 2467                 return error;
 2468         }
 2469 
 2470         /* configuration has changed, set Tx power accordingly */
 2471         if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
 2472                 device_printf(sc->sc_dev, "could not set Tx power\n");
 2473                 return error;
 2474         }
 2475 
 2476         /* add default node */
 2477         memset(&node, 0, sizeof node);
 2478         IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
 2479         node.id = WPI_ID_BSS;
 2480         node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
 2481             wpi_plcp_signal(12) : wpi_plcp_signal(2);
 2482         node.action = htole32(WPI_ACTION_SET_RATE);
 2483         node.antenna = WPI_ANTENNA_BOTH;
 2484         error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
 2485         if (error != 0)
 2486                 device_printf(sc->sc_dev, "could not add BSS node\n");
 2487 
 2488         return (error);
 2489 }
 2490 
 2491 static int
 2492 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
 2493 {
 2494         struct ieee80211com *ic = vap->iv_ic;
 2495         struct ieee80211_node *ni = vap->iv_bss;
 2496         int error;
 2497 
 2498         if (vap->iv_opmode == IEEE80211_M_MONITOR) {
 2499                 /* link LED blinks while monitoring */
 2500                 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
 2501                 return 0;
 2502         }
 2503 
 2504         wpi_enable_tsf(sc, ni);
 2505 
 2506         /* update adapter's configuration */
 2507         sc->config.associd = htole16(ni->ni_associd & ~0xc000);
 2508         /* short preamble/slot time are negotiated when associating */
 2509         sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
 2510             WPI_CONFIG_SHSLOT);
 2511         if (ic->ic_flags & IEEE80211_F_SHSLOT)
 2512                 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
 2513         if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
 2514                 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
 2515         sc->config.filter |= htole32(WPI_FILTER_BSS);
 2516 
 2517         /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
 2518 
 2519         DPRINTF(("config chan %d flags %x\n", sc->config.chan,
 2520                     sc->config.flags));
 2521         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
 2522                     wpi_config), 1);
 2523         if (error != 0) {
 2524                 device_printf(sc->sc_dev, "could not update configuration\n");
 2525                 return error;
 2526         }
 2527 
 2528         error = wpi_set_txpower(sc, ni->ni_chan, 1);
 2529         if (error != 0) {
 2530                 device_printf(sc->sc_dev, "could set txpower\n");
 2531                 return error;
 2532         }
 2533 
 2534         /* link LED always on while associated */
 2535         wpi_set_led(sc, WPI_LED_LINK, 0, 1);
 2536 
 2537         /* start automatic rate control timer */
 2538         callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
 2539 
 2540         return (error);
 2541 }
 2542 
 2543 /*
 2544  * Send a scan request to the firmware.  Since this command is huge, we map it
 2545  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
 2546  * much of this code is similar to that in wpi_cmd but because we must manually
 2547  * construct the probe & channels, we duplicate what's needed here. XXX In the
 2548  * future, this function should be modified to use wpi_cmd to help cleanup the
 2549  * code base.
 2550  */
 2551 static int
 2552 wpi_scan(struct wpi_softc *sc)
 2553 {
 2554         struct ifnet *ifp = sc->sc_ifp;
 2555         struct ieee80211com *ic = ifp->if_l2com;
 2556         struct ieee80211_scan_state *ss = ic->ic_scan;
 2557         struct wpi_tx_ring *ring = &sc->cmdq;
 2558         struct wpi_tx_desc *desc;
 2559         struct wpi_tx_data *data;
 2560         struct wpi_tx_cmd *cmd;
 2561         struct wpi_scan_hdr *hdr;
 2562         struct wpi_scan_chan *chan;
 2563         struct ieee80211_frame *wh;
 2564         struct ieee80211_rateset *rs;
 2565         struct ieee80211_channel *c;
 2566         enum ieee80211_phymode mode;
 2567         uint8_t *frm;
 2568         int nrates, pktlen, error, i, nssid;
 2569         bus_addr_t physaddr;
 2570 
 2571         desc = &ring->desc[ring->cur];
 2572         data = &ring->data[ring->cur];
 2573 
 2574         data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
 2575         if (data->m == NULL) {
 2576                 device_printf(sc->sc_dev,
 2577                     "could not allocate mbuf for scan command\n");
 2578                 return ENOMEM;
 2579         }
 2580 
 2581         cmd = mtod(data->m, struct wpi_tx_cmd *);
 2582         cmd->code = WPI_CMD_SCAN;
 2583         cmd->flags = 0;
 2584         cmd->qid = ring->qid;
 2585         cmd->idx = ring->cur;
 2586 
 2587         hdr = (struct wpi_scan_hdr *)cmd->data;
 2588         memset(hdr, 0, sizeof(struct wpi_scan_hdr));
 2589 
 2590         /*
 2591          * Move to the next channel if no packets are received within 5 msecs
 2592          * after sending the probe request (this helps to reduce the duration
 2593          * of active scans).
 2594          */
 2595         hdr->quiet = htole16(5);
 2596         hdr->threshold = htole16(1);
 2597 
 2598         if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
 2599                 /* send probe requests at 6Mbps */
 2600                 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
 2601 
 2602                 /* Enable crc checking */
 2603                 hdr->promotion = htole16(1);
 2604         } else {
 2605                 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
 2606                 /* send probe requests at 1Mbps */
 2607                 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
 2608         }
 2609         hdr->tx.id = WPI_ID_BROADCAST;
 2610         hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
 2611         hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
 2612 
 2613         memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
 2614         nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
 2615         for (i = 0; i < nssid; i++) {
 2616                 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
 2617                 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
 2618                 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
 2619                     hdr->scan_essids[i].esslen);
 2620 #ifdef WPI_DEBUG
 2621                 if (wpi_debug & WPI_DEBUG_SCANNING) {
 2622                         printf("Scanning Essid: ");
 2623                         ieee80211_print_essid(hdr->scan_essids[i].essid,
 2624                             hdr->scan_essids[i].esslen);
 2625                         printf("\n");
 2626                 }
 2627 #endif
 2628         }
 2629 
 2630         /*
 2631          * Build a probe request frame.  Most of the following code is a
 2632          * copy & paste of what is done in net80211.
 2633          */
 2634         wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
 2635         wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
 2636                 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
 2637         wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
 2638         IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
 2639         IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
 2640         IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
 2641         *(u_int16_t *)&wh->i_dur[0] = 0;        /* filled by h/w */
 2642         *(u_int16_t *)&wh->i_seq[0] = 0;        /* filled by h/w */
 2643 
 2644         frm = (uint8_t *)(wh + 1);
 2645 
 2646         /* add essid IE, the hardware will fill this in for us */
 2647         *frm++ = IEEE80211_ELEMID_SSID;
 2648         *frm++ = 0;
 2649 
 2650         mode = ieee80211_chan2mode(ic->ic_curchan);
 2651         rs = &ic->ic_sup_rates[mode];
 2652 
 2653         /* add supported rates IE */
 2654         *frm++ = IEEE80211_ELEMID_RATES;
 2655         nrates = rs->rs_nrates;
 2656         if (nrates > IEEE80211_RATE_SIZE)
 2657                 nrates = IEEE80211_RATE_SIZE;
 2658         *frm++ = nrates;
 2659         memcpy(frm, rs->rs_rates, nrates);
 2660         frm += nrates;
 2661 
 2662         /* add supported xrates IE */
 2663         if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
 2664                 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
 2665                 *frm++ = IEEE80211_ELEMID_XRATES;
 2666                 *frm++ = nrates;
 2667                 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
 2668                 frm += nrates;
 2669         }
 2670 
 2671         /* setup length of probe request */
 2672         hdr->tx.len = htole16(frm - (uint8_t *)wh);
 2673 
 2674         /*
 2675          * Construct information about the channel that we
 2676          * want to scan. The firmware expects this to be directly
 2677          * after the scan probe request
 2678          */
 2679         c = ic->ic_curchan;
 2680         chan = (struct wpi_scan_chan *)frm;
 2681         chan->chan = ieee80211_chan2ieee(ic, c);
 2682         chan->flags = 0;
 2683         if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
 2684                 chan->flags |= WPI_CHAN_ACTIVE;
 2685                 if (nssid != 0)
 2686                         chan->flags |= WPI_CHAN_DIRECT;
 2687         }
 2688         chan->gain_dsp = 0x6e; /* Default level */
 2689         if (IEEE80211_IS_CHAN_5GHZ(c)) {
 2690                 chan->active = htole16(10);
 2691                 chan->passive = htole16(ss->ss_maxdwell);
 2692                 chan->gain_radio = 0x3b;
 2693         } else {
 2694                 chan->active = htole16(20);
 2695                 chan->passive = htole16(ss->ss_maxdwell);
 2696                 chan->gain_radio = 0x28;
 2697         }
 2698 
 2699         DPRINTFN(WPI_DEBUG_SCANNING,
 2700             ("Scanning %u Passive: %d\n",
 2701              chan->chan,
 2702              c->ic_flags & IEEE80211_CHAN_PASSIVE));
 2703 
 2704         hdr->nchan++;
 2705         chan++;
 2706 
 2707         frm += sizeof (struct wpi_scan_chan);
 2708 #if 0
 2709         // XXX All Channels....
 2710         for (c  = &ic->ic_channels[1];
 2711              c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
 2712                 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
 2713                         continue;
 2714 
 2715                 chan->chan = ieee80211_chan2ieee(ic, c);
 2716                 chan->flags = 0;
 2717                 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
 2718                     chan->flags |= WPI_CHAN_ACTIVE;
 2719                     if (ic->ic_des_ssid[0].len != 0)
 2720                         chan->flags |= WPI_CHAN_DIRECT;
 2721                 }
 2722                 chan->gain_dsp = 0x6e; /* Default level */
 2723                 if (IEEE80211_IS_CHAN_5GHZ(c)) {
 2724                         chan->active = htole16(10);
 2725                         chan->passive = htole16(110);
 2726                         chan->gain_radio = 0x3b;
 2727                 } else {
 2728                         chan->active = htole16(20);
 2729                         chan->passive = htole16(120);
 2730                         chan->gain_radio = 0x28;
 2731                 }
 2732 
 2733                 DPRINTFN(WPI_DEBUG_SCANNING,
 2734                          ("Scanning %u Passive: %d\n",
 2735                           chan->chan,
 2736                           c->ic_flags & IEEE80211_CHAN_PASSIVE));
 2737 
 2738                 hdr->nchan++;
 2739                 chan++;
 2740 
 2741                 frm += sizeof (struct wpi_scan_chan);
 2742         }
 2743 #endif
 2744 
 2745         hdr->len = htole16(frm - (uint8_t *)hdr);
 2746         pktlen = frm - (uint8_t *)cmd;
 2747 
 2748         error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
 2749             wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
 2750         if (error != 0) {
 2751                 device_printf(sc->sc_dev, "could not map scan command\n");
 2752                 m_freem(data->m);
 2753                 data->m = NULL;
 2754                 return error;
 2755         }
 2756 
 2757         desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
 2758         desc->segs[0].addr = htole32(physaddr);
 2759         desc->segs[0].len  = htole32(pktlen);
 2760 
 2761         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
 2762             BUS_DMASYNC_PREWRITE);
 2763         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
 2764 
 2765         /* kick cmd ring */
 2766         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
 2767         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
 2768 
 2769         sc->sc_scan_timer = 5;
 2770         return 0;       /* will be notified async. of failure/success */
 2771 }
 2772 
 2773 /**
 2774  * Configure the card to listen to a particular channel, this transisions the
 2775  * card in to being able to receive frames from remote devices.
 2776  */
 2777 static int
 2778 wpi_config(struct wpi_softc *sc)
 2779 {
 2780         struct ifnet *ifp = sc->sc_ifp;
 2781         struct ieee80211com *ic = ifp->if_l2com;
 2782         struct wpi_power power;
 2783         struct wpi_bluetooth bluetooth;
 2784         struct wpi_node_info node;
 2785         int error;
 2786 
 2787         /* set power mode */
 2788         memset(&power, 0, sizeof power);
 2789         power.flags = htole32(WPI_POWER_CAM|0x8);
 2790         error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
 2791         if (error != 0) {
 2792                 device_printf(sc->sc_dev, "could not set power mode\n");
 2793                 return error;
 2794         }
 2795 
 2796         /* configure bluetooth coexistence */
 2797         memset(&bluetooth, 0, sizeof bluetooth);
 2798         bluetooth.flags = 3;
 2799         bluetooth.lead = 0xaa;
 2800         bluetooth.kill = 1;
 2801         error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
 2802             0);
 2803         if (error != 0) {
 2804                 device_printf(sc->sc_dev,
 2805                     "could not configure bluetooth coexistence\n");
 2806                 return error;
 2807         }
 2808 
 2809         /* configure adapter */
 2810         memset(&sc->config, 0, sizeof (struct wpi_config));
 2811         IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
 2812         /*set default channel*/
 2813         sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
 2814         sc->config.flags = htole32(WPI_CONFIG_TSF);
 2815         if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
 2816                 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
 2817                     WPI_CONFIG_24GHZ);
 2818         }
 2819         sc->config.filter = 0;
 2820         switch (ic->ic_opmode) {
 2821         case IEEE80211_M_STA:
 2822         case IEEE80211_M_WDS:   /* No know setup, use STA for now */
 2823                 sc->config.mode = WPI_MODE_STA;
 2824                 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
 2825                 break;
 2826         case IEEE80211_M_IBSS:
 2827         case IEEE80211_M_AHDEMO:
 2828                 sc->config.mode = WPI_MODE_IBSS;
 2829                 sc->config.filter |= htole32(WPI_FILTER_BEACON |
 2830                                              WPI_FILTER_MULTICAST);
 2831                 break;
 2832         case IEEE80211_M_HOSTAP:
 2833                 sc->config.mode = WPI_MODE_HOSTAP;
 2834                 break;
 2835         case IEEE80211_M_MONITOR:
 2836                 sc->config.mode = WPI_MODE_MONITOR;
 2837                 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
 2838                         WPI_FILTER_CTL | WPI_FILTER_PROMISC);
 2839                 break;
 2840         default:
 2841                 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
 2842                 return EINVAL;
 2843         }
 2844         sc->config.cck_mask  = 0x0f;    /* not yet negotiated */
 2845         sc->config.ofdm_mask = 0xff;    /* not yet negotiated */
 2846         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
 2847                 sizeof (struct wpi_config), 0);
 2848         if (error != 0) {
 2849                 device_printf(sc->sc_dev, "configure command failed\n");
 2850                 return error;
 2851         }
 2852 
 2853         /* configuration has changed, set Tx power accordingly */
 2854         if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
 2855             device_printf(sc->sc_dev, "could not set Tx power\n");
 2856             return error;
 2857         }
 2858 
 2859         /* add broadcast node */
 2860         memset(&node, 0, sizeof node);
 2861         IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
 2862         node.id = WPI_ID_BROADCAST;
 2863         node.rate = wpi_plcp_signal(2);
 2864         error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
 2865         if (error != 0) {
 2866                 device_printf(sc->sc_dev, "could not add broadcast node\n");
 2867                 return error;
 2868         }
 2869 
 2870         /* Setup rate scalling */
 2871         error = wpi_mrr_setup(sc);
 2872         if (error != 0) {
 2873                 device_printf(sc->sc_dev, "could not setup MRR\n");
 2874                 return error;
 2875         }
 2876 
 2877         return 0;
 2878 }
 2879 
 2880 static void
 2881 wpi_stop_master(struct wpi_softc *sc)
 2882 {
 2883         uint32_t tmp;
 2884         int ntries;
 2885 
 2886         DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
 2887 
 2888         tmp = WPI_READ(sc, WPI_RESET);
 2889         WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
 2890 
 2891         tmp = WPI_READ(sc, WPI_GPIO_CTL);
 2892         if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
 2893                 return; /* already asleep */
 2894 
 2895         for (ntries = 0; ntries < 100; ntries++) {
 2896                 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
 2897                         break;
 2898                 DELAY(10);
 2899         }
 2900         if (ntries == 100) {
 2901                 device_printf(sc->sc_dev, "timeout waiting for master\n");
 2902         }
 2903 }
 2904 
 2905 static int
 2906 wpi_power_up(struct wpi_softc *sc)
 2907 {
 2908         uint32_t tmp;
 2909         int ntries;
 2910 
 2911         wpi_mem_lock(sc);
 2912         tmp = wpi_mem_read(sc, WPI_MEM_POWER);
 2913         wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
 2914         wpi_mem_unlock(sc);
 2915 
 2916         for (ntries = 0; ntries < 5000; ntries++) {
 2917                 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
 2918                         break;
 2919                 DELAY(10);
 2920         }
 2921         if (ntries == 5000) {
 2922                 device_printf(sc->sc_dev,
 2923                     "timeout waiting for NIC to power up\n");
 2924                 return ETIMEDOUT;
 2925         }
 2926         return 0;
 2927 }
 2928 
 2929 static int
 2930 wpi_reset(struct wpi_softc *sc)
 2931 {
 2932         uint32_t tmp;
 2933         int ntries;
 2934 
 2935         DPRINTFN(WPI_DEBUG_HW,
 2936             ("Resetting the card - clearing any uploaded firmware\n"));
 2937 
 2938         /* clear any pending interrupts */
 2939         WPI_WRITE(sc, WPI_INTR, 0xffffffff);
 2940 
 2941         tmp = WPI_READ(sc, WPI_PLL_CTL);
 2942         WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
 2943 
 2944         tmp = WPI_READ(sc, WPI_CHICKEN);
 2945         WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
 2946 
 2947         tmp = WPI_READ(sc, WPI_GPIO_CTL);
 2948         WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
 2949 
 2950         /* wait for clock stabilization */
 2951         for (ntries = 0; ntries < 25000; ntries++) {
 2952                 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
 2953                         break;
 2954                 DELAY(10);
 2955         }
 2956         if (ntries == 25000) {
 2957                 device_printf(sc->sc_dev,
 2958                     "timeout waiting for clock stabilization\n");
 2959                 return ETIMEDOUT;
 2960         }
 2961 
 2962         /* initialize EEPROM */
 2963         tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
 2964 
 2965         if ((tmp & WPI_EEPROM_VERSION) == 0) {
 2966                 device_printf(sc->sc_dev, "EEPROM not found\n");
 2967                 return EIO;
 2968         }
 2969         WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
 2970 
 2971         return 0;
 2972 }
 2973 
 2974 static void
 2975 wpi_hw_config(struct wpi_softc *sc)
 2976 {
 2977         uint32_t rev, hw;
 2978 
 2979         /* voodoo from the Linux "driver".. */
 2980         hw = WPI_READ(sc, WPI_HWCONFIG);
 2981 
 2982         rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
 2983         if ((rev & 0xc0) == 0x40)
 2984                 hw |= WPI_HW_ALM_MB;
 2985         else if (!(rev & 0x80))
 2986                 hw |= WPI_HW_ALM_MM;
 2987 
 2988         if (sc->cap == 0x80)
 2989                 hw |= WPI_HW_SKU_MRC;
 2990 
 2991         hw &= ~WPI_HW_REV_D;
 2992         if ((le16toh(sc->rev) & 0xf0) == 0xd0)
 2993                 hw |= WPI_HW_REV_D;
 2994 
 2995         if (sc->type > 1)
 2996                 hw |= WPI_HW_TYPE_B;
 2997 
 2998         WPI_WRITE(sc, WPI_HWCONFIG, hw);
 2999 }
 3000 
 3001 static void
 3002 wpi_rfkill_resume(struct wpi_softc *sc)
 3003 {
 3004         struct ifnet *ifp = sc->sc_ifp;
 3005         struct ieee80211com *ic = ifp->if_l2com;
 3006         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 3007         int ntries;
 3008 
 3009         /* enable firmware again */
 3010         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
 3011         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
 3012 
 3013         /* wait for thermal sensors to calibrate */
 3014         for (ntries = 0; ntries < 1000; ntries++) {
 3015                 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
 3016                         break;
 3017                 DELAY(10);
 3018         }
 3019 
 3020         if (ntries == 1000) {
 3021                 device_printf(sc->sc_dev,
 3022                     "timeout waiting for thermal calibration\n");
 3023                 return;
 3024         }
 3025         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
 3026 
 3027         if (wpi_config(sc) != 0) {
 3028                 device_printf(sc->sc_dev, "device config failed\n");
 3029                 return;
 3030         }
 3031 
 3032         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 3033         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 3034         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
 3035 
 3036         if (vap != NULL) {
 3037                 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
 3038                         if (vap->iv_opmode != IEEE80211_M_MONITOR) {
 3039                                 ieee80211_beacon_miss(ic);
 3040                                 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
 3041                         } else
 3042                                 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
 3043                 } else {
 3044                         ieee80211_scan_next(vap);
 3045                         wpi_set_led(sc, WPI_LED_LINK, 20, 2);
 3046                 }
 3047         }
 3048 
 3049         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
 3050 }
 3051 
 3052 static void
 3053 wpi_init_locked(struct wpi_softc *sc, int force)
 3054 {
 3055         struct ifnet *ifp = sc->sc_ifp;
 3056         uint32_t tmp;
 3057         int ntries, qid;
 3058 
 3059         wpi_stop_locked(sc);
 3060         (void)wpi_reset(sc);
 3061 
 3062         wpi_mem_lock(sc);
 3063         wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
 3064         DELAY(20);
 3065         tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
 3066         wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
 3067         wpi_mem_unlock(sc);
 3068 
 3069         (void)wpi_power_up(sc);
 3070         wpi_hw_config(sc);
 3071 
 3072         /* init Rx ring */
 3073         wpi_mem_lock(sc);
 3074         WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
 3075         WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
 3076             offsetof(struct wpi_shared, next));
 3077         WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
 3078         WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
 3079         wpi_mem_unlock(sc);
 3080 
 3081         /* init Tx rings */
 3082         wpi_mem_lock(sc);
 3083         wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
 3084         wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
 3085         wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
 3086         wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
 3087         wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
 3088         wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
 3089         wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
 3090 
 3091         WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
 3092         WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
 3093 
 3094         for (qid = 0; qid < 6; qid++) {
 3095                 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
 3096                 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
 3097                 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
 3098         }
 3099         wpi_mem_unlock(sc);
 3100 
 3101         /* clear "radio off" and "disable command" bits (reversed logic) */
 3102         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
 3103         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
 3104         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
 3105 
 3106         /* clear any pending interrupts */
 3107         WPI_WRITE(sc, WPI_INTR, 0xffffffff);
 3108 
 3109         /* enable interrupts */
 3110         WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
 3111 
 3112         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
 3113         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
 3114 
 3115         if ((wpi_load_firmware(sc)) != 0) {
 3116             device_printf(sc->sc_dev,
 3117                 "A problem occurred loading the firmware to the driver\n");
 3118             return;
 3119         }
 3120 
 3121         /* At this point the firmware is up and running. If the hardware
 3122          * RF switch is turned off thermal calibration will fail, though
 3123          * the card is still happy to continue to accept commands, catch
 3124          * this case and schedule a task to watch for it to be turned on.
 3125          */
 3126         wpi_mem_lock(sc);
 3127         tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
 3128         wpi_mem_unlock(sc);
 3129 
 3130         if (!(tmp & 0x1)) {
 3131                 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
 3132                 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
 3133                 goto out;
 3134         }
 3135 
 3136         /* wait for thermal sensors to calibrate */
 3137         for (ntries = 0; ntries < 1000; ntries++) {
 3138                 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
 3139                         break;
 3140                 DELAY(10);
 3141         }
 3142 
 3143         if (ntries == 1000) {
 3144                 device_printf(sc->sc_dev,
 3145                     "timeout waiting for thermal sensors calibration\n");
 3146                 return;
 3147         }
 3148         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
 3149 
 3150         if (wpi_config(sc) != 0) {
 3151                 device_printf(sc->sc_dev, "device config failed\n");
 3152                 return;
 3153         }
 3154 
 3155         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 3156         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 3157 out:
 3158         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
 3159 }
 3160 
 3161 static void
 3162 wpi_init(void *arg)
 3163 {
 3164         struct wpi_softc *sc = arg;
 3165         struct ifnet *ifp = sc->sc_ifp;
 3166         struct ieee80211com *ic = ifp->if_l2com;
 3167 
 3168         WPI_LOCK(sc);
 3169         wpi_init_locked(sc, 0);
 3170         WPI_UNLOCK(sc);
 3171 
 3172         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 3173                 ieee80211_start_all(ic);                /* start all vaps */
 3174 }
 3175 
 3176 static void
 3177 wpi_stop_locked(struct wpi_softc *sc)
 3178 {
 3179         struct ifnet *ifp = sc->sc_ifp;
 3180         uint32_t tmp;
 3181         int ac;
 3182 
 3183         sc->sc_tx_timer = 0;
 3184         sc->sc_scan_timer = 0;
 3185         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 3186         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
 3187         callout_stop(&sc->watchdog_to);
 3188         callout_stop(&sc->calib_to);
 3189 
 3190 
 3191         /* disable interrupts */
 3192         WPI_WRITE(sc, WPI_MASK, 0);
 3193         WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
 3194         WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
 3195         WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
 3196 
 3197         wpi_mem_lock(sc);
 3198         wpi_mem_write(sc, WPI_MEM_MODE, 0);
 3199         wpi_mem_unlock(sc);
 3200 
 3201         /* reset all Tx rings */
 3202         for (ac = 0; ac < 4; ac++)
 3203                 wpi_reset_tx_ring(sc, &sc->txq[ac]);
 3204         wpi_reset_tx_ring(sc, &sc->cmdq);
 3205 
 3206         /* reset Rx ring */
 3207         wpi_reset_rx_ring(sc, &sc->rxq);
 3208 
 3209         wpi_mem_lock(sc);
 3210         wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
 3211         wpi_mem_unlock(sc);
 3212 
 3213         DELAY(5);
 3214 
 3215         wpi_stop_master(sc);
 3216 
 3217         tmp = WPI_READ(sc, WPI_RESET);
 3218         WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
 3219         sc->flags &= ~WPI_FLAG_BUSY;
 3220 }
 3221 
 3222 static void
 3223 wpi_stop(struct wpi_softc *sc)
 3224 {
 3225         WPI_LOCK(sc);
 3226         wpi_stop_locked(sc);
 3227         WPI_UNLOCK(sc);
 3228 }
 3229 
 3230 static void
 3231 wpi_calib_timeout(void *arg)
 3232 {
 3233         struct wpi_softc *sc = arg;
 3234         struct ifnet *ifp = sc->sc_ifp;
 3235         struct ieee80211com *ic = ifp->if_l2com;
 3236         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 3237         int temp;
 3238 
 3239         if (vap->iv_state != IEEE80211_S_RUN)
 3240                 return;
 3241 
 3242         /* update sensor data */
 3243         temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
 3244         DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
 3245 
 3246         wpi_power_calibration(sc, temp);
 3247 
 3248         callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
 3249 }
 3250 
 3251 /*
 3252  * This function is called periodically (every 60 seconds) to adjust output
 3253  * power to temperature changes.
 3254  */
 3255 static void
 3256 wpi_power_calibration(struct wpi_softc *sc, int temp)
 3257 {
 3258         struct ifnet *ifp = sc->sc_ifp;
 3259         struct ieee80211com *ic = ifp->if_l2com;
 3260         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 3261 
 3262         /* sanity-check read value */
 3263         if (temp < -260 || temp > 25) {
 3264                 /* this can't be correct, ignore */
 3265                 DPRINTFN(WPI_DEBUG_TEMP,
 3266                     ("out-of-range temperature reported: %d\n", temp));
 3267                 return;
 3268         }
 3269 
 3270         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
 3271 
 3272         /* adjust Tx power if need be */
 3273         if (abs(temp - sc->temp) <= 6)
 3274                 return;
 3275 
 3276         sc->temp = temp;
 3277 
 3278         if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
 3279                 /* just warn, too bad for the automatic calibration... */
 3280                 device_printf(sc->sc_dev,"could not adjust Tx power\n");
 3281         }
 3282 }
 3283 
 3284 /**
 3285  * Read the eeprom to find out what channels are valid for the given
 3286  * band and update net80211 with what we find.
 3287  */
 3288 static void
 3289 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
 3290 {
 3291         struct ifnet *ifp = sc->sc_ifp;
 3292         struct ieee80211com *ic = ifp->if_l2com;
 3293         const struct wpi_chan_band *band = &wpi_bands[n];
 3294         struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
 3295         struct ieee80211_channel *c;
 3296         int chan, i, passive;
 3297 
 3298         wpi_read_prom_data(sc, band->addr, channels,
 3299             band->nchan * sizeof (struct wpi_eeprom_chan));
 3300 
 3301         for (i = 0; i < band->nchan; i++) {
 3302                 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
 3303                         DPRINTFN(WPI_DEBUG_HW,
 3304                             ("Channel Not Valid: %d, band %d\n",
 3305                              band->chan[i],n));
 3306                         continue;
 3307                 }
 3308 
 3309                 passive = 0;
 3310                 chan = band->chan[i];
 3311                 c = &ic->ic_channels[ic->ic_nchans++];
 3312 
 3313                 /* is active scan allowed on this channel? */
 3314                 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
 3315                         passive = IEEE80211_CHAN_PASSIVE;
 3316                 }
 3317 
 3318                 if (n == 0) {   /* 2GHz band */
 3319                         c->ic_ieee = chan;
 3320                         c->ic_freq = ieee80211_ieee2mhz(chan,
 3321                             IEEE80211_CHAN_2GHZ);
 3322                         c->ic_flags = IEEE80211_CHAN_B | passive;
 3323 
 3324                         c = &ic->ic_channels[ic->ic_nchans++];
 3325                         c->ic_ieee = chan;
 3326                         c->ic_freq = ieee80211_ieee2mhz(chan,
 3327                             IEEE80211_CHAN_2GHZ);
 3328                         c->ic_flags = IEEE80211_CHAN_G | passive;
 3329 
 3330                 } else {        /* 5GHz band */
 3331                         /*
 3332                          * Some 3945ABG adapters support channels 7, 8, 11
 3333                          * and 12 in the 2GHz *and* 5GHz bands.
 3334                          * Because of limitations in our net80211(9) stack,
 3335                          * we can't support these channels in 5GHz band.
 3336                          * XXX not true; just need to map to proper frequency
 3337                          */
 3338                         if (chan <= 14)
 3339                                 continue;
 3340 
 3341                         c->ic_ieee = chan;
 3342                         c->ic_freq = ieee80211_ieee2mhz(chan,
 3343                             IEEE80211_CHAN_5GHZ);
 3344                         c->ic_flags = IEEE80211_CHAN_A | passive;
 3345                 }
 3346 
 3347                 /* save maximum allowed power for this channel */
 3348                 sc->maxpwr[chan] = channels[i].maxpwr;
 3349 
 3350 #if 0
 3351                 // XXX We can probably use this an get rid of maxpwr - ben 20070617
 3352                 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
 3353                 //ic->ic_channels[chan].ic_minpower...
 3354                 //ic->ic_channels[chan].ic_maxregtxpower...
 3355 #endif
 3356 
 3357                 DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
 3358                     " passive=%d, offset %d\n", chan, c->ic_freq,
 3359                     channels[i].flags, sc->maxpwr[chan],
 3360                     (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
 3361                     ic->ic_nchans));
 3362         }
 3363 }
 3364 
 3365 static void
 3366 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
 3367 {
 3368         struct wpi_power_group *group = &sc->groups[n];
 3369         struct wpi_eeprom_group rgroup;
 3370         int i;
 3371 
 3372         wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
 3373             sizeof rgroup);
 3374 
 3375         /* save power group information */
 3376         group->chan   = rgroup.chan;
 3377         group->maxpwr = rgroup.maxpwr;
 3378         /* temperature at which the samples were taken */
 3379         group->temp   = (int16_t)le16toh(rgroup.temp);
 3380 
 3381         DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
 3382                     group->chan, group->maxpwr, group->temp));
 3383 
 3384         for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
 3385                 group->samples[i].index = rgroup.samples[i].index;
 3386                 group->samples[i].power = rgroup.samples[i].power;
 3387 
 3388                 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
 3389                             group->samples[i].index, group->samples[i].power));
 3390         }
 3391 }
 3392 
 3393 /*
 3394  * Update Tx power to match what is defined for channel `c'.
 3395  */
 3396 static int
 3397 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
 3398 {
 3399         struct ifnet *ifp = sc->sc_ifp;
 3400         struct ieee80211com *ic = ifp->if_l2com;
 3401         struct wpi_power_group *group;
 3402         struct wpi_cmd_txpower txpower;
 3403         u_int chan;
 3404         int i;
 3405 
 3406         /* get channel number */
 3407         chan = ieee80211_chan2ieee(ic, c);
 3408 
 3409         /* find the power group to which this channel belongs */
 3410         if (IEEE80211_IS_CHAN_5GHZ(c)) {
 3411                 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
 3412                         if (chan <= group->chan)
 3413                                 break;
 3414         } else
 3415                 group = &sc->groups[0];
 3416 
 3417         memset(&txpower, 0, sizeof txpower);
 3418         txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
 3419         txpower.channel = htole16(chan);
 3420 
 3421         /* set Tx power for all OFDM and CCK rates */
 3422         for (i = 0; i <= 11 ; i++) {
 3423                 /* retrieve Tx power for this channel/rate combination */
 3424                 int idx = wpi_get_power_index(sc, group, c,
 3425                     wpi_ridx_to_rate[i]);
 3426 
 3427                 txpower.rates[i].rate = wpi_ridx_to_plcp[i];
 3428 
 3429                 if (IEEE80211_IS_CHAN_5GHZ(c)) {
 3430                         txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
 3431                         txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
 3432                 } else {
 3433                         txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
 3434                         txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
 3435                 }
 3436                 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
 3437                             chan, wpi_ridx_to_rate[i], idx));
 3438         }
 3439 
 3440         return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
 3441 }
 3442 
 3443 /*
 3444  * Determine Tx power index for a given channel/rate combination.
 3445  * This takes into account the regulatory information from EEPROM and the
 3446  * current temperature.
 3447  */
 3448 static int
 3449 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
 3450     struct ieee80211_channel *c, int rate)
 3451 {
 3452 /* fixed-point arithmetic division using a n-bit fractional part */
 3453 #define fdivround(a, b, n)      \
 3454         ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
 3455 
 3456 /* linear interpolation */
 3457 #define interpolate(x, x1, y1, x2, y2, n)       \
 3458         ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
 3459 
 3460         struct ifnet *ifp = sc->sc_ifp;
 3461         struct ieee80211com *ic = ifp->if_l2com;
 3462         struct wpi_power_sample *sample;
 3463         int pwr, idx;
 3464         u_int chan;
 3465 
 3466         /* get channel number */
 3467         chan = ieee80211_chan2ieee(ic, c);
 3468 
 3469         /* default power is group's maximum power - 3dB */
 3470         pwr = group->maxpwr / 2;
 3471 
 3472         /* decrease power for highest OFDM rates to reduce distortion */
 3473         switch (rate) {
 3474                 case 72:        /* 36Mb/s */
 3475                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
 3476                         break;
 3477                 case 96:        /* 48Mb/s */
 3478                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
 3479                         break;
 3480                 case 108:       /* 54Mb/s */
 3481                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
 3482                         break;
 3483         }
 3484 
 3485         /* never exceed channel's maximum allowed Tx power */
 3486         pwr = min(pwr, sc->maxpwr[chan]);
 3487 
 3488         /* retrieve power index into gain tables from samples */
 3489         for (sample = group->samples; sample < &group->samples[3]; sample++)
 3490                 if (pwr > sample[1].power)
 3491                         break;
 3492         /* fixed-point linear interpolation using a 19-bit fractional part */
 3493         idx = interpolate(pwr, sample[0].power, sample[0].index,
 3494             sample[1].power, sample[1].index, 19);
 3495 
 3496         /*
 3497          *  Adjust power index based on current temperature
 3498          *      - if colder than factory-calibrated: decreate output power
 3499          *      - if warmer than factory-calibrated: increase output power
 3500          */
 3501         idx -= (sc->temp - group->temp) * 11 / 100;
 3502 
 3503         /* decrease power for CCK rates (-5dB) */
 3504         if (!WPI_RATE_IS_OFDM(rate))
 3505                 idx += 10;
 3506 
 3507         /* keep power index in a valid range */
 3508         if (idx < 0)
 3509                 return 0;
 3510         if (idx > WPI_MAX_PWR_INDEX)
 3511                 return WPI_MAX_PWR_INDEX;
 3512         return idx;
 3513 
 3514 #undef interpolate
 3515 #undef fdivround
 3516 }
 3517 
 3518 /**
 3519  * Called by net80211 framework to indicate that a scan
 3520  * is starting. This function doesn't actually do the scan,
 3521  * wpi_scan_curchan starts things off. This function is more
 3522  * of an early warning from the framework we should get ready
 3523  * for the scan.
 3524  */
 3525 static void
 3526 wpi_scan_start(struct ieee80211com *ic)
 3527 {
 3528         struct ifnet *ifp = ic->ic_ifp;
 3529         struct wpi_softc *sc = ifp->if_softc;
 3530 
 3531         WPI_LOCK(sc);
 3532         wpi_set_led(sc, WPI_LED_LINK, 20, 2);
 3533         WPI_UNLOCK(sc);
 3534 }
 3535 
 3536 /**
 3537  * Called by the net80211 framework, indicates that the
 3538  * scan has ended. If there is a scan in progress on the card
 3539  * then it should be aborted.
 3540  */
 3541 static void
 3542 wpi_scan_end(struct ieee80211com *ic)
 3543 {
 3544         /* XXX ignore */
 3545 }
 3546 
 3547 /**
 3548  * Called by the net80211 framework to indicate to the driver
 3549  * that the channel should be changed
 3550  */
 3551 static void
 3552 wpi_set_channel(struct ieee80211com *ic)
 3553 {
 3554         struct ifnet *ifp = ic->ic_ifp;
 3555         struct wpi_softc *sc = ifp->if_softc;
 3556         int error;
 3557 
 3558         /*
 3559          * Only need to set the channel in Monitor mode. AP scanning and auth
 3560          * are already taken care of by their respective firmware commands.
 3561          */
 3562         if (ic->ic_opmode == IEEE80211_M_MONITOR) {
 3563                 WPI_LOCK(sc);
 3564                 error = wpi_config(sc);
 3565                 WPI_UNLOCK(sc);
 3566                 if (error != 0)
 3567                         device_printf(sc->sc_dev,
 3568                             "error %d settting channel\n", error);
 3569         }
 3570 }
 3571 
 3572 /**
 3573  * Called by net80211 to indicate that we need to scan the current
 3574  * channel. The channel is previously be set via the wpi_set_channel
 3575  * callback.
 3576  */
 3577 static void
 3578 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
 3579 {
 3580         struct ieee80211vap *vap = ss->ss_vap;
 3581         struct ifnet *ifp = vap->iv_ic->ic_ifp;
 3582         struct wpi_softc *sc = ifp->if_softc;
 3583 
 3584         WPI_LOCK(sc);
 3585         if (wpi_scan(sc))
 3586                 ieee80211_cancel_scan(vap);
 3587         WPI_UNLOCK(sc);
 3588 }
 3589 
 3590 /**
 3591  * Called by the net80211 framework to indicate
 3592  * the minimum dwell time has been met, terminate the scan.
 3593  * We don't actually terminate the scan as the firmware will notify
 3594  * us when it's finished and we have no way to interrupt it.
 3595  */
 3596 static void
 3597 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
 3598 {
 3599         /* NB: don't try to abort scan; wait for firmware to finish */
 3600 }
 3601 
 3602 static void
 3603 wpi_hwreset(void *arg, int pending)
 3604 {
 3605         struct wpi_softc *sc = arg;
 3606 
 3607         WPI_LOCK(sc);
 3608         wpi_init_locked(sc, 0);
 3609         WPI_UNLOCK(sc);
 3610 }
 3611 
 3612 static void
 3613 wpi_rfreset(void *arg, int pending)
 3614 {
 3615         struct wpi_softc *sc = arg;
 3616 
 3617         WPI_LOCK(sc);
 3618         wpi_rfkill_resume(sc);
 3619         WPI_UNLOCK(sc);
 3620 }
 3621 
 3622 /*
 3623  * Allocate DMA-safe memory for firmware transfer.
 3624  */
 3625 static int
 3626 wpi_alloc_fwmem(struct wpi_softc *sc)
 3627 {
 3628         /* allocate enough contiguous space to store text and data */
 3629         return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
 3630             WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
 3631             BUS_DMA_NOWAIT);
 3632 }
 3633 
 3634 static void
 3635 wpi_free_fwmem(struct wpi_softc *sc)
 3636 {
 3637         wpi_dma_contig_free(&sc->fw_dma);
 3638 }
 3639 
 3640 /**
 3641  * Called every second, wpi_watchdog used by the watch dog timer
 3642  * to check that the card is still alive
 3643  */
 3644 static void
 3645 wpi_watchdog(void *arg)
 3646 {
 3647         struct wpi_softc *sc = arg;
 3648         struct ifnet *ifp = sc->sc_ifp;
 3649         struct ieee80211com *ic = ifp->if_l2com;
 3650         uint32_t tmp;
 3651 
 3652         DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
 3653 
 3654         if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
 3655                 /* No need to lock firmware memory */
 3656                 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
 3657 
 3658                 if ((tmp & 0x1) == 0) {
 3659                         /* Radio kill switch is still off */
 3660                         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
 3661                         return;
 3662                 }
 3663 
 3664                 device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
 3665                 ieee80211_runtask(ic, &sc->sc_radiotask);
 3666                 return;
 3667         }
 3668 
 3669         if (sc->sc_tx_timer > 0) {
 3670                 if (--sc->sc_tx_timer == 0) {
 3671                         device_printf(sc->sc_dev,"device timeout\n");
 3672                         ifp->if_oerrors++;
 3673                         ieee80211_runtask(ic, &sc->sc_restarttask);
 3674                 }
 3675         }
 3676         if (sc->sc_scan_timer > 0) {
 3677                 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 3678                 if (--sc->sc_scan_timer == 0 && vap != NULL) {
 3679                         device_printf(sc->sc_dev,"scan timeout\n");
 3680                         ieee80211_cancel_scan(vap);
 3681                         ieee80211_runtask(ic, &sc->sc_restarttask);
 3682                 }
 3683         }
 3684 
 3685         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 3686                 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
 3687 }
 3688 
 3689 #ifdef WPI_DEBUG
 3690 static const char *wpi_cmd_str(int cmd)
 3691 {
 3692         switch (cmd) {
 3693         case WPI_DISABLE_CMD:   return "WPI_DISABLE_CMD";
 3694         case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE";
 3695         case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE";
 3696         case WPI_CMD_SET_WME:   return "WPI_CMD_SET_WME";
 3697         case WPI_CMD_TSF:       return "WPI_CMD_TSF";
 3698         case WPI_CMD_ADD_NODE:  return "WPI_CMD_ADD_NODE";
 3699         case WPI_CMD_TX_DATA:   return "WPI_CMD_TX_DATA";
 3700         case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP";
 3701         case WPI_CMD_SET_LED:   return "WPI_CMD_SET_LED";
 3702         case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
 3703         case WPI_CMD_SCAN:      return "WPI_CMD_SCAN";
 3704         case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
 3705         case WPI_CMD_TXPOWER:   return "WPI_CMD_TXPOWER";
 3706         case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH";
 3707 
 3708         default:
 3709                 KASSERT(1, ("Unknown Command: %d\n", cmd));
 3710                 return "UNKNOWN CMD";   /* Make the compiler happy */
 3711         }
 3712 }
 3713 #endif
 3714 
 3715 MODULE_DEPEND(wpi, pci,  1, 1, 1);
 3716 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
 3717 MODULE_DEPEND(wpi, firmware, 1, 1, 1);

Cache object: 61994f1e5a4f58ae34f078f23cf51677


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.