The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/wpi/if_wpi.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2006,2007
    3  *      Damien Bergamini <damien.bergamini@free.fr>
    4  *      Benjamin Close <Benjamin.Close@clearchain.com>
    5  *
    6  * Permission to use, copy, modify, and distribute this software for any
    7  * purpose with or without fee is hereby granted, provided that the above
    8  * copyright notice and this permission notice appear in all copies.
    9  *
   10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
   12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
   13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
   14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
   15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
   16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
   17  */
   18 
   19 #define VERSION "20071127"
   20 
   21 #include <sys/cdefs.h>
   22 __FBSDID("$FreeBSD: releng/9.0/sys/dev/wpi/if_wpi.c 222543 2011-05-31 19:08:25Z bschmidt $");
   23 
   24 /*
   25  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
   26  *
   27  * The 3945ABG network adapter doesn't use traditional hardware as
   28  * many other adaptors do. Instead at run time the eeprom is set into a known
   29  * state and told to load boot firmware. The boot firmware loads an init and a
   30  * main  binary firmware image into SRAM on the card via DMA.
   31  * Once the firmware is loaded, the driver/hw then
   32  * communicate by way of circular dma rings via the SRAM to the firmware.
   33  *
   34  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
   35  * The 4 tx data rings allow for prioritization QoS.
   36  *
   37  * The rx data ring consists of 32 dma buffers. Two registers are used to
   38  * indicate where in the ring the driver and the firmware are up to. The
   39  * driver sets the initial read index (reg1) and the initial write index (reg2),
   40  * the firmware updates the read index (reg1) on rx of a packet and fires an
   41  * interrupt. The driver then processes the buffers starting at reg1 indicating
   42  * to the firmware which buffers have been accessed by updating reg2. At the
   43  * same time allocating new memory for the processed buffer.
   44  *
   45  * A similar thing happens with the tx rings. The difference is the firmware
   46  * stop processing buffers once the queue is full and until confirmation
   47  * of a successful transmition (tx_intr) has occurred.
   48  *
   49  * The command ring operates in the same manner as the tx queues.
   50  *
   51  * All communication direct to the card (ie eeprom) is classed as Stage1
   52  * communication
   53  *
   54  * All communication via the firmware to the card is classed as State2.
   55  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
   56  * firmware. The bootstrap firmware and runtime firmware are loaded
   57  * from host memory via dma to the card then told to execute. From this point
   58  * on the majority of communications between the driver and the card goes
   59  * via the firmware.
   60  */
   61 
   62 #include <sys/param.h>
   63 #include <sys/sysctl.h>
   64 #include <sys/sockio.h>
   65 #include <sys/mbuf.h>
   66 #include <sys/kernel.h>
   67 #include <sys/socket.h>
   68 #include <sys/systm.h>
   69 #include <sys/malloc.h>
   70 #include <sys/queue.h>
   71 #include <sys/taskqueue.h>
   72 #include <sys/module.h>
   73 #include <sys/bus.h>
   74 #include <sys/endian.h>
   75 #include <sys/linker.h>
   76 #include <sys/firmware.h>
   77 
   78 #include <machine/bus.h>
   79 #include <machine/resource.h>
   80 #include <sys/rman.h>
   81 
   82 #include <dev/pci/pcireg.h>
   83 #include <dev/pci/pcivar.h>
   84 
   85 #include <net/bpf.h>
   86 #include <net/if.h>
   87 #include <net/if_arp.h>
   88 #include <net/ethernet.h>
   89 #include <net/if_dl.h>
   90 #include <net/if_media.h>
   91 #include <net/if_types.h>
   92 
   93 #include <net80211/ieee80211_var.h>
   94 #include <net80211/ieee80211_radiotap.h>
   95 #include <net80211/ieee80211_regdomain.h>
   96 #include <net80211/ieee80211_ratectl.h>
   97 
   98 #include <netinet/in.h>
   99 #include <netinet/in_systm.h>
  100 #include <netinet/in_var.h>
  101 #include <netinet/ip.h>
  102 #include <netinet/if_ether.h>
  103 
  104 #include <dev/wpi/if_wpireg.h>
  105 #include <dev/wpi/if_wpivar.h>
  106 
  107 #define WPI_DEBUG
  108 
  109 #ifdef WPI_DEBUG
  110 #define DPRINTF(x)      do { if (wpi_debug != 0) printf x; } while (0)
  111 #define DPRINTFN(n, x)  do { if (wpi_debug & n) printf x; } while (0)
  112 #define WPI_DEBUG_SET   (wpi_debug != 0)
  113 
  114 enum {
  115         WPI_DEBUG_UNUSED        = 0x00000001,   /* Unused */
  116         WPI_DEBUG_HW            = 0x00000002,   /* Stage 1 (eeprom) debugging */
  117         WPI_DEBUG_TX            = 0x00000004,   /* Stage 2 TX intrp debugging*/
  118         WPI_DEBUG_RX            = 0x00000008,   /* Stage 2 RX intrp debugging */
  119         WPI_DEBUG_CMD           = 0x00000010,   /* Stage 2 CMD intrp debugging*/
  120         WPI_DEBUG_FIRMWARE      = 0x00000020,   /* firmware(9) loading debug  */
  121         WPI_DEBUG_DMA           = 0x00000040,   /* DMA (de)allocations/syncs  */
  122         WPI_DEBUG_SCANNING      = 0x00000080,   /* Stage 2 Scanning debugging */
  123         WPI_DEBUG_NOTIFY        = 0x00000100,   /* State 2 Noftif intr debug */
  124         WPI_DEBUG_TEMP          = 0x00000200,   /* TXPower/Temp Calibration */
  125         WPI_DEBUG_OPS           = 0x00000400,   /* wpi_ops taskq debug */
  126         WPI_DEBUG_WATCHDOG      = 0x00000800,   /* Watch dog debug */
  127         WPI_DEBUG_ANY           = 0xffffffff
  128 };
  129 
  130 static int wpi_debug = 0;
  131 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
  132 TUNABLE_INT("debug.wpi", &wpi_debug);
  133 
  134 #else
  135 #define DPRINTF(x)
  136 #define DPRINTFN(n, x)
  137 #define WPI_DEBUG_SET   0
  138 #endif
  139 
  140 struct wpi_ident {
  141         uint16_t        vendor;
  142         uint16_t        device;
  143         uint16_t        subdevice;
  144         const char      *name;
  145 };
  146 
  147 static const struct wpi_ident wpi_ident_table[] = {
  148         /* The below entries support ABG regardless of the subid */
  149         { 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
  150         { 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
  151         /* The below entries only support BG */
  152         { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
  153         { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
  154         { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
  155         { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
  156         { 0, 0, 0, NULL }
  157 };
  158 
  159 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
  160                     const char name[IFNAMSIZ], int unit, int opmode,
  161                     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
  162                     const uint8_t mac[IEEE80211_ADDR_LEN]);
  163 static void     wpi_vap_delete(struct ieee80211vap *);
  164 static int      wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
  165                     void **, bus_size_t, bus_size_t, int);
  166 static void     wpi_dma_contig_free(struct wpi_dma_info *);
  167 static void     wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
  168 static int      wpi_alloc_shared(struct wpi_softc *);
  169 static void     wpi_free_shared(struct wpi_softc *);
  170 static int      wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
  171 static void     wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
  172 static void     wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
  173 static int      wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
  174                     int, int);
  175 static void     wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
  176 static void     wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
  177 static int      wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
  178 static void     wpi_mem_lock(struct wpi_softc *);
  179 static void     wpi_mem_unlock(struct wpi_softc *);
  180 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
  181 static void     wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
  182 static void     wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
  183                     const uint32_t *, int);
  184 static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
  185 static int      wpi_alloc_fwmem(struct wpi_softc *);
  186 static void     wpi_free_fwmem(struct wpi_softc *);
  187 static int      wpi_load_firmware(struct wpi_softc *);
  188 static void     wpi_unload_firmware(struct wpi_softc *);
  189 static int      wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
  190 static void     wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
  191                     struct wpi_rx_data *);
  192 static void     wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
  193 static void     wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
  194 static void     wpi_notif_intr(struct wpi_softc *);
  195 static void     wpi_intr(void *);
  196 static uint8_t  wpi_plcp_signal(int);
  197 static void     wpi_watchdog(void *);
  198 static int      wpi_tx_data(struct wpi_softc *, struct mbuf *,
  199                     struct ieee80211_node *, int);
  200 static void     wpi_start(struct ifnet *);
  201 static void     wpi_start_locked(struct ifnet *);
  202 static int      wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
  203                     const struct ieee80211_bpf_params *);
  204 static void     wpi_scan_start(struct ieee80211com *);
  205 static void     wpi_scan_end(struct ieee80211com *);
  206 static void     wpi_set_channel(struct ieee80211com *);
  207 static void     wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
  208 static void     wpi_scan_mindwell(struct ieee80211_scan_state *);
  209 static int      wpi_ioctl(struct ifnet *, u_long, caddr_t);
  210 static void     wpi_read_eeprom(struct wpi_softc *,
  211                     uint8_t macaddr[IEEE80211_ADDR_LEN]);
  212 static void     wpi_read_eeprom_channels(struct wpi_softc *, int);
  213 static void     wpi_read_eeprom_group(struct wpi_softc *, int);
  214 static int      wpi_cmd(struct wpi_softc *, int, const void *, int, int);
  215 static int      wpi_wme_update(struct ieee80211com *);
  216 static int      wpi_mrr_setup(struct wpi_softc *);
  217 static void     wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
  218 static void     wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
  219 #if 0
  220 static int      wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
  221 #endif
  222 static int      wpi_auth(struct wpi_softc *, struct ieee80211vap *);
  223 static int      wpi_run(struct wpi_softc *, struct ieee80211vap *);
  224 static int      wpi_scan(struct wpi_softc *);
  225 static int      wpi_config(struct wpi_softc *);
  226 static void     wpi_stop_master(struct wpi_softc *);
  227 static int      wpi_power_up(struct wpi_softc *);
  228 static int      wpi_reset(struct wpi_softc *);
  229 static void     wpi_hwreset(void *, int);
  230 static void     wpi_rfreset(void *, int);
  231 static void     wpi_hw_config(struct wpi_softc *);
  232 static void     wpi_init(void *);
  233 static void     wpi_init_locked(struct wpi_softc *, int);
  234 static void     wpi_stop(struct wpi_softc *);
  235 static void     wpi_stop_locked(struct wpi_softc *);
  236 
  237 static int      wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
  238                     int);
  239 static void     wpi_calib_timeout(void *);
  240 static void     wpi_power_calibration(struct wpi_softc *, int);
  241 static int      wpi_get_power_index(struct wpi_softc *,
  242                     struct wpi_power_group *, struct ieee80211_channel *, int);
  243 #ifdef WPI_DEBUG
  244 static const char *wpi_cmd_str(int);
  245 #endif
  246 static int wpi_probe(device_t);
  247 static int wpi_attach(device_t);
  248 static int wpi_detach(device_t);
  249 static int wpi_shutdown(device_t);
  250 static int wpi_suspend(device_t);
  251 static int wpi_resume(device_t);
  252 
  253 
  254 static device_method_t wpi_methods[] = {
  255         /* Device interface */
  256         DEVMETHOD(device_probe,         wpi_probe),
  257         DEVMETHOD(device_attach,        wpi_attach),
  258         DEVMETHOD(device_detach,        wpi_detach),
  259         DEVMETHOD(device_shutdown,      wpi_shutdown),
  260         DEVMETHOD(device_suspend,       wpi_suspend),
  261         DEVMETHOD(device_resume,        wpi_resume),
  262 
  263         { 0, 0 }
  264 };
  265 
  266 static driver_t wpi_driver = {
  267         "wpi",
  268         wpi_methods,
  269         sizeof (struct wpi_softc)
  270 };
  271 
  272 static devclass_t wpi_devclass;
  273 
  274 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
  275 
  276 MODULE_VERSION(wpi, 1);
  277 
  278 static const uint8_t wpi_ridx_to_plcp[] = {
  279         /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
  280         /* R1-R4 (ral/ural is R4-R1) */
  281         0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
  282         /* CCK: device-dependent */
  283         10, 20, 55, 110
  284 };
  285 static const uint8_t wpi_ridx_to_rate[] = {
  286         12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
  287         2, 4, 11, 22 /*CCK */
  288 };
  289 
  290 
  291 static int
  292 wpi_probe(device_t dev)
  293 {
  294         const struct wpi_ident *ident;
  295 
  296         for (ident = wpi_ident_table; ident->name != NULL; ident++) {
  297                 if (pci_get_vendor(dev) == ident->vendor &&
  298                     pci_get_device(dev) == ident->device) {
  299                         device_set_desc(dev, ident->name);
  300                         return 0;
  301                 }
  302         }
  303         return ENXIO;
  304 }
  305 
  306 /**
  307  * Load the firmare image from disk to the allocated dma buffer.
  308  * we also maintain the reference to the firmware pointer as there
  309  * is times where we may need to reload the firmware but we are not
  310  * in a context that can access the filesystem (ie taskq cause by restart)
  311  *
  312  * @return 0 on success, an errno on failure
  313  */
  314 static int
  315 wpi_load_firmware(struct wpi_softc *sc)
  316 {
  317         const struct firmware *fp;
  318         struct wpi_dma_info *dma = &sc->fw_dma;
  319         const struct wpi_firmware_hdr *hdr;
  320         const uint8_t *itext, *idata, *rtext, *rdata, *btext;
  321         uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
  322         int error;
  323 
  324         DPRINTFN(WPI_DEBUG_FIRMWARE,
  325             ("Attempting Loading Firmware from wpi_fw module\n"));
  326 
  327         WPI_UNLOCK(sc);
  328 
  329         if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
  330                 device_printf(sc->sc_dev,
  331                     "could not load firmware image 'wpifw'\n");
  332                 error = ENOENT;
  333                 WPI_LOCK(sc);
  334                 goto fail;
  335         }
  336 
  337         fp = sc->fw_fp;
  338 
  339         WPI_LOCK(sc);
  340 
  341         /* Validate the firmware is minimum a particular version */
  342         if (fp->version < WPI_FW_MINVERSION) {
  343             device_printf(sc->sc_dev,
  344                            "firmware version is too old. Need %d, got %d\n",
  345                            WPI_FW_MINVERSION,
  346                            fp->version);
  347             error = ENXIO;
  348             goto fail;
  349         }
  350 
  351         if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
  352                 device_printf(sc->sc_dev,
  353                     "firmware file too short: %zu bytes\n", fp->datasize);
  354                 error = ENXIO;
  355                 goto fail;
  356         }
  357 
  358         hdr = (const struct wpi_firmware_hdr *)fp->data;
  359 
  360         /*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
  361            |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
  362 
  363         rtextsz = le32toh(hdr->rtextsz);
  364         rdatasz = le32toh(hdr->rdatasz);
  365         itextsz = le32toh(hdr->itextsz);
  366         idatasz = le32toh(hdr->idatasz);
  367         btextsz = le32toh(hdr->btextsz);
  368 
  369         /* check that all firmware segments are present */
  370         if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
  371                 rtextsz + rdatasz + itextsz + idatasz + btextsz) {
  372                 device_printf(sc->sc_dev,
  373                     "firmware file too short: %zu bytes\n", fp->datasize);
  374                 error = ENXIO; /* XXX appropriate error code? */
  375                 goto fail;
  376         }
  377 
  378         /* get pointers to firmware segments */
  379         rtext = (const uint8_t *)(hdr + 1);
  380         rdata = rtext + rtextsz;
  381         itext = rdata + rdatasz;
  382         idata = itext + itextsz;
  383         btext = idata + idatasz;
  384 
  385         DPRINTFN(WPI_DEBUG_FIRMWARE,
  386             ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
  387              "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
  388              (le32toh(hdr->version) & 0xff000000) >> 24,
  389              (le32toh(hdr->version) & 0x00ff0000) >> 16,
  390              (le32toh(hdr->version) & 0x0000ffff),
  391              rtextsz, rdatasz,
  392              itextsz, idatasz, btextsz));
  393 
  394         DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
  395         DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
  396         DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
  397         DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
  398         DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
  399 
  400         /* sanity checks */
  401         if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
  402             rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
  403             itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
  404             idatasz > WPI_FW_INIT_DATA_MAXSZ ||
  405             btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
  406             (btextsz & 3) != 0) {
  407                 device_printf(sc->sc_dev, "firmware invalid\n");
  408                 error = EINVAL;
  409                 goto fail;
  410         }
  411 
  412         /* copy initialization images into pre-allocated DMA-safe memory */
  413         memcpy(dma->vaddr, idata, idatasz);
  414         memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
  415 
  416         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
  417 
  418         /* tell adapter where to find initialization images */
  419         wpi_mem_lock(sc);
  420         wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
  421         wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
  422         wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
  423             dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
  424         wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
  425         wpi_mem_unlock(sc);
  426 
  427         /* load firmware boot code */
  428         if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
  429             device_printf(sc->sc_dev, "Failed to load microcode\n");
  430             goto fail;
  431         }
  432 
  433         /* now press "execute" */
  434         WPI_WRITE(sc, WPI_RESET, 0);
  435 
  436         /* wait at most one second for the first alive notification */
  437         if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
  438                 device_printf(sc->sc_dev,
  439                     "timeout waiting for adapter to initialize\n");
  440                 goto fail;
  441         }
  442 
  443         /* copy runtime images into pre-allocated DMA-sage memory */
  444         memcpy(dma->vaddr, rdata, rdatasz);
  445         memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
  446         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
  447 
  448         /* tell adapter where to find runtime images */
  449         wpi_mem_lock(sc);
  450         wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
  451         wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
  452         wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
  453             dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
  454         wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
  455         wpi_mem_unlock(sc);
  456 
  457         /* wait at most one second for the first alive notification */
  458         if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
  459                 device_printf(sc->sc_dev,
  460                     "timeout waiting for adapter to initialize2\n");
  461                 goto fail;
  462         }
  463 
  464         DPRINTFN(WPI_DEBUG_FIRMWARE,
  465             ("Firmware loaded to driver successfully\n"));
  466         return error;
  467 fail:
  468         wpi_unload_firmware(sc);
  469         return error;
  470 }
  471 
  472 /**
  473  * Free the referenced firmware image
  474  */
  475 static void
  476 wpi_unload_firmware(struct wpi_softc *sc)
  477 {
  478 
  479         if (sc->fw_fp) {
  480                 WPI_UNLOCK(sc);
  481                 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
  482                 WPI_LOCK(sc);
  483                 sc->fw_fp = NULL;
  484         }
  485 }
  486 
  487 static int
  488 wpi_attach(device_t dev)
  489 {
  490         struct wpi_softc *sc = device_get_softc(dev);
  491         struct ifnet *ifp;
  492         struct ieee80211com *ic;
  493         int ac, error, supportsa = 1;
  494         uint32_t tmp;
  495         const struct wpi_ident *ident;
  496         uint8_t macaddr[IEEE80211_ADDR_LEN];
  497 
  498         sc->sc_dev = dev;
  499 
  500         if (bootverbose || WPI_DEBUG_SET)
  501             device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
  502 
  503         /*
  504          * Some card's only support 802.11b/g not a, check to see if
  505          * this is one such card. A 0x0 in the subdevice table indicates
  506          * the entire subdevice range is to be ignored.
  507          */
  508         for (ident = wpi_ident_table; ident->name != NULL; ident++) {
  509                 if (ident->subdevice &&
  510                     pci_get_subdevice(dev) == ident->subdevice) {
  511                     supportsa = 0;
  512                     break;
  513                 }
  514         }
  515 
  516         /* Create the tasks that can be queued */
  517         TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
  518         TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
  519 
  520         WPI_LOCK_INIT(sc);
  521 
  522         callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
  523         callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
  524 
  525         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
  526                 device_printf(dev, "chip is in D%d power mode "
  527                     "-- setting to D0\n", pci_get_powerstate(dev));
  528                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
  529         }
  530 
  531         /* disable the retry timeout register */
  532         pci_write_config(dev, 0x41, 0, 1);
  533 
  534         /* enable bus-mastering */
  535         pci_enable_busmaster(dev);
  536 
  537         sc->mem_rid = PCIR_BAR(0);
  538         sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
  539             RF_ACTIVE);
  540         if (sc->mem == NULL) {
  541                 device_printf(dev, "could not allocate memory resource\n");
  542                 error = ENOMEM;
  543                 goto fail;
  544         }
  545 
  546         sc->sc_st = rman_get_bustag(sc->mem);
  547         sc->sc_sh = rman_get_bushandle(sc->mem);
  548 
  549         sc->irq_rid = 0;
  550         sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
  551             RF_ACTIVE | RF_SHAREABLE);
  552         if (sc->irq == NULL) {
  553                 device_printf(dev, "could not allocate interrupt resource\n");
  554                 error = ENOMEM;
  555                 goto fail;
  556         }
  557 
  558         /*
  559          * Allocate DMA memory for firmware transfers.
  560          */
  561         if ((error = wpi_alloc_fwmem(sc)) != 0) {
  562                 printf(": could not allocate firmware memory\n");
  563                 error = ENOMEM;
  564                 goto fail;
  565         }
  566 
  567         /*
  568          * Put adapter into a known state.
  569          */
  570         if ((error = wpi_reset(sc)) != 0) {
  571                 device_printf(dev, "could not reset adapter\n");
  572                 goto fail;
  573         }
  574 
  575         wpi_mem_lock(sc);
  576         tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
  577         if (bootverbose || WPI_DEBUG_SET)
  578             device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
  579 
  580         wpi_mem_unlock(sc);
  581 
  582         /* Allocate shared page */
  583         if ((error = wpi_alloc_shared(sc)) != 0) {
  584                 device_printf(dev, "could not allocate shared page\n");
  585                 goto fail;
  586         }
  587 
  588         /* tx data queues  - 4 for QoS purposes */
  589         for (ac = 0; ac < WME_NUM_AC; ac++) {
  590                 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
  591                 if (error != 0) {
  592                     device_printf(dev, "could not allocate Tx ring %d\n",ac);
  593                     goto fail;
  594                 }
  595         }
  596 
  597         /* command queue to talk to the card's firmware */
  598         error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
  599         if (error != 0) {
  600                 device_printf(dev, "could not allocate command ring\n");
  601                 goto fail;
  602         }
  603 
  604         /* receive data queue */
  605         error = wpi_alloc_rx_ring(sc, &sc->rxq);
  606         if (error != 0) {
  607                 device_printf(dev, "could not allocate Rx ring\n");
  608                 goto fail;
  609         }
  610 
  611         ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
  612         if (ifp == NULL) {
  613                 device_printf(dev, "can not if_alloc()\n");
  614                 error = ENOMEM;
  615                 goto fail;
  616         }
  617         ic = ifp->if_l2com;
  618 
  619         ic->ic_ifp = ifp;
  620         ic->ic_phytype = IEEE80211_T_OFDM;      /* not only, but not used */
  621         ic->ic_opmode = IEEE80211_M_STA;        /* default to BSS mode */
  622 
  623         /* set device capabilities */
  624         ic->ic_caps =
  625                   IEEE80211_C_STA               /* station mode supported */
  626                 | IEEE80211_C_MONITOR           /* monitor mode supported */
  627                 | IEEE80211_C_TXPMGT            /* tx power management */
  628                 | IEEE80211_C_SHSLOT            /* short slot time supported */
  629                 | IEEE80211_C_SHPREAMBLE        /* short preamble supported */
  630                 | IEEE80211_C_WPA               /* 802.11i */
  631 /* XXX looks like WME is partly supported? */
  632 #if 0
  633                 | IEEE80211_C_IBSS              /* IBSS mode support */
  634                 | IEEE80211_C_BGSCAN            /* capable of bg scanning */
  635                 | IEEE80211_C_WME               /* 802.11e */
  636                 | IEEE80211_C_HOSTAP            /* Host access point mode */
  637 #endif
  638                 ;
  639 
  640         /*
  641          * Read in the eeprom and also setup the channels for
  642          * net80211. We don't set the rates as net80211 does this for us
  643          */
  644         wpi_read_eeprom(sc, macaddr);
  645 
  646         if (bootverbose || WPI_DEBUG_SET) {
  647             device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
  648             device_printf(sc->sc_dev, "Hardware Type: %c\n",
  649                           sc->type > 1 ? 'B': '?');
  650             device_printf(sc->sc_dev, "Hardware Revision: %c\n",
  651                           ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
  652             device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
  653                           supportsa ? "does" : "does not");
  654 
  655             /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
  656                what sc->rev really represents - benjsc 20070615 */
  657         }
  658 
  659         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
  660         ifp->if_softc = sc;
  661         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
  662         ifp->if_init = wpi_init;
  663         ifp->if_ioctl = wpi_ioctl;
  664         ifp->if_start = wpi_start;
  665         IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
  666         ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
  667         IFQ_SET_READY(&ifp->if_snd);
  668 
  669         ieee80211_ifattach(ic, macaddr);
  670         /* override default methods */
  671         ic->ic_raw_xmit = wpi_raw_xmit;
  672         ic->ic_wme.wme_update = wpi_wme_update;
  673         ic->ic_scan_start = wpi_scan_start;
  674         ic->ic_scan_end = wpi_scan_end;
  675         ic->ic_set_channel = wpi_set_channel;
  676         ic->ic_scan_curchan = wpi_scan_curchan;
  677         ic->ic_scan_mindwell = wpi_scan_mindwell;
  678 
  679         ic->ic_vap_create = wpi_vap_create;
  680         ic->ic_vap_delete = wpi_vap_delete;
  681 
  682         ieee80211_radiotap_attach(ic,
  683             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
  684                 WPI_TX_RADIOTAP_PRESENT,
  685             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
  686                 WPI_RX_RADIOTAP_PRESENT);
  687 
  688         /*
  689          * Hook our interrupt after all initialization is complete.
  690          */
  691         error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
  692             NULL, wpi_intr, sc, &sc->sc_ih);
  693         if (error != 0) {
  694                 device_printf(dev, "could not set up interrupt\n");
  695                 goto fail;
  696         }
  697 
  698         if (bootverbose)
  699                 ieee80211_announce(ic);
  700 #ifdef XXX_DEBUG
  701         ieee80211_announce_channels(ic);
  702 #endif
  703         return 0;
  704 
  705 fail:   wpi_detach(dev);
  706         return ENXIO;
  707 }
  708 
  709 static int
  710 wpi_detach(device_t dev)
  711 {
  712         struct wpi_softc *sc = device_get_softc(dev);
  713         struct ifnet *ifp = sc->sc_ifp;
  714         struct ieee80211com *ic;
  715         int ac;
  716 
  717         if (ifp != NULL) {
  718                 ic = ifp->if_l2com;
  719 
  720                 ieee80211_draintask(ic, &sc->sc_restarttask);
  721                 ieee80211_draintask(ic, &sc->sc_radiotask);
  722                 wpi_stop(sc);
  723                 callout_drain(&sc->watchdog_to);
  724                 callout_drain(&sc->calib_to);
  725                 ieee80211_ifdetach(ic);
  726         }
  727 
  728         WPI_LOCK(sc);
  729         if (sc->txq[0].data_dmat) {
  730                 for (ac = 0; ac < WME_NUM_AC; ac++)
  731                         wpi_free_tx_ring(sc, &sc->txq[ac]);
  732 
  733                 wpi_free_tx_ring(sc, &sc->cmdq);
  734                 wpi_free_rx_ring(sc, &sc->rxq);
  735                 wpi_free_shared(sc);
  736         }
  737 
  738         if (sc->fw_fp != NULL) {
  739                 wpi_unload_firmware(sc);
  740         }
  741 
  742         if (sc->fw_dma.tag)
  743                 wpi_free_fwmem(sc);
  744         WPI_UNLOCK(sc);
  745 
  746         if (sc->irq != NULL) {
  747                 bus_teardown_intr(dev, sc->irq, sc->sc_ih);
  748                 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
  749         }
  750 
  751         if (sc->mem != NULL)
  752                 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
  753 
  754         if (ifp != NULL)
  755                 if_free(ifp);
  756 
  757         WPI_LOCK_DESTROY(sc);
  758 
  759         return 0;
  760 }
  761 
  762 static struct ieee80211vap *
  763 wpi_vap_create(struct ieee80211com *ic,
  764         const char name[IFNAMSIZ], int unit, int opmode, int flags,
  765         const uint8_t bssid[IEEE80211_ADDR_LEN],
  766         const uint8_t mac[IEEE80211_ADDR_LEN])
  767 {
  768         struct wpi_vap *wvp;
  769         struct ieee80211vap *vap;
  770 
  771         if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
  772                 return NULL;
  773         wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
  774             M_80211_VAP, M_NOWAIT | M_ZERO);
  775         if (wvp == NULL)
  776                 return NULL;
  777         vap = &wvp->vap;
  778         ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
  779         /* override with driver methods */
  780         wvp->newstate = vap->iv_newstate;
  781         vap->iv_newstate = wpi_newstate;
  782 
  783         ieee80211_ratectl_init(vap);
  784         /* complete setup */
  785         ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
  786         ic->ic_opmode = opmode;
  787         return vap;
  788 }
  789 
  790 static void
  791 wpi_vap_delete(struct ieee80211vap *vap)
  792 {
  793         struct wpi_vap *wvp = WPI_VAP(vap);
  794 
  795         ieee80211_ratectl_deinit(vap);
  796         ieee80211_vap_detach(vap);
  797         free(wvp, M_80211_VAP);
  798 }
  799 
  800 static void
  801 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
  802 {
  803         if (error != 0)
  804                 return;
  805 
  806         KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
  807 
  808         *(bus_addr_t *)arg = segs[0].ds_addr;
  809 }
  810 
  811 /*
  812  * Allocates a contiguous block of dma memory of the requested size and
  813  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
  814  * allocations greater than 4096 may fail. Hence if the requested alignment is
  815  * greater we allocate 'alignment' size extra memory and shift the vaddr and
  816  * paddr after the dma load. This bypasses the problem at the cost of a little
  817  * more memory.
  818  */
  819 static int
  820 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
  821     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
  822 {
  823         int error;
  824         bus_size_t align;
  825         bus_size_t reqsize;
  826 
  827         DPRINTFN(WPI_DEBUG_DMA,
  828             ("Size: %zd - alignment %zd\n", size, alignment));
  829 
  830         dma->size = size;
  831         dma->tag = NULL;
  832 
  833         if (alignment > 4096) {
  834                 align = PAGE_SIZE;
  835                 reqsize = size + alignment;
  836         } else {
  837                 align = alignment;
  838                 reqsize = size;
  839         }
  840         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
  841             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
  842             NULL, NULL, reqsize,
  843             1, reqsize, flags,
  844             NULL, NULL, &dma->tag);
  845         if (error != 0) {
  846                 device_printf(sc->sc_dev,
  847                     "could not create shared page DMA tag\n");
  848                 goto fail;
  849         }
  850         error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
  851             flags | BUS_DMA_ZERO, &dma->map);
  852         if (error != 0) {
  853                 device_printf(sc->sc_dev,
  854                     "could not allocate shared page DMA memory\n");
  855                 goto fail;
  856         }
  857 
  858         error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
  859             reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
  860 
  861         /* Save the original pointers so we can free all the memory */
  862         dma->paddr = dma->paddr_start;
  863         dma->vaddr = dma->vaddr_start;
  864 
  865         /*
  866          * Check the alignment and increment by 4096 until we get the
  867          * requested alignment. Fail if can't obtain the alignment
  868          * we requested.
  869          */
  870         if ((dma->paddr & (alignment -1 )) != 0) {
  871                 int i;
  872 
  873                 for (i = 0; i < alignment / 4096; i++) {
  874                         if ((dma->paddr & (alignment - 1 )) == 0)
  875                                 break;
  876                         dma->paddr += 4096;
  877                         dma->vaddr += 4096;
  878                 }
  879                 if (i == alignment / 4096) {
  880                         device_printf(sc->sc_dev,
  881                             "alignment requirement was not satisfied\n");
  882                         goto fail;
  883                 }
  884         }
  885 
  886         if (error != 0) {
  887                 device_printf(sc->sc_dev,
  888                     "could not load shared page DMA map\n");
  889                 goto fail;
  890         }
  891 
  892         if (kvap != NULL)
  893                 *kvap = dma->vaddr;
  894 
  895         return 0;
  896 
  897 fail:
  898         wpi_dma_contig_free(dma);
  899         return error;
  900 }
  901 
  902 static void
  903 wpi_dma_contig_free(struct wpi_dma_info *dma)
  904 {
  905         if (dma->tag) {
  906                 if (dma->map != NULL) {
  907                         if (dma->paddr_start != 0) {
  908                                 bus_dmamap_sync(dma->tag, dma->map,
  909                                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
  910                                 bus_dmamap_unload(dma->tag, dma->map);
  911                         }
  912                         bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
  913                 }
  914                 bus_dma_tag_destroy(dma->tag);
  915         }
  916 }
  917 
  918 /*
  919  * Allocate a shared page between host and NIC.
  920  */
  921 static int
  922 wpi_alloc_shared(struct wpi_softc *sc)
  923 {
  924         int error;
  925 
  926         error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
  927             (void **)&sc->shared, sizeof (struct wpi_shared),
  928             PAGE_SIZE,
  929             BUS_DMA_NOWAIT);
  930 
  931         if (error != 0) {
  932                 device_printf(sc->sc_dev,
  933                     "could not allocate shared area DMA memory\n");
  934         }
  935 
  936         return error;
  937 }
  938 
  939 static void
  940 wpi_free_shared(struct wpi_softc *sc)
  941 {
  942         wpi_dma_contig_free(&sc->shared_dma);
  943 }
  944 
  945 static int
  946 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
  947 {
  948 
  949         int i, error;
  950 
  951         ring->cur = 0;
  952 
  953         error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
  954             (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
  955             WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
  956 
  957         if (error != 0) {
  958                 device_printf(sc->sc_dev,
  959                     "%s: could not allocate rx ring DMA memory, error %d\n",
  960                     __func__, error);
  961                 goto fail;
  962         }
  963 
  964         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 
  965             BUS_SPACE_MAXADDR_32BIT,
  966             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
  967             MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
  968         if (error != 0) {
  969                 device_printf(sc->sc_dev,
  970                     "%s: bus_dma_tag_create_failed, error %d\n",
  971                     __func__, error);
  972                 goto fail;
  973         }
  974 
  975         /*
  976          * Setup Rx buffers.
  977          */
  978         for (i = 0; i < WPI_RX_RING_COUNT; i++) {
  979                 struct wpi_rx_data *data = &ring->data[i];
  980                 struct mbuf *m;
  981                 bus_addr_t paddr;
  982 
  983                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
  984                 if (error != 0) {
  985                         device_printf(sc->sc_dev,
  986                             "%s: bus_dmamap_create failed, error %d\n",
  987                             __func__, error);
  988                         goto fail;
  989                 }
  990                 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
  991                 if (m == NULL) {
  992                         device_printf(sc->sc_dev,
  993                            "%s: could not allocate rx mbuf\n", __func__);
  994                         error = ENOMEM;
  995                         goto fail;
  996                 }
  997                 /* map page */
  998                 error = bus_dmamap_load(ring->data_dmat, data->map,
  999                     mtod(m, caddr_t), MJUMPAGESIZE,
 1000                     wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
 1001                 if (error != 0 && error != EFBIG) {
 1002                         device_printf(sc->sc_dev,
 1003                             "%s: bus_dmamap_load failed, error %d\n",
 1004                             __func__, error);
 1005                         m_freem(m);
 1006                         error = ENOMEM; /* XXX unique code */
 1007                         goto fail;
 1008                 }
 1009                 bus_dmamap_sync(ring->data_dmat, data->map, 
 1010                     BUS_DMASYNC_PREWRITE);
 1011 
 1012                 data->m = m;
 1013                 ring->desc[i] = htole32(paddr);
 1014         }
 1015         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
 1016             BUS_DMASYNC_PREWRITE);
 1017         return 0;
 1018 fail:
 1019         wpi_free_rx_ring(sc, ring);
 1020         return error;
 1021 }
 1022 
 1023 static void
 1024 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
 1025 {
 1026         int ntries;
 1027 
 1028         wpi_mem_lock(sc);
 1029 
 1030         WPI_WRITE(sc, WPI_RX_CONFIG, 0);
 1031 
 1032         for (ntries = 0; ntries < 100; ntries++) {
 1033                 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
 1034                         break;
 1035                 DELAY(10);
 1036         }
 1037 
 1038         wpi_mem_unlock(sc);
 1039 
 1040 #ifdef WPI_DEBUG
 1041         if (ntries == 100 && wpi_debug > 0)
 1042                 device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
 1043 #endif
 1044 
 1045         ring->cur = 0;
 1046 }
 1047 
 1048 static void
 1049 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
 1050 {
 1051         int i;
 1052 
 1053         wpi_dma_contig_free(&ring->desc_dma);
 1054 
 1055         for (i = 0; i < WPI_RX_RING_COUNT; i++) {
 1056                 struct wpi_rx_data *data = &ring->data[i];
 1057 
 1058                 if (data->m != NULL) {
 1059                         bus_dmamap_sync(ring->data_dmat, data->map,
 1060                             BUS_DMASYNC_POSTREAD);
 1061                         bus_dmamap_unload(ring->data_dmat, data->map);
 1062                         m_freem(data->m);
 1063                 }
 1064                 if (data->map != NULL)
 1065                         bus_dmamap_destroy(ring->data_dmat, data->map);
 1066         }
 1067 }
 1068 
 1069 static int
 1070 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
 1071         int qid)
 1072 {
 1073         struct wpi_tx_data *data;
 1074         int i, error;
 1075 
 1076         ring->qid = qid;
 1077         ring->count = count;
 1078         ring->queued = 0;
 1079         ring->cur = 0;
 1080         ring->data = NULL;
 1081 
 1082         error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
 1083                 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
 1084                 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
 1085 
 1086         if (error != 0) {
 1087             device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
 1088             goto fail;
 1089         }
 1090 
 1091         /* update shared page with ring's base address */
 1092         sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
 1093 
 1094         error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
 1095                 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
 1096                 BUS_DMA_NOWAIT);
 1097 
 1098         if (error != 0) {
 1099                 device_printf(sc->sc_dev,
 1100                     "could not allocate tx command DMA memory\n");
 1101                 goto fail;
 1102         }
 1103 
 1104         ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
 1105             M_NOWAIT | M_ZERO);
 1106         if (ring->data == NULL) {
 1107                 device_printf(sc->sc_dev,
 1108                     "could not allocate tx data slots\n");
 1109                 goto fail;
 1110         }
 1111 
 1112         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
 1113             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
 1114             WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
 1115             &ring->data_dmat);
 1116         if (error != 0) {
 1117                 device_printf(sc->sc_dev, "could not create data DMA tag\n");
 1118                 goto fail;
 1119         }
 1120 
 1121         for (i = 0; i < count; i++) {
 1122                 data = &ring->data[i];
 1123 
 1124                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
 1125                 if (error != 0) {
 1126                         device_printf(sc->sc_dev,
 1127                             "could not create tx buf DMA map\n");
 1128                         goto fail;
 1129                 }
 1130                 bus_dmamap_sync(ring->data_dmat, data->map,
 1131                     BUS_DMASYNC_PREWRITE);
 1132         }
 1133 
 1134         return 0;
 1135 
 1136 fail:
 1137         wpi_free_tx_ring(sc, ring);
 1138         return error;
 1139 }
 1140 
 1141 static void
 1142 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
 1143 {
 1144         struct wpi_tx_data *data;
 1145         int i, ntries;
 1146 
 1147         wpi_mem_lock(sc);
 1148 
 1149         WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
 1150         for (ntries = 0; ntries < 100; ntries++) {
 1151                 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
 1152                         break;
 1153                 DELAY(10);
 1154         }
 1155 #ifdef WPI_DEBUG
 1156         if (ntries == 100 && wpi_debug > 0)
 1157                 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
 1158                     ring->qid);
 1159 #endif
 1160         wpi_mem_unlock(sc);
 1161 
 1162         for (i = 0; i < ring->count; i++) {
 1163                 data = &ring->data[i];
 1164 
 1165                 if (data->m != NULL) {
 1166                         bus_dmamap_unload(ring->data_dmat, data->map);
 1167                         m_freem(data->m);
 1168                         data->m = NULL;
 1169                 }
 1170         }
 1171 
 1172         ring->queued = 0;
 1173         ring->cur = 0;
 1174 }
 1175 
 1176 static void
 1177 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
 1178 {
 1179         struct wpi_tx_data *data;
 1180         int i;
 1181 
 1182         wpi_dma_contig_free(&ring->desc_dma);
 1183         wpi_dma_contig_free(&ring->cmd_dma);
 1184 
 1185         if (ring->data != NULL) {
 1186                 for (i = 0; i < ring->count; i++) {
 1187                         data = &ring->data[i];
 1188 
 1189                         if (data->m != NULL) {
 1190                                 bus_dmamap_sync(ring->data_dmat, data->map,
 1191                                     BUS_DMASYNC_POSTWRITE);
 1192                                 bus_dmamap_unload(ring->data_dmat, data->map);
 1193                                 m_freem(data->m);
 1194                                 data->m = NULL;
 1195                         }
 1196                 }
 1197                 free(ring->data, M_DEVBUF);
 1198         }
 1199 
 1200         if (ring->data_dmat != NULL)
 1201                 bus_dma_tag_destroy(ring->data_dmat);
 1202 }
 1203 
 1204 static int
 1205 wpi_shutdown(device_t dev)
 1206 {
 1207         struct wpi_softc *sc = device_get_softc(dev);
 1208 
 1209         WPI_LOCK(sc);
 1210         wpi_stop_locked(sc);
 1211         wpi_unload_firmware(sc);
 1212         WPI_UNLOCK(sc);
 1213 
 1214         return 0;
 1215 }
 1216 
 1217 static int
 1218 wpi_suspend(device_t dev)
 1219 {
 1220         struct wpi_softc *sc = device_get_softc(dev);
 1221 
 1222         wpi_stop(sc);
 1223         return 0;
 1224 }
 1225 
 1226 static int
 1227 wpi_resume(device_t dev)
 1228 {
 1229         struct wpi_softc *sc = device_get_softc(dev);
 1230         struct ifnet *ifp = sc->sc_ifp;
 1231 
 1232         pci_write_config(dev, 0x41, 0, 1);
 1233 
 1234         if (ifp->if_flags & IFF_UP) {
 1235                 wpi_init(ifp->if_softc);
 1236                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 1237                         wpi_start(ifp);
 1238         }
 1239         return 0;
 1240 }
 1241 
 1242 /**
 1243  * Called by net80211 when ever there is a change to 80211 state machine
 1244  */
 1245 static int
 1246 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
 1247 {
 1248         struct wpi_vap *wvp = WPI_VAP(vap);
 1249         struct ieee80211com *ic = vap->iv_ic;
 1250         struct ifnet *ifp = ic->ic_ifp;
 1251         struct wpi_softc *sc = ifp->if_softc;
 1252         int error;
 1253 
 1254         DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
 1255                 ieee80211_state_name[vap->iv_state],
 1256                 ieee80211_state_name[nstate], sc->flags));
 1257 
 1258         IEEE80211_UNLOCK(ic);
 1259         WPI_LOCK(sc);
 1260         if (nstate == IEEE80211_S_SCAN && vap->iv_state != IEEE80211_S_INIT) {
 1261                 /*
 1262                  * On !INIT -> SCAN transitions, we need to clear any possible
 1263                  * knowledge about associations.
 1264                  */
 1265                 error = wpi_config(sc);
 1266                 if (error != 0) {
 1267                         device_printf(sc->sc_dev,
 1268                             "%s: device config failed, error %d\n",
 1269                             __func__, error);
 1270                 }
 1271         }
 1272         if (nstate == IEEE80211_S_AUTH ||
 1273             (nstate == IEEE80211_S_ASSOC && vap->iv_state == IEEE80211_S_RUN)) {
 1274                 /*
 1275                  * The node must be registered in the firmware before auth.
 1276                  * Also the associd must be cleared on RUN -> ASSOC
 1277                  * transitions.
 1278                  */
 1279                 error = wpi_auth(sc, vap);
 1280                 if (error != 0) {
 1281                         device_printf(sc->sc_dev,
 1282                             "%s: could not move to auth state, error %d\n",
 1283                             __func__, error);
 1284                 }
 1285         }
 1286         if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
 1287                 error = wpi_run(sc, vap);
 1288                 if (error != 0) {
 1289                         device_printf(sc->sc_dev,
 1290                             "%s: could not move to run state, error %d\n",
 1291                             __func__, error);
 1292                 }
 1293         }
 1294         if (nstate == IEEE80211_S_RUN) {
 1295                 /* RUN -> RUN transition; just restart the timers */
 1296                 wpi_calib_timeout(sc);
 1297                 /* XXX split out rate control timer */
 1298         }
 1299         WPI_UNLOCK(sc);
 1300         IEEE80211_LOCK(ic);
 1301         return wvp->newstate(vap, nstate, arg);
 1302 }
 1303 
 1304 /*
 1305  * Grab exclusive access to NIC memory.
 1306  */
 1307 static void
 1308 wpi_mem_lock(struct wpi_softc *sc)
 1309 {
 1310         int ntries;
 1311         uint32_t tmp;
 1312 
 1313         tmp = WPI_READ(sc, WPI_GPIO_CTL);
 1314         WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
 1315 
 1316         /* spin until we actually get the lock */
 1317         for (ntries = 0; ntries < 100; ntries++) {
 1318                 if ((WPI_READ(sc, WPI_GPIO_CTL) &
 1319                         (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
 1320                         break;
 1321                 DELAY(10);
 1322         }
 1323         if (ntries == 100)
 1324                 device_printf(sc->sc_dev, "could not lock memory\n");
 1325 }
 1326 
 1327 /*
 1328  * Release lock on NIC memory.
 1329  */
 1330 static void
 1331 wpi_mem_unlock(struct wpi_softc *sc)
 1332 {
 1333         uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
 1334         WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
 1335 }
 1336 
 1337 static uint32_t
 1338 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
 1339 {
 1340         WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
 1341         return WPI_READ(sc, WPI_READ_MEM_DATA);
 1342 }
 1343 
 1344 static void
 1345 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
 1346 {
 1347         WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
 1348         WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
 1349 }
 1350 
 1351 static void
 1352 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
 1353     const uint32_t *data, int wlen)
 1354 {
 1355         for (; wlen > 0; wlen--, data++, addr+=4)
 1356                 wpi_mem_write(sc, addr, *data);
 1357 }
 1358 
 1359 /*
 1360  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
 1361  * using the traditional bit-bang method. Data is read up until len bytes have
 1362  * been obtained.
 1363  */
 1364 static uint16_t
 1365 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
 1366 {
 1367         int ntries;
 1368         uint32_t val;
 1369         uint8_t *out = data;
 1370 
 1371         wpi_mem_lock(sc);
 1372 
 1373         for (; len > 0; len -= 2, addr++) {
 1374                 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
 1375 
 1376                 for (ntries = 0; ntries < 10; ntries++) {
 1377                         if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
 1378                                 break;
 1379                         DELAY(5);
 1380                 }
 1381 
 1382                 if (ntries == 10) {
 1383                         device_printf(sc->sc_dev, "could not read EEPROM\n");
 1384                         return ETIMEDOUT;
 1385                 }
 1386 
 1387                 *out++= val >> 16;
 1388                 if (len > 1)
 1389                         *out ++= val >> 24;
 1390         }
 1391 
 1392         wpi_mem_unlock(sc);
 1393 
 1394         return 0;
 1395 }
 1396 
 1397 /*
 1398  * The firmware text and data segments are transferred to the NIC using DMA.
 1399  * The driver just copies the firmware into DMA-safe memory and tells the NIC
 1400  * where to find it.  Once the NIC has copied the firmware into its internal
 1401  * memory, we can free our local copy in the driver.
 1402  */
 1403 static int
 1404 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
 1405 {
 1406         int error, ntries;
 1407 
 1408         DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
 1409 
 1410         size /= sizeof(uint32_t);
 1411 
 1412         wpi_mem_lock(sc);
 1413 
 1414         wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
 1415             (const uint32_t *)fw, size);
 1416 
 1417         wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
 1418         wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
 1419         wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
 1420 
 1421         /* run microcode */
 1422         wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
 1423 
 1424         /* wait while the adapter is busy copying the firmware */
 1425         for (error = 0, ntries = 0; ntries < 1000; ntries++) {
 1426                 uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
 1427                 DPRINTFN(WPI_DEBUG_HW,
 1428                     ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
 1429                      WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
 1430                 if (status & WPI_TX_IDLE(6)) {
 1431                         DPRINTFN(WPI_DEBUG_HW,
 1432                             ("Status Match! - ntries = %d\n", ntries));
 1433                         break;
 1434                 }
 1435                 DELAY(10);
 1436         }
 1437         if (ntries == 1000) {
 1438                 device_printf(sc->sc_dev, "timeout transferring firmware\n");
 1439                 error = ETIMEDOUT;
 1440         }
 1441 
 1442         /* start the microcode executing */
 1443         wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
 1444 
 1445         wpi_mem_unlock(sc);
 1446 
 1447         return (error);
 1448 }
 1449 
 1450 static void
 1451 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
 1452         struct wpi_rx_data *data)
 1453 {
 1454         struct ifnet *ifp = sc->sc_ifp;
 1455         struct ieee80211com *ic = ifp->if_l2com;
 1456         struct wpi_rx_ring *ring = &sc->rxq;
 1457         struct wpi_rx_stat *stat;
 1458         struct wpi_rx_head *head;
 1459         struct wpi_rx_tail *tail;
 1460         struct ieee80211_node *ni;
 1461         struct mbuf *m, *mnew;
 1462         bus_addr_t paddr;
 1463         int error;
 1464 
 1465         stat = (struct wpi_rx_stat *)(desc + 1);
 1466 
 1467         if (stat->len > WPI_STAT_MAXLEN) {
 1468                 device_printf(sc->sc_dev, "invalid rx statistic header\n");
 1469                 ifp->if_ierrors++;
 1470                 return;
 1471         }
 1472 
 1473         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
 1474         head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
 1475         tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
 1476 
 1477         DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
 1478             "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
 1479             le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
 1480             (uintmax_t)le64toh(tail->tstamp)));
 1481 
 1482         /* discard Rx frames with bad CRC early */
 1483         if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
 1484                 DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
 1485                     le32toh(tail->flags)));
 1486                 ifp->if_ierrors++;
 1487                 return;
 1488         }
 1489         if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
 1490                 DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
 1491                     le16toh(head->len)));
 1492                 ifp->if_ierrors++;
 1493                 return;
 1494         }
 1495 
 1496         /* XXX don't need mbuf, just dma buffer */
 1497         mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
 1498         if (mnew == NULL) {
 1499                 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
 1500                     __func__));
 1501                 ifp->if_ierrors++;
 1502                 return;
 1503         }
 1504         bus_dmamap_unload(ring->data_dmat, data->map);
 1505 
 1506         error = bus_dmamap_load(ring->data_dmat, data->map,
 1507             mtod(mnew, caddr_t), MJUMPAGESIZE,
 1508             wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
 1509         if (error != 0 && error != EFBIG) {
 1510                 device_printf(sc->sc_dev,
 1511                     "%s: bus_dmamap_load failed, error %d\n", __func__, error);
 1512                 m_freem(mnew);
 1513                 ifp->if_ierrors++;
 1514                 return;
 1515         }
 1516         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
 1517 
 1518         /* finalize mbuf and swap in new one */
 1519         m = data->m;
 1520         m->m_pkthdr.rcvif = ifp;
 1521         m->m_data = (caddr_t)(head + 1);
 1522         m->m_pkthdr.len = m->m_len = le16toh(head->len);
 1523 
 1524         data->m = mnew;
 1525         /* update Rx descriptor */
 1526         ring->desc[ring->cur] = htole32(paddr);
 1527 
 1528         if (ieee80211_radiotap_active(ic)) {
 1529                 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
 1530 
 1531                 tap->wr_flags = 0;
 1532                 tap->wr_chan_freq =
 1533                         htole16(ic->ic_channels[head->chan].ic_freq);
 1534                 tap->wr_chan_flags =
 1535                         htole16(ic->ic_channels[head->chan].ic_flags);
 1536                 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
 1537                 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
 1538                 tap->wr_tsft = tail->tstamp;
 1539                 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
 1540                 switch (head->rate) {
 1541                 /* CCK rates */
 1542                 case  10: tap->wr_rate =   2; break;
 1543                 case  20: tap->wr_rate =   4; break;
 1544                 case  55: tap->wr_rate =  11; break;
 1545                 case 110: tap->wr_rate =  22; break;
 1546                 /* OFDM rates */
 1547                 case 0xd: tap->wr_rate =  12; break;
 1548                 case 0xf: tap->wr_rate =  18; break;
 1549                 case 0x5: tap->wr_rate =  24; break;
 1550                 case 0x7: tap->wr_rate =  36; break;
 1551                 case 0x9: tap->wr_rate =  48; break;
 1552                 case 0xb: tap->wr_rate =  72; break;
 1553                 case 0x1: tap->wr_rate =  96; break;
 1554                 case 0x3: tap->wr_rate = 108; break;
 1555                 /* unknown rate: should not happen */
 1556                 default:  tap->wr_rate =   0;
 1557                 }
 1558                 if (le16toh(head->flags) & 0x4)
 1559                         tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
 1560         }
 1561 
 1562         WPI_UNLOCK(sc);
 1563 
 1564         ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
 1565         if (ni != NULL) {
 1566                 (void) ieee80211_input(ni, m, stat->rssi, 0);
 1567                 ieee80211_free_node(ni);
 1568         } else
 1569                 (void) ieee80211_input_all(ic, m, stat->rssi, 0);
 1570 
 1571         WPI_LOCK(sc);
 1572 }
 1573 
 1574 static void
 1575 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
 1576 {
 1577         struct ifnet *ifp = sc->sc_ifp;
 1578         struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
 1579         struct wpi_tx_data *txdata = &ring->data[desc->idx];
 1580         struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
 1581         struct ieee80211_node *ni = txdata->ni;
 1582         struct ieee80211vap *vap = ni->ni_vap;
 1583         int retrycnt = 0;
 1584 
 1585         DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
 1586             "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
 1587             stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
 1588             le32toh(stat->status)));
 1589 
 1590         /*
 1591          * Update rate control statistics for the node.
 1592          * XXX we should not count mgmt frames since they're always sent at
 1593          * the lowest available bit-rate.
 1594          * XXX frames w/o ACK shouldn't be used either
 1595          */
 1596         if (stat->ntries > 0) {
 1597                 DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
 1598                 retrycnt = 1;
 1599         }
 1600         ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
 1601             &retrycnt, NULL);
 1602 
 1603         /* XXX oerrors should only count errors !maxtries */
 1604         if ((le32toh(stat->status) & 0xff) != 1)
 1605                 ifp->if_oerrors++;
 1606         else
 1607                 ifp->if_opackets++;
 1608 
 1609         bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
 1610         bus_dmamap_unload(ring->data_dmat, txdata->map);
 1611         /* XXX handle M_TXCB? */
 1612         m_freem(txdata->m);
 1613         txdata->m = NULL;
 1614         ieee80211_free_node(txdata->ni);
 1615         txdata->ni = NULL;
 1616 
 1617         ring->queued--;
 1618 
 1619         sc->sc_tx_timer = 0;
 1620         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 1621         wpi_start_locked(ifp);
 1622 }
 1623 
 1624 static void
 1625 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
 1626 {
 1627         struct wpi_tx_ring *ring = &sc->cmdq;
 1628         struct wpi_tx_data *data;
 1629 
 1630         DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
 1631                                  "type=%s len=%d\n", desc->qid, desc->idx,
 1632                                  desc->flags, wpi_cmd_str(desc->type),
 1633                                  le32toh(desc->len)));
 1634 
 1635         if ((desc->qid & 7) != 4)
 1636                 return; /* not a command ack */
 1637 
 1638         data = &ring->data[desc->idx];
 1639 
 1640         /* if the command was mapped in a mbuf, free it */
 1641         if (data->m != NULL) {
 1642                 bus_dmamap_unload(ring->data_dmat, data->map);
 1643                 m_freem(data->m);
 1644                 data->m = NULL;
 1645         }
 1646 
 1647         sc->flags &= ~WPI_FLAG_BUSY;
 1648         wakeup(&ring->cmd[desc->idx]);
 1649 }
 1650 
 1651 static void
 1652 wpi_notif_intr(struct wpi_softc *sc)
 1653 {
 1654         struct ifnet *ifp = sc->sc_ifp;
 1655         struct ieee80211com *ic = ifp->if_l2com;
 1656         struct wpi_rx_desc *desc;
 1657         struct wpi_rx_data *data;
 1658         uint32_t hw;
 1659 
 1660         bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
 1661             BUS_DMASYNC_POSTREAD);
 1662 
 1663         hw = le32toh(sc->shared->next);
 1664         while (sc->rxq.cur != hw) {
 1665                 data = &sc->rxq.data[sc->rxq.cur];
 1666 
 1667                 bus_dmamap_sync(sc->rxq.data_dmat, data->map,
 1668                     BUS_DMASYNC_POSTREAD);
 1669                 desc = (void *)data->m->m_ext.ext_buf;
 1670 
 1671                 DPRINTFN(WPI_DEBUG_NOTIFY,
 1672                          ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
 1673                           desc->qid,
 1674                           desc->idx,
 1675                           desc->flags,
 1676                           desc->type,
 1677                           le32toh(desc->len)));
 1678 
 1679                 if (!(desc->qid & 0x80))        /* reply to a command */
 1680                         wpi_cmd_intr(sc, desc);
 1681 
 1682                 switch (desc->type) {
 1683                 case WPI_RX_DONE:
 1684                         /* a 802.11 frame was received */
 1685                         wpi_rx_intr(sc, desc, data);
 1686                         break;
 1687 
 1688                 case WPI_TX_DONE:
 1689                         /* a 802.11 frame has been transmitted */
 1690                         wpi_tx_intr(sc, desc);
 1691                         break;
 1692 
 1693                 case WPI_UC_READY:
 1694                 {
 1695                         struct wpi_ucode_info *uc =
 1696                                 (struct wpi_ucode_info *)(desc + 1);
 1697 
 1698                         /* the microcontroller is ready */
 1699                         DPRINTF(("microcode alive notification version %x "
 1700                                 "alive %x\n", le32toh(uc->version),
 1701                                 le32toh(uc->valid)));
 1702 
 1703                         if (le32toh(uc->valid) != 1) {
 1704                                 device_printf(sc->sc_dev,
 1705                                     "microcontroller initialization failed\n");
 1706                                 wpi_stop_locked(sc);
 1707                         }
 1708                         break;
 1709                 }
 1710                 case WPI_STATE_CHANGED:
 1711                 {
 1712                         uint32_t *status = (uint32_t *)(desc + 1);
 1713 
 1714                         /* enabled/disabled notification */
 1715                         DPRINTF(("state changed to %x\n", le32toh(*status)));
 1716 
 1717                         if (le32toh(*status) & 1) {
 1718                                 device_printf(sc->sc_dev,
 1719                                     "Radio transmitter is switched off\n");
 1720                                 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
 1721                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1722                                 /* Disable firmware commands */
 1723                                 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
 1724                         }
 1725                         break;
 1726                 }
 1727                 case WPI_START_SCAN:
 1728                 {
 1729 #ifdef WPI_DEBUG
 1730                         struct wpi_start_scan *scan =
 1731                                 (struct wpi_start_scan *)(desc + 1);
 1732 #endif
 1733 
 1734                         DPRINTFN(WPI_DEBUG_SCANNING,
 1735                                  ("scanning channel %d status %x\n",
 1736                             scan->chan, le32toh(scan->status)));
 1737                         break;
 1738                 }
 1739                 case WPI_STOP_SCAN:
 1740                 {
 1741 #ifdef WPI_DEBUG
 1742                         struct wpi_stop_scan *scan =
 1743                                 (struct wpi_stop_scan *)(desc + 1);
 1744 #endif
 1745                         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 1746 
 1747                         DPRINTFN(WPI_DEBUG_SCANNING,
 1748                             ("scan finished nchan=%d status=%d chan=%d\n",
 1749                              scan->nchan, scan->status, scan->chan));
 1750 
 1751                         sc->sc_scan_timer = 0;
 1752                         ieee80211_scan_next(vap);
 1753                         break;
 1754                 }
 1755                 case WPI_MISSED_BEACON:
 1756                 {
 1757                         struct wpi_missed_beacon *beacon =
 1758                                 (struct wpi_missed_beacon *)(desc + 1);
 1759                         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 1760 
 1761                         if (le32toh(beacon->consecutive) >=
 1762                             vap->iv_bmissthreshold) {
 1763                                 DPRINTF(("Beacon miss: %u >= %u\n",
 1764                                          le32toh(beacon->consecutive),
 1765                                          vap->iv_bmissthreshold));
 1766                                 ieee80211_beacon_miss(ic);
 1767                         }
 1768                         break;
 1769                 }
 1770                 }
 1771 
 1772                 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
 1773         }
 1774 
 1775         /* tell the firmware what we have processed */
 1776         hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
 1777         WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
 1778 }
 1779 
 1780 static void
 1781 wpi_intr(void *arg)
 1782 {
 1783         struct wpi_softc *sc = arg;
 1784         uint32_t r;
 1785 
 1786         WPI_LOCK(sc);
 1787 
 1788         r = WPI_READ(sc, WPI_INTR);
 1789         if (r == 0 || r == 0xffffffff) {
 1790                 WPI_UNLOCK(sc);
 1791                 return;
 1792         }
 1793 
 1794         /* disable interrupts */
 1795         WPI_WRITE(sc, WPI_MASK, 0);
 1796         /* ack interrupts */
 1797         WPI_WRITE(sc, WPI_INTR, r);
 1798 
 1799         if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
 1800                 struct ifnet *ifp = sc->sc_ifp;
 1801                 struct ieee80211com *ic = ifp->if_l2com;
 1802                 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 1803 
 1804                 device_printf(sc->sc_dev, "fatal firmware error\n");
 1805                 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
 1806                                 "(Hardware Error)"));
 1807                 if (vap != NULL)
 1808                         ieee80211_cancel_scan(vap);
 1809                 ieee80211_runtask(ic, &sc->sc_restarttask);
 1810                 sc->flags &= ~WPI_FLAG_BUSY;
 1811                 WPI_UNLOCK(sc);
 1812                 return;
 1813         }
 1814 
 1815         if (r & WPI_RX_INTR)
 1816                 wpi_notif_intr(sc);
 1817 
 1818         if (r & WPI_ALIVE_INTR) /* firmware initialized */
 1819                 wakeup(sc);
 1820 
 1821         /* re-enable interrupts */
 1822         if (sc->sc_ifp->if_flags & IFF_UP)
 1823                 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
 1824 
 1825         WPI_UNLOCK(sc);
 1826 }
 1827 
 1828 static uint8_t
 1829 wpi_plcp_signal(int rate)
 1830 {
 1831         switch (rate) {
 1832         /* CCK rates (returned values are device-dependent) */
 1833         case 2:         return 10;
 1834         case 4:         return 20;
 1835         case 11:        return 55;
 1836         case 22:        return 110;
 1837 
 1838         /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
 1839         /* R1-R4 (ral/ural is R4-R1) */
 1840         case 12:        return 0xd;
 1841         case 18:        return 0xf;
 1842         case 24:        return 0x5;
 1843         case 36:        return 0x7;
 1844         case 48:        return 0x9;
 1845         case 72:        return 0xb;
 1846         case 96:        return 0x1;
 1847         case 108:       return 0x3;
 1848 
 1849         /* unsupported rates (should not get there) */
 1850         default:        return 0;
 1851         }
 1852 }
 1853 
 1854 /* quickly determine if a given rate is CCK or OFDM */
 1855 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
 1856 
 1857 /*
 1858  * Construct the data packet for a transmit buffer and acutally put
 1859  * the buffer onto the transmit ring, kicking the card to process the
 1860  * the buffer.
 1861  */
 1862 static int
 1863 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
 1864         int ac)
 1865 {
 1866         struct ieee80211vap *vap = ni->ni_vap;
 1867         struct ifnet *ifp = sc->sc_ifp;
 1868         struct ieee80211com *ic = ifp->if_l2com;
 1869         const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
 1870         struct wpi_tx_ring *ring = &sc->txq[ac];
 1871         struct wpi_tx_desc *desc;
 1872         struct wpi_tx_data *data;
 1873         struct wpi_tx_cmd *cmd;
 1874         struct wpi_cmd_data *tx;
 1875         struct ieee80211_frame *wh;
 1876         const struct ieee80211_txparam *tp;
 1877         struct ieee80211_key *k;
 1878         struct mbuf *mnew;
 1879         int i, error, nsegs, rate, hdrlen, ismcast;
 1880         bus_dma_segment_t segs[WPI_MAX_SCATTER];
 1881 
 1882         desc = &ring->desc[ring->cur];
 1883         data = &ring->data[ring->cur];
 1884 
 1885         wh = mtod(m0, struct ieee80211_frame *);
 1886 
 1887         hdrlen = ieee80211_hdrsize(wh);
 1888         ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
 1889 
 1890         if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
 1891                 k = ieee80211_crypto_encap(ni, m0);
 1892                 if (k == NULL) {
 1893                         m_freem(m0);
 1894                         return ENOBUFS;
 1895                 }
 1896                 /* packet header may have moved, reset our local pointer */
 1897                 wh = mtod(m0, struct ieee80211_frame *);
 1898         }
 1899 
 1900         cmd = &ring->cmd[ring->cur];
 1901         cmd->code = WPI_CMD_TX_DATA;
 1902         cmd->flags = 0;
 1903         cmd->qid = ring->qid;
 1904         cmd->idx = ring->cur;
 1905 
 1906         tx = (struct wpi_cmd_data *)cmd->data;
 1907         tx->flags = htole32(WPI_TX_AUTO_SEQ);
 1908         tx->timeout = htole16(0);
 1909         tx->ofdm_mask = 0xff;
 1910         tx->cck_mask = 0x0f;
 1911         tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
 1912         tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
 1913         tx->len = htole16(m0->m_pkthdr.len);
 1914 
 1915         if (!ismcast) {
 1916                 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
 1917                     !cap->cap_wmeParams[ac].wmep_noackPolicy)
 1918                         tx->flags |= htole32(WPI_TX_NEED_ACK);
 1919                 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
 1920                         tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
 1921                         tx->rts_ntries = 7;
 1922                 }
 1923         }
 1924         /* pick a rate */
 1925         tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
 1926         if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
 1927                 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
 1928                 /* tell h/w to set timestamp in probe responses */
 1929                 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
 1930                         tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
 1931                 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
 1932                     subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
 1933                         tx->timeout = htole16(3);
 1934                 else
 1935                         tx->timeout = htole16(2);
 1936                 rate = tp->mgmtrate;
 1937         } else if (ismcast) {
 1938                 rate = tp->mcastrate;
 1939         } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
 1940                 rate = tp->ucastrate;
 1941         } else {
 1942                 (void) ieee80211_ratectl_rate(ni, NULL, 0);
 1943                 rate = ni->ni_txrate;
 1944         }
 1945         tx->rate = wpi_plcp_signal(rate);
 1946 
 1947         /* be very persistant at sending frames out */
 1948 #if 0
 1949         tx->data_ntries = tp->maxretry;
 1950 #else
 1951         tx->data_ntries = 15;           /* XXX way too high */
 1952 #endif
 1953 
 1954         if (ieee80211_radiotap_active_vap(vap)) {
 1955                 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
 1956                 tap->wt_flags = 0;
 1957                 tap->wt_rate = rate;
 1958                 tap->wt_hwqueue = ac;
 1959                 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
 1960                         tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
 1961 
 1962                 ieee80211_radiotap_tx(vap, m0);
 1963         }
 1964 
 1965         /* save and trim IEEE802.11 header */
 1966         m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
 1967         m_adj(m0, hdrlen);
 1968 
 1969         error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
 1970             &nsegs, BUS_DMA_NOWAIT);
 1971         if (error != 0 && error != EFBIG) {
 1972                 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
 1973                     error);
 1974                 m_freem(m0);
 1975                 return error;
 1976         }
 1977         if (error != 0) {
 1978                 /* XXX use m_collapse */
 1979                 mnew = m_defrag(m0, M_DONTWAIT);
 1980                 if (mnew == NULL) {
 1981                         device_printf(sc->sc_dev,
 1982                             "could not defragment mbuf\n");
 1983                         m_freem(m0);
 1984                         return ENOBUFS;
 1985                 }
 1986                 m0 = mnew;
 1987 
 1988                 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
 1989                     m0, segs, &nsegs, BUS_DMA_NOWAIT);
 1990                 if (error != 0) {
 1991                         device_printf(sc->sc_dev,
 1992                             "could not map mbuf (error %d)\n", error);
 1993                         m_freem(m0);
 1994                         return error;
 1995                 }
 1996         }
 1997 
 1998         data->m = m0;
 1999         data->ni = ni;
 2000 
 2001         DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
 2002             ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
 2003 
 2004         /* first scatter/gather segment is used by the tx data command */
 2005         desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
 2006             (1 + nsegs) << 24);
 2007         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
 2008             ring->cur * sizeof (struct wpi_tx_cmd));
 2009         desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
 2010         for (i = 1; i <= nsegs; i++) {
 2011                 desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
 2012                 desc->segs[i].len  = htole32(segs[i - 1].ds_len);
 2013         }
 2014 
 2015         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
 2016         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
 2017             BUS_DMASYNC_PREWRITE);
 2018 
 2019         ring->queued++;
 2020 
 2021         /* kick ring */
 2022         ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
 2023         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
 2024 
 2025         return 0;
 2026 }
 2027 
 2028 /**
 2029  * Process data waiting to be sent on the IFNET output queue
 2030  */
 2031 static void
 2032 wpi_start(struct ifnet *ifp)
 2033 {
 2034         struct wpi_softc *sc = ifp->if_softc;
 2035 
 2036         WPI_LOCK(sc);
 2037         wpi_start_locked(ifp);
 2038         WPI_UNLOCK(sc);
 2039 }
 2040 
 2041 static void
 2042 wpi_start_locked(struct ifnet *ifp)
 2043 {
 2044         struct wpi_softc *sc = ifp->if_softc;
 2045         struct ieee80211_node *ni;
 2046         struct mbuf *m;
 2047         int ac;
 2048 
 2049         WPI_LOCK_ASSERT(sc);
 2050 
 2051         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
 2052                 return;
 2053 
 2054         for (;;) {
 2055                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
 2056                 if (m == NULL)
 2057                         break;
 2058                 ac = M_WME_GETAC(m);
 2059                 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
 2060                         /* there is no place left in this ring */
 2061                         IFQ_DRV_PREPEND(&ifp->if_snd, m);
 2062                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 2063                         break;
 2064                 }
 2065                 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
 2066                 if (wpi_tx_data(sc, m, ni, ac) != 0) {
 2067                         ieee80211_free_node(ni);
 2068                         ifp->if_oerrors++;
 2069                         break;
 2070                 }
 2071                 sc->sc_tx_timer = 5;
 2072         }
 2073 }
 2074 
 2075 static int
 2076 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
 2077         const struct ieee80211_bpf_params *params)
 2078 {
 2079         struct ieee80211com *ic = ni->ni_ic;
 2080         struct ifnet *ifp = ic->ic_ifp;
 2081         struct wpi_softc *sc = ifp->if_softc;
 2082 
 2083         /* prevent management frames from being sent if we're not ready */
 2084         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
 2085                 m_freem(m);
 2086                 ieee80211_free_node(ni);
 2087                 return ENETDOWN;
 2088         }
 2089         WPI_LOCK(sc);
 2090 
 2091         /* management frames go into ring 0 */
 2092         if (sc->txq[0].queued > sc->txq[0].count - 8) {
 2093                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 2094                 m_freem(m);
 2095                 WPI_UNLOCK(sc);
 2096                 ieee80211_free_node(ni);
 2097                 return ENOBUFS;         /* XXX */
 2098         }
 2099 
 2100         ifp->if_opackets++;
 2101         if (wpi_tx_data(sc, m, ni, 0) != 0)
 2102                 goto bad;
 2103         sc->sc_tx_timer = 5;
 2104         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
 2105 
 2106         WPI_UNLOCK(sc);
 2107         return 0;
 2108 bad:
 2109         ifp->if_oerrors++;
 2110         WPI_UNLOCK(sc);
 2111         ieee80211_free_node(ni);
 2112         return EIO;             /* XXX */
 2113 }
 2114 
 2115 static int
 2116 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
 2117 {
 2118         struct wpi_softc *sc = ifp->if_softc;
 2119         struct ieee80211com *ic = ifp->if_l2com;
 2120         struct ifreq *ifr = (struct ifreq *) data;
 2121         int error = 0, startall = 0;
 2122 
 2123         switch (cmd) {
 2124         case SIOCSIFFLAGS:
 2125                 WPI_LOCK(sc);
 2126                 if ((ifp->if_flags & IFF_UP)) {
 2127                         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
 2128                                 wpi_init_locked(sc, 0);
 2129                                 startall = 1;
 2130                         }
 2131                 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
 2132                            (sc->flags & WPI_FLAG_HW_RADIO_OFF))
 2133                         wpi_stop_locked(sc);
 2134                 WPI_UNLOCK(sc);
 2135                 if (startall)
 2136                         ieee80211_start_all(ic);
 2137                 break;
 2138         case SIOCGIFMEDIA:
 2139                 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
 2140                 break;
 2141         case SIOCGIFADDR:
 2142                 error = ether_ioctl(ifp, cmd, data);
 2143                 break;
 2144         default:
 2145                 error = EINVAL;
 2146                 break;
 2147         }
 2148         return error;
 2149 }
 2150 
 2151 /*
 2152  * Extract various information from EEPROM.
 2153  */
 2154 static void
 2155 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
 2156 {
 2157         int i;
 2158 
 2159         /* read the hardware capabilities, revision and SKU type */
 2160         wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
 2161         wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
 2162         wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
 2163 
 2164         /* read the regulatory domain */
 2165         wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
 2166 
 2167         /* read in the hw MAC address */
 2168         wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
 2169 
 2170         /* read the list of authorized channels */
 2171         for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
 2172                 wpi_read_eeprom_channels(sc,i);
 2173 
 2174         /* read the power level calibration info for each group */
 2175         for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
 2176                 wpi_read_eeprom_group(sc,i);
 2177 }
 2178 
 2179 /*
 2180  * Send a command to the firmware.
 2181  */
 2182 static int
 2183 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
 2184 {
 2185         struct wpi_tx_ring *ring = &sc->cmdq;
 2186         struct wpi_tx_desc *desc;
 2187         struct wpi_tx_cmd *cmd;
 2188 
 2189 #ifdef WPI_DEBUG
 2190         if (!async) {
 2191                 WPI_LOCK_ASSERT(sc);
 2192         }
 2193 #endif
 2194 
 2195         DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
 2196                     async));
 2197 
 2198         if (sc->flags & WPI_FLAG_BUSY) {
 2199                 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
 2200                     __func__, code);
 2201                 return EAGAIN;
 2202         }
 2203         sc->flags|= WPI_FLAG_BUSY;
 2204 
 2205         KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
 2206             code, size));
 2207 
 2208         desc = &ring->desc[ring->cur];
 2209         cmd = &ring->cmd[ring->cur];
 2210 
 2211         cmd->code = code;
 2212         cmd->flags = 0;
 2213         cmd->qid = ring->qid;
 2214         cmd->idx = ring->cur;
 2215         memcpy(cmd->data, buf, size);
 2216 
 2217         desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
 2218         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
 2219                 ring->cur * sizeof (struct wpi_tx_cmd));
 2220         desc->segs[0].len  = htole32(4 + size);
 2221 
 2222         /* kick cmd ring */
 2223         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
 2224         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
 2225 
 2226         if (async) {
 2227                 sc->flags &= ~ WPI_FLAG_BUSY;
 2228                 return 0;
 2229         }
 2230 
 2231         return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
 2232 }
 2233 
 2234 static int
 2235 wpi_wme_update(struct ieee80211com *ic)
 2236 {
 2237 #define WPI_EXP2(v)     htole16((1 << (v)) - 1)
 2238 #define WPI_USEC(v)     htole16(IEEE80211_TXOP_TO_US(v))
 2239         struct wpi_softc *sc = ic->ic_ifp->if_softc;
 2240         const struct wmeParams *wmep;
 2241         struct wpi_wme_setup wme;
 2242         int ac;
 2243 
 2244         /* don't override default WME values if WME is not actually enabled */
 2245         if (!(ic->ic_flags & IEEE80211_F_WME))
 2246                 return 0;
 2247 
 2248         wme.flags = 0;
 2249         for (ac = 0; ac < WME_NUM_AC; ac++) {
 2250                 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
 2251                 wme.ac[ac].aifsn = wmep->wmep_aifsn;
 2252                 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
 2253                 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
 2254                 wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
 2255 
 2256                 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
 2257                     "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
 2258                     wme.ac[ac].cwmax, wme.ac[ac].txop));
 2259         }
 2260         return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
 2261 #undef WPI_USEC
 2262 #undef WPI_EXP2
 2263 }
 2264 
 2265 /*
 2266  * Configure h/w multi-rate retries.
 2267  */
 2268 static int
 2269 wpi_mrr_setup(struct wpi_softc *sc)
 2270 {
 2271         struct ifnet *ifp = sc->sc_ifp;
 2272         struct ieee80211com *ic = ifp->if_l2com;
 2273         struct wpi_mrr_setup mrr;
 2274         int i, error;
 2275 
 2276         memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
 2277 
 2278         /* CCK rates (not used with 802.11a) */
 2279         for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
 2280                 mrr.rates[i].flags = 0;
 2281                 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
 2282                 /* fallback to the immediate lower CCK rate (if any) */
 2283                 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
 2284                 /* try one time at this rate before falling back to "next" */
 2285                 mrr.rates[i].ntries = 1;
 2286         }
 2287 
 2288         /* OFDM rates (not used with 802.11b) */
 2289         for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
 2290                 mrr.rates[i].flags = 0;
 2291                 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
 2292                 /* fallback to the immediate lower OFDM rate (if any) */
 2293                 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
 2294                 mrr.rates[i].next = (i == WPI_OFDM6) ?
 2295                     ((ic->ic_curmode == IEEE80211_MODE_11A) ?
 2296                         WPI_OFDM6 : WPI_CCK2) :
 2297                     i - 1;
 2298                 /* try one time at this rate before falling back to "next" */
 2299                 mrr.rates[i].ntries = 1;
 2300         }
 2301 
 2302         /* setup MRR for control frames */
 2303         mrr.which = WPI_MRR_CTL;
 2304         error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
 2305         if (error != 0) {
 2306                 device_printf(sc->sc_dev,
 2307                     "could not setup MRR for control frames\n");
 2308                 return error;
 2309         }
 2310 
 2311         /* setup MRR for data frames */
 2312         mrr.which = WPI_MRR_DATA;
 2313         error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
 2314         if (error != 0) {
 2315                 device_printf(sc->sc_dev,
 2316                     "could not setup MRR for data frames\n");
 2317                 return error;
 2318         }
 2319 
 2320         return 0;
 2321 }
 2322 
 2323 static void
 2324 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
 2325 {
 2326         struct wpi_cmd_led led;
 2327 
 2328         led.which = which;
 2329         led.unit = htole32(100000);     /* on/off in unit of 100ms */
 2330         led.off = off;
 2331         led.on = on;
 2332 
 2333         (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
 2334 }
 2335 
 2336 static void
 2337 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
 2338 {
 2339         struct wpi_cmd_tsf tsf;
 2340         uint64_t val, mod;
 2341 
 2342         memset(&tsf, 0, sizeof tsf);
 2343         memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
 2344         tsf.bintval = htole16(ni->ni_intval);
 2345         tsf.lintval = htole16(10);
 2346 
 2347         /* compute remaining time until next beacon */
 2348         val = (uint64_t)ni->ni_intval  * 1024;  /* msec -> usec */
 2349         mod = le64toh(tsf.tstamp) % val;
 2350         tsf.binitval = htole32((uint32_t)(val - mod));
 2351 
 2352         if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
 2353                 device_printf(sc->sc_dev, "could not enable TSF\n");
 2354 }
 2355 
 2356 #if 0
 2357 /*
 2358  * Build a beacon frame that the firmware will broadcast periodically in
 2359  * IBSS or HostAP modes.
 2360  */
 2361 static int
 2362 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
 2363 {
 2364         struct ifnet *ifp = sc->sc_ifp;
 2365         struct ieee80211com *ic = ifp->if_l2com;
 2366         struct wpi_tx_ring *ring = &sc->cmdq;
 2367         struct wpi_tx_desc *desc;
 2368         struct wpi_tx_data *data;
 2369         struct wpi_tx_cmd *cmd;
 2370         struct wpi_cmd_beacon *bcn;
 2371         struct ieee80211_beacon_offsets bo;
 2372         struct mbuf *m0;
 2373         bus_addr_t physaddr;
 2374         int error;
 2375 
 2376         desc = &ring->desc[ring->cur];
 2377         data = &ring->data[ring->cur];
 2378 
 2379         m0 = ieee80211_beacon_alloc(ic, ni, &bo);
 2380         if (m0 == NULL) {
 2381                 device_printf(sc->sc_dev, "could not allocate beacon frame\n");
 2382                 return ENOMEM;
 2383         }
 2384 
 2385         cmd = &ring->cmd[ring->cur];
 2386         cmd->code = WPI_CMD_SET_BEACON;
 2387         cmd->flags = 0;
 2388         cmd->qid = ring->qid;
 2389         cmd->idx = ring->cur;
 2390 
 2391         bcn = (struct wpi_cmd_beacon *)cmd->data;
 2392         memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
 2393         bcn->id = WPI_ID_BROADCAST;
 2394         bcn->ofdm_mask = 0xff;
 2395         bcn->cck_mask = 0x0f;
 2396         bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
 2397         bcn->len = htole16(m0->m_pkthdr.len);
 2398         bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
 2399                 wpi_plcp_signal(12) : wpi_plcp_signal(2);
 2400         bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
 2401 
 2402         /* save and trim IEEE802.11 header */
 2403         m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
 2404         m_adj(m0, sizeof (struct ieee80211_frame));
 2405 
 2406         /* assume beacon frame is contiguous */
 2407         error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
 2408             m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
 2409         if (error != 0) {
 2410                 device_printf(sc->sc_dev, "could not map beacon\n");
 2411                 m_freem(m0);
 2412                 return error;
 2413         }
 2414 
 2415         data->m = m0;
 2416 
 2417         /* first scatter/gather segment is used by the beacon command */
 2418         desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
 2419         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
 2420                 ring->cur * sizeof (struct wpi_tx_cmd));
 2421         desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
 2422         desc->segs[1].addr = htole32(physaddr);
 2423         desc->segs[1].len  = htole32(m0->m_pkthdr.len);
 2424 
 2425         /* kick cmd ring */
 2426         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
 2427         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
 2428 
 2429         return 0;
 2430 }
 2431 #endif
 2432 
 2433 static int
 2434 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
 2435 {
 2436         struct ieee80211com *ic = vap->iv_ic;
 2437         struct ieee80211_node *ni = vap->iv_bss;
 2438         struct wpi_node_info node;
 2439         int error;
 2440 
 2441 
 2442         /* update adapter's configuration */
 2443         sc->config.associd = 0;
 2444         sc->config.filter &= ~htole32(WPI_FILTER_BSS);
 2445         IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
 2446         sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
 2447         if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
 2448                 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
 2449                     WPI_CONFIG_24GHZ);
 2450         } else {
 2451                 sc->config.flags &= ~htole32(WPI_CONFIG_AUTO |
 2452                     WPI_CONFIG_24GHZ);
 2453         }
 2454         if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
 2455                 sc->config.cck_mask  = 0;
 2456                 sc->config.ofdm_mask = 0x15;
 2457         } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
 2458                 sc->config.cck_mask  = 0x03;
 2459                 sc->config.ofdm_mask = 0;
 2460         } else {
 2461                 /* XXX assume 802.11b/g */
 2462                 sc->config.cck_mask  = 0x0f;
 2463                 sc->config.ofdm_mask = 0x15;
 2464         }
 2465 
 2466         DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
 2467                 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
 2468         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
 2469                 sizeof (struct wpi_config), 1);
 2470         if (error != 0) {
 2471                 device_printf(sc->sc_dev, "could not configure\n");
 2472                 return error;
 2473         }
 2474 
 2475         /* configuration has changed, set Tx power accordingly */
 2476         if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
 2477                 device_printf(sc->sc_dev, "could not set Tx power\n");
 2478                 return error;
 2479         }
 2480 
 2481         /* add default node */
 2482         memset(&node, 0, sizeof node);
 2483         IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
 2484         node.id = WPI_ID_BSS;
 2485         node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
 2486             wpi_plcp_signal(12) : wpi_plcp_signal(2);
 2487         node.action = htole32(WPI_ACTION_SET_RATE);
 2488         node.antenna = WPI_ANTENNA_BOTH;
 2489         error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
 2490         if (error != 0)
 2491                 device_printf(sc->sc_dev, "could not add BSS node\n");
 2492 
 2493         return (error);
 2494 }
 2495 
 2496 static int
 2497 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
 2498 {
 2499         struct ieee80211com *ic = vap->iv_ic;
 2500         struct ieee80211_node *ni = vap->iv_bss;
 2501         int error;
 2502 
 2503         if (vap->iv_opmode == IEEE80211_M_MONITOR) {
 2504                 /* link LED blinks while monitoring */
 2505                 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
 2506                 return 0;
 2507         }
 2508 
 2509         wpi_enable_tsf(sc, ni);
 2510 
 2511         /* update adapter's configuration */
 2512         sc->config.associd = htole16(ni->ni_associd & ~0xc000);
 2513         /* short preamble/slot time are negotiated when associating */
 2514         sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
 2515             WPI_CONFIG_SHSLOT);
 2516         if (ic->ic_flags & IEEE80211_F_SHSLOT)
 2517                 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
 2518         if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
 2519                 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
 2520         sc->config.filter |= htole32(WPI_FILTER_BSS);
 2521 
 2522         /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
 2523 
 2524         DPRINTF(("config chan %d flags %x\n", sc->config.chan,
 2525                     sc->config.flags));
 2526         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
 2527                     wpi_config), 1);
 2528         if (error != 0) {
 2529                 device_printf(sc->sc_dev, "could not update configuration\n");
 2530                 return error;
 2531         }
 2532 
 2533         error = wpi_set_txpower(sc, ni->ni_chan, 1);
 2534         if (error != 0) {
 2535                 device_printf(sc->sc_dev, "could set txpower\n");
 2536                 return error;
 2537         }
 2538 
 2539         /* link LED always on while associated */
 2540         wpi_set_led(sc, WPI_LED_LINK, 0, 1);
 2541 
 2542         /* start automatic rate control timer */
 2543         callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
 2544 
 2545         return (error);
 2546 }
 2547 
 2548 /*
 2549  * Send a scan request to the firmware.  Since this command is huge, we map it
 2550  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
 2551  * much of this code is similar to that in wpi_cmd but because we must manually
 2552  * construct the probe & channels, we duplicate what's needed here. XXX In the
 2553  * future, this function should be modified to use wpi_cmd to help cleanup the
 2554  * code base.
 2555  */
 2556 static int
 2557 wpi_scan(struct wpi_softc *sc)
 2558 {
 2559         struct ifnet *ifp = sc->sc_ifp;
 2560         struct ieee80211com *ic = ifp->if_l2com;
 2561         struct ieee80211_scan_state *ss = ic->ic_scan;
 2562         struct wpi_tx_ring *ring = &sc->cmdq;
 2563         struct wpi_tx_desc *desc;
 2564         struct wpi_tx_data *data;
 2565         struct wpi_tx_cmd *cmd;
 2566         struct wpi_scan_hdr *hdr;
 2567         struct wpi_scan_chan *chan;
 2568         struct ieee80211_frame *wh;
 2569         struct ieee80211_rateset *rs;
 2570         struct ieee80211_channel *c;
 2571         enum ieee80211_phymode mode;
 2572         uint8_t *frm;
 2573         int nrates, pktlen, error, i, nssid;
 2574         bus_addr_t physaddr;
 2575 
 2576         desc = &ring->desc[ring->cur];
 2577         data = &ring->data[ring->cur];
 2578 
 2579         data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
 2580         if (data->m == NULL) {
 2581                 device_printf(sc->sc_dev,
 2582                     "could not allocate mbuf for scan command\n");
 2583                 return ENOMEM;
 2584         }
 2585 
 2586         cmd = mtod(data->m, struct wpi_tx_cmd *);
 2587         cmd->code = WPI_CMD_SCAN;
 2588         cmd->flags = 0;
 2589         cmd->qid = ring->qid;
 2590         cmd->idx = ring->cur;
 2591 
 2592         hdr = (struct wpi_scan_hdr *)cmd->data;
 2593         memset(hdr, 0, sizeof(struct wpi_scan_hdr));
 2594 
 2595         /*
 2596          * Move to the next channel if no packets are received within 5 msecs
 2597          * after sending the probe request (this helps to reduce the duration
 2598          * of active scans).
 2599          */
 2600         hdr->quiet = htole16(5);
 2601         hdr->threshold = htole16(1);
 2602 
 2603         if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
 2604                 /* send probe requests at 6Mbps */
 2605                 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
 2606 
 2607                 /* Enable crc checking */
 2608                 hdr->promotion = htole16(1);
 2609         } else {
 2610                 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
 2611                 /* send probe requests at 1Mbps */
 2612                 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
 2613         }
 2614         hdr->tx.id = WPI_ID_BROADCAST;
 2615         hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
 2616         hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
 2617 
 2618         memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
 2619         nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
 2620         for (i = 0; i < nssid; i++) {
 2621                 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
 2622                 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
 2623                 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
 2624                     hdr->scan_essids[i].esslen);
 2625 #ifdef WPI_DEBUG
 2626                 if (wpi_debug & WPI_DEBUG_SCANNING) {
 2627                         printf("Scanning Essid: ");
 2628                         ieee80211_print_essid(hdr->scan_essids[i].essid,
 2629                             hdr->scan_essids[i].esslen);
 2630                         printf("\n");
 2631                 }
 2632 #endif
 2633         }
 2634 
 2635         /*
 2636          * Build a probe request frame.  Most of the following code is a
 2637          * copy & paste of what is done in net80211.
 2638          */
 2639         wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
 2640         wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
 2641                 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
 2642         wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
 2643         IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
 2644         IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
 2645         IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
 2646         *(u_int16_t *)&wh->i_dur[0] = 0;        /* filled by h/w */
 2647         *(u_int16_t *)&wh->i_seq[0] = 0;        /* filled by h/w */
 2648 
 2649         frm = (uint8_t *)(wh + 1);
 2650 
 2651         /* add essid IE, the hardware will fill this in for us */
 2652         *frm++ = IEEE80211_ELEMID_SSID;
 2653         *frm++ = 0;
 2654 
 2655         mode = ieee80211_chan2mode(ic->ic_curchan);
 2656         rs = &ic->ic_sup_rates[mode];
 2657 
 2658         /* add supported rates IE */
 2659         *frm++ = IEEE80211_ELEMID_RATES;
 2660         nrates = rs->rs_nrates;
 2661         if (nrates > IEEE80211_RATE_SIZE)
 2662                 nrates = IEEE80211_RATE_SIZE;
 2663         *frm++ = nrates;
 2664         memcpy(frm, rs->rs_rates, nrates);
 2665         frm += nrates;
 2666 
 2667         /* add supported xrates IE */
 2668         if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
 2669                 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
 2670                 *frm++ = IEEE80211_ELEMID_XRATES;
 2671                 *frm++ = nrates;
 2672                 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
 2673                 frm += nrates;
 2674         }
 2675 
 2676         /* setup length of probe request */
 2677         hdr->tx.len = htole16(frm - (uint8_t *)wh);
 2678 
 2679         /*
 2680          * Construct information about the channel that we
 2681          * want to scan. The firmware expects this to be directly
 2682          * after the scan probe request
 2683          */
 2684         c = ic->ic_curchan;
 2685         chan = (struct wpi_scan_chan *)frm;
 2686         chan->chan = ieee80211_chan2ieee(ic, c);
 2687         chan->flags = 0;
 2688         if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
 2689                 chan->flags |= WPI_CHAN_ACTIVE;
 2690                 if (nssid != 0)
 2691                         chan->flags |= WPI_CHAN_DIRECT;
 2692         }
 2693         chan->gain_dsp = 0x6e; /* Default level */
 2694         if (IEEE80211_IS_CHAN_5GHZ(c)) {
 2695                 chan->active = htole16(10);
 2696                 chan->passive = htole16(ss->ss_maxdwell);
 2697                 chan->gain_radio = 0x3b;
 2698         } else {
 2699                 chan->active = htole16(20);
 2700                 chan->passive = htole16(ss->ss_maxdwell);
 2701                 chan->gain_radio = 0x28;
 2702         }
 2703 
 2704         DPRINTFN(WPI_DEBUG_SCANNING,
 2705             ("Scanning %u Passive: %d\n",
 2706              chan->chan,
 2707              c->ic_flags & IEEE80211_CHAN_PASSIVE));
 2708 
 2709         hdr->nchan++;
 2710         chan++;
 2711 
 2712         frm += sizeof (struct wpi_scan_chan);
 2713 #if 0
 2714         // XXX All Channels....
 2715         for (c  = &ic->ic_channels[1];
 2716              c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
 2717                 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
 2718                         continue;
 2719 
 2720                 chan->chan = ieee80211_chan2ieee(ic, c);
 2721                 chan->flags = 0;
 2722                 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
 2723                     chan->flags |= WPI_CHAN_ACTIVE;
 2724                     if (ic->ic_des_ssid[0].len != 0)
 2725                         chan->flags |= WPI_CHAN_DIRECT;
 2726                 }
 2727                 chan->gain_dsp = 0x6e; /* Default level */
 2728                 if (IEEE80211_IS_CHAN_5GHZ(c)) {
 2729                         chan->active = htole16(10);
 2730                         chan->passive = htole16(110);
 2731                         chan->gain_radio = 0x3b;
 2732                 } else {
 2733                         chan->active = htole16(20);
 2734                         chan->passive = htole16(120);
 2735                         chan->gain_radio = 0x28;
 2736                 }
 2737 
 2738                 DPRINTFN(WPI_DEBUG_SCANNING,
 2739                          ("Scanning %u Passive: %d\n",
 2740                           chan->chan,
 2741                           c->ic_flags & IEEE80211_CHAN_PASSIVE));
 2742 
 2743                 hdr->nchan++;
 2744                 chan++;
 2745 
 2746                 frm += sizeof (struct wpi_scan_chan);
 2747         }
 2748 #endif
 2749 
 2750         hdr->len = htole16(frm - (uint8_t *)hdr);
 2751         pktlen = frm - (uint8_t *)cmd;
 2752 
 2753         error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
 2754             wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
 2755         if (error != 0) {
 2756                 device_printf(sc->sc_dev, "could not map scan command\n");
 2757                 m_freem(data->m);
 2758                 data->m = NULL;
 2759                 return error;
 2760         }
 2761 
 2762         desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
 2763         desc->segs[0].addr = htole32(physaddr);
 2764         desc->segs[0].len  = htole32(pktlen);
 2765 
 2766         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
 2767             BUS_DMASYNC_PREWRITE);
 2768         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
 2769 
 2770         /* kick cmd ring */
 2771         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
 2772         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
 2773 
 2774         sc->sc_scan_timer = 5;
 2775         return 0;       /* will be notified async. of failure/success */
 2776 }
 2777 
 2778 /**
 2779  * Configure the card to listen to a particular channel, this transisions the
 2780  * card in to being able to receive frames from remote devices.
 2781  */
 2782 static int
 2783 wpi_config(struct wpi_softc *sc)
 2784 {
 2785         struct ifnet *ifp = sc->sc_ifp;
 2786         struct ieee80211com *ic = ifp->if_l2com;
 2787         struct wpi_power power;
 2788         struct wpi_bluetooth bluetooth;
 2789         struct wpi_node_info node;
 2790         int error;
 2791 
 2792         /* set power mode */
 2793         memset(&power, 0, sizeof power);
 2794         power.flags = htole32(WPI_POWER_CAM|0x8);
 2795         error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
 2796         if (error != 0) {
 2797                 device_printf(sc->sc_dev, "could not set power mode\n");
 2798                 return error;
 2799         }
 2800 
 2801         /* configure bluetooth coexistence */
 2802         memset(&bluetooth, 0, sizeof bluetooth);
 2803         bluetooth.flags = 3;
 2804         bluetooth.lead = 0xaa;
 2805         bluetooth.kill = 1;
 2806         error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
 2807             0);
 2808         if (error != 0) {
 2809                 device_printf(sc->sc_dev,
 2810                     "could not configure bluetooth coexistence\n");
 2811                 return error;
 2812         }
 2813 
 2814         /* configure adapter */
 2815         memset(&sc->config, 0, sizeof (struct wpi_config));
 2816         IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
 2817         /*set default channel*/
 2818         sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
 2819         sc->config.flags = htole32(WPI_CONFIG_TSF);
 2820         if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
 2821                 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
 2822                     WPI_CONFIG_24GHZ);
 2823         }
 2824         sc->config.filter = 0;
 2825         switch (ic->ic_opmode) {
 2826         case IEEE80211_M_STA:
 2827         case IEEE80211_M_WDS:   /* No know setup, use STA for now */
 2828                 sc->config.mode = WPI_MODE_STA;
 2829                 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
 2830                 break;
 2831         case IEEE80211_M_IBSS:
 2832         case IEEE80211_M_AHDEMO:
 2833                 sc->config.mode = WPI_MODE_IBSS;
 2834                 sc->config.filter |= htole32(WPI_FILTER_BEACON |
 2835                                              WPI_FILTER_MULTICAST);
 2836                 break;
 2837         case IEEE80211_M_HOSTAP:
 2838                 sc->config.mode = WPI_MODE_HOSTAP;
 2839                 break;
 2840         case IEEE80211_M_MONITOR:
 2841                 sc->config.mode = WPI_MODE_MONITOR;
 2842                 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
 2843                         WPI_FILTER_CTL | WPI_FILTER_PROMISC);
 2844                 break;
 2845         default:
 2846                 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
 2847                 return EINVAL;
 2848         }
 2849         sc->config.cck_mask  = 0x0f;    /* not yet negotiated */
 2850         sc->config.ofdm_mask = 0xff;    /* not yet negotiated */
 2851         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
 2852                 sizeof (struct wpi_config), 0);
 2853         if (error != 0) {
 2854                 device_printf(sc->sc_dev, "configure command failed\n");
 2855                 return error;
 2856         }
 2857 
 2858         /* configuration has changed, set Tx power accordingly */
 2859         if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
 2860             device_printf(sc->sc_dev, "could not set Tx power\n");
 2861             return error;
 2862         }
 2863 
 2864         /* add broadcast node */
 2865         memset(&node, 0, sizeof node);
 2866         IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
 2867         node.id = WPI_ID_BROADCAST;
 2868         node.rate = wpi_plcp_signal(2);
 2869         error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
 2870         if (error != 0) {
 2871                 device_printf(sc->sc_dev, "could not add broadcast node\n");
 2872                 return error;
 2873         }
 2874 
 2875         /* Setup rate scalling */
 2876         error = wpi_mrr_setup(sc);
 2877         if (error != 0) {
 2878                 device_printf(sc->sc_dev, "could not setup MRR\n");
 2879                 return error;
 2880         }
 2881 
 2882         return 0;
 2883 }
 2884 
 2885 static void
 2886 wpi_stop_master(struct wpi_softc *sc)
 2887 {
 2888         uint32_t tmp;
 2889         int ntries;
 2890 
 2891         DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
 2892 
 2893         tmp = WPI_READ(sc, WPI_RESET);
 2894         WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
 2895 
 2896         tmp = WPI_READ(sc, WPI_GPIO_CTL);
 2897         if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
 2898                 return; /* already asleep */
 2899 
 2900         for (ntries = 0; ntries < 100; ntries++) {
 2901                 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
 2902                         break;
 2903                 DELAY(10);
 2904         }
 2905         if (ntries == 100) {
 2906                 device_printf(sc->sc_dev, "timeout waiting for master\n");
 2907         }
 2908 }
 2909 
 2910 static int
 2911 wpi_power_up(struct wpi_softc *sc)
 2912 {
 2913         uint32_t tmp;
 2914         int ntries;
 2915 
 2916         wpi_mem_lock(sc);
 2917         tmp = wpi_mem_read(sc, WPI_MEM_POWER);
 2918         wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
 2919         wpi_mem_unlock(sc);
 2920 
 2921         for (ntries = 0; ntries < 5000; ntries++) {
 2922                 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
 2923                         break;
 2924                 DELAY(10);
 2925         }
 2926         if (ntries == 5000) {
 2927                 device_printf(sc->sc_dev,
 2928                     "timeout waiting for NIC to power up\n");
 2929                 return ETIMEDOUT;
 2930         }
 2931         return 0;
 2932 }
 2933 
 2934 static int
 2935 wpi_reset(struct wpi_softc *sc)
 2936 {
 2937         uint32_t tmp;
 2938         int ntries;
 2939 
 2940         DPRINTFN(WPI_DEBUG_HW,
 2941             ("Resetting the card - clearing any uploaded firmware\n"));
 2942 
 2943         /* clear any pending interrupts */
 2944         WPI_WRITE(sc, WPI_INTR, 0xffffffff);
 2945 
 2946         tmp = WPI_READ(sc, WPI_PLL_CTL);
 2947         WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
 2948 
 2949         tmp = WPI_READ(sc, WPI_CHICKEN);
 2950         WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
 2951 
 2952         tmp = WPI_READ(sc, WPI_GPIO_CTL);
 2953         WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
 2954 
 2955         /* wait for clock stabilization */
 2956         for (ntries = 0; ntries < 25000; ntries++) {
 2957                 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
 2958                         break;
 2959                 DELAY(10);
 2960         }
 2961         if (ntries == 25000) {
 2962                 device_printf(sc->sc_dev,
 2963                     "timeout waiting for clock stabilization\n");
 2964                 return ETIMEDOUT;
 2965         }
 2966 
 2967         /* initialize EEPROM */
 2968         tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
 2969 
 2970         if ((tmp & WPI_EEPROM_VERSION) == 0) {
 2971                 device_printf(sc->sc_dev, "EEPROM not found\n");
 2972                 return EIO;
 2973         }
 2974         WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
 2975 
 2976         return 0;
 2977 }
 2978 
 2979 static void
 2980 wpi_hw_config(struct wpi_softc *sc)
 2981 {
 2982         uint32_t rev, hw;
 2983 
 2984         /* voodoo from the Linux "driver".. */
 2985         hw = WPI_READ(sc, WPI_HWCONFIG);
 2986 
 2987         rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
 2988         if ((rev & 0xc0) == 0x40)
 2989                 hw |= WPI_HW_ALM_MB;
 2990         else if (!(rev & 0x80))
 2991                 hw |= WPI_HW_ALM_MM;
 2992 
 2993         if (sc->cap == 0x80)
 2994                 hw |= WPI_HW_SKU_MRC;
 2995 
 2996         hw &= ~WPI_HW_REV_D;
 2997         if ((le16toh(sc->rev) & 0xf0) == 0xd0)
 2998                 hw |= WPI_HW_REV_D;
 2999 
 3000         if (sc->type > 1)
 3001                 hw |= WPI_HW_TYPE_B;
 3002 
 3003         WPI_WRITE(sc, WPI_HWCONFIG, hw);
 3004 }
 3005 
 3006 static void
 3007 wpi_rfkill_resume(struct wpi_softc *sc)
 3008 {
 3009         struct ifnet *ifp = sc->sc_ifp;
 3010         struct ieee80211com *ic = ifp->if_l2com;
 3011         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 3012         int ntries;
 3013 
 3014         /* enable firmware again */
 3015         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
 3016         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
 3017 
 3018         /* wait for thermal sensors to calibrate */
 3019         for (ntries = 0; ntries < 1000; ntries++) {
 3020                 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
 3021                         break;
 3022                 DELAY(10);
 3023         }
 3024 
 3025         if (ntries == 1000) {
 3026                 device_printf(sc->sc_dev,
 3027                     "timeout waiting for thermal calibration\n");
 3028                 return;
 3029         }
 3030         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
 3031 
 3032         if (wpi_config(sc) != 0) {
 3033                 device_printf(sc->sc_dev, "device config failed\n");
 3034                 return;
 3035         }
 3036 
 3037         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 3038         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 3039         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
 3040 
 3041         if (vap != NULL) {
 3042                 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
 3043                         if (vap->iv_opmode != IEEE80211_M_MONITOR) {
 3044                                 ieee80211_beacon_miss(ic);
 3045                                 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
 3046                         } else
 3047                                 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
 3048                 } else {
 3049                         ieee80211_scan_next(vap);
 3050                         wpi_set_led(sc, WPI_LED_LINK, 20, 2);
 3051                 }
 3052         }
 3053 
 3054         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
 3055 }
 3056 
 3057 static void
 3058 wpi_init_locked(struct wpi_softc *sc, int force)
 3059 {
 3060         struct ifnet *ifp = sc->sc_ifp;
 3061         uint32_t tmp;
 3062         int ntries, qid;
 3063 
 3064         wpi_stop_locked(sc);
 3065         (void)wpi_reset(sc);
 3066 
 3067         wpi_mem_lock(sc);
 3068         wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
 3069         DELAY(20);
 3070         tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
 3071         wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
 3072         wpi_mem_unlock(sc);
 3073 
 3074         (void)wpi_power_up(sc);
 3075         wpi_hw_config(sc);
 3076 
 3077         /* init Rx ring */
 3078         wpi_mem_lock(sc);
 3079         WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
 3080         WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
 3081             offsetof(struct wpi_shared, next));
 3082         WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
 3083         WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
 3084         wpi_mem_unlock(sc);
 3085 
 3086         /* init Tx rings */
 3087         wpi_mem_lock(sc);
 3088         wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
 3089         wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
 3090         wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
 3091         wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
 3092         wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
 3093         wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
 3094         wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
 3095 
 3096         WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
 3097         WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
 3098 
 3099         for (qid = 0; qid < 6; qid++) {
 3100                 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
 3101                 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
 3102                 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
 3103         }
 3104         wpi_mem_unlock(sc);
 3105 
 3106         /* clear "radio off" and "disable command" bits (reversed logic) */
 3107         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
 3108         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
 3109         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
 3110 
 3111         /* clear any pending interrupts */
 3112         WPI_WRITE(sc, WPI_INTR, 0xffffffff);
 3113 
 3114         /* enable interrupts */
 3115         WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
 3116 
 3117         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
 3118         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
 3119 
 3120         if ((wpi_load_firmware(sc)) != 0) {
 3121             device_printf(sc->sc_dev,
 3122                 "A problem occurred loading the firmware to the driver\n");
 3123             return;
 3124         }
 3125 
 3126         /* At this point the firmware is up and running. If the hardware
 3127          * RF switch is turned off thermal calibration will fail, though
 3128          * the card is still happy to continue to accept commands, catch
 3129          * this case and schedule a task to watch for it to be turned on.
 3130          */
 3131         wpi_mem_lock(sc);
 3132         tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
 3133         wpi_mem_unlock(sc);
 3134 
 3135         if (!(tmp & 0x1)) {
 3136                 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
 3137                 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
 3138                 goto out;
 3139         }
 3140 
 3141         /* wait for thermal sensors to calibrate */
 3142         for (ntries = 0; ntries < 1000; ntries++) {
 3143                 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
 3144                         break;
 3145                 DELAY(10);
 3146         }
 3147 
 3148         if (ntries == 1000) {
 3149                 device_printf(sc->sc_dev,
 3150                     "timeout waiting for thermal sensors calibration\n");
 3151                 return;
 3152         }
 3153         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
 3154 
 3155         if (wpi_config(sc) != 0) {
 3156                 device_printf(sc->sc_dev, "device config failed\n");
 3157                 return;
 3158         }
 3159 
 3160         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 3161         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 3162 out:
 3163         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
 3164 }
 3165 
 3166 static void
 3167 wpi_init(void *arg)
 3168 {
 3169         struct wpi_softc *sc = arg;
 3170         struct ifnet *ifp = sc->sc_ifp;
 3171         struct ieee80211com *ic = ifp->if_l2com;
 3172 
 3173         WPI_LOCK(sc);
 3174         wpi_init_locked(sc, 0);
 3175         WPI_UNLOCK(sc);
 3176 
 3177         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 3178                 ieee80211_start_all(ic);                /* start all vaps */
 3179 }
 3180 
 3181 static void
 3182 wpi_stop_locked(struct wpi_softc *sc)
 3183 {
 3184         struct ifnet *ifp = sc->sc_ifp;
 3185         uint32_t tmp;
 3186         int ac;
 3187 
 3188         sc->sc_tx_timer = 0;
 3189         sc->sc_scan_timer = 0;
 3190         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 3191         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
 3192         callout_stop(&sc->watchdog_to);
 3193         callout_stop(&sc->calib_to);
 3194 
 3195 
 3196         /* disable interrupts */
 3197         WPI_WRITE(sc, WPI_MASK, 0);
 3198         WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
 3199         WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
 3200         WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
 3201 
 3202         wpi_mem_lock(sc);
 3203         wpi_mem_write(sc, WPI_MEM_MODE, 0);
 3204         wpi_mem_unlock(sc);
 3205 
 3206         /* reset all Tx rings */
 3207         for (ac = 0; ac < 4; ac++)
 3208                 wpi_reset_tx_ring(sc, &sc->txq[ac]);
 3209         wpi_reset_tx_ring(sc, &sc->cmdq);
 3210 
 3211         /* reset Rx ring */
 3212         wpi_reset_rx_ring(sc, &sc->rxq);
 3213 
 3214         wpi_mem_lock(sc);
 3215         wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
 3216         wpi_mem_unlock(sc);
 3217 
 3218         DELAY(5);
 3219 
 3220         wpi_stop_master(sc);
 3221 
 3222         tmp = WPI_READ(sc, WPI_RESET);
 3223         WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
 3224         sc->flags &= ~WPI_FLAG_BUSY;
 3225 }
 3226 
 3227 static void
 3228 wpi_stop(struct wpi_softc *sc)
 3229 {
 3230         WPI_LOCK(sc);
 3231         wpi_stop_locked(sc);
 3232         WPI_UNLOCK(sc);
 3233 }
 3234 
 3235 static void
 3236 wpi_calib_timeout(void *arg)
 3237 {
 3238         struct wpi_softc *sc = arg;
 3239         struct ifnet *ifp = sc->sc_ifp;
 3240         struct ieee80211com *ic = ifp->if_l2com;
 3241         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 3242         int temp;
 3243 
 3244         if (vap->iv_state != IEEE80211_S_RUN)
 3245                 return;
 3246 
 3247         /* update sensor data */
 3248         temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
 3249         DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
 3250 
 3251         wpi_power_calibration(sc, temp);
 3252 
 3253         callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
 3254 }
 3255 
 3256 /*
 3257  * This function is called periodically (every 60 seconds) to adjust output
 3258  * power to temperature changes.
 3259  */
 3260 static void
 3261 wpi_power_calibration(struct wpi_softc *sc, int temp)
 3262 {
 3263         struct ifnet *ifp = sc->sc_ifp;
 3264         struct ieee80211com *ic = ifp->if_l2com;
 3265         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 3266 
 3267         /* sanity-check read value */
 3268         if (temp < -260 || temp > 25) {
 3269                 /* this can't be correct, ignore */
 3270                 DPRINTFN(WPI_DEBUG_TEMP,
 3271                     ("out-of-range temperature reported: %d\n", temp));
 3272                 return;
 3273         }
 3274 
 3275         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
 3276 
 3277         /* adjust Tx power if need be */
 3278         if (abs(temp - sc->temp) <= 6)
 3279                 return;
 3280 
 3281         sc->temp = temp;
 3282 
 3283         if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
 3284                 /* just warn, too bad for the automatic calibration... */
 3285                 device_printf(sc->sc_dev,"could not adjust Tx power\n");
 3286         }
 3287 }
 3288 
 3289 /**
 3290  * Read the eeprom to find out what channels are valid for the given
 3291  * band and update net80211 with what we find.
 3292  */
 3293 static void
 3294 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
 3295 {
 3296         struct ifnet *ifp = sc->sc_ifp;
 3297         struct ieee80211com *ic = ifp->if_l2com;
 3298         const struct wpi_chan_band *band = &wpi_bands[n];
 3299         struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
 3300         struct ieee80211_channel *c;
 3301         int chan, i, passive;
 3302 
 3303         wpi_read_prom_data(sc, band->addr, channels,
 3304             band->nchan * sizeof (struct wpi_eeprom_chan));
 3305 
 3306         for (i = 0; i < band->nchan; i++) {
 3307                 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
 3308                         DPRINTFN(WPI_DEBUG_HW,
 3309                             ("Channel Not Valid: %d, band %d\n",
 3310                              band->chan[i],n));
 3311                         continue;
 3312                 }
 3313 
 3314                 passive = 0;
 3315                 chan = band->chan[i];
 3316                 c = &ic->ic_channels[ic->ic_nchans++];
 3317 
 3318                 /* is active scan allowed on this channel? */
 3319                 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
 3320                         passive = IEEE80211_CHAN_PASSIVE;
 3321                 }
 3322 
 3323                 if (n == 0) {   /* 2GHz band */
 3324                         c->ic_ieee = chan;
 3325                         c->ic_freq = ieee80211_ieee2mhz(chan,
 3326                             IEEE80211_CHAN_2GHZ);
 3327                         c->ic_flags = IEEE80211_CHAN_B | passive;
 3328 
 3329                         c = &ic->ic_channels[ic->ic_nchans++];
 3330                         c->ic_ieee = chan;
 3331                         c->ic_freq = ieee80211_ieee2mhz(chan,
 3332                             IEEE80211_CHAN_2GHZ);
 3333                         c->ic_flags = IEEE80211_CHAN_G | passive;
 3334 
 3335                 } else {        /* 5GHz band */
 3336                         /*
 3337                          * Some 3945ABG adapters support channels 7, 8, 11
 3338                          * and 12 in the 2GHz *and* 5GHz bands.
 3339                          * Because of limitations in our net80211(9) stack,
 3340                          * we can't support these channels in 5GHz band.
 3341                          * XXX not true; just need to map to proper frequency
 3342                          */
 3343                         if (chan <= 14)
 3344                                 continue;
 3345 
 3346                         c->ic_ieee = chan;
 3347                         c->ic_freq = ieee80211_ieee2mhz(chan,
 3348                             IEEE80211_CHAN_5GHZ);
 3349                         c->ic_flags = IEEE80211_CHAN_A | passive;
 3350                 }
 3351 
 3352                 /* save maximum allowed power for this channel */
 3353                 sc->maxpwr[chan] = channels[i].maxpwr;
 3354 
 3355 #if 0
 3356                 // XXX We can probably use this an get rid of maxpwr - ben 20070617
 3357                 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
 3358                 //ic->ic_channels[chan].ic_minpower...
 3359                 //ic->ic_channels[chan].ic_maxregtxpower...
 3360 #endif
 3361 
 3362                 DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
 3363                     " passive=%d, offset %d\n", chan, c->ic_freq,
 3364                     channels[i].flags, sc->maxpwr[chan],
 3365                     (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
 3366                     ic->ic_nchans));
 3367         }
 3368 }
 3369 
 3370 static void
 3371 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
 3372 {
 3373         struct wpi_power_group *group = &sc->groups[n];
 3374         struct wpi_eeprom_group rgroup;
 3375         int i;
 3376 
 3377         wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
 3378             sizeof rgroup);
 3379 
 3380         /* save power group information */
 3381         group->chan   = rgroup.chan;
 3382         group->maxpwr = rgroup.maxpwr;
 3383         /* temperature at which the samples were taken */
 3384         group->temp   = (int16_t)le16toh(rgroup.temp);
 3385 
 3386         DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
 3387                     group->chan, group->maxpwr, group->temp));
 3388 
 3389         for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
 3390                 group->samples[i].index = rgroup.samples[i].index;
 3391                 group->samples[i].power = rgroup.samples[i].power;
 3392 
 3393                 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
 3394                             group->samples[i].index, group->samples[i].power));
 3395         }
 3396 }
 3397 
 3398 /*
 3399  * Update Tx power to match what is defined for channel `c'.
 3400  */
 3401 static int
 3402 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
 3403 {
 3404         struct ifnet *ifp = sc->sc_ifp;
 3405         struct ieee80211com *ic = ifp->if_l2com;
 3406         struct wpi_power_group *group;
 3407         struct wpi_cmd_txpower txpower;
 3408         u_int chan;
 3409         int i;
 3410 
 3411         /* get channel number */
 3412         chan = ieee80211_chan2ieee(ic, c);
 3413 
 3414         /* find the power group to which this channel belongs */
 3415         if (IEEE80211_IS_CHAN_5GHZ(c)) {
 3416                 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
 3417                         if (chan <= group->chan)
 3418                                 break;
 3419         } else
 3420                 group = &sc->groups[0];
 3421 
 3422         memset(&txpower, 0, sizeof txpower);
 3423         txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
 3424         txpower.channel = htole16(chan);
 3425 
 3426         /* set Tx power for all OFDM and CCK rates */
 3427         for (i = 0; i <= 11 ; i++) {
 3428                 /* retrieve Tx power for this channel/rate combination */
 3429                 int idx = wpi_get_power_index(sc, group, c,
 3430                     wpi_ridx_to_rate[i]);
 3431 
 3432                 txpower.rates[i].rate = wpi_ridx_to_plcp[i];
 3433 
 3434                 if (IEEE80211_IS_CHAN_5GHZ(c)) {
 3435                         txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
 3436                         txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
 3437                 } else {
 3438                         txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
 3439                         txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
 3440                 }
 3441                 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
 3442                             chan, wpi_ridx_to_rate[i], idx));
 3443         }
 3444 
 3445         return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
 3446 }
 3447 
 3448 /*
 3449  * Determine Tx power index for a given channel/rate combination.
 3450  * This takes into account the regulatory information from EEPROM and the
 3451  * current temperature.
 3452  */
 3453 static int
 3454 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
 3455     struct ieee80211_channel *c, int rate)
 3456 {
 3457 /* fixed-point arithmetic division using a n-bit fractional part */
 3458 #define fdivround(a, b, n)      \
 3459         ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
 3460 
 3461 /* linear interpolation */
 3462 #define interpolate(x, x1, y1, x2, y2, n)       \
 3463         ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
 3464 
 3465         struct ifnet *ifp = sc->sc_ifp;
 3466         struct ieee80211com *ic = ifp->if_l2com;
 3467         struct wpi_power_sample *sample;
 3468         int pwr, idx;
 3469         u_int chan;
 3470 
 3471         /* get channel number */
 3472         chan = ieee80211_chan2ieee(ic, c);
 3473 
 3474         /* default power is group's maximum power - 3dB */
 3475         pwr = group->maxpwr / 2;
 3476 
 3477         /* decrease power for highest OFDM rates to reduce distortion */
 3478         switch (rate) {
 3479                 case 72:        /* 36Mb/s */
 3480                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
 3481                         break;
 3482                 case 96:        /* 48Mb/s */
 3483                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
 3484                         break;
 3485                 case 108:       /* 54Mb/s */
 3486                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
 3487                         break;
 3488         }
 3489 
 3490         /* never exceed channel's maximum allowed Tx power */
 3491         pwr = min(pwr, sc->maxpwr[chan]);
 3492 
 3493         /* retrieve power index into gain tables from samples */
 3494         for (sample = group->samples; sample < &group->samples[3]; sample++)
 3495                 if (pwr > sample[1].power)
 3496                         break;
 3497         /* fixed-point linear interpolation using a 19-bit fractional part */
 3498         idx = interpolate(pwr, sample[0].power, sample[0].index,
 3499             sample[1].power, sample[1].index, 19);
 3500 
 3501         /*
 3502          *  Adjust power index based on current temperature
 3503          *      - if colder than factory-calibrated: decreate output power
 3504          *      - if warmer than factory-calibrated: increase output power
 3505          */
 3506         idx -= (sc->temp - group->temp) * 11 / 100;
 3507 
 3508         /* decrease power for CCK rates (-5dB) */
 3509         if (!WPI_RATE_IS_OFDM(rate))
 3510                 idx += 10;
 3511 
 3512         /* keep power index in a valid range */
 3513         if (idx < 0)
 3514                 return 0;
 3515         if (idx > WPI_MAX_PWR_INDEX)
 3516                 return WPI_MAX_PWR_INDEX;
 3517         return idx;
 3518 
 3519 #undef interpolate
 3520 #undef fdivround
 3521 }
 3522 
 3523 /**
 3524  * Called by net80211 framework to indicate that a scan
 3525  * is starting. This function doesn't actually do the scan,
 3526  * wpi_scan_curchan starts things off. This function is more
 3527  * of an early warning from the framework we should get ready
 3528  * for the scan.
 3529  */
 3530 static void
 3531 wpi_scan_start(struct ieee80211com *ic)
 3532 {
 3533         struct ifnet *ifp = ic->ic_ifp;
 3534         struct wpi_softc *sc = ifp->if_softc;
 3535 
 3536         WPI_LOCK(sc);
 3537         wpi_set_led(sc, WPI_LED_LINK, 20, 2);
 3538         WPI_UNLOCK(sc);
 3539 }
 3540 
 3541 /**
 3542  * Called by the net80211 framework, indicates that the
 3543  * scan has ended. If there is a scan in progress on the card
 3544  * then it should be aborted.
 3545  */
 3546 static void
 3547 wpi_scan_end(struct ieee80211com *ic)
 3548 {
 3549         /* XXX ignore */
 3550 }
 3551 
 3552 /**
 3553  * Called by the net80211 framework to indicate to the driver
 3554  * that the channel should be changed
 3555  */
 3556 static void
 3557 wpi_set_channel(struct ieee80211com *ic)
 3558 {
 3559         struct ifnet *ifp = ic->ic_ifp;
 3560         struct wpi_softc *sc = ifp->if_softc;
 3561         int error;
 3562 
 3563         /*
 3564          * Only need to set the channel in Monitor mode. AP scanning and auth
 3565          * are already taken care of by their respective firmware commands.
 3566          */
 3567         if (ic->ic_opmode == IEEE80211_M_MONITOR) {
 3568                 WPI_LOCK(sc);
 3569                 error = wpi_config(sc);
 3570                 WPI_UNLOCK(sc);
 3571                 if (error != 0)
 3572                         device_printf(sc->sc_dev,
 3573                             "error %d settting channel\n", error);
 3574         }
 3575 }
 3576 
 3577 /**
 3578  * Called by net80211 to indicate that we need to scan the current
 3579  * channel. The channel is previously be set via the wpi_set_channel
 3580  * callback.
 3581  */
 3582 static void
 3583 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
 3584 {
 3585         struct ieee80211vap *vap = ss->ss_vap;
 3586         struct ifnet *ifp = vap->iv_ic->ic_ifp;
 3587         struct wpi_softc *sc = ifp->if_softc;
 3588 
 3589         WPI_LOCK(sc);
 3590         if (wpi_scan(sc))
 3591                 ieee80211_cancel_scan(vap);
 3592         WPI_UNLOCK(sc);
 3593 }
 3594 
 3595 /**
 3596  * Called by the net80211 framework to indicate
 3597  * the minimum dwell time has been met, terminate the scan.
 3598  * We don't actually terminate the scan as the firmware will notify
 3599  * us when it's finished and we have no way to interrupt it.
 3600  */
 3601 static void
 3602 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
 3603 {
 3604         /* NB: don't try to abort scan; wait for firmware to finish */
 3605 }
 3606 
 3607 static void
 3608 wpi_hwreset(void *arg, int pending)
 3609 {
 3610         struct wpi_softc *sc = arg;
 3611 
 3612         WPI_LOCK(sc);
 3613         wpi_init_locked(sc, 0);
 3614         WPI_UNLOCK(sc);
 3615 }
 3616 
 3617 static void
 3618 wpi_rfreset(void *arg, int pending)
 3619 {
 3620         struct wpi_softc *sc = arg;
 3621 
 3622         WPI_LOCK(sc);
 3623         wpi_rfkill_resume(sc);
 3624         WPI_UNLOCK(sc);
 3625 }
 3626 
 3627 /*
 3628  * Allocate DMA-safe memory for firmware transfer.
 3629  */
 3630 static int
 3631 wpi_alloc_fwmem(struct wpi_softc *sc)
 3632 {
 3633         /* allocate enough contiguous space to store text and data */
 3634         return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
 3635             WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
 3636             BUS_DMA_NOWAIT);
 3637 }
 3638 
 3639 static void
 3640 wpi_free_fwmem(struct wpi_softc *sc)
 3641 {
 3642         wpi_dma_contig_free(&sc->fw_dma);
 3643 }
 3644 
 3645 /**
 3646  * Called every second, wpi_watchdog used by the watch dog timer
 3647  * to check that the card is still alive
 3648  */
 3649 static void
 3650 wpi_watchdog(void *arg)
 3651 {
 3652         struct wpi_softc *sc = arg;
 3653         struct ifnet *ifp = sc->sc_ifp;
 3654         struct ieee80211com *ic = ifp->if_l2com;
 3655         uint32_t tmp;
 3656 
 3657         DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
 3658 
 3659         if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
 3660                 /* No need to lock firmware memory */
 3661                 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
 3662 
 3663                 if ((tmp & 0x1) == 0) {
 3664                         /* Radio kill switch is still off */
 3665                         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
 3666                         return;
 3667                 }
 3668 
 3669                 device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
 3670                 ieee80211_runtask(ic, &sc->sc_radiotask);
 3671                 return;
 3672         }
 3673 
 3674         if (sc->sc_tx_timer > 0) {
 3675                 if (--sc->sc_tx_timer == 0) {
 3676                         device_printf(sc->sc_dev,"device timeout\n");
 3677                         ifp->if_oerrors++;
 3678                         ieee80211_runtask(ic, &sc->sc_restarttask);
 3679                 }
 3680         }
 3681         if (sc->sc_scan_timer > 0) {
 3682                 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 3683                 if (--sc->sc_scan_timer == 0 && vap != NULL) {
 3684                         device_printf(sc->sc_dev,"scan timeout\n");
 3685                         ieee80211_cancel_scan(vap);
 3686                         ieee80211_runtask(ic, &sc->sc_restarttask);
 3687                 }
 3688         }
 3689 
 3690         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 3691                 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
 3692 }
 3693 
 3694 #ifdef WPI_DEBUG
 3695 static const char *wpi_cmd_str(int cmd)
 3696 {
 3697         switch (cmd) {
 3698         case WPI_DISABLE_CMD:   return "WPI_DISABLE_CMD";
 3699         case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE";
 3700         case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE";
 3701         case WPI_CMD_SET_WME:   return "WPI_CMD_SET_WME";
 3702         case WPI_CMD_TSF:       return "WPI_CMD_TSF";
 3703         case WPI_CMD_ADD_NODE:  return "WPI_CMD_ADD_NODE";
 3704         case WPI_CMD_TX_DATA:   return "WPI_CMD_TX_DATA";
 3705         case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP";
 3706         case WPI_CMD_SET_LED:   return "WPI_CMD_SET_LED";
 3707         case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
 3708         case WPI_CMD_SCAN:      return "WPI_CMD_SCAN";
 3709         case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
 3710         case WPI_CMD_TXPOWER:   return "WPI_CMD_TXPOWER";
 3711         case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH";
 3712 
 3713         default:
 3714                 KASSERT(1, ("Unknown Command: %d\n", cmd));
 3715                 return "UNKNOWN CMD";   /* Make the compiler happy */
 3716         }
 3717 }
 3718 #endif
 3719 
 3720 MODULE_DEPEND(wpi, pci,  1, 1, 1);
 3721 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
 3722 MODULE_DEPEND(wpi, firmware, 1, 1, 1);

Cache object: 983125e60e21c03b82a25523389be09b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.