The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/wpi/if_wpi.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2006,2007
    3  *      Damien Bergamini <damien.bergamini@free.fr>
    4  *      Benjamin Close <Benjamin.Close@clearchain.com>
    5  *
    6  * Permission to use, copy, modify, and distribute this software for any
    7  * purpose with or without fee is hereby granted, provided that the above
    8  * copyright notice and this permission notice appear in all copies.
    9  *
   10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
   12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
   13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
   14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
   15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
   16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
   17  */
   18 
   19 #define VERSION "20071127"
   20 
   21 #include <sys/cdefs.h>
   22 __FBSDID("$FreeBSD$");
   23 
   24 /*
   25  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
   26  *
   27  * The 3945ABG network adapter doesn't use traditional hardware as
   28  * many other adaptors do. Instead at run time the eeprom is set into a known
   29  * state and told to load boot firmware. The boot firmware loads an init and a
   30  * main  binary firmware image into SRAM on the card via DMA.
   31  * Once the firmware is loaded, the driver/hw then
   32  * communicate by way of circular dma rings via the SRAM to the firmware.
   33  *
   34  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
   35  * The 4 tx data rings allow for prioritization QoS.
   36  *
   37  * The rx data ring consists of 32 dma buffers. Two registers are used to
   38  * indicate where in the ring the driver and the firmware are up to. The
   39  * driver sets the initial read index (reg1) and the initial write index (reg2),
   40  * the firmware updates the read index (reg1) on rx of a packet and fires an
   41  * interrupt. The driver then processes the buffers starting at reg1 indicating
   42  * to the firmware which buffers have been accessed by updating reg2. At the
   43  * same time allocating new memory for the processed buffer.
   44  *
   45  * A similar thing happens with the tx rings. The difference is the firmware
   46  * stop processing buffers once the queue is full and until confirmation
   47  * of a successful transmition (tx_intr) has occurred.
   48  *
   49  * The command ring operates in the same manner as the tx queues.
   50  *
   51  * All communication direct to the card (ie eeprom) is classed as Stage1
   52  * communication
   53  *
   54  * All communication via the firmware to the card is classed as State2.
   55  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
   56  * firmware. The bootstrap firmware and runtime firmware are loaded
   57  * from host memory via dma to the card then told to execute. From this point
   58  * on the majority of communications between the driver and the card goes
   59  * via the firmware.
   60  */
   61 
   62 #include <sys/param.h>
   63 #include <sys/sysctl.h>
   64 #include <sys/sockio.h>
   65 #include <sys/mbuf.h>
   66 #include <sys/kernel.h>
   67 #include <sys/socket.h>
   68 #include <sys/systm.h>
   69 #include <sys/malloc.h>
   70 #include <sys/queue.h>
   71 #include <sys/taskqueue.h>
   72 #include <sys/module.h>
   73 #include <sys/bus.h>
   74 #include <sys/endian.h>
   75 #include <sys/linker.h>
   76 #include <sys/firmware.h>
   77 
   78 #include <machine/bus.h>
   79 #include <machine/resource.h>
   80 #include <sys/rman.h>
   81 
   82 #include <dev/pci/pcireg.h>
   83 #include <dev/pci/pcivar.h>
   84 
   85 #include <net/bpf.h>
   86 #include <net/if.h>
   87 #include <net/if_arp.h>
   88 #include <net/ethernet.h>
   89 #include <net/if_dl.h>
   90 #include <net/if_media.h>
   91 #include <net/if_types.h>
   92 
   93 #include <net80211/ieee80211_var.h>
   94 #include <net80211/ieee80211_radiotap.h>
   95 #include <net80211/ieee80211_regdomain.h>
   96 #include <net80211/ieee80211_ratectl.h>
   97 
   98 #include <netinet/in.h>
   99 #include <netinet/in_systm.h>
  100 #include <netinet/in_var.h>
  101 #include <netinet/ip.h>
  102 #include <netinet/if_ether.h>
  103 
  104 #include <dev/wpi/if_wpireg.h>
  105 #include <dev/wpi/if_wpivar.h>
  106 
  107 #define WPI_DEBUG
  108 
  109 #ifdef WPI_DEBUG
  110 #define DPRINTF(x)      do { if (wpi_debug != 0) printf x; } while (0)
  111 #define DPRINTFN(n, x)  do { if (wpi_debug & n) printf x; } while (0)
  112 #define WPI_DEBUG_SET   (wpi_debug != 0)
  113 
  114 enum {
  115         WPI_DEBUG_UNUSED        = 0x00000001,   /* Unused */
  116         WPI_DEBUG_HW            = 0x00000002,   /* Stage 1 (eeprom) debugging */
  117         WPI_DEBUG_TX            = 0x00000004,   /* Stage 2 TX intrp debugging*/
  118         WPI_DEBUG_RX            = 0x00000008,   /* Stage 2 RX intrp debugging */
  119         WPI_DEBUG_CMD           = 0x00000010,   /* Stage 2 CMD intrp debugging*/
  120         WPI_DEBUG_FIRMWARE      = 0x00000020,   /* firmware(9) loading debug  */
  121         WPI_DEBUG_DMA           = 0x00000040,   /* DMA (de)allocations/syncs  */
  122         WPI_DEBUG_SCANNING      = 0x00000080,   /* Stage 2 Scanning debugging */
  123         WPI_DEBUG_NOTIFY        = 0x00000100,   /* State 2 Noftif intr debug */
  124         WPI_DEBUG_TEMP          = 0x00000200,   /* TXPower/Temp Calibration */
  125         WPI_DEBUG_OPS           = 0x00000400,   /* wpi_ops taskq debug */
  126         WPI_DEBUG_WATCHDOG      = 0x00000800,   /* Watch dog debug */
  127         WPI_DEBUG_ANY           = 0xffffffff
  128 };
  129 
  130 static int wpi_debug = 0;
  131 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
  132 TUNABLE_INT("debug.wpi", &wpi_debug);
  133 
  134 #else
  135 #define DPRINTF(x)
  136 #define DPRINTFN(n, x)
  137 #define WPI_DEBUG_SET   0
  138 #endif
  139 
  140 struct wpi_ident {
  141         uint16_t        vendor;
  142         uint16_t        device;
  143         uint16_t        subdevice;
  144         const char      *name;
  145 };
  146 
  147 static const struct wpi_ident wpi_ident_table[] = {
  148         /* The below entries support ABG regardless of the subid */
  149         { 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
  150         { 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
  151         /* The below entries only support BG */
  152         { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
  153         { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
  154         { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
  155         { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
  156         { 0, 0, 0, NULL }
  157 };
  158 
  159 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
  160                     const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
  161                     const uint8_t [IEEE80211_ADDR_LEN],
  162                     const uint8_t [IEEE80211_ADDR_LEN]);
  163 static void     wpi_vap_delete(struct ieee80211vap *);
  164 static int      wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
  165                     void **, bus_size_t, bus_size_t, int);
  166 static void     wpi_dma_contig_free(struct wpi_dma_info *);
  167 static void     wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
  168 static int      wpi_alloc_shared(struct wpi_softc *);
  169 static void     wpi_free_shared(struct wpi_softc *);
  170 static int      wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
  171 static void     wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
  172 static void     wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
  173 static int      wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
  174                     int, int);
  175 static void     wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
  176 static void     wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
  177 static int      wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
  178 static void     wpi_mem_lock(struct wpi_softc *);
  179 static void     wpi_mem_unlock(struct wpi_softc *);
  180 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
  181 static void     wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
  182 static void     wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
  183                     const uint32_t *, int);
  184 static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
  185 static int      wpi_alloc_fwmem(struct wpi_softc *);
  186 static void     wpi_free_fwmem(struct wpi_softc *);
  187 static int      wpi_load_firmware(struct wpi_softc *);
  188 static void     wpi_unload_firmware(struct wpi_softc *);
  189 static int      wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
  190 static void     wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
  191                     struct wpi_rx_data *);
  192 static void     wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
  193 static void     wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
  194 static void     wpi_notif_intr(struct wpi_softc *);
  195 static void     wpi_intr(void *);
  196 static uint8_t  wpi_plcp_signal(int);
  197 static void     wpi_watchdog(void *);
  198 static int      wpi_tx_data(struct wpi_softc *, struct mbuf *,
  199                     struct ieee80211_node *, int);
  200 static void     wpi_start(struct ifnet *);
  201 static void     wpi_start_locked(struct ifnet *);
  202 static int      wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
  203                     const struct ieee80211_bpf_params *);
  204 static void     wpi_scan_start(struct ieee80211com *);
  205 static void     wpi_scan_end(struct ieee80211com *);
  206 static void     wpi_set_channel(struct ieee80211com *);
  207 static void     wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
  208 static void     wpi_scan_mindwell(struct ieee80211_scan_state *);
  209 static int      wpi_ioctl(struct ifnet *, u_long, caddr_t);
  210 static void     wpi_read_eeprom(struct wpi_softc *,
  211                     uint8_t macaddr[IEEE80211_ADDR_LEN]);
  212 static void     wpi_read_eeprom_channels(struct wpi_softc *, int);
  213 static void     wpi_read_eeprom_group(struct wpi_softc *, int);
  214 static int      wpi_cmd(struct wpi_softc *, int, const void *, int, int);
  215 static int      wpi_wme_update(struct ieee80211com *);
  216 static int      wpi_mrr_setup(struct wpi_softc *);
  217 static void     wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
  218 static void     wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
  219 #if 0
  220 static int      wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
  221 #endif
  222 static int      wpi_auth(struct wpi_softc *, struct ieee80211vap *);
  223 static int      wpi_run(struct wpi_softc *, struct ieee80211vap *);
  224 static int      wpi_scan(struct wpi_softc *);
  225 static int      wpi_config(struct wpi_softc *);
  226 static void     wpi_stop_master(struct wpi_softc *);
  227 static int      wpi_power_up(struct wpi_softc *);
  228 static int      wpi_reset(struct wpi_softc *);
  229 static void     wpi_hwreset(void *, int);
  230 static void     wpi_rfreset(void *, int);
  231 static void     wpi_hw_config(struct wpi_softc *);
  232 static void     wpi_init(void *);
  233 static void     wpi_init_locked(struct wpi_softc *, int);
  234 static void     wpi_stop(struct wpi_softc *);
  235 static void     wpi_stop_locked(struct wpi_softc *);
  236 
  237 static int      wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
  238                     int);
  239 static void     wpi_calib_timeout(void *);
  240 static void     wpi_power_calibration(struct wpi_softc *, int);
  241 static int      wpi_get_power_index(struct wpi_softc *,
  242                     struct wpi_power_group *, struct ieee80211_channel *, int);
  243 #ifdef WPI_DEBUG
  244 static const char *wpi_cmd_str(int);
  245 #endif
  246 static int wpi_probe(device_t);
  247 static int wpi_attach(device_t);
  248 static int wpi_detach(device_t);
  249 static int wpi_shutdown(device_t);
  250 static int wpi_suspend(device_t);
  251 static int wpi_resume(device_t);
  252 
  253 static device_method_t wpi_methods[] = {
  254         /* Device interface */
  255         DEVMETHOD(device_probe,         wpi_probe),
  256         DEVMETHOD(device_attach,        wpi_attach),
  257         DEVMETHOD(device_detach,        wpi_detach),
  258         DEVMETHOD(device_shutdown,      wpi_shutdown),
  259         DEVMETHOD(device_suspend,       wpi_suspend),
  260         DEVMETHOD(device_resume,        wpi_resume),
  261 
  262         DEVMETHOD_END
  263 };
  264 
  265 static driver_t wpi_driver = {
  266         "wpi",
  267         wpi_methods,
  268         sizeof (struct wpi_softc)
  269 };
  270 
  271 static devclass_t wpi_devclass;
  272 
  273 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
  274 
  275 MODULE_VERSION(wpi, 1);
  276 
  277 static const uint8_t wpi_ridx_to_plcp[] = {
  278         /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
  279         /* R1-R4 (ral/ural is R4-R1) */
  280         0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
  281         /* CCK: device-dependent */
  282         10, 20, 55, 110
  283 };
  284 
  285 static const uint8_t wpi_ridx_to_rate[] = {
  286         12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
  287         2, 4, 11, 22 /*CCK */
  288 };
  289 
  290 static int
  291 wpi_probe(device_t dev)
  292 {
  293         const struct wpi_ident *ident;
  294 
  295         for (ident = wpi_ident_table; ident->name != NULL; ident++) {
  296                 if (pci_get_vendor(dev) == ident->vendor &&
  297                     pci_get_device(dev) == ident->device) {
  298                         device_set_desc(dev, ident->name);
  299                         return (BUS_PROBE_DEFAULT);
  300                 }
  301         }
  302         return ENXIO;
  303 }
  304 
  305 /**
  306  * Load the firmare image from disk to the allocated dma buffer.
  307  * we also maintain the reference to the firmware pointer as there
  308  * is times where we may need to reload the firmware but we are not
  309  * in a context that can access the filesystem (ie taskq cause by restart)
  310  *
  311  * @return 0 on success, an errno on failure
  312  */
  313 static int
  314 wpi_load_firmware(struct wpi_softc *sc)
  315 {
  316         const struct firmware *fp;
  317         struct wpi_dma_info *dma = &sc->fw_dma;
  318         const struct wpi_firmware_hdr *hdr;
  319         const uint8_t *itext, *idata, *rtext, *rdata, *btext;
  320         uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
  321         int error;
  322 
  323         DPRINTFN(WPI_DEBUG_FIRMWARE,
  324             ("Attempting Loading Firmware from wpi_fw module\n"));
  325 
  326         WPI_UNLOCK(sc);
  327 
  328         if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
  329                 device_printf(sc->sc_dev,
  330                     "could not load firmware image 'wpifw'\n");
  331                 error = ENOENT;
  332                 WPI_LOCK(sc);
  333                 goto fail;
  334         }
  335 
  336         fp = sc->fw_fp;
  337 
  338         WPI_LOCK(sc);
  339 
  340         /* Validate the firmware is minimum a particular version */
  341         if (fp->version < WPI_FW_MINVERSION) {
  342             device_printf(sc->sc_dev,
  343                            "firmware version is too old. Need %d, got %d\n",
  344                            WPI_FW_MINVERSION,
  345                            fp->version);
  346             error = ENXIO;
  347             goto fail;
  348         }
  349 
  350         if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
  351                 device_printf(sc->sc_dev,
  352                     "firmware file too short: %zu bytes\n", fp->datasize);
  353                 error = ENXIO;
  354                 goto fail;
  355         }
  356 
  357         hdr = (const struct wpi_firmware_hdr *)fp->data;
  358 
  359         /*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
  360            |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
  361 
  362         rtextsz = le32toh(hdr->rtextsz);
  363         rdatasz = le32toh(hdr->rdatasz);
  364         itextsz = le32toh(hdr->itextsz);
  365         idatasz = le32toh(hdr->idatasz);
  366         btextsz = le32toh(hdr->btextsz);
  367 
  368         /* check that all firmware segments are present */
  369         if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
  370                 rtextsz + rdatasz + itextsz + idatasz + btextsz) {
  371                 device_printf(sc->sc_dev,
  372                     "firmware file too short: %zu bytes\n", fp->datasize);
  373                 error = ENXIO; /* XXX appropriate error code? */
  374                 goto fail;
  375         }
  376 
  377         /* get pointers to firmware segments */
  378         rtext = (const uint8_t *)(hdr + 1);
  379         rdata = rtext + rtextsz;
  380         itext = rdata + rdatasz;
  381         idata = itext + itextsz;
  382         btext = idata + idatasz;
  383 
  384         DPRINTFN(WPI_DEBUG_FIRMWARE,
  385             ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
  386              "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
  387              (le32toh(hdr->version) & 0xff000000) >> 24,
  388              (le32toh(hdr->version) & 0x00ff0000) >> 16,
  389              (le32toh(hdr->version) & 0x0000ffff),
  390              rtextsz, rdatasz,
  391              itextsz, idatasz, btextsz));
  392 
  393         DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
  394         DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
  395         DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
  396         DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
  397         DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
  398 
  399         /* sanity checks */
  400         if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
  401             rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
  402             itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
  403             idatasz > WPI_FW_INIT_DATA_MAXSZ ||
  404             btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
  405             (btextsz & 3) != 0) {
  406                 device_printf(sc->sc_dev, "firmware invalid\n");
  407                 error = EINVAL;
  408                 goto fail;
  409         }
  410 
  411         /* copy initialization images into pre-allocated DMA-safe memory */
  412         memcpy(dma->vaddr, idata, idatasz);
  413         memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
  414 
  415         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
  416 
  417         /* tell adapter where to find initialization images */
  418         wpi_mem_lock(sc);
  419         wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
  420         wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
  421         wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
  422             dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
  423         wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
  424         wpi_mem_unlock(sc);
  425 
  426         /* load firmware boot code */
  427         if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
  428             device_printf(sc->sc_dev, "Failed to load microcode\n");
  429             goto fail;
  430         }
  431 
  432         /* now press "execute" */
  433         WPI_WRITE(sc, WPI_RESET, 0);
  434 
  435         /* wait at most one second for the first alive notification */
  436         if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
  437                 device_printf(sc->sc_dev,
  438                     "timeout waiting for adapter to initialize\n");
  439                 goto fail;
  440         }
  441 
  442         /* copy runtime images into pre-allocated DMA-sage memory */
  443         memcpy(dma->vaddr, rdata, rdatasz);
  444         memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
  445         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
  446 
  447         /* tell adapter where to find runtime images */
  448         wpi_mem_lock(sc);
  449         wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
  450         wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
  451         wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
  452             dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
  453         wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
  454         wpi_mem_unlock(sc);
  455 
  456         /* wait at most one second for the first alive notification */
  457         if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
  458                 device_printf(sc->sc_dev,
  459                     "timeout waiting for adapter to initialize2\n");
  460                 goto fail;
  461         }
  462 
  463         DPRINTFN(WPI_DEBUG_FIRMWARE,
  464             ("Firmware loaded to driver successfully\n"));
  465         return error;
  466 fail:
  467         wpi_unload_firmware(sc);
  468         return error;
  469 }
  470 
  471 /**
  472  * Free the referenced firmware image
  473  */
  474 static void
  475 wpi_unload_firmware(struct wpi_softc *sc)
  476 {
  477 
  478         if (sc->fw_fp) {
  479                 WPI_UNLOCK(sc);
  480                 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
  481                 WPI_LOCK(sc);
  482                 sc->fw_fp = NULL;
  483         }
  484 }
  485 
  486 static int
  487 wpi_attach(device_t dev)
  488 {
  489         struct wpi_softc *sc = device_get_softc(dev);
  490         struct ifnet *ifp;
  491         struct ieee80211com *ic;
  492         int ac, error, rid, supportsa = 1;
  493         uint32_t tmp;
  494         const struct wpi_ident *ident;
  495         uint8_t macaddr[IEEE80211_ADDR_LEN];
  496 
  497         sc->sc_dev = dev;
  498 
  499         if (bootverbose || WPI_DEBUG_SET)
  500             device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
  501 
  502         /*
  503          * Some card's only support 802.11b/g not a, check to see if
  504          * this is one such card. A 0x0 in the subdevice table indicates
  505          * the entire subdevice range is to be ignored.
  506          */
  507         for (ident = wpi_ident_table; ident->name != NULL; ident++) {
  508                 if (ident->subdevice &&
  509                     pci_get_subdevice(dev) == ident->subdevice) {
  510                     supportsa = 0;
  511                     break;
  512                 }
  513         }
  514 
  515         /* Create the tasks that can be queued */
  516         TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
  517         TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
  518 
  519         WPI_LOCK_INIT(sc);
  520 
  521         callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
  522         callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
  523 
  524         /* disable the retry timeout register */
  525         pci_write_config(dev, 0x41, 0, 1);
  526 
  527         /* enable bus-mastering */
  528         pci_enable_busmaster(dev);
  529 
  530         rid = PCIR_BAR(0);
  531         sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
  532             RF_ACTIVE);
  533         if (sc->mem == NULL) {
  534                 device_printf(dev, "could not allocate memory resource\n");
  535                 error = ENOMEM;
  536                 goto fail;
  537         }
  538 
  539         sc->sc_st = rman_get_bustag(sc->mem);
  540         sc->sc_sh = rman_get_bushandle(sc->mem);
  541 
  542         rid = 0;
  543         sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
  544             RF_ACTIVE | RF_SHAREABLE);
  545         if (sc->irq == NULL) {
  546                 device_printf(dev, "could not allocate interrupt resource\n");
  547                 error = ENOMEM;
  548                 goto fail;
  549         }
  550 
  551         /*
  552          * Allocate DMA memory for firmware transfers.
  553          */
  554         if ((error = wpi_alloc_fwmem(sc)) != 0) {
  555                 printf(": could not allocate firmware memory\n");
  556                 error = ENOMEM;
  557                 goto fail;
  558         }
  559 
  560         /*
  561          * Put adapter into a known state.
  562          */
  563         if ((error = wpi_reset(sc)) != 0) {
  564                 device_printf(dev, "could not reset adapter\n");
  565                 goto fail;
  566         }
  567 
  568         wpi_mem_lock(sc);
  569         tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
  570         if (bootverbose || WPI_DEBUG_SET)
  571             device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
  572 
  573         wpi_mem_unlock(sc);
  574 
  575         /* Allocate shared page */
  576         if ((error = wpi_alloc_shared(sc)) != 0) {
  577                 device_printf(dev, "could not allocate shared page\n");
  578                 goto fail;
  579         }
  580 
  581         /* tx data queues  - 4 for QoS purposes */
  582         for (ac = 0; ac < WME_NUM_AC; ac++) {
  583                 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
  584                 if (error != 0) {
  585                     device_printf(dev, "could not allocate Tx ring %d\n",ac);
  586                     goto fail;
  587                 }
  588         }
  589 
  590         /* command queue to talk to the card's firmware */
  591         error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
  592         if (error != 0) {
  593                 device_printf(dev, "could not allocate command ring\n");
  594                 goto fail;
  595         }
  596 
  597         /* receive data queue */
  598         error = wpi_alloc_rx_ring(sc, &sc->rxq);
  599         if (error != 0) {
  600                 device_printf(dev, "could not allocate Rx ring\n");
  601                 goto fail;
  602         }
  603 
  604         ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
  605         if (ifp == NULL) {
  606                 device_printf(dev, "can not if_alloc()\n");
  607                 error = ENOMEM;
  608                 goto fail;
  609         }
  610         ic = ifp->if_l2com;
  611 
  612         ic->ic_ifp = ifp;
  613         ic->ic_phytype = IEEE80211_T_OFDM;      /* not only, but not used */
  614         ic->ic_opmode = IEEE80211_M_STA;        /* default to BSS mode */
  615 
  616         /* set device capabilities */
  617         ic->ic_caps =
  618                   IEEE80211_C_STA               /* station mode supported */
  619                 | IEEE80211_C_MONITOR           /* monitor mode supported */
  620                 | IEEE80211_C_TXPMGT            /* tx power management */
  621                 | IEEE80211_C_SHSLOT            /* short slot time supported */
  622                 | IEEE80211_C_SHPREAMBLE        /* short preamble supported */
  623                 | IEEE80211_C_WPA               /* 802.11i */
  624 /* XXX looks like WME is partly supported? */
  625 #if 0
  626                 | IEEE80211_C_IBSS              /* IBSS mode support */
  627                 | IEEE80211_C_BGSCAN            /* capable of bg scanning */
  628                 | IEEE80211_C_WME               /* 802.11e */
  629                 | IEEE80211_C_HOSTAP            /* Host access point mode */
  630 #endif
  631                 ;
  632 
  633         /*
  634          * Read in the eeprom and also setup the channels for
  635          * net80211. We don't set the rates as net80211 does this for us
  636          */
  637         wpi_read_eeprom(sc, macaddr);
  638 
  639         if (bootverbose || WPI_DEBUG_SET) {
  640             device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
  641             device_printf(sc->sc_dev, "Hardware Type: %c\n",
  642                           sc->type > 1 ? 'B': '?');
  643             device_printf(sc->sc_dev, "Hardware Revision: %c\n",
  644                           ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
  645             device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
  646                           supportsa ? "does" : "does not");
  647 
  648             /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
  649                what sc->rev really represents - benjsc 20070615 */
  650         }
  651 
  652         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
  653         ifp->if_softc = sc;
  654         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
  655         ifp->if_init = wpi_init;
  656         ifp->if_ioctl = wpi_ioctl;
  657         ifp->if_start = wpi_start;
  658         IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
  659         ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
  660         IFQ_SET_READY(&ifp->if_snd);
  661 
  662         ieee80211_ifattach(ic, macaddr);
  663         /* override default methods */
  664         ic->ic_raw_xmit = wpi_raw_xmit;
  665         ic->ic_wme.wme_update = wpi_wme_update;
  666         ic->ic_scan_start = wpi_scan_start;
  667         ic->ic_scan_end = wpi_scan_end;
  668         ic->ic_set_channel = wpi_set_channel;
  669         ic->ic_scan_curchan = wpi_scan_curchan;
  670         ic->ic_scan_mindwell = wpi_scan_mindwell;
  671 
  672         ic->ic_vap_create = wpi_vap_create;
  673         ic->ic_vap_delete = wpi_vap_delete;
  674 
  675         ieee80211_radiotap_attach(ic,
  676             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
  677                 WPI_TX_RADIOTAP_PRESENT,
  678             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
  679                 WPI_RX_RADIOTAP_PRESENT);
  680 
  681         /*
  682          * Hook our interrupt after all initialization is complete.
  683          */
  684         error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
  685             NULL, wpi_intr, sc, &sc->sc_ih);
  686         if (error != 0) {
  687                 device_printf(dev, "could not set up interrupt\n");
  688                 goto fail;
  689         }
  690 
  691         if (bootverbose)
  692                 ieee80211_announce(ic);
  693 #ifdef XXX_DEBUG
  694         ieee80211_announce_channels(ic);
  695 #endif
  696         return 0;
  697 
  698 fail:   wpi_detach(dev);
  699         return ENXIO;
  700 }
  701 
  702 static int
  703 wpi_detach(device_t dev)
  704 {
  705         struct wpi_softc *sc = device_get_softc(dev);
  706         struct ifnet *ifp = sc->sc_ifp;
  707         struct ieee80211com *ic;
  708         int ac;
  709 
  710         if (sc->irq != NULL)
  711                 bus_teardown_intr(dev, sc->irq, sc->sc_ih);
  712 
  713         if (ifp != NULL) {
  714                 ic = ifp->if_l2com;
  715 
  716                 ieee80211_draintask(ic, &sc->sc_restarttask);
  717                 ieee80211_draintask(ic, &sc->sc_radiotask);
  718                 wpi_stop(sc);
  719                 callout_drain(&sc->watchdog_to);
  720                 callout_drain(&sc->calib_to);
  721                 ieee80211_ifdetach(ic);
  722         }
  723 
  724         WPI_LOCK(sc);
  725         if (sc->txq[0].data_dmat) {
  726                 for (ac = 0; ac < WME_NUM_AC; ac++)
  727                         wpi_free_tx_ring(sc, &sc->txq[ac]);
  728 
  729                 wpi_free_tx_ring(sc, &sc->cmdq);
  730                 wpi_free_rx_ring(sc, &sc->rxq);
  731                 wpi_free_shared(sc);
  732         }
  733 
  734         if (sc->fw_fp != NULL) {
  735                 wpi_unload_firmware(sc);
  736         }
  737 
  738         if (sc->fw_dma.tag)
  739                 wpi_free_fwmem(sc);
  740         WPI_UNLOCK(sc);
  741 
  742         if (sc->irq != NULL)
  743                 bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
  744                     sc->irq);
  745         if (sc->mem != NULL)
  746                 bus_release_resource(dev, SYS_RES_MEMORY,
  747                     rman_get_rid(sc->mem), sc->mem);
  748 
  749         if (ifp != NULL)
  750                 if_free(ifp);
  751 
  752         WPI_LOCK_DESTROY(sc);
  753 
  754         return 0;
  755 }
  756 
  757 static struct ieee80211vap *
  758 wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
  759     enum ieee80211_opmode opmode, int flags,
  760     const uint8_t bssid[IEEE80211_ADDR_LEN],
  761     const uint8_t mac[IEEE80211_ADDR_LEN])
  762 {
  763         struct wpi_vap *wvp;
  764         struct ieee80211vap *vap;
  765 
  766         if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
  767                 return NULL;
  768         wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
  769             M_80211_VAP, M_NOWAIT | M_ZERO);
  770         if (wvp == NULL)
  771                 return NULL;
  772         vap = &wvp->vap;
  773         ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
  774         /* override with driver methods */
  775         wvp->newstate = vap->iv_newstate;
  776         vap->iv_newstate = wpi_newstate;
  777 
  778         ieee80211_ratectl_init(vap);
  779         /* complete setup */
  780         ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
  781         ic->ic_opmode = opmode;
  782         return vap;
  783 }
  784 
  785 static void
  786 wpi_vap_delete(struct ieee80211vap *vap)
  787 {
  788         struct wpi_vap *wvp = WPI_VAP(vap);
  789 
  790         ieee80211_ratectl_deinit(vap);
  791         ieee80211_vap_detach(vap);
  792         free(wvp, M_80211_VAP);
  793 }
  794 
  795 static void
  796 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
  797 {
  798         if (error != 0)
  799                 return;
  800 
  801         KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
  802 
  803         *(bus_addr_t *)arg = segs[0].ds_addr;
  804 }
  805 
  806 /*
  807  * Allocates a contiguous block of dma memory of the requested size and
  808  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
  809  * allocations greater than 4096 may fail. Hence if the requested alignment is
  810  * greater we allocate 'alignment' size extra memory and shift the vaddr and
  811  * paddr after the dma load. This bypasses the problem at the cost of a little
  812  * more memory.
  813  */
  814 static int
  815 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
  816     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
  817 {
  818         int error;
  819         bus_size_t align;
  820         bus_size_t reqsize;
  821 
  822         DPRINTFN(WPI_DEBUG_DMA,
  823             ("Size: %zd - alignment %zd\n", size, alignment));
  824 
  825         dma->size = size;
  826         dma->tag = NULL;
  827 
  828         if (alignment > 4096) {
  829                 align = PAGE_SIZE;
  830                 reqsize = size + alignment;
  831         } else {
  832                 align = alignment;
  833                 reqsize = size;
  834         }
  835         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
  836             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
  837             NULL, NULL, reqsize,
  838             1, reqsize, flags,
  839             NULL, NULL, &dma->tag);
  840         if (error != 0) {
  841                 device_printf(sc->sc_dev,
  842                     "could not create shared page DMA tag\n");
  843                 goto fail;
  844         }
  845         error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
  846             flags | BUS_DMA_ZERO, &dma->map);
  847         if (error != 0) {
  848                 device_printf(sc->sc_dev,
  849                     "could not allocate shared page DMA memory\n");
  850                 goto fail;
  851         }
  852 
  853         error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
  854             reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
  855 
  856         /* Save the original pointers so we can free all the memory */
  857         dma->paddr = dma->paddr_start;
  858         dma->vaddr = dma->vaddr_start;
  859 
  860         /*
  861          * Check the alignment and increment by 4096 until we get the
  862          * requested alignment. Fail if can't obtain the alignment
  863          * we requested.
  864          */
  865         if ((dma->paddr & (alignment -1 )) != 0) {
  866                 int i;
  867 
  868                 for (i = 0; i < alignment / 4096; i++) {
  869                         if ((dma->paddr & (alignment - 1 )) == 0)
  870                                 break;
  871                         dma->paddr += 4096;
  872                         dma->vaddr += 4096;
  873                 }
  874                 if (i == alignment / 4096) {
  875                         device_printf(sc->sc_dev,
  876                             "alignment requirement was not satisfied\n");
  877                         goto fail;
  878                 }
  879         }
  880 
  881         if (error != 0) {
  882                 device_printf(sc->sc_dev,
  883                     "could not load shared page DMA map\n");
  884                 goto fail;
  885         }
  886 
  887         if (kvap != NULL)
  888                 *kvap = dma->vaddr;
  889 
  890         return 0;
  891 
  892 fail:
  893         wpi_dma_contig_free(dma);
  894         return error;
  895 }
  896 
  897 static void
  898 wpi_dma_contig_free(struct wpi_dma_info *dma)
  899 {
  900         if (dma->tag) {
  901                 if (dma->map != NULL) {
  902                         if (dma->paddr_start != 0) {
  903                                 bus_dmamap_sync(dma->tag, dma->map,
  904                                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
  905                                 bus_dmamap_unload(dma->tag, dma->map);
  906                         }
  907                         bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
  908                 }
  909                 bus_dma_tag_destroy(dma->tag);
  910         }
  911 }
  912 
  913 /*
  914  * Allocate a shared page between host and NIC.
  915  */
  916 static int
  917 wpi_alloc_shared(struct wpi_softc *sc)
  918 {
  919         int error;
  920 
  921         error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
  922             (void **)&sc->shared, sizeof (struct wpi_shared),
  923             PAGE_SIZE,
  924             BUS_DMA_NOWAIT);
  925 
  926         if (error != 0) {
  927                 device_printf(sc->sc_dev,
  928                     "could not allocate shared area DMA memory\n");
  929         }
  930 
  931         return error;
  932 }
  933 
  934 static void
  935 wpi_free_shared(struct wpi_softc *sc)
  936 {
  937         wpi_dma_contig_free(&sc->shared_dma);
  938 }
  939 
  940 static int
  941 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
  942 {
  943 
  944         int i, error;
  945 
  946         ring->cur = 0;
  947 
  948         error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
  949             (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
  950             WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
  951 
  952         if (error != 0) {
  953                 device_printf(sc->sc_dev,
  954                     "%s: could not allocate rx ring DMA memory, error %d\n",
  955                     __func__, error);
  956                 goto fail;
  957         }
  958 
  959         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 
  960             BUS_SPACE_MAXADDR_32BIT,
  961             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
  962             MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
  963         if (error != 0) {
  964                 device_printf(sc->sc_dev,
  965                     "%s: bus_dma_tag_create_failed, error %d\n",
  966                     __func__, error);
  967                 goto fail;
  968         }
  969 
  970         /*
  971          * Setup Rx buffers.
  972          */
  973         for (i = 0; i < WPI_RX_RING_COUNT; i++) {
  974                 struct wpi_rx_data *data = &ring->data[i];
  975                 struct mbuf *m;
  976                 bus_addr_t paddr;
  977 
  978                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
  979                 if (error != 0) {
  980                         device_printf(sc->sc_dev,
  981                             "%s: bus_dmamap_create failed, error %d\n",
  982                             __func__, error);
  983                         goto fail;
  984                 }
  985                 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
  986                 if (m == NULL) {
  987                         device_printf(sc->sc_dev,
  988                            "%s: could not allocate rx mbuf\n", __func__);
  989                         error = ENOMEM;
  990                         goto fail;
  991                 }
  992                 /* map page */
  993                 error = bus_dmamap_load(ring->data_dmat, data->map,
  994                     mtod(m, caddr_t), MJUMPAGESIZE,
  995                     wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
  996                 if (error != 0 && error != EFBIG) {
  997                         device_printf(sc->sc_dev,
  998                             "%s: bus_dmamap_load failed, error %d\n",
  999                             __func__, error);
 1000                         m_freem(m);
 1001                         error = ENOMEM; /* XXX unique code */
 1002                         goto fail;
 1003                 }
 1004                 bus_dmamap_sync(ring->data_dmat, data->map, 
 1005                     BUS_DMASYNC_PREWRITE);
 1006 
 1007                 data->m = m;
 1008                 ring->desc[i] = htole32(paddr);
 1009         }
 1010         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
 1011             BUS_DMASYNC_PREWRITE);
 1012         return 0;
 1013 fail:
 1014         wpi_free_rx_ring(sc, ring);
 1015         return error;
 1016 }
 1017 
 1018 static void
 1019 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
 1020 {
 1021         int ntries;
 1022 
 1023         wpi_mem_lock(sc);
 1024 
 1025         WPI_WRITE(sc, WPI_RX_CONFIG, 0);
 1026 
 1027         for (ntries = 0; ntries < 100; ntries++) {
 1028                 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
 1029                         break;
 1030                 DELAY(10);
 1031         }
 1032 
 1033         wpi_mem_unlock(sc);
 1034 
 1035 #ifdef WPI_DEBUG
 1036         if (ntries == 100 && wpi_debug > 0)
 1037                 device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
 1038 #endif
 1039 
 1040         ring->cur = 0;
 1041 }
 1042 
 1043 static void
 1044 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
 1045 {
 1046         int i;
 1047 
 1048         wpi_dma_contig_free(&ring->desc_dma);
 1049 
 1050         for (i = 0; i < WPI_RX_RING_COUNT; i++) {
 1051                 struct wpi_rx_data *data = &ring->data[i];
 1052 
 1053                 if (data->m != NULL) {
 1054                         bus_dmamap_sync(ring->data_dmat, data->map,
 1055                             BUS_DMASYNC_POSTREAD);
 1056                         bus_dmamap_unload(ring->data_dmat, data->map);
 1057                         m_freem(data->m);
 1058                 }
 1059                 if (data->map != NULL)
 1060                         bus_dmamap_destroy(ring->data_dmat, data->map);
 1061         }
 1062 }
 1063 
 1064 static int
 1065 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
 1066         int qid)
 1067 {
 1068         struct wpi_tx_data *data;
 1069         int i, error;
 1070 
 1071         ring->qid = qid;
 1072         ring->count = count;
 1073         ring->queued = 0;
 1074         ring->cur = 0;
 1075         ring->data = NULL;
 1076 
 1077         error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
 1078                 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
 1079                 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
 1080 
 1081         if (error != 0) {
 1082             device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
 1083             goto fail;
 1084         }
 1085 
 1086         /* update shared page with ring's base address */
 1087         sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
 1088 
 1089         error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
 1090                 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
 1091                 BUS_DMA_NOWAIT);
 1092 
 1093         if (error != 0) {
 1094                 device_printf(sc->sc_dev,
 1095                     "could not allocate tx command DMA memory\n");
 1096                 goto fail;
 1097         }
 1098 
 1099         ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
 1100             M_NOWAIT | M_ZERO);
 1101         if (ring->data == NULL) {
 1102                 device_printf(sc->sc_dev,
 1103                     "could not allocate tx data slots\n");
 1104                 goto fail;
 1105         }
 1106 
 1107         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
 1108             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
 1109             WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
 1110             &ring->data_dmat);
 1111         if (error != 0) {
 1112                 device_printf(sc->sc_dev, "could not create data DMA tag\n");
 1113                 goto fail;
 1114         }
 1115 
 1116         for (i = 0; i < count; i++) {
 1117                 data = &ring->data[i];
 1118 
 1119                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
 1120                 if (error != 0) {
 1121                         device_printf(sc->sc_dev,
 1122                             "could not create tx buf DMA map\n");
 1123                         goto fail;
 1124                 }
 1125                 bus_dmamap_sync(ring->data_dmat, data->map,
 1126                     BUS_DMASYNC_PREWRITE);
 1127         }
 1128 
 1129         return 0;
 1130 
 1131 fail:
 1132         wpi_free_tx_ring(sc, ring);
 1133         return error;
 1134 }
 1135 
 1136 static void
 1137 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
 1138 {
 1139         struct wpi_tx_data *data;
 1140         int i, ntries;
 1141 
 1142         wpi_mem_lock(sc);
 1143 
 1144         WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
 1145         for (ntries = 0; ntries < 100; ntries++) {
 1146                 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
 1147                         break;
 1148                 DELAY(10);
 1149         }
 1150 #ifdef WPI_DEBUG
 1151         if (ntries == 100 && wpi_debug > 0)
 1152                 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
 1153                     ring->qid);
 1154 #endif
 1155         wpi_mem_unlock(sc);
 1156 
 1157         for (i = 0; i < ring->count; i++) {
 1158                 data = &ring->data[i];
 1159 
 1160                 if (data->m != NULL) {
 1161                         bus_dmamap_unload(ring->data_dmat, data->map);
 1162                         m_freem(data->m);
 1163                         data->m = NULL;
 1164                 }
 1165         }
 1166 
 1167         ring->queued = 0;
 1168         ring->cur = 0;
 1169 }
 1170 
 1171 static void
 1172 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
 1173 {
 1174         struct wpi_tx_data *data;
 1175         int i;
 1176 
 1177         wpi_dma_contig_free(&ring->desc_dma);
 1178         wpi_dma_contig_free(&ring->cmd_dma);
 1179 
 1180         if (ring->data != NULL) {
 1181                 for (i = 0; i < ring->count; i++) {
 1182                         data = &ring->data[i];
 1183 
 1184                         if (data->m != NULL) {
 1185                                 bus_dmamap_sync(ring->data_dmat, data->map,
 1186                                     BUS_DMASYNC_POSTWRITE);
 1187                                 bus_dmamap_unload(ring->data_dmat, data->map);
 1188                                 m_freem(data->m);
 1189                                 data->m = NULL;
 1190                         }
 1191                 }
 1192                 free(ring->data, M_DEVBUF);
 1193         }
 1194 
 1195         if (ring->data_dmat != NULL)
 1196                 bus_dma_tag_destroy(ring->data_dmat);
 1197 }
 1198 
 1199 static int
 1200 wpi_shutdown(device_t dev)
 1201 {
 1202         struct wpi_softc *sc = device_get_softc(dev);
 1203 
 1204         WPI_LOCK(sc);
 1205         wpi_stop_locked(sc);
 1206         wpi_unload_firmware(sc);
 1207         WPI_UNLOCK(sc);
 1208 
 1209         return 0;
 1210 }
 1211 
 1212 static int
 1213 wpi_suspend(device_t dev)
 1214 {
 1215         struct wpi_softc *sc = device_get_softc(dev);
 1216         struct ieee80211com *ic = sc->sc_ifp->if_l2com;
 1217 
 1218         ieee80211_suspend_all(ic);
 1219         return 0;
 1220 }
 1221 
 1222 static int
 1223 wpi_resume(device_t dev)
 1224 {
 1225         struct wpi_softc *sc = device_get_softc(dev);
 1226         struct ieee80211com *ic = sc->sc_ifp->if_l2com;
 1227 
 1228         pci_write_config(dev, 0x41, 0, 1);
 1229 
 1230         ieee80211_resume_all(ic);
 1231         return 0;
 1232 }
 1233 
 1234 /**
 1235  * Called by net80211 when ever there is a change to 80211 state machine
 1236  */
 1237 static int
 1238 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
 1239 {
 1240         struct wpi_vap *wvp = WPI_VAP(vap);
 1241         struct ieee80211com *ic = vap->iv_ic;
 1242         struct ifnet *ifp = ic->ic_ifp;
 1243         struct wpi_softc *sc = ifp->if_softc;
 1244         int error;
 1245 
 1246         DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
 1247                 ieee80211_state_name[vap->iv_state],
 1248                 ieee80211_state_name[nstate], sc->flags));
 1249 
 1250         IEEE80211_UNLOCK(ic);
 1251         WPI_LOCK(sc);
 1252         if (nstate == IEEE80211_S_SCAN && vap->iv_state != IEEE80211_S_INIT) {
 1253                 /*
 1254                  * On !INIT -> SCAN transitions, we need to clear any possible
 1255                  * knowledge about associations.
 1256                  */
 1257                 error = wpi_config(sc);
 1258                 if (error != 0) {
 1259                         device_printf(sc->sc_dev,
 1260                             "%s: device config failed, error %d\n",
 1261                             __func__, error);
 1262                 }
 1263         }
 1264         if (nstate == IEEE80211_S_AUTH ||
 1265             (nstate == IEEE80211_S_ASSOC && vap->iv_state == IEEE80211_S_RUN)) {
 1266                 /*
 1267                  * The node must be registered in the firmware before auth.
 1268                  * Also the associd must be cleared on RUN -> ASSOC
 1269                  * transitions.
 1270                  */
 1271                 error = wpi_auth(sc, vap);
 1272                 if (error != 0) {
 1273                         device_printf(sc->sc_dev,
 1274                             "%s: could not move to auth state, error %d\n",
 1275                             __func__, error);
 1276                 }
 1277         }
 1278         if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
 1279                 error = wpi_run(sc, vap);
 1280                 if (error != 0) {
 1281                         device_printf(sc->sc_dev,
 1282                             "%s: could not move to run state, error %d\n",
 1283                             __func__, error);
 1284                 }
 1285         }
 1286         if (nstate == IEEE80211_S_RUN) {
 1287                 /* RUN -> RUN transition; just restart the timers */
 1288                 wpi_calib_timeout(sc);
 1289                 /* XXX split out rate control timer */
 1290         }
 1291         WPI_UNLOCK(sc);
 1292         IEEE80211_LOCK(ic);
 1293         return wvp->newstate(vap, nstate, arg);
 1294 }
 1295 
 1296 /*
 1297  * Grab exclusive access to NIC memory.
 1298  */
 1299 static void
 1300 wpi_mem_lock(struct wpi_softc *sc)
 1301 {
 1302         int ntries;
 1303         uint32_t tmp;
 1304 
 1305         tmp = WPI_READ(sc, WPI_GPIO_CTL);
 1306         WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
 1307 
 1308         /* spin until we actually get the lock */
 1309         for (ntries = 0; ntries < 100; ntries++) {
 1310                 if ((WPI_READ(sc, WPI_GPIO_CTL) &
 1311                         (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
 1312                         break;
 1313                 DELAY(10);
 1314         }
 1315         if (ntries == 100)
 1316                 device_printf(sc->sc_dev, "could not lock memory\n");
 1317 }
 1318 
 1319 /*
 1320  * Release lock on NIC memory.
 1321  */
 1322 static void
 1323 wpi_mem_unlock(struct wpi_softc *sc)
 1324 {
 1325         uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
 1326         WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
 1327 }
 1328 
 1329 static uint32_t
 1330 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
 1331 {
 1332         WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
 1333         return WPI_READ(sc, WPI_READ_MEM_DATA);
 1334 }
 1335 
 1336 static void
 1337 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
 1338 {
 1339         WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
 1340         WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
 1341 }
 1342 
 1343 static void
 1344 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
 1345     const uint32_t *data, int wlen)
 1346 {
 1347         for (; wlen > 0; wlen--, data++, addr+=4)
 1348                 wpi_mem_write(sc, addr, *data);
 1349 }
 1350 
 1351 /*
 1352  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
 1353  * using the traditional bit-bang method. Data is read up until len bytes have
 1354  * been obtained.
 1355  */
 1356 static uint16_t
 1357 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
 1358 {
 1359         int ntries;
 1360         uint32_t val;
 1361         uint8_t *out = data;
 1362 
 1363         wpi_mem_lock(sc);
 1364 
 1365         for (; len > 0; len -= 2, addr++) {
 1366                 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
 1367 
 1368                 for (ntries = 0; ntries < 10; ntries++) {
 1369                         if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
 1370                                 break;
 1371                         DELAY(5);
 1372                 }
 1373 
 1374                 if (ntries == 10) {
 1375                         device_printf(sc->sc_dev, "could not read EEPROM\n");
 1376                         return ETIMEDOUT;
 1377                 }
 1378 
 1379                 *out++= val >> 16;
 1380                 if (len > 1)
 1381                         *out ++= val >> 24;
 1382         }
 1383 
 1384         wpi_mem_unlock(sc);
 1385 
 1386         return 0;
 1387 }
 1388 
 1389 /*
 1390  * The firmware text and data segments are transferred to the NIC using DMA.
 1391  * The driver just copies the firmware into DMA-safe memory and tells the NIC
 1392  * where to find it.  Once the NIC has copied the firmware into its internal
 1393  * memory, we can free our local copy in the driver.
 1394  */
 1395 static int
 1396 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
 1397 {
 1398         int error, ntries;
 1399 
 1400         DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
 1401 
 1402         size /= sizeof(uint32_t);
 1403 
 1404         wpi_mem_lock(sc);
 1405 
 1406         wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
 1407             (const uint32_t *)fw, size);
 1408 
 1409         wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
 1410         wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
 1411         wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
 1412 
 1413         /* run microcode */
 1414         wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
 1415 
 1416         /* wait while the adapter is busy copying the firmware */
 1417         for (error = 0, ntries = 0; ntries < 1000; ntries++) {
 1418                 uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
 1419                 DPRINTFN(WPI_DEBUG_HW,
 1420                     ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
 1421                      WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
 1422                 if (status & WPI_TX_IDLE(6)) {
 1423                         DPRINTFN(WPI_DEBUG_HW,
 1424                             ("Status Match! - ntries = %d\n", ntries));
 1425                         break;
 1426                 }
 1427                 DELAY(10);
 1428         }
 1429         if (ntries == 1000) {
 1430                 device_printf(sc->sc_dev, "timeout transferring firmware\n");
 1431                 error = ETIMEDOUT;
 1432         }
 1433 
 1434         /* start the microcode executing */
 1435         wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
 1436 
 1437         wpi_mem_unlock(sc);
 1438 
 1439         return (error);
 1440 }
 1441 
 1442 static void
 1443 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
 1444         struct wpi_rx_data *data)
 1445 {
 1446         struct ifnet *ifp = sc->sc_ifp;
 1447         struct ieee80211com *ic = ifp->if_l2com;
 1448         struct wpi_rx_ring *ring = &sc->rxq;
 1449         struct wpi_rx_stat *stat;
 1450         struct wpi_rx_head *head;
 1451         struct wpi_rx_tail *tail;
 1452         struct ieee80211_node *ni;
 1453         struct mbuf *m, *mnew;
 1454         bus_addr_t paddr;
 1455         int error;
 1456 
 1457         stat = (struct wpi_rx_stat *)(desc + 1);
 1458 
 1459         if (stat->len > WPI_STAT_MAXLEN) {
 1460                 device_printf(sc->sc_dev, "invalid rx statistic header\n");
 1461                 ifp->if_ierrors++;
 1462                 return;
 1463         }
 1464 
 1465         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
 1466         head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
 1467         tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
 1468 
 1469         DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
 1470             "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
 1471             le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
 1472             (uintmax_t)le64toh(tail->tstamp)));
 1473 
 1474         /* discard Rx frames with bad CRC early */
 1475         if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
 1476                 DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
 1477                     le32toh(tail->flags)));
 1478                 ifp->if_ierrors++;
 1479                 return;
 1480         }
 1481         if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
 1482                 DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
 1483                     le16toh(head->len)));
 1484                 ifp->if_ierrors++;
 1485                 return;
 1486         }
 1487 
 1488         /* XXX don't need mbuf, just dma buffer */
 1489         mnew = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
 1490         if (mnew == NULL) {
 1491                 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
 1492                     __func__));
 1493                 ifp->if_ierrors++;
 1494                 return;
 1495         }
 1496         bus_dmamap_unload(ring->data_dmat, data->map);
 1497 
 1498         error = bus_dmamap_load(ring->data_dmat, data->map,
 1499             mtod(mnew, caddr_t), MJUMPAGESIZE,
 1500             wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
 1501         if (error != 0 && error != EFBIG) {
 1502                 device_printf(sc->sc_dev,
 1503                     "%s: bus_dmamap_load failed, error %d\n", __func__, error);
 1504                 m_freem(mnew);
 1505                 ifp->if_ierrors++;
 1506                 return;
 1507         }
 1508         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
 1509 
 1510         /* finalize mbuf and swap in new one */
 1511         m = data->m;
 1512         m->m_pkthdr.rcvif = ifp;
 1513         m->m_data = (caddr_t)(head + 1);
 1514         m->m_pkthdr.len = m->m_len = le16toh(head->len);
 1515 
 1516         data->m = mnew;
 1517         /* update Rx descriptor */
 1518         ring->desc[ring->cur] = htole32(paddr);
 1519 
 1520         if (ieee80211_radiotap_active(ic)) {
 1521                 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
 1522 
 1523                 tap->wr_flags = 0;
 1524                 tap->wr_chan_freq =
 1525                         htole16(ic->ic_channels[head->chan].ic_freq);
 1526                 tap->wr_chan_flags =
 1527                         htole16(ic->ic_channels[head->chan].ic_flags);
 1528                 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
 1529                 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
 1530                 tap->wr_tsft = tail->tstamp;
 1531                 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
 1532                 switch (head->rate) {
 1533                 /* CCK rates */
 1534                 case  10: tap->wr_rate =   2; break;
 1535                 case  20: tap->wr_rate =   4; break;
 1536                 case  55: tap->wr_rate =  11; break;
 1537                 case 110: tap->wr_rate =  22; break;
 1538                 /* OFDM rates */
 1539                 case 0xd: tap->wr_rate =  12; break;
 1540                 case 0xf: tap->wr_rate =  18; break;
 1541                 case 0x5: tap->wr_rate =  24; break;
 1542                 case 0x7: tap->wr_rate =  36; break;
 1543                 case 0x9: tap->wr_rate =  48; break;
 1544                 case 0xb: tap->wr_rate =  72; break;
 1545                 case 0x1: tap->wr_rate =  96; break;
 1546                 case 0x3: tap->wr_rate = 108; break;
 1547                 /* unknown rate: should not happen */
 1548                 default:  tap->wr_rate =   0;
 1549                 }
 1550                 if (le16toh(head->flags) & 0x4)
 1551                         tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
 1552         }
 1553 
 1554         WPI_UNLOCK(sc);
 1555 
 1556         ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
 1557         if (ni != NULL) {
 1558                 (void) ieee80211_input(ni, m, stat->rssi, 0);
 1559                 ieee80211_free_node(ni);
 1560         } else
 1561                 (void) ieee80211_input_all(ic, m, stat->rssi, 0);
 1562 
 1563         WPI_LOCK(sc);
 1564 }
 1565 
 1566 static void
 1567 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
 1568 {
 1569         struct ifnet *ifp = sc->sc_ifp;
 1570         struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
 1571         struct wpi_tx_data *txdata = &ring->data[desc->idx];
 1572         struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
 1573         struct ieee80211_node *ni = txdata->ni;
 1574         struct ieee80211vap *vap = ni->ni_vap;
 1575         int retrycnt = 0;
 1576 
 1577         DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
 1578             "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
 1579             stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
 1580             le32toh(stat->status)));
 1581 
 1582         /*
 1583          * Update rate control statistics for the node.
 1584          * XXX we should not count mgmt frames since they're always sent at
 1585          * the lowest available bit-rate.
 1586          * XXX frames w/o ACK shouldn't be used either
 1587          */
 1588         if (stat->ntries > 0) {
 1589                 DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
 1590                 retrycnt = 1;
 1591         }
 1592         ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
 1593             &retrycnt, NULL);
 1594 
 1595         /* XXX oerrors should only count errors !maxtries */
 1596         if ((le32toh(stat->status) & 0xff) != 1)
 1597                 ifp->if_oerrors++;
 1598         else
 1599                 ifp->if_opackets++;
 1600 
 1601         bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
 1602         bus_dmamap_unload(ring->data_dmat, txdata->map);
 1603         /* XXX handle M_TXCB? */
 1604         m_freem(txdata->m);
 1605         txdata->m = NULL;
 1606         ieee80211_free_node(txdata->ni);
 1607         txdata->ni = NULL;
 1608 
 1609         ring->queued--;
 1610 
 1611         sc->sc_tx_timer = 0;
 1612         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 1613         wpi_start_locked(ifp);
 1614 }
 1615 
 1616 static void
 1617 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
 1618 {
 1619         struct wpi_tx_ring *ring = &sc->cmdq;
 1620         struct wpi_tx_data *data;
 1621 
 1622         DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
 1623                                  "type=%s len=%d\n", desc->qid, desc->idx,
 1624                                  desc->flags, wpi_cmd_str(desc->type),
 1625                                  le32toh(desc->len)));
 1626 
 1627         if ((desc->qid & 7) != 4)
 1628                 return; /* not a command ack */
 1629 
 1630         data = &ring->data[desc->idx];
 1631 
 1632         /* if the command was mapped in a mbuf, free it */
 1633         if (data->m != NULL) {
 1634                 bus_dmamap_unload(ring->data_dmat, data->map);
 1635                 m_freem(data->m);
 1636                 data->m = NULL;
 1637         }
 1638 
 1639         sc->flags &= ~WPI_FLAG_BUSY;
 1640         wakeup(&ring->cmd[desc->idx]);
 1641 }
 1642 
 1643 static void
 1644 wpi_notif_intr(struct wpi_softc *sc)
 1645 {
 1646         struct ifnet *ifp = sc->sc_ifp;
 1647         struct ieee80211com *ic = ifp->if_l2com;
 1648         struct wpi_rx_desc *desc;
 1649         struct wpi_rx_data *data;
 1650         uint32_t hw;
 1651 
 1652         bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
 1653             BUS_DMASYNC_POSTREAD);
 1654 
 1655         hw = le32toh(sc->shared->next);
 1656         while (sc->rxq.cur != hw) {
 1657                 data = &sc->rxq.data[sc->rxq.cur];
 1658 
 1659                 bus_dmamap_sync(sc->rxq.data_dmat, data->map,
 1660                     BUS_DMASYNC_POSTREAD);
 1661                 desc = (void *)data->m->m_ext.ext_buf;
 1662 
 1663                 DPRINTFN(WPI_DEBUG_NOTIFY,
 1664                          ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
 1665                           desc->qid,
 1666                           desc->idx,
 1667                           desc->flags,
 1668                           desc->type,
 1669                           le32toh(desc->len)));
 1670 
 1671                 if (!(desc->qid & 0x80))        /* reply to a command */
 1672                         wpi_cmd_intr(sc, desc);
 1673 
 1674                 switch (desc->type) {
 1675                 case WPI_RX_DONE:
 1676                         /* a 802.11 frame was received */
 1677                         wpi_rx_intr(sc, desc, data);
 1678                         break;
 1679 
 1680                 case WPI_TX_DONE:
 1681                         /* a 802.11 frame has been transmitted */
 1682                         wpi_tx_intr(sc, desc);
 1683                         break;
 1684 
 1685                 case WPI_UC_READY:
 1686                 {
 1687                         struct wpi_ucode_info *uc =
 1688                                 (struct wpi_ucode_info *)(desc + 1);
 1689 
 1690                         /* the microcontroller is ready */
 1691                         DPRINTF(("microcode alive notification version %x "
 1692                                 "alive %x\n", le32toh(uc->version),
 1693                                 le32toh(uc->valid)));
 1694 
 1695                         if (le32toh(uc->valid) != 1) {
 1696                                 device_printf(sc->sc_dev,
 1697                                     "microcontroller initialization failed\n");
 1698                                 wpi_stop_locked(sc);
 1699                         }
 1700                         break;
 1701                 }
 1702                 case WPI_STATE_CHANGED:
 1703                 {
 1704                         uint32_t *status = (uint32_t *)(desc + 1);
 1705 
 1706                         /* enabled/disabled notification */
 1707                         DPRINTF(("state changed to %x\n", le32toh(*status)));
 1708 
 1709                         if (le32toh(*status) & 1) {
 1710                                 device_printf(sc->sc_dev,
 1711                                     "Radio transmitter is switched off\n");
 1712                                 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
 1713                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1714                                 /* Disable firmware commands */
 1715                                 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
 1716                         }
 1717                         break;
 1718                 }
 1719                 case WPI_START_SCAN:
 1720                 {
 1721 #ifdef WPI_DEBUG
 1722                         struct wpi_start_scan *scan =
 1723                                 (struct wpi_start_scan *)(desc + 1);
 1724 #endif
 1725 
 1726                         DPRINTFN(WPI_DEBUG_SCANNING,
 1727                                  ("scanning channel %d status %x\n",
 1728                             scan->chan, le32toh(scan->status)));
 1729                         break;
 1730                 }
 1731                 case WPI_STOP_SCAN:
 1732                 {
 1733 #ifdef WPI_DEBUG
 1734                         struct wpi_stop_scan *scan =
 1735                                 (struct wpi_stop_scan *)(desc + 1);
 1736 #endif
 1737                         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 1738 
 1739                         DPRINTFN(WPI_DEBUG_SCANNING,
 1740                             ("scan finished nchan=%d status=%d chan=%d\n",
 1741                              scan->nchan, scan->status, scan->chan));
 1742 
 1743                         sc->sc_scan_timer = 0;
 1744                         ieee80211_scan_next(vap);
 1745                         break;
 1746                 }
 1747                 case WPI_MISSED_BEACON:
 1748                 {
 1749                         struct wpi_missed_beacon *beacon =
 1750                                 (struct wpi_missed_beacon *)(desc + 1);
 1751                         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 1752 
 1753                         if (le32toh(beacon->consecutive) >=
 1754                             vap->iv_bmissthreshold) {
 1755                                 DPRINTF(("Beacon miss: %u >= %u\n",
 1756                                          le32toh(beacon->consecutive),
 1757                                          vap->iv_bmissthreshold));
 1758                                 ieee80211_beacon_miss(ic);
 1759                         }
 1760                         break;
 1761                 }
 1762                 }
 1763 
 1764                 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
 1765         }
 1766 
 1767         /* tell the firmware what we have processed */
 1768         hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
 1769         WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
 1770 }
 1771 
 1772 static void
 1773 wpi_intr(void *arg)
 1774 {
 1775         struct wpi_softc *sc = arg;
 1776         uint32_t r;
 1777 
 1778         WPI_LOCK(sc);
 1779 
 1780         r = WPI_READ(sc, WPI_INTR);
 1781         if (r == 0 || r == 0xffffffff) {
 1782                 WPI_UNLOCK(sc);
 1783                 return;
 1784         }
 1785 
 1786         /* disable interrupts */
 1787         WPI_WRITE(sc, WPI_MASK, 0);
 1788         /* ack interrupts */
 1789         WPI_WRITE(sc, WPI_INTR, r);
 1790 
 1791         if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
 1792                 struct ifnet *ifp = sc->sc_ifp;
 1793                 struct ieee80211com *ic = ifp->if_l2com;
 1794                 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 1795 
 1796                 device_printf(sc->sc_dev, "fatal firmware error\n");
 1797                 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
 1798                                 "(Hardware Error)"));
 1799                 if (vap != NULL)
 1800                         ieee80211_cancel_scan(vap);
 1801                 ieee80211_runtask(ic, &sc->sc_restarttask);
 1802                 sc->flags &= ~WPI_FLAG_BUSY;
 1803                 WPI_UNLOCK(sc);
 1804                 return;
 1805         }
 1806 
 1807         if (r & WPI_RX_INTR)
 1808                 wpi_notif_intr(sc);
 1809 
 1810         if (r & WPI_ALIVE_INTR) /* firmware initialized */
 1811                 wakeup(sc);
 1812 
 1813         /* re-enable interrupts */
 1814         if (sc->sc_ifp->if_flags & IFF_UP)
 1815                 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
 1816 
 1817         WPI_UNLOCK(sc);
 1818 }
 1819 
 1820 static uint8_t
 1821 wpi_plcp_signal(int rate)
 1822 {
 1823         switch (rate) {
 1824         /* CCK rates (returned values are device-dependent) */
 1825         case 2:         return 10;
 1826         case 4:         return 20;
 1827         case 11:        return 55;
 1828         case 22:        return 110;
 1829 
 1830         /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
 1831         /* R1-R4 (ral/ural is R4-R1) */
 1832         case 12:        return 0xd;
 1833         case 18:        return 0xf;
 1834         case 24:        return 0x5;
 1835         case 36:        return 0x7;
 1836         case 48:        return 0x9;
 1837         case 72:        return 0xb;
 1838         case 96:        return 0x1;
 1839         case 108:       return 0x3;
 1840 
 1841         /* unsupported rates (should not get there) */
 1842         default:        return 0;
 1843         }
 1844 }
 1845 
 1846 /* quickly determine if a given rate is CCK or OFDM */
 1847 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
 1848 
 1849 /*
 1850  * Construct the data packet for a transmit buffer and acutally put
 1851  * the buffer onto the transmit ring, kicking the card to process the
 1852  * the buffer.
 1853  */
 1854 static int
 1855 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
 1856         int ac)
 1857 {
 1858         struct ieee80211vap *vap = ni->ni_vap;
 1859         struct ifnet *ifp = sc->sc_ifp;
 1860         struct ieee80211com *ic = ifp->if_l2com;
 1861         const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
 1862         struct wpi_tx_ring *ring = &sc->txq[ac];
 1863         struct wpi_tx_desc *desc;
 1864         struct wpi_tx_data *data;
 1865         struct wpi_tx_cmd *cmd;
 1866         struct wpi_cmd_data *tx;
 1867         struct ieee80211_frame *wh;
 1868         const struct ieee80211_txparam *tp;
 1869         struct ieee80211_key *k;
 1870         struct mbuf *mnew;
 1871         int i, error, nsegs, rate, hdrlen, ismcast;
 1872         bus_dma_segment_t segs[WPI_MAX_SCATTER];
 1873 
 1874         desc = &ring->desc[ring->cur];
 1875         data = &ring->data[ring->cur];
 1876 
 1877         wh = mtod(m0, struct ieee80211_frame *);
 1878 
 1879         hdrlen = ieee80211_hdrsize(wh);
 1880         ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
 1881 
 1882         if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
 1883                 k = ieee80211_crypto_encap(ni, m0);
 1884                 if (k == NULL) {
 1885                         m_freem(m0);
 1886                         return ENOBUFS;
 1887                 }
 1888                 /* packet header may have moved, reset our local pointer */
 1889                 wh = mtod(m0, struct ieee80211_frame *);
 1890         }
 1891 
 1892         cmd = &ring->cmd[ring->cur];
 1893         cmd->code = WPI_CMD_TX_DATA;
 1894         cmd->flags = 0;
 1895         cmd->qid = ring->qid;
 1896         cmd->idx = ring->cur;
 1897 
 1898         tx = (struct wpi_cmd_data *)cmd->data;
 1899         tx->flags = htole32(WPI_TX_AUTO_SEQ);
 1900         tx->timeout = htole16(0);
 1901         tx->ofdm_mask = 0xff;
 1902         tx->cck_mask = 0x0f;
 1903         tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
 1904         tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
 1905         tx->len = htole16(m0->m_pkthdr.len);
 1906 
 1907         if (!ismcast) {
 1908                 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
 1909                     !cap->cap_wmeParams[ac].wmep_noackPolicy)
 1910                         tx->flags |= htole32(WPI_TX_NEED_ACK);
 1911                 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
 1912                         tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
 1913                         tx->rts_ntries = 7;
 1914                 }
 1915         }
 1916         /* pick a rate */
 1917         tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
 1918         if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
 1919                 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
 1920                 /* tell h/w to set timestamp in probe responses */
 1921                 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
 1922                         tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
 1923                 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
 1924                     subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
 1925                         tx->timeout = htole16(3);
 1926                 else
 1927                         tx->timeout = htole16(2);
 1928                 rate = tp->mgmtrate;
 1929         } else if (ismcast) {
 1930                 rate = tp->mcastrate;
 1931         } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
 1932                 rate = tp->ucastrate;
 1933         } else {
 1934                 (void) ieee80211_ratectl_rate(ni, NULL, 0);
 1935                 rate = ni->ni_txrate;
 1936         }
 1937         tx->rate = wpi_plcp_signal(rate);
 1938 
 1939         /* be very persistant at sending frames out */
 1940 #if 0
 1941         tx->data_ntries = tp->maxretry;
 1942 #else
 1943         tx->data_ntries = 15;           /* XXX way too high */
 1944 #endif
 1945 
 1946         if (ieee80211_radiotap_active_vap(vap)) {
 1947                 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
 1948                 tap->wt_flags = 0;
 1949                 tap->wt_rate = rate;
 1950                 tap->wt_hwqueue = ac;
 1951                 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
 1952                         tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
 1953 
 1954                 ieee80211_radiotap_tx(vap, m0);
 1955         }
 1956 
 1957         /* save and trim IEEE802.11 header */
 1958         m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
 1959         m_adj(m0, hdrlen);
 1960 
 1961         error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
 1962             &nsegs, BUS_DMA_NOWAIT);
 1963         if (error != 0 && error != EFBIG) {
 1964                 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
 1965                     error);
 1966                 m_freem(m0);
 1967                 return error;
 1968         }
 1969         if (error != 0) {
 1970                 /* XXX use m_collapse */
 1971                 mnew = m_defrag(m0, M_NOWAIT);
 1972                 if (mnew == NULL) {
 1973                         device_printf(sc->sc_dev,
 1974                             "could not defragment mbuf\n");
 1975                         m_freem(m0);
 1976                         return ENOBUFS;
 1977                 }
 1978                 m0 = mnew;
 1979 
 1980                 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
 1981                     m0, segs, &nsegs, BUS_DMA_NOWAIT);
 1982                 if (error != 0) {
 1983                         device_printf(sc->sc_dev,
 1984                             "could not map mbuf (error %d)\n", error);
 1985                         m_freem(m0);
 1986                         return error;
 1987                 }
 1988         }
 1989 
 1990         data->m = m0;
 1991         data->ni = ni;
 1992 
 1993         DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
 1994             ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
 1995 
 1996         /* first scatter/gather segment is used by the tx data command */
 1997         desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
 1998             (1 + nsegs) << 24);
 1999         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
 2000             ring->cur * sizeof (struct wpi_tx_cmd));
 2001         desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
 2002         for (i = 1; i <= nsegs; i++) {
 2003                 desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
 2004                 desc->segs[i].len  = htole32(segs[i - 1].ds_len);
 2005         }
 2006 
 2007         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
 2008         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
 2009             BUS_DMASYNC_PREWRITE);
 2010 
 2011         ring->queued++;
 2012 
 2013         /* kick ring */
 2014         ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
 2015         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
 2016 
 2017         return 0;
 2018 }
 2019 
 2020 /**
 2021  * Process data waiting to be sent on the IFNET output queue
 2022  */
 2023 static void
 2024 wpi_start(struct ifnet *ifp)
 2025 {
 2026         struct wpi_softc *sc = ifp->if_softc;
 2027 
 2028         WPI_LOCK(sc);
 2029         wpi_start_locked(ifp);
 2030         WPI_UNLOCK(sc);
 2031 }
 2032 
 2033 static void
 2034 wpi_start_locked(struct ifnet *ifp)
 2035 {
 2036         struct wpi_softc *sc = ifp->if_softc;
 2037         struct ieee80211_node *ni;
 2038         struct mbuf *m;
 2039         int ac;
 2040 
 2041         WPI_LOCK_ASSERT(sc);
 2042 
 2043         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
 2044                 return;
 2045 
 2046         for (;;) {
 2047                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
 2048                 if (m == NULL)
 2049                         break;
 2050                 ac = M_WME_GETAC(m);
 2051                 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
 2052                         /* there is no place left in this ring */
 2053                         IFQ_DRV_PREPEND(&ifp->if_snd, m);
 2054                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 2055                         break;
 2056                 }
 2057                 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
 2058                 if (wpi_tx_data(sc, m, ni, ac) != 0) {
 2059                         ieee80211_free_node(ni);
 2060                         ifp->if_oerrors++;
 2061                         break;
 2062                 }
 2063                 sc->sc_tx_timer = 5;
 2064         }
 2065 }
 2066 
 2067 static int
 2068 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
 2069         const struct ieee80211_bpf_params *params)
 2070 {
 2071         struct ieee80211com *ic = ni->ni_ic;
 2072         struct ifnet *ifp = ic->ic_ifp;
 2073         struct wpi_softc *sc = ifp->if_softc;
 2074 
 2075         /* prevent management frames from being sent if we're not ready */
 2076         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
 2077                 m_freem(m);
 2078                 ieee80211_free_node(ni);
 2079                 return ENETDOWN;
 2080         }
 2081         WPI_LOCK(sc);
 2082 
 2083         /* management frames go into ring 0 */
 2084         if (sc->txq[0].queued > sc->txq[0].count - 8) {
 2085                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 2086                 m_freem(m);
 2087                 WPI_UNLOCK(sc);
 2088                 ieee80211_free_node(ni);
 2089                 return ENOBUFS;         /* XXX */
 2090         }
 2091 
 2092         ifp->if_opackets++;
 2093         if (wpi_tx_data(sc, m, ni, 0) != 0)
 2094                 goto bad;
 2095         sc->sc_tx_timer = 5;
 2096         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
 2097 
 2098         WPI_UNLOCK(sc);
 2099         return 0;
 2100 bad:
 2101         ifp->if_oerrors++;
 2102         WPI_UNLOCK(sc);
 2103         ieee80211_free_node(ni);
 2104         return EIO;             /* XXX */
 2105 }
 2106 
 2107 static int
 2108 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
 2109 {
 2110         struct wpi_softc *sc = ifp->if_softc;
 2111         struct ieee80211com *ic = ifp->if_l2com;
 2112         struct ifreq *ifr = (struct ifreq *) data;
 2113         int error = 0, startall = 0;
 2114 
 2115         switch (cmd) {
 2116         case SIOCSIFFLAGS:
 2117                 WPI_LOCK(sc);
 2118                 if ((ifp->if_flags & IFF_UP)) {
 2119                         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
 2120                                 wpi_init_locked(sc, 0);
 2121                                 startall = 1;
 2122                         }
 2123                 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
 2124                            (sc->flags & WPI_FLAG_HW_RADIO_OFF))
 2125                         wpi_stop_locked(sc);
 2126                 WPI_UNLOCK(sc);
 2127                 if (startall)
 2128                         ieee80211_start_all(ic);
 2129                 break;
 2130         case SIOCGIFMEDIA:
 2131                 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
 2132                 break;
 2133         case SIOCGIFADDR:
 2134                 error = ether_ioctl(ifp, cmd, data);
 2135                 break;
 2136         default:
 2137                 error = EINVAL;
 2138                 break;
 2139         }
 2140         return error;
 2141 }
 2142 
 2143 /*
 2144  * Extract various information from EEPROM.
 2145  */
 2146 static void
 2147 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
 2148 {
 2149         int i;
 2150 
 2151         /* read the hardware capabilities, revision and SKU type */
 2152         wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
 2153         wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
 2154         wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
 2155 
 2156         /* read the regulatory domain */
 2157         wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
 2158 
 2159         /* read in the hw MAC address */
 2160         wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
 2161 
 2162         /* read the list of authorized channels */
 2163         for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
 2164                 wpi_read_eeprom_channels(sc,i);
 2165 
 2166         /* read the power level calibration info for each group */
 2167         for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
 2168                 wpi_read_eeprom_group(sc,i);
 2169 }
 2170 
 2171 /*
 2172  * Send a command to the firmware.
 2173  */
 2174 static int
 2175 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
 2176 {
 2177         struct wpi_tx_ring *ring = &sc->cmdq;
 2178         struct wpi_tx_desc *desc;
 2179         struct wpi_tx_cmd *cmd;
 2180 
 2181 #ifdef WPI_DEBUG
 2182         if (!async) {
 2183                 WPI_LOCK_ASSERT(sc);
 2184         }
 2185 #endif
 2186 
 2187         DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
 2188                     async));
 2189 
 2190         if (sc->flags & WPI_FLAG_BUSY) {
 2191                 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
 2192                     __func__, code);
 2193                 return EAGAIN;
 2194         }
 2195         sc->flags|= WPI_FLAG_BUSY;
 2196 
 2197         KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
 2198             code, size));
 2199 
 2200         desc = &ring->desc[ring->cur];
 2201         cmd = &ring->cmd[ring->cur];
 2202 
 2203         cmd->code = code;
 2204         cmd->flags = 0;
 2205         cmd->qid = ring->qid;
 2206         cmd->idx = ring->cur;
 2207         memcpy(cmd->data, buf, size);
 2208 
 2209         desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
 2210         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
 2211                 ring->cur * sizeof (struct wpi_tx_cmd));
 2212         desc->segs[0].len  = htole32(4 + size);
 2213 
 2214         /* kick cmd ring */
 2215         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
 2216         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
 2217 
 2218         if (async) {
 2219                 sc->flags &= ~ WPI_FLAG_BUSY;
 2220                 return 0;
 2221         }
 2222 
 2223         return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
 2224 }
 2225 
 2226 static int
 2227 wpi_wme_update(struct ieee80211com *ic)
 2228 {
 2229 #define WPI_EXP2(v)     htole16((1 << (v)) - 1)
 2230 #define WPI_USEC(v)     htole16(IEEE80211_TXOP_TO_US(v))
 2231         struct wpi_softc *sc = ic->ic_ifp->if_softc;
 2232         const struct wmeParams *wmep;
 2233         struct wpi_wme_setup wme;
 2234         int ac;
 2235 
 2236         /* don't override default WME values if WME is not actually enabled */
 2237         if (!(ic->ic_flags & IEEE80211_F_WME))
 2238                 return 0;
 2239 
 2240         wme.flags = 0;
 2241         for (ac = 0; ac < WME_NUM_AC; ac++) {
 2242                 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
 2243                 wme.ac[ac].aifsn = wmep->wmep_aifsn;
 2244                 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
 2245                 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
 2246                 wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
 2247 
 2248                 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
 2249                     "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
 2250                     wme.ac[ac].cwmax, wme.ac[ac].txop));
 2251         }
 2252         return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
 2253 #undef WPI_USEC
 2254 #undef WPI_EXP2
 2255 }
 2256 
 2257 /*
 2258  * Configure h/w multi-rate retries.
 2259  */
 2260 static int
 2261 wpi_mrr_setup(struct wpi_softc *sc)
 2262 {
 2263         struct ifnet *ifp = sc->sc_ifp;
 2264         struct ieee80211com *ic = ifp->if_l2com;
 2265         struct wpi_mrr_setup mrr;
 2266         int i, error;
 2267 
 2268         memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
 2269 
 2270         /* CCK rates (not used with 802.11a) */
 2271         for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
 2272                 mrr.rates[i].flags = 0;
 2273                 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
 2274                 /* fallback to the immediate lower CCK rate (if any) */
 2275                 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
 2276                 /* try one time at this rate before falling back to "next" */
 2277                 mrr.rates[i].ntries = 1;
 2278         }
 2279 
 2280         /* OFDM rates (not used with 802.11b) */
 2281         for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
 2282                 mrr.rates[i].flags = 0;
 2283                 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
 2284                 /* fallback to the immediate lower OFDM rate (if any) */
 2285                 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
 2286                 mrr.rates[i].next = (i == WPI_OFDM6) ?
 2287                     ((ic->ic_curmode == IEEE80211_MODE_11A) ?
 2288                         WPI_OFDM6 : WPI_CCK2) :
 2289                     i - 1;
 2290                 /* try one time at this rate before falling back to "next" */
 2291                 mrr.rates[i].ntries = 1;
 2292         }
 2293 
 2294         /* setup MRR for control frames */
 2295         mrr.which = WPI_MRR_CTL;
 2296         error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
 2297         if (error != 0) {
 2298                 device_printf(sc->sc_dev,
 2299                     "could not setup MRR for control frames\n");
 2300                 return error;
 2301         }
 2302 
 2303         /* setup MRR for data frames */
 2304         mrr.which = WPI_MRR_DATA;
 2305         error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
 2306         if (error != 0) {
 2307                 device_printf(sc->sc_dev,
 2308                     "could not setup MRR for data frames\n");
 2309                 return error;
 2310         }
 2311 
 2312         return 0;
 2313 }
 2314 
 2315 static void
 2316 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
 2317 {
 2318         struct wpi_cmd_led led;
 2319 
 2320         led.which = which;
 2321         led.unit = htole32(100000);     /* on/off in unit of 100ms */
 2322         led.off = off;
 2323         led.on = on;
 2324 
 2325         (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
 2326 }
 2327 
 2328 static void
 2329 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
 2330 {
 2331         struct wpi_cmd_tsf tsf;
 2332         uint64_t val, mod;
 2333 
 2334         memset(&tsf, 0, sizeof tsf);
 2335         memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
 2336         tsf.bintval = htole16(ni->ni_intval);
 2337         tsf.lintval = htole16(10);
 2338 
 2339         /* compute remaining time until next beacon */
 2340         val = (uint64_t)ni->ni_intval  * 1024;  /* msec -> usec */
 2341         mod = le64toh(tsf.tstamp) % val;
 2342         tsf.binitval = htole32((uint32_t)(val - mod));
 2343 
 2344         if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
 2345                 device_printf(sc->sc_dev, "could not enable TSF\n");
 2346 }
 2347 
 2348 #if 0
 2349 /*
 2350  * Build a beacon frame that the firmware will broadcast periodically in
 2351  * IBSS or HostAP modes.
 2352  */
 2353 static int
 2354 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
 2355 {
 2356         struct ifnet *ifp = sc->sc_ifp;
 2357         struct ieee80211com *ic = ifp->if_l2com;
 2358         struct wpi_tx_ring *ring = &sc->cmdq;
 2359         struct wpi_tx_desc *desc;
 2360         struct wpi_tx_data *data;
 2361         struct wpi_tx_cmd *cmd;
 2362         struct wpi_cmd_beacon *bcn;
 2363         struct ieee80211_beacon_offsets bo;
 2364         struct mbuf *m0;
 2365         bus_addr_t physaddr;
 2366         int error;
 2367 
 2368         desc = &ring->desc[ring->cur];
 2369         data = &ring->data[ring->cur];
 2370 
 2371         m0 = ieee80211_beacon_alloc(ic, ni, &bo);
 2372         if (m0 == NULL) {
 2373                 device_printf(sc->sc_dev, "could not allocate beacon frame\n");
 2374                 return ENOMEM;
 2375         }
 2376 
 2377         cmd = &ring->cmd[ring->cur];
 2378         cmd->code = WPI_CMD_SET_BEACON;
 2379         cmd->flags = 0;
 2380         cmd->qid = ring->qid;
 2381         cmd->idx = ring->cur;
 2382 
 2383         bcn = (struct wpi_cmd_beacon *)cmd->data;
 2384         memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
 2385         bcn->id = WPI_ID_BROADCAST;
 2386         bcn->ofdm_mask = 0xff;
 2387         bcn->cck_mask = 0x0f;
 2388         bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
 2389         bcn->len = htole16(m0->m_pkthdr.len);
 2390         bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
 2391                 wpi_plcp_signal(12) : wpi_plcp_signal(2);
 2392         bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
 2393 
 2394         /* save and trim IEEE802.11 header */
 2395         m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
 2396         m_adj(m0, sizeof (struct ieee80211_frame));
 2397 
 2398         /* assume beacon frame is contiguous */
 2399         error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
 2400             m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
 2401         if (error != 0) {
 2402                 device_printf(sc->sc_dev, "could not map beacon\n");
 2403                 m_freem(m0);
 2404                 return error;
 2405         }
 2406 
 2407         data->m = m0;
 2408 
 2409         /* first scatter/gather segment is used by the beacon command */
 2410         desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
 2411         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
 2412                 ring->cur * sizeof (struct wpi_tx_cmd));
 2413         desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
 2414         desc->segs[1].addr = htole32(physaddr);
 2415         desc->segs[1].len  = htole32(m0->m_pkthdr.len);
 2416 
 2417         /* kick cmd ring */
 2418         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
 2419         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
 2420 
 2421         return 0;
 2422 }
 2423 #endif
 2424 
 2425 static int
 2426 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
 2427 {
 2428         struct ieee80211com *ic = vap->iv_ic;
 2429         struct ieee80211_node *ni = vap->iv_bss;
 2430         struct wpi_node_info node;
 2431         int error;
 2432 
 2433 
 2434         /* update adapter's configuration */
 2435         sc->config.associd = 0;
 2436         sc->config.filter &= ~htole32(WPI_FILTER_BSS);
 2437         IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
 2438         sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
 2439         if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
 2440                 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
 2441                     WPI_CONFIG_24GHZ);
 2442         } else {
 2443                 sc->config.flags &= ~htole32(WPI_CONFIG_AUTO |
 2444                     WPI_CONFIG_24GHZ);
 2445         }
 2446         if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
 2447                 sc->config.cck_mask  = 0;
 2448                 sc->config.ofdm_mask = 0x15;
 2449         } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
 2450                 sc->config.cck_mask  = 0x03;
 2451                 sc->config.ofdm_mask = 0;
 2452         } else {
 2453                 /* XXX assume 802.11b/g */
 2454                 sc->config.cck_mask  = 0x0f;
 2455                 sc->config.ofdm_mask = 0x15;
 2456         }
 2457 
 2458         DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
 2459                 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
 2460         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
 2461                 sizeof (struct wpi_config), 1);
 2462         if (error != 0) {
 2463                 device_printf(sc->sc_dev, "could not configure\n");
 2464                 return error;
 2465         }
 2466 
 2467         /* configuration has changed, set Tx power accordingly */
 2468         if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
 2469                 device_printf(sc->sc_dev, "could not set Tx power\n");
 2470                 return error;
 2471         }
 2472 
 2473         /* add default node */
 2474         memset(&node, 0, sizeof node);
 2475         IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
 2476         node.id = WPI_ID_BSS;
 2477         node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
 2478             wpi_plcp_signal(12) : wpi_plcp_signal(2);
 2479         node.action = htole32(WPI_ACTION_SET_RATE);
 2480         node.antenna = WPI_ANTENNA_BOTH;
 2481         error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
 2482         if (error != 0)
 2483                 device_printf(sc->sc_dev, "could not add BSS node\n");
 2484 
 2485         return (error);
 2486 }
 2487 
 2488 static int
 2489 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
 2490 {
 2491         struct ieee80211com *ic = vap->iv_ic;
 2492         struct ieee80211_node *ni = vap->iv_bss;
 2493         int error;
 2494 
 2495         if (vap->iv_opmode == IEEE80211_M_MONITOR) {
 2496                 /* link LED blinks while monitoring */
 2497                 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
 2498                 return 0;
 2499         }
 2500 
 2501         wpi_enable_tsf(sc, ni);
 2502 
 2503         /* update adapter's configuration */
 2504         sc->config.associd = htole16(ni->ni_associd & ~0xc000);
 2505         /* short preamble/slot time are negotiated when associating */
 2506         sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
 2507             WPI_CONFIG_SHSLOT);
 2508         if (ic->ic_flags & IEEE80211_F_SHSLOT)
 2509                 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
 2510         if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
 2511                 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
 2512         sc->config.filter |= htole32(WPI_FILTER_BSS);
 2513 
 2514         /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
 2515 
 2516         DPRINTF(("config chan %d flags %x\n", sc->config.chan,
 2517                     sc->config.flags));
 2518         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
 2519                     wpi_config), 1);
 2520         if (error != 0) {
 2521                 device_printf(sc->sc_dev, "could not update configuration\n");
 2522                 return error;
 2523         }
 2524 
 2525         error = wpi_set_txpower(sc, ni->ni_chan, 1);
 2526         if (error != 0) {
 2527                 device_printf(sc->sc_dev, "could set txpower\n");
 2528                 return error;
 2529         }
 2530 
 2531         /* link LED always on while associated */
 2532         wpi_set_led(sc, WPI_LED_LINK, 0, 1);
 2533 
 2534         /* start automatic rate control timer */
 2535         callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
 2536 
 2537         return (error);
 2538 }
 2539 
 2540 /*
 2541  * Send a scan request to the firmware.  Since this command is huge, we map it
 2542  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
 2543  * much of this code is similar to that in wpi_cmd but because we must manually
 2544  * construct the probe & channels, we duplicate what's needed here. XXX In the
 2545  * future, this function should be modified to use wpi_cmd to help cleanup the
 2546  * code base.
 2547  */
 2548 static int
 2549 wpi_scan(struct wpi_softc *sc)
 2550 {
 2551         struct ifnet *ifp = sc->sc_ifp;
 2552         struct ieee80211com *ic = ifp->if_l2com;
 2553         struct ieee80211_scan_state *ss = ic->ic_scan;
 2554         struct wpi_tx_ring *ring = &sc->cmdq;
 2555         struct wpi_tx_desc *desc;
 2556         struct wpi_tx_data *data;
 2557         struct wpi_tx_cmd *cmd;
 2558         struct wpi_scan_hdr *hdr;
 2559         struct wpi_scan_chan *chan;
 2560         struct ieee80211_frame *wh;
 2561         struct ieee80211_rateset *rs;
 2562         struct ieee80211_channel *c;
 2563         enum ieee80211_phymode mode;
 2564         uint8_t *frm;
 2565         int nrates, pktlen, error, i, nssid;
 2566         bus_addr_t physaddr;
 2567 
 2568         desc = &ring->desc[ring->cur];
 2569         data = &ring->data[ring->cur];
 2570 
 2571         data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
 2572         if (data->m == NULL) {
 2573                 device_printf(sc->sc_dev,
 2574                     "could not allocate mbuf for scan command\n");
 2575                 return ENOMEM;
 2576         }
 2577 
 2578         cmd = mtod(data->m, struct wpi_tx_cmd *);
 2579         cmd->code = WPI_CMD_SCAN;
 2580         cmd->flags = 0;
 2581         cmd->qid = ring->qid;
 2582         cmd->idx = ring->cur;
 2583 
 2584         hdr = (struct wpi_scan_hdr *)cmd->data;
 2585         memset(hdr, 0, sizeof(struct wpi_scan_hdr));
 2586 
 2587         /*
 2588          * Move to the next channel if no packets are received within 5 msecs
 2589          * after sending the probe request (this helps to reduce the duration
 2590          * of active scans).
 2591          */
 2592         hdr->quiet = htole16(5);
 2593         hdr->threshold = htole16(1);
 2594 
 2595         if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
 2596                 /* send probe requests at 6Mbps */
 2597                 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
 2598 
 2599                 /* Enable crc checking */
 2600                 hdr->promotion = htole16(1);
 2601         } else {
 2602                 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
 2603                 /* send probe requests at 1Mbps */
 2604                 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
 2605         }
 2606         hdr->tx.id = WPI_ID_BROADCAST;
 2607         hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
 2608         hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
 2609 
 2610         memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
 2611         nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
 2612         for (i = 0; i < nssid; i++) {
 2613                 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
 2614                 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
 2615                 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
 2616                     hdr->scan_essids[i].esslen);
 2617 #ifdef WPI_DEBUG
 2618                 if (wpi_debug & WPI_DEBUG_SCANNING) {
 2619                         printf("Scanning Essid: ");
 2620                         ieee80211_print_essid(hdr->scan_essids[i].essid,
 2621                             hdr->scan_essids[i].esslen);
 2622                         printf("\n");
 2623                 }
 2624 #endif
 2625         }
 2626 
 2627         /*
 2628          * Build a probe request frame.  Most of the following code is a
 2629          * copy & paste of what is done in net80211.
 2630          */
 2631         wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
 2632         wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
 2633                 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
 2634         wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
 2635         IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
 2636         IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
 2637         IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
 2638         *(u_int16_t *)&wh->i_dur[0] = 0;        /* filled by h/w */
 2639         *(u_int16_t *)&wh->i_seq[0] = 0;        /* filled by h/w */
 2640 
 2641         frm = (uint8_t *)(wh + 1);
 2642 
 2643         /* add essid IE, the hardware will fill this in for us */
 2644         *frm++ = IEEE80211_ELEMID_SSID;
 2645         *frm++ = 0;
 2646 
 2647         mode = ieee80211_chan2mode(ic->ic_curchan);
 2648         rs = &ic->ic_sup_rates[mode];
 2649 
 2650         /* add supported rates IE */
 2651         *frm++ = IEEE80211_ELEMID_RATES;
 2652         nrates = rs->rs_nrates;
 2653         if (nrates > IEEE80211_RATE_SIZE)
 2654                 nrates = IEEE80211_RATE_SIZE;
 2655         *frm++ = nrates;
 2656         memcpy(frm, rs->rs_rates, nrates);
 2657         frm += nrates;
 2658 
 2659         /* add supported xrates IE */
 2660         if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
 2661                 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
 2662                 *frm++ = IEEE80211_ELEMID_XRATES;
 2663                 *frm++ = nrates;
 2664                 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
 2665                 frm += nrates;
 2666         }
 2667 
 2668         /* setup length of probe request */
 2669         hdr->tx.len = htole16(frm - (uint8_t *)wh);
 2670 
 2671         /*
 2672          * Construct information about the channel that we
 2673          * want to scan. The firmware expects this to be directly
 2674          * after the scan probe request
 2675          */
 2676         c = ic->ic_curchan;
 2677         chan = (struct wpi_scan_chan *)frm;
 2678         chan->chan = ieee80211_chan2ieee(ic, c);
 2679         chan->flags = 0;
 2680         if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
 2681                 chan->flags |= WPI_CHAN_ACTIVE;
 2682                 if (nssid != 0)
 2683                         chan->flags |= WPI_CHAN_DIRECT;
 2684         }
 2685         chan->gain_dsp = 0x6e; /* Default level */
 2686         if (IEEE80211_IS_CHAN_5GHZ(c)) {
 2687                 chan->active = htole16(10);
 2688                 chan->passive = htole16(ss->ss_maxdwell);
 2689                 chan->gain_radio = 0x3b;
 2690         } else {
 2691                 chan->active = htole16(20);
 2692                 chan->passive = htole16(ss->ss_maxdwell);
 2693                 chan->gain_radio = 0x28;
 2694         }
 2695 
 2696         DPRINTFN(WPI_DEBUG_SCANNING,
 2697             ("Scanning %u Passive: %d\n",
 2698              chan->chan,
 2699              c->ic_flags & IEEE80211_CHAN_PASSIVE));
 2700 
 2701         hdr->nchan++;
 2702         chan++;
 2703 
 2704         frm += sizeof (struct wpi_scan_chan);
 2705 #if 0
 2706         // XXX All Channels....
 2707         for (c  = &ic->ic_channels[1];
 2708              c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
 2709                 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
 2710                         continue;
 2711 
 2712                 chan->chan = ieee80211_chan2ieee(ic, c);
 2713                 chan->flags = 0;
 2714                 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
 2715                     chan->flags |= WPI_CHAN_ACTIVE;
 2716                     if (ic->ic_des_ssid[0].len != 0)
 2717                         chan->flags |= WPI_CHAN_DIRECT;
 2718                 }
 2719                 chan->gain_dsp = 0x6e; /* Default level */
 2720                 if (IEEE80211_IS_CHAN_5GHZ(c)) {
 2721                         chan->active = htole16(10);
 2722                         chan->passive = htole16(110);
 2723                         chan->gain_radio = 0x3b;
 2724                 } else {
 2725                         chan->active = htole16(20);
 2726                         chan->passive = htole16(120);
 2727                         chan->gain_radio = 0x28;
 2728                 }
 2729 
 2730                 DPRINTFN(WPI_DEBUG_SCANNING,
 2731                          ("Scanning %u Passive: %d\n",
 2732                           chan->chan,
 2733                           c->ic_flags & IEEE80211_CHAN_PASSIVE));
 2734 
 2735                 hdr->nchan++;
 2736                 chan++;
 2737 
 2738                 frm += sizeof (struct wpi_scan_chan);
 2739         }
 2740 #endif
 2741 
 2742         hdr->len = htole16(frm - (uint8_t *)hdr);
 2743         pktlen = frm - (uint8_t *)cmd;
 2744 
 2745         error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
 2746             wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
 2747         if (error != 0) {
 2748                 device_printf(sc->sc_dev, "could not map scan command\n");
 2749                 m_freem(data->m);
 2750                 data->m = NULL;
 2751                 return error;
 2752         }
 2753 
 2754         desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
 2755         desc->segs[0].addr = htole32(physaddr);
 2756         desc->segs[0].len  = htole32(pktlen);
 2757 
 2758         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
 2759             BUS_DMASYNC_PREWRITE);
 2760         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
 2761 
 2762         /* kick cmd ring */
 2763         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
 2764         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
 2765 
 2766         sc->sc_scan_timer = 5;
 2767         return 0;       /* will be notified async. of failure/success */
 2768 }
 2769 
 2770 /**
 2771  * Configure the card to listen to a particular channel, this transisions the
 2772  * card in to being able to receive frames from remote devices.
 2773  */
 2774 static int
 2775 wpi_config(struct wpi_softc *sc)
 2776 {
 2777         struct ifnet *ifp = sc->sc_ifp;
 2778         struct ieee80211com *ic = ifp->if_l2com;
 2779         struct wpi_power power;
 2780         struct wpi_bluetooth bluetooth;
 2781         struct wpi_node_info node;
 2782         int error;
 2783 
 2784         /* set power mode */
 2785         memset(&power, 0, sizeof power);
 2786         power.flags = htole32(WPI_POWER_CAM|0x8);
 2787         error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
 2788         if (error != 0) {
 2789                 device_printf(sc->sc_dev, "could not set power mode\n");
 2790                 return error;
 2791         }
 2792 
 2793         /* configure bluetooth coexistence */
 2794         memset(&bluetooth, 0, sizeof bluetooth);
 2795         bluetooth.flags = 3;
 2796         bluetooth.lead = 0xaa;
 2797         bluetooth.kill = 1;
 2798         error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
 2799             0);
 2800         if (error != 0) {
 2801                 device_printf(sc->sc_dev,
 2802                     "could not configure bluetooth coexistence\n");
 2803                 return error;
 2804         }
 2805 
 2806         /* configure adapter */
 2807         memset(&sc->config, 0, sizeof (struct wpi_config));
 2808         IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
 2809         /*set default channel*/
 2810         sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
 2811         sc->config.flags = htole32(WPI_CONFIG_TSF);
 2812         if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
 2813                 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
 2814                     WPI_CONFIG_24GHZ);
 2815         }
 2816         sc->config.filter = 0;
 2817         switch (ic->ic_opmode) {
 2818         case IEEE80211_M_STA:
 2819         case IEEE80211_M_WDS:   /* No know setup, use STA for now */
 2820                 sc->config.mode = WPI_MODE_STA;
 2821                 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
 2822                 break;
 2823         case IEEE80211_M_IBSS:
 2824         case IEEE80211_M_AHDEMO:
 2825                 sc->config.mode = WPI_MODE_IBSS;
 2826                 sc->config.filter |= htole32(WPI_FILTER_BEACON |
 2827                                              WPI_FILTER_MULTICAST);
 2828                 break;
 2829         case IEEE80211_M_HOSTAP:
 2830                 sc->config.mode = WPI_MODE_HOSTAP;
 2831                 break;
 2832         case IEEE80211_M_MONITOR:
 2833                 sc->config.mode = WPI_MODE_MONITOR;
 2834                 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
 2835                         WPI_FILTER_CTL | WPI_FILTER_PROMISC);
 2836                 break;
 2837         default:
 2838                 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
 2839                 return EINVAL;
 2840         }
 2841         sc->config.cck_mask  = 0x0f;    /* not yet negotiated */
 2842         sc->config.ofdm_mask = 0xff;    /* not yet negotiated */
 2843         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
 2844                 sizeof (struct wpi_config), 0);
 2845         if (error != 0) {
 2846                 device_printf(sc->sc_dev, "configure command failed\n");
 2847                 return error;
 2848         }
 2849 
 2850         /* configuration has changed, set Tx power accordingly */
 2851         if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
 2852             device_printf(sc->sc_dev, "could not set Tx power\n");
 2853             return error;
 2854         }
 2855 
 2856         /* add broadcast node */
 2857         memset(&node, 0, sizeof node);
 2858         IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
 2859         node.id = WPI_ID_BROADCAST;
 2860         node.rate = wpi_plcp_signal(2);
 2861         error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
 2862         if (error != 0) {
 2863                 device_printf(sc->sc_dev, "could not add broadcast node\n");
 2864                 return error;
 2865         }
 2866 
 2867         /* Setup rate scalling */
 2868         error = wpi_mrr_setup(sc);
 2869         if (error != 0) {
 2870                 device_printf(sc->sc_dev, "could not setup MRR\n");
 2871                 return error;
 2872         }
 2873 
 2874         return 0;
 2875 }
 2876 
 2877 static void
 2878 wpi_stop_master(struct wpi_softc *sc)
 2879 {
 2880         uint32_t tmp;
 2881         int ntries;
 2882 
 2883         DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
 2884 
 2885         tmp = WPI_READ(sc, WPI_RESET);
 2886         WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
 2887 
 2888         tmp = WPI_READ(sc, WPI_GPIO_CTL);
 2889         if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
 2890                 return; /* already asleep */
 2891 
 2892         for (ntries = 0; ntries < 100; ntries++) {
 2893                 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
 2894                         break;
 2895                 DELAY(10);
 2896         }
 2897         if (ntries == 100) {
 2898                 device_printf(sc->sc_dev, "timeout waiting for master\n");
 2899         }
 2900 }
 2901 
 2902 static int
 2903 wpi_power_up(struct wpi_softc *sc)
 2904 {
 2905         uint32_t tmp;
 2906         int ntries;
 2907 
 2908         wpi_mem_lock(sc);
 2909         tmp = wpi_mem_read(sc, WPI_MEM_POWER);
 2910         wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
 2911         wpi_mem_unlock(sc);
 2912 
 2913         for (ntries = 0; ntries < 5000; ntries++) {
 2914                 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
 2915                         break;
 2916                 DELAY(10);
 2917         }
 2918         if (ntries == 5000) {
 2919                 device_printf(sc->sc_dev,
 2920                     "timeout waiting for NIC to power up\n");
 2921                 return ETIMEDOUT;
 2922         }
 2923         return 0;
 2924 }
 2925 
 2926 static int
 2927 wpi_reset(struct wpi_softc *sc)
 2928 {
 2929         uint32_t tmp;
 2930         int ntries;
 2931 
 2932         DPRINTFN(WPI_DEBUG_HW,
 2933             ("Resetting the card - clearing any uploaded firmware\n"));
 2934 
 2935         /* clear any pending interrupts */
 2936         WPI_WRITE(sc, WPI_INTR, 0xffffffff);
 2937 
 2938         tmp = WPI_READ(sc, WPI_PLL_CTL);
 2939         WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
 2940 
 2941         tmp = WPI_READ(sc, WPI_CHICKEN);
 2942         WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
 2943 
 2944         tmp = WPI_READ(sc, WPI_GPIO_CTL);
 2945         WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
 2946 
 2947         /* wait for clock stabilization */
 2948         for (ntries = 0; ntries < 25000; ntries++) {
 2949                 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
 2950                         break;
 2951                 DELAY(10);
 2952         }
 2953         if (ntries == 25000) {
 2954                 device_printf(sc->sc_dev,
 2955                     "timeout waiting for clock stabilization\n");
 2956                 return ETIMEDOUT;
 2957         }
 2958 
 2959         /* initialize EEPROM */
 2960         tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
 2961 
 2962         if ((tmp & WPI_EEPROM_VERSION) == 0) {
 2963                 device_printf(sc->sc_dev, "EEPROM not found\n");
 2964                 return EIO;
 2965         }
 2966         WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
 2967 
 2968         return 0;
 2969 }
 2970 
 2971 static void
 2972 wpi_hw_config(struct wpi_softc *sc)
 2973 {
 2974         uint32_t rev, hw;
 2975 
 2976         /* voodoo from the Linux "driver".. */
 2977         hw = WPI_READ(sc, WPI_HWCONFIG);
 2978 
 2979         rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
 2980         if ((rev & 0xc0) == 0x40)
 2981                 hw |= WPI_HW_ALM_MB;
 2982         else if (!(rev & 0x80))
 2983                 hw |= WPI_HW_ALM_MM;
 2984 
 2985         if (sc->cap == 0x80)
 2986                 hw |= WPI_HW_SKU_MRC;
 2987 
 2988         hw &= ~WPI_HW_REV_D;
 2989         if ((le16toh(sc->rev) & 0xf0) == 0xd0)
 2990                 hw |= WPI_HW_REV_D;
 2991 
 2992         if (sc->type > 1)
 2993                 hw |= WPI_HW_TYPE_B;
 2994 
 2995         WPI_WRITE(sc, WPI_HWCONFIG, hw);
 2996 }
 2997 
 2998 static void
 2999 wpi_rfkill_resume(struct wpi_softc *sc)
 3000 {
 3001         struct ifnet *ifp = sc->sc_ifp;
 3002         struct ieee80211com *ic = ifp->if_l2com;
 3003         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 3004         int ntries;
 3005 
 3006         /* enable firmware again */
 3007         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
 3008         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
 3009 
 3010         /* wait for thermal sensors to calibrate */
 3011         for (ntries = 0; ntries < 1000; ntries++) {
 3012                 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
 3013                         break;
 3014                 DELAY(10);
 3015         }
 3016 
 3017         if (ntries == 1000) {
 3018                 device_printf(sc->sc_dev,
 3019                     "timeout waiting for thermal calibration\n");
 3020                 return;
 3021         }
 3022         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
 3023 
 3024         if (wpi_config(sc) != 0) {
 3025                 device_printf(sc->sc_dev, "device config failed\n");
 3026                 return;
 3027         }
 3028 
 3029         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 3030         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 3031         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
 3032 
 3033         if (vap != NULL) {
 3034                 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
 3035                         if (vap->iv_opmode != IEEE80211_M_MONITOR) {
 3036                                 ieee80211_beacon_miss(ic);
 3037                                 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
 3038                         } else
 3039                                 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
 3040                 } else {
 3041                         ieee80211_scan_next(vap);
 3042                         wpi_set_led(sc, WPI_LED_LINK, 20, 2);
 3043                 }
 3044         }
 3045 
 3046         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
 3047 }
 3048 
 3049 static void
 3050 wpi_init_locked(struct wpi_softc *sc, int force)
 3051 {
 3052         struct ifnet *ifp = sc->sc_ifp;
 3053         uint32_t tmp;
 3054         int ntries, qid;
 3055 
 3056         wpi_stop_locked(sc);
 3057         (void)wpi_reset(sc);
 3058 
 3059         wpi_mem_lock(sc);
 3060         wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
 3061         DELAY(20);
 3062         tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
 3063         wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
 3064         wpi_mem_unlock(sc);
 3065 
 3066         (void)wpi_power_up(sc);
 3067         wpi_hw_config(sc);
 3068 
 3069         /* init Rx ring */
 3070         wpi_mem_lock(sc);
 3071         WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
 3072         WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
 3073             offsetof(struct wpi_shared, next));
 3074         WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
 3075         WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
 3076         wpi_mem_unlock(sc);
 3077 
 3078         /* init Tx rings */
 3079         wpi_mem_lock(sc);
 3080         wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
 3081         wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
 3082         wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
 3083         wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
 3084         wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
 3085         wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
 3086         wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
 3087 
 3088         WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
 3089         WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
 3090 
 3091         for (qid = 0; qid < 6; qid++) {
 3092                 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
 3093                 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
 3094                 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
 3095         }
 3096         wpi_mem_unlock(sc);
 3097 
 3098         /* clear "radio off" and "disable command" bits (reversed logic) */
 3099         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
 3100         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
 3101         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
 3102 
 3103         /* clear any pending interrupts */
 3104         WPI_WRITE(sc, WPI_INTR, 0xffffffff);
 3105 
 3106         /* enable interrupts */
 3107         WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
 3108 
 3109         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
 3110         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
 3111 
 3112         if ((wpi_load_firmware(sc)) != 0) {
 3113             device_printf(sc->sc_dev,
 3114                 "A problem occurred loading the firmware to the driver\n");
 3115             return;
 3116         }
 3117 
 3118         /* At this point the firmware is up and running. If the hardware
 3119          * RF switch is turned off thermal calibration will fail, though
 3120          * the card is still happy to continue to accept commands, catch
 3121          * this case and schedule a task to watch for it to be turned on.
 3122          */
 3123         wpi_mem_lock(sc);
 3124         tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
 3125         wpi_mem_unlock(sc);
 3126 
 3127         if (!(tmp & 0x1)) {
 3128                 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
 3129                 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
 3130                 goto out;
 3131         }
 3132 
 3133         /* wait for thermal sensors to calibrate */
 3134         for (ntries = 0; ntries < 1000; ntries++) {
 3135                 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
 3136                         break;
 3137                 DELAY(10);
 3138         }
 3139 
 3140         if (ntries == 1000) {
 3141                 device_printf(sc->sc_dev,
 3142                     "timeout waiting for thermal sensors calibration\n");
 3143                 return;
 3144         }
 3145         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
 3146 
 3147         if (wpi_config(sc) != 0) {
 3148                 device_printf(sc->sc_dev, "device config failed\n");
 3149                 return;
 3150         }
 3151 
 3152         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 3153         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 3154 out:
 3155         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
 3156 }
 3157 
 3158 static void
 3159 wpi_init(void *arg)
 3160 {
 3161         struct wpi_softc *sc = arg;
 3162         struct ifnet *ifp = sc->sc_ifp;
 3163         struct ieee80211com *ic = ifp->if_l2com;
 3164 
 3165         WPI_LOCK(sc);
 3166         wpi_init_locked(sc, 0);
 3167         WPI_UNLOCK(sc);
 3168 
 3169         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 3170                 ieee80211_start_all(ic);                /* start all vaps */
 3171 }
 3172 
 3173 static void
 3174 wpi_stop_locked(struct wpi_softc *sc)
 3175 {
 3176         struct ifnet *ifp = sc->sc_ifp;
 3177         uint32_t tmp;
 3178         int ac;
 3179 
 3180         sc->sc_tx_timer = 0;
 3181         sc->sc_scan_timer = 0;
 3182         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 3183         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
 3184         callout_stop(&sc->watchdog_to);
 3185         callout_stop(&sc->calib_to);
 3186 
 3187         /* disable interrupts */
 3188         WPI_WRITE(sc, WPI_MASK, 0);
 3189         WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
 3190         WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
 3191         WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
 3192 
 3193         wpi_mem_lock(sc);
 3194         wpi_mem_write(sc, WPI_MEM_MODE, 0);
 3195         wpi_mem_unlock(sc);
 3196 
 3197         /* reset all Tx rings */
 3198         for (ac = 0; ac < 4; ac++)
 3199                 wpi_reset_tx_ring(sc, &sc->txq[ac]);
 3200         wpi_reset_tx_ring(sc, &sc->cmdq);
 3201 
 3202         /* reset Rx ring */
 3203         wpi_reset_rx_ring(sc, &sc->rxq);
 3204 
 3205         wpi_mem_lock(sc);
 3206         wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
 3207         wpi_mem_unlock(sc);
 3208 
 3209         DELAY(5);
 3210 
 3211         wpi_stop_master(sc);
 3212 
 3213         tmp = WPI_READ(sc, WPI_RESET);
 3214         WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
 3215         sc->flags &= ~WPI_FLAG_BUSY;
 3216 }
 3217 
 3218 static void
 3219 wpi_stop(struct wpi_softc *sc)
 3220 {
 3221         WPI_LOCK(sc);
 3222         wpi_stop_locked(sc);
 3223         WPI_UNLOCK(sc);
 3224 }
 3225 
 3226 static void
 3227 wpi_calib_timeout(void *arg)
 3228 {
 3229         struct wpi_softc *sc = arg;
 3230         struct ifnet *ifp = sc->sc_ifp;
 3231         struct ieee80211com *ic = ifp->if_l2com;
 3232         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 3233         int temp;
 3234 
 3235         if (vap->iv_state != IEEE80211_S_RUN)
 3236                 return;
 3237 
 3238         /* update sensor data */
 3239         temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
 3240         DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
 3241 
 3242         wpi_power_calibration(sc, temp);
 3243 
 3244         callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
 3245 }
 3246 
 3247 /*
 3248  * This function is called periodically (every 60 seconds) to adjust output
 3249  * power to temperature changes.
 3250  */
 3251 static void
 3252 wpi_power_calibration(struct wpi_softc *sc, int temp)
 3253 {
 3254         struct ifnet *ifp = sc->sc_ifp;
 3255         struct ieee80211com *ic = ifp->if_l2com;
 3256         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 3257 
 3258         /* sanity-check read value */
 3259         if (temp < -260 || temp > 25) {
 3260                 /* this can't be correct, ignore */
 3261                 DPRINTFN(WPI_DEBUG_TEMP,
 3262                     ("out-of-range temperature reported: %d\n", temp));
 3263                 return;
 3264         }
 3265 
 3266         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
 3267 
 3268         /* adjust Tx power if need be */
 3269         if (abs(temp - sc->temp) <= 6)
 3270                 return;
 3271 
 3272         sc->temp = temp;
 3273 
 3274         if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
 3275                 /* just warn, too bad for the automatic calibration... */
 3276                 device_printf(sc->sc_dev,"could not adjust Tx power\n");
 3277         }
 3278 }
 3279 
 3280 /**
 3281  * Read the eeprom to find out what channels are valid for the given
 3282  * band and update net80211 with what we find.
 3283  */
 3284 static void
 3285 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
 3286 {
 3287         struct ifnet *ifp = sc->sc_ifp;
 3288         struct ieee80211com *ic = ifp->if_l2com;
 3289         const struct wpi_chan_band *band = &wpi_bands[n];
 3290         struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
 3291         struct ieee80211_channel *c;
 3292         int chan, i, passive;
 3293 
 3294         wpi_read_prom_data(sc, band->addr, channels,
 3295             band->nchan * sizeof (struct wpi_eeprom_chan));
 3296 
 3297         for (i = 0; i < band->nchan; i++) {
 3298                 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
 3299                         DPRINTFN(WPI_DEBUG_HW,
 3300                             ("Channel Not Valid: %d, band %d\n",
 3301                              band->chan[i],n));
 3302                         continue;
 3303                 }
 3304 
 3305                 passive = 0;
 3306                 chan = band->chan[i];
 3307                 c = &ic->ic_channels[ic->ic_nchans++];
 3308 
 3309                 /* is active scan allowed on this channel? */
 3310                 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
 3311                         passive = IEEE80211_CHAN_PASSIVE;
 3312                 }
 3313 
 3314                 if (n == 0) {   /* 2GHz band */
 3315                         c->ic_ieee = chan;
 3316                         c->ic_freq = ieee80211_ieee2mhz(chan,
 3317                             IEEE80211_CHAN_2GHZ);
 3318                         c->ic_flags = IEEE80211_CHAN_B | passive;
 3319 
 3320                         c = &ic->ic_channels[ic->ic_nchans++];
 3321                         c->ic_ieee = chan;
 3322                         c->ic_freq = ieee80211_ieee2mhz(chan,
 3323                             IEEE80211_CHAN_2GHZ);
 3324                         c->ic_flags = IEEE80211_CHAN_G | passive;
 3325 
 3326                 } else {        /* 5GHz band */
 3327                         /*
 3328                          * Some 3945ABG adapters support channels 7, 8, 11
 3329                          * and 12 in the 2GHz *and* 5GHz bands.
 3330                          * Because of limitations in our net80211(9) stack,
 3331                          * we can't support these channels in 5GHz band.
 3332                          * XXX not true; just need to map to proper frequency
 3333                          */
 3334                         if (chan <= 14)
 3335                                 continue;
 3336 
 3337                         c->ic_ieee = chan;
 3338                         c->ic_freq = ieee80211_ieee2mhz(chan,
 3339                             IEEE80211_CHAN_5GHZ);
 3340                         c->ic_flags = IEEE80211_CHAN_A | passive;
 3341                 }
 3342 
 3343                 /* save maximum allowed power for this channel */
 3344                 sc->maxpwr[chan] = channels[i].maxpwr;
 3345 
 3346 #if 0
 3347                 // XXX We can probably use this an get rid of maxpwr - ben 20070617
 3348                 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
 3349                 //ic->ic_channels[chan].ic_minpower...
 3350                 //ic->ic_channels[chan].ic_maxregtxpower...
 3351 #endif
 3352 
 3353                 DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
 3354                     " passive=%d, offset %d\n", chan, c->ic_freq,
 3355                     channels[i].flags, sc->maxpwr[chan],
 3356                     (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
 3357                     ic->ic_nchans));
 3358         }
 3359 }
 3360 
 3361 static void
 3362 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
 3363 {
 3364         struct wpi_power_group *group = &sc->groups[n];
 3365         struct wpi_eeprom_group rgroup;
 3366         int i;
 3367 
 3368         wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
 3369             sizeof rgroup);
 3370 
 3371         /* save power group information */
 3372         group->chan   = rgroup.chan;
 3373         group->maxpwr = rgroup.maxpwr;
 3374         /* temperature at which the samples were taken */
 3375         group->temp   = (int16_t)le16toh(rgroup.temp);
 3376 
 3377         DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
 3378                     group->chan, group->maxpwr, group->temp));
 3379 
 3380         for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
 3381                 group->samples[i].index = rgroup.samples[i].index;
 3382                 group->samples[i].power = rgroup.samples[i].power;
 3383 
 3384                 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
 3385                             group->samples[i].index, group->samples[i].power));
 3386         }
 3387 }
 3388 
 3389 /*
 3390  * Update Tx power to match what is defined for channel `c'.
 3391  */
 3392 static int
 3393 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
 3394 {
 3395         struct ifnet *ifp = sc->sc_ifp;
 3396         struct ieee80211com *ic = ifp->if_l2com;
 3397         struct wpi_power_group *group;
 3398         struct wpi_cmd_txpower txpower;
 3399         u_int chan;
 3400         int i;
 3401 
 3402         /* get channel number */
 3403         chan = ieee80211_chan2ieee(ic, c);
 3404 
 3405         /* find the power group to which this channel belongs */
 3406         if (IEEE80211_IS_CHAN_5GHZ(c)) {
 3407                 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
 3408                         if (chan <= group->chan)
 3409                                 break;
 3410         } else
 3411                 group = &sc->groups[0];
 3412 
 3413         memset(&txpower, 0, sizeof txpower);
 3414         txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
 3415         txpower.channel = htole16(chan);
 3416 
 3417         /* set Tx power for all OFDM and CCK rates */
 3418         for (i = 0; i <= 11 ; i++) {
 3419                 /* retrieve Tx power for this channel/rate combination */
 3420                 int idx = wpi_get_power_index(sc, group, c,
 3421                     wpi_ridx_to_rate[i]);
 3422 
 3423                 txpower.rates[i].rate = wpi_ridx_to_plcp[i];
 3424 
 3425                 if (IEEE80211_IS_CHAN_5GHZ(c)) {
 3426                         txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
 3427                         txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
 3428                 } else {
 3429                         txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
 3430                         txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
 3431                 }
 3432                 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
 3433                             chan, wpi_ridx_to_rate[i], idx));
 3434         }
 3435 
 3436         return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
 3437 }
 3438 
 3439 /*
 3440  * Determine Tx power index for a given channel/rate combination.
 3441  * This takes into account the regulatory information from EEPROM and the
 3442  * current temperature.
 3443  */
 3444 static int
 3445 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
 3446     struct ieee80211_channel *c, int rate)
 3447 {
 3448 /* fixed-point arithmetic division using a n-bit fractional part */
 3449 #define fdivround(a, b, n)      \
 3450         ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
 3451 
 3452 /* linear interpolation */
 3453 #define interpolate(x, x1, y1, x2, y2, n)       \
 3454         ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
 3455 
 3456         struct ifnet *ifp = sc->sc_ifp;
 3457         struct ieee80211com *ic = ifp->if_l2com;
 3458         struct wpi_power_sample *sample;
 3459         int pwr, idx;
 3460         u_int chan;
 3461 
 3462         /* get channel number */
 3463         chan = ieee80211_chan2ieee(ic, c);
 3464 
 3465         /* default power is group's maximum power - 3dB */
 3466         pwr = group->maxpwr / 2;
 3467 
 3468         /* decrease power for highest OFDM rates to reduce distortion */
 3469         switch (rate) {
 3470                 case 72:        /* 36Mb/s */
 3471                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
 3472                         break;
 3473                 case 96:        /* 48Mb/s */
 3474                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
 3475                         break;
 3476                 case 108:       /* 54Mb/s */
 3477                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
 3478                         break;
 3479         }
 3480 
 3481         /* never exceed channel's maximum allowed Tx power */
 3482         pwr = min(pwr, sc->maxpwr[chan]);
 3483 
 3484         /* retrieve power index into gain tables from samples */
 3485         for (sample = group->samples; sample < &group->samples[3]; sample++)
 3486                 if (pwr > sample[1].power)
 3487                         break;
 3488         /* fixed-point linear interpolation using a 19-bit fractional part */
 3489         idx = interpolate(pwr, sample[0].power, sample[0].index,
 3490             sample[1].power, sample[1].index, 19);
 3491 
 3492         /*
 3493          *  Adjust power index based on current temperature
 3494          *      - if colder than factory-calibrated: decreate output power
 3495          *      - if warmer than factory-calibrated: increase output power
 3496          */
 3497         idx -= (sc->temp - group->temp) * 11 / 100;
 3498 
 3499         /* decrease power for CCK rates (-5dB) */
 3500         if (!WPI_RATE_IS_OFDM(rate))
 3501                 idx += 10;
 3502 
 3503         /* keep power index in a valid range */
 3504         if (idx < 0)
 3505                 return 0;
 3506         if (idx > WPI_MAX_PWR_INDEX)
 3507                 return WPI_MAX_PWR_INDEX;
 3508         return idx;
 3509 
 3510 #undef interpolate
 3511 #undef fdivround
 3512 }
 3513 
 3514 /**
 3515  * Called by net80211 framework to indicate that a scan
 3516  * is starting. This function doesn't actually do the scan,
 3517  * wpi_scan_curchan starts things off. This function is more
 3518  * of an early warning from the framework we should get ready
 3519  * for the scan.
 3520  */
 3521 static void
 3522 wpi_scan_start(struct ieee80211com *ic)
 3523 {
 3524         struct ifnet *ifp = ic->ic_ifp;
 3525         struct wpi_softc *sc = ifp->if_softc;
 3526 
 3527         WPI_LOCK(sc);
 3528         wpi_set_led(sc, WPI_LED_LINK, 20, 2);
 3529         WPI_UNLOCK(sc);
 3530 }
 3531 
 3532 /**
 3533  * Called by the net80211 framework, indicates that the
 3534  * scan has ended. If there is a scan in progress on the card
 3535  * then it should be aborted.
 3536  */
 3537 static void
 3538 wpi_scan_end(struct ieee80211com *ic)
 3539 {
 3540         /* XXX ignore */
 3541 }
 3542 
 3543 /**
 3544  * Called by the net80211 framework to indicate to the driver
 3545  * that the channel should be changed
 3546  */
 3547 static void
 3548 wpi_set_channel(struct ieee80211com *ic)
 3549 {
 3550         struct ifnet *ifp = ic->ic_ifp;
 3551         struct wpi_softc *sc = ifp->if_softc;
 3552         int error;
 3553 
 3554         /*
 3555          * Only need to set the channel in Monitor mode. AP scanning and auth
 3556          * are already taken care of by their respective firmware commands.
 3557          */
 3558         if (ic->ic_opmode == IEEE80211_M_MONITOR) {
 3559                 WPI_LOCK(sc);
 3560                 error = wpi_config(sc);
 3561                 WPI_UNLOCK(sc);
 3562                 if (error != 0)
 3563                         device_printf(sc->sc_dev,
 3564                             "error %d settting channel\n", error);
 3565         }
 3566 }
 3567 
 3568 /**
 3569  * Called by net80211 to indicate that we need to scan the current
 3570  * channel. The channel is previously be set via the wpi_set_channel
 3571  * callback.
 3572  */
 3573 static void
 3574 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
 3575 {
 3576         struct ieee80211vap *vap = ss->ss_vap;
 3577         struct ifnet *ifp = vap->iv_ic->ic_ifp;
 3578         struct wpi_softc *sc = ifp->if_softc;
 3579 
 3580         WPI_LOCK(sc);
 3581         if (wpi_scan(sc))
 3582                 ieee80211_cancel_scan(vap);
 3583         WPI_UNLOCK(sc);
 3584 }
 3585 
 3586 /**
 3587  * Called by the net80211 framework to indicate
 3588  * the minimum dwell time has been met, terminate the scan.
 3589  * We don't actually terminate the scan as the firmware will notify
 3590  * us when it's finished and we have no way to interrupt it.
 3591  */
 3592 static void
 3593 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
 3594 {
 3595         /* NB: don't try to abort scan; wait for firmware to finish */
 3596 }
 3597 
 3598 static void
 3599 wpi_hwreset(void *arg, int pending)
 3600 {
 3601         struct wpi_softc *sc = arg;
 3602 
 3603         WPI_LOCK(sc);
 3604         wpi_init_locked(sc, 0);
 3605         WPI_UNLOCK(sc);
 3606 }
 3607 
 3608 static void
 3609 wpi_rfreset(void *arg, int pending)
 3610 {
 3611         struct wpi_softc *sc = arg;
 3612 
 3613         WPI_LOCK(sc);
 3614         wpi_rfkill_resume(sc);
 3615         WPI_UNLOCK(sc);
 3616 }
 3617 
 3618 /*
 3619  * Allocate DMA-safe memory for firmware transfer.
 3620  */
 3621 static int
 3622 wpi_alloc_fwmem(struct wpi_softc *sc)
 3623 {
 3624         /* allocate enough contiguous space to store text and data */
 3625         return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
 3626             WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
 3627             BUS_DMA_NOWAIT);
 3628 }
 3629 
 3630 static void
 3631 wpi_free_fwmem(struct wpi_softc *sc)
 3632 {
 3633         wpi_dma_contig_free(&sc->fw_dma);
 3634 }
 3635 
 3636 /**
 3637  * Called every second, wpi_watchdog used by the watch dog timer
 3638  * to check that the card is still alive
 3639  */
 3640 static void
 3641 wpi_watchdog(void *arg)
 3642 {
 3643         struct wpi_softc *sc = arg;
 3644         struct ifnet *ifp = sc->sc_ifp;
 3645         struct ieee80211com *ic = ifp->if_l2com;
 3646         uint32_t tmp;
 3647 
 3648         DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
 3649 
 3650         if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
 3651                 /* No need to lock firmware memory */
 3652                 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
 3653 
 3654                 if ((tmp & 0x1) == 0) {
 3655                         /* Radio kill switch is still off */
 3656                         callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
 3657                         return;
 3658                 }
 3659 
 3660                 device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
 3661                 ieee80211_runtask(ic, &sc->sc_radiotask);
 3662                 return;
 3663         }
 3664 
 3665         if (sc->sc_tx_timer > 0) {
 3666                 if (--sc->sc_tx_timer == 0) {
 3667                         device_printf(sc->sc_dev,"device timeout\n");
 3668                         ifp->if_oerrors++;
 3669                         ieee80211_runtask(ic, &sc->sc_restarttask);
 3670                 }
 3671         }
 3672         if (sc->sc_scan_timer > 0) {
 3673                 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
 3674                 if (--sc->sc_scan_timer == 0 && vap != NULL) {
 3675                         device_printf(sc->sc_dev,"scan timeout\n");
 3676                         ieee80211_cancel_scan(vap);
 3677                         ieee80211_runtask(ic, &sc->sc_restarttask);
 3678                 }
 3679         }
 3680 
 3681         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 3682                 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
 3683 }
 3684 
 3685 #ifdef WPI_DEBUG
 3686 static const char *wpi_cmd_str(int cmd)
 3687 {
 3688         switch (cmd) {
 3689         case WPI_DISABLE_CMD:   return "WPI_DISABLE_CMD";
 3690         case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE";
 3691         case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE";
 3692         case WPI_CMD_SET_WME:   return "WPI_CMD_SET_WME";
 3693         case WPI_CMD_TSF:       return "WPI_CMD_TSF";
 3694         case WPI_CMD_ADD_NODE:  return "WPI_CMD_ADD_NODE";
 3695         case WPI_CMD_TX_DATA:   return "WPI_CMD_TX_DATA";
 3696         case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP";
 3697         case WPI_CMD_SET_LED:   return "WPI_CMD_SET_LED";
 3698         case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
 3699         case WPI_CMD_SCAN:      return "WPI_CMD_SCAN";
 3700         case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
 3701         case WPI_CMD_TXPOWER:   return "WPI_CMD_TXPOWER";
 3702         case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH";
 3703 
 3704         default:
 3705                 KASSERT(1, ("Unknown Command: %d\n", cmd));
 3706                 return "UNKNOWN CMD";   /* Make the compiler happy */
 3707         }
 3708 }
 3709 #endif
 3710 
 3711 MODULE_DEPEND(wpi, pci,  1, 1, 1);
 3712 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
 3713 MODULE_DEPEND(wpi, firmware, 1, 1, 1);

Cache object: cf1d7bfe9ae0eba137c7938fb0d6f6ea


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.