1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2009-2012 Spectra Logic Corporation
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * substantially similar to the "NO WARRANTY" disclaimer below
15 * ("Disclaimer") and any redistribution must be conditioned upon
16 * including a substantially similar Disclaimer requirement for further
17 * binary redistribution.
18 *
19 * NO WARRANTY
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
28 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
29 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGES.
31 *
32 * Authors: Justin T. Gibbs (Spectra Logic Corporation)
33 * Ken Merry (Spectra Logic Corporation)
34 */
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37
38 /**
39 * \file blkback.c
40 *
41 * \brief Device driver supporting the vending of block storage from
42 * a FreeBSD domain to other domains.
43 */
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/kernel.h>
48 #include <sys/malloc.h>
49
50 #include <sys/bio.h>
51 #include <sys/bus.h>
52 #include <sys/conf.h>
53 #include <sys/devicestat.h>
54 #include <sys/disk.h>
55 #include <sys/fcntl.h>
56 #include <sys/filedesc.h>
57 #include <sys/kdb.h>
58 #include <sys/module.h>
59 #include <sys/namei.h>
60 #include <sys/proc.h>
61 #include <sys/rman.h>
62 #include <sys/taskqueue.h>
63 #include <sys/types.h>
64 #include <sys/vnode.h>
65 #include <sys/mount.h>
66 #include <sys/sysctl.h>
67 #include <sys/bitstring.h>
68 #include <sys/sdt.h>
69
70 #include <geom/geom.h>
71
72 #include <machine/_inttypes.h>
73
74 #include <vm/vm.h>
75 #include <vm/vm_extern.h>
76 #include <vm/vm_kern.h>
77
78 #include <xen/xen-os.h>
79 #include <xen/blkif.h>
80 #include <xen/gnttab.h>
81 #include <xen/xen_intr.h>
82
83 #include <contrib/xen/event_channel.h>
84 #include <contrib/xen/grant_table.h>
85
86 #include <xen/xenbus/xenbusvar.h>
87
88 /*--------------------------- Compile-time Tunables --------------------------*/
89 /**
90 * The maximum number of shared memory ring pages we will allow in a
91 * negotiated block-front/back communication channel. Allow enough
92 * ring space for all requests to be XBB_MAX_REQUEST_SIZE'd.
93 */
94 #define XBB_MAX_RING_PAGES 32
95
96 /**
97 * The maximum number of outstanding request blocks (request headers plus
98 * additional segment blocks) we will allow in a negotiated block-front/back
99 * communication channel.
100 */
101 #define XBB_MAX_REQUESTS \
102 __CONST_RING_SIZE(blkif, PAGE_SIZE * XBB_MAX_RING_PAGES)
103
104 /**
105 * \brief Define to enable rudimentary request logging to the console.
106 */
107 #undef XBB_DEBUG
108
109 /*---------------------------------- Macros ----------------------------------*/
110 /**
111 * Custom malloc type for all driver allocations.
112 */
113 static MALLOC_DEFINE(M_XENBLOCKBACK, "xbbd", "Xen Block Back Driver Data");
114
115 #ifdef XBB_DEBUG
116 #define DPRINTF(fmt, args...) \
117 printf("xbb(%s:%d): " fmt, __FUNCTION__, __LINE__, ##args)
118 #else
119 #define DPRINTF(fmt, args...) do {} while(0)
120 #endif
121
122 /**
123 * The maximum mapped region size per request we will allow in a negotiated
124 * block-front/back communication channel.
125 * Use old default of MAXPHYS == 128K.
126 */
127 #define XBB_MAX_REQUEST_SIZE \
128 MIN(128 * 1024, BLKIF_MAX_SEGMENTS_PER_REQUEST * PAGE_SIZE)
129
130 /**
131 * The maximum number of segments (within a request header and accompanying
132 * segment blocks) per request we will allow in a negotiated block-front/back
133 * communication channel.
134 */
135 #define XBB_MAX_SEGMENTS_PER_REQUEST \
136 (MIN(UIO_MAXIOV, \
137 MIN(BLKIF_MAX_SEGMENTS_PER_REQUEST, \
138 (XBB_MAX_REQUEST_SIZE / PAGE_SIZE) + 1)))
139
140 /**
141 * The maximum number of ring pages that we can allow per request list.
142 * We limit this to the maximum number of segments per request, because
143 * that is already a reasonable number of segments to aggregate. This
144 * number should never be smaller than XBB_MAX_SEGMENTS_PER_REQUEST,
145 * because that would leave situations where we can't dispatch even one
146 * large request.
147 */
148 #define XBB_MAX_SEGMENTS_PER_REQLIST XBB_MAX_SEGMENTS_PER_REQUEST
149
150 /*--------------------------- Forward Declarations ---------------------------*/
151 struct xbb_softc;
152 struct xbb_xen_req;
153
154 static void xbb_attach_failed(struct xbb_softc *xbb, int err, const char *fmt,
155 ...) __attribute__((format(printf, 3, 4)));
156 static int xbb_shutdown(struct xbb_softc *xbb);
157
158 /*------------------------------ Data Structures -----------------------------*/
159
160 STAILQ_HEAD(xbb_xen_req_list, xbb_xen_req);
161
162 typedef enum {
163 XBB_REQLIST_NONE = 0x00,
164 XBB_REQLIST_MAPPED = 0x01
165 } xbb_reqlist_flags;
166
167 struct xbb_xen_reqlist {
168 /**
169 * Back reference to the parent block back instance for this
170 * request. Used during bio_done handling.
171 */
172 struct xbb_softc *xbb;
173
174 /**
175 * BLKIF_OP code for this request.
176 */
177 int operation;
178
179 /**
180 * Set to BLKIF_RSP_* to indicate request status.
181 *
182 * This field allows an error status to be recorded even if the
183 * delivery of this status must be deferred. Deferred reporting
184 * is necessary, for example, when an error is detected during
185 * completion processing of one bio when other bios for this
186 * request are still outstanding.
187 */
188 int status;
189
190 /**
191 * Number of 512 byte sectors not transferred.
192 */
193 int residual_512b_sectors;
194
195 /**
196 * Starting sector number of the first request in the list.
197 */
198 off_t starting_sector_number;
199
200 /**
201 * If we're going to coalesce, the next contiguous sector would be
202 * this one.
203 */
204 off_t next_contig_sector;
205
206 /**
207 * Number of child requests in the list.
208 */
209 int num_children;
210
211 /**
212 * Number of I/O requests still pending on the backend.
213 */
214 int pendcnt;
215
216 /**
217 * Total number of segments for requests in the list.
218 */
219 int nr_segments;
220
221 /**
222 * Flags for this particular request list.
223 */
224 xbb_reqlist_flags flags;
225
226 /**
227 * Kernel virtual address space reserved for this request
228 * list structure and used to map the remote domain's pages for
229 * this I/O, into our domain's address space.
230 */
231 uint8_t *kva;
232
233 /**
234 * Base, pseudo-physical address, corresponding to the start
235 * of this request's kva region.
236 */
237 uint64_t gnt_base;
238
239 /**
240 * Array of grant handles (one per page) used to map this request.
241 */
242 grant_handle_t *gnt_handles;
243
244 /**
245 * Device statistics request ordering type (ordered or simple).
246 */
247 devstat_tag_type ds_tag_type;
248
249 /**
250 * Device statistics request type (read, write, no_data).
251 */
252 devstat_trans_flags ds_trans_type;
253
254 /**
255 * The start time for this request.
256 */
257 struct bintime ds_t0;
258
259 /**
260 * Linked list of contiguous requests with the same operation type.
261 */
262 struct xbb_xen_req_list contig_req_list;
263
264 /**
265 * Linked list links used to aggregate idle requests in the
266 * request list free pool (xbb->reqlist_free_stailq) and pending
267 * requests waiting for execution (xbb->reqlist_pending_stailq).
268 */
269 STAILQ_ENTRY(xbb_xen_reqlist) links;
270 };
271
272 STAILQ_HEAD(xbb_xen_reqlist_list, xbb_xen_reqlist);
273
274 /**
275 * \brief Object tracking an in-flight I/O from a Xen VBD consumer.
276 */
277 struct xbb_xen_req {
278 /**
279 * Linked list links used to aggregate requests into a reqlist
280 * and to store them in the request free pool.
281 */
282 STAILQ_ENTRY(xbb_xen_req) links;
283
284 /**
285 * The remote domain's identifier for this I/O request.
286 */
287 uint64_t id;
288
289 /**
290 * The number of pages currently mapped for this request.
291 */
292 int nr_pages;
293
294 /**
295 * The number of 512 byte sectors comprising this requests.
296 */
297 int nr_512b_sectors;
298
299 /**
300 * BLKIF_OP code for this request.
301 */
302 int operation;
303
304 /**
305 * Storage used for non-native ring requests.
306 */
307 blkif_request_t ring_req_storage;
308
309 /**
310 * Pointer to the Xen request in the ring.
311 */
312 blkif_request_t *ring_req;
313
314 /**
315 * Consumer index for this request.
316 */
317 RING_IDX req_ring_idx;
318
319 /**
320 * The start time for this request.
321 */
322 struct bintime ds_t0;
323
324 /**
325 * Pointer back to our parent request list.
326 */
327 struct xbb_xen_reqlist *reqlist;
328 };
329 SLIST_HEAD(xbb_xen_req_slist, xbb_xen_req);
330
331 /**
332 * \brief Configuration data for the shared memory request ring
333 * used to communicate with the front-end client of this
334 * this driver.
335 */
336 struct xbb_ring_config {
337 /** KVA address where ring memory is mapped. */
338 vm_offset_t va;
339
340 /** The pseudo-physical address where ring memory is mapped.*/
341 uint64_t gnt_addr;
342
343 /**
344 * Grant table handles, one per-ring page, returned by the
345 * hyperpervisor upon mapping of the ring and required to
346 * unmap it when a connection is torn down.
347 */
348 grant_handle_t handle[XBB_MAX_RING_PAGES];
349
350 /**
351 * The device bus address returned by the hypervisor when
352 * mapping the ring and required to unmap it when a connection
353 * is torn down.
354 */
355 uint64_t bus_addr[XBB_MAX_RING_PAGES];
356
357 /** The number of ring pages mapped for the current connection. */
358 u_int ring_pages;
359
360 /**
361 * The grant references, one per-ring page, supplied by the
362 * front-end, allowing us to reference the ring pages in the
363 * front-end's domain and to map these pages into our own domain.
364 */
365 grant_ref_t ring_ref[XBB_MAX_RING_PAGES];
366
367 /** The interrupt driven even channel used to signal ring events. */
368 evtchn_port_t evtchn;
369 };
370
371 /**
372 * Per-instance connection state flags.
373 */
374 typedef enum
375 {
376 /**
377 * The front-end requested a read-only mount of the
378 * back-end device/file.
379 */
380 XBBF_READ_ONLY = 0x01,
381
382 /** Communication with the front-end has been established. */
383 XBBF_RING_CONNECTED = 0x02,
384
385 /**
386 * Front-end requests exist in the ring and are waiting for
387 * xbb_xen_req objects to free up.
388 */
389 XBBF_RESOURCE_SHORTAGE = 0x04,
390
391 /** Connection teardown in progress. */
392 XBBF_SHUTDOWN = 0x08,
393
394 /** A thread is already performing shutdown processing. */
395 XBBF_IN_SHUTDOWN = 0x10
396 } xbb_flag_t;
397
398 /** Backend device type. */
399 typedef enum {
400 /** Backend type unknown. */
401 XBB_TYPE_NONE = 0x00,
402
403 /**
404 * Backend type disk (access via cdev switch
405 * strategy routine).
406 */
407 XBB_TYPE_DISK = 0x01,
408
409 /** Backend type file (access vnode operations.). */
410 XBB_TYPE_FILE = 0x02
411 } xbb_type;
412
413 /**
414 * \brief Structure used to memoize information about a per-request
415 * scatter-gather list.
416 *
417 * The chief benefit of using this data structure is it avoids having
418 * to reparse the possibly discontiguous S/G list in the original
419 * request. Due to the way that the mapping of the memory backing an
420 * I/O transaction is handled by Xen, a second pass is unavoidable.
421 * At least this way the second walk is a simple array traversal.
422 *
423 * \note A single Scatter/Gather element in the block interface covers
424 * at most 1 machine page. In this context a sector (blkif
425 * nomenclature, not what I'd choose) is a 512b aligned unit
426 * of mapping within the machine page referenced by an S/G
427 * element.
428 */
429 struct xbb_sg {
430 /** The number of 512b data chunks mapped in this S/G element. */
431 int16_t nsect;
432
433 /**
434 * The index (0 based) of the first 512b data chunk mapped
435 * in this S/G element.
436 */
437 uint8_t first_sect;
438
439 /**
440 * The index (0 based) of the last 512b data chunk mapped
441 * in this S/G element.
442 */
443 uint8_t last_sect;
444 };
445
446 /**
447 * Character device backend specific configuration data.
448 */
449 struct xbb_dev_data {
450 /** Cdev used for device backend access. */
451 struct cdev *cdev;
452
453 /** Cdev switch used for device backend access. */
454 struct cdevsw *csw;
455
456 /** Used to hold a reference on opened cdev backend devices. */
457 int dev_ref;
458 };
459
460 /**
461 * File backend specific configuration data.
462 */
463 struct xbb_file_data {
464 /** Credentials to use for vnode backed (file based) I/O. */
465 struct ucred *cred;
466
467 /**
468 * \brief Array of io vectors used to process file based I/O.
469 *
470 * Only a single file based request is outstanding per-xbb instance,
471 * so we only need one of these.
472 */
473 struct iovec xiovecs[XBB_MAX_SEGMENTS_PER_REQLIST];
474 };
475
476 /**
477 * Collection of backend type specific data.
478 */
479 union xbb_backend_data {
480 struct xbb_dev_data dev;
481 struct xbb_file_data file;
482 };
483
484 /**
485 * Function signature of backend specific I/O handlers.
486 */
487 typedef int (*xbb_dispatch_t)(struct xbb_softc *xbb,
488 struct xbb_xen_reqlist *reqlist, int operation,
489 int flags);
490
491 /**
492 * Per-instance configuration data.
493 */
494 struct xbb_softc {
495 /**
496 * Task-queue used to process I/O requests.
497 */
498 struct taskqueue *io_taskqueue;
499
500 /**
501 * Single "run the request queue" task enqueued
502 * on io_taskqueue.
503 */
504 struct task io_task;
505
506 /** Device type for this instance. */
507 xbb_type device_type;
508
509 /** NewBus device corresponding to this instance. */
510 device_t dev;
511
512 /** Backend specific dispatch routine for this instance. */
513 xbb_dispatch_t dispatch_io;
514
515 /** The number of requests outstanding on the backend device/file. */
516 int active_request_count;
517
518 /** Free pool of request tracking structures. */
519 struct xbb_xen_req_list request_free_stailq;
520
521 /** Array, sized at connection time, of request tracking structures. */
522 struct xbb_xen_req *requests;
523
524 /** Free pool of request list structures. */
525 struct xbb_xen_reqlist_list reqlist_free_stailq;
526
527 /** List of pending request lists awaiting execution. */
528 struct xbb_xen_reqlist_list reqlist_pending_stailq;
529
530 /** Array, sized at connection time, of request list structures. */
531 struct xbb_xen_reqlist *request_lists;
532
533 /**
534 * Global pool of kva used for mapping remote domain ring
535 * and I/O transaction data.
536 */
537 vm_offset_t kva;
538
539 /** Pseudo-physical address corresponding to kva. */
540 uint64_t gnt_base_addr;
541
542 /** The size of the global kva pool. */
543 int kva_size;
544
545 /** The size of the KVA area used for request lists. */
546 int reqlist_kva_size;
547
548 /** The number of pages of KVA used for request lists */
549 int reqlist_kva_pages;
550
551 /** Bitmap of free KVA pages */
552 bitstr_t *kva_free;
553
554 /**
555 * \brief Cached value of the front-end's domain id.
556 *
557 * This value is used at once for each mapped page in
558 * a transaction. We cache it to avoid incuring the
559 * cost of an ivar access every time this is needed.
560 */
561 domid_t otherend_id;
562
563 /**
564 * \brief The blkif protocol abi in effect.
565 *
566 * There are situations where the back and front ends can
567 * have a different, native abi (e.g. intel x86_64 and
568 * 32bit x86 domains on the same machine). The back-end
569 * always accommodates the front-end's native abi. That
570 * value is pulled from the XenStore and recorded here.
571 */
572 int abi;
573
574 /**
575 * \brief The maximum number of requests and request lists allowed
576 * to be in flight at a time.
577 *
578 * This value is negotiated via the XenStore.
579 */
580 u_int max_requests;
581
582 /**
583 * \brief The maximum number of segments (1 page per segment)
584 * that can be mapped by a request.
585 *
586 * This value is negotiated via the XenStore.
587 */
588 u_int max_request_segments;
589
590 /**
591 * \brief Maximum number of segments per request list.
592 *
593 * This value is derived from and will generally be larger than
594 * max_request_segments.
595 */
596 u_int max_reqlist_segments;
597
598 /**
599 * The maximum size of any request to this back-end
600 * device.
601 *
602 * This value is negotiated via the XenStore.
603 */
604 u_int max_request_size;
605
606 /**
607 * The maximum size of any request list. This is derived directly
608 * from max_reqlist_segments.
609 */
610 u_int max_reqlist_size;
611
612 /** Various configuration and state bit flags. */
613 xbb_flag_t flags;
614
615 /** Ring mapping and interrupt configuration data. */
616 struct xbb_ring_config ring_config;
617
618 /** Runtime, cross-abi safe, structures for ring access. */
619 blkif_back_rings_t rings;
620
621 /** IRQ mapping for the communication ring event channel. */
622 xen_intr_handle_t xen_intr_handle;
623
624 /**
625 * \brief Backend access mode flags (e.g. write, or read-only).
626 *
627 * This value is passed to us by the front-end via the XenStore.
628 */
629 char *dev_mode;
630
631 /**
632 * \brief Backend device type (e.g. "disk", "cdrom", "floppy").
633 *
634 * This value is passed to us by the front-end via the XenStore.
635 * Currently unused.
636 */
637 char *dev_type;
638
639 /**
640 * \brief Backend device/file identifier.
641 *
642 * This value is passed to us by the front-end via the XenStore.
643 * We expect this to be a POSIX path indicating the file or
644 * device to open.
645 */
646 char *dev_name;
647
648 /**
649 * Vnode corresponding to the backend device node or file
650 * we are acessing.
651 */
652 struct vnode *vn;
653
654 union xbb_backend_data backend;
655
656 /** The native sector size of the backend. */
657 u_int sector_size;
658
659 /** log2 of sector_size. */
660 u_int sector_size_shift;
661
662 /** Size in bytes of the backend device or file. */
663 off_t media_size;
664
665 /**
666 * \brief media_size expressed in terms of the backend native
667 * sector size.
668 *
669 * (e.g. xbb->media_size >> xbb->sector_size_shift).
670 */
671 uint64_t media_num_sectors;
672
673 /**
674 * \brief Array of memoized scatter gather data computed during the
675 * conversion of blkif ring requests to internal xbb_xen_req
676 * structures.
677 *
678 * Ring processing is serialized so we only need one of these.
679 */
680 struct xbb_sg xbb_sgs[XBB_MAX_SEGMENTS_PER_REQLIST];
681
682 /**
683 * Temporary grant table map used in xbb_dispatch_io(). When
684 * XBB_MAX_SEGMENTS_PER_REQLIST gets large, keeping this on the
685 * stack could cause a stack overflow.
686 */
687 struct gnttab_map_grant_ref maps[XBB_MAX_SEGMENTS_PER_REQLIST];
688
689 /** Mutex protecting per-instance data. */
690 struct mtx lock;
691
692 /**
693 * Resource representing allocated physical address space
694 * associated with our per-instance kva region.
695 */
696 struct resource *pseudo_phys_res;
697
698 /** Resource id for allocated physical address space. */
699 int pseudo_phys_res_id;
700
701 /**
702 * I/O statistics from BlockBack dispatch down. These are
703 * coalesced requests, and we start them right before execution.
704 */
705 struct devstat *xbb_stats;
706
707 /**
708 * I/O statistics coming into BlockBack. These are the requests as
709 * we get them from BlockFront. They are started as soon as we
710 * receive a request, and completed when the I/O is complete.
711 */
712 struct devstat *xbb_stats_in;
713
714 /** Disable sending flush to the backend */
715 int disable_flush;
716
717 /** Send a real flush for every N flush requests */
718 int flush_interval;
719
720 /** Count of flush requests in the interval */
721 int flush_count;
722
723 /** Don't coalesce requests if this is set */
724 int no_coalesce_reqs;
725
726 /** Number of requests we have received */
727 uint64_t reqs_received;
728
729 /** Number of requests we have completed*/
730 uint64_t reqs_completed;
731
732 /** Number of requests we queued but not pushed*/
733 uint64_t reqs_queued_for_completion;
734
735 /** Number of requests we completed with an error status*/
736 uint64_t reqs_completed_with_error;
737
738 /** How many forced dispatches (i.e. without coalescing) have happened */
739 uint64_t forced_dispatch;
740
741 /** How many normal dispatches have happened */
742 uint64_t normal_dispatch;
743
744 /** How many total dispatches have happened */
745 uint64_t total_dispatch;
746
747 /** How many times we have run out of KVA */
748 uint64_t kva_shortages;
749
750 /** How many times we have run out of request structures */
751 uint64_t request_shortages;
752
753 /** Watch to wait for hotplug script execution */
754 struct xs_watch hotplug_watch;
755
756 /** Got the needed data from hotplug scripts? */
757 bool hotplug_done;
758 };
759
760 /*---------------------------- Request Processing ----------------------------*/
761 /**
762 * Allocate an internal transaction tracking structure from the free pool.
763 *
764 * \param xbb Per-instance xbb configuration structure.
765 *
766 * \return On success, a pointer to the allocated xbb_xen_req structure.
767 * Otherwise NULL.
768 */
769 static inline struct xbb_xen_req *
770 xbb_get_req(struct xbb_softc *xbb)
771 {
772 struct xbb_xen_req *req;
773
774 req = NULL;
775
776 mtx_assert(&xbb->lock, MA_OWNED);
777
778 if ((req = STAILQ_FIRST(&xbb->request_free_stailq)) != NULL) {
779 STAILQ_REMOVE_HEAD(&xbb->request_free_stailq, links);
780 xbb->active_request_count++;
781 }
782
783 return (req);
784 }
785
786 /**
787 * Return an allocated transaction tracking structure to the free pool.
788 *
789 * \param xbb Per-instance xbb configuration structure.
790 * \param req The request structure to free.
791 */
792 static inline void
793 xbb_release_req(struct xbb_softc *xbb, struct xbb_xen_req *req)
794 {
795 mtx_assert(&xbb->lock, MA_OWNED);
796
797 STAILQ_INSERT_HEAD(&xbb->request_free_stailq, req, links);
798 xbb->active_request_count--;
799
800 KASSERT(xbb->active_request_count >= 0,
801 ("xbb_release_req: negative active count"));
802 }
803
804 /**
805 * Return an xbb_xen_req_list of allocated xbb_xen_reqs to the free pool.
806 *
807 * \param xbb Per-instance xbb configuration structure.
808 * \param req_list The list of requests to free.
809 * \param nreqs The number of items in the list.
810 */
811 static inline void
812 xbb_release_reqs(struct xbb_softc *xbb, struct xbb_xen_req_list *req_list,
813 int nreqs)
814 {
815 mtx_assert(&xbb->lock, MA_OWNED);
816
817 STAILQ_CONCAT(&xbb->request_free_stailq, req_list);
818 xbb->active_request_count -= nreqs;
819
820 KASSERT(xbb->active_request_count >= 0,
821 ("xbb_release_reqs: negative active count"));
822 }
823
824 /**
825 * Given a page index and 512b sector offset within that page,
826 * calculate an offset into a request's kva region.
827 *
828 * \param reqlist The request structure whose kva region will be accessed.
829 * \param pagenr The page index used to compute the kva offset.
830 * \param sector The 512b sector index used to compute the page relative
831 * kva offset.
832 *
833 * \return The computed global KVA offset.
834 */
835 static inline uint8_t *
836 xbb_reqlist_vaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
837 {
838 return (reqlist->kva + (PAGE_SIZE * pagenr) + (sector << 9));
839 }
840
841 /**
842 * Given a page number and 512b sector offset within that page,
843 * calculate an offset into the request's memory region that the
844 * underlying backend device/file should use for I/O.
845 *
846 * \param reqlist The request structure whose I/O region will be accessed.
847 * \param pagenr The page index used to compute the I/O offset.
848 * \param sector The 512b sector index used to compute the page relative
849 * I/O offset.
850 *
851 * \return The computed global I/O address.
852 *
853 * Depending on configuration, this will either be a local bounce buffer
854 * or a pointer to the memory mapped in from the front-end domain for
855 * this request.
856 */
857 static inline uint8_t *
858 xbb_reqlist_ioaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
859 {
860 return (xbb_reqlist_vaddr(reqlist, pagenr, sector));
861 }
862
863 /**
864 * Given a page index and 512b sector offset within that page, calculate
865 * an offset into the local pseudo-physical address space used to map a
866 * front-end's request data into a request.
867 *
868 * \param reqlist The request list structure whose pseudo-physical region
869 * will be accessed.
870 * \param pagenr The page index used to compute the pseudo-physical offset.
871 * \param sector The 512b sector index used to compute the page relative
872 * pseudo-physical offset.
873 *
874 * \return The computed global pseudo-phsyical address.
875 *
876 * Depending on configuration, this will either be a local bounce buffer
877 * or a pointer to the memory mapped in from the front-end domain for
878 * this request.
879 */
880 static inline uintptr_t
881 xbb_get_gntaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
882 {
883 struct xbb_softc *xbb;
884
885 xbb = reqlist->xbb;
886
887 return ((uintptr_t)(xbb->gnt_base_addr +
888 (uintptr_t)(reqlist->kva - xbb->kva) +
889 (PAGE_SIZE * pagenr) + (sector << 9)));
890 }
891
892 /**
893 * Get Kernel Virtual Address space for mapping requests.
894 *
895 * \param xbb Per-instance xbb configuration structure.
896 * \param nr_pages Number of pages needed.
897 * \param check_only If set, check for free KVA but don't allocate it.
898 * \param have_lock If set, xbb lock is already held.
899 *
900 * \return On success, a pointer to the allocated KVA region. Otherwise NULL.
901 *
902 * Note: This should be unnecessary once we have either chaining or
903 * scatter/gather support for struct bio. At that point we'll be able to
904 * put multiple addresses and lengths in one bio/bio chain and won't need
905 * to map everything into one virtual segment.
906 */
907 static uint8_t *
908 xbb_get_kva(struct xbb_softc *xbb, int nr_pages)
909 {
910 int first_clear;
911 int num_clear;
912 uint8_t *free_kva;
913 int i;
914
915 KASSERT(nr_pages != 0, ("xbb_get_kva of zero length"));
916
917 first_clear = 0;
918 free_kva = NULL;
919
920 mtx_lock(&xbb->lock);
921
922 /*
923 * Look for the first available page. If there are none, we're done.
924 */
925 bit_ffc(xbb->kva_free, xbb->reqlist_kva_pages, &first_clear);
926
927 if (first_clear == -1)
928 goto bailout;
929
930 /*
931 * Starting at the first available page, look for consecutive free
932 * pages that will satisfy the user's request.
933 */
934 for (i = first_clear, num_clear = 0; i < xbb->reqlist_kva_pages; i++) {
935 /*
936 * If this is true, the page is used, so we have to reset
937 * the number of clear pages and the first clear page
938 * (since it pointed to a region with an insufficient number
939 * of clear pages).
940 */
941 if (bit_test(xbb->kva_free, i)) {
942 num_clear = 0;
943 first_clear = -1;
944 continue;
945 }
946
947 if (first_clear == -1)
948 first_clear = i;
949
950 /*
951 * If this is true, we've found a large enough free region
952 * to satisfy the request.
953 */
954 if (++num_clear == nr_pages) {
955 bit_nset(xbb->kva_free, first_clear,
956 first_clear + nr_pages - 1);
957
958 free_kva = xbb->kva +
959 (uint8_t *)((intptr_t)first_clear * PAGE_SIZE);
960
961 KASSERT(free_kva >= (uint8_t *)xbb->kva &&
962 free_kva + (nr_pages * PAGE_SIZE) <=
963 (uint8_t *)xbb->ring_config.va,
964 ("Free KVA %p len %d out of range, "
965 "kva = %#jx, ring VA = %#jx\n", free_kva,
966 nr_pages * PAGE_SIZE, (uintmax_t)xbb->kva,
967 (uintmax_t)xbb->ring_config.va));
968 break;
969 }
970 }
971
972 bailout:
973
974 if (free_kva == NULL) {
975 xbb->flags |= XBBF_RESOURCE_SHORTAGE;
976 xbb->kva_shortages++;
977 }
978
979 mtx_unlock(&xbb->lock);
980
981 return (free_kva);
982 }
983
984 /**
985 * Free allocated KVA.
986 *
987 * \param xbb Per-instance xbb configuration structure.
988 * \param kva_ptr Pointer to allocated KVA region.
989 * \param nr_pages Number of pages in the KVA region.
990 */
991 static void
992 xbb_free_kva(struct xbb_softc *xbb, uint8_t *kva_ptr, int nr_pages)
993 {
994 intptr_t start_page;
995
996 mtx_assert(&xbb->lock, MA_OWNED);
997
998 start_page = (intptr_t)(kva_ptr - xbb->kva) >> PAGE_SHIFT;
999 bit_nclear(xbb->kva_free, start_page, start_page + nr_pages - 1);
1000
1001 }
1002
1003 /**
1004 * Unmap the front-end pages associated with this I/O request.
1005 *
1006 * \param req The request structure to unmap.
1007 */
1008 static void
1009 xbb_unmap_reqlist(struct xbb_xen_reqlist *reqlist)
1010 {
1011 struct gnttab_unmap_grant_ref unmap[XBB_MAX_SEGMENTS_PER_REQLIST];
1012 u_int i;
1013 u_int invcount;
1014 int error __diagused;
1015
1016 invcount = 0;
1017 for (i = 0; i < reqlist->nr_segments; i++) {
1018 if (reqlist->gnt_handles[i] == GRANT_REF_INVALID)
1019 continue;
1020
1021 unmap[invcount].host_addr = xbb_get_gntaddr(reqlist, i, 0);
1022 unmap[invcount].dev_bus_addr = 0;
1023 unmap[invcount].handle = reqlist->gnt_handles[i];
1024 reqlist->gnt_handles[i] = GRANT_REF_INVALID;
1025 invcount++;
1026 }
1027
1028 error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref,
1029 unmap, invcount);
1030 KASSERT(error == 0, ("Grant table operation failed"));
1031 }
1032
1033 /**
1034 * Allocate an internal transaction tracking structure from the free pool.
1035 *
1036 * \param xbb Per-instance xbb configuration structure.
1037 *
1038 * \return On success, a pointer to the allocated xbb_xen_reqlist structure.
1039 * Otherwise NULL.
1040 */
1041 static inline struct xbb_xen_reqlist *
1042 xbb_get_reqlist(struct xbb_softc *xbb)
1043 {
1044 struct xbb_xen_reqlist *reqlist;
1045
1046 reqlist = NULL;
1047
1048 mtx_assert(&xbb->lock, MA_OWNED);
1049
1050 if ((reqlist = STAILQ_FIRST(&xbb->reqlist_free_stailq)) != NULL) {
1051 STAILQ_REMOVE_HEAD(&xbb->reqlist_free_stailq, links);
1052 reqlist->flags = XBB_REQLIST_NONE;
1053 reqlist->kva = NULL;
1054 reqlist->status = BLKIF_RSP_OKAY;
1055 reqlist->residual_512b_sectors = 0;
1056 reqlist->num_children = 0;
1057 reqlist->nr_segments = 0;
1058 STAILQ_INIT(&reqlist->contig_req_list);
1059 }
1060
1061 return (reqlist);
1062 }
1063
1064 /**
1065 * Return an allocated transaction tracking structure to the free pool.
1066 *
1067 * \param xbb Per-instance xbb configuration structure.
1068 * \param req The request list structure to free.
1069 * \param wakeup If set, wakeup the work thread if freeing this reqlist
1070 * during a resource shortage condition.
1071 */
1072 static inline void
1073 xbb_release_reqlist(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
1074 int wakeup)
1075 {
1076
1077 mtx_assert(&xbb->lock, MA_OWNED);
1078
1079 if (wakeup) {
1080 wakeup = xbb->flags & XBBF_RESOURCE_SHORTAGE;
1081 xbb->flags &= ~XBBF_RESOURCE_SHORTAGE;
1082 }
1083
1084 if (reqlist->kva != NULL)
1085 xbb_free_kva(xbb, reqlist->kva, reqlist->nr_segments);
1086
1087 xbb_release_reqs(xbb, &reqlist->contig_req_list, reqlist->num_children);
1088
1089 STAILQ_INSERT_TAIL(&xbb->reqlist_free_stailq, reqlist, links);
1090
1091 if ((xbb->flags & XBBF_SHUTDOWN) != 0) {
1092 /*
1093 * Shutdown is in progress. See if we can
1094 * progress further now that one more request
1095 * has completed and been returned to the
1096 * free pool.
1097 */
1098 xbb_shutdown(xbb);
1099 }
1100
1101 if (wakeup != 0)
1102 taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task);
1103 }
1104
1105 /**
1106 * Request resources and do basic request setup.
1107 *
1108 * \param xbb Per-instance xbb configuration structure.
1109 * \param reqlist Pointer to reqlist pointer.
1110 * \param ring_req Pointer to a block ring request.
1111 * \param ring_index The ring index of this request.
1112 *
1113 * \return 0 for success, non-zero for failure.
1114 */
1115 static int
1116 xbb_get_resources(struct xbb_softc *xbb, struct xbb_xen_reqlist **reqlist,
1117 blkif_request_t *ring_req, RING_IDX ring_idx)
1118 {
1119 struct xbb_xen_reqlist *nreqlist;
1120 struct xbb_xen_req *nreq;
1121
1122 nreqlist = NULL;
1123 nreq = NULL;
1124
1125 mtx_lock(&xbb->lock);
1126
1127 /*
1128 * We don't allow new resources to be allocated if we're in the
1129 * process of shutting down.
1130 */
1131 if ((xbb->flags & XBBF_SHUTDOWN) != 0) {
1132 mtx_unlock(&xbb->lock);
1133 return (1);
1134 }
1135
1136 /*
1137 * Allocate a reqlist if the caller doesn't have one already.
1138 */
1139 if (*reqlist == NULL) {
1140 nreqlist = xbb_get_reqlist(xbb);
1141 if (nreqlist == NULL)
1142 goto bailout_error;
1143 }
1144
1145 /* We always allocate a request. */
1146 nreq = xbb_get_req(xbb);
1147 if (nreq == NULL)
1148 goto bailout_error;
1149
1150 mtx_unlock(&xbb->lock);
1151
1152 if (*reqlist == NULL) {
1153 *reqlist = nreqlist;
1154 nreqlist->operation = ring_req->operation;
1155 nreqlist->starting_sector_number = ring_req->sector_number;
1156 STAILQ_INSERT_TAIL(&xbb->reqlist_pending_stailq, nreqlist,
1157 links);
1158 }
1159
1160 nreq->reqlist = *reqlist;
1161 nreq->req_ring_idx = ring_idx;
1162 nreq->id = ring_req->id;
1163 nreq->operation = ring_req->operation;
1164
1165 if (xbb->abi != BLKIF_PROTOCOL_NATIVE) {
1166 bcopy(ring_req, &nreq->ring_req_storage, sizeof(*ring_req));
1167 nreq->ring_req = &nreq->ring_req_storage;
1168 } else {
1169 nreq->ring_req = ring_req;
1170 }
1171
1172 binuptime(&nreq->ds_t0);
1173 devstat_start_transaction(xbb->xbb_stats_in, &nreq->ds_t0);
1174 STAILQ_INSERT_TAIL(&(*reqlist)->contig_req_list, nreq, links);
1175 (*reqlist)->num_children++;
1176 (*reqlist)->nr_segments += ring_req->nr_segments;
1177
1178 return (0);
1179
1180 bailout_error:
1181
1182 /*
1183 * We're out of resources, so set the shortage flag. The next time
1184 * a request is released, we'll try waking up the work thread to
1185 * see if we can allocate more resources.
1186 */
1187 xbb->flags |= XBBF_RESOURCE_SHORTAGE;
1188 xbb->request_shortages++;
1189
1190 if (nreq != NULL)
1191 xbb_release_req(xbb, nreq);
1192
1193 if (nreqlist != NULL)
1194 xbb_release_reqlist(xbb, nreqlist, /*wakeup*/ 0);
1195
1196 mtx_unlock(&xbb->lock);
1197
1198 return (1);
1199 }
1200
1201 /**
1202 * Create and queue a response to a blkif request.
1203 *
1204 * \param xbb Per-instance xbb configuration structure.
1205 * \param req The request structure to which to respond.
1206 * \param status The status code to report. See BLKIF_RSP_*
1207 * in sys/contrib/xen/io/blkif.h.
1208 */
1209 static void
1210 xbb_queue_response(struct xbb_softc *xbb, struct xbb_xen_req *req, int status)
1211 {
1212 blkif_response_t *resp;
1213
1214 /*
1215 * The mutex is required here, and should be held across this call
1216 * until after the subsequent call to xbb_push_responses(). This
1217 * is to guarantee that another context won't queue responses and
1218 * push them while we're active.
1219 *
1220 * That could lead to the other end being notified of responses
1221 * before the resources have been freed on this end. The other end
1222 * would then be able to queue additional I/O, and we may run out
1223 * of resources because we haven't freed them all yet.
1224 */
1225 mtx_assert(&xbb->lock, MA_OWNED);
1226
1227 /*
1228 * Place on the response ring for the relevant domain.
1229 * For now, only the spacing between entries is different
1230 * in the different ABIs, not the response entry layout.
1231 */
1232 switch (xbb->abi) {
1233 case BLKIF_PROTOCOL_NATIVE:
1234 resp = RING_GET_RESPONSE(&xbb->rings.native,
1235 xbb->rings.native.rsp_prod_pvt);
1236 break;
1237 case BLKIF_PROTOCOL_X86_32:
1238 resp = (blkif_response_t *)
1239 RING_GET_RESPONSE(&xbb->rings.x86_32,
1240 xbb->rings.x86_32.rsp_prod_pvt);
1241 break;
1242 case BLKIF_PROTOCOL_X86_64:
1243 resp = (blkif_response_t *)
1244 RING_GET_RESPONSE(&xbb->rings.x86_64,
1245 xbb->rings.x86_64.rsp_prod_pvt);
1246 break;
1247 default:
1248 panic("Unexpected blkif protocol ABI.");
1249 }
1250
1251 resp->id = req->id;
1252 resp->operation = req->operation;
1253 resp->status = status;
1254
1255 if (status != BLKIF_RSP_OKAY)
1256 xbb->reqs_completed_with_error++;
1257
1258 xbb->rings.common.rsp_prod_pvt++;
1259
1260 xbb->reqs_queued_for_completion++;
1261
1262 }
1263
1264 /**
1265 * Send queued responses to blkif requests.
1266 *
1267 * \param xbb Per-instance xbb configuration structure.
1268 * \param run_taskqueue Flag that is set to 1 if the taskqueue
1269 * should be run, 0 if it does not need to be run.
1270 * \param notify Flag that is set to 1 if the other end should be
1271 * notified via irq, 0 if the other end should not be
1272 * notified.
1273 */
1274 static void
1275 xbb_push_responses(struct xbb_softc *xbb, int *run_taskqueue, int *notify)
1276 {
1277 int more_to_do;
1278
1279 /*
1280 * The mutex is required here.
1281 */
1282 mtx_assert(&xbb->lock, MA_OWNED);
1283
1284 more_to_do = 0;
1285
1286 RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&xbb->rings.common, *notify);
1287
1288 if (xbb->rings.common.rsp_prod_pvt == xbb->rings.common.req_cons) {
1289 /*
1290 * Tail check for pending requests. Allows frontend to avoid
1291 * notifications if requests are already in flight (lower
1292 * overheads and promotes batching).
1293 */
1294 RING_FINAL_CHECK_FOR_REQUESTS(&xbb->rings.common, more_to_do);
1295 } else if (RING_HAS_UNCONSUMED_REQUESTS(&xbb->rings.common)) {
1296 more_to_do = 1;
1297 }
1298
1299 xbb->reqs_completed += xbb->reqs_queued_for_completion;
1300 xbb->reqs_queued_for_completion = 0;
1301
1302 *run_taskqueue = more_to_do;
1303 }
1304
1305 /**
1306 * Complete a request list.
1307 *
1308 * \param xbb Per-instance xbb configuration structure.
1309 * \param reqlist Allocated internal request list structure.
1310 */
1311 static void
1312 xbb_complete_reqlist(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist)
1313 {
1314 struct xbb_xen_req *nreq;
1315 off_t sectors_sent;
1316 int notify, run_taskqueue;
1317
1318 sectors_sent = 0;
1319
1320 if (reqlist->flags & XBB_REQLIST_MAPPED)
1321 xbb_unmap_reqlist(reqlist);
1322
1323 mtx_lock(&xbb->lock);
1324
1325 /*
1326 * All I/O is done, send the response. A lock is not necessary
1327 * to protect the request list, because all requests have
1328 * completed. Therefore this is the only context accessing this
1329 * reqlist right now. However, in order to make sure that no one
1330 * else queues responses onto the queue or pushes them to the other
1331 * side while we're active, we need to hold the lock across the
1332 * calls to xbb_queue_response() and xbb_push_responses().
1333 */
1334 STAILQ_FOREACH(nreq, &reqlist->contig_req_list, links) {
1335 off_t cur_sectors_sent;
1336
1337 /* Put this response on the ring, but don't push yet */
1338 xbb_queue_response(xbb, nreq, reqlist->status);
1339
1340 /* We don't report bytes sent if there is an error. */
1341 if (reqlist->status == BLKIF_RSP_OKAY)
1342 cur_sectors_sent = nreq->nr_512b_sectors;
1343 else
1344 cur_sectors_sent = 0;
1345
1346 sectors_sent += cur_sectors_sent;
1347
1348 devstat_end_transaction(xbb->xbb_stats_in,
1349 /*bytes*/cur_sectors_sent << 9,
1350 reqlist->ds_tag_type,
1351 reqlist->ds_trans_type,
1352 /*now*/NULL,
1353 /*then*/&nreq->ds_t0);
1354 }
1355
1356 /*
1357 * Take out any sectors not sent. If we wind up negative (which
1358 * might happen if an error is reported as well as a residual), just
1359 * report 0 sectors sent.
1360 */
1361 sectors_sent -= reqlist->residual_512b_sectors;
1362 if (sectors_sent < 0)
1363 sectors_sent = 0;
1364
1365 devstat_end_transaction(xbb->xbb_stats,
1366 /*bytes*/ sectors_sent << 9,
1367 reqlist->ds_tag_type,
1368 reqlist->ds_trans_type,
1369 /*now*/NULL,
1370 /*then*/&reqlist->ds_t0);
1371
1372 xbb_release_reqlist(xbb, reqlist, /*wakeup*/ 1);
1373
1374 xbb_push_responses(xbb, &run_taskqueue, ¬ify);
1375
1376 mtx_unlock(&xbb->lock);
1377
1378 if (run_taskqueue)
1379 taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task);
1380
1381 if (notify)
1382 xen_intr_signal(xbb->xen_intr_handle);
1383 }
1384
1385 /**
1386 * Completion handler for buffer I/O requests issued by the device
1387 * backend driver.
1388 *
1389 * \param bio The buffer I/O request on which to perform completion
1390 * processing.
1391 */
1392 static void
1393 xbb_bio_done(struct bio *bio)
1394 {
1395 struct xbb_softc *xbb;
1396 struct xbb_xen_reqlist *reqlist;
1397
1398 reqlist = bio->bio_caller1;
1399 xbb = reqlist->xbb;
1400
1401 reqlist->residual_512b_sectors += bio->bio_resid >> 9;
1402
1403 /*
1404 * This is a bit imprecise. With aggregated I/O a single
1405 * request list can contain multiple front-end requests and
1406 * a multiple bios may point to a single request. By carefully
1407 * walking the request list, we could map residuals and errors
1408 * back to the original front-end request, but the interface
1409 * isn't sufficiently rich for us to properly report the error.
1410 * So, we just treat the entire request list as having failed if an
1411 * error occurs on any part. And, if an error occurs, we treat
1412 * the amount of data transferred as 0.
1413 *
1414 * For residuals, we report it on the overall aggregated device,
1415 * but not on the individual requests, since we don't currently
1416 * do the work to determine which front-end request to which the
1417 * residual applies.
1418 */
1419 if (bio->bio_error) {
1420 DPRINTF("BIO returned error %d for operation on device %s\n",
1421 bio->bio_error, xbb->dev_name);
1422 reqlist->status = BLKIF_RSP_ERROR;
1423
1424 if (bio->bio_error == ENXIO
1425 && xenbus_get_state(xbb->dev) == XenbusStateConnected) {
1426 /*
1427 * Backend device has disappeared. Signal the
1428 * front-end that we (the device proxy) want to
1429 * go away.
1430 */
1431 xenbus_set_state(xbb->dev, XenbusStateClosing);
1432 }
1433 }
1434
1435 /*
1436 * Decrement the pending count for the request list. When we're
1437 * done with the requests, send status back for all of them.
1438 */
1439 if (atomic_fetchadd_int(&reqlist->pendcnt, -1) == 1)
1440 xbb_complete_reqlist(xbb, reqlist);
1441
1442 g_destroy_bio(bio);
1443 }
1444
1445 /**
1446 * Parse a blkif request into an internal request structure and send
1447 * it to the backend for processing.
1448 *
1449 * \param xbb Per-instance xbb configuration structure.
1450 * \param reqlist Allocated internal request list structure.
1451 *
1452 * \return On success, 0. For resource shortages, non-zero.
1453 *
1454 * This routine performs the backend common aspects of request parsing
1455 * including compiling an internal request structure, parsing the S/G
1456 * list and any secondary ring requests in which they may reside, and
1457 * the mapping of front-end I/O pages into our domain.
1458 */
1459 static int
1460 xbb_dispatch_io(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist)
1461 {
1462 struct xbb_sg *xbb_sg;
1463 struct gnttab_map_grant_ref *map;
1464 struct blkif_request_segment *sg;
1465 struct blkif_request_segment *last_block_sg;
1466 struct xbb_xen_req *nreq;
1467 u_int nseg;
1468 u_int seg_idx;
1469 u_int block_segs;
1470 int nr_sects;
1471 int total_sects;
1472 int operation;
1473 uint8_t bio_flags;
1474 int error;
1475
1476 reqlist->ds_tag_type = DEVSTAT_TAG_SIMPLE;
1477 bio_flags = 0;
1478 total_sects = 0;
1479 nr_sects = 0;
1480
1481 /*
1482 * First determine whether we have enough free KVA to satisfy this
1483 * request list. If not, tell xbb_run_queue() so it can go to
1484 * sleep until we have more KVA.
1485 */
1486 reqlist->kva = NULL;
1487 if (reqlist->nr_segments != 0) {
1488 reqlist->kva = xbb_get_kva(xbb, reqlist->nr_segments);
1489 if (reqlist->kva == NULL) {
1490 /*
1491 * If we're out of KVA, return ENOMEM.
1492 */
1493 return (ENOMEM);
1494 }
1495 }
1496
1497 binuptime(&reqlist->ds_t0);
1498 devstat_start_transaction(xbb->xbb_stats, &reqlist->ds_t0);
1499
1500 switch (reqlist->operation) {
1501 case BLKIF_OP_WRITE_BARRIER:
1502 bio_flags |= BIO_ORDERED;
1503 reqlist->ds_tag_type = DEVSTAT_TAG_ORDERED;
1504 /* FALLTHROUGH */
1505 case BLKIF_OP_WRITE:
1506 operation = BIO_WRITE;
1507 reqlist->ds_trans_type = DEVSTAT_WRITE;
1508 if ((xbb->flags & XBBF_READ_ONLY) != 0) {
1509 DPRINTF("Attempt to write to read only device %s\n",
1510 xbb->dev_name);
1511 reqlist->status = BLKIF_RSP_ERROR;
1512 goto send_response;
1513 }
1514 break;
1515 case BLKIF_OP_READ:
1516 operation = BIO_READ;
1517 reqlist->ds_trans_type = DEVSTAT_READ;
1518 break;
1519 case BLKIF_OP_FLUSH_DISKCACHE:
1520 /*
1521 * If this is true, the user has requested that we disable
1522 * flush support. So we just complete the requests
1523 * successfully.
1524 */
1525 if (xbb->disable_flush != 0) {
1526 goto send_response;
1527 }
1528
1529 /*
1530 * The user has requested that we only send a real flush
1531 * for every N flush requests. So keep count, and either
1532 * complete the request immediately or queue it for the
1533 * backend.
1534 */
1535 if (xbb->flush_interval != 0) {
1536 if (++(xbb->flush_count) < xbb->flush_interval) {
1537 goto send_response;
1538 } else
1539 xbb->flush_count = 0;
1540 }
1541
1542 operation = BIO_FLUSH;
1543 reqlist->ds_tag_type = DEVSTAT_TAG_ORDERED;
1544 reqlist->ds_trans_type = DEVSTAT_NO_DATA;
1545 goto do_dispatch;
1546 /*NOTREACHED*/
1547 default:
1548 DPRINTF("error: unknown block io operation [%d]\n",
1549 reqlist->operation);
1550 reqlist->status = BLKIF_RSP_ERROR;
1551 goto send_response;
1552 }
1553
1554 reqlist->xbb = xbb;
1555 xbb_sg = xbb->xbb_sgs;
1556 map = xbb->maps;
1557 seg_idx = 0;
1558
1559 STAILQ_FOREACH(nreq, &reqlist->contig_req_list, links) {
1560 blkif_request_t *ring_req;
1561
1562 ring_req = nreq->ring_req;
1563 nr_sects = 0;
1564 nseg = ring_req->nr_segments;
1565 nreq->nr_pages = nseg;
1566 nreq->nr_512b_sectors = 0;
1567 sg = NULL;
1568
1569 /* Check that number of segments is sane. */
1570 if (__predict_false(nseg == 0)
1571 || __predict_false(nseg > xbb->max_request_segments)) {
1572 DPRINTF("Bad number of segments in request (%d)\n",
1573 nseg);
1574 reqlist->status = BLKIF_RSP_ERROR;
1575 goto send_response;
1576 }
1577
1578 block_segs = nseg;
1579 sg = ring_req->seg;
1580 last_block_sg = sg + block_segs;
1581
1582 while (sg < last_block_sg) {
1583 KASSERT(seg_idx <
1584 XBB_MAX_SEGMENTS_PER_REQLIST,
1585 ("seg_idx %d is too large, max "
1586 "segs %d\n", seg_idx,
1587 XBB_MAX_SEGMENTS_PER_REQLIST));
1588
1589 xbb_sg->first_sect = sg->first_sect;
1590 xbb_sg->last_sect = sg->last_sect;
1591 xbb_sg->nsect =
1592 (int8_t)(sg->last_sect -
1593 sg->first_sect + 1);
1594
1595 if ((sg->last_sect >= (PAGE_SIZE >> 9))
1596 || (xbb_sg->nsect <= 0)) {
1597 reqlist->status = BLKIF_RSP_ERROR;
1598 goto send_response;
1599 }
1600
1601 nr_sects += xbb_sg->nsect;
1602 map->host_addr = xbb_get_gntaddr(reqlist,
1603 seg_idx, /*sector*/0);
1604 KASSERT(map->host_addr + PAGE_SIZE <=
1605 xbb->ring_config.gnt_addr,
1606 ("Host address %#jx len %d overlaps "
1607 "ring address %#jx\n",
1608 (uintmax_t)map->host_addr, PAGE_SIZE,
1609 (uintmax_t)xbb->ring_config.gnt_addr));
1610
1611 map->flags = GNTMAP_host_map;
1612 map->ref = sg->gref;
1613 map->dom = xbb->otherend_id;
1614 if (operation == BIO_WRITE)
1615 map->flags |= GNTMAP_readonly;
1616 sg++;
1617 map++;
1618 xbb_sg++;
1619 seg_idx++;
1620 }
1621
1622 /* Convert to the disk's sector size */
1623 nreq->nr_512b_sectors = nr_sects;
1624 nr_sects = (nr_sects << 9) >> xbb->sector_size_shift;
1625 total_sects += nr_sects;
1626
1627 if ((nreq->nr_512b_sectors &
1628 ((xbb->sector_size >> 9) - 1)) != 0) {
1629 device_printf(xbb->dev, "%s: I/O size (%d) is not "
1630 "a multiple of the backing store sector "
1631 "size (%d)\n", __func__,
1632 nreq->nr_512b_sectors << 9,
1633 xbb->sector_size);
1634 reqlist->status = BLKIF_RSP_ERROR;
1635 goto send_response;
1636 }
1637 }
1638
1639 error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref,
1640 xbb->maps, reqlist->nr_segments);
1641 if (error != 0)
1642 panic("Grant table operation failed (%d)", error);
1643
1644 reqlist->flags |= XBB_REQLIST_MAPPED;
1645
1646 for (seg_idx = 0, map = xbb->maps; seg_idx < reqlist->nr_segments;
1647 seg_idx++, map++){
1648 if (__predict_false(map->status != 0)) {
1649 DPRINTF("invalid buffer -- could not remap "
1650 "it (%d)\n", map->status);
1651 DPRINTF("Mapping(%d): Host Addr 0x%"PRIx64", flags "
1652 "0x%x ref 0x%x, dom %d\n", seg_idx,
1653 map->host_addr, map->flags, map->ref,
1654 map->dom);
1655 reqlist->status = BLKIF_RSP_ERROR;
1656 goto send_response;
1657 }
1658
1659 reqlist->gnt_handles[seg_idx] = map->handle;
1660 }
1661 if (reqlist->starting_sector_number + total_sects >
1662 xbb->media_num_sectors) {
1663 DPRINTF("%s of [%" PRIu64 ",%" PRIu64 "] "
1664 "extends past end of device %s\n",
1665 operation == BIO_READ ? "read" : "write",
1666 reqlist->starting_sector_number,
1667 reqlist->starting_sector_number + total_sects,
1668 xbb->dev_name);
1669 reqlist->status = BLKIF_RSP_ERROR;
1670 goto send_response;
1671 }
1672
1673 do_dispatch:
1674
1675 error = xbb->dispatch_io(xbb,
1676 reqlist,
1677 operation,
1678 bio_flags);
1679
1680 if (error != 0) {
1681 reqlist->status = BLKIF_RSP_ERROR;
1682 goto send_response;
1683 }
1684
1685 return (0);
1686
1687 send_response:
1688
1689 xbb_complete_reqlist(xbb, reqlist);
1690
1691 return (0);
1692 }
1693
1694 static __inline int
1695 xbb_count_sects(blkif_request_t *ring_req)
1696 {
1697 int i;
1698 int cur_size = 0;
1699
1700 for (i = 0; i < ring_req->nr_segments; i++) {
1701 int nsect;
1702
1703 nsect = (int8_t)(ring_req->seg[i].last_sect -
1704 ring_req->seg[i].first_sect + 1);
1705 if (nsect <= 0)
1706 break;
1707
1708 cur_size += nsect;
1709 }
1710
1711 return (cur_size);
1712 }
1713
1714 /**
1715 * Process incoming requests from the shared communication ring in response
1716 * to a signal on the ring's event channel.
1717 *
1718 * \param context Callback argument registerd during task initialization -
1719 * the xbb_softc for this instance.
1720 * \param pending The number of taskqueue_enqueue events that have
1721 * occurred since this handler was last run.
1722 */
1723 static void
1724 xbb_run_queue(void *context, int pending)
1725 {
1726 struct xbb_softc *xbb;
1727 blkif_back_rings_t *rings;
1728 RING_IDX rp;
1729 uint64_t cur_sector;
1730 int cur_operation;
1731 struct xbb_xen_reqlist *reqlist;
1732
1733 xbb = (struct xbb_softc *)context;
1734 rings = &xbb->rings;
1735
1736 /*
1737 * Work gather and dispatch loop. Note that we have a bias here
1738 * towards gathering I/O sent by blockfront. We first gather up
1739 * everything in the ring, as long as we have resources. Then we
1740 * dispatch one request, and then attempt to gather up any
1741 * additional requests that have come in while we were dispatching
1742 * the request.
1743 *
1744 * This allows us to get a clearer picture (via devstat) of how
1745 * many requests blockfront is queueing to us at any given time.
1746 */
1747 for (;;) {
1748 int retval;
1749
1750 /*
1751 * Initialize reqlist to the last element in the pending
1752 * queue, if there is one. This allows us to add more
1753 * requests to that request list, if we have room.
1754 */
1755 reqlist = STAILQ_LAST(&xbb->reqlist_pending_stailq,
1756 xbb_xen_reqlist, links);
1757 if (reqlist != NULL) {
1758 cur_sector = reqlist->next_contig_sector;
1759 cur_operation = reqlist->operation;
1760 } else {
1761 cur_operation = 0;
1762 cur_sector = 0;
1763 }
1764
1765 /*
1766 * Cache req_prod to avoid accessing a cache line shared
1767 * with the frontend.
1768 */
1769 rp = rings->common.sring->req_prod;
1770
1771 /* Ensure we see queued requests up to 'rp'. */
1772 rmb();
1773
1774 /**
1775 * Run so long as there is work to consume and the generation
1776 * of a response will not overflow the ring.
1777 *
1778 * @note There's a 1 to 1 relationship between requests and
1779 * responses, so an overflow should never occur. This
1780 * test is to protect our domain from digesting bogus
1781 * data. Shouldn't we log this?
1782 */
1783 while (rings->common.req_cons != rp
1784 && RING_REQUEST_CONS_OVERFLOW(&rings->common,
1785 rings->common.req_cons) == 0){
1786 blkif_request_t ring_req_storage;
1787 blkif_request_t *ring_req;
1788 int cur_size;
1789
1790 switch (xbb->abi) {
1791 case BLKIF_PROTOCOL_NATIVE:
1792 ring_req = RING_GET_REQUEST(&xbb->rings.native,
1793 rings->common.req_cons);
1794 break;
1795 case BLKIF_PROTOCOL_X86_32:
1796 {
1797 struct blkif_x86_32_request *ring_req32;
1798
1799 ring_req32 = RING_GET_REQUEST(
1800 &xbb->rings.x86_32, rings->common.req_cons);
1801 blkif_get_x86_32_req(&ring_req_storage,
1802 ring_req32);
1803 ring_req = &ring_req_storage;
1804 break;
1805 }
1806 case BLKIF_PROTOCOL_X86_64:
1807 {
1808 struct blkif_x86_64_request *ring_req64;
1809
1810 ring_req64 =RING_GET_REQUEST(&xbb->rings.x86_64,
1811 rings->common.req_cons);
1812 blkif_get_x86_64_req(&ring_req_storage,
1813 ring_req64);
1814 ring_req = &ring_req_storage;
1815 break;
1816 }
1817 default:
1818 panic("Unexpected blkif protocol ABI.");
1819 /* NOTREACHED */
1820 }
1821
1822 /*
1823 * Check for situations that would require closing
1824 * off this I/O for further coalescing:
1825 * - Coalescing is turned off.
1826 * - Current I/O is out of sequence with the previous
1827 * I/O.
1828 * - Coalesced I/O would be too large.
1829 */
1830 if ((reqlist != NULL)
1831 && ((xbb->no_coalesce_reqs != 0)
1832 || ((xbb->no_coalesce_reqs == 0)
1833 && ((ring_req->sector_number != cur_sector)
1834 || (ring_req->operation != cur_operation)
1835 || ((ring_req->nr_segments + reqlist->nr_segments) >
1836 xbb->max_reqlist_segments))))) {
1837 reqlist = NULL;
1838 }
1839
1840 /*
1841 * Grab and check for all resources in one shot.
1842 * If we can't get all of the resources we need,
1843 * the shortage is noted and the thread will get
1844 * woken up when more resources are available.
1845 */
1846 retval = xbb_get_resources(xbb, &reqlist, ring_req,
1847 xbb->rings.common.req_cons);
1848
1849 if (retval != 0) {
1850 /*
1851 * Resource shortage has been recorded.
1852 * We'll be scheduled to run once a request
1853 * object frees up due to a completion.
1854 */
1855 break;
1856 }
1857
1858 /*
1859 * Signify that we can overwrite this request with
1860 * a response by incrementing our consumer index.
1861 * The response won't be generated until after
1862 * we've already consumed all necessary data out
1863 * of the version of the request in the ring buffer
1864 * (for native mode). We must update the consumer
1865 * index before issuing back-end I/O so there is
1866 * no possibility that it will complete and a
1867 * response be generated before we make room in
1868 * the queue for that response.
1869 */
1870 xbb->rings.common.req_cons++;
1871 xbb->reqs_received++;
1872
1873 cur_size = xbb_count_sects(ring_req);
1874 cur_sector = ring_req->sector_number + cur_size;
1875 reqlist->next_contig_sector = cur_sector;
1876 cur_operation = ring_req->operation;
1877 }
1878
1879 /* Check for I/O to dispatch */
1880 reqlist = STAILQ_FIRST(&xbb->reqlist_pending_stailq);
1881 if (reqlist == NULL) {
1882 /*
1883 * We're out of work to do, put the task queue to
1884 * sleep.
1885 */
1886 break;
1887 }
1888
1889 /*
1890 * Grab the first request off the queue and attempt
1891 * to dispatch it.
1892 */
1893 STAILQ_REMOVE_HEAD(&xbb->reqlist_pending_stailq, links);
1894
1895 retval = xbb_dispatch_io(xbb, reqlist);
1896 if (retval != 0) {
1897 /*
1898 * xbb_dispatch_io() returns non-zero only when
1899 * there is a resource shortage. If that's the
1900 * case, re-queue this request on the head of the
1901 * queue, and go to sleep until we have more
1902 * resources.
1903 */
1904 STAILQ_INSERT_HEAD(&xbb->reqlist_pending_stailq,
1905 reqlist, links);
1906 break;
1907 } else {
1908 /*
1909 * If we still have anything on the queue after
1910 * removing the head entry, that is because we
1911 * met one of the criteria to create a new
1912 * request list (outlined above), and we'll call
1913 * that a forced dispatch for statistical purposes.
1914 *
1915 * Otherwise, if there is only one element on the
1916 * queue, we coalesced everything available on
1917 * the ring and we'll call that a normal dispatch.
1918 */
1919 reqlist = STAILQ_FIRST(&xbb->reqlist_pending_stailq);
1920
1921 if (reqlist != NULL)
1922 xbb->forced_dispatch++;
1923 else
1924 xbb->normal_dispatch++;
1925
1926 xbb->total_dispatch++;
1927 }
1928 }
1929 }
1930
1931 /**
1932 * Interrupt handler bound to the shared ring's event channel.
1933 *
1934 * \param arg Callback argument registerd during event channel
1935 * binding - the xbb_softc for this instance.
1936 */
1937 static int
1938 xbb_filter(void *arg)
1939 {
1940 struct xbb_softc *xbb;
1941
1942 /* Defer to taskqueue thread. */
1943 xbb = (struct xbb_softc *)arg;
1944 taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task);
1945
1946 return (FILTER_HANDLED);
1947 }
1948
1949 SDT_PROVIDER_DEFINE(xbb);
1950 SDT_PROBE_DEFINE1(xbb, kernel, xbb_dispatch_dev, flush, "int");
1951 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_dev, read, "int", "uint64_t",
1952 "uint64_t");
1953 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_dev, write, "int",
1954 "uint64_t", "uint64_t");
1955
1956 /*----------------------------- Backend Handlers -----------------------------*/
1957 /**
1958 * Backend handler for character device access.
1959 *
1960 * \param xbb Per-instance xbb configuration structure.
1961 * \param reqlist Allocated internal request list structure.
1962 * \param operation BIO_* I/O operation code.
1963 * \param bio_flags Additional bio_flag data to pass to any generated
1964 * bios (e.g. BIO_ORDERED)..
1965 *
1966 * \return 0 for success, errno codes for failure.
1967 */
1968 static int
1969 xbb_dispatch_dev(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
1970 int operation, int bio_flags)
1971 {
1972 struct xbb_dev_data *dev_data;
1973 struct bio *bios[XBB_MAX_SEGMENTS_PER_REQLIST];
1974 off_t bio_offset;
1975 struct bio *bio;
1976 struct xbb_sg *xbb_sg;
1977 u_int nbio;
1978 u_int bio_idx;
1979 u_int nseg;
1980 u_int seg_idx;
1981 int error;
1982
1983 dev_data = &xbb->backend.dev;
1984 bio_offset = (off_t)reqlist->starting_sector_number
1985 << xbb->sector_size_shift;
1986 error = 0;
1987 nbio = 0;
1988 bio_idx = 0;
1989
1990 if (operation == BIO_FLUSH) {
1991 bio = g_new_bio();
1992 if (__predict_false(bio == NULL)) {
1993 DPRINTF("Unable to allocate bio for BIO_FLUSH\n");
1994 error = ENOMEM;
1995 return (error);
1996 }
1997
1998 bio->bio_cmd = BIO_FLUSH;
1999 bio->bio_flags |= BIO_ORDERED;
2000 bio->bio_dev = dev_data->cdev;
2001 bio->bio_offset = 0;
2002 bio->bio_data = 0;
2003 bio->bio_done = xbb_bio_done;
2004 bio->bio_caller1 = reqlist;
2005 bio->bio_pblkno = 0;
2006
2007 reqlist->pendcnt = 1;
2008
2009 SDT_PROBE1(xbb, kernel, xbb_dispatch_dev, flush,
2010 device_get_unit(xbb->dev));
2011
2012 (*dev_data->csw->d_strategy)(bio);
2013
2014 return (0);
2015 }
2016
2017 xbb_sg = xbb->xbb_sgs;
2018 bio = NULL;
2019 nseg = reqlist->nr_segments;
2020
2021 for (seg_idx = 0; seg_idx < nseg; seg_idx++, xbb_sg++) {
2022 /*
2023 * KVA will not be contiguous, so any additional
2024 * I/O will need to be represented in a new bio.
2025 */
2026 if ((bio != NULL)
2027 && (xbb_sg->first_sect != 0)) {
2028 if ((bio->bio_length & (xbb->sector_size - 1)) != 0) {
2029 printf("%s: Discontiguous I/O request "
2030 "from domain %d ends on "
2031 "non-sector boundary\n",
2032 __func__, xbb->otherend_id);
2033 error = EINVAL;
2034 goto fail_free_bios;
2035 }
2036 bio = NULL;
2037 }
2038
2039 if (bio == NULL) {
2040 /*
2041 * Make sure that the start of this bio is
2042 * aligned to a device sector.
2043 */
2044 if ((bio_offset & (xbb->sector_size - 1)) != 0){
2045 printf("%s: Misaligned I/O request "
2046 "from domain %d\n", __func__,
2047 xbb->otherend_id);
2048 error = EINVAL;
2049 goto fail_free_bios;
2050 }
2051
2052 bio = bios[nbio++] = g_new_bio();
2053 if (__predict_false(bio == NULL)) {
2054 error = ENOMEM;
2055 goto fail_free_bios;
2056 }
2057 bio->bio_cmd = operation;
2058 bio->bio_flags |= bio_flags;
2059 bio->bio_dev = dev_data->cdev;
2060 bio->bio_offset = bio_offset;
2061 bio->bio_data = xbb_reqlist_ioaddr(reqlist, seg_idx,
2062 xbb_sg->first_sect);
2063 bio->bio_done = xbb_bio_done;
2064 bio->bio_caller1 = reqlist;
2065 bio->bio_pblkno = bio_offset >> xbb->sector_size_shift;
2066 }
2067
2068 bio->bio_length += xbb_sg->nsect << 9;
2069 bio->bio_bcount = bio->bio_length;
2070 bio_offset += xbb_sg->nsect << 9;
2071
2072 if (xbb_sg->last_sect != (PAGE_SIZE - 512) >> 9) {
2073 if ((bio->bio_length & (xbb->sector_size - 1)) != 0) {
2074 printf("%s: Discontiguous I/O request "
2075 "from domain %d ends on "
2076 "non-sector boundary\n",
2077 __func__, xbb->otherend_id);
2078 error = EINVAL;
2079 goto fail_free_bios;
2080 }
2081 /*
2082 * KVA will not be contiguous, so any additional
2083 * I/O will need to be represented in a new bio.
2084 */
2085 bio = NULL;
2086 }
2087 }
2088
2089 reqlist->pendcnt = nbio;
2090
2091 for (bio_idx = 0; bio_idx < nbio; bio_idx++)
2092 {
2093 if (operation == BIO_READ) {
2094 SDT_PROBE3(xbb, kernel, xbb_dispatch_dev, read,
2095 device_get_unit(xbb->dev),
2096 bios[bio_idx]->bio_offset,
2097 bios[bio_idx]->bio_length);
2098 } else if (operation == BIO_WRITE) {
2099 SDT_PROBE3(xbb, kernel, xbb_dispatch_dev, write,
2100 device_get_unit(xbb->dev),
2101 bios[bio_idx]->bio_offset,
2102 bios[bio_idx]->bio_length);
2103 }
2104 (*dev_data->csw->d_strategy)(bios[bio_idx]);
2105 }
2106
2107 return (error);
2108
2109 fail_free_bios:
2110 for (bio_idx = 0; bio_idx < (nbio-1); bio_idx++)
2111 g_destroy_bio(bios[bio_idx]);
2112
2113 return (error);
2114 }
2115
2116 SDT_PROBE_DEFINE1(xbb, kernel, xbb_dispatch_file, flush, "int");
2117 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_file, read, "int", "uint64_t",
2118 "uint64_t");
2119 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_file, write, "int",
2120 "uint64_t", "uint64_t");
2121
2122 /**
2123 * Backend handler for file access.
2124 *
2125 * \param xbb Per-instance xbb configuration structure.
2126 * \param reqlist Allocated internal request list.
2127 * \param operation BIO_* I/O operation code.
2128 * \param flags Additional bio_flag data to pass to any generated bios
2129 * (e.g. BIO_ORDERED)..
2130 *
2131 * \return 0 for success, errno codes for failure.
2132 */
2133 static int
2134 xbb_dispatch_file(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
2135 int operation, int flags)
2136 {
2137 struct xbb_file_data *file_data;
2138 u_int seg_idx;
2139 u_int nseg;
2140 struct uio xuio;
2141 struct xbb_sg *xbb_sg;
2142 struct iovec *xiovec;
2143 int error;
2144
2145 file_data = &xbb->backend.file;
2146 error = 0;
2147 bzero(&xuio, sizeof(xuio));
2148
2149 switch (operation) {
2150 case BIO_READ:
2151 xuio.uio_rw = UIO_READ;
2152 break;
2153 case BIO_WRITE:
2154 xuio.uio_rw = UIO_WRITE;
2155 break;
2156 case BIO_FLUSH: {
2157 struct mount *mountpoint;
2158
2159 SDT_PROBE1(xbb, kernel, xbb_dispatch_file, flush,
2160 device_get_unit(xbb->dev));
2161
2162 (void) vn_start_write(xbb->vn, &mountpoint, V_WAIT);
2163
2164 vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
2165 error = VOP_FSYNC(xbb->vn, MNT_WAIT, curthread);
2166 VOP_UNLOCK(xbb->vn);
2167
2168 vn_finished_write(mountpoint);
2169
2170 goto bailout_send_response;
2171 /* NOTREACHED */
2172 }
2173 default:
2174 panic("invalid operation %d", operation);
2175 /* NOTREACHED */
2176 }
2177 xuio.uio_offset = (vm_offset_t)reqlist->starting_sector_number
2178 << xbb->sector_size_shift;
2179 xuio.uio_segflg = UIO_SYSSPACE;
2180 xuio.uio_iov = file_data->xiovecs;
2181 xuio.uio_iovcnt = 0;
2182 xbb_sg = xbb->xbb_sgs;
2183 nseg = reqlist->nr_segments;
2184
2185 for (xiovec = NULL, seg_idx = 0; seg_idx < nseg; seg_idx++, xbb_sg++) {
2186 /*
2187 * If the first sector is not 0, the KVA will
2188 * not be contiguous and we'll need to go on
2189 * to another segment.
2190 */
2191 if (xbb_sg->first_sect != 0)
2192 xiovec = NULL;
2193
2194 if (xiovec == NULL) {
2195 xiovec = &file_data->xiovecs[xuio.uio_iovcnt];
2196 xiovec->iov_base = xbb_reqlist_ioaddr(reqlist,
2197 seg_idx, xbb_sg->first_sect);
2198 xiovec->iov_len = 0;
2199 xuio.uio_iovcnt++;
2200 }
2201
2202 xiovec->iov_len += xbb_sg->nsect << 9;
2203
2204 xuio.uio_resid += xbb_sg->nsect << 9;
2205
2206 /*
2207 * If the last sector is not the full page
2208 * size count, the next segment will not be
2209 * contiguous in KVA and we need a new iovec.
2210 */
2211 if (xbb_sg->last_sect != (PAGE_SIZE - 512) >> 9)
2212 xiovec = NULL;
2213 }
2214
2215 xuio.uio_td = curthread;
2216
2217 switch (operation) {
2218 case BIO_READ:
2219
2220 SDT_PROBE3(xbb, kernel, xbb_dispatch_file, read,
2221 device_get_unit(xbb->dev), xuio.uio_offset,
2222 xuio.uio_resid);
2223
2224 vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
2225
2226 /*
2227 * UFS pays attention to IO_DIRECT for reads. If the
2228 * DIRECTIO option is configured into the kernel, it calls
2229 * ffs_rawread(). But that only works for single-segment
2230 * uios with user space addresses. In our case, with a
2231 * kernel uio, it still reads into the buffer cache, but it
2232 * will just try to release the buffer from the cache later
2233 * on in ffs_read().
2234 *
2235 * ZFS does not pay attention to IO_DIRECT for reads.
2236 *
2237 * UFS does not pay attention to IO_SYNC for reads.
2238 *
2239 * ZFS pays attention to IO_SYNC (which translates into the
2240 * Solaris define FRSYNC for zfs_read()) for reads. It
2241 * attempts to sync the file before reading.
2242 *
2243 * So, to attempt to provide some barrier semantics in the
2244 * BIO_ORDERED case, set both IO_DIRECT and IO_SYNC.
2245 */
2246 error = VOP_READ(xbb->vn, &xuio, (flags & BIO_ORDERED) ?
2247 (IO_DIRECT|IO_SYNC) : 0, file_data->cred);
2248
2249 VOP_UNLOCK(xbb->vn);
2250 break;
2251 case BIO_WRITE: {
2252 struct mount *mountpoint;
2253
2254 SDT_PROBE3(xbb, kernel, xbb_dispatch_file, write,
2255 device_get_unit(xbb->dev), xuio.uio_offset,
2256 xuio.uio_resid);
2257
2258 (void)vn_start_write(xbb->vn, &mountpoint, V_WAIT);
2259
2260 vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
2261
2262 /*
2263 * UFS pays attention to IO_DIRECT for writes. The write
2264 * is done asynchronously. (Normally the write would just
2265 * get put into cache.
2266 *
2267 * UFS pays attention to IO_SYNC for writes. It will
2268 * attempt to write the buffer out synchronously if that
2269 * flag is set.
2270 *
2271 * ZFS does not pay attention to IO_DIRECT for writes.
2272 *
2273 * ZFS pays attention to IO_SYNC (a.k.a. FSYNC or FRSYNC)
2274 * for writes. It will flush the transaction from the
2275 * cache before returning.
2276 *
2277 * So if we've got the BIO_ORDERED flag set, we want
2278 * IO_SYNC in either the UFS or ZFS case.
2279 */
2280 error = VOP_WRITE(xbb->vn, &xuio, (flags & BIO_ORDERED) ?
2281 IO_SYNC : 0, file_data->cred);
2282 VOP_UNLOCK(xbb->vn);
2283
2284 vn_finished_write(mountpoint);
2285
2286 break;
2287 }
2288 default:
2289 panic("invalid operation %d", operation);
2290 /* NOTREACHED */
2291 }
2292
2293 bailout_send_response:
2294
2295 if (error != 0)
2296 reqlist->status = BLKIF_RSP_ERROR;
2297
2298 xbb_complete_reqlist(xbb, reqlist);
2299
2300 return (0);
2301 }
2302
2303 /*--------------------------- Backend Configuration --------------------------*/
2304 /**
2305 * Close and cleanup any backend device/file specific state for this
2306 * block back instance.
2307 *
2308 * \param xbb Per-instance xbb configuration structure.
2309 */
2310 static void
2311 xbb_close_backend(struct xbb_softc *xbb)
2312 {
2313 DROP_GIANT();
2314 DPRINTF("closing dev=%s\n", xbb->dev_name);
2315 if (xbb->vn) {
2316 int flags = FREAD;
2317
2318 if ((xbb->flags & XBBF_READ_ONLY) == 0)
2319 flags |= FWRITE;
2320
2321 switch (xbb->device_type) {
2322 case XBB_TYPE_DISK:
2323 if (xbb->backend.dev.csw) {
2324 dev_relthread(xbb->backend.dev.cdev,
2325 xbb->backend.dev.dev_ref);
2326 xbb->backend.dev.csw = NULL;
2327 xbb->backend.dev.cdev = NULL;
2328 }
2329 break;
2330 case XBB_TYPE_FILE:
2331 break;
2332 case XBB_TYPE_NONE:
2333 default:
2334 panic("Unexpected backend type.");
2335 break;
2336 }
2337
2338 (void)vn_close(xbb->vn, flags, NOCRED, curthread);
2339 xbb->vn = NULL;
2340
2341 switch (xbb->device_type) {
2342 case XBB_TYPE_DISK:
2343 break;
2344 case XBB_TYPE_FILE:
2345 if (xbb->backend.file.cred != NULL) {
2346 crfree(xbb->backend.file.cred);
2347 xbb->backend.file.cred = NULL;
2348 }
2349 break;
2350 case XBB_TYPE_NONE:
2351 default:
2352 panic("Unexpected backend type.");
2353 break;
2354 }
2355 }
2356 PICKUP_GIANT();
2357 }
2358
2359 /**
2360 * Open a character device to be used for backend I/O.
2361 *
2362 * \param xbb Per-instance xbb configuration structure.
2363 *
2364 * \return 0 for success, errno codes for failure.
2365 */
2366 static int
2367 xbb_open_dev(struct xbb_softc *xbb)
2368 {
2369 struct vattr vattr;
2370 struct cdev *dev;
2371 struct cdevsw *devsw;
2372 int error;
2373
2374 xbb->device_type = XBB_TYPE_DISK;
2375 xbb->dispatch_io = xbb_dispatch_dev;
2376 xbb->backend.dev.cdev = xbb->vn->v_rdev;
2377 xbb->backend.dev.csw = dev_refthread(xbb->backend.dev.cdev,
2378 &xbb->backend.dev.dev_ref);
2379 if (xbb->backend.dev.csw == NULL)
2380 panic("Unable to retrieve device switch");
2381
2382 error = VOP_GETATTR(xbb->vn, &vattr, NOCRED);
2383 if (error) {
2384 xenbus_dev_fatal(xbb->dev, error, "error getting "
2385 "vnode attributes for device %s",
2386 xbb->dev_name);
2387 return (error);
2388 }
2389
2390 dev = xbb->vn->v_rdev;
2391 devsw = dev->si_devsw;
2392 if (!devsw->d_ioctl) {
2393 xenbus_dev_fatal(xbb->dev, ENODEV, "no d_ioctl for "
2394 "device %s!", xbb->dev_name);
2395 return (ENODEV);
2396 }
2397
2398 error = devsw->d_ioctl(dev, DIOCGSECTORSIZE,
2399 (caddr_t)&xbb->sector_size, FREAD,
2400 curthread);
2401 if (error) {
2402 xenbus_dev_fatal(xbb->dev, error,
2403 "error calling ioctl DIOCGSECTORSIZE "
2404 "for device %s", xbb->dev_name);
2405 return (error);
2406 }
2407
2408 error = devsw->d_ioctl(dev, DIOCGMEDIASIZE,
2409 (caddr_t)&xbb->media_size, FREAD,
2410 curthread);
2411 if (error) {
2412 xenbus_dev_fatal(xbb->dev, error,
2413 "error calling ioctl DIOCGMEDIASIZE "
2414 "for device %s", xbb->dev_name);
2415 return (error);
2416 }
2417
2418 return (0);
2419 }
2420
2421 /**
2422 * Open a file to be used for backend I/O.
2423 *
2424 * \param xbb Per-instance xbb configuration structure.
2425 *
2426 * \return 0 for success, errno codes for failure.
2427 */
2428 static int
2429 xbb_open_file(struct xbb_softc *xbb)
2430 {
2431 struct xbb_file_data *file_data;
2432 struct vattr vattr;
2433 int error;
2434
2435 file_data = &xbb->backend.file;
2436 xbb->device_type = XBB_TYPE_FILE;
2437 xbb->dispatch_io = xbb_dispatch_file;
2438 error = VOP_GETATTR(xbb->vn, &vattr, curthread->td_ucred);
2439 if (error != 0) {
2440 xenbus_dev_fatal(xbb->dev, error,
2441 "error calling VOP_GETATTR()"
2442 "for file %s", xbb->dev_name);
2443 return (error);
2444 }
2445
2446 /*
2447 * Verify that we have the ability to upgrade to exclusive
2448 * access on this file so we can trap errors at open instead
2449 * of reporting them during first access.
2450 */
2451 if (VOP_ISLOCKED(xbb->vn) != LK_EXCLUSIVE) {
2452 vn_lock(xbb->vn, LK_UPGRADE | LK_RETRY);
2453 if (VN_IS_DOOMED(xbb->vn)) {
2454 error = EBADF;
2455 xenbus_dev_fatal(xbb->dev, error,
2456 "error locking file %s",
2457 xbb->dev_name);
2458
2459 return (error);
2460 }
2461 }
2462
2463 file_data->cred = crhold(curthread->td_ucred);
2464 xbb->media_size = vattr.va_size;
2465
2466 /*
2467 * XXX KDM vattr.va_blocksize may be larger than 512 bytes here.
2468 * With ZFS, it is 131072 bytes. Block sizes that large don't work
2469 * with disklabel and UFS on FreeBSD at least. Large block sizes
2470 * may not work with other OSes as well. So just export a sector
2471 * size of 512 bytes, which should work with any OS or
2472 * application. Since our backing is a file, any block size will
2473 * work fine for the backing store.
2474 */
2475 #if 0
2476 xbb->sector_size = vattr.va_blocksize;
2477 #endif
2478 xbb->sector_size = 512;
2479
2480 /*
2481 * Sanity check. The media size has to be at least one
2482 * sector long.
2483 */
2484 if (xbb->media_size < xbb->sector_size) {
2485 error = EINVAL;
2486 xenbus_dev_fatal(xbb->dev, error,
2487 "file %s size %ju < block size %u",
2488 xbb->dev_name,
2489 (uintmax_t)xbb->media_size,
2490 xbb->sector_size);
2491 }
2492 return (error);
2493 }
2494
2495 /**
2496 * Open the backend provider for this connection.
2497 *
2498 * \param xbb Per-instance xbb configuration structure.
2499 *
2500 * \return 0 for success, errno codes for failure.
2501 */
2502 static int
2503 xbb_open_backend(struct xbb_softc *xbb)
2504 {
2505 struct nameidata nd;
2506 int flags;
2507 int error;
2508
2509 flags = FREAD;
2510 error = 0;
2511
2512 DPRINTF("opening dev=%s\n", xbb->dev_name);
2513
2514 if (rootvnode == NULL) {
2515 xenbus_dev_fatal(xbb->dev, ENOENT,
2516 "Root file system not mounted");
2517 return (ENOENT);
2518 }
2519
2520 if ((xbb->flags & XBBF_READ_ONLY) == 0)
2521 flags |= FWRITE;
2522
2523 pwd_ensure_dirs();
2524
2525 again:
2526 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, xbb->dev_name);
2527 error = vn_open(&nd, &flags, 0, NULL);
2528 if (error) {
2529 /*
2530 * This is the only reasonable guess we can make as far as
2531 * path if the user doesn't give us a fully qualified path.
2532 * If they want to specify a file, they need to specify the
2533 * full path.
2534 */
2535 if (xbb->dev_name[0] != '/') {
2536 char *dev_path = "/dev/";
2537 char *dev_name;
2538
2539 /* Try adding device path at beginning of name */
2540 dev_name = malloc(strlen(xbb->dev_name)
2541 + strlen(dev_path) + 1,
2542 M_XENBLOCKBACK, M_NOWAIT);
2543 if (dev_name) {
2544 sprintf(dev_name, "%s%s", dev_path,
2545 xbb->dev_name);
2546 free(xbb->dev_name, M_XENBLOCKBACK);
2547 xbb->dev_name = dev_name;
2548 goto again;
2549 }
2550 }
2551 xenbus_dev_fatal(xbb->dev, error, "error opening device %s",
2552 xbb->dev_name);
2553 return (error);
2554 }
2555
2556 NDFREE_PNBUF(&nd);
2557
2558 xbb->vn = nd.ni_vp;
2559
2560 /* We only support disks and files. */
2561 if (vn_isdisk_error(xbb->vn, &error)) {
2562 error = xbb_open_dev(xbb);
2563 } else if (xbb->vn->v_type == VREG) {
2564 error = xbb_open_file(xbb);
2565 } else {
2566 error = EINVAL;
2567 xenbus_dev_fatal(xbb->dev, error, "%s is not a disk "
2568 "or file", xbb->dev_name);
2569 }
2570 VOP_UNLOCK(xbb->vn);
2571
2572 if (error != 0) {
2573 xbb_close_backend(xbb);
2574 return (error);
2575 }
2576
2577 xbb->sector_size_shift = fls(xbb->sector_size) - 1;
2578 xbb->media_num_sectors = xbb->media_size >> xbb->sector_size_shift;
2579
2580 DPRINTF("opened %s=%s sector_size=%u media_size=%" PRId64 "\n",
2581 (xbb->device_type == XBB_TYPE_DISK) ? "dev" : "file",
2582 xbb->dev_name, xbb->sector_size, xbb->media_size);
2583
2584 return (0);
2585 }
2586
2587 /*------------------------ Inter-Domain Communication ------------------------*/
2588 /**
2589 * Free dynamically allocated KVA or pseudo-physical address allocations.
2590 *
2591 * \param xbb Per-instance xbb configuration structure.
2592 */
2593 static void
2594 xbb_free_communication_mem(struct xbb_softc *xbb)
2595 {
2596 if (xbb->kva != 0) {
2597 if (xbb->pseudo_phys_res != NULL) {
2598 xenmem_free(xbb->dev, xbb->pseudo_phys_res_id,
2599 xbb->pseudo_phys_res);
2600 xbb->pseudo_phys_res = NULL;
2601 }
2602 }
2603 xbb->kva = 0;
2604 xbb->gnt_base_addr = 0;
2605 if (xbb->kva_free != NULL) {
2606 free(xbb->kva_free, M_XENBLOCKBACK);
2607 xbb->kva_free = NULL;
2608 }
2609 }
2610
2611 /**
2612 * Cleanup all inter-domain communication mechanisms.
2613 *
2614 * \param xbb Per-instance xbb configuration structure.
2615 */
2616 static int
2617 xbb_disconnect(struct xbb_softc *xbb)
2618 {
2619 DPRINTF("\n");
2620
2621 mtx_unlock(&xbb->lock);
2622 xen_intr_unbind(&xbb->xen_intr_handle);
2623 if (xbb->io_taskqueue != NULL)
2624 taskqueue_drain(xbb->io_taskqueue, &xbb->io_task);
2625 mtx_lock(&xbb->lock);
2626
2627 /*
2628 * No new interrupts can generate work, but we must wait
2629 * for all currently active requests to drain.
2630 */
2631 if (xbb->active_request_count != 0)
2632 return (EAGAIN);
2633
2634 if (xbb->flags & XBBF_RING_CONNECTED) {
2635 struct gnttab_unmap_grant_ref ops[XBB_MAX_RING_PAGES];
2636 struct gnttab_unmap_grant_ref *op;
2637 unsigned int ring_idx;
2638 int error;
2639
2640 for (ring_idx = 0, op = ops;
2641 ring_idx < xbb->ring_config.ring_pages;
2642 ring_idx++, op++) {
2643 op->host_addr = xbb->ring_config.gnt_addr
2644 + (ring_idx * PAGE_SIZE);
2645 op->dev_bus_addr = xbb->ring_config.bus_addr[ring_idx];
2646 op->handle = xbb->ring_config.handle[ring_idx];
2647 }
2648
2649 error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, ops,
2650 xbb->ring_config.ring_pages);
2651 if (error != 0)
2652 panic("Grant table op failed (%d)", error);
2653
2654 xbb->flags &= ~XBBF_RING_CONNECTED;
2655 }
2656
2657 xbb_free_communication_mem(xbb);
2658
2659 if (xbb->requests != NULL) {
2660 free(xbb->requests, M_XENBLOCKBACK);
2661 xbb->requests = NULL;
2662 }
2663
2664 if (xbb->request_lists != NULL) {
2665 struct xbb_xen_reqlist *reqlist;
2666 int i;
2667
2668 /* There is one request list for ever allocated request. */
2669 for (i = 0, reqlist = xbb->request_lists;
2670 i < xbb->max_requests; i++, reqlist++){
2671 if (reqlist->gnt_handles != NULL) {
2672 free(reqlist->gnt_handles, M_XENBLOCKBACK);
2673 reqlist->gnt_handles = NULL;
2674 }
2675 }
2676 free(xbb->request_lists, M_XENBLOCKBACK);
2677 xbb->request_lists = NULL;
2678 }
2679
2680 return (0);
2681 }
2682
2683 /**
2684 * Map shared memory ring into domain local address space, initialize
2685 * ring control structures, and bind an interrupt to the event channel
2686 * used to notify us of ring changes.
2687 *
2688 * \param xbb Per-instance xbb configuration structure.
2689 */
2690 static int
2691 xbb_connect_ring(struct xbb_softc *xbb)
2692 {
2693 struct gnttab_map_grant_ref gnts[XBB_MAX_RING_PAGES];
2694 struct gnttab_map_grant_ref *gnt;
2695 u_int ring_idx;
2696 int error;
2697
2698 if ((xbb->flags & XBBF_RING_CONNECTED) != 0)
2699 return (0);
2700
2701 /*
2702 * Kva for our ring is at the tail of the region of kva allocated
2703 * by xbb_alloc_communication_mem().
2704 */
2705 xbb->ring_config.va = xbb->kva
2706 + (xbb->kva_size
2707 - (xbb->ring_config.ring_pages * PAGE_SIZE));
2708 xbb->ring_config.gnt_addr = xbb->gnt_base_addr
2709 + (xbb->kva_size
2710 - (xbb->ring_config.ring_pages * PAGE_SIZE));
2711
2712 for (ring_idx = 0, gnt = gnts;
2713 ring_idx < xbb->ring_config.ring_pages;
2714 ring_idx++, gnt++) {
2715 gnt->host_addr = xbb->ring_config.gnt_addr
2716 + (ring_idx * PAGE_SIZE);
2717 gnt->flags = GNTMAP_host_map;
2718 gnt->ref = xbb->ring_config.ring_ref[ring_idx];
2719 gnt->dom = xbb->otherend_id;
2720 }
2721
2722 error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, gnts,
2723 xbb->ring_config.ring_pages);
2724 if (error)
2725 panic("blkback: Ring page grant table op failed (%d)", error);
2726
2727 for (ring_idx = 0, gnt = gnts;
2728 ring_idx < xbb->ring_config.ring_pages;
2729 ring_idx++, gnt++) {
2730 if (gnt->status != 0) {
2731 struct gnttab_unmap_grant_ref unmap[XBB_MAX_RING_PAGES];
2732 unsigned int i, j;
2733
2734 xbb->ring_config.va = 0;
2735 xenbus_dev_fatal(xbb->dev, EACCES,
2736 "Ring shared page mapping failed. "
2737 "Status %d.", gnt->status);
2738
2739 /* Unmap everything to avoid leaking grant table maps */
2740 for (i = 0, j = 0; i < xbb->ring_config.ring_pages;
2741 i++) {
2742 if (gnts[i].status != GNTST_okay)
2743 continue;
2744
2745 unmap[j].host_addr = gnts[i].host_addr;
2746 unmap[j].dev_bus_addr = gnts[i].dev_bus_addr;
2747 unmap[j++].handle = gnts[i].handle;
2748 }
2749 if (j != 0) {
2750 error = HYPERVISOR_grant_table_op(
2751 GNTTABOP_unmap_grant_ref, unmap, j);
2752 if (error != 0)
2753 panic("Unable to unmap grants (%d)",
2754 error);
2755 }
2756 return (EACCES);
2757 }
2758 xbb->ring_config.handle[ring_idx] = gnt->handle;
2759 xbb->ring_config.bus_addr[ring_idx] = gnt->dev_bus_addr;
2760 }
2761
2762 /* Initialize the ring based on ABI. */
2763 switch (xbb->abi) {
2764 case BLKIF_PROTOCOL_NATIVE:
2765 {
2766 blkif_sring_t *sring;
2767 sring = (blkif_sring_t *)xbb->ring_config.va;
2768 BACK_RING_INIT(&xbb->rings.native, sring,
2769 xbb->ring_config.ring_pages * PAGE_SIZE);
2770 break;
2771 }
2772 case BLKIF_PROTOCOL_X86_32:
2773 {
2774 blkif_x86_32_sring_t *sring_x86_32;
2775 sring_x86_32 = (blkif_x86_32_sring_t *)xbb->ring_config.va;
2776 BACK_RING_INIT(&xbb->rings.x86_32, sring_x86_32,
2777 xbb->ring_config.ring_pages * PAGE_SIZE);
2778 break;
2779 }
2780 case BLKIF_PROTOCOL_X86_64:
2781 {
2782 blkif_x86_64_sring_t *sring_x86_64;
2783 sring_x86_64 = (blkif_x86_64_sring_t *)xbb->ring_config.va;
2784 BACK_RING_INIT(&xbb->rings.x86_64, sring_x86_64,
2785 xbb->ring_config.ring_pages * PAGE_SIZE);
2786 break;
2787 }
2788 default:
2789 panic("Unexpected blkif protocol ABI.");
2790 }
2791
2792 xbb->flags |= XBBF_RING_CONNECTED;
2793
2794 error = xen_intr_bind_remote_port(xbb->dev,
2795 xbb->otherend_id,
2796 xbb->ring_config.evtchn,
2797 xbb_filter,
2798 /*ithread_handler*/NULL,
2799 /*arg*/xbb,
2800 INTR_TYPE_BIO | INTR_MPSAFE,
2801 &xbb->xen_intr_handle);
2802 if (error) {
2803 xenbus_dev_fatal(xbb->dev, error, "binding event channel");
2804 return (error);
2805 }
2806
2807 DPRINTF("rings connected!\n");
2808
2809 return 0;
2810 }
2811
2812 /**
2813 * Size KVA and pseudo-physical address allocations based on negotiated
2814 * values for the size and number of I/O requests, and the size of our
2815 * communication ring.
2816 *
2817 * \param xbb Per-instance xbb configuration structure.
2818 *
2819 * These address spaces are used to dynamically map pages in the
2820 * front-end's domain into our own.
2821 */
2822 static int
2823 xbb_alloc_communication_mem(struct xbb_softc *xbb)
2824 {
2825 xbb->reqlist_kva_pages = xbb->max_requests * xbb->max_request_segments;
2826 xbb->reqlist_kva_size = xbb->reqlist_kva_pages * PAGE_SIZE;
2827 xbb->kva_size = xbb->reqlist_kva_size +
2828 (xbb->ring_config.ring_pages * PAGE_SIZE);
2829
2830 xbb->kva_free = bit_alloc(xbb->reqlist_kva_pages, M_XENBLOCKBACK, M_NOWAIT);
2831 if (xbb->kva_free == NULL)
2832 return (ENOMEM);
2833
2834 DPRINTF("%s: kva_size = %d, reqlist_kva_size = %d\n",
2835 device_get_nameunit(xbb->dev), xbb->kva_size,
2836 xbb->reqlist_kva_size);
2837 /*
2838 * Reserve a range of pseudo physical memory that we can map
2839 * into kva. These pages will only be backed by machine
2840 * pages ("real memory") during the lifetime of front-end requests
2841 * via grant table operations.
2842 */
2843 xbb->pseudo_phys_res_id = 0;
2844 xbb->pseudo_phys_res = xenmem_alloc(xbb->dev, &xbb->pseudo_phys_res_id,
2845 xbb->kva_size);
2846 if (xbb->pseudo_phys_res == NULL) {
2847 xbb->kva = 0;
2848 return (ENOMEM);
2849 }
2850 xbb->kva = (vm_offset_t)rman_get_virtual(xbb->pseudo_phys_res);
2851 xbb->gnt_base_addr = rman_get_start(xbb->pseudo_phys_res);
2852
2853 DPRINTF("%s: kva: %#jx, gnt_base_addr: %#jx\n",
2854 device_get_nameunit(xbb->dev), (uintmax_t)xbb->kva,
2855 (uintmax_t)xbb->gnt_base_addr);
2856 return (0);
2857 }
2858
2859 /**
2860 * Collect front-end information from the XenStore.
2861 *
2862 * \param xbb Per-instance xbb configuration structure.
2863 */
2864 static int
2865 xbb_collect_frontend_info(struct xbb_softc *xbb)
2866 {
2867 char protocol_abi[64];
2868 const char *otherend_path;
2869 int error;
2870 u_int ring_idx;
2871 u_int ring_page_order;
2872 size_t ring_size;
2873
2874 otherend_path = xenbus_get_otherend_path(xbb->dev);
2875
2876 /*
2877 * Protocol defaults valid even if all negotiation fails.
2878 */
2879 xbb->ring_config.ring_pages = 1;
2880 xbb->max_request_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2881 xbb->max_request_size = xbb->max_request_segments * PAGE_SIZE;
2882
2883 /*
2884 * Mandatory data (used in all versions of the protocol) first.
2885 */
2886 error = xs_scanf(XST_NIL, otherend_path,
2887 "event-channel", NULL, "%" PRIu32,
2888 &xbb->ring_config.evtchn);
2889 if (error != 0) {
2890 xenbus_dev_fatal(xbb->dev, error,
2891 "Unable to retrieve event-channel information "
2892 "from frontend %s. Unable to connect.",
2893 xenbus_get_otherend_path(xbb->dev));
2894 return (error);
2895 }
2896
2897 /*
2898 * These fields are initialized to legacy protocol defaults
2899 * so we only need to fail if reading the updated value succeeds
2900 * and the new value is outside of its allowed range.
2901 *
2902 * \note xs_gather() returns on the first encountered error, so
2903 * we must use independent calls in order to guarantee
2904 * we don't miss information in a sparsly populated front-end
2905 * tree.
2906 *
2907 * \note xs_scanf() does not update variables for unmatched
2908 * fields.
2909 */
2910 ring_page_order = 0;
2911 xbb->max_requests = 32;
2912
2913 (void)xs_scanf(XST_NIL, otherend_path,
2914 "ring-page-order", NULL, "%u",
2915 &ring_page_order);
2916 xbb->ring_config.ring_pages = 1 << ring_page_order;
2917 ring_size = PAGE_SIZE * xbb->ring_config.ring_pages;
2918 xbb->max_requests = BLKIF_MAX_RING_REQUESTS(ring_size);
2919
2920 if (xbb->ring_config.ring_pages > XBB_MAX_RING_PAGES) {
2921 xenbus_dev_fatal(xbb->dev, EINVAL,
2922 "Front-end specified ring-pages of %u "
2923 "exceeds backend limit of %u. "
2924 "Unable to connect.",
2925 xbb->ring_config.ring_pages,
2926 XBB_MAX_RING_PAGES);
2927 return (EINVAL);
2928 }
2929
2930 if (xbb->ring_config.ring_pages == 1) {
2931 error = xs_gather(XST_NIL, otherend_path,
2932 "ring-ref", "%" PRIu32,
2933 &xbb->ring_config.ring_ref[0],
2934 NULL);
2935 if (error != 0) {
2936 xenbus_dev_fatal(xbb->dev, error,
2937 "Unable to retrieve ring information "
2938 "from frontend %s. Unable to "
2939 "connect.",
2940 xenbus_get_otherend_path(xbb->dev));
2941 return (error);
2942 }
2943 } else {
2944 /* Multi-page ring format. */
2945 for (ring_idx = 0; ring_idx < xbb->ring_config.ring_pages;
2946 ring_idx++) {
2947 char ring_ref_name[]= "ring_refXX";
2948
2949 snprintf(ring_ref_name, sizeof(ring_ref_name),
2950 "ring-ref%u", ring_idx);
2951 error = xs_scanf(XST_NIL, otherend_path,
2952 ring_ref_name, NULL, "%" PRIu32,
2953 &xbb->ring_config.ring_ref[ring_idx]);
2954 if (error != 0) {
2955 xenbus_dev_fatal(xbb->dev, error,
2956 "Failed to retriev grant "
2957 "reference for page %u of "
2958 "shared ring. Unable "
2959 "to connect.", ring_idx);
2960 return (error);
2961 }
2962 }
2963 }
2964
2965 error = xs_gather(XST_NIL, otherend_path,
2966 "protocol", "%63s", protocol_abi,
2967 NULL);
2968 if (error != 0
2969 || !strcmp(protocol_abi, XEN_IO_PROTO_ABI_NATIVE)) {
2970 /*
2971 * Assume native if the frontend has not
2972 * published ABI data or it has published and
2973 * matches our own ABI.
2974 */
2975 xbb->abi = BLKIF_PROTOCOL_NATIVE;
2976 } else if (!strcmp(protocol_abi, XEN_IO_PROTO_ABI_X86_32)) {
2977 xbb->abi = BLKIF_PROTOCOL_X86_32;
2978 } else if (!strcmp(protocol_abi, XEN_IO_PROTO_ABI_X86_64)) {
2979 xbb->abi = BLKIF_PROTOCOL_X86_64;
2980 } else {
2981 xenbus_dev_fatal(xbb->dev, EINVAL,
2982 "Unknown protocol ABI (%s) published by "
2983 "frontend. Unable to connect.", protocol_abi);
2984 return (EINVAL);
2985 }
2986 return (0);
2987 }
2988
2989 /**
2990 * Allocate per-request data structures given request size and number
2991 * information negotiated with the front-end.
2992 *
2993 * \param xbb Per-instance xbb configuration structure.
2994 */
2995 static int
2996 xbb_alloc_requests(struct xbb_softc *xbb)
2997 {
2998 struct xbb_xen_req *req;
2999 struct xbb_xen_req *last_req;
3000
3001 /*
3002 * Allocate request book keeping datastructures.
3003 */
3004 xbb->requests = malloc(xbb->max_requests * sizeof(*xbb->requests),
3005 M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
3006 if (xbb->requests == NULL) {
3007 xenbus_dev_fatal(xbb->dev, ENOMEM,
3008 "Unable to allocate request structures");
3009 return (ENOMEM);
3010 }
3011
3012 req = xbb->requests;
3013 last_req = &xbb->requests[xbb->max_requests - 1];
3014 STAILQ_INIT(&xbb->request_free_stailq);
3015 while (req <= last_req) {
3016 STAILQ_INSERT_TAIL(&xbb->request_free_stailq, req, links);
3017 req++;
3018 }
3019 return (0);
3020 }
3021
3022 static int
3023 xbb_alloc_request_lists(struct xbb_softc *xbb)
3024 {
3025 struct xbb_xen_reqlist *reqlist;
3026 int i;
3027
3028 /*
3029 * If no requests can be merged, we need 1 request list per
3030 * in flight request.
3031 */
3032 xbb->request_lists = malloc(xbb->max_requests *
3033 sizeof(*xbb->request_lists), M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
3034 if (xbb->request_lists == NULL) {
3035 xenbus_dev_fatal(xbb->dev, ENOMEM,
3036 "Unable to allocate request list structures");
3037 return (ENOMEM);
3038 }
3039
3040 STAILQ_INIT(&xbb->reqlist_free_stailq);
3041 STAILQ_INIT(&xbb->reqlist_pending_stailq);
3042 for (i = 0; i < xbb->max_requests; i++) {
3043 int seg;
3044
3045 reqlist = &xbb->request_lists[i];
3046
3047 reqlist->xbb = xbb;
3048
3049 reqlist->gnt_handles = malloc(xbb->max_reqlist_segments *
3050 sizeof(*reqlist->gnt_handles),
3051 M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
3052 if (reqlist->gnt_handles == NULL) {
3053 xenbus_dev_fatal(xbb->dev, ENOMEM,
3054 "Unable to allocate request "
3055 "grant references");
3056 return (ENOMEM);
3057 }
3058
3059 for (seg = 0; seg < xbb->max_reqlist_segments; seg++)
3060 reqlist->gnt_handles[seg] = GRANT_REF_INVALID;
3061
3062 STAILQ_INSERT_TAIL(&xbb->reqlist_free_stailq, reqlist, links);
3063 }
3064 return (0);
3065 }
3066
3067 /**
3068 * Supply information about the physical device to the frontend
3069 * via XenBus.
3070 *
3071 * \param xbb Per-instance xbb configuration structure.
3072 */
3073 static int
3074 xbb_publish_backend_info(struct xbb_softc *xbb)
3075 {
3076 struct xs_transaction xst;
3077 const char *our_path;
3078 const char *leaf;
3079 int error;
3080
3081 our_path = xenbus_get_node(xbb->dev);
3082 while (1) {
3083 error = xs_transaction_start(&xst);
3084 if (error != 0) {
3085 xenbus_dev_fatal(xbb->dev, error,
3086 "Error publishing backend info "
3087 "(start transaction)");
3088 return (error);
3089 }
3090
3091 leaf = "sectors";
3092 error = xs_printf(xst, our_path, leaf,
3093 "%"PRIu64, xbb->media_num_sectors);
3094 if (error != 0)
3095 break;
3096
3097 /* XXX Support all VBD attributes here. */
3098 leaf = "info";
3099 error = xs_printf(xst, our_path, leaf, "%u",
3100 xbb->flags & XBBF_READ_ONLY
3101 ? VDISK_READONLY : 0);
3102 if (error != 0)
3103 break;
3104
3105 leaf = "sector-size";
3106 error = xs_printf(xst, our_path, leaf, "%u",
3107 xbb->sector_size);
3108 if (error != 0)
3109 break;
3110
3111 error = xs_transaction_end(xst, 0);
3112 if (error == 0) {
3113 return (0);
3114 } else if (error != EAGAIN) {
3115 xenbus_dev_fatal(xbb->dev, error, "ending transaction");
3116 return (error);
3117 }
3118 }
3119
3120 xenbus_dev_fatal(xbb->dev, error, "writing %s/%s",
3121 our_path, leaf);
3122 xs_transaction_end(xst, 1);
3123 return (error);
3124 }
3125
3126 /**
3127 * Connect to our blkfront peer now that it has completed publishing
3128 * its configuration into the XenStore.
3129 *
3130 * \param xbb Per-instance xbb configuration structure.
3131 */
3132 static void
3133 xbb_connect(struct xbb_softc *xbb)
3134 {
3135 int error;
3136
3137 if (!xbb->hotplug_done ||
3138 (xenbus_get_state(xbb->dev) != XenbusStateInitWait) ||
3139 (xbb_collect_frontend_info(xbb) != 0))
3140 return;
3141
3142 xbb->flags &= ~XBBF_SHUTDOWN;
3143
3144 /*
3145 * We limit the maximum number of reqlist segments to the maximum
3146 * number of segments in the ring, or our absolute maximum,
3147 * whichever is smaller.
3148 */
3149 xbb->max_reqlist_segments = MIN(xbb->max_request_segments *
3150 xbb->max_requests, XBB_MAX_SEGMENTS_PER_REQLIST);
3151
3152 /*
3153 * The maximum size is simply a function of the number of segments
3154 * we can handle.
3155 */
3156 xbb->max_reqlist_size = xbb->max_reqlist_segments * PAGE_SIZE;
3157
3158 /* Allocate resources whose size depends on front-end configuration. */
3159 error = xbb_alloc_communication_mem(xbb);
3160 if (error != 0) {
3161 xenbus_dev_fatal(xbb->dev, error,
3162 "Unable to allocate communication memory");
3163 return;
3164 }
3165
3166 error = xbb_publish_backend_info(xbb);
3167 if (error != 0) {
3168 xenbus_dev_fatal(xbb->dev, error,
3169 "Unable to publish device information");
3170 return;
3171 }
3172
3173 error = xbb_alloc_requests(xbb);
3174 if (error != 0) {
3175 /* Specific errors are reported by xbb_alloc_requests(). */
3176 return;
3177 }
3178
3179 error = xbb_alloc_request_lists(xbb);
3180 if (error != 0) {
3181 /* Specific errors are reported by xbb_alloc_request_lists(). */
3182 return;
3183 }
3184
3185 /*
3186 * Connect communication channel.
3187 */
3188 error = xbb_connect_ring(xbb);
3189 if (error != 0) {
3190 /* Specific errors are reported by xbb_connect_ring(). */
3191 return;
3192 }
3193
3194 /* Ready for I/O. */
3195 xenbus_set_state(xbb->dev, XenbusStateConnected);
3196 }
3197
3198 /*-------------------------- Device Teardown Support -------------------------*/
3199 /**
3200 * Perform device shutdown functions.
3201 *
3202 * \param xbb Per-instance xbb configuration structure.
3203 *
3204 * Mark this instance as shutting down, wait for any active I/O on the
3205 * backend device/file to drain, disconnect from the front-end, and notify
3206 * any waiters (e.g. a thread invoking our detach method) that detach can
3207 * now proceed.
3208 */
3209 static int
3210 xbb_shutdown(struct xbb_softc *xbb)
3211 {
3212 XenbusState frontState;
3213 int error;
3214
3215 DPRINTF("\n");
3216
3217 /*
3218 * Due to the need to drop our mutex during some
3219 * xenbus operations, it is possible for two threads
3220 * to attempt to close out shutdown processing at
3221 * the same time. Tell the caller that hits this
3222 * race to try back later.
3223 */
3224 if ((xbb->flags & XBBF_IN_SHUTDOWN) != 0)
3225 return (EAGAIN);
3226
3227 xbb->flags |= XBBF_IN_SHUTDOWN;
3228 mtx_unlock(&xbb->lock);
3229
3230 if (xbb->hotplug_watch.node != NULL) {
3231 xs_unregister_watch(&xbb->hotplug_watch);
3232 free(xbb->hotplug_watch.node, M_XENBLOCKBACK);
3233 xbb->hotplug_watch.node = NULL;
3234 }
3235
3236 if (xenbus_get_state(xbb->dev) < XenbusStateClosing)
3237 xenbus_set_state(xbb->dev, XenbusStateClosing);
3238
3239 frontState = xenbus_get_otherend_state(xbb->dev);
3240 mtx_lock(&xbb->lock);
3241 xbb->flags &= ~XBBF_IN_SHUTDOWN;
3242
3243 /* Wait for the frontend to disconnect (if it's connected). */
3244 if (frontState == XenbusStateConnected)
3245 return (EAGAIN);
3246
3247 DPRINTF("\n");
3248
3249 /* Indicate shutdown is in progress. */
3250 xbb->flags |= XBBF_SHUTDOWN;
3251
3252 /* Disconnect from the front-end. */
3253 error = xbb_disconnect(xbb);
3254 if (error != 0) {
3255 /*
3256 * Requests still outstanding. We'll be called again
3257 * once they complete.
3258 */
3259 KASSERT(error == EAGAIN,
3260 ("%s: Unexpected xbb_disconnect() failure %d",
3261 __func__, error));
3262
3263 return (error);
3264 }
3265
3266 DPRINTF("\n");
3267
3268 /* Indicate to xbb_detach() that is it safe to proceed. */
3269 wakeup(xbb);
3270
3271 return (0);
3272 }
3273
3274 /**
3275 * Report an attach time error to the console and Xen, and cleanup
3276 * this instance by forcing immediate detach processing.
3277 *
3278 * \param xbb Per-instance xbb configuration structure.
3279 * \param err Errno describing the error.
3280 * \param fmt Printf style format and arguments
3281 */
3282 static void
3283 xbb_attach_failed(struct xbb_softc *xbb, int err, const char *fmt, ...)
3284 {
3285 va_list ap;
3286 va_list ap_hotplug;
3287
3288 va_start(ap, fmt);
3289 va_copy(ap_hotplug, ap);
3290 xs_vprintf(XST_NIL, xenbus_get_node(xbb->dev),
3291 "hotplug-error", fmt, ap_hotplug);
3292 va_end(ap_hotplug);
3293 xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3294 "hotplug-status", "error");
3295
3296 xenbus_dev_vfatal(xbb->dev, err, fmt, ap);
3297 va_end(ap);
3298
3299 xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3300 "online", "");
3301 mtx_lock(&xbb->lock);
3302 xbb_shutdown(xbb);
3303 mtx_unlock(&xbb->lock);
3304 }
3305
3306 /*---------------------------- NewBus Entrypoints ----------------------------*/
3307 /**
3308 * Inspect a XenBus device and claim it if is of the appropriate type.
3309 *
3310 * \param dev NewBus device object representing a candidate XenBus device.
3311 *
3312 * \return 0 for success, errno codes for failure.
3313 */
3314 static int
3315 xbb_probe(device_t dev)
3316 {
3317
3318 if (strcmp(xenbus_get_type(dev), "vbd"))
3319 return (ENXIO);
3320
3321 /* Only attach if Xen creates IOMMU entries for grant mapped pages. */
3322 if (!xen_has_iommu_maps()) {
3323 static bool warned;
3324
3325 if (!warned) {
3326 warned = true;
3327 printf(
3328 "xen-blkback disabled due to grant maps lacking IOMMU entries\n");
3329 }
3330 return (ENXIO);
3331 }
3332
3333 device_set_desc(dev, "Backend Virtual Block Device");
3334 device_quiet(dev);
3335 return (0);
3336 }
3337
3338 /**
3339 * Setup sysctl variables to control various Block Back parameters.
3340 *
3341 * \param xbb Xen Block Back softc.
3342 *
3343 */
3344 static void
3345 xbb_setup_sysctl(struct xbb_softc *xbb)
3346 {
3347 struct sysctl_ctx_list *sysctl_ctx = NULL;
3348 struct sysctl_oid *sysctl_tree = NULL;
3349
3350 sysctl_ctx = device_get_sysctl_ctx(xbb->dev);
3351 if (sysctl_ctx == NULL)
3352 return;
3353
3354 sysctl_tree = device_get_sysctl_tree(xbb->dev);
3355 if (sysctl_tree == NULL)
3356 return;
3357
3358 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3359 "disable_flush", CTLFLAG_RW, &xbb->disable_flush, 0,
3360 "fake the flush command");
3361
3362 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3363 "flush_interval", CTLFLAG_RW, &xbb->flush_interval, 0,
3364 "send a real flush for N flush requests");
3365
3366 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3367 "no_coalesce_reqs", CTLFLAG_RW, &xbb->no_coalesce_reqs,0,
3368 "Don't coalesce contiguous requests");
3369
3370 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3371 "reqs_received", CTLFLAG_RW, &xbb->reqs_received,
3372 "how many I/O requests we have received");
3373
3374 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3375 "reqs_completed", CTLFLAG_RW, &xbb->reqs_completed,
3376 "how many I/O requests have been completed");
3377
3378 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3379 "reqs_queued_for_completion", CTLFLAG_RW,
3380 &xbb->reqs_queued_for_completion,
3381 "how many I/O requests queued but not yet pushed");
3382
3383 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3384 "reqs_completed_with_error", CTLFLAG_RW,
3385 &xbb->reqs_completed_with_error,
3386 "how many I/O requests completed with error status");
3387
3388 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3389 "forced_dispatch", CTLFLAG_RW, &xbb->forced_dispatch,
3390 "how many I/O dispatches were forced");
3391
3392 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3393 "normal_dispatch", CTLFLAG_RW, &xbb->normal_dispatch,
3394 "how many I/O dispatches were normal");
3395
3396 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3397 "total_dispatch", CTLFLAG_RW, &xbb->total_dispatch,
3398 "total number of I/O dispatches");
3399
3400 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3401 "kva_shortages", CTLFLAG_RW, &xbb->kva_shortages,
3402 "how many times we have run out of KVA");
3403
3404 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3405 "request_shortages", CTLFLAG_RW,
3406 &xbb->request_shortages,
3407 "how many times we have run out of requests");
3408
3409 SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3410 "max_requests", CTLFLAG_RD, &xbb->max_requests, 0,
3411 "maximum outstanding requests (negotiated)");
3412
3413 SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3414 "max_request_segments", CTLFLAG_RD,
3415 &xbb->max_request_segments, 0,
3416 "maximum number of pages per requests (negotiated)");
3417
3418 SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3419 "max_request_size", CTLFLAG_RD,
3420 &xbb->max_request_size, 0,
3421 "maximum size in bytes of a request (negotiated)");
3422
3423 SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3424 "ring_pages", CTLFLAG_RD,
3425 &xbb->ring_config.ring_pages, 0,
3426 "communication channel pages (negotiated)");
3427 }
3428
3429 static void
3430 xbb_attach_disk(device_t dev)
3431 {
3432 struct xbb_softc *xbb;
3433 int error;
3434
3435 xbb = device_get_softc(dev);
3436
3437 KASSERT(xbb->hotplug_done, ("Missing hotplug execution"));
3438
3439 /* Parse fopen style mode flags. */
3440 if (strchr(xbb->dev_mode, 'w') == NULL)
3441 xbb->flags |= XBBF_READ_ONLY;
3442
3443 /*
3444 * Verify the physical device is present and can support
3445 * the desired I/O mode.
3446 */
3447 error = xbb_open_backend(xbb);
3448 if (error != 0) {
3449 xbb_attach_failed(xbb, error, "Unable to open %s",
3450 xbb->dev_name);
3451 return;
3452 }
3453
3454 /* Use devstat(9) for recording statistics. */
3455 xbb->xbb_stats = devstat_new_entry("xbb", device_get_unit(xbb->dev),
3456 xbb->sector_size,
3457 DEVSTAT_ALL_SUPPORTED,
3458 DEVSTAT_TYPE_DIRECT
3459 | DEVSTAT_TYPE_IF_OTHER,
3460 DEVSTAT_PRIORITY_OTHER);
3461
3462 xbb->xbb_stats_in = devstat_new_entry("xbbi", device_get_unit(xbb->dev),
3463 xbb->sector_size,
3464 DEVSTAT_ALL_SUPPORTED,
3465 DEVSTAT_TYPE_DIRECT
3466 | DEVSTAT_TYPE_IF_OTHER,
3467 DEVSTAT_PRIORITY_OTHER);
3468 /*
3469 * Setup sysctl variables.
3470 */
3471 xbb_setup_sysctl(xbb);
3472
3473 /*
3474 * Create a taskqueue for doing work that must occur from a
3475 * thread context.
3476 */
3477 xbb->io_taskqueue = taskqueue_create_fast(device_get_nameunit(dev),
3478 M_NOWAIT,
3479 taskqueue_thread_enqueue,
3480 /*contxt*/&xbb->io_taskqueue);
3481 if (xbb->io_taskqueue == NULL) {
3482 xbb_attach_failed(xbb, error, "Unable to create taskqueue");
3483 return;
3484 }
3485
3486 taskqueue_start_threads(&xbb->io_taskqueue,
3487 /*num threads*/1,
3488 /*priority*/PWAIT,
3489 /*thread name*/
3490 "%s taskq", device_get_nameunit(dev));
3491
3492 /* Update hot-plug status to satisfy xend. */
3493 error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3494 "hotplug-status", "connected");
3495 if (error) {
3496 xbb_attach_failed(xbb, error, "writing %s/hotplug-status",
3497 xenbus_get_node(xbb->dev));
3498 return;
3499 }
3500
3501 /* The front end might be waiting for the backend, attach if so. */
3502 if (xenbus_get_otherend_state(xbb->dev) == XenbusStateInitialised)
3503 xbb_connect(xbb);
3504 }
3505
3506 static void
3507 xbb_attach_cb(struct xs_watch *watch, const char **vec, unsigned int len)
3508 {
3509 device_t dev;
3510 struct xbb_softc *xbb;
3511 int error;
3512
3513 dev = (device_t)watch->callback_data;
3514 xbb = device_get_softc(dev);
3515
3516 error = xs_gather(XST_NIL, xenbus_get_node(dev), "physical-device-path",
3517 NULL, &xbb->dev_name, NULL);
3518 if (error != 0)
3519 return;
3520
3521 xs_unregister_watch(watch);
3522 free(watch->node, M_XENBLOCKBACK);
3523 watch->node = NULL;
3524 xbb->hotplug_done = true;
3525
3526 /* Collect physical device information. */
3527 error = xs_gather(XST_NIL, xenbus_get_otherend_path(dev), "device-type",
3528 NULL, &xbb->dev_type, NULL);
3529 if (error != 0)
3530 xbb->dev_type = NULL;
3531
3532 error = xs_gather(XST_NIL, xenbus_get_node(dev), "mode", NULL,
3533 &xbb->dev_mode, NULL);
3534 if (error != 0) {
3535 xbb_attach_failed(xbb, error, "reading backend fields at %s",
3536 xenbus_get_node(dev));
3537 return;
3538 }
3539
3540 xbb_attach_disk(dev);
3541 }
3542
3543 /**
3544 * Attach to a XenBus device that has been claimed by our probe routine.
3545 *
3546 * \param dev NewBus device object representing this Xen Block Back instance.
3547 *
3548 * \return 0 for success, errno codes for failure.
3549 */
3550 static int
3551 xbb_attach(device_t dev)
3552 {
3553 struct xbb_softc *xbb;
3554 int error;
3555 u_int max_ring_page_order;
3556 struct sbuf *watch_path;
3557
3558 DPRINTF("Attaching to %s\n", xenbus_get_node(dev));
3559
3560 /*
3561 * Basic initialization.
3562 * After this block it is safe to call xbb_detach()
3563 * to clean up any allocated data for this instance.
3564 */
3565 xbb = device_get_softc(dev);
3566 xbb->dev = dev;
3567 xbb->otherend_id = xenbus_get_otherend_id(dev);
3568 TASK_INIT(&xbb->io_task, /*priority*/0, xbb_run_queue, xbb);
3569 mtx_init(&xbb->lock, device_get_nameunit(dev), NULL, MTX_DEF);
3570
3571 /*
3572 * Publish protocol capabilities for consumption by the
3573 * front-end.
3574 */
3575 error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3576 "feature-barrier", "1");
3577 if (error) {
3578 xbb_attach_failed(xbb, error, "writing %s/feature-barrier",
3579 xenbus_get_node(xbb->dev));
3580 return (error);
3581 }
3582
3583 error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3584 "feature-flush-cache", "1");
3585 if (error) {
3586 xbb_attach_failed(xbb, error, "writing %s/feature-flush-cache",
3587 xenbus_get_node(xbb->dev));
3588 return (error);
3589 }
3590
3591 max_ring_page_order = flsl(XBB_MAX_RING_PAGES) - 1;
3592 error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3593 "max-ring-page-order", "%u", max_ring_page_order);
3594 if (error) {
3595 xbb_attach_failed(xbb, error, "writing %s/max-ring-page-order",
3596 xenbus_get_node(xbb->dev));
3597 return (error);
3598 }
3599
3600 /* Tell the toolstack blkback has attached. */
3601 xenbus_set_state(dev, XenbusStateInitWait);
3602
3603 if (xbb->hotplug_done) {
3604 xbb_attach_disk(dev);
3605 return (0);
3606 }
3607
3608 /*
3609 * We need to wait for hotplug script execution before
3610 * moving forward.
3611 */
3612 watch_path = xs_join(xenbus_get_node(xbb->dev), "physical-device-path");
3613 xbb->hotplug_watch.callback_data = (uintptr_t)dev;
3614 xbb->hotplug_watch.callback = xbb_attach_cb;
3615 KASSERT(xbb->hotplug_watch.node == NULL, ("watch node already setup"));
3616 xbb->hotplug_watch.node = strdup(sbuf_data(watch_path), M_XENBLOCKBACK);
3617 /*
3618 * We don't care about the path updated, just about the value changes
3619 * on that single node, hence there's no need to queue more that one
3620 * event.
3621 */
3622 xbb->hotplug_watch.max_pending = 1;
3623 sbuf_delete(watch_path);
3624 error = xs_register_watch(&xbb->hotplug_watch);
3625 if (error != 0) {
3626 xbb_attach_failed(xbb, error, "failed to create watch on %s",
3627 xbb->hotplug_watch.node);
3628 free(xbb->hotplug_watch.node, M_XENBLOCKBACK);
3629 return (error);
3630 }
3631
3632 return (0);
3633 }
3634
3635 /**
3636 * Detach from a block back device instance.
3637 *
3638 * \param dev NewBus device object representing this Xen Block Back instance.
3639 *
3640 * \return 0 for success, errno codes for failure.
3641 *
3642 * \note A block back device may be detached at any time in its life-cycle,
3643 * including part way through the attach process. For this reason,
3644 * initialization order and the initialization state checks in this
3645 * routine must be carefully coupled so that attach time failures
3646 * are gracefully handled.
3647 */
3648 static int
3649 xbb_detach(device_t dev)
3650 {
3651 struct xbb_softc *xbb;
3652
3653 DPRINTF("\n");
3654
3655 xbb = device_get_softc(dev);
3656 mtx_lock(&xbb->lock);
3657 while (xbb_shutdown(xbb) == EAGAIN) {
3658 msleep(xbb, &xbb->lock, /*wakeup prio unchanged*/0,
3659 "xbb_shutdown", 0);
3660 }
3661 mtx_unlock(&xbb->lock);
3662
3663 DPRINTF("\n");
3664
3665 if (xbb->io_taskqueue != NULL)
3666 taskqueue_free(xbb->io_taskqueue);
3667
3668 if (xbb->xbb_stats != NULL)
3669 devstat_remove_entry(xbb->xbb_stats);
3670
3671 if (xbb->xbb_stats_in != NULL)
3672 devstat_remove_entry(xbb->xbb_stats_in);
3673
3674 xbb_close_backend(xbb);
3675
3676 if (xbb->dev_mode != NULL) {
3677 free(xbb->dev_mode, M_XENSTORE);
3678 xbb->dev_mode = NULL;
3679 }
3680
3681 if (xbb->dev_type != NULL) {
3682 free(xbb->dev_type, M_XENSTORE);
3683 xbb->dev_type = NULL;
3684 }
3685
3686 if (xbb->dev_name != NULL) {
3687 free(xbb->dev_name, M_XENSTORE);
3688 xbb->dev_name = NULL;
3689 }
3690
3691 mtx_destroy(&xbb->lock);
3692 return (0);
3693 }
3694
3695 /**
3696 * Prepare this block back device for suspension of this VM.
3697 *
3698 * \param dev NewBus device object representing this Xen Block Back instance.
3699 *
3700 * \return 0 for success, errno codes for failure.
3701 */
3702 static int
3703 xbb_suspend(device_t dev)
3704 {
3705 #ifdef NOT_YET
3706 struct xbb_softc *sc = device_get_softc(dev);
3707
3708 /* Prevent new requests being issued until we fix things up. */
3709 mtx_lock(&sc->xb_io_lock);
3710 sc->connected = BLKIF_STATE_SUSPENDED;
3711 mtx_unlock(&sc->xb_io_lock);
3712 #endif
3713
3714 return (0);
3715 }
3716
3717 /**
3718 * Perform any processing required to recover from a suspended state.
3719 *
3720 * \param dev NewBus device object representing this Xen Block Back instance.
3721 *
3722 * \return 0 for success, errno codes for failure.
3723 */
3724 static int
3725 xbb_resume(device_t dev)
3726 {
3727 return (0);
3728 }
3729
3730 /**
3731 * Handle state changes expressed via the XenStore by our front-end peer.
3732 *
3733 * \param dev NewBus device object representing this Xen
3734 * Block Back instance.
3735 * \param frontend_state The new state of the front-end.
3736 *
3737 * \return 0 for success, errno codes for failure.
3738 */
3739 static void
3740 xbb_frontend_changed(device_t dev, XenbusState frontend_state)
3741 {
3742 struct xbb_softc *xbb = device_get_softc(dev);
3743
3744 DPRINTF("frontend_state=%s, xbb_state=%s\n",
3745 xenbus_strstate(frontend_state),
3746 xenbus_strstate(xenbus_get_state(xbb->dev)));
3747
3748 switch (frontend_state) {
3749 case XenbusStateInitialising:
3750 break;
3751 case XenbusStateInitialised:
3752 case XenbusStateConnected:
3753 xbb_connect(xbb);
3754 break;
3755 case XenbusStateClosing:
3756 case XenbusStateClosed:
3757 mtx_lock(&xbb->lock);
3758 xbb_shutdown(xbb);
3759 mtx_unlock(&xbb->lock);
3760 if (frontend_state == XenbusStateClosed)
3761 xenbus_set_state(xbb->dev, XenbusStateClosed);
3762 break;
3763 default:
3764 xenbus_dev_fatal(xbb->dev, EINVAL, "saw state %d at frontend",
3765 frontend_state);
3766 break;
3767 }
3768 }
3769
3770 /*---------------------------- NewBus Registration ---------------------------*/
3771 static device_method_t xbb_methods[] = {
3772 /* Device interface */
3773 DEVMETHOD(device_probe, xbb_probe),
3774 DEVMETHOD(device_attach, xbb_attach),
3775 DEVMETHOD(device_detach, xbb_detach),
3776 DEVMETHOD(device_shutdown, bus_generic_shutdown),
3777 DEVMETHOD(device_suspend, xbb_suspend),
3778 DEVMETHOD(device_resume, xbb_resume),
3779
3780 /* Xenbus interface */
3781 DEVMETHOD(xenbus_otherend_changed, xbb_frontend_changed),
3782 { 0, 0 }
3783 };
3784
3785 static driver_t xbb_driver = {
3786 "xbbd",
3787 xbb_methods,
3788 sizeof(struct xbb_softc),
3789 };
3790
3791 DRIVER_MODULE(xbbd, xenbusb_back, xbb_driver, 0, 0);
Cache object: 7d4a7bb51cfde596c63c25b5dcbf1161
|