The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/wpi/if_wpi.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2006,2007
    3  *      Damien Bergamini <damien.bergamini@free.fr>
    4  *      Benjamin Close <Benjamin.Close@clearchain.com>
    5  *
    6  * Permission to use, copy, modify, and distribute this software for any
    7  * purpose with or without fee is hereby granted, provided that the above
    8  * copyright notice and this permission notice appear in all copies.
    9  *
   10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
   12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
   13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
   14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
   15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
   16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
   17  */
   18 
   19 #define VERSION "20071127"
   20 
   21 #include <sys/cdefs.h>
   22 __FBSDID("$FreeBSD: releng/9.2/sys/dev/wpi/if_wpi.c 248078 2013-03-09 00:39:54Z marius $");
   23 
   24 /*
   25  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
   26  *
   27  * The 3945ABG network adapter doesn't use traditional hardware as
   28  * many other adaptors do. Instead at run time the eeprom is set into a known
   29  * state and told to load boot firmware. The boot firmware loads an init and a
   30  * main  binary firmware image into SRAM on the card via DMA.
   31  * Once the firmware is loaded, the driver/hw then
   32  * communicate by way of circular dma rings via the SRAM to the firmware.
   33  *
   34  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
   35  * The 4 tx data rings allow for prioritization QoS.
   36  *
   37  * The rx data ring consists of 32 dma buffers. Two registers are used to
   38  * indicate where in the ring the driver and the firmware are up to. The
   39  * driver sets the initial read index (reg1) and the initial write index (reg2),
   40  * the firmware updates the read index (reg1) on rx of a packet and fires an
   41  * interrupt. The driver then processes the buffers starting at reg1 indicating
   42  * to the firmware which buffers have been accessed by updating reg2. At the
   43  * same time allocating new memory for the processed buffer.
   44  *
   45  * A similar thing happens with the tx rings. The difference is the firmware
   46  * stop processing buffers once the queue is full and until confirmation
   47  * of a successful transmition (tx_intr) has occurred.
   48  *
   49  * The command ring operates in the same manner as the tx queues.
   50  *
   51  * All communication direct to the card (ie eeprom) is classed as Stage1
   52  * communication
   53  *
   54  * All communication via the firmware to the card is classed as State2.
   55  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
   56  * firmware. The bootstrap firmware and runtime firmware are loaded
   57  * from host memory via dma to the card then told to execute. From this point
   58  * on the majority of communications between the driver and the card goes
   59  * via the firmware.
   60  */
   61 
   62 #include <sys/param.h>
   63 #include <sys/sysctl.h>
   64 #include <sys/sockio.h>
   65 #include <sys/mbuf.h>
   66 #include <sys/kernel.h>
   67 #include <sys/socket.h>
   68 #include <sys/systm.h>
   69 #include <sys/malloc.h>
   70 #include <sys/queue.h>
   71 #include <sys/taskqueue.h>
   72 #include <sys/module.h>
   73 #include <sys/bus.h>
   74 #include <sys/endian.h>
   75 #include <sys/linker.h>
   76 #include <sys/firmware.h>
   77 
   78 #include <machine/bus.h>
   79 #include <machine/resource.h>
   80 #include <sys/rman.h>
   81 
   82 #include <dev/pci/pcireg.h>
   83 #include <dev/pci/pcivar.h>
   84 
   85 #include <net/bpf.h>
   86 #include <net/if.h>
   87 #include <net/if_arp.h>
   88 #include <net/ethernet.h>
   89 #include <net/if_dl.h>
   90 #include <net/if_media.h>
   91 #include <net/if_types.h>
   92 
   93 #include <net80211/ieee80211_var.h>
   94 #include <net80211/ieee80211_radiotap.h>
   95 #include <net80211/ieee80211_regdomain.h>
   96 #include <net80211/ieee80211_ratectl.h>
   97 
   98 #include <netinet/in.h>
   99 #include <netinet/in_systm.h>
  100 #include <netinet/in_var.h>
  101 #include <netinet/ip.h>
  102 #include <netinet/if_ether.h>
  103 
  104 #include <dev/wpi/if_wpireg.h>
  105 #include <dev/wpi/if_wpivar.h>
  106 
  107 #define WPI_DEBUG
  108 
  109 #ifdef WPI_DEBUG
  110 #define DPRINTF(x)      do { if (wpi_debug != 0) printf x; } while (0)
  111 #define DPRINTFN(n, x)  do { if (wpi_debug & n) printf x; } while (0)
  112 #define WPI_DEBUG_SET   (wpi_debug != 0)
  113 
  114 enum {
  115         WPI_DEBUG_UNUSED        = 0x00000001,   /* Unused */
  116         WPI_DEBUG_HW            = 0x00000002,   /* Stage 1 (eeprom) debugging */
  117         WPI_DEBUG_TX            = 0x00000004,   /* Stage 2 TX intrp debugging*/
  118         WPI_DEBUG_RX            = 0x00000008,   /* Stage 2 RX intrp debugging */
  119         WPI_DEBUG_CMD           = 0x00000010,   /* Stage 2 CMD intrp debugging*/
  120         WPI_DEBUG_FIRMWARE      = 0x00000020,   /* firmware(9) loading debug  */
  121         WPI_DEBUG_DMA           = 0x00000040,   /* DMA (de)allocations/syncs  */
  122         WPI_DEBUG_SCANNING      = 0x00000080,   /* Stage 2 Scanning debugging */
  123         WPI_DEBUG_NOTIFY        = 0x00000100,   /* State 2 Noftif intr debug */
  124         WPI_DEBUG_TEMP          = 0x00000200,   /* TXPower/Temp Calibration */
  125         WPI_DEBUG_OPS           = 0x00000400,   /* wpi_ops taskq debug */
  126         WPI_DEBUG_WATCHDOG      = 0x00000800,   /* Watch dog debug */
  127         WPI_DEBUG_ANY           = 0xffffffff
  128 };
  129 
  130 static int wpi_debug = 0;
  131 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
  132 TUNABLE_INT("debug.wpi", &wpi_debug);
  133 
  134 #else
  135 #define DPRINTF(x)
  136 #define DPRINTFN(n, x)
  137 #define WPI_DEBUG_SET   0
  138 #endif
  139 
  140 struct wpi_ident {
  141         uint16_t        vendor;
  142         uint16_t        device;
  143         uint16_t        subdevice;
  144         const char      *name;
  145 };
  146 
  147 static const struct wpi_ident wpi_ident_table[] = {
  148         /* The below entries support ABG regardless of the subid */
  149         { 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
  150         { 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
  151         /* The below entries only support BG */
  152         { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
  153         { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
  154         { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
  155         { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
  156         { 0, 0, 0, NULL }
  157 };
  158 
  159 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
  160                     const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
  161                     const uint8_t [IEEE80211_ADDR_LEN],
  162                     const uint8_t [IEEE80211_ADDR_LEN]);
  163 static void     wpi_vap_delete(struct ieee80211vap *);
  164 static int      wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
  165                     void **, bus_size_t, bus_size_t, int);
  166 static void     wpi_dma_contig_free(struct wpi_dma_info *);
  167 static void     wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
  168 static int      wpi_alloc_shared(struct wpi_softc *);
  169 static void     wpi_free_shared(struct wpi_softc *);
  170 static int      wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
  171 static void     wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
  172 static void     wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
  173 static int      wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
  174                     int, int);
  175 static void     wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
  176 static void     wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
  177 static int      wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
  178 static void     wpi_mem_lock(struct wpi_softc *);
  179 static void     wpi_mem_unlock(struct wpi_softc *);
  180 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
  181 static void     wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
  182 static void     wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
  183                     const uint32_t *, int);
  184 static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
  185 static int      wpi_alloc_fwmem(struct wpi_softc *);
  186 static void     wpi_free_fwmem(struct wpi_softc *);
  187 static int      wpi_load_firmware(struct wpi_softc *);
  188 static void     wpi_unload_firmware(struct wpi_softc *);
  189 static int      wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
  190 static void     wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
  191                     struct wpi_rx_data *);
  192 static void     wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
  193 static void     wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
  194 static void     wpi_notif_intr(struct wpi_softc *);
  195 static void     wpi_intr(void *);
  196 static uint8_t  wpi_plcp_signal(int);
  197 static void     wpi_watchdog(void *);
  198 static int      wpi_tx_data(struct wpi_softc *, struct mbuf *,
  199                     struct ieee80211_node *, int);
  200 static void     wpi_start(struct ifnet *);
  201 static void     wpi_start_locked(struct ifnet *);
  202 static int      wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
  203                     const struct ieee80211_bpf_params *);
  204 static void     wpi_scan_start(struct ieee80211com *);
  205 static void     wpi_scan_end(struct ieee80211com *);
  206 static void     wpi_set_channel(struct ieee80211com *);
  207 static void     wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
  208 static void     wpi_scan_mindwell(struct ieee80211_scan_state *);
  209 static int      wpi_ioctl(struct ifnet *, u_long, caddr_t);
  210 static void     wpi_read_eeprom(struct wpi_softc *,
  211                     uint8_t macaddr[IEEE80211_ADDR_LEN]);
  212 static void     wpi_read_eeprom_channels(struct wpi_softc *, int);
  213 static void     wpi_read_eeprom_group(struct wpi_softc *, int);
  214 static int      wpi_cmd(struct wpi_softc *, int, const void *, int, int);
  215 static int      wpi_wme_update(struct ieee80211com *);
  216 static int      wpi_mrr_setup(struct wpi_softc *);
  217 static void     wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
  218 static void     wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
  219 #if 0
  220 static int      wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
  221 #endif
  222 static int      wpi_auth(struct wpi_softc *, struct ieee80211vap *);
  223 static int      wpi_run(struct wpi_softc *, struct ieee80211vap *);
  224 static int      wpi_scan(struct wpi_softc *);
  225 static int      wpi_config(struct wpi_softc *);
  226 static void     wpi_stop_master(struct wpi_softc *);
  227 static int      wpi_power_up(struct wpi_softc *);
  228 static int      wpi_reset(struct wpi_softc *);
  229 static void     wpi_hwreset(void *, int);
  230 static void     wpi_rfreset(void *, int);
  231 static void     wpi_hw_config(struct wpi_softc *);
  232 static void     wpi_init(void *);
  233 static void     wpi_init_locked(struct wpi_softc *, int);
  234 static void     wpi_stop(struct wpi_softc *);
  235 static void     wpi_stop_locked(struct wpi_softc *);
  236 
  237 static int      wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
  238                     int);
  239 static void     wpi_calib_timeout(void *);
  240 static void     wpi_power_calibration(struct wpi_softc *, int);
  241 static int      wpi_get_power_index(struct wpi_softc *,
  242                     struct wpi_power_group *, struct ieee80211_channel *, int);
  243 #ifdef WPI_DEBUG
  244 static const char *wpi_cmd_str(int);
  245 #endif
  246 static int wpi_probe(device_t);
  247 static int wpi_attach(device_t);
  248 static int wpi_detach(device_t);
  249 static int wpi_shutdown(device_t);
  250 static int wpi_suspend(device_t);
  251 static int wpi_resume(device_t);
  252 
  253 
  254 static device_method_t wpi_methods[] = {
  255         /* Device interface */
  256         DEVMETHOD(device_probe,         wpi_probe),
  257         DEVMETHOD(device_attach,        wpi_attach),
  258         DEVMETHOD(device_detach,        wpi_detach),
  259         DEVMETHOD(device_shutdown,      wpi_shutdown),
  260         DEVMETHOD(device_suspend,       wpi_suspend),
  261         DEVMETHOD(device_resume,        wpi_resume),
  262 
  263         { 0, 0 }
  264 };
  265 
  266 static driver_t wpi_driver = {
  267         "wpi",
  268         wpi_methods,
  269         sizeof (struct wpi_softc)
  270 };
  271 
  272 static devclass_t wpi_devclass;
  273 
  274 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
  275 
  276 MODULE_VERSION(wpi, 1);
  277 
  278 static const uint8_t wpi_ridx_to_plcp[] = {
  279         /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
  280         /* R1-R4 (ral/ural is R4-R1) */
  281         0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
  282         /* CCK: device-dependent */
  283         10, 20, 55, 110
  284 };
  285 static const uint8_t wpi_ridx_to_rate[] = {
  286         12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
  287         2, 4, 11, 22 /*CCK */
  288 };
  289 
  290 
  291 static int
  292 wpi_probe(device_t dev)
  293 {
  294         const struct wpi_ident *ident;
  295 
  296         for (ident = wpi_ident_table; ident->name != NULL; ident++) {
  297                 if (pci_get_vendor(dev) == ident->vendor &&
  298                     pci_get_device(dev) == ident->device) {
  299                         device_set_desc(dev, ident->name);
  300                         return 0;
  301                 }
  302         }
  303         return ENXIO;
  304 }
  305 
  306 /**
  307  * Load the firmare image from disk to the allocated dma buffer.
  308  * we also maintain the reference to the firmware pointer as there
  309  * is times where we may need to reload the firmware but we are not
  310  * in a context that can access the filesystem (ie taskq cause by restart)
  311  *
  312  * @return 0 on success, an errno on failure
  313  */
  314 static int
  315 wpi_load_firmware(struct wpi_softc *sc)
  316 {
  317         const struct firmware *fp;
  318         struct wpi_dma_info *dma = &sc->fw_dma;
  319         const struct wpi_firmware_hdr *hdr;
  320         const uint8_t *itext, *idata, *rtext, *rdata, *btext;
  321         uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
  322         int error;
  323 
  324         DPRINTFN(WPI_DEBUG_FIRMWARE,
  325             ("Attempting Loading Firmware from wpi_fw module\n"));
  326 
  327         WPI_UNLOCK(sc);
  328 
  329         if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
  330                 device_printf(sc->sc_dev,
  331                     "could not load firmware image 'wpifw'\n");
  332                 error = ENOENT;
  333                 WPI_LOCK(sc);
  334                 goto fail;
  335         }
  336 
  337         fp = sc->fw_fp;
  338 
  339         WPI_LOCK(sc);
  340 
  341         /* Validate the firmware is minimum a particular version */
  342         if (fp->version < WPI_FW_MINVERSION) {
  343             device_printf(sc->sc_dev,
  344                            "firmware version is too old. Need %d, got %d\n",
  345                            WPI_FW_MINVERSION,
  346                            fp->version);
  347             error = ENXIO;
  348             goto fail;
  349         }
  350 
  351         if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
  352                 device_printf(sc->sc_dev,
  353                     "firmware file too short: %zu bytes\n", fp->datasize);
  354                 error = ENXIO;
  355                 goto fail;
  356         }
  357 
  358         hdr = (const struct wpi_firmware_hdr *)fp->data;
  359 
  360         /*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
  361            |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
  362 
  363         rtextsz = le32toh(hdr->rtextsz);
  364         rdatasz = le32toh(hdr->rdatasz);
  365         itextsz = le32toh(hdr->itextsz);
  366         idatasz = le32toh(hdr->idatasz);
  367         btextsz = le32toh(hdr->btextsz);
  368 
  369         /* check that all firmware segments are present */
  370         if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
  371                 rtextsz + rdatasz + itextsz + idatasz + btextsz) {
  372                 device_printf(sc->sc_dev,
  373                     "firmware file too short: %zu bytes\n", fp->datasize);
  374                 error = ENXIO; /* XXX appropriate error code? */
  375                 goto fail;
  376         }
  377 
  378         /* get pointers to firmware segments */
  379         rtext = (const uint8_t *)(hdr + 1);
  380         rdata = rtext + rtextsz;
  381         itext = rdata + rdatasz;
  382         idata = itext + itextsz;
  383         btext = idata + idatasz;
  384 
  385         DPRINTFN(WPI_DEBUG_FIRMWARE,
  386             ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
  387              "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
  388              (le32toh(hdr->version) & 0xff000000) >> 24,
  389              (le32toh(hdr->version) & 0x00ff0000) >> 16,
  390              (le32toh(hdr->version) & 0x0000ffff),
  391              rtextsz, rdatasz,
  392              itextsz, idatasz, btextsz));
  393 
  394         DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
  395         DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
  396         DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
  397         DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
  398         DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
  399 
  400         /* sanity checks */
  401         if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
  402             rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
  403             itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
  404             idatasz > WPI_FW_INIT_DATA_MAXSZ ||
  405             btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
  406             (btextsz & 3) != 0) {
  407                 device_printf(sc->sc_dev, "firmware invalid\n");
  408                 error = EINVAL;
  409                 goto fail;
  410         }
  411 
  412         /* copy initialization images into pre-allocated DMA-safe memory */
  413         memcpy(dma->vaddr, idata, idatasz);
  414         memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
  415 
  416         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
  417 
  418         /* tell adapter where to find initialization images */
  419         wpi_mem_lock(sc);
  420         wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
  421         wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
  422         wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
  423             dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
  424         wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
  425         wpi_mem_unlock(sc);
  426 
  427         /* load firmware boot code */
  428         if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
  429             device_printf(sc->sc_dev, "Failed to load microcode\n");
  430             goto fail;
  431         }
  432 
  433         /* now press "execute" */
  434         WPI_WRITE(sc, WPI_RESET, 0);
  435 
  436         /* wait at most one second for the first alive notification */
  437         if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
  438                 device_printf(sc->sc_dev,
  439                     "timeout waiting for adapter to initialize\n");
  440                 goto fail;
  441         }
  442 
  443         /* copy runtime images into pre-allocated DMA-sage memory */
  444         memcpy(dma->vaddr, rdata, rdatasz);
  445         memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
  446         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
  447 
  448         /* tell adapter where to find runtime images */
  449         wpi_mem_lock(sc);
  450         wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
  451         wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
  452         wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
  453             dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
  454         wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
  455         wpi_mem_unlock(sc);
  456 
  457         /* wait at most one second for the first alive notification */
  458         if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
  459                 device_printf(sc->sc_dev,
  460                     "timeout waiting for adapter to initialize2\n");
  461                 goto fail;
  462         }
  463 
  464         DPRINTFN(WPI_DEBUG_FIRMWARE,
  465             ("Firmware loaded to driver successfully\n"));
  466         return error;
  467 fail:
  468         wpi_unload_firmware(sc);
  469         return error;
  470 }
  471 
  472 /**
  473  * Free the referenced firmware image
  474  */
  475 static void
  476 wpi_unload_firmware(struct wpi_softc *sc)
  477 {
  478 
  479         if (sc->fw_fp) {
  480                 WPI_UNLOCK(sc);
  481                 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
  482                 WPI_LOCK(sc);
  483                 sc->fw_fp = NULL;
  484         }
  485 }
  486 
  487 static int
  488 wpi_attach(device_t dev)
  489 {
  490         struct wpi_softc *sc = device_get_softc(dev);
  491         struct ifnet *ifp;
  492         struct ieee80211com *ic;
  493         int ac, error, supportsa = 1;
  494         uint32_t tmp;
  495         const struct wpi_ident *ident;
  496         uint8_t macaddr[IEEE80211_ADDR_LEN];
  497 
  498         sc->sc_dev = dev;
  499 
  500         if (bootverbose || WPI_DEBUG_SET)
  501             device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
  502 
  503         /*
  504          * Some card's only support 802.11b/g not a, check to see if
  505          * this is one such card. A 0x0 in the subdevice table indicates
  506          * the entire subdevice range is to be ignored.
  507          */
  508         for (ident = wpi_ident_table; ident->name != NULL; ident++) {
  509                 if (ident->subdevice &&
  510                     pci_get_subdevice(dev) == ident->subdevice) {
  511                     supportsa = 0;
  512                     break;
  513                 }
  514         }
  515 
  516         /* Create the tasks that can be queued */
  517         TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
  518         TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
  519 
  520         WPI_LOCK_INIT(sc);
  521 
  522         callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
  523         callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
  524 
  525         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
  526                 device_printf(dev, "chip is in D%d power mode "
  527                     "-- setting to D0\n", pci_get_powerstate(dev));
  528                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
  529         }
  530 
  531         /* disable the retry timeout register */
  532         pci_write_config(dev, 0x41, 0, 1);
  533 
  534         /* enable bus-mastering */
  535         pci_enable_busmaster(dev);
  536 
  537         sc->mem_rid = PCIR_BAR(0);
  538         sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
  539             RF_ACTIVE);
  540         if (sc->mem == NULL) {
  541                 device_printf(dev, "could not allocate memory resource\n");
  542                 error = ENOMEM;
  543                 goto fail;
  544         }
  545 
  546         sc->sc_st = rman_get_bustag(sc->mem);
  547         sc->sc_sh = rman_get_bushandle(sc->mem);
  548 
  549         sc->irq_rid = 0;
  550         sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
  551             RF_ACTIVE | RF_SHAREABLE);
  552         if (sc->irq == NULL) {
  553                 device_printf(dev, "could not allocate interrupt resource\n");
  554                 error = ENOMEM;
  555                 goto fail;
  556         }
  557 
  558         /*
  559          * Allocate DMA memory for firmware transfers.
  560          */
  561         if ((error = wpi_alloc_fwmem(sc)) != 0) {
  562                 printf(": could not allocate firmware memory\n");
  563                 error = ENOMEM;
  564                 goto fail;
  565         }
  566 
  567         /*
  568          * Put adapter into a known state.
  569          */
  570         if ((error = wpi_reset(sc)) != 0) {
  571                 device_printf(dev, "could not reset adapter\n");
  572                 goto fail;
  573         }
  574 
  575         wpi_mem_lock(sc);
  576         tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
  577         if (bootverbose || WPI_DEBUG_SET)
  578             device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
  579 
  580         wpi_mem_unlock(sc);
  581 
  582         /* Allocate shared page */
  583         if ((error = wpi_alloc_shared(sc)) != 0) {
  584                 device_printf(dev, "could not allocate shared page\n");
  585                 goto fail;
  586         }
  587 
  588         /* tx data queues  - 4 for QoS purposes */
  589         for (ac = 0; ac < WME_NUM_AC; ac++) {
  590                 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
  591                 if (error != 0) {
  592                     device_printf(dev, "could not allocate Tx ring %d\n",ac);
  593                     goto fail;
  594                 }
  595         }
  596 
  597         /* command queue to talk to the card's firmware */
  598         error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
  599         if (error != 0) {
  600                 device_printf(dev, "could not allocate command ring\n");
  601                 goto fail;
  602         }
  603 
  604         /* receive data queue */
  605         error = wpi_alloc_rx_ring(sc, &sc->rxq);
  606         if (error != 0) {
  607                 device_printf(dev, "could not allocate Rx ring\n");
  608                 goto fail;
  609         }
  610 
  611         ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
  612         if (ifp == NULL) {
  613                 device_printf(dev, "can not if_alloc()\n");
  614                 error = ENOMEM;
  615                 goto fail;
  616         }
  617         ic = ifp->if_l2com;
  618 
  619         ic->ic_ifp = ifp;
  620         ic->ic_phytype = IEEE80211_T_OFDM;      /* not only, but not used */
  621         ic->ic_opmode = IEEE80211_M_STA;        /* default to BSS mode */
  622 
  623         /* set device capabilities */
  624         ic->ic_caps =
  625                   IEEE80211_C_STA               /* station mode supported */
  626                 | IEEE80211_C_MONITOR           /* monitor mode supported */
  627                 | IEEE80211_C_TXPMGT            /* tx power management */
  628                 | IEEE80211_C_SHSLOT            /* short slot time supported */
  629                 | IEEE80211_C_SHPREAMBLE        /* short preamble supported */
  630                 | IEEE80211_C_WPA               /* 802.11i */
  631 /* XXX looks like WME is partly supported? */
  632 #if 0
  633                 | IEEE80211_C_IBSS              /* IBSS mode support */
  634                 | IEEE80211_C_BGSCAN            /* capable of bg scanning */
  635                 | IEEE80211_C_WME               /* 802.11e */
  636                 | IEEE80211_C_HOSTAP            /* Host access point mode */
  637 #endif
  638                 ;
  639 
  640         /*
  641          * Read in the eeprom and also setup the channels for
  642          * net80211. We don't set the rates as net80211 does this for us
  643          */
  644         wpi_read_eeprom(sc, macaddr);
  645 
  646         if (bootverbose || WPI_DEBUG_SET) {
  647             device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
  648             device_printf(sc->sc_dev, "Hardware Type: %c\n",
  649                           sc->type > 1 ? 'B': '?');
  650             device_printf(sc->sc_dev, "Hardware Revision: %c\n",
  651                           ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
  652             device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
  653                           supportsa ? "does" : "does not");
  654 
  655             /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
  656                what sc->rev really represents - benjsc 20070615 */
  657         }
  658 
  659         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
  660         ifp->if_softc = sc;
  661         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
  662         ifp->if_init = wpi_init;
  663         ifp->if_ioctl = wpi_ioctl;
  664         ifp->if_start = wpi_start;
  665         IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
  666         ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
  667         IFQ_SET_READY(&ifp->if_snd);
  668 
  669         ieee80211_ifattach(ic, macaddr);
  670         /* override default methods */
  671         ic->ic_raw_xmit = wpi_raw_xmit;
  672         ic->ic_wme.wme_update = wpi_wme_update;
  673         ic->ic_scan_start = wpi_scan_start;
  674         ic->ic_scan_end = wpi_scan_end;
  675         ic->ic_set_channel = wpi_set_channel;
  676         ic->ic_scan_curchan = wpi_scan_curchan;
  677         ic->ic_scan_mindwell = wpi_scan_mindwell;
  678 
  679         ic->ic_vap_create = wpi_vap_create;
  680         ic->ic_vap_delete = wpi_vap_delete;
  681 
  682         ieee80211_radiotap_attach(ic,
  683             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
  684                 WPI_TX_RADIOTAP_PRESENT,
  685             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
  686                 WPI_RX_RADIOTAP_PRESENT);
  687 
  688         /*
  689          * Hook our interrupt after all initialization is complete.
  690          */
  691         error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
  692             NULL, wpi_intr, sc, &sc->sc_ih);
  693         if (error != 0) {
  694                 device_printf(dev, "could not set up interrupt\n");
  695                 goto fail;
  696         }
  697 
  698         if (bootverbose)
  699                 ieee80211_announce(ic);
  700 #ifdef XXX_DEBUG
  701         ieee80211_announce_channels(ic);
  702 #endif
  703         return 0;
  704 
  705 fail:   wpi_detach(dev);
  706         return ENXIO;
  707 }
  708 
  709 static int
  710 wpi_detach(device_t dev)
  711 {
  712         struct wpi_softc *sc = device_get_softc(dev);
  713         struct ifnet *ifp = sc->sc_ifp;
  714         struct ieee80211com *ic;
  715         int ac;
  716 
  717         if (ifp != NULL) {
  718                 ic = ifp->if_l2com;
  719 
  720                 ieee80211_draintask(ic, &sc->sc_restarttask);
  721                 ieee80211_draintask(ic, &sc->sc_radiotask);
  722                 wpi_stop(sc);
  723                 callout_drain(&sc->watchdog_to);
  724                 callout_drain(&sc->calib_to);
  725                 ieee80211_ifdetach(ic);
  726         }
  727 
  728         WPI_LOCK(sc);
  729         if (sc->txq[0].data_dmat) {
  730                 for (ac = 0; ac < WME_NUM_AC; ac++)
  731                         wpi_free_tx_ring(sc, &sc->txq[ac]);
  732 
  733                 wpi_free_tx_ring(sc, &sc->cmdq);
  734                 wpi_free_rx_ring(sc, &sc->rxq);
  735                 wpi_free_shared(sc);
  736         }
  737 
  738         if (sc->fw_fp != NULL) {
  739                 wpi_unload_firmware(sc);
  740         }
  741 
  742         if (sc->fw_dma.tag)
  743                 wpi_free_fwmem(sc);
  744         WPI_UNLOCK(sc);
  745 
  746         if (sc->irq != NULL) {
  747                 bus_teardown_intr(dev, sc->irq, sc->sc_ih);
  748                 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
  749         }
  750 
  751         if (sc->mem != NULL)
  752                 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
  753 
  754         if (ifp != NULL)
  755                 if_free(ifp);
  756 
  757         WPI_LOCK_DESTROY(sc);
  758 
  759         return 0;
  760 }
  761 
  762 static struct ieee80211vap *
  763 wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
  764     enum ieee80211_opmode opmode, int flags,
  765     const uint8_t bssid[IEEE80211_ADDR_LEN],
  766     const uint8_t mac[IEEE80211_ADDR_LEN])
  767 {
  768         struct wpi_vap *wvp;
  769         struct ieee80211vap *vap;
  770 
  771         if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
  772                 return NULL;
  773         wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
  774             M_80211_VAP, M_NOWAIT | M_ZERO);
  775         if (wvp == NULL)
  776                 return NULL;
  777         vap = &wvp->vap;
  778         ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
  779         /* override with driver methods */
  780         wvp->newstate = vap->iv_newstate;
  781         vap->iv_newstate = wpi_newstate;
  782 
  783         ieee80211_ratectl_init(vap);
  784         /* complete setup */
  785         ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
  786         ic->ic_opmode = opmode;
  787         return vap;
  788 }
  789 
  790 static void
  791 wpi_vap_delete(struct ieee80211vap *vap)
  792 {
  793         struct wpi_vap *wvp = WPI_VAP(vap);
  794 
  795         ieee80211_ratectl_deinit(vap);
  796         ieee80211_vap_detach(vap);
  797         free(wvp, M_80211_VAP);
  798 }
  799 
  800 static void
  801 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
  802 {
  803         if (error != 0)
  804                 return;
  805 
  806         KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
  807 
  808         *(bus_addr_t *)arg = segs[0].ds_addr;
  809 }
  810 
  811 /*
  812  * Allocates a contiguous block of dma memory of the requested size and
  813  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
  814  * allocations greater than 4096 may fail. Hence if the requested alignment is
  815  * greater we allocate 'alignment' size extra memory and shift the vaddr and
  816  * paddr after the dma load. This bypasses the problem at the cost of a little
  817  * more memory.
  818  */
  819 static int
  820 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
  821     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
  822 {
  823         int error;
  824         bus_size_t align;
  825         bus_size_t reqsize;
  826 
  827         DPRINTFN(WPI_DEBUG_DMA,
  828             ("Size: %zd - alignment %zd\n", size, alignment));
  829 
  830         dma->size = size;
  831         dma->tag = NULL;
  832 
  833         if (alignment > 4096) {
  834                 align = PAGE_SIZE;
  835                 reqsize = size + alignment;
  836         } else {
  837                 align = alignment;
  838                 reqsize = size;
  839         }
  840         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
  841             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
  842             NULL, NULL, reqsize,
  843             1, reqsize, flags,
  844             NULL, NULL, &dma->tag);
  845         if (error != 0) {
  846                 device_printf(sc->sc_dev,
  847                     "could not create shared page DMA tag\n");
  848                 goto fail;
  849         }
  850         error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
  851             flags | BUS_DMA_ZERO, &dma->map);
  852         if (error != 0) {
  853                 device_printf(sc->sc_dev,
  854                     "could not allocate shared page DMA memory\n");
  855                 goto fail;
  856         }
  857 
  858         error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
  859             reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
  860 
  861         /* Save the original pointers so we can free all the memory */
  862         dma->paddr = dma->paddr_start;
  863         dma->vaddr = dma->vaddr_start;
  864 
  865         /*
  866          * Check the alignment and increment by 4096 until we get the
  867          * requested alignment. Fail if can't obtain the alignment
  868          * we requested.
  869          */
  870         if ((dma->paddr & (alignment -1 )) != 0) {
  871                 int i;
  872 
  873                 for (i = 0; i < alignment / 4096; i++) {
  874                         if ((dma->paddr & (alignment - 1 )) == 0)
  875                                 break;
  876                         dma->paddr += 4096;
  877                         dma->vaddr += 4096;
  878                 }
  879                 if (i == alignment / 4096) {
  880                         device_printf(sc->sc_dev,
  881                             "alignment requirement was not satisfied\n");
  882                         goto fail;
  883                 }
  884         }
  885 
  886         if (error != 0) {
  887                 device_printf(sc->sc_dev,
  888                     "could not load shared page DMA map\n");
  889                 goto fail;
  890         }
  891 
  892         if (kvap != NULL)
  893                 *kvap = dma->vaddr;
  894 
  895         return 0;
  896 
  897 fail:
  898         wpi_dma_contig_free(dma);
  899         return error;
  900 }
  901 
  902 static void
  903 wpi_dma_contig_free(struct wpi_dma_info *dma)
  904 {
  905         if (dma->tag) {
  906                 if (dma->map != NULL) {
  907                         if (dma->paddr_start != 0) {
  908                                 bus_dmamap_sync(dma->tag, dma->map,
  909                                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
  910                                 bus_dmamap_unload(dma->tag, dma->map);
  911                         }
  912                         bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
  913                 }
  914                 bus_dma_tag_destroy(dma->tag);
  915         }
  916 }
  917 
  918 /*
  919  * Allocate a shared page between host and NIC.
  920  */
  921 static int
  922 wpi_alloc_shared(struct wpi_softc *sc)
  923 {
  924         int error;
  925 
  926         error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
  927             (void **)&sc->shared, sizeof (struct wpi_shared),
  928             PAGE_SIZE,
  929             BUS_DMA_NOWAIT);
  930 
  931         if (error != 0) {
  932                 device_printf(sc->sc_dev,
  933                     "could not allocate shared area DMA memory\n");
  934         }
  935 
  936         return error;
  937 }
  938 
  939 static void
  940 wpi_free_shared(struct wpi_softc *sc)
  941 {
  942         wpi_dma_contig_free(&sc->shared_dma);
  943 }
  944 
  945 static int
  946 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
  947 {
  948 
  949         int i, error;
  950 
  951         ring->cur = 0;
  952 
  953         error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
  954             (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
  955             WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
  956 
  957         if (error != 0) {
  958                 device_printf(sc->sc_dev,
  959                     "%s: could not allocate rx ring DMA memory, error %d\n",
  960                     __func__, error);
  961                 goto fail;
  962         }
  963 
  964         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 
  965             BUS_SPACE_MAXADDR_32BIT,
  966             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
  967             MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
  968         if (error != 0) {
  969                 device_printf(sc->sc_dev,
  970                     "%s: bus_dma_tag_create_failed, error %d\n",
  971                     __func__, error);
  972                 goto fail;
  973         }
  974 
  975         /*
  976          * Setup Rx buffers.
  977          */
  978         for (i = 0; i < WPI_RX_RING_COUNT; i++) {
  979                 struct wpi_rx_data *data = &ring->data[i];
  980                 struct mbuf *m;
  981                 bus_addr_t paddr;
  982 
  983                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
  984                 if (error != 0) {
  985                         device_printf(sc->sc_dev,
  986                             "%s: bus_dmamap_create failed, error %d\n",
  987                             __func__, error);
  988                         goto fail;
  989                 }
  990                 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
  991                 if (m == NULL) {
  992                         device_printf(sc->sc_dev,
  993                            "%s: could not allocate rx mbuf\n", __func__);
  994                         error = ENOMEM;
  995                         goto fail;
  996                 }
  997                 /* map page */
  998                 error = bus_dmamap_load(ring->data_dmat, data->map,
  999                     mtod(m, caddr_t), MJUMPAGESIZE,
 1000                     wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
 1001                 if (error != 0 && error != EFBIG) {
 1002                         device_printf(sc->sc_dev,
 1003                             "%s: bus_dmamap_load failed, error %d\n",
 1004                             __func__, error);
 1005                         m_freem(m);
 1006                         error = ENOMEM; /* XXX unique code */
 1007                         goto fail;
 1008                 }
 1009                 bus_dmamap_sync(ring->data_dmat, data->map, 
 1010                     BUS_DMASYNC_PREWRITE);
 1011 
 1012                 data->m = m;
 1013                 ring->desc[i] = htole32(paddr);
 1014         }
 1015         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
 1016             BUS_DMASYNC_PREWRITE);
 1017         return 0;
 1018 fail:
 1019         wpi_free_rx_ring(sc, ring);
 1020         return error;
 1021 }
 1022 
 1023 static void
 1024 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
 1025 {
 1026         int ntries;
 1027 
 1028         wpi_mem_lock(sc);
 1029 
 1030         WPI_WRITE(sc, WPI_RX_CONFIG, 0);
 1031 
 1032         for (ntries = 0; ntries < 100; ntries++) {
 1033                 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
 1034                         break;
 1035                 DELAY(10);
 1036         }
 1037 
 1038         wpi_mem_unlock(sc);
 1039 
 1040 #ifdef WPI_DEBUG
 1041         if (ntries == 100 && wpi_debug > 0)
 1042                 device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
 1043 #endif
 1044 
 1045         ring->cur = 0;
 1046 }
 1047 
 1048 static void
 1049 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
 1050 {
 1051         int i;
 1052 
 1053         wpi_dma_contig_free(&ring->desc_dma);
 1054 
 1055         for (i = 0; i < WPI_RX_RING_COUNT; i++) {
 1056                 struct wpi_rx_data *data = &ring->data[i];
 1057 
 1058                 if (data->m != NULL) {
 1059                         bus_dmamap_sync(ring->data_dmat, data->map,
 1060                             BUS_DMASYNC_POSTREAD);
 1061                         bus_dmamap_unload(ring->data_dmat, data->map);
 1062                         m_freem(data->m);
 1063                 }
 1064                 if (data->map != NULL)
 1065                         bus_dmamap_destroy(ring->data_dmat, data->map);
 1066         }
 1067 }
 1068 
 1069 static int
 1070 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
 1071         int qid)
 1072 {
 1073         struct wpi_tx_data *data;
 1074         int i, error;
 1075 
 1076         ring->qid = qid;
 1077         ring->count = count;
 1078         ring->queued = 0;
 1079         ring->cur = 0;
 1080         ring->data = NULL;
 1081 
 1082         error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
 1083                 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
 1084                 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
 1085 
 1086         if (error != 0) {
 1087             device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
 1088             goto fail;
 1089         }
 1090 
 1091         /* update shared page with ring's base address */
 1092         sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
 1093 
 1094         error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
 1095                 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
 1096                 BUS_DMA_NOWAIT);
 1097 
 1098         if (error != 0) {
 1099                 device_printf(sc->sc_dev,
 1100                     "could not allocate tx command DMA memory\n");
 1101                 goto fail;
 1102         }
 1103 
 1104         ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
 1105             M_NOWAIT | M_ZERO);
 1106         if (ring->data == NULL) {
 1107                 device_printf(sc->sc_dev,
 1108                     "could not allocate tx data slots\n");
 1109                 goto fail;
 1110         }
 1111 
 1112         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
 1113             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
 1114             WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
 1115             &ring->data_dmat);
 1116         if (error != 0) {
 1117                 device_printf(sc->sc_dev, "could not create data DMA tag\n");
 1118                 goto fail;
 1119         }
 1120 
 1121         for (i = 0; i < count; i++) {
 1122                 data = &ring->data[i];
 1123 
 1124                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
 1125                 if (error != 0) {
 1126                         device_printf(sc->sc_dev,
 1127                             "could not create tx buf DMA map\n");
 1128                         goto fail;
 1129                 }
 1130                 bus_dmamap_sync(ring->data_dmat, data->map,
 1131                     BUS_DMASYNC_PREWRITE);
 1132         }
 1133 
 1134         return 0;
 1135 
 1136 fail:
 1137         wpi_free_tx_ring(sc, ring);
 1138         return error;
 1139 }
 1140 
 1141 static void
 1142 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
 1143 {
 1144         struct wpi_tx_data *data;
 1145         int i, ntries;
 1146 
 1147         wpi_mem_lock(sc);
 1148 
 1149         WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
 1150         for (ntries = 0; ntries < 100; ntries++) {
 1151                 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
 1152                         break;
 1153                 DELAY(10);
 1154         }
 1155 #ifdef WPI_DEBUG
 1156         if (ntries == 100 && wpi_debug > 0)
 1157                 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
 1158                     ring->qid);
 1159 #endif
 1160         wpi_mem_unlock(sc);
 1161 
 1162         for (i = 0; i < ring->count; i++) {
 1163                 data = &ring->data[i];
 1164 
 1165                 if (data->m != NULL) {
 1166                         bus_dmamap_unload(ring->data_dmat, data->map);
 1167                         m_freem(data->m);
 1168                         data->m = NULL;
 1169                 }
 1170         }
 1171 
 1172         ring->queued = 0;
 1173         ring->cur = 0;
 1174 }
 1175 
 1176 static void
 1177 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
 1178 {
 1179         struct wpi_tx_data *data;
 1180         int i;
 1181 
 1182         wpi_dma_contig_free(&ring->desc_dma);
 1183         wpi_dma_contig_free(&ring->cmd_dma);
 1184 
 1185         if (ring->data != NULL) {
 1186                 for (i = 0; i < ring->count; i++) {
 1187                         data = &ring->data[i];
 1188 
 1189                         if (data->m != NULL) {
 1190                                 bus_dmamap_sync(ring->data_dmat, data->map,
 1191                                     BUS_DMASYNC_POSTWRITE);
 1192                                 bus_dmamap_unload(ring->data_dmat, data->map);
 1193                                 m_freem(data->m);
 1194                                 data->m = NULL;
 1195                         }
 1196                 }
 1197                 free(ring->data, M_DEVBUF);
 1198         }
 1199 
 1200         if (ring->data_dmat != NULL)
 1201                 bus_dma_tag_destroy(ring->data_dmat);
 1202 }
 1203 
 1204 static int
 1205 wpi_shutdown(device_t dev)
 1206 {
 1207         struct wpi_softc *sc = device_get_softc(dev);
 1208 
 1209         WPI_LOCK(sc);
 1210         wpi_stop_locked(sc);
 1211         wpi_unload_firmware(sc);
 1212         WPI_UNLOCK(sc);
 1213 
 1214         return 0;
 1215 }
 1216 
 1217 static int
 1218 wpi_suspend(device_t dev)
 1219 {
 1220         struct wpi_softc *sc = device_get_softc(dev);
 1221         struct ieee80211com *ic = sc->sc_ifp->if_l2com;
 1222 
 1223         ieee80211_suspend_all(ic);
 1224         return 0;
 1225 }
 1226 
 1227 static int
 1228 wpi_resume(device_t dev)
 1229 {
 1230         struct wpi_softc *sc = device_get_softc(dev);
 1231         struct ieee80211com *ic = sc->sc_ifp->if_l2com;
 1232 
 1233         pci_write_config(dev, 0x41, 0, 1);
 1234 
 1235         ieee80211_resume_all(ic);
 1236         return 0;
 1237 }
 1238 
 1239 /**
 1240  * Called by net80211 when ever there is a change to 80211 state machine
 1241  */
 1242 static int
 1243 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
 1244 {
 1245         struct wpi_vap *wvp = WPI_VAP(vap);
 1246         struct ieee80211com *ic = vap->iv_ic;
 1247         struct ifnet *ifp = ic->ic_ifp;
 1248         struct wpi_softc *sc = ifp->if_softc;
 1249         int error;
 1250 
 1251         DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
 1252                 ieee80211_state_name[vap->iv_state],
 1253                 ieee80211_state_name[nstate], sc->flags));
 1254 
 1255         IEEE80211_UNLOCK(ic);
 1256         WPI_LOCK(sc);
 1257         if (nstate == IEEE80211_S_SCAN && vap->iv_state != IEEE80211_S_INIT) {
 1258                 /*
 1259                  * On !INIT -> SCAN transitions, we need to clear any possible
 1260                  * knowledge about associations.
 1261                  */
 1262                 error = wpi_config(sc);
 1263                 if (error != 0) {
 1264                         device_printf(sc->sc_dev,
 1265                             "%s: device config failed, error %d\n",
 1266                             __func__, error);
 1267                 }
 1268         }
 1269         if (nstate == IEEE80211_S_AUTH ||
 1270             (nstate == IEEE80211_S_ASSOC && vap->iv_state == IEEE80211_S_RUN)) {
 1271                 /*
 1272                  * The node must be registered in the firmware before auth.
 1273                  * Also the associd must be cleared on RUN -> ASSOC
 1274                  * transitions.
 1275                  */
 1276                 error = wpi_auth(sc, vap);
 1277                 if (error != 0) {
 1278                         device_printf(sc->sc_dev,
 1279                             "%s: could not move to auth state, error %d\n",
 1280                             __func__, error);
 1281                 }
 1282         }
 1283         if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
 1284                 error = wpi_run(sc, vap);
 1285                 if (error != 0) {
 1286                         device_printf(sc->sc_dev,
 1287                             "%s: could not move to run state, error %d\n",
 1288                             __func__, error);
 1289                 }
 1290         }
 1291         if (nstate == IEEE80211_S_RUN) {
 1292                 /* RUN -> RUN transition; just restart the timers */
 1293                 wpi_calib_timeout(sc);
 1294                 /* XXX split out rate control timer */
 1295         }
 1296         WPI_UNLOCK(sc);
 1297         IEEE80211_LOCK(ic);
 1298         return wvp->newstate(vap, nstate, arg);
 1299 }
 1300 
 1301 /*
 1302  * Grab exclusive access to NIC memory.
 1303  */
 1304 static void
 1305 wpi_mem_lock(struct wpi_softc *sc)
 1306 {
 1307         int ntries;
 1308         uint32_t tmp;
 1309 
 1310         tmp = WPI_READ(sc, WPI_GPIO_CTL);
 1311         WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
 1312 
 1313         /* spin until we actually get the lock */
 1314         for (ntries = 0; ntries < 100; ntries++) {
 1315                 if ((WPI_READ(sc, WPI_GPIO_CTL) &
 1316                         (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
 1317                         break;
 1318                 DELAY(10);
 1319         }
 1320         if (ntries == 100)
 1321                 device_printf(sc->sc_dev, "could not lock memory\n");
 1322 }
 1323 
 1324 /*
 1325  * Release lock on NIC memory.
 1326  */
 1327 static void
 1328 wpi_mem_unlock(struct wpi_softc *sc)
 1329 {
 1330         uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
 1331         WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
 1332 }
 1333 
 1334 static uint32_t
 1335 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
 1336 {
 1337         WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
 1338         return WPI_READ(sc, WPI_READ_MEM_DATA);
 1339 }
 1340 
 1341 static void
 1342 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
 1343 {
 1344         WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
 1345         WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
 1346 }
 1347 
 1348 static void
 1349 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
 1350     const uint32_t *data, int wlen)
 1351 {
 1352         for (; wlen > 0; wlen--, data++, addr+=4)
 1353                 wpi_mem_write(sc, addr, *data);
 1354 }
 1355 
 1356 /*
 1357  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
 1358  * using the traditional bit-bang method. Data is read up until len bytes have
 1359  * been obtained.
 1360  */
 1361 static uint16_t
 1362 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
 1363 {
 1364         int ntries;
 1365         uint32_t val;
 1366         uint8_t *out = data;
 1367 
 1368         wpi_mem_lock(sc);
 1369 
 1370         for (; len > 0; len -= 2, addr++) {
 1371                 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
 1372 
 1373                 for (ntries = 0; ntries < 10; ntries++) {
 1374                         if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
 1375                                 break;
 1376                         DELAY(5);
 1377                 }
 1378 
 1379                 if (ntries == 10) {
 1380                         device_printf(sc->sc_dev, "could not read EEPROM\n");
 1381                         return ETIMEDOUT;
 1382                 }
 1383 
 1384                 *out++= val >> 16;
 1385                 if (len > 1)
 1386                         *out ++= val >> 24;
 1387         }
 1388 
 1389         wpi_mem_unlock(sc);
 1390 
 1391         return 0;
 1392 }
 1393 
 1394 /*
 1395  * The firmware text and data segments are transferred to the NIC using DMA.
 1396  * The driver just copies the firmware into DMA-safe memory and tells the NIC
 1397  * where to find it.  Once the NIC has copied the firmware into its internal
 1398  * memory, we can free our local copy in the driver.
 1399  */
 1400 static int
 1401 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
 1402 {
 1403         int error, ntries;
 1404 
 1405         DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
 1406 
 1407         size /= sizeof(uint32_t);
 1408 
 1409         wpi_mem_lock(sc);
 1410 
 1411         wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
 1412             (const uint32_t *)fw, size);
 1413 
 1414         wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
 1415         wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
 1416         wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
 1417 
 1418         /* run microcode */
 1419         wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
 1420 
 1421         /* wait while the adapter is busy copying the firmware */
 1422         for (error = 0, ntries = 0; ntries < 1000; ntries++) {
 1423                 uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
 1424                 DPRINTFN(WPI_DEBUG_HW,
 1425                     ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
 1426                      WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
 1427                 if (status & WPI_TX_IDLE(6)) {
 1428                         DPRINTFN(WPI_DEBUG_HW,
 1429                             ("Status Match! - ntries = %d\n", ntries));
 1430                         break;
 1431                 }
 1432                 DELAY(10);
 1433         }
 1434         if (ntries == 1000) {
 1435                 device_printf(sc->sc_dev, "timeout transferring firmware\n");
 1436                 error = ETIMEDOUT;
 1437         }
 1438 
 1439         /* start the microcode executing */
 1440         wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
 1441 
 1442         wpi_mem_unlock(sc);
 1443 
 1444         return (error);
 1445 }
 1446 
 1447 static void
 1448 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
 1449         struct wpi_rx_data *data)
 1450 {
 1451         struct ifnet *ifp = sc->sc_ifp;
 1452         struct ieee80211com *ic = ifp->if_l2com;
 1453         struct wpi_rx_ring *ring = &sc->rxq;
 1454         struct wpi_rx_stat *stat;
 1455         struct wpi_rx_head *head;
 1456         struct wpi_rx_tail *tail;
 1457         struct ieee80211_node *ni;
 1458         struct mbuf *m, *mnew;
 1459         bus_addr_t paddr;
 1460         int error;
 1461 
 1462         stat = (struct wpi_rx_stat *)(desc + 1);
 1463 
 1464         if (stat->len > WPI_STAT_MAXLEN) {
 1465                 device_printf(sc->sc_dev, "invalid rx statistic header\n");
 1466                 ifp->if_ierrors++;
 1467                 return;
 1468         }
 1469 
 1470         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
 1471         head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
 1472         tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
 1473 
 1474         DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
 1475             "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
 1476             le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
 1477             (uintmax_t)le64toh(tail->tstamp)));
 1478 
 1479         /* discard Rx frames with bad CRC early */
 1480         if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
 1481                 DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
 1482                     le32toh(tail->flags)));
 1483                 ifp->if_ierrors++;
 1484                 return;
 1485         }
 1486         if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
 1487                 DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
 1488                     le16toh(head->len)));
 1489                 ifp->if_ierrors++;
 1490                 return;
 1491         }
 1492 
 1493         /* XXX don't need mbuf, just dma buffer */
 1494         mnew = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
 1495         if (mnew == NULL) {
 1496                 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
 1497                     __func__));
 1498                 ifp->if_ierrors++;
 1499                 return;
 1500         }
 1501         bus_dmamap_unload(ring->data_dmat, data->map);
 1502 
 1503         error = bus_dmamap_load(ring->data_dmat, data->map,
 1504             mtod(mnew, caddr_t), MJUMPAGESIZE,
 1505             wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
 1506         if (error != 0 && error != EFBIG) {
 1507                 device_printf(sc->sc_dev,
 1508                     "%s: bus_dmamap_load failed, error %d\n", __func__, error);
 1509                 m_freem(mnew);
 1510                 ifp->if_ierrors++;
 1511                 return;
 1512         }
 1513         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
 1514 
 1515         /* finalize mbuf and swap in new one */
 1516         m = data->m;
 1517         m->m_pkthdr.rcvif = ifp;
 1518         m->m_data = (caddr_t)(head + 1);
 1519         m->m_pkthdr.len = m->m_len = le16toh(head->len);
 1520 
 1521         data->m = mnew;
 1522         /* update Rx descriptor */
 1523         ring->desc[ring->cur] = htole32(paddr);
 1524 
 1525         if (ieee80211_radiotap_active(ic)) {
 1526                 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
 1527 
 1528                 tap->wr_flags = 0;
 1529                 tap->wr_chan_freq =
 1530                         htole16(ic->ic_channels[head->chan].ic_freq);
 1531                 tap->wr_chan_flags =
 1532                         htole16(ic->ic_channels[head->chan].ic_flags);
 1533                 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
 1534                 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
 1535                 tap->wr_tsft = tail->tstamp;
 1536                 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
 1537                 switch (head->rate) {
 1538                 /* CCK rates */
 1539                 case  10: tap->wr_rate =   2; break;
 1540                 case  20: tap->wr_rate =   4; break;
 1541                 case  55: tap->wr_rate =  11; break;
 1542                 case 110: tap->wr_rate =  22; break;
 1543                 /* OFDM rates */
 1544                 case 0xd: tap->wr_rate =  12; break;
 1545                 case 0xf: tap->wr_rate =  18; break;
 1546                 case 0x5: tap->wr_rate =  24; break;
 1547                 case 0x7: tap->wr_rate =  36; break;
 1548                 case 0x9: tap->wr_rate =  48; break;
 1549                 case 0xb: tap->wr_rate =  72; break;
 1550                 case 0x1: tap->wr_rate =  96; break;
 1551                 case 0x3: tap->wr_rate = 108; break;
 1552                 /* unknown rate: should not happen */
 1553                 default:  tap->wr_rate =   0;
 1554                 }
 1555                 if (le16toh(head->flags) & 0x4)
 1556                         tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
 1557         }
 1558 
 1559         WPI_UNLOCK(sc);
 1560 
 1561         ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
 1562         if (ni != NULL) {
 1563                 (void) ieee80211_input(ni, m, stat->rssi, 0);
 1564                 ieee80211_free_node(ni);
 1565         } else
 1566                 (void) ieee80211_input_all(ic, m, stat->rssi, 0);
 1567 
 1568         WPI_LOCK(sc);
 1569 }
 1570 
 1571 static void
 1572 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
 1573 {
 1574         struct ifnet *ifp = sc->sc_ifp;
 1575         struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
 1576         struct wpi_tx_data *txdata = &ring->data[desc->idx];
 1577         struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
 1578         struct ieee80211_node *ni = txdata->ni;
 1579         struct ieee80211vap *vap = ni->ni_vap;
 1580         int retrycnt = 0;
 1581 
 1582         DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
 1583             "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
 1584             stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
 1585             le32toh(stat->status)));
 1586 
 1587         /*
 1588          * Update rate control statistics for the node.
 1589          * XXX we should not count mgmt frames since they're always sent at
 1590          * the lowest available bit-rate.
 1591          * XXX frames w/o ACK shouldn't be used either
 1592          */
 1593         if (stat->ntries > 0) {
 1594                 DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
 1595                 retrycnt = 1;
 1596         }
 1597         ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
 1598             &retrycnt, NULL);
 1599 
 1600         /* XXX oerrors should only count errors !maxtries */
 1601         if ((le32toh(stat->status) & 0xff) != 1)
 1602                 ifp->if_oerrors++;
 1603         else
 1604                 ifp->if_opackets++;
 1605 
 1606         bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
 1607         bus_dmamap_unload(ring->data_dmat, txdata->map);
 1608         /* XXX handle M_TXCB? */
 1609         m_freem(txdata->m);
 1610         txdata->m = NULL;
 1611         ieee80211_free_node(txdata->ni);
 1612         txdata->ni = NULL;
 1613 
 1614         ring->queued--;
 1615 
 1616         sc->sc_tx_timer = 0;
 1617         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 1618         wpi_start_locked(ifp);
 1619 }
 1620 
 1621 static void
 1622 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
 1623 {
 1624         struct wpi_tx_ring *ring = &sc->cmdq;
 1625         struct wpi_tx_data *data;
 1626 
 1627         DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
 1628                                  "type=%s len=%d\n", desc->qid, desc->idx,
 1629                                  desc->flags, wpi_cmd_str(desc->type),
 1630                                  le32toh(desc->len)));
 1631 
 1632         if ((desc->qid & 7) != 4)
 1633                 return; /* not a command ack */
 1634 
 1635         data = &ring->data[desc->idx];
 1636 
 1637         /* if the command was mapped in a mbuf, free it */
 1638         if (data->m != NULL) {
 1639                 bus_dmamap_unload(ring->data_dmat, data->map);
 1640                 m_freem(data->m);
 1641                 data->m = NULL;
 1642         }
 1643 
 1644         sc->flags &= ~WPI_FLAG_BUSY;
 1645         wakeup(&ring->cmd[desc->idx]);
 1646 }
 1647 
 1648 static void
 1649 wpi_notif_intr(struct wpi_softc *sc)
 1650 {
 1651         struct ifnet *ifp = sc->sc_ifp;
 1652         struct ieee80211com *ic = ifp->if_l2com;
 1653         struct wpi_rx_desc *desc;
 1654         struct wpi_rx_data *data;
 1655         uint32_t hw;
 1656 
 1657         bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
 1658             BUS_DMASYNC_POSTREAD);
 1659 
 1660         hw = le32toh(sc->shared->next);
 1661         while (sc->rxq.cur != hw) {
 1662                 data = &sc->rxq.data[sc->rxq.cur];
 1663 
 1664                 bus_dmamap_sync(sc->rxq.data_dmat, data->map,
 1665                     BUS_DMASYNC_POSTREAD);
 1666                 desc = (void *)data->m->m_ext.ext_buf;
 1667 
 1668                 DPRINTFN(WPI_DEBUG_NOTIFY,
 1669                          ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
 1670                           desc->qid,
 1671                           desc->idx,
 1672                           desc->flags,
 1673                           desc->type,
 1674                           le32toh(desc->len)));
 1675 
 1676                 if (!(desc->qid & 0x80))        /* reply to a command */
 1677                         wpi_cmd_intr(sc, desc);
 1678 
 1679                 switch (desc->type) {
 1680                 case WPI_RX_DONE:
 1681                         /* a 802.11 frame was received */
 1682                         wpi_rx_intr(sc, desc, data);
 1683                         break;
 1684 
 1685                 case WPI_TX_DONE:
 1686                         /* a 802.11 frame has been transmitted */
 1687                         wpi_tx_intr(sc, desc);
 1688                         break;
 1689 
 1690                 case WPI_UC_READY:
 1691                 {
 1692                         struct wpi_ucode_info *uc =
 1693                                 (struct wpi_ucode_info *)(desc + 1);
 1694 
 1695                         /* the microcontroller is ready */
 1696                         DPRINTF(("microcode alive notification version %x "
 1697                                 "alive %x\n", le32toh(uc->version),
 1698                                 le32toh(uc->valid)));
 1699 
 1700                         if (le32toh(uc->valid) != 1) {
 1701                                 device_printf(sc->sc_dev,
 1702                                     "microcontroller initialization failed\n");
 1703                                 wpi_stop_locked(sc);
 1704                         }
 1705                         break;
 1706                 }
 1707                 case WPI_STATE_CHANGED:
 1708                 {
 1709                         uint32_t *status = (uint32_t *)(desc + 1);
 1710 
 1711                         /* enabled/disabled notification */
 1712                         DPRINTF(("state changed to %x\n", le32toh(*status)));
 1713 
 1714                         if (le32toh(*status) & 1) {
 1715                                 device_printf(sc->sc_dev,
 1716                                     "Radio transmitter is switched off\n");
 1717                                 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
 1718                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1719                                 /* Disable firmware commands */
 1720                                 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
 1721                         }
 1722                         break;
 1723                 }
 1724                 case WPI_START_SCAN:
 1725                 {
 1726 #ifdef WPI_DEBUG
 1727                         struct wpi_start_scan *scan =
 1728                                 (struct wpi_start_scan *)(desc + 1);
 1729 #endif
 1730 
 1731                         DPRINTFN(WPI_DEBUG_SCANNING,
 1732                                  ("scanning channel %d status %x\n",
 1733                             scan->chan, le32toh(scan->status)));
 1734                         break;
 1735                 }
 1736                 case WPI_STOP_SCAN:
 1737                 {
 1738 #ifdef WPI_DEBUG
 1739                         struct wpi_stop_scan *scan =
 1740                                 (struct wpi_stop_scan *)(desc + 1);
 1741 #endif
 1742                         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 1743 
 1744                         DPRINTFN(WPI_DEBUG_SCANNING,
 1745                             ("scan finished nchan=%d status=%d chan=%d\n",
 1746                              scan->nchan, scan->status, scan->chan));
 1747 
 1748                         sc->sc_scan_timer = 0;
 1749                         ieee80211_scan_next(vap);
 1750                         break;
 1751                 }
 1752                 case WPI_MISSED_BEACON:
 1753                 {
 1754                         struct wpi_missed_beacon *beacon =
 1755                                 (struct wpi_missed_beacon *)(desc + 1);
 1756                         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 1757 
 1758                         if (le32toh(beacon->consecutive) >=
 1759                             vap->iv_bmissthreshold) {
 1760                                 DPRINTF(("Beacon miss: %u >= %u\n",
 1761                                          le32toh(beacon->consecutive),
 1762                                          vap->iv_bmissthreshold));
 1763                                 ieee80211_beacon_miss(ic);
 1764                         }
 1765                         break;
 1766                 }
 1767                 }
 1768 
 1769                 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
 1770         }
 1771 
 1772         /* tell the firmware what we have processed */
 1773         hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
 1774         WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
 1775 }
 1776 
 1777 static void
 1778 wpi_intr(void *arg)
 1779 {
 1780         struct wpi_softc *sc = arg;
 1781         uint32_t r;
 1782 
 1783         WPI_LOCK(sc);
 1784 
 1785         r = WPI_READ(sc, WPI_INTR);
 1786         if (r == 0 || r == 0xffffffff) {
 1787                 WPI_UNLOCK(sc);
 1788                 return;
 1789         }
 1790 
 1791         /* disable interrupts */
 1792         WPI_WRITE(sc, WPI_MASK, 0);
 1793         /* ack interrupts */
 1794         WPI_WRITE(sc, WPI_INTR, r);
 1795 
 1796         if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
 1797                 struct ifnet *ifp = sc->sc_ifp;
 1798                 struct ieee80211com *ic = ifp->if_l2com;
 1799                 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 1800 
 1801                 device_printf(sc->sc_dev, "fatal firmware error\n");
 1802                 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
 1803                                 "(Hardware Error)"));
 1804                 if (vap != NULL)
 1805                         ieee80211_cancel_scan(vap);
 1806                 ieee80211_runtask(ic, &sc->sc_restarttask);
 1807                 sc->flags &= ~WPI_FLAG_BUSY;
 1808                 WPI_UNLOCK(sc);
 1809                 return;
 1810         }
 1811 
 1812         if (r & WPI_RX_INTR)
 1813                 wpi_notif_intr(sc);
 1814 
 1815         if (r & WPI_ALIVE_INTR) /* firmware initialized */
 1816                 wakeup(sc);
 1817 
 1818         /* re-enable interrupts */
 1819         if (sc->sc_ifp->if_flags & IFF_UP)
 1820                 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
 1821 
 1822         WPI_UNLOCK(sc);
 1823 }
 1824 
 1825 static uint8_t
 1826 wpi_plcp_signal(int rate)
 1827 {
 1828         switch (rate) {
 1829         /* CCK rates (returned values are device-dependent) */
 1830         case 2:         return 10;
 1831         case 4:         return 20;
 1832         case 11:        return 55;
 1833         case 22:        return 110;
 1834 
 1835         /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
 1836         /* R1-R4 (ral/ural is R4-R1) */
 1837         case 12:        return 0xd;
 1838         case 18:        return 0xf;
 1839         case 24:        return 0x5;
 1840         case 36:        return 0x7;
 1841         case 48:        return 0x9;
 1842         case 72:        return 0xb;
 1843         case 96:        return 0x1;
 1844         case 108:       return 0x3;
 1845 
 1846         /* unsupported rates (should not get there) */
 1847         default:        return 0;
 1848         }
 1849 }
 1850 
 1851 /* quickly determine if a given rate is CCK or OFDM */
 1852 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
 1853 
 1854 /*
 1855  * Construct the data packet for a transmit buffer and acutally put
 1856  * the buffer onto the transmit ring, kicking the card to process the
 1857  * the buffer.
 1858  */
 1859 static int
 1860 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
 1861         int ac)
 1862 {
 1863         struct ieee80211vap *vap = ni->ni_vap;
 1864         struct ifnet *ifp = sc->sc_ifp;
 1865         struct ieee80211com *ic = ifp->if_l2com;
 1866         const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
 1867         struct wpi_tx_ring *ring = &sc->txq[ac];
 1868         struct wpi_tx_desc *desc;
 1869         struct wpi_tx_data *data;
 1870         struct wpi_tx_cmd *cmd;
 1871         struct wpi_cmd_data *tx;
 1872         struct ieee80211_frame *wh;
 1873         const struct ieee80211_txparam *tp;
 1874         struct ieee80211_key *k;
 1875         struct mbuf *mnew;
 1876         int i, error, nsegs, rate, hdrlen, ismcast;
 1877         bus_dma_segment_t segs[WPI_MAX_SCATTER];
 1878 
 1879         desc = &ring->desc[ring->cur];
 1880         data = &ring->data[ring->cur];
 1881 
 1882         wh = mtod(m0, struct ieee80211_frame *);
 1883 
 1884         hdrlen = ieee80211_hdrsize(wh);
 1885         ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
 1886 
 1887         if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
 1888                 k = ieee80211_crypto_encap(ni, m0);
 1889                 if (k == NULL) {
 1890                         m_freem(m0);
 1891                         return ENOBUFS;
 1892                 }
 1893                 /* packet header may have moved, reset our local pointer */
 1894                 wh = mtod(m0, struct ieee80211_frame *);
 1895         }
 1896 
 1897         cmd = &ring->cmd[ring->cur];
 1898         cmd->code = WPI_CMD_TX_DATA;
 1899         cmd->flags = 0;
 1900         cmd->qid = ring->qid;
 1901         cmd->idx = ring->cur;
 1902 
 1903         tx = (struct wpi_cmd_data *)cmd->data;
 1904         tx->flags = htole32(WPI_TX_AUTO_SEQ);
 1905         tx->timeout = htole16(0);
 1906         tx->ofdm_mask = 0xff;
 1907         tx->cck_mask = 0x0f;
 1908         tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
 1909         tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
 1910         tx->len = htole16(m0->m_pkthdr.len);
 1911 
 1912         if (!ismcast) {
 1913                 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
 1914                     !cap->cap_wmeParams[ac].wmep_noackPolicy)
 1915                         tx->flags |= htole32(WPI_TX_NEED_ACK);
 1916                 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
 1917                         tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
 1918                         tx->rts_ntries = 7;
 1919                 }
 1920         }
 1921         /* pick a rate */
 1922         tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
 1923         if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
 1924                 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
 1925                 /* tell h/w to set timestamp in probe responses */
 1926                 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
 1927                         tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
 1928                 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
 1929                     subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
 1930                         tx->timeout = htole16(3);
 1931                 else
 1932                         tx->timeout = htole16(2);
 1933                 rate = tp->mgmtrate;
 1934         } else if (ismcast) {
 1935                 rate = tp->mcastrate;
 1936         } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
 1937                 rate = tp->ucastrate;
 1938         } else {
 1939                 (void) ieee80211_ratectl_rate(ni, NULL, 0);
 1940                 rate = ni->ni_txrate;
 1941         }
 1942         tx->rate = wpi_plcp_signal(rate);
 1943 
 1944         /* be very persistant at sending frames out */
 1945 #if 0
 1946         tx->data_ntries = tp->maxretry;
 1947 #else
 1948         tx->data_ntries = 15;           /* XXX way too high */
 1949 #endif
 1950 
 1951         if (ieee80211_radiotap_active_vap(vap)) {
 1952                 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
 1953                 tap->wt_flags = 0;
 1954                 tap->wt_rate = rate;
 1955                 tap->wt_hwqueue = ac;
 1956                 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
 1957                         tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
 1958 
 1959                 ieee80211_radiotap_tx(vap, m0);
 1960         }
 1961 
 1962         /* save and trim IEEE802.11 header */
 1963         m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
 1964         m_adj(m0, hdrlen);
 1965 
 1966         error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
 1967             &nsegs, BUS_DMA_NOWAIT);
 1968         if (error != 0 && error != EFBIG) {
 1969                 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
 1970                     error);
 1971                 m_freem(m0);
 1972                 return error;
 1973         }
 1974         if (error != 0) {
 1975                 /* XXX use m_collapse */
 1976                 mnew = m_defrag(m0, M_NOWAIT);
 1977                 if (mnew == NULL) {
 1978                         device_printf(sc->sc_dev,
 1979                             "could not defragment mbuf\n");
 1980                         m_freem(m0);
 1981                         return ENOBUFS;
 1982                 }
 1983                 m0 = mnew;
 1984 
 1985                 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
 1986                     m0, segs, &nsegs, BUS_DMA_NOWAIT);
 1987                 if (error != 0) {
 1988                         device_printf(sc->sc_dev,
 1989                             "could not map mbuf (error %d)\n", error);
 1990                         m_freem(m0);
 1991                         return error;
 1992                 }
 1993         }
 1994 
 1995         data->m = m0;
 1996         data->ni = ni;
 1997 
 1998         DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
 1999             ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
 2000 
 2001         /* first scatter/gather segment is used by the tx data command */
 2002         desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
 2003             (1 + nsegs) << 24);
 2004         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
 2005             ring->cur * sizeof (struct wpi_tx_cmd));
 2006         desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
 2007         for (i = 1; i <= nsegs; i++) {
 2008                 desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
 2009                 desc->segs[i].len  = htole32(segs[i - 1].ds_len);
 2010         }
 2011 
 2012         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
 2013         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
 2014             BUS_DMASYNC_PREWRITE);
 2015 
 2016         ring->queued++;
 2017 
 2018         /* kick ring */
 2019         ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
 2020         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
 2021 
 2022         return 0;
 2023 }
 2024 
 2025 /**
 2026  * Process data waiting to be sent on the IFNET output queue
 2027  */
 2028 static void
 2029 wpi_start(struct ifnet *ifp)
 2030 {
 2031         struct wpi_softc *sc = ifp->if_softc;
 2032 
 2033         WPI_LOCK(sc);
 2034         wpi_start_locked(ifp);
 2035         WPI_UNLOCK(sc);
 2036 }
 2037 
 2038 static void
 2039 wpi_start_locked(struct ifnet *ifp)
 2040 {
 2041         struct wpi_softc *sc = ifp->if_softc;
 2042         struct ieee80211_node *ni;
 2043         struct mbuf *m;
 2044         int ac;
 2045 
 2046         WPI_LOCK_ASSERT(sc);
 2047 
 2048         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
 2049                 return;
 2050 
 2051         for (;;) {
 2052                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
 2053                 if (m == NULL)
 2054                         break;
 2055                 ac = M_WME_GETAC(m);
 2056                 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
 2057                         /* there is no place left in this ring */
 2058                         IFQ_DRV_PREPEND(&ifp->if_snd, m);
 2059                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 2060                         break;
 2061                 }
 2062                 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
 2063                 if (wpi_tx_data(sc, m, ni, ac) != 0) {
 2064                         ieee80211_free_node(ni);
 2065                         ifp->if_oerrors++;
 2066                         break;
 2067                 }
 2068                 sc->sc_tx_timer = 5;
 2069         }
 2070 }
 2071 
 2072 static int
 2073 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
 2074         const struct ieee80211_bpf_params *params)
 2075 {
 2076         struct ieee80211com *ic = ni->ni_ic;
 2077         struct ifnet *ifp = ic->ic_ifp;
 2078         struct wpi_softc *sc = ifp->if_softc;
 2079 
 2080         /* prevent management frames from being sent if we're not ready */
 2081         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
 2082                 m_freem(m);
 2083                 ieee80211_free_node(ni);
 2084                 return ENETDOWN;
 2085         }
 2086         WPI_LOCK(sc);
 2087 
 2088         /* management frames go into ring 0 */
 2089         if (sc->txq[0].queued > sc->txq[0].count - 8) {
 2090                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 2091                 m_freem(m);
 2092                 WPI_UNLOCK(sc);
 2093                 ieee80211_free_node(ni);
 2094                 return ENOBUFS;         /* XXX */
 2095         }
 2096 
 2097         ifp->if_opackets++;
 2098         if (wpi_tx_data(sc, m, ni, 0) != 0)
 2099                 goto bad;
 2100         sc->sc_tx_timer = 5;
 2101         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
 2102 
 2103         WPI_UNLOCK(sc);
 2104         return 0;
 2105 bad:
 2106         ifp->if_oerrors++;
 2107         WPI_UNLOCK(sc);
 2108         ieee80211_free_node(ni);
 2109         return EIO;             /* XXX */
 2110 }
 2111 
 2112 static int
 2113 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
 2114 {
 2115         struct wpi_softc *sc = ifp->if_softc;
 2116         struct ieee80211com *ic = ifp->if_l2com;
 2117         struct ifreq *ifr = (struct ifreq *) data;
 2118         int error = 0, startall = 0;
 2119 
 2120         switch (cmd) {
 2121         case SIOCSIFFLAGS:
 2122                 WPI_LOCK(sc);
 2123                 if ((ifp->if_flags & IFF_UP)) {
 2124                         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
 2125                                 wpi_init_locked(sc, 0);
 2126                                 startall = 1;
 2127                         }
 2128                 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
 2129                            (sc->flags & WPI_FLAG_HW_RADIO_OFF))
 2130                         wpi_stop_locked(sc);
 2131                 WPI_UNLOCK(sc);
 2132                 if (startall)
 2133                         ieee80211_start_all(ic);
 2134                 break;
 2135         case SIOCGIFMEDIA:
 2136                 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
 2137                 break;
 2138         case SIOCGIFADDR:
 2139                 error = ether_ioctl(ifp, cmd, data);
 2140                 break;
 2141         default:
 2142                 error = EINVAL;
 2143                 break;
 2144         }
 2145         return error;
 2146 }
 2147 
 2148 /*
 2149  * Extract various information from EEPROM.
 2150  */
 2151 static void
 2152 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
 2153 {
 2154         int i;
 2155 
 2156         /* read the hardware capabilities, revision and SKU type */
 2157         wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
 2158         wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
 2159         wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
 2160 
 2161         /* read the regulatory domain */
 2162         wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
 2163 
 2164         /* read in the hw MAC address */
 2165         wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
 2166 
 2167         /* read the list of authorized channels */
 2168         for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
 2169                 wpi_read_eeprom_channels(sc,i);
 2170 
 2171         /* read the power level calibration info for each group */
 2172         for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
 2173                 wpi_read_eeprom_group(sc,i);
 2174 }
 2175 
 2176 /*
 2177  * Send a command to the firmware.
 2178  */
 2179 static int
 2180 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
 2181 {
 2182         struct wpi_tx_ring *ring = &sc->cmdq;
 2183         struct wpi_tx_desc *desc;
 2184         struct wpi_tx_cmd *cmd;
 2185 
 2186 #ifdef WPI_DEBUG
 2187         if (!async) {
 2188                 WPI_LOCK_ASSERT(sc);
 2189         }
 2190 #endif
 2191 
 2192         DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
 2193                     async));
 2194 
 2195         if (sc->flags & WPI_FLAG_BUSY) {
 2196                 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
 2197                     __func__, code);
 2198                 return EAGAIN;
 2199         }
 2200         sc->flags|= WPI_FLAG_BUSY;
 2201 
 2202         KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
 2203             code, size));
 2204 
 2205         desc = &ring->desc[ring->cur];
 2206         cmd = &ring->cmd[ring->cur];
 2207 
 2208         cmd->code = code;
 2209         cmd->flags = 0;
 2210         cmd->qid = ring->qid;
 2211         cmd->idx = ring->cur;
 2212         memcpy(cmd->data, buf, size);
 2213 
 2214         desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
 2215         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
 2216                 ring->cur * sizeof (struct wpi_tx_cmd));
 2217         desc->segs[0].len  = htole32(4 + size);
 2218 
 2219         /* kick cmd ring */
 2220         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
 2221         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
 2222 
 2223         if (async) {
 2224                 sc->flags &= ~ WPI_FLAG_BUSY;
 2225                 return 0;
 2226         }
 2227 
 2228         return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
 2229 }
 2230 
 2231 static int
 2232 wpi_wme_update(struct ieee80211com *ic)
 2233 {
 2234 #define WPI_EXP2(v)     htole16((1 << (v)) - 1)
 2235 #define WPI_USEC(v)     htole16(IEEE80211_TXOP_TO_US(v))
 2236         struct wpi_softc *sc = ic->ic_ifp->if_softc;
 2237         const struct wmeParams *wmep;
 2238         struct wpi_wme_setup wme;
 2239         int ac;
 2240 
 2241         /* don't override default WME values if WME is not actually enabled */
 2242         if (!(ic->ic_flags & IEEE80211_F_WME))
 2243                 return 0;
 2244 
 2245         wme.flags = 0;
 2246         for (ac = 0; ac < WME_NUM_AC; ac++) {
 2247                 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
 2248                 wme.ac[ac].aifsn = wmep->wmep_aifsn;
 2249                 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
 2250                 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
 2251                 wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
 2252 
 2253                 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
 2254                     "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
 2255                     wme.ac[ac].cwmax, wme.ac[ac].txop));
 2256         }
 2257         return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
 2258 #undef WPI_USEC
 2259 #undef WPI_EXP2
 2260 }
 2261 
 2262 /*
 2263  * Configure h/w multi-rate retries.
 2264  */
 2265 static int
 2266 wpi_mrr_setup(struct wpi_softc *sc)
 2267 {
 2268         struct ifnet *ifp = sc->sc_ifp;
 2269         struct ieee80211com *ic = ifp->if_l2com;
 2270         struct wpi_mrr_setup mrr;
 2271         int i, error;
 2272 
 2273         memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
 2274 
 2275         /* CCK rates (not used with 802.11a) */
 2276         for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
 2277                 mrr.rates[i].flags = 0;
 2278                 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
 2279                 /* fallback to the immediate lower CCK rate (if any) */
 2280                 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
 2281                 /* try one time at this rate before falling back to "next" */
 2282                 mrr.rates[i].ntries = 1;
 2283         }
 2284 
 2285         /* OFDM rates (not used with 802.11b) */
 2286         for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
 2287                 mrr.rates[i].flags = 0;
 2288                 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
 2289                 /* fallback to the immediate lower OFDM rate (if any) */
 2290                 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
 2291                 mrr.rates[i].next = (i == WPI_OFDM6) ?
 2292                     ((ic->ic_curmode == IEEE80211_MODE_11A) ?
 2293                         WPI_OFDM6 : WPI_CCK2) :
 2294                     i - 1;
 2295                 /* try one time at this rate before falling back to "next" */
 2296                 mrr.rates[i].ntries = 1;
 2297         }
 2298 
 2299         /* setup MRR for control frames */
 2300         mrr.which = WPI_MRR_CTL;
 2301         error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
 2302         if (error != 0) {
 2303                 device_printf(sc->sc_dev,
 2304                     "could not setup MRR for control frames\n");
 2305                 return error;
 2306         }
 2307 
 2308         /* setup MRR for data frames */
 2309         mrr.which = WPI_MRR_DATA;
 2310         error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
 2311         if (error != 0) {
 2312                 device_printf(sc->sc_dev,
 2313                     "could not setup MRR for data frames\n");
 2314                 return error;
 2315         }
 2316 
 2317         return 0;
 2318 }
 2319 
 2320 static void
 2321 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
 2322 {
 2323         struct wpi_cmd_led led;
 2324 
 2325         led.which = which;
 2326         led.unit = htole32(100000);     /* on/off in unit of 100ms */
 2327         led.off = off;
 2328         led.on = on;
 2329 
 2330         (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
 2331 }
 2332 
 2333 static void
 2334 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
 2335 {
 2336         struct wpi_cmd_tsf tsf;
 2337         uint64_t val, mod;
 2338 
 2339         memset(&tsf, 0, sizeof tsf);
 2340         memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
 2341         tsf.bintval = htole16(ni->ni_intval);
 2342         tsf.lintval = htole16(10);
 2343 
 2344         /* compute remaining time until next beacon */
 2345         val = (uint64_t)ni->ni_intval  * 1024;  /* msec -> usec */
 2346         mod = le64toh(tsf.tstamp) % val;
 2347         tsf.binitval = htole32((uint32_t)(val - mod));
 2348 
 2349         if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
 2350                 device_printf(sc->sc_dev, "could not enable TSF\n");
 2351 }
 2352 
 2353 #if 0
 2354 /*
 2355  * Build a beacon frame that the firmware will broadcast periodically in
 2356  * IBSS or HostAP modes.
 2357  */
 2358 static int
 2359 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
 2360 {
 2361         struct ifnet *ifp = sc->sc_ifp;
 2362         struct ieee80211com *ic = ifp->if_l2com;
 2363         struct wpi_tx_ring *ring = &sc->cmdq;
 2364         struct wpi_tx_desc *desc;
 2365         struct wpi_tx_data *data;
 2366         struct wpi_tx_cmd *cmd;
 2367         struct wpi_cmd_beacon *bcn;
 2368         struct ieee80211_beacon_offsets bo;
 2369         struct mbuf *m0;
 2370         bus_addr_t physaddr;
 2371         int error;
 2372 
 2373         desc = &ring->desc[ring->cur];
 2374         data = &ring->data[ring->cur];
 2375 
 2376         m0 = ieee80211_beacon_alloc(ic, ni, &bo);
 2377         if (m0 == NULL) {
 2378                 device_printf(sc->sc_dev, "could not allocate beacon frame\n");
 2379                 return ENOMEM;
 2380         }
 2381 
 2382         cmd = &ring->cmd[ring->cur];
 2383         cmd->code = WPI_CMD_SET_BEACON;
 2384         cmd->flags = 0;
 2385         cmd->qid = ring->qid;
 2386         cmd->idx = ring->cur;
 2387 
 2388         bcn = (struct wpi_cmd_beacon *)cmd->data;
 2389         memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
 2390         bcn->id = WPI_ID_BROADCAST;
 2391         bcn->ofdm_mask = 0xff;
 2392         bcn->cck_mask = 0x0f;
 2393         bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
 2394         bcn->len = htole16(m0->m_pkthdr.len);
 2395         bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
 2396                 wpi_plcp_signal(12) : wpi_plcp_signal(2);
 2397         bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
 2398 
 2399         /* save and trim IEEE802.11 header */
 2400         m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
 2401         m_adj(m0, sizeof (struct ieee80211_frame));
 2402 
 2403         /* assume beacon frame is contiguous */
 2404         error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
 2405             m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
 2406         if (error != 0) {
 2407                 device_printf(sc->sc_dev, "could not map beacon\n");
 2408                 m_freem(m0);
 2409                 return error;
 2410         }
 2411 
 2412         data->m = m0;
 2413 
 2414         /* first scatter/gather segment is used by the beacon command */
 2415         desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
 2416         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
 2417                 ring->cur * sizeof (struct wpi_tx_cmd));
 2418         desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
 2419         desc->segs[1].addr = htole32(physaddr);
 2420         desc->segs[1].len  = htole32(m0->m_pkthdr.len);
 2421 
 2422         /* kick cmd ring */
 2423         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
 2424         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
 2425 
 2426         return 0;
 2427 }
 2428 #endif
 2429 
 2430 static int
 2431 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
 2432 {
 2433         struct ieee80211com *ic = vap->iv_ic;
 2434         struct ieee80211_node *ni = vap->iv_bss;
 2435         struct wpi_node_info node;
 2436         int error;
 2437 
 2438 
 2439         /* update adapter's configuration */
 2440         sc->config.associd = 0;
 2441         sc->config.filter &= ~htole32(WPI_FILTER_BSS);
 2442         IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
 2443         sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
 2444         if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
 2445                 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
 2446                     WPI_CONFIG_24GHZ);
 2447         } else {
 2448                 sc->config.flags &= ~htole32(WPI_CONFIG_AUTO |
 2449                     WPI_CONFIG_24GHZ);
 2450         }
 2451         if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
 2452                 sc->config.cck_mask  = 0;
 2453                 sc->config.ofdm_mask = 0x15;
 2454         } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
 2455                 sc->config.cck_mask  = 0x03;
 2456                 sc->config.ofdm_mask = 0;
 2457         } else {
 2458                 /* XXX assume 802.11b/g */
 2459                 sc->config.cck_mask  = 0x0f;
 2460                 sc->config.ofdm_mask = 0x15;
 2461         }
 2462 
 2463         DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
 2464                 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
 2465         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
 2466                 sizeof (struct wpi_config), 1);
 2467         if (error != 0) {
 2468                 device_printf(sc->sc_dev, "could not configure\n");
 2469                 return error;
 2470         }
 2471 
 2472         /* configuration has changed, set Tx power accordingly */
 2473         if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
 2474                 device_printf(sc->sc_dev, "could not set Tx power\n");
 2475                 return error;
 2476         }
 2477 
 2478         /* add default node */
 2479         memset(&node, 0, sizeof node);
 2480         IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
 2481         node.id = WPI_ID_BSS;
 2482         node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
 2483             wpi_plcp_signal(12) : wpi_plcp_signal(2);
 2484         node.action = htole32(WPI_ACTION_SET_RATE);
 2485         node.antenna = WPI_ANTENNA_BOTH;
 2486         error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
 2487         if (error != 0)
 2488                 device_printf(sc->sc_dev, "could not add BSS node\n");
 2489 
 2490         return (error);
 2491 }
 2492 
 2493 static int
 2494 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
 2495 {
 2496         struct ieee80211com *ic = vap->iv_ic;
 2497         struct ieee80211_node *ni = vap->iv_bss;
 2498         int error;
 2499 
 2500         if (vap->iv_opmode == IEEE80211_M_MONITOR) {
 2501                 /* link LED blinks while monitoring */
 2502                 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
 2503                 return 0;
 2504         }
 2505 
 2506         wpi_enable_tsf(sc, ni);
 2507 
 2508         /* update adapter's configuration */
 2509         sc->config.associd = htole16(ni->ni_associd & ~0xc000);
 2510         /* short preamble/slot time are negotiated when associating */
 2511         sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
 2512             WPI_CONFIG_SHSLOT);
 2513         if (ic->ic_flags & IEEE80211_F_SHSLOT)
 2514                 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
 2515         if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
 2516                 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
 2517         sc->config.filter |= htole32(WPI_FILTER_BSS);
 2518 
 2519         /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
 2520 
 2521         DPRINTF(("config chan %d flags %x\n", sc->config.chan,
 2522                     sc->config.flags));
 2523         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
 2524                     wpi_config), 1);
 2525         if (error != 0) {
 2526                 device_printf(sc->sc_dev, "could not update configuration\n");
 2527                 return error;
 2528         }
 2529 
 2530         error = wpi_set_txpower(sc, ni->ni_chan, 1);
 2531         if (error != 0) {
 2532                 device_printf(sc->sc_dev, "could set txpower\n");
 2533                 return error;
 2534         }
 2535 
 2536         /* link LED always on while associated */
 2537         wpi_set_led(sc, WPI_LED_LINK, 0, 1);
 2538 
 2539         /* start automatic rate control timer */
 2540         callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
 2541 
 2542         return (error);
 2543 }
 2544 
 2545 /*
 2546  * Send a scan request to the firmware.  Since this command is huge, we map it
 2547  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
 2548  * much of this code is similar to that in wpi_cmd but because we must manually
 2549  * construct the probe & channels, we duplicate what's needed here. XXX In the
 2550  * future, this function should be modified to use wpi_cmd to help cleanup the
 2551  * code base.
 2552  */
 2553 static int
 2554 wpi_scan(struct wpi_softc *sc)
 2555 {
 2556         struct ifnet *ifp = sc->sc_ifp;
 2557         struct ieee80211com *ic = ifp->if_l2com;
 2558         struct ieee80211_scan_state *ss = ic->ic_scan;
 2559         struct wpi_tx_ring *ring = &sc->cmdq;
 2560         struct wpi_tx_desc *desc;
 2561         struct wpi_tx_data *data;
 2562         struct wpi_tx_cmd *cmd;
 2563         struct wpi_scan_hdr *hdr;
 2564         struct wpi_scan_chan *chan;
 2565         struct ieee80211_frame *wh;
 2566         struct ieee80211_rateset *rs;
 2567         struct ieee80211_channel *c;
 2568         enum ieee80211_phymode mode;
 2569         uint8_t *frm;
 2570         int nrates, pktlen, error, i, nssid;
 2571         bus_addr_t physaddr;
 2572 
 2573         desc = &ring->desc[ring->cur];
 2574         data = &ring->data[ring->cur];
 2575 
 2576         data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
 2577         if (data->m == NULL) {
 2578                 device_printf(sc->sc_dev,
 2579                     "could not allocate mbuf for scan command\n");
 2580                 return ENOMEM;
 2581         }
 2582 
 2583         cmd = mtod(data->m, struct wpi_tx_cmd *);
 2584         cmd->code = WPI_CMD_SCAN;
 2585         cmd->flags = 0;
 2586         cmd->qid = ring->qid;
 2587         cmd->idx = ring->cur;
 2588 
 2589         hdr = (struct wpi_scan_hdr *)cmd->data;
 2590         memset(hdr, 0, sizeof(struct wpi_scan_hdr));
 2591 
 2592         /*
 2593          * Move to the next channel if no packets are received within 5 msecs
 2594          * after sending the probe request (this helps to reduce the duration
 2595          * of active scans).
 2596          */
 2597         hdr->quiet = htole16(5);
 2598         hdr->threshold = htole16(1);
 2599 
 2600         if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
 2601                 /* send probe requests at 6Mbps */
 2602                 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
 2603 
 2604                 /* Enable crc checking */
 2605                 hdr->promotion = htole16(1);
 2606         } else {
 2607                 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
 2608                 /* send probe requests at 1Mbps */
 2609                 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
 2610         }
 2611         hdr->tx.id = WPI_ID_BROADCAST;
 2612         hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
 2613         hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
 2614 
 2615         memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
 2616         nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
 2617         for (i = 0; i < nssid; i++) {
 2618                 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
 2619                 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
 2620                 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
 2621                     hdr->scan_essids[i].esslen);
 2622 #ifdef WPI_DEBUG
 2623                 if (wpi_debug & WPI_DEBUG_SCANNING) {
 2624                         printf("Scanning Essid: ");
 2625                         ieee80211_print_essid(hdr->scan_essids[i].essid,
 2626                             hdr->scan_essids[i].esslen);
 2627                         printf("\n");
 2628                 }
 2629 #endif
 2630         }
 2631 
 2632         /*
 2633          * Build a probe request frame.  Most of the following code is a
 2634          * copy & paste of what is done in net80211.
 2635          */
 2636         wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
 2637         wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
 2638                 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
 2639         wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
 2640         IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
 2641         IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
 2642         IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
 2643         *(u_int16_t *)&wh->i_dur[0] = 0;        /* filled by h/w */
 2644         *(u_int16_t *)&wh->i_seq[0] = 0;        /* filled by h/w */
 2645 
 2646         frm = (uint8_t *)(wh + 1);
 2647 
 2648         /* add essid IE, the hardware will fill this in for us */
 2649         *frm++ = IEEE80211_ELEMID_SSID;
 2650         *frm++ = 0;
 2651 
 2652         mode = ieee80211_chan2mode(ic->ic_curchan);
 2653         rs = &ic->ic_sup_rates[mode];
 2654 
 2655         /* add supported rates IE */
 2656         *frm++ = IEEE80211_ELEMID_RATES;
 2657         nrates = rs->rs_nrates;
 2658         if (nrates > IEEE80211_RATE_SIZE)
 2659                 nrates = IEEE80211_RATE_SIZE;
 2660         *frm++ = nrates;
 2661         memcpy(frm, rs->rs_rates, nrates);
 2662         frm += nrates;
 2663 
 2664         /* add supported xrates IE */
 2665         if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
 2666                 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
 2667                 *frm++ = IEEE80211_ELEMID_XRATES;
 2668                 *frm++ = nrates;
 2669                 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
 2670                 frm += nrates;
 2671         }
 2672 
 2673         /* setup length of probe request */
 2674         hdr->tx.len = htole16(frm - (uint8_t *)wh);
 2675 
 2676         /*
 2677          * Construct information about the channel that we
 2678          * want to scan. The firmware expects this to be directly
 2679          * after the scan probe request
 2680          */
 2681         c = ic->ic_curchan;
 2682         chan = (struct wpi_scan_chan *)frm;
 2683         chan->chan = ieee80211_chan2ieee(ic, c);
 2684         chan->flags = 0;
 2685         if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
 2686                 chan->flags |= WPI_CHAN_ACTIVE;
 2687                 if (nssid != 0)
 2688                         chan->flags |= WPI_CHAN_DIRECT;
 2689         }
 2690         chan->gain_dsp = 0x6e; /* Default level */
 2691         if (IEEE80211_IS_CHAN_5GHZ(c)) {
 2692                 chan->active = htole16(10);
 2693                 chan->passive = htole16(ss->ss_maxdwell);
 2694                 chan->gain_radio = 0x3b;
 2695         } else {
 2696                 chan->active = htole16(20);
 2697                 chan->passive = htole16(ss->ss_maxdwell);
 2698                 chan->gain_radio = 0x28;
 2699         }
 2700 
 2701         DPRINTFN(WPI_DEBUG_SCANNING,
 2702             ("Scanning %u Passive: %d\n",
 2703              chan->chan,
 2704              c->ic_flags & IEEE80211_CHAN_PASSIVE));
 2705 
 2706         hdr->nchan++;
 2707         chan++;
 2708 
 2709         frm += sizeof (struct wpi_scan_chan);
 2710 #if 0
 2711         // XXX All Channels....
 2712         for (c  = &ic->ic_channels[1];
 2713              c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
 2714                 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
 2715                         continue;
 2716 
 2717                 chan->chan = ieee80211_chan2ieee(ic, c);
 2718                 chan->flags = 0;
 2719                 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
 2720                     chan->flags |= WPI_CHAN_ACTIVE;
 2721                     if (ic->ic_des_ssid[0].len != 0)
 2722                         chan->flags |= WPI_CHAN_DIRECT;
 2723                 }
 2724                 chan->gain_dsp = 0x6e; /* Default level */
 2725                 if (IEEE80211_IS_CHAN_5GHZ(c)) {
 2726                         chan->active = htole16(10);
 2727                         chan->passive = htole16(110);
 2728                         chan->gain_radio = 0x3b;
 2729                 } else {
 2730                         chan->active = htole16(20);
 2731                         chan->passive = htole16(120);
 2732                         chan->gain_radio = 0x28;
 2733                 }
 2734 
 2735                 DPRINTFN(WPI_DEBUG_SCANNING,
 2736                          ("Scanning %u Passive: %d\n",
 2737                           chan->chan,
 2738                           c->ic_flags & IEEE80211_CHAN_PASSIVE));
 2739 
 2740                 hdr->nchan++;
 2741                 chan++;
 2742 
 2743                 frm += sizeof (struct wpi_scan_chan);
 2744         }
 2745 #endif
 2746 
 2747         hdr->len = htole16(frm - (uint8_t *)hdr);
 2748         pktlen = frm - (uint8_t *)cmd;
 2749 
 2750         error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
 2751             wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
 2752         if (error != 0) {
 2753                 device_printf(sc->sc_dev, "could not map scan command\n");
 2754                 m_freem(data->m);
 2755                 data->m = NULL;
 2756                 return error;
 2757         }
 2758 
 2759         desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
 2760         desc->segs[0].addr = htole32(physaddr);
 2761         desc->segs[0].len  = htole32(pktlen);
 2762 
 2763         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
 2764             BUS_DMASYNC_PREWRITE);
 2765         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
 2766 
 2767         /* kick cmd ring */
 2768         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
 2769         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
 2770 
 2771         sc->sc_scan_timer = 5;
 2772         return 0;       /* will be notified async. of failure/success */
 2773 }
 2774 
 2775 /**
 2776  * Configure the card to listen to a particular channel, this transisions the
 2777  * card in to being able to receive frames from remote devices.
 2778  */
 2779 static int
 2780 wpi_config(struct wpi_softc *sc)
 2781 {
 2782         struct ifnet *ifp = sc->sc_ifp;
 2783         struct ieee80211com *ic = ifp->if_l2com;
 2784         struct wpi_power power;
 2785         struct wpi_bluetooth bluetooth;
 2786         struct wpi_node_info node;
 2787         int error;
 2788 
 2789         /* set power mode */
 2790         memset(&power, 0, sizeof power);
 2791         power.flags = htole32(WPI_POWER_CAM|0x8);
 2792         error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
 2793         if (error != 0) {
 2794                 device_printf(sc->sc_dev, "could not set power mode\n");
 2795                 return error;
 2796         }
 2797 
 2798         /* configure bluetooth coexistence */
 2799         memset(&bluetooth, 0, sizeof bluetooth);
 2800         bluetooth.flags = 3;
 2801         bluetooth.lead = 0xaa;
 2802         bluetooth.kill = 1;
 2803         error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
 2804             0);
 2805         if (error != 0) {
 2806                 device_printf(sc->sc_dev,
 2807                     "could not configure bluetooth coexistence\n");
 2808                 return error;
 2809         }
 2810 
 2811         /* configure adapter */
 2812         memset(&sc->config, 0, sizeof (struct wpi_config));
 2813         IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
 2814         /*set default channel*/
 2815         sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
 2816         sc->config.flags = htole32(WPI_CONFIG_TSF);
 2817         if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
 2818                 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
 2819                     WPI_CONFIG_24GHZ);
 2820         }
 2821         sc->config.filter = 0;
 2822         switch (ic->ic_opmode) {
 2823         case IEEE80211_M_STA:
 2824         case IEEE80211_M_WDS:   /* No know setup, use STA for now */
 2825                 sc->config.mode = WPI_MODE_STA;
 2826                 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
 2827                 break;
 2828         case IEEE80211_M_IBSS:
 2829         case IEEE80211_M_AHDEMO:
 2830                 sc->config.mode = WPI_MODE_IBSS;
 2831                 sc->config.filter |= htole32(WPI_FILTER_BEACON |
 2832                                              WPI_FILTER_MULTICAST);
 2833                 break;
 2834         case IEEE80211_M_HOSTAP:
 2835                 sc->config.mode = WPI_MODE_HOSTAP;
 2836                 break;
 2837         case IEEE80211_M_MONITOR:
 2838                 sc->config.mode = WPI_MODE_MONITOR;
 2839                 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
 2840                         WPI_FILTER_CTL | WPI_FILTER_PROMISC);
 2841                 break;
 2842         default:
 2843                 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
 2844                 return EINVAL;
 2845         }
 2846         sc->config.cck_mask  = 0x0f;    /* not yet negotiated */
 2847         sc->config.ofdm_mask = 0xff;    /* not yet negotiated */
 2848         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
 2849                 sizeof (struct wpi_config), 0);
 2850         if (error != 0) {
 2851                 device_printf(sc->sc_dev, "configure command failed\n");
 2852                 return error;
 2853         }
 2854 
 2855         /* configuration has changed, set Tx power accordingly */
 2856         if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
 2857             device_printf(sc->sc_dev, "could not set Tx power\n");
 2858             return error;
 2859         }
 2860 
 2861         /* add broadcast node */
 2862         memset(&node, 0, sizeof node);
 2863         IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
 2864         node.id = WPI_ID_BROADCAST;
 2865         node.rate = wpi_plcp_signal(2);
 2866         error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
 2867         if (error != 0) {
 2868                 device_printf(sc->sc_dev, "could not add broadcast node\n");
 2869                 return error;
 2870         }
 2871 
 2872         /* Setup rate scalling */
 2873         error = wpi_mrr_setup(sc);
 2874         if (error != 0) {
 2875                 device_printf(sc->sc_dev, "could not setup MRR\n");
 2876                 return error;
 2877         }
 2878 
 2879         return 0;
 2880 }
 2881 
 2882 static void
 2883 wpi_stop_master(struct wpi_softc *sc)
 2884 {
 2885         uint32_t tmp;
 2886         int ntries;
 2887 
 2888         DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
 2889 
 2890         tmp = WPI_READ(sc, WPI_RESET);
 2891         WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
 2892 
 2893         tmp = WPI_READ(sc, WPI_GPIO_CTL);
 2894         if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
 2895                 return; /* already asleep */
 2896 
 2897         for (ntries = 0; ntries < 100; ntries++) {
 2898                 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
 2899                         break;
 2900                 DELAY(10);
 2901         }
 2902         if (ntries == 100) {
 2903                 device_printf(sc->sc_dev, "timeout waiting for master\n");
 2904         }
 2905 }
 2906 
 2907 static int
 2908 wpi_power_up(struct wpi_softc *sc)
 2909 {
 2910         uint32_t tmp;
 2911         int ntries;
 2912 
 2913         wpi_mem_lock(sc);
 2914         tmp = wpi_mem_read(sc, WPI_MEM_POWER);
 2915         wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
 2916         wpi_mem_unlock(sc);
 2917 
 2918         for (ntries = 0; ntries < 5000; ntries++) {
 2919                 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
 2920                         break;
 2921                 DELAY(10);
 2922         }
 2923         if (ntries == 5000) {
 2924                 device_printf(sc->sc_dev,
 2925                     "timeout waiting for NIC to power up\n");
 2926                 return ETIMEDOUT;
 2927         }
 2928         return 0;
 2929 }
 2930 
 2931 static int
 2932 wpi_reset(struct wpi_softc *sc)
 2933 {
 2934         uint32_t tmp;
 2935         int ntries;
 2936 
 2937         DPRINTFN(WPI_DEBUG_HW,
 2938             ("Resetting the card - clearing any uploaded firmware\n"));
 2939 
 2940         /* clear any pending interrupts */
 2941         WPI_WRITE(sc, WPI_INTR, 0xffffffff);
 2942 
 2943         tmp = WPI_READ(sc, WPI_PLL_CTL);
 2944         WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
 2945 
 2946         tmp = WPI_READ(sc, WPI_CHICKEN);
 2947         WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
 2948 
 2949         tmp = WPI_READ(sc, WPI_GPIO_CTL);
 2950         WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
 2951 
 2952         /* wait for clock stabilization */
 2953         for (ntries = 0; ntries < 25000; ntries++) {
 2954                 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
 2955                         break;
 2956                 DELAY(10);
 2957         }
 2958         if (ntries == 25000) {
 2959                 device_printf(sc->sc_dev,
 2960                     "timeout waiting for clock stabilization\n");
 2961                 return ETIMEDOUT;
 2962         }
 2963 
 2964         /* initialize EEPROM */
 2965         tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
 2966 
 2967         if ((tmp & WPI_EEPROM_VERSION) == 0) {
 2968                 device_printf(sc->sc_dev, "EEPROM not found\n");
 2969                 return EIO;
 2970         }
 2971         WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
 2972 
 2973         return 0;
 2974 }
 2975 
 2976 static void
 2977 wpi_hw_config(struct wpi_softc *sc)
 2978 {
 2979         uint32_t rev, hw;
 2980 
 2981         /* voodoo from the Linux "driver".. */
 2982         hw = WPI_READ(sc, WPI_HWCONFIG);
 2983 
 2984         rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
 2985         if ((rev & 0xc0) == 0x40)
 2986                 hw |= WPI_HW_ALM_MB;
 2987         else if (!(rev & 0x80))
 2988                 hw |= WPI_HW_ALM_MM;
 2989 
 2990         if (sc->cap == 0x80)
 2991                 hw |= WPI_HW_SKU_MRC;
 2992 
 2993         hw &= ~WPI_HW_REV_D;
 2994         if ((le16toh(sc->rev) & 0xf0) == 0xd0)
 2995                 hw |= WPI_HW_REV_D;
 2996 
 2997         if (sc->type > 1)
 2998                 hw |= WPI_HW_TYPE_B;
 2999 
 3000         WPI_WRITE(sc, WPI_HWCONFIG, hw);
 3001 }
 3002 
 3003 static void
 3004 wpi_rfkill_resume(struct wpi_softc *sc)
 3005 {
 3006         struct ifnet *ifp = sc->sc_ifp;
 3007         struct ieee80211com *ic = ifp->if_l2com;
 3008         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 3009         int ntries;
 3010 
 3011         /* enable firmware again */
 3012         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
 3013         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
 3014 
 3015         /* wait for thermal sensors to calibrate */
 3016         for (ntries = 0; ntries < 1000; ntries++) {
 3017                 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
 3018                         break;
 3019                 DELAY(10);
 3020         }
 3021 
 3022         if (ntries == 1000) {
 3023                 device_printf(sc->sc_dev,
 3024                     "timeout waiting for thermal calibration\n");
 3025                 return;
 3026         }
 3027         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
 3028 
 3029         if (wpi_config(sc) != 0) {
 3030                 device_printf(sc->sc_dev, "device config failed\n");
 3031                 return;
 3032         }
 3033 
 3034         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 3035         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 3036         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
 3037 
 3038         if (vap != NULL) {
 3039                 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
 3040                         if (vap->iv_opmode != IEEE80211_M_MONITOR) {
 3041                                 ieee80211_beacon_miss(ic);
 3042                                 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
 3043                         } else
 3044                                 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
 3045                 } else {
 3046                         ieee80211_scan_next(vap);
 3047                         wpi_set_led(sc, WPI_LED_LINK, 20, 2);
 3048                 }
 3049         }
 3050 
 3051         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
 3052 }
 3053 
 3054 static void
 3055 wpi_init_locked(struct wpi_softc *sc, int force)
 3056 {
 3057         struct ifnet *ifp = sc->sc_ifp;
 3058         uint32_t tmp;
 3059         int ntries, qid;
 3060 
 3061         wpi_stop_locked(sc);
 3062         (void)wpi_reset(sc);
 3063 
 3064         wpi_mem_lock(sc);
 3065         wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
 3066         DELAY(20);
 3067         tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
 3068         wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
 3069         wpi_mem_unlock(sc);
 3070 
 3071         (void)wpi_power_up(sc);
 3072         wpi_hw_config(sc);
 3073 
 3074         /* init Rx ring */
 3075         wpi_mem_lock(sc);
 3076         WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
 3077         WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
 3078             offsetof(struct wpi_shared, next));
 3079         WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
 3080         WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
 3081         wpi_mem_unlock(sc);
 3082 
 3083         /* init Tx rings */
 3084         wpi_mem_lock(sc);
 3085         wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
 3086         wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
 3087         wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
 3088         wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
 3089         wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
 3090         wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
 3091         wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
 3092 
 3093         WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
 3094         WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
 3095 
 3096         for (qid = 0; qid < 6; qid++) {
 3097                 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
 3098                 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
 3099                 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
 3100         }
 3101         wpi_mem_unlock(sc);
 3102 
 3103         /* clear "radio off" and "disable command" bits (reversed logic) */
 3104         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
 3105         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
 3106         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
 3107 
 3108         /* clear any pending interrupts */
 3109         WPI_WRITE(sc, WPI_INTR, 0xffffffff);
 3110 
 3111         /* enable interrupts */
 3112         WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
 3113 
 3114         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
 3115         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
 3116 
 3117         if ((wpi_load_firmware(sc)) != 0) {
 3118             device_printf(sc->sc_dev,
 3119                 "A problem occurred loading the firmware to the driver\n");
 3120             return;
 3121         }
 3122 
 3123         /* At this point the firmware is up and running. If the hardware
 3124          * RF switch is turned off thermal calibration will fail, though
 3125          * the card is still happy to continue to accept commands, catch
 3126          * this case and schedule a task to watch for it to be turned on.
 3127          */
 3128         wpi_mem_lock(sc);
 3129         tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
 3130         wpi_mem_unlock(sc);
 3131 
 3132         if (!(tmp & 0x1)) {
 3133                 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
 3134                 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
 3135                 goto out;
 3136         }
 3137 
 3138         /* wait for thermal sensors to calibrate */
 3139         for (ntries = 0; ntries < 1000; ntries++) {
 3140                 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
 3141                         break;
 3142                 DELAY(10);
 3143         }
 3144 
 3145         if (ntries == 1000) {
 3146                 device_printf(sc->sc_dev,
 3147                     "timeout waiting for thermal sensors calibration\n");
 3148                 return;
 3149         }
 3150         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
 3151 
 3152         if (wpi_config(sc) != 0) {
 3153                 device_printf(sc->sc_dev, "device config failed\n");
 3154                 return;
 3155         }
 3156 
 3157         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 3158         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 3159 out:
 3160         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
 3161 }
 3162 
 3163 static void
 3164 wpi_init(void *arg)
 3165 {
 3166         struct wpi_softc *sc = arg;
 3167         struct ifnet *ifp = sc->sc_ifp;
 3168         struct ieee80211com *ic = ifp->if_l2com;
 3169 
 3170         WPI_LOCK(sc);
 3171         wpi_init_locked(sc, 0);
 3172         WPI_UNLOCK(sc);
 3173 
 3174         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 3175                 ieee80211_start_all(ic);                /* start all vaps */
 3176 }
 3177 
 3178 static void
 3179 wpi_stop_locked(struct wpi_softc *sc)
 3180 {
 3181         struct ifnet *ifp = sc->sc_ifp;
 3182         uint32_t tmp;
 3183         int ac;
 3184 
 3185         sc->sc_tx_timer = 0;
 3186         sc->sc_scan_timer = 0;
 3187         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 3188         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
 3189         callout_stop(&sc->watchdog_to);
 3190         callout_stop(&sc->calib_to);
 3191 
 3192 
 3193         /* disable interrupts */
 3194         WPI_WRITE(sc, WPI_MASK, 0);
 3195         WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
 3196         WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
 3197         WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
 3198 
 3199         wpi_mem_lock(sc);
 3200         wpi_mem_write(sc, WPI_MEM_MODE, 0);
 3201         wpi_mem_unlock(sc);
 3202 
 3203         /* reset all Tx rings */
 3204         for (ac = 0; ac < 4; ac++)
 3205                 wpi_reset_tx_ring(sc, &sc->txq[ac]);
 3206         wpi_reset_tx_ring(sc, &sc->cmdq);
 3207 
 3208         /* reset Rx ring */
 3209         wpi_reset_rx_ring(sc, &sc->rxq);
 3210 
 3211         wpi_mem_lock(sc);
 3212         wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
 3213         wpi_mem_unlock(sc);
 3214 
 3215         DELAY(5);
 3216 
 3217         wpi_stop_master(sc);
 3218 
 3219         tmp = WPI_READ(sc, WPI_RESET);
 3220         WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
 3221         sc->flags &= ~WPI_FLAG_BUSY;
 3222 }
 3223 
 3224 static void
 3225 wpi_stop(struct wpi_softc *sc)
 3226 {
 3227         WPI_LOCK(sc);
 3228         wpi_stop_locked(sc);
 3229         WPI_UNLOCK(sc);
 3230 }
 3231 
 3232 static void
 3233 wpi_calib_timeout(void *arg)
 3234 {
 3235         struct wpi_softc *sc = arg;
 3236         struct ifnet *ifp = sc->sc_ifp;
 3237         struct ieee80211com *ic = ifp->if_l2com;
 3238         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 3239         int temp;
 3240 
 3241         if (vap->iv_state != IEEE80211_S_RUN)
 3242                 return;
 3243 
 3244         /* update sensor data */
 3245         temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
 3246         DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
 3247 
 3248         wpi_power_calibration(sc, temp);
 3249 
 3250         callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
 3251 }
 3252 
 3253 /*
 3254  * This function is called periodically (every 60 seconds) to adjust output
 3255  * power to temperature changes.
 3256  */
 3257 static void
 3258 wpi_power_calibration(struct wpi_softc *sc, int temp)
 3259 {
 3260         struct ifnet *ifp = sc->sc_ifp;
 3261         struct ieee80211com *ic = ifp->if_l2com;
 3262         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 3263 
 3264         /* sanity-check read value */
 3265         if (temp < -260 || temp > 25) {
 3266                 /* this can't be correct, ignore */
 3267                 DPRINTFN(WPI_DEBUG_TEMP,
 3268                     ("out-of-range temperature reported: %d\n", temp));
 3269                 return;
 3270         }
 3271 
 3272         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
 3273 
 3274         /* adjust Tx power if need be */
 3275         if (abs(temp - sc->temp) <= 6)
 3276                 return;
 3277 
 3278         sc->temp = temp;
 3279 
 3280         if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
 3281                 /* just warn, too bad for the automatic calibration... */
 3282                 device_printf(sc->sc_dev,"could not adjust Tx power\n");
 3283         }
 3284 }
 3285 
 3286 /**
 3287  * Read the eeprom to find out what channels are valid for the given
 3288  * band and update net80211 with what we find.
 3289  */
 3290 static void
 3291 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
 3292 {
 3293         struct ifnet *ifp = sc->sc_ifp;
 3294         struct ieee80211com *ic = ifp->if_l2com;
 3295         const struct wpi_chan_band *band = &wpi_bands[n];
 3296         struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
 3297         struct ieee80211_channel *c;
 3298         int chan, i, passive;
 3299 
 3300         wpi_read_prom_data(sc, band->addr, channels,
 3301             band->nchan * sizeof (struct wpi_eeprom_chan));
 3302 
 3303         for (i = 0; i < band->nchan; i++) {
 3304                 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
 3305                         DPRINTFN(WPI_DEBUG_HW,
 3306                             ("Channel Not Valid: %d, band %d\n",
 3307                              band->chan[i],n));
 3308                         continue;
 3309                 }
 3310 
 3311                 passive = 0;
 3312                 chan = band->chan[i];
 3313                 c = &ic->ic_channels[ic->ic_nchans++];
 3314 
 3315                 /* is active scan allowed on this channel? */
 3316                 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
 3317                         passive = IEEE80211_CHAN_PASSIVE;
 3318                 }
 3319 
 3320                 if (n == 0) {   /* 2GHz band */
 3321                         c->ic_ieee = chan;
 3322                         c->ic_freq = ieee80211_ieee2mhz(chan,
 3323                             IEEE80211_CHAN_2GHZ);
 3324                         c->ic_flags = IEEE80211_CHAN_B | passive;
 3325 
 3326                         c = &ic->ic_channels[ic->ic_nchans++];
 3327                         c->ic_ieee = chan;
 3328                         c->ic_freq = ieee80211_ieee2mhz(chan,
 3329                             IEEE80211_CHAN_2GHZ);
 3330                         c->ic_flags = IEEE80211_CHAN_G | passive;
 3331 
 3332                 } else {        /* 5GHz band */
 3333                         /*
 3334                          * Some 3945ABG adapters support channels 7, 8, 11
 3335                          * and 12 in the 2GHz *and* 5GHz bands.
 3336                          * Because of limitations in our net80211(9) stack,
 3337                          * we can't support these channels in 5GHz band.
 3338                          * XXX not true; just need to map to proper frequency
 3339                          */
 3340                         if (chan <= 14)
 3341                                 continue;
 3342 
 3343                         c->ic_ieee = chan;
 3344                         c->ic_freq = ieee80211_ieee2mhz(chan,
 3345                             IEEE80211_CHAN_5GHZ);
 3346                         c->ic_flags = IEEE80211_CHAN_A | passive;
 3347                 }
 3348 
 3349                 /* save maximum allowed power for this channel */
 3350                 sc->maxpwr[chan] = channels[i].maxpwr;
 3351 
 3352 #if 0
 3353                 // XXX We can probably use this an get rid of maxpwr - ben 20070617
 3354                 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
 3355                 //ic->ic_channels[chan].ic_minpower...
 3356                 //ic->ic_channels[chan].ic_maxregtxpower...
 3357 #endif
 3358 
 3359                 DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
 3360                     " passive=%d, offset %d\n", chan, c->ic_freq,
 3361                     channels[i].flags, sc->maxpwr[chan],
 3362                     (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
 3363                     ic->ic_nchans));
 3364         }
 3365 }
 3366 
 3367 static void
 3368 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
 3369 {
 3370         struct wpi_power_group *group = &sc->groups[n];
 3371         struct wpi_eeprom_group rgroup;
 3372         int i;
 3373 
 3374         wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
 3375             sizeof rgroup);
 3376 
 3377         /* save power group information */
 3378         group->chan   = rgroup.chan;
 3379         group->maxpwr = rgroup.maxpwr;
 3380         /* temperature at which the samples were taken */
 3381         group->temp   = (int16_t)le16toh(rgroup.temp);
 3382 
 3383         DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
 3384                     group->chan, group->maxpwr, group->temp));
 3385 
 3386         for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
 3387                 group->samples[i].index = rgroup.samples[i].index;
 3388                 group->samples[i].power = rgroup.samples[i].power;
 3389 
 3390                 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
 3391                             group->samples[i].index, group->samples[i].power));
 3392         }
 3393 }
 3394 
 3395 /*
 3396  * Update Tx power to match what is defined for channel `c'.
 3397  */
 3398 static int
 3399 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
 3400 {
 3401         struct ifnet *ifp = sc->sc_ifp;
 3402         struct ieee80211com *ic = ifp->if_l2com;
 3403         struct wpi_power_group *group;
 3404         struct wpi_cmd_txpower txpower;
 3405         u_int chan;
 3406         int i;
 3407 
 3408         /* get channel number */
 3409         chan = ieee80211_chan2ieee(ic, c);
 3410 
 3411         /* find the power group to which this channel belongs */
 3412         if (IEEE80211_IS_CHAN_5GHZ(c)) {
 3413                 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
 3414                         if (chan <= group->chan)
 3415                                 break;
 3416         } else
 3417                 group = &sc->groups[0];
 3418 
 3419         memset(&txpower, 0, sizeof txpower);
 3420         txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
 3421         txpower.channel = htole16(chan);
 3422 
 3423         /* set Tx power for all OFDM and CCK rates */
 3424         for (i = 0; i <= 11 ; i++) {
 3425                 /* retrieve Tx power for this channel/rate combination */
 3426                 int idx = wpi_get_power_index(sc, group, c,
 3427                     wpi_ridx_to_rate[i]);
 3428 
 3429                 txpower.rates[i].rate = wpi_ridx_to_plcp[i];
 3430 
 3431                 if (IEEE80211_IS_CHAN_5GHZ(c)) {
 3432                         txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
 3433                         txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
 3434                 } else {
 3435                         txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
 3436                         txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
 3437                 }
 3438                 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
 3439                             chan, wpi_ridx_to_rate[i], idx));
 3440         }
 3441 
 3442         return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
 3443 }
 3444 
 3445 /*
 3446  * Determine Tx power index for a given channel/rate combination.
 3447  * This takes into account the regulatory information from EEPROM and the
 3448  * current temperature.
 3449  */
 3450 static int
 3451 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
 3452     struct ieee80211_channel *c, int rate)
 3453 {
 3454 /* fixed-point arithmetic division using a n-bit fractional part */
 3455 #define fdivround(a, b, n)      \
 3456         ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
 3457 
 3458 /* linear interpolation */
 3459 #define interpolate(x, x1, y1, x2, y2, n)       \
 3460         ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
 3461 
 3462         struct ifnet *ifp = sc->sc_ifp;
 3463         struct ieee80211com *ic = ifp->if_l2com;
 3464         struct wpi_power_sample *sample;
 3465         int pwr, idx;
 3466         u_int chan;
 3467 
 3468         /* get channel number */
 3469         chan = ieee80211_chan2ieee(ic, c);
 3470 
 3471         /* default power is group's maximum power - 3dB */
 3472         pwr = group->maxpwr / 2;
 3473 
 3474         /* decrease power for highest OFDM rates to reduce distortion */
 3475         switch (rate) {
 3476                 case 72:        /* 36Mb/s */
 3477                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
 3478                         break;
 3479                 case 96:        /* 48Mb/s */
 3480                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
 3481                         break;
 3482                 case 108:       /* 54Mb/s */
 3483                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
 3484                         break;
 3485         }
 3486 
 3487         /* never exceed channel's maximum allowed Tx power */
 3488         pwr = min(pwr, sc->maxpwr[chan]);
 3489 
 3490         /* retrieve power index into gain tables from samples */
 3491         for (sample = group->samples; sample < &group->samples[3]; sample++)
 3492                 if (pwr > sample[1].power)
 3493                         break;
 3494         /* fixed-point linear interpolation using a 19-bit fractional part */
 3495         idx = interpolate(pwr, sample[0].power, sample[0].index,
 3496             sample[1].power, sample[1].index, 19);
 3497 
 3498         /*
 3499          *  Adjust power index based on current temperature
 3500          *      - if colder than factory-calibrated: decreate output power
 3501          *      - if warmer than factory-calibrated: increase output power
 3502          */
 3503         idx -= (sc->temp - group->temp) * 11 / 100;
 3504 
 3505         /* decrease power for CCK rates (-5dB) */
 3506         if (!WPI_RATE_IS_OFDM(rate))
 3507                 idx += 10;
 3508 
 3509         /* keep power index in a valid range */
 3510         if (idx < 0)
 3511                 return 0;
 3512         if (idx > WPI_MAX_PWR_INDEX)
 3513                 return WPI_MAX_PWR_INDEX;
 3514         return idx;
 3515 
 3516 #undef interpolate
 3517 #undef fdivround
 3518 }
 3519 
 3520 /**
 3521  * Called by net80211 framework to indicate that a scan
 3522  * is starting. This function doesn't actually do the scan,
 3523  * wpi_scan_curchan starts things off. This function is more
 3524  * of an early warning from the framework we should get ready
 3525  * for the scan.
 3526  */
 3527 static void
 3528 wpi_scan_start(struct ieee80211com *ic)
 3529 {
 3530         struct ifnet *ifp = ic->ic_ifp;
 3531         struct wpi_softc *sc = ifp->if_softc;
 3532 
 3533         WPI_LOCK(sc);
 3534         wpi_set_led(sc, WPI_LED_LINK, 20, 2);
 3535         WPI_UNLOCK(sc);
 3536 }
 3537 
 3538 /**
 3539  * Called by the net80211 framework, indicates that the
 3540  * scan has ended. If there is a scan in progress on the card
 3541  * then it should be aborted.
 3542  */
 3543 static void
 3544 wpi_scan_end(struct ieee80211com *ic)
 3545 {
 3546         /* XXX ignore */
 3547 }
 3548 
 3549 /**
 3550  * Called by the net80211 framework to indicate to the driver
 3551  * that the channel should be changed
 3552  */
 3553 static void
 3554 wpi_set_channel(struct ieee80211com *ic)
 3555 {
 3556         struct ifnet *ifp = ic->ic_ifp;
 3557         struct wpi_softc *sc = ifp->if_softc;
 3558         int error;
 3559 
 3560         /*
 3561          * Only need to set the channel in Monitor mode. AP scanning and auth
 3562          * are already taken care of by their respective firmware commands.
 3563          */
 3564         if (ic->ic_opmode == IEEE80211_M_MONITOR) {
 3565                 WPI_LOCK(sc);
 3566                 error = wpi_config(sc);
 3567                 WPI_UNLOCK(sc);
 3568                 if (error != 0)
 3569                         device_printf(sc->sc_dev,
 3570                             "error %d settting channel\n", error);
 3571         }
 3572 }
 3573 
 3574 /**
 3575  * Called by net80211 to indicate that we need to scan the current
 3576  * channel. The channel is previously be set via the wpi_set_channel
 3577  * callback.
 3578  */
 3579 static void
 3580 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
 3581 {
 3582         struct ieee80211vap *vap = ss->ss_vap;
 3583         struct ifnet *ifp = vap->iv_ic->ic_ifp;
 3584         struct wpi_softc *sc = ifp->if_softc;
 3585 
 3586         WPI_LOCK(sc);
 3587         if (wpi_scan(sc))
 3588                 ieee80211_cancel_scan(vap);
 3589         WPI_UNLOCK(sc);
 3590 }
 3591 
 3592 /**
 3593  * Called by the net80211 framework to indicate
 3594  * the minimum dwell time has been met, terminate the scan.
 3595  * We don't actually terminate the scan as the firmware will notify
 3596  * us when it's finished and we have no way to interrupt it.
 3597  */
 3598 static void
 3599 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
 3600 {
 3601         /* NB: don't try to abort scan; wait for firmware to finish */
 3602 }
 3603 
 3604 static void
 3605 wpi_hwreset(void *arg, int pending)
 3606 {
 3607         struct wpi_softc *sc = arg;
 3608 
 3609         WPI_LOCK(sc);
 3610         wpi_init_locked(sc, 0);
 3611         WPI_UNLOCK(sc);
 3612 }
 3613 
 3614 static void
 3615 wpi_rfreset(void *arg, int pending)
 3616 {
 3617         struct wpi_softc *sc = arg;
 3618 
 3619         WPI_LOCK(sc);
 3620         wpi_rfkill_resume(sc);
 3621         WPI_UNLOCK(sc);
 3622 }
 3623 
 3624 /*
 3625  * Allocate DMA-safe memory for firmware transfer.
 3626  */
 3627 static int
 3628 wpi_alloc_fwmem(struct wpi_softc *sc)
 3629 {
 3630         /* allocate enough contiguous space to store text and data */
 3631         return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
 3632             WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
 3633             BUS_DMA_NOWAIT);
 3634 }
 3635 
 3636 static void
 3637 wpi_free_fwmem(struct wpi_softc *sc)
 3638 {
 3639         wpi_dma_contig_free(&sc->fw_dma);
 3640 }
 3641 
 3642 /**
 3643  * Called every second, wpi_watchdog used by the watch dog timer
 3644  * to check that the card is still alive
 3645  */
 3646 static void
 3647 wpi_watchdog(void *arg)
 3648 {
 3649         struct wpi_softc *sc = arg;
 3650         struct ifnet *ifp = sc->sc_ifp;
 3651         struct ieee80211com *ic = ifp->if_l2com;
 3652         uint32_t tmp;
 3653 
 3654         DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
 3655 
 3656         if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
 3657                 /* No need to lock firmware memory */
 3658                 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
 3659 
 3660                 if ((tmp & 0x1) == 0) {
 3661                         /* Radio kill switch is still off */
 3662                         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
 3663                         return;
 3664                 }
 3665 
 3666                 device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
 3667                 ieee80211_runtask(ic, &sc->sc_radiotask);
 3668                 return;
 3669         }
 3670 
 3671         if (sc->sc_tx_timer > 0) {
 3672                 if (--sc->sc_tx_timer == 0) {
 3673                         device_printf(sc->sc_dev,"device timeout\n");
 3674                         ifp->if_oerrors++;
 3675                         ieee80211_runtask(ic, &sc->sc_restarttask);
 3676                 }
 3677         }
 3678         if (sc->sc_scan_timer > 0) {
 3679                 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 3680                 if (--sc->sc_scan_timer == 0 && vap != NULL) {
 3681                         device_printf(sc->sc_dev,"scan timeout\n");
 3682                         ieee80211_cancel_scan(vap);
 3683                         ieee80211_runtask(ic, &sc->sc_restarttask);
 3684                 }
 3685         }
 3686 
 3687         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 3688                 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
 3689 }
 3690 
 3691 #ifdef WPI_DEBUG
 3692 static const char *wpi_cmd_str(int cmd)
 3693 {
 3694         switch (cmd) {
 3695         case WPI_DISABLE_CMD:   return "WPI_DISABLE_CMD";
 3696         case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE";
 3697         case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE";
 3698         case WPI_CMD_SET_WME:   return "WPI_CMD_SET_WME";
 3699         case WPI_CMD_TSF:       return "WPI_CMD_TSF";
 3700         case WPI_CMD_ADD_NODE:  return "WPI_CMD_ADD_NODE";
 3701         case WPI_CMD_TX_DATA:   return "WPI_CMD_TX_DATA";
 3702         case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP";
 3703         case WPI_CMD_SET_LED:   return "WPI_CMD_SET_LED";
 3704         case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
 3705         case WPI_CMD_SCAN:      return "WPI_CMD_SCAN";
 3706         case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
 3707         case WPI_CMD_TXPOWER:   return "WPI_CMD_TXPOWER";
 3708         case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH";
 3709 
 3710         default:
 3711                 KASSERT(1, ("Unknown Command: %d\n", cmd));
 3712                 return "UNKNOWN CMD";   /* Make the compiler happy */
 3713         }
 3714 }
 3715 #endif
 3716 
 3717 MODULE_DEPEND(wpi, pci,  1, 1, 1);
 3718 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
 3719 MODULE_DEPEND(wpi, firmware, 1, 1, 1);

Cache object: ce8ba78668b4ca6ce479d5a5612dfb1c


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.