1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2009-2011 Spectra Logic Corporation
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * substantially similar to the "NO WARRANTY" disclaimer below
15 * ("Disclaimer") and any redistribution must be conditioned upon
16 * including a substantially similar Disclaimer requirement for further
17 * binary redistribution.
18 *
19 * NO WARRANTY
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
28 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
29 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGES.
31 *
32 * Authors: Justin T. Gibbs (Spectra Logic Corporation)
33 * Alan Somers (Spectra Logic Corporation)
34 * John Suykerbuyk (Spectra Logic Corporation)
35 */
36
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39
40 /**
41 * \file netback.c
42 *
43 * \brief Device driver supporting the vending of network access
44 * from this FreeBSD domain to other domains.
45 */
46 #include "opt_inet.h"
47 #include "opt_inet6.h"
48
49 #include <sys/param.h>
50 #include <sys/kernel.h>
51
52 #include <sys/bus.h>
53 #include <sys/module.h>
54 #include <sys/rman.h>
55 #include <sys/socket.h>
56 #include <sys/sockio.h>
57 #include <sys/sysctl.h>
58
59 #include <net/if.h>
60 #include <net/if_var.h>
61 #include <net/if_arp.h>
62 #include <net/ethernet.h>
63 #include <net/if_dl.h>
64 #include <net/if_media.h>
65 #include <net/if_types.h>
66
67 #include <netinet/in.h>
68 #include <netinet/ip.h>
69 #include <netinet/if_ether.h>
70 #include <netinet/tcp.h>
71 #include <netinet/ip_icmp.h>
72 #include <netinet/udp.h>
73 #include <machine/in_cksum.h>
74
75 #include <vm/vm.h>
76 #include <vm/pmap.h>
77 #include <vm/vm_extern.h>
78 #include <vm/vm_kern.h>
79
80 #include <machine/_inttypes.h>
81
82 #include <xen/xen-os.h>
83 #include <xen/hypervisor.h>
84 #include <xen/xen_intr.h>
85 #include <contrib/xen/io/netif.h>
86 #include <xen/xenbus/xenbusvar.h>
87
88 /*--------------------------- Compile-time Tunables --------------------------*/
89
90 /*---------------------------------- Macros ----------------------------------*/
91 /**
92 * Custom malloc type for all driver allocations.
93 */
94 static MALLOC_DEFINE(M_XENNETBACK, "xnb", "Xen Net Back Driver Data");
95
96 #define XNB_SG 1 /* netback driver supports feature-sg */
97 #define XNB_GSO_TCPV4 0 /* netback driver supports feature-gso-tcpv4 */
98 #define XNB_RX_COPY 1 /* netback driver supports feature-rx-copy */
99 #define XNB_RX_FLIP 0 /* netback driver does not support feature-rx-flip */
100
101 #undef XNB_DEBUG
102 #define XNB_DEBUG /* hardcode on during development */
103
104 #ifdef XNB_DEBUG
105 #define DPRINTF(fmt, args...) \
106 printf("xnb(%s:%d): " fmt, __FUNCTION__, __LINE__, ##args)
107 #else
108 #define DPRINTF(fmt, args...) do {} while (0)
109 #endif
110
111 /* Default length for stack-allocated grant tables */
112 #define GNTTAB_LEN (64)
113
114 /* Features supported by all backends. TSO and LRO can be negotiated */
115 #define XNB_CSUM_FEATURES (CSUM_TCP | CSUM_UDP)
116
117 #define NET_TX_RING_SIZE __RING_SIZE((netif_tx_sring_t *)0, PAGE_SIZE)
118 #define NET_RX_RING_SIZE __RING_SIZE((netif_rx_sring_t *)0, PAGE_SIZE)
119
120 /**
121 * Two argument version of the standard macro. Second argument is a tentative
122 * value of req_cons
123 */
124 #define RING_HAS_UNCONSUMED_REQUESTS_2(_r, cons) ({ \
125 unsigned int req = (_r)->sring->req_prod - cons; \
126 unsigned int rsp = RING_SIZE(_r) - \
127 (cons - (_r)->rsp_prod_pvt); \
128 req < rsp ? req : rsp; \
129 })
130
131 #define virt_to_mfn(x) (vtophys(x) >> PAGE_SHIFT)
132 #define virt_to_offset(x) ((x) & (PAGE_SIZE - 1))
133
134 /**
135 * Predefined array type of grant table copy descriptors. Used to pass around
136 * statically allocated memory structures.
137 */
138 typedef struct gnttab_copy gnttab_copy_table[GNTTAB_LEN];
139
140 /*--------------------------- Forward Declarations ---------------------------*/
141 struct xnb_softc;
142 struct xnb_pkt;
143
144 static void xnb_attach_failed(struct xnb_softc *xnb,
145 int err, const char *fmt, ...)
146 __printflike(3,4);
147 static int xnb_shutdown(struct xnb_softc *xnb);
148 static int create_netdev(device_t dev);
149 static int xnb_detach(device_t dev);
150 static int xnb_ifmedia_upd(struct ifnet *ifp);
151 static void xnb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
152 static void xnb_intr(void *arg);
153 static int xnb_send(netif_rx_back_ring_t *rxb, domid_t otherend,
154 const struct mbuf *mbufc, gnttab_copy_table gnttab);
155 static int xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend,
156 struct mbuf **mbufc, struct ifnet *ifnet,
157 gnttab_copy_table gnttab);
158 static int xnb_ring2pkt(struct xnb_pkt *pkt,
159 const netif_tx_back_ring_t *tx_ring,
160 RING_IDX start);
161 static void xnb_txpkt2rsp(const struct xnb_pkt *pkt,
162 netif_tx_back_ring_t *ring, int error);
163 static struct mbuf *xnb_pkt2mbufc(const struct xnb_pkt *pkt, struct ifnet *ifp);
164 static int xnb_txpkt2gnttab(const struct xnb_pkt *pkt,
165 struct mbuf *mbufc,
166 gnttab_copy_table gnttab,
167 const netif_tx_back_ring_t *txb,
168 domid_t otherend_id);
169 static void xnb_update_mbufc(struct mbuf *mbufc,
170 const gnttab_copy_table gnttab, int n_entries);
171 static int xnb_mbufc2pkt(const struct mbuf *mbufc,
172 struct xnb_pkt *pkt,
173 RING_IDX start, int space);
174 static int xnb_rxpkt2gnttab(const struct xnb_pkt *pkt,
175 const struct mbuf *mbufc,
176 gnttab_copy_table gnttab,
177 const netif_rx_back_ring_t *rxb,
178 domid_t otherend_id);
179 static int xnb_rxpkt2rsp(const struct xnb_pkt *pkt,
180 const gnttab_copy_table gnttab, int n_entries,
181 netif_rx_back_ring_t *ring);
182 static void xnb_stop(struct xnb_softc*);
183 static int xnb_ioctl(struct ifnet*, u_long, caddr_t);
184 static void xnb_start_locked(struct ifnet*);
185 static void xnb_start(struct ifnet*);
186 static void xnb_ifinit_locked(struct xnb_softc*);
187 static void xnb_ifinit(void*);
188 #ifdef XNB_DEBUG
189 static int xnb_unit_test_main(SYSCTL_HANDLER_ARGS);
190 static int xnb_dump_rings(SYSCTL_HANDLER_ARGS);
191 #endif
192 #if defined(INET) || defined(INET6)
193 static void xnb_add_mbuf_cksum(struct mbuf *mbufc);
194 #endif
195 /*------------------------------ Data Structures -----------------------------*/
196
197 /**
198 * Representation of a xennet packet. Simplified version of a packet as
199 * stored in the Xen tx ring. Applicable to both RX and TX packets
200 */
201 struct xnb_pkt{
202 /**
203 * Array index of the first data-bearing (eg, not extra info) entry
204 * for this packet
205 */
206 RING_IDX car;
207
208 /**
209 * Array index of the second data-bearing entry for this packet.
210 * Invalid if the packet has only one data-bearing entry. If the
211 * packet has more than two data-bearing entries, then the second
212 * through the last will be sequential modulo the ring size
213 */
214 RING_IDX cdr;
215
216 /**
217 * Optional extra info. Only valid if flags contains
218 * NETTXF_extra_info. Note that extra.type will always be
219 * XEN_NETIF_EXTRA_TYPE_GSO. Currently, no known netfront or netback
220 * driver will ever set XEN_NETIF_EXTRA_TYPE_MCAST_*
221 */
222 netif_extra_info_t extra;
223
224 /** Size of entire packet in bytes. */
225 uint16_t size;
226
227 /** The size of the first entry's data in bytes */
228 uint16_t car_size;
229
230 /**
231 * Either NETTXF_ or NETRXF_ flags. Note that the flag values are
232 * not the same for TX and RX packets
233 */
234 uint16_t flags;
235
236 /**
237 * The number of valid data-bearing entries (either netif_tx_request's
238 * or netif_rx_response's) in the packet. If this is 0, it means the
239 * entire packet is invalid.
240 */
241 uint16_t list_len;
242
243 /** There was an error processing the packet */
244 uint8_t error;
245 };
246
247 /** xnb_pkt method: initialize it */
248 static inline void
249 xnb_pkt_initialize(struct xnb_pkt *pxnb)
250 {
251 bzero(pxnb, sizeof(*pxnb));
252 }
253
254 /** xnb_pkt method: mark the packet as valid */
255 static inline void
256 xnb_pkt_validate(struct xnb_pkt *pxnb)
257 {
258 pxnb->error = 0;
259 };
260
261 /** xnb_pkt method: mark the packet as invalid */
262 static inline void
263 xnb_pkt_invalidate(struct xnb_pkt *pxnb)
264 {
265 pxnb->error = 1;
266 };
267
268 /** xnb_pkt method: Check whether the packet is valid */
269 static inline int
270 xnb_pkt_is_valid(const struct xnb_pkt *pxnb)
271 {
272 return (! pxnb->error);
273 }
274
275 #ifdef XNB_DEBUG
276 /** xnb_pkt method: print the packet's contents in human-readable format*/
277 static void __unused
278 xnb_dump_pkt(const struct xnb_pkt *pkt) {
279 if (pkt == NULL) {
280 DPRINTF("Was passed a null pointer.\n");
281 return;
282 }
283 DPRINTF("pkt address= %p\n", pkt);
284 DPRINTF("pkt->size=%d\n", pkt->size);
285 DPRINTF("pkt->car_size=%d\n", pkt->car_size);
286 DPRINTF("pkt->flags=0x%04x\n", pkt->flags);
287 DPRINTF("pkt->list_len=%d\n", pkt->list_len);
288 /* DPRINTF("pkt->extra"); TODO */
289 DPRINTF("pkt->car=%d\n", pkt->car);
290 DPRINTF("pkt->cdr=%d\n", pkt->cdr);
291 DPRINTF("pkt->error=%d\n", pkt->error);
292 }
293 #endif /* XNB_DEBUG */
294
295 static void
296 xnb_dump_txreq(RING_IDX idx, const struct netif_tx_request *txreq)
297 {
298 if (txreq != NULL) {
299 DPRINTF("netif_tx_request index =%u\n", idx);
300 DPRINTF("netif_tx_request.gref =%u\n", txreq->gref);
301 DPRINTF("netif_tx_request.offset=%hu\n", txreq->offset);
302 DPRINTF("netif_tx_request.flags =%hu\n", txreq->flags);
303 DPRINTF("netif_tx_request.id =%hu\n", txreq->id);
304 DPRINTF("netif_tx_request.size =%hu\n", txreq->size);
305 }
306 }
307
308 /**
309 * \brief Configuration data for a shared memory request ring
310 * used to communicate with the front-end client of this
311 * this driver.
312 */
313 struct xnb_ring_config {
314 /**
315 * Runtime structures for ring access. Unfortunately, TX and RX rings
316 * use different data structures, and that cannot be changed since it
317 * is part of the interdomain protocol.
318 */
319 union{
320 netif_rx_back_ring_t rx_ring;
321 netif_tx_back_ring_t tx_ring;
322 } back_ring;
323
324 /**
325 * The device bus address returned by the hypervisor when
326 * mapping the ring and required to unmap it when a connection
327 * is torn down.
328 */
329 uint64_t bus_addr;
330
331 /** The pseudo-physical address where ring memory is mapped.*/
332 uint64_t gnt_addr;
333
334 /** KVA address where ring memory is mapped. */
335 vm_offset_t va;
336
337 /**
338 * Grant table handles, one per-ring page, returned by the
339 * hyperpervisor upon mapping of the ring and required to
340 * unmap it when a connection is torn down.
341 */
342 grant_handle_t handle;
343
344 /** The number of ring pages mapped for the current connection. */
345 unsigned ring_pages;
346
347 /**
348 * The grant references, one per-ring page, supplied by the
349 * front-end, allowing us to reference the ring pages in the
350 * front-end's domain and to map these pages into our own domain.
351 */
352 grant_ref_t ring_ref;
353 };
354
355 /**
356 * Per-instance connection state flags.
357 */
358 typedef enum
359 {
360 /** Communication with the front-end has been established. */
361 XNBF_RING_CONNECTED = 0x01,
362
363 /**
364 * Front-end requests exist in the ring and are waiting for
365 * xnb_xen_req objects to free up.
366 */
367 XNBF_RESOURCE_SHORTAGE = 0x02,
368
369 /** Connection teardown has started. */
370 XNBF_SHUTDOWN = 0x04,
371
372 /** A thread is already performing shutdown processing. */
373 XNBF_IN_SHUTDOWN = 0x08
374 } xnb_flag_t;
375
376 /**
377 * Types of rings. Used for array indices and to identify a ring's control
378 * data structure type
379 */
380 typedef enum{
381 XNB_RING_TYPE_TX = 0, /* ID of TX rings, used for array indices */
382 XNB_RING_TYPE_RX = 1, /* ID of RX rings, used for array indices */
383 XNB_NUM_RING_TYPES
384 } xnb_ring_type_t;
385
386 /**
387 * Per-instance configuration data.
388 */
389 struct xnb_softc {
390 /** NewBus device corresponding to this instance. */
391 device_t dev;
392
393 /* Media related fields */
394
395 /** Generic network media state */
396 struct ifmedia sc_media;
397
398 /** Media carrier info */
399 struct ifnet *xnb_ifp;
400
401 /** Our own private carrier state */
402 unsigned carrier;
403
404 /** Device MAC Address */
405 uint8_t mac[ETHER_ADDR_LEN];
406
407 /* Xen related fields */
408
409 /**
410 * \brief The netif protocol abi in effect.
411 *
412 * There are situations where the back and front ends can
413 * have a different, native abi (e.g. intel x86_64 and
414 * 32bit x86 domains on the same machine). The back-end
415 * always accommodates the front-end's native abi. That
416 * value is pulled from the XenStore and recorded here.
417 */
418 int abi;
419
420 /**
421 * Name of the bridge to which this VIF is connected, if any
422 * This field is dynamically allocated by xenbus and must be free()ed
423 * when no longer needed
424 */
425 char *bridge;
426
427 /** The interrupt driven even channel used to signal ring events. */
428 evtchn_port_t evtchn;
429
430 /** Xen device handle.*/
431 long handle;
432
433 /** Handle to the communication ring event channel. */
434 xen_intr_handle_t xen_intr_handle;
435
436 /**
437 * \brief Cached value of the front-end's domain id.
438 *
439 * This value is used at once for each mapped page in
440 * a transaction. We cache it to avoid incuring the
441 * cost of an ivar access every time this is needed.
442 */
443 domid_t otherend_id;
444
445 /**
446 * Undocumented frontend feature. Has something to do with
447 * scatter/gather IO
448 */
449 uint8_t can_sg;
450 /** Undocumented frontend feature */
451 uint8_t gso;
452 /** Undocumented frontend feature */
453 uint8_t gso_prefix;
454 /** Can checksum TCP/UDP over IPv4 */
455 uint8_t ip_csum;
456
457 /* Implementation related fields */
458 /**
459 * Preallocated grant table copy descriptor for RX operations.
460 * Access must be protected by rx_lock
461 */
462 gnttab_copy_table rx_gnttab;
463
464 /**
465 * Preallocated grant table copy descriptor for TX operations.
466 * Access must be protected by tx_lock
467 */
468 gnttab_copy_table tx_gnttab;
469
470 /**
471 * Resource representing allocated physical address space
472 * associated with our per-instance kva region.
473 */
474 struct resource *pseudo_phys_res;
475
476 /** Resource id for allocated physical address space. */
477 int pseudo_phys_res_id;
478
479 /** Ring mapping and interrupt configuration data. */
480 struct xnb_ring_config ring_configs[XNB_NUM_RING_TYPES];
481
482 /**
483 * Global pool of kva used for mapping remote domain ring
484 * and I/O transaction data.
485 */
486 vm_offset_t kva;
487
488 /** Pseudo-physical address corresponding to kva. */
489 uint64_t gnt_base_addr;
490
491 /** Various configuration and state bit flags. */
492 xnb_flag_t flags;
493
494 /** Mutex protecting per-instance data in the receive path. */
495 struct mtx rx_lock;
496
497 /** Mutex protecting per-instance data in the softc structure. */
498 struct mtx sc_lock;
499
500 /** Mutex protecting per-instance data in the transmit path. */
501 struct mtx tx_lock;
502
503 /** The size of the global kva pool. */
504 int kva_size;
505
506 /** Name of the interface */
507 char if_name[IFNAMSIZ];
508 };
509
510 /*---------------------------- Debugging functions ---------------------------*/
511 #ifdef XNB_DEBUG
512 static void __unused
513 xnb_dump_gnttab_copy(const struct gnttab_copy *entry)
514 {
515 if (entry == NULL) {
516 printf("NULL grant table pointer\n");
517 return;
518 }
519
520 if (entry->flags & GNTCOPY_dest_gref)
521 printf("gnttab dest ref=\t%u\n", entry->dest.u.ref);
522 else
523 printf("gnttab dest gmfn=\t%"PRI_xen_pfn"\n",
524 entry->dest.u.gmfn);
525 printf("gnttab dest offset=\t%hu\n", entry->dest.offset);
526 printf("gnttab dest domid=\t%hu\n", entry->dest.domid);
527 if (entry->flags & GNTCOPY_source_gref)
528 printf("gnttab source ref=\t%u\n", entry->source.u.ref);
529 else
530 printf("gnttab source gmfn=\t%"PRI_xen_pfn"\n",
531 entry->source.u.gmfn);
532 printf("gnttab source offset=\t%hu\n", entry->source.offset);
533 printf("gnttab source domid=\t%hu\n", entry->source.domid);
534 printf("gnttab len=\t%hu\n", entry->len);
535 printf("gnttab flags=\t%hu\n", entry->flags);
536 printf("gnttab status=\t%hd\n", entry->status);
537 }
538
539 static int
540 xnb_dump_rings(SYSCTL_HANDLER_ARGS)
541 {
542 static char results[720];
543 struct xnb_softc const* xnb = (struct xnb_softc*)arg1;
544 netif_rx_back_ring_t const* rxb =
545 &xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring;
546 netif_tx_back_ring_t const* txb =
547 &xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring;
548
549 /* empty the result strings */
550 results[0] = 0;
551
552 if ( !txb || !txb->sring || !rxb || !rxb->sring )
553 return (SYSCTL_OUT(req, results, strnlen(results, 720)));
554
555 snprintf(results, 720,
556 "\n\t%35s %18s\n" /* TX, RX */
557 "\t%16s %18d %18d\n" /* req_cons */
558 "\t%16s %18d %18d\n" /* nr_ents */
559 "\t%16s %18d %18d\n" /* rsp_prod_pvt */
560 "\t%16s %18p %18p\n" /* sring */
561 "\t%16s %18d %18d\n" /* req_prod */
562 "\t%16s %18d %18d\n" /* req_event */
563 "\t%16s %18d %18d\n" /* rsp_prod */
564 "\t%16s %18d %18d\n", /* rsp_event */
565 "TX", "RX",
566 "req_cons", txb->req_cons, rxb->req_cons,
567 "nr_ents", txb->nr_ents, rxb->nr_ents,
568 "rsp_prod_pvt", txb->rsp_prod_pvt, rxb->rsp_prod_pvt,
569 "sring", txb->sring, rxb->sring,
570 "sring->req_prod", txb->sring->req_prod, rxb->sring->req_prod,
571 "sring->req_event", txb->sring->req_event, rxb->sring->req_event,
572 "sring->rsp_prod", txb->sring->rsp_prod, rxb->sring->rsp_prod,
573 "sring->rsp_event", txb->sring->rsp_event, rxb->sring->rsp_event);
574
575 return (SYSCTL_OUT(req, results, strnlen(results, 720)));
576 }
577
578 static void __unused
579 xnb_dump_mbuf(const struct mbuf *m)
580 {
581 int len;
582 uint8_t *d;
583 if (m == NULL)
584 return;
585
586 printf("xnb_dump_mbuf:\n");
587 if (m->m_flags & M_PKTHDR) {
588 printf(" flowid=%10d, csum_flags=%#8x, csum_data=%#8x, "
589 "tso_segsz=%5hd\n",
590 m->m_pkthdr.flowid, (int)m->m_pkthdr.csum_flags,
591 m->m_pkthdr.csum_data, m->m_pkthdr.tso_segsz);
592 printf(" rcvif=%16p, len=%19d\n",
593 m->m_pkthdr.rcvif, m->m_pkthdr.len);
594 }
595 printf(" m_next=%16p, m_nextpk=%16p, m_data=%16p\n",
596 m->m_next, m->m_nextpkt, m->m_data);
597 printf(" m_len=%17d, m_flags=%#15x, m_type=%18u\n",
598 m->m_len, m->m_flags, m->m_type);
599
600 len = m->m_len;
601 d = mtod(m, uint8_t*);
602 while (len > 0) {
603 int i;
604 printf(" ");
605 for (i = 0; (i < 16) && (len > 0); i++, len--) {
606 printf("%02hhx ", *(d++));
607 }
608 printf("\n");
609 }
610 }
611 #endif /* XNB_DEBUG */
612
613 /*------------------------ Inter-Domain Communication ------------------------*/
614 /**
615 * Free dynamically allocated KVA or pseudo-physical address allocations.
616 *
617 * \param xnb Per-instance xnb configuration structure.
618 */
619 static void
620 xnb_free_communication_mem(struct xnb_softc *xnb)
621 {
622 if (xnb->kva != 0) {
623 if (xnb->pseudo_phys_res != NULL) {
624 xenmem_free(xnb->dev, xnb->pseudo_phys_res_id,
625 xnb->pseudo_phys_res);
626 xnb->pseudo_phys_res = NULL;
627 }
628 }
629 xnb->kva = 0;
630 xnb->gnt_base_addr = 0;
631 }
632
633 /**
634 * Cleanup all inter-domain communication mechanisms.
635 *
636 * \param xnb Per-instance xnb configuration structure.
637 */
638 static int
639 xnb_disconnect(struct xnb_softc *xnb)
640 {
641 struct gnttab_unmap_grant_ref gnts[XNB_NUM_RING_TYPES];
642 int error __diagused;
643 int i;
644
645 if (xnb->xen_intr_handle != NULL)
646 xen_intr_unbind(&xnb->xen_intr_handle);
647
648 /*
649 * We may still have another thread currently processing requests. We
650 * must acquire the rx and tx locks to make sure those threads are done,
651 * but we can release those locks as soon as we acquire them, because no
652 * more interrupts will be arriving.
653 */
654 mtx_lock(&xnb->tx_lock);
655 mtx_unlock(&xnb->tx_lock);
656 mtx_lock(&xnb->rx_lock);
657 mtx_unlock(&xnb->rx_lock);
658
659 mtx_lock(&xnb->sc_lock);
660 /* Free malloc'd softc member variables */
661 if (xnb->bridge != NULL) {
662 free(xnb->bridge, M_XENSTORE);
663 xnb->bridge = NULL;
664 }
665
666 /* All request processing has stopped, so unmap the rings */
667 for (i=0; i < XNB_NUM_RING_TYPES; i++) {
668 gnts[i].host_addr = xnb->ring_configs[i].gnt_addr;
669 gnts[i].dev_bus_addr = xnb->ring_configs[i].bus_addr;
670 gnts[i].handle = xnb->ring_configs[i].handle;
671 }
672 error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, gnts,
673 XNB_NUM_RING_TYPES);
674 KASSERT(error == 0, ("Grant table unmap op failed (%d)", error));
675
676 xnb_free_communication_mem(xnb);
677 /*
678 * Zero the ring config structs because the pointers, handles, and
679 * grant refs contained therein are no longer valid.
680 */
681 bzero(&xnb->ring_configs[XNB_RING_TYPE_TX],
682 sizeof(struct xnb_ring_config));
683 bzero(&xnb->ring_configs[XNB_RING_TYPE_RX],
684 sizeof(struct xnb_ring_config));
685
686 xnb->flags &= ~XNBF_RING_CONNECTED;
687 mtx_unlock(&xnb->sc_lock);
688
689 return (0);
690 }
691
692 /**
693 * Map a single shared memory ring into domain local address space and
694 * initialize its control structure
695 *
696 * \param xnb Per-instance xnb configuration structure
697 * \param ring_type Array index of this ring in the xnb's array of rings
698 * \return An errno
699 */
700 static int
701 xnb_connect_ring(struct xnb_softc *xnb, xnb_ring_type_t ring_type)
702 {
703 struct gnttab_map_grant_ref gnt;
704 struct xnb_ring_config *ring = &xnb->ring_configs[ring_type];
705 int error;
706
707 /* TX ring type = 0, RX =1 */
708 ring->va = xnb->kva + ring_type * PAGE_SIZE;
709 ring->gnt_addr = xnb->gnt_base_addr + ring_type * PAGE_SIZE;
710
711 gnt.host_addr = ring->gnt_addr;
712 gnt.flags = GNTMAP_host_map;
713 gnt.ref = ring->ring_ref;
714 gnt.dom = xnb->otherend_id;
715
716 error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, &gnt, 1);
717 if (error != 0)
718 panic("netback: Ring page grant table op failed (%d)", error);
719
720 if (gnt.status != 0) {
721 ring->va = 0;
722 error = EACCES;
723 xenbus_dev_fatal(xnb->dev, error,
724 "Ring shared page mapping failed. "
725 "Status %d.", gnt.status);
726 } else {
727 ring->handle = gnt.handle;
728 ring->bus_addr = gnt.dev_bus_addr;
729
730 if (ring_type == XNB_RING_TYPE_TX) {
731 BACK_RING_INIT(&ring->back_ring.tx_ring,
732 (netif_tx_sring_t*)ring->va,
733 ring->ring_pages * PAGE_SIZE);
734 } else if (ring_type == XNB_RING_TYPE_RX) {
735 BACK_RING_INIT(&ring->back_ring.rx_ring,
736 (netif_rx_sring_t*)ring->va,
737 ring->ring_pages * PAGE_SIZE);
738 } else {
739 xenbus_dev_fatal(xnb->dev, error,
740 "Unknown ring type %d", ring_type);
741 }
742 }
743
744 return error;
745 }
746
747 /**
748 * Setup the shared memory rings and bind an interrupt to the event channel
749 * used to notify us of ring changes.
750 *
751 * \param xnb Per-instance xnb configuration structure.
752 */
753 static int
754 xnb_connect_comms(struct xnb_softc *xnb)
755 {
756 int error;
757 xnb_ring_type_t i;
758
759 if ((xnb->flags & XNBF_RING_CONNECTED) != 0)
760 return (0);
761
762 /*
763 * Kva for our rings are at the tail of the region of kva allocated
764 * by xnb_alloc_communication_mem().
765 */
766 for (i=0; i < XNB_NUM_RING_TYPES; i++) {
767 error = xnb_connect_ring(xnb, i);
768 if (error != 0)
769 return error;
770 }
771
772 xnb->flags |= XNBF_RING_CONNECTED;
773
774 error = xen_intr_bind_remote_port(xnb->dev,
775 xnb->otherend_id,
776 xnb->evtchn,
777 /*filter*/NULL,
778 xnb_intr, /*arg*/xnb,
779 INTR_TYPE_NET | INTR_MPSAFE,
780 &xnb->xen_intr_handle);
781 if (error != 0) {
782 (void)xnb_disconnect(xnb);
783 xenbus_dev_fatal(xnb->dev, error, "binding event channel");
784 return (error);
785 }
786
787 DPRINTF("rings connected!\n");
788
789 return (0);
790 }
791
792 /**
793 * Size KVA and pseudo-physical address allocations based on negotiated
794 * values for the size and number of I/O requests, and the size of our
795 * communication ring.
796 *
797 * \param xnb Per-instance xnb configuration structure.
798 *
799 * These address spaces are used to dynamically map pages in the
800 * front-end's domain into our own.
801 */
802 static int
803 xnb_alloc_communication_mem(struct xnb_softc *xnb)
804 {
805 xnb_ring_type_t i;
806
807 xnb->kva_size = 0;
808 for (i=0; i < XNB_NUM_RING_TYPES; i++) {
809 xnb->kva_size += xnb->ring_configs[i].ring_pages * PAGE_SIZE;
810 }
811
812 /*
813 * Reserve a range of pseudo physical memory that we can map
814 * into kva. These pages will only be backed by machine
815 * pages ("real memory") during the lifetime of front-end requests
816 * via grant table operations. We will map the netif tx and rx rings
817 * into this space.
818 */
819 xnb->pseudo_phys_res_id = 0;
820 xnb->pseudo_phys_res = xenmem_alloc(xnb->dev, &xnb->pseudo_phys_res_id,
821 xnb->kva_size);
822 if (xnb->pseudo_phys_res == NULL) {
823 xnb->kva = 0;
824 return (ENOMEM);
825 }
826 xnb->kva = (vm_offset_t)rman_get_virtual(xnb->pseudo_phys_res);
827 xnb->gnt_base_addr = rman_get_start(xnb->pseudo_phys_res);
828 return (0);
829 }
830
831 /**
832 * Collect information from the XenStore related to our device and its frontend
833 *
834 * \param xnb Per-instance xnb configuration structure.
835 */
836 static int
837 xnb_collect_xenstore_info(struct xnb_softc *xnb)
838 {
839 /**
840 * \todo Linux collects the following info. We should collect most
841 * of this, too:
842 * "feature-rx-notify"
843 */
844 const char *otherend_path;
845 const char *our_path;
846 int err;
847 unsigned int rx_copy, bridge_len;
848 uint8_t no_csum_offload;
849
850 otherend_path = xenbus_get_otherend_path(xnb->dev);
851 our_path = xenbus_get_node(xnb->dev);
852
853 /* Collect the critical communication parameters */
854 err = xs_gather(XST_NIL, otherend_path,
855 "tx-ring-ref", "%l" PRIu32,
856 &xnb->ring_configs[XNB_RING_TYPE_TX].ring_ref,
857 "rx-ring-ref", "%l" PRIu32,
858 &xnb->ring_configs[XNB_RING_TYPE_RX].ring_ref,
859 "event-channel", "%" PRIu32, &xnb->evtchn,
860 NULL);
861 if (err != 0) {
862 xenbus_dev_fatal(xnb->dev, err,
863 "Unable to retrieve ring information from "
864 "frontend %s. Unable to connect.",
865 otherend_path);
866 return (err);
867 }
868
869 /* Collect the handle from xenstore */
870 err = xs_scanf(XST_NIL, our_path, "handle", NULL, "%li", &xnb->handle);
871 if (err != 0) {
872 xenbus_dev_fatal(xnb->dev, err,
873 "Error reading handle from frontend %s. "
874 "Unable to connect.", otherend_path);
875 }
876
877 /*
878 * Collect the bridgename, if any. We do not need bridge_len; we just
879 * throw it away
880 */
881 err = xs_read(XST_NIL, our_path, "bridge", &bridge_len,
882 (void**)&xnb->bridge);
883 if (err != 0)
884 xnb->bridge = NULL;
885
886 /*
887 * Does the frontend request that we use rx copy? If not, return an
888 * error because this driver only supports rx copy.
889 */
890 err = xs_scanf(XST_NIL, otherend_path, "request-rx-copy", NULL,
891 "%" PRIu32, &rx_copy);
892 if (err == ENOENT) {
893 err = 0;
894 rx_copy = 0;
895 }
896 if (err < 0) {
897 xenbus_dev_fatal(xnb->dev, err, "reading %s/request-rx-copy",
898 otherend_path);
899 return err;
900 }
901 /**
902 * \todo: figure out the exact meaning of this feature, and when
903 * the frontend will set it to true. It should be set to true
904 * at some point
905 */
906 /* if (!rx_copy)*/
907 /* return EOPNOTSUPP;*/
908
909 /** \todo Collect the rx notify feature */
910
911 /* Collect the feature-sg. */
912 if (xs_scanf(XST_NIL, otherend_path, "feature-sg", NULL,
913 "%hhu", &xnb->can_sg) < 0)
914 xnb->can_sg = 0;
915
916 /* Collect remaining frontend features */
917 if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4", NULL,
918 "%hhu", &xnb->gso) < 0)
919 xnb->gso = 0;
920
921 if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4-prefix", NULL,
922 "%hhu", &xnb->gso_prefix) < 0)
923 xnb->gso_prefix = 0;
924
925 if (xs_scanf(XST_NIL, otherend_path, "feature-no-csum-offload", NULL,
926 "%hhu", &no_csum_offload) < 0)
927 no_csum_offload = 0;
928 xnb->ip_csum = (no_csum_offload == 0);
929
930 return (0);
931 }
932
933 /**
934 * Supply information about the physical device to the frontend
935 * via XenBus.
936 *
937 * \param xnb Per-instance xnb configuration structure.
938 */
939 static int
940 xnb_publish_backend_info(struct xnb_softc *xnb)
941 {
942 struct xs_transaction xst;
943 const char *our_path;
944 int error;
945
946 our_path = xenbus_get_node(xnb->dev);
947
948 do {
949 error = xs_transaction_start(&xst);
950 if (error != 0) {
951 xenbus_dev_fatal(xnb->dev, error,
952 "Error publishing backend info "
953 "(start transaction)");
954 break;
955 }
956
957 error = xs_printf(xst, our_path, "feature-sg",
958 "%d", XNB_SG);
959 if (error != 0)
960 break;
961
962 error = xs_printf(xst, our_path, "feature-gso-tcpv4",
963 "%d", XNB_GSO_TCPV4);
964 if (error != 0)
965 break;
966
967 error = xs_printf(xst, our_path, "feature-rx-copy",
968 "%d", XNB_RX_COPY);
969 if (error != 0)
970 break;
971
972 error = xs_printf(xst, our_path, "feature-rx-flip",
973 "%d", XNB_RX_FLIP);
974 if (error != 0)
975 break;
976
977 error = xs_transaction_end(xst, 0);
978 if (error != 0 && error != EAGAIN) {
979 xenbus_dev_fatal(xnb->dev, error, "ending transaction");
980 break;
981 }
982
983 } while (error == EAGAIN);
984
985 return (error);
986 }
987
988 /**
989 * Connect to our netfront peer now that it has completed publishing
990 * its configuration into the XenStore.
991 *
992 * \param xnb Per-instance xnb configuration structure.
993 */
994 static void
995 xnb_connect(struct xnb_softc *xnb)
996 {
997 int error;
998
999 if (xenbus_get_state(xnb->dev) == XenbusStateConnected)
1000 return;
1001
1002 if (xnb_collect_xenstore_info(xnb) != 0)
1003 return;
1004
1005 xnb->flags &= ~XNBF_SHUTDOWN;
1006
1007 /* Read front end configuration. */
1008
1009 /* Allocate resources whose size depends on front-end configuration. */
1010 error = xnb_alloc_communication_mem(xnb);
1011 if (error != 0) {
1012 xenbus_dev_fatal(xnb->dev, error,
1013 "Unable to allocate communication memory");
1014 return;
1015 }
1016
1017 /*
1018 * Connect communication channel.
1019 */
1020 error = xnb_connect_comms(xnb);
1021 if (error != 0) {
1022 /* Specific errors are reported by xnb_connect_comms(). */
1023 return;
1024 }
1025 xnb->carrier = 1;
1026
1027 /* Ready for I/O. */
1028 xenbus_set_state(xnb->dev, XenbusStateConnected);
1029 }
1030
1031 /*-------------------------- Device Teardown Support -------------------------*/
1032 /**
1033 * Perform device shutdown functions.
1034 *
1035 * \param xnb Per-instance xnb configuration structure.
1036 *
1037 * Mark this instance as shutting down, wait for any active requests
1038 * to drain, disconnect from the front-end, and notify any waiters (e.g.
1039 * a thread invoking our detach method) that detach can now proceed.
1040 */
1041 static int
1042 xnb_shutdown(struct xnb_softc *xnb)
1043 {
1044 /*
1045 * Due to the need to drop our mutex during some
1046 * xenbus operations, it is possible for two threads
1047 * to attempt to close out shutdown processing at
1048 * the same time. Tell the caller that hits this
1049 * race to try back later.
1050 */
1051 if ((xnb->flags & XNBF_IN_SHUTDOWN) != 0)
1052 return (EAGAIN);
1053
1054 xnb->flags |= XNBF_SHUTDOWN;
1055
1056 xnb->flags |= XNBF_IN_SHUTDOWN;
1057
1058 mtx_unlock(&xnb->sc_lock);
1059 /* Free the network interface */
1060 xnb->carrier = 0;
1061 if (xnb->xnb_ifp != NULL) {
1062 ether_ifdetach(xnb->xnb_ifp);
1063 if_free(xnb->xnb_ifp);
1064 xnb->xnb_ifp = NULL;
1065 }
1066
1067 xnb_disconnect(xnb);
1068
1069 if (xenbus_get_state(xnb->dev) < XenbusStateClosing)
1070 xenbus_set_state(xnb->dev, XenbusStateClosing);
1071 mtx_lock(&xnb->sc_lock);
1072
1073 xnb->flags &= ~XNBF_IN_SHUTDOWN;
1074
1075 /* Indicate to xnb_detach() that is it safe to proceed. */
1076 wakeup(xnb);
1077
1078 return (0);
1079 }
1080
1081 /**
1082 * Report an attach time error to the console and Xen, and cleanup
1083 * this instance by forcing immediate detach processing.
1084 *
1085 * \param xnb Per-instance xnb configuration structure.
1086 * \param err Errno describing the error.
1087 * \param fmt Printf style format and arguments
1088 */
1089 static void
1090 xnb_attach_failed(struct xnb_softc *xnb, int err, const char *fmt, ...)
1091 {
1092 va_list ap;
1093 va_list ap_hotplug;
1094
1095 va_start(ap, fmt);
1096 va_copy(ap_hotplug, ap);
1097 xs_vprintf(XST_NIL, xenbus_get_node(xnb->dev),
1098 "hotplug-error", fmt, ap_hotplug);
1099 va_end(ap_hotplug);
1100 (void)xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1101 "hotplug-status", "error");
1102
1103 xenbus_dev_vfatal(xnb->dev, err, fmt, ap);
1104 va_end(ap);
1105
1106 (void)xs_printf(XST_NIL, xenbus_get_node(xnb->dev), "online", "");
1107 xnb_detach(xnb->dev);
1108 }
1109
1110 /*---------------------------- NewBus Entrypoints ----------------------------*/
1111 /**
1112 * Inspect a XenBus device and claim it if is of the appropriate type.
1113 *
1114 * \param dev NewBus device object representing a candidate XenBus device.
1115 *
1116 * \return 0 for success, errno codes for failure.
1117 */
1118 static int
1119 xnb_probe(device_t dev)
1120 {
1121 if (!strcmp(xenbus_get_type(dev), "vif")) {
1122 DPRINTF("Claiming device %d, %s\n", device_get_unit(dev),
1123 devclass_get_name(device_get_devclass(dev)));
1124 device_set_desc(dev, "Backend Virtual Network Device");
1125 device_quiet(dev);
1126 return (0);
1127 }
1128 return (ENXIO);
1129 }
1130
1131 /**
1132 * Setup sysctl variables to control various Network Back parameters.
1133 *
1134 * \param xnb Xen Net Back softc.
1135 *
1136 */
1137 static void
1138 xnb_setup_sysctl(struct xnb_softc *xnb)
1139 {
1140 struct sysctl_ctx_list *sysctl_ctx = NULL;
1141 struct sysctl_oid *sysctl_tree = NULL;
1142
1143 sysctl_ctx = device_get_sysctl_ctx(xnb->dev);
1144 if (sysctl_ctx == NULL)
1145 return;
1146
1147 sysctl_tree = device_get_sysctl_tree(xnb->dev);
1148 if (sysctl_tree == NULL)
1149 return;
1150
1151 #ifdef XNB_DEBUG
1152 SYSCTL_ADD_PROC(sysctl_ctx,
1153 SYSCTL_CHILDREN(sysctl_tree),
1154 OID_AUTO,
1155 "unit_test_results",
1156 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
1157 xnb,
1158 0,
1159 xnb_unit_test_main,
1160 "A",
1161 "Results of builtin unit tests");
1162
1163 SYSCTL_ADD_PROC(sysctl_ctx,
1164 SYSCTL_CHILDREN(sysctl_tree),
1165 OID_AUTO,
1166 "dump_rings",
1167 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
1168 xnb,
1169 0,
1170 xnb_dump_rings,
1171 "A",
1172 "Xennet Back Rings");
1173 #endif /* XNB_DEBUG */
1174 }
1175
1176 /**
1177 * Create a network device.
1178 * @param handle device handle
1179 */
1180 int
1181 create_netdev(device_t dev)
1182 {
1183 struct ifnet *ifp;
1184 struct xnb_softc *xnb;
1185 int err = 0;
1186 uint32_t handle;
1187
1188 xnb = device_get_softc(dev);
1189 mtx_init(&xnb->sc_lock, "xnb_softc", "xen netback softc lock", MTX_DEF);
1190 mtx_init(&xnb->tx_lock, "xnb_tx", "xen netback tx lock", MTX_DEF);
1191 mtx_init(&xnb->rx_lock, "xnb_rx", "xen netback rx lock", MTX_DEF);
1192
1193 xnb->dev = dev;
1194
1195 ifmedia_init(&xnb->sc_media, 0, xnb_ifmedia_upd, xnb_ifmedia_sts);
1196 ifmedia_add(&xnb->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
1197 ifmedia_set(&xnb->sc_media, IFM_ETHER|IFM_MANUAL);
1198
1199 /*
1200 * Set the MAC address to a dummy value (00:00:00:00:00),
1201 * if the MAC address of the host-facing interface is set
1202 * to the same as the guest-facing one (the value found in
1203 * xenstore), the bridge would stop delivering packets to
1204 * us because it would see that the destination address of
1205 * the packet is the same as the interface, and so the bridge
1206 * would expect the packet has already been delivered locally
1207 * (and just drop it).
1208 */
1209 bzero(&xnb->mac[0], sizeof(xnb->mac));
1210
1211 /* The interface will be named using the following nomenclature:
1212 *
1213 * xnb<domid>.<handle>
1214 *
1215 * Where handle is the oder of the interface referred to the guest.
1216 */
1217 err = xs_scanf(XST_NIL, xenbus_get_node(xnb->dev), "handle", NULL,
1218 "%" PRIu32, &handle);
1219 if (err != 0)
1220 return (err);
1221 snprintf(xnb->if_name, IFNAMSIZ, "xnb%" PRIu16 ".%" PRIu32,
1222 xenbus_get_otherend_id(dev), handle);
1223
1224 if (err == 0) {
1225 /* Set up ifnet structure */
1226 ifp = xnb->xnb_ifp = if_alloc(IFT_ETHER);
1227 ifp->if_softc = xnb;
1228 if_initname(ifp, xnb->if_name, IF_DUNIT_NONE);
1229 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1230 ifp->if_ioctl = xnb_ioctl;
1231 ifp->if_start = xnb_start;
1232 ifp->if_init = xnb_ifinit;
1233 ifp->if_mtu = ETHERMTU;
1234 ifp->if_snd.ifq_maxlen = NET_RX_RING_SIZE - 1;
1235
1236 ifp->if_hwassist = XNB_CSUM_FEATURES;
1237 ifp->if_capabilities = IFCAP_HWCSUM;
1238 ifp->if_capenable = IFCAP_HWCSUM;
1239
1240 ether_ifattach(ifp, xnb->mac);
1241 xnb->carrier = 0;
1242 }
1243
1244 return err;
1245 }
1246
1247 /**
1248 * Attach to a XenBus device that has been claimed by our probe routine.
1249 *
1250 * \param dev NewBus device object representing this Xen Net Back instance.
1251 *
1252 * \return 0 for success, errno codes for failure.
1253 */
1254 static int
1255 xnb_attach(device_t dev)
1256 {
1257 struct xnb_softc *xnb;
1258 int error;
1259 xnb_ring_type_t i;
1260
1261 error = create_netdev(dev);
1262 if (error != 0) {
1263 xenbus_dev_fatal(dev, error, "creating netdev");
1264 return (error);
1265 }
1266
1267 DPRINTF("Attaching to %s\n", xenbus_get_node(dev));
1268
1269 /*
1270 * Basic initialization.
1271 * After this block it is safe to call xnb_detach()
1272 * to clean up any allocated data for this instance.
1273 */
1274 xnb = device_get_softc(dev);
1275 xnb->otherend_id = xenbus_get_otherend_id(dev);
1276 for (i=0; i < XNB_NUM_RING_TYPES; i++) {
1277 xnb->ring_configs[i].ring_pages = 1;
1278 }
1279
1280 /*
1281 * Setup sysctl variables.
1282 */
1283 xnb_setup_sysctl(xnb);
1284
1285 /* Update hot-plug status to satisfy xend. */
1286 error = xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1287 "hotplug-status", "connected");
1288 if (error != 0) {
1289 xnb_attach_failed(xnb, error, "writing %s/hotplug-status",
1290 xenbus_get_node(xnb->dev));
1291 return (error);
1292 }
1293
1294 if ((error = xnb_publish_backend_info(xnb)) != 0) {
1295 /*
1296 * If we can't publish our data, we cannot participate
1297 * in this connection, and waiting for a front-end state
1298 * change will not help the situation.
1299 */
1300 xnb_attach_failed(xnb, error,
1301 "Publishing backend status for %s",
1302 xenbus_get_node(xnb->dev));
1303 return error;
1304 }
1305
1306 /* Tell the front end that we are ready to connect. */
1307 xenbus_set_state(dev, XenbusStateInitWait);
1308
1309 return (0);
1310 }
1311
1312 /**
1313 * Detach from a net back device instance.
1314 *
1315 * \param dev NewBus device object representing this Xen Net Back instance.
1316 *
1317 * \return 0 for success, errno codes for failure.
1318 *
1319 * \note A net back device may be detached at any time in its life-cycle,
1320 * including part way through the attach process. For this reason,
1321 * initialization order and the initialization state checks in this
1322 * routine must be carefully coupled so that attach time failures
1323 * are gracefully handled.
1324 */
1325 static int
1326 xnb_detach(device_t dev)
1327 {
1328 struct xnb_softc *xnb;
1329
1330 DPRINTF("\n");
1331
1332 xnb = device_get_softc(dev);
1333 mtx_lock(&xnb->sc_lock);
1334 while (xnb_shutdown(xnb) == EAGAIN) {
1335 msleep(xnb, &xnb->sc_lock, /*wakeup prio unchanged*/0,
1336 "xnb_shutdown", 0);
1337 }
1338 mtx_unlock(&xnb->sc_lock);
1339 DPRINTF("\n");
1340
1341 mtx_destroy(&xnb->tx_lock);
1342 mtx_destroy(&xnb->rx_lock);
1343 mtx_destroy(&xnb->sc_lock);
1344 return (0);
1345 }
1346
1347 /**
1348 * Prepare this net back device for suspension of this VM.
1349 *
1350 * \param dev NewBus device object representing this Xen net Back instance.
1351 *
1352 * \return 0 for success, errno codes for failure.
1353 */
1354 static int
1355 xnb_suspend(device_t dev)
1356 {
1357 return (0);
1358 }
1359
1360 /**
1361 * Perform any processing required to recover from a suspended state.
1362 *
1363 * \param dev NewBus device object representing this Xen Net Back instance.
1364 *
1365 * \return 0 for success, errno codes for failure.
1366 */
1367 static int
1368 xnb_resume(device_t dev)
1369 {
1370 return (0);
1371 }
1372
1373 /**
1374 * Handle state changes expressed via the XenStore by our front-end peer.
1375 *
1376 * \param dev NewBus device object representing this Xen
1377 * Net Back instance.
1378 * \param frontend_state The new state of the front-end.
1379 *
1380 * \return 0 for success, errno codes for failure.
1381 */
1382 static void
1383 xnb_frontend_changed(device_t dev, XenbusState frontend_state)
1384 {
1385 struct xnb_softc *xnb;
1386
1387 xnb = device_get_softc(dev);
1388
1389 DPRINTF("frontend_state=%s, xnb_state=%s\n",
1390 xenbus_strstate(frontend_state),
1391 xenbus_strstate(xenbus_get_state(xnb->dev)));
1392
1393 switch (frontend_state) {
1394 case XenbusStateInitialising:
1395 case XenbusStateInitialised:
1396 break;
1397 case XenbusStateConnected:
1398 xnb_connect(xnb);
1399 break;
1400 case XenbusStateClosing:
1401 case XenbusStateClosed:
1402 mtx_lock(&xnb->sc_lock);
1403 xnb_shutdown(xnb);
1404 mtx_unlock(&xnb->sc_lock);
1405 if (frontend_state == XenbusStateClosed)
1406 xenbus_set_state(xnb->dev, XenbusStateClosed);
1407 break;
1408 default:
1409 xenbus_dev_fatal(xnb->dev, EINVAL, "saw state %d at frontend",
1410 frontend_state);
1411 break;
1412 }
1413 }
1414
1415 /*---------------------------- Request Processing ----------------------------*/
1416 /**
1417 * Interrupt handler bound to the shared ring's event channel.
1418 * Entry point for the xennet transmit path in netback
1419 * Transfers packets from the Xen ring to the host's generic networking stack
1420 *
1421 * \param arg Callback argument registerd during event channel
1422 * binding - the xnb_softc for this instance.
1423 */
1424 static void
1425 xnb_intr(void *arg)
1426 {
1427 struct xnb_softc *xnb;
1428 struct ifnet *ifp;
1429 netif_tx_back_ring_t *txb;
1430 RING_IDX req_prod_local;
1431
1432 xnb = (struct xnb_softc *)arg;
1433 ifp = xnb->xnb_ifp;
1434 txb = &xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring;
1435
1436 mtx_lock(&xnb->tx_lock);
1437 do {
1438 int notify;
1439 req_prod_local = txb->sring->req_prod;
1440 xen_rmb();
1441
1442 for (;;) {
1443 struct mbuf *mbufc;
1444 int err;
1445
1446 err = xnb_recv(txb, xnb->otherend_id, &mbufc, ifp,
1447 xnb->tx_gnttab);
1448 if (err || (mbufc == NULL))
1449 break;
1450
1451 /* Send the packet to the generic network stack */
1452 (*xnb->xnb_ifp->if_input)(xnb->xnb_ifp, mbufc);
1453 }
1454
1455 RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(txb, notify);
1456 if (notify != 0)
1457 xen_intr_signal(xnb->xen_intr_handle);
1458
1459 txb->sring->req_event = txb->req_cons + 1;
1460 xen_mb();
1461 } while (txb->sring->req_prod != req_prod_local) ;
1462 mtx_unlock(&xnb->tx_lock);
1463
1464 xnb_start(ifp);
1465 }
1466
1467 /**
1468 * Build a struct xnb_pkt based on netif_tx_request's from a netif tx ring.
1469 * Will read exactly 0 or 1 packets from the ring; never a partial packet.
1470 * \param[out] pkt The returned packet. If there is an error building
1471 * the packet, pkt.list_len will be set to 0.
1472 * \param[in] tx_ring Pointer to the Ring that is the input to this function
1473 * \param[in] start The ring index of the first potential request
1474 * \return The number of requests consumed to build this packet
1475 */
1476 static int
1477 xnb_ring2pkt(struct xnb_pkt *pkt, const netif_tx_back_ring_t *tx_ring,
1478 RING_IDX start)
1479 {
1480 /*
1481 * Outline:
1482 * 1) Initialize pkt
1483 * 2) Read the first request of the packet
1484 * 3) Read the extras
1485 * 4) Set cdr
1486 * 5) Loop on the remainder of the packet
1487 * 6) Finalize pkt (stuff like car_size and list_len)
1488 */
1489 int idx = start;
1490 int discard = 0; /* whether to discard the packet */
1491 int more_data = 0; /* there are more request past the last one */
1492 uint16_t cdr_size = 0; /* accumulated size of requests 2 through n */
1493
1494 xnb_pkt_initialize(pkt);
1495
1496 /* Read the first request */
1497 if (RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1498 netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx);
1499 pkt->size = tx->size;
1500 pkt->flags = tx->flags & ~NETTXF_more_data;
1501 more_data = tx->flags & NETTXF_more_data;
1502 pkt->list_len++;
1503 pkt->car = idx;
1504 idx++;
1505 }
1506
1507 /* Read the extra info */
1508 if ((pkt->flags & NETTXF_extra_info) &&
1509 RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1510 netif_extra_info_t *ext =
1511 (netif_extra_info_t*) RING_GET_REQUEST(tx_ring, idx);
1512 pkt->extra.type = ext->type;
1513 switch (pkt->extra.type) {
1514 case XEN_NETIF_EXTRA_TYPE_GSO:
1515 pkt->extra.u.gso = ext->u.gso;
1516 break;
1517 default:
1518 /*
1519 * The reference Linux netfront driver will
1520 * never set any other extra.type. So we don't
1521 * know what to do with it. Let's print an
1522 * error, then consume and discard the packet
1523 */
1524 printf("xnb(%s:%d): Unknown extra info type %d."
1525 " Discarding packet\n",
1526 __func__, __LINE__, pkt->extra.type);
1527 xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring,
1528 start));
1529 xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring,
1530 idx));
1531 discard = 1;
1532 break;
1533 }
1534
1535 pkt->extra.flags = ext->flags;
1536 if (ext->flags & XEN_NETIF_EXTRA_FLAG_MORE) {
1537 /*
1538 * The reference linux netfront driver never sets this
1539 * flag (nor does any other known netfront). So we
1540 * will discard the packet.
1541 */
1542 printf("xnb(%s:%d): Request sets "
1543 "XEN_NETIF_EXTRA_FLAG_MORE, but we can't handle "
1544 "that\n", __func__, __LINE__);
1545 xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start));
1546 xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx));
1547 discard = 1;
1548 }
1549
1550 idx++;
1551 }
1552
1553 /* Set cdr. If there is not more data, cdr is invalid */
1554 pkt->cdr = idx;
1555
1556 /* Loop on remainder of packet */
1557 while (more_data && RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1558 netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx);
1559 pkt->list_len++;
1560 cdr_size += tx->size;
1561 if (tx->flags & ~NETTXF_more_data) {
1562 /* There should be no other flags set at this point */
1563 printf("xnb(%s:%d): Request sets unknown flags %d "
1564 "after the 1st request in the packet.\n",
1565 __func__, __LINE__, tx->flags);
1566 xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start));
1567 xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx));
1568 }
1569
1570 more_data = tx->flags & NETTXF_more_data;
1571 idx++;
1572 }
1573
1574 /* Finalize packet */
1575 if (more_data != 0) {
1576 /* The ring ran out of requests before finishing the packet */
1577 xnb_pkt_invalidate(pkt);
1578 idx = start; /* tell caller that we consumed no requests */
1579 } else {
1580 /* Calculate car_size */
1581 pkt->car_size = pkt->size - cdr_size;
1582 }
1583 if (discard != 0) {
1584 xnb_pkt_invalidate(pkt);
1585 }
1586
1587 return idx - start;
1588 }
1589
1590 /**
1591 * Respond to all the requests that constituted pkt. Builds the responses and
1592 * writes them to the ring, but doesn't push them to the shared ring.
1593 * \param[in] pkt the packet that needs a response
1594 * \param[in] error true if there was an error handling the packet, such
1595 * as in the hypervisor copy op or mbuf allocation
1596 * \param[out] ring Responses go here
1597 */
1598 static void
1599 xnb_txpkt2rsp(const struct xnb_pkt *pkt, netif_tx_back_ring_t *ring,
1600 int error)
1601 {
1602 /*
1603 * Outline:
1604 * 1) Respond to the first request
1605 * 2) Respond to the extra info reques
1606 * Loop through every remaining request in the packet, generating
1607 * responses that copy those requests' ids and sets the status
1608 * appropriately.
1609 */
1610 netif_tx_request_t *tx;
1611 netif_tx_response_t *rsp;
1612 int i;
1613 uint16_t status;
1614
1615 status = (xnb_pkt_is_valid(pkt) == 0) || error ?
1616 NETIF_RSP_ERROR : NETIF_RSP_OKAY;
1617 KASSERT((pkt->list_len == 0) || (ring->rsp_prod_pvt == pkt->car),
1618 ("Cannot respond to ring requests out of order"));
1619
1620 if (pkt->list_len >= 1) {
1621 uint16_t id;
1622 tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt);
1623 id = tx->id;
1624 rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1625 rsp->id = id;
1626 rsp->status = status;
1627 ring->rsp_prod_pvt++;
1628
1629 if (pkt->flags & NETRXF_extra_info) {
1630 rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1631 rsp->status = NETIF_RSP_NULL;
1632 ring->rsp_prod_pvt++;
1633 }
1634 }
1635
1636 for (i=0; i < pkt->list_len - 1; i++) {
1637 uint16_t id;
1638 tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt);
1639 id = tx->id;
1640 rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1641 rsp->id = id;
1642 rsp->status = status;
1643 ring->rsp_prod_pvt++;
1644 }
1645 }
1646
1647 /**
1648 * Create an mbuf chain to represent a packet. Initializes all of the headers
1649 * in the mbuf chain, but does not copy the data. The returned chain must be
1650 * free()'d when no longer needed
1651 * \param[in] pkt A packet to model the mbuf chain after
1652 * \return A newly allocated mbuf chain, possibly with clusters attached.
1653 * NULL on failure
1654 */
1655 static struct mbuf*
1656 xnb_pkt2mbufc(const struct xnb_pkt *pkt, struct ifnet *ifp)
1657 {
1658 /**
1659 * \todo consider using a memory pool for mbufs instead of
1660 * reallocating them for every packet
1661 */
1662 /** \todo handle extra data */
1663 struct mbuf *m;
1664
1665 m = m_getm(NULL, pkt->size, M_NOWAIT, MT_DATA);
1666
1667 if (m != NULL) {
1668 m->m_pkthdr.rcvif = ifp;
1669 if (pkt->flags & NETTXF_data_validated) {
1670 /*
1671 * We lie to the host OS and always tell it that the
1672 * checksums are ok, because the packet is unlikely to
1673 * get corrupted going across domains.
1674 */
1675 m->m_pkthdr.csum_flags = (
1676 CSUM_IP_CHECKED |
1677 CSUM_IP_VALID |
1678 CSUM_DATA_VALID |
1679 CSUM_PSEUDO_HDR
1680 );
1681 m->m_pkthdr.csum_data = 0xffff;
1682 }
1683 }
1684 return m;
1685 }
1686
1687 /**
1688 * Build a gnttab_copy table that can be used to copy data from a pkt
1689 * to an mbufc. Does not actually perform the copy. Always uses gref's on
1690 * the packet side.
1691 * \param[in] pkt pkt's associated requests form the src for
1692 * the copy operation
1693 * \param[in] mbufc mbufc's storage forms the dest for the copy operation
1694 * \param[out] gnttab Storage for the returned grant table
1695 * \param[in] txb Pointer to the backend ring structure
1696 * \param[in] otherend_id The domain ID of the other end of the copy
1697 * \return The number of gnttab entries filled
1698 */
1699 static int
1700 xnb_txpkt2gnttab(const struct xnb_pkt *pkt, struct mbuf *mbufc,
1701 gnttab_copy_table gnttab, const netif_tx_back_ring_t *txb,
1702 domid_t otherend_id)
1703 {
1704
1705 struct mbuf *mbuf = mbufc;/* current mbuf within the chain */
1706 int gnt_idx = 0; /* index into grant table */
1707 RING_IDX r_idx = pkt->car; /* index into tx ring buffer */
1708 int r_ofs = 0; /* offset of next data within tx request's data area */
1709 int m_ofs = 0; /* offset of next data within mbuf's data area */
1710 /* size in bytes that still needs to be represented in the table */
1711 uint16_t size_remaining = pkt->size;
1712
1713 while (size_remaining > 0) {
1714 const netif_tx_request_t *txq = RING_GET_REQUEST(txb, r_idx);
1715 const size_t mbuf_space = M_TRAILINGSPACE(mbuf) - m_ofs;
1716 const size_t req_size =
1717 r_idx == pkt->car ? pkt->car_size : txq->size;
1718 const size_t pkt_space = req_size - r_ofs;
1719 /*
1720 * space is the largest amount of data that can be copied in the
1721 * grant table's next entry
1722 */
1723 const size_t space = MIN(pkt_space, mbuf_space);
1724
1725 /* TODO: handle this error condition without panicking */
1726 KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short"));
1727
1728 gnttab[gnt_idx].source.u.ref = txq->gref;
1729 gnttab[gnt_idx].source.domid = otherend_id;
1730 gnttab[gnt_idx].source.offset = txq->offset + r_ofs;
1731 gnttab[gnt_idx].dest.u.gmfn = virt_to_mfn(
1732 mtod(mbuf, vm_offset_t) + m_ofs);
1733 gnttab[gnt_idx].dest.offset = virt_to_offset(
1734 mtod(mbuf, vm_offset_t) + m_ofs);
1735 gnttab[gnt_idx].dest.domid = DOMID_SELF;
1736 gnttab[gnt_idx].len = space;
1737 gnttab[gnt_idx].flags = GNTCOPY_source_gref;
1738
1739 gnt_idx++;
1740 r_ofs += space;
1741 m_ofs += space;
1742 size_remaining -= space;
1743 if (req_size - r_ofs <= 0) {
1744 /* Must move to the next tx request */
1745 r_ofs = 0;
1746 r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1;
1747 }
1748 if (M_TRAILINGSPACE(mbuf) - m_ofs <= 0) {
1749 /* Must move to the next mbuf */
1750 m_ofs = 0;
1751 mbuf = mbuf->m_next;
1752 }
1753 }
1754
1755 return gnt_idx;
1756 }
1757
1758 /**
1759 * Check the status of the grant copy operations, and update mbufs various
1760 * non-data fields to reflect the data present.
1761 * \param[in,out] mbufc mbuf chain to update. The chain must be valid and of
1762 * the correct length, and data should already be present
1763 * \param[in] gnttab A grant table for a just completed copy op
1764 * \param[in] n_entries The number of valid entries in the grant table
1765 */
1766 static void
1767 xnb_update_mbufc(struct mbuf *mbufc, const gnttab_copy_table gnttab,
1768 int n_entries)
1769 {
1770 struct mbuf *mbuf = mbufc;
1771 int i;
1772 size_t total_size = 0;
1773
1774 for (i = 0; i < n_entries; i++) {
1775 KASSERT(gnttab[i].status == GNTST_okay,
1776 ("Some gnttab_copy entry had error status %hd\n",
1777 gnttab[i].status));
1778
1779 mbuf->m_len += gnttab[i].len;
1780 total_size += gnttab[i].len;
1781 if (M_TRAILINGSPACE(mbuf) <= 0) {
1782 mbuf = mbuf->m_next;
1783 }
1784 }
1785 mbufc->m_pkthdr.len = total_size;
1786
1787 #if defined(INET) || defined(INET6)
1788 xnb_add_mbuf_cksum(mbufc);
1789 #endif
1790 }
1791
1792 /**
1793 * Dequeue at most one packet from the shared ring
1794 * \param[in,out] txb Netif tx ring. A packet will be removed from it, and
1795 * its private indices will be updated. But the indices
1796 * will not be pushed to the shared ring.
1797 * \param[in] ifnet Interface to which the packet will be sent
1798 * \param[in] otherend Domain ID of the other end of the ring
1799 * \param[out] mbufc The assembled mbuf chain, ready to send to the generic
1800 * networking stack
1801 * \param[in,out] gnttab Pointer to enough memory for a grant table. We make
1802 * this a function parameter so that we will take less
1803 * stack space.
1804 * \return An error code
1805 */
1806 static int
1807 xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend, struct mbuf **mbufc,
1808 struct ifnet *ifnet, gnttab_copy_table gnttab)
1809 {
1810 struct xnb_pkt pkt;
1811 /* number of tx requests consumed to build the last packet */
1812 int num_consumed;
1813 int nr_ents;
1814
1815 *mbufc = NULL;
1816 num_consumed = xnb_ring2pkt(&pkt, txb, txb->req_cons);
1817 if (num_consumed == 0)
1818 return 0; /* Nothing to receive */
1819
1820 /* update statistics independent of errors */
1821 if_inc_counter(ifnet, IFCOUNTER_IPACKETS, 1);
1822
1823 /*
1824 * if we got here, then 1 or more requests was consumed, but the packet
1825 * is not necessarily valid.
1826 */
1827 if (xnb_pkt_is_valid(&pkt) == 0) {
1828 /* got a garbage packet, respond and drop it */
1829 xnb_txpkt2rsp(&pkt, txb, 1);
1830 txb->req_cons += num_consumed;
1831 DPRINTF("xnb_intr: garbage packet, num_consumed=%d\n",
1832 num_consumed);
1833 if_inc_counter(ifnet, IFCOUNTER_IERRORS, 1);
1834 return EINVAL;
1835 }
1836
1837 *mbufc = xnb_pkt2mbufc(&pkt, ifnet);
1838
1839 if (*mbufc == NULL) {
1840 /*
1841 * Couldn't allocate mbufs. Respond and drop the packet. Do
1842 * not consume the requests
1843 */
1844 xnb_txpkt2rsp(&pkt, txb, 1);
1845 DPRINTF("xnb_intr: Couldn't allocate mbufs, num_consumed=%d\n",
1846 num_consumed);
1847 if_inc_counter(ifnet, IFCOUNTER_IQDROPS, 1);
1848 return ENOMEM;
1849 }
1850
1851 nr_ents = xnb_txpkt2gnttab(&pkt, *mbufc, gnttab, txb, otherend);
1852
1853 if (nr_ents > 0) {
1854 int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy,
1855 gnttab, nr_ents);
1856 KASSERT(hv_ret == 0,
1857 ("HYPERVISOR_grant_table_op returned %d\n", hv_ret));
1858 xnb_update_mbufc(*mbufc, gnttab, nr_ents);
1859 }
1860
1861 xnb_txpkt2rsp(&pkt, txb, 0);
1862 txb->req_cons += num_consumed;
1863 return 0;
1864 }
1865
1866 /**
1867 * Create an xnb_pkt based on the contents of an mbuf chain.
1868 * \param[in] mbufc mbuf chain to transform into a packet
1869 * \param[out] pkt Storage for the newly generated xnb_pkt
1870 * \param[in] start The ring index of the first available slot in the rx
1871 * ring
1872 * \param[in] space The number of free slots in the rx ring
1873 * \retval 0 Success
1874 * \retval EINVAL mbufc was corrupt or not convertible into a pkt
1875 * \retval EAGAIN There was not enough space in the ring to queue the
1876 * packet
1877 */
1878 static int
1879 xnb_mbufc2pkt(const struct mbuf *mbufc, struct xnb_pkt *pkt,
1880 RING_IDX start, int space)
1881 {
1882
1883 int retval = 0;
1884
1885 if ((mbufc == NULL) ||
1886 ( (mbufc->m_flags & M_PKTHDR) == 0) ||
1887 (mbufc->m_pkthdr.len == 0)) {
1888 xnb_pkt_invalidate(pkt);
1889 retval = EINVAL;
1890 } else {
1891 int slots_required;
1892
1893 xnb_pkt_validate(pkt);
1894 pkt->flags = 0;
1895 pkt->size = mbufc->m_pkthdr.len;
1896 pkt->car = start;
1897 pkt->car_size = mbufc->m_len;
1898
1899 if (mbufc->m_pkthdr.csum_flags & CSUM_TSO) {
1900 pkt->flags |= NETRXF_extra_info;
1901 pkt->extra.u.gso.size = mbufc->m_pkthdr.tso_segsz;
1902 pkt->extra.u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
1903 pkt->extra.u.gso.pad = 0;
1904 pkt->extra.u.gso.features = 0;
1905 pkt->extra.type = XEN_NETIF_EXTRA_TYPE_GSO;
1906 pkt->extra.flags = 0;
1907 pkt->cdr = start + 2;
1908 } else {
1909 pkt->cdr = start + 1;
1910 }
1911 if (mbufc->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_DELAY_DATA)) {
1912 pkt->flags |=
1913 (NETRXF_csum_blank | NETRXF_data_validated);
1914 }
1915
1916 /*
1917 * Each ring response can have up to PAGE_SIZE of data.
1918 * Assume that we can defragment the mbuf chain efficiently
1919 * into responses so that each response but the last uses all
1920 * PAGE_SIZE bytes.
1921 */
1922 pkt->list_len = howmany(pkt->size, PAGE_SIZE);
1923
1924 if (pkt->list_len > 1) {
1925 pkt->flags |= NETRXF_more_data;
1926 }
1927
1928 slots_required = pkt->list_len +
1929 (pkt->flags & NETRXF_extra_info ? 1 : 0);
1930 if (slots_required > space) {
1931 xnb_pkt_invalidate(pkt);
1932 retval = EAGAIN;
1933 }
1934 }
1935
1936 return retval;
1937 }
1938
1939 /**
1940 * Build a gnttab_copy table that can be used to copy data from an mbuf chain
1941 * to the frontend's shared buffers. Does not actually perform the copy.
1942 * Always uses gref's on the other end's side.
1943 * \param[in] pkt pkt's associated responses form the dest for the copy
1944 * operatoin
1945 * \param[in] mbufc The source for the copy operation
1946 * \param[out] gnttab Storage for the returned grant table
1947 * \param[in] rxb Pointer to the backend ring structure
1948 * \param[in] otherend_id The domain ID of the other end of the copy
1949 * \return The number of gnttab entries filled
1950 */
1951 static int
1952 xnb_rxpkt2gnttab(const struct xnb_pkt *pkt, const struct mbuf *mbufc,
1953 gnttab_copy_table gnttab, const netif_rx_back_ring_t *rxb,
1954 domid_t otherend_id)
1955 {
1956
1957 const struct mbuf *mbuf = mbufc;/* current mbuf within the chain */
1958 int gnt_idx = 0; /* index into grant table */
1959 RING_IDX r_idx = pkt->car; /* index into rx ring buffer */
1960 int r_ofs = 0; /* offset of next data within rx request's data area */
1961 int m_ofs = 0; /* offset of next data within mbuf's data area */
1962 /* size in bytes that still needs to be represented in the table */
1963 uint16_t size_remaining;
1964
1965 size_remaining = (xnb_pkt_is_valid(pkt) != 0) ? pkt->size : 0;
1966
1967 while (size_remaining > 0) {
1968 const netif_rx_request_t *rxq = RING_GET_REQUEST(rxb, r_idx);
1969 const size_t mbuf_space = mbuf->m_len - m_ofs;
1970 /* Xen shared pages have an implied size of PAGE_SIZE */
1971 const size_t req_size = PAGE_SIZE;
1972 const size_t pkt_space = req_size - r_ofs;
1973 /*
1974 * space is the largest amount of data that can be copied in the
1975 * grant table's next entry
1976 */
1977 const size_t space = MIN(pkt_space, mbuf_space);
1978
1979 /* TODO: handle this error condition without panicing */
1980 KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short"));
1981
1982 gnttab[gnt_idx].dest.u.ref = rxq->gref;
1983 gnttab[gnt_idx].dest.domid = otherend_id;
1984 gnttab[gnt_idx].dest.offset = r_ofs;
1985 gnttab[gnt_idx].source.u.gmfn = virt_to_mfn(
1986 mtod(mbuf, vm_offset_t) + m_ofs);
1987 gnttab[gnt_idx].source.offset = virt_to_offset(
1988 mtod(mbuf, vm_offset_t) + m_ofs);
1989 gnttab[gnt_idx].source.domid = DOMID_SELF;
1990 gnttab[gnt_idx].len = space;
1991 gnttab[gnt_idx].flags = GNTCOPY_dest_gref;
1992
1993 gnt_idx++;
1994
1995 r_ofs += space;
1996 m_ofs += space;
1997 size_remaining -= space;
1998 if (req_size - r_ofs <= 0) {
1999 /* Must move to the next rx request */
2000 r_ofs = 0;
2001 r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1;
2002 }
2003 if (mbuf->m_len - m_ofs <= 0) {
2004 /* Must move to the next mbuf */
2005 m_ofs = 0;
2006 mbuf = mbuf->m_next;
2007 }
2008 }
2009
2010 return gnt_idx;
2011 }
2012
2013 /**
2014 * Generates responses for all the requests that constituted pkt. Builds
2015 * responses and writes them to the ring, but doesn't push the shared ring
2016 * indices.
2017 * \param[in] pkt the packet that needs a response
2018 * \param[in] gnttab The grant copy table corresponding to this packet.
2019 * Used to determine how many rsp->netif_rx_response_t's to
2020 * generate.
2021 * \param[in] n_entries Number of relevant entries in the grant table
2022 * \param[out] ring Responses go here
2023 * \return The number of RX requests that were consumed to generate
2024 * the responses
2025 */
2026 static int
2027 xnb_rxpkt2rsp(const struct xnb_pkt *pkt, const gnttab_copy_table gnttab,
2028 int n_entries, netif_rx_back_ring_t *ring)
2029 {
2030 /*
2031 * This code makes the following assumptions:
2032 * * All entries in gnttab set GNTCOPY_dest_gref
2033 * * The entries in gnttab are grouped by their grefs: any two
2034 * entries with the same gref must be adjacent
2035 */
2036 int error = 0;
2037 int gnt_idx, i;
2038 int n_responses = 0;
2039 grant_ref_t last_gref = GRANT_REF_INVALID;
2040 RING_IDX r_idx;
2041
2042 KASSERT(gnttab != NULL, ("Received a null granttable copy"));
2043
2044 /*
2045 * In the event of an error, we only need to send one response to the
2046 * netfront. In that case, we musn't write any data to the responses
2047 * after the one we send. So we must loop all the way through gnttab
2048 * looking for errors before we generate any responses
2049 *
2050 * Since we're looping through the grant table anyway, we'll count the
2051 * number of different gref's in it, which will tell us how many
2052 * responses to generate
2053 */
2054 for (gnt_idx = 0; gnt_idx < n_entries; gnt_idx++) {
2055 int16_t status = gnttab[gnt_idx].status;
2056 if (status != GNTST_okay) {
2057 DPRINTF(
2058 "Got error %d for hypervisor gnttab_copy status\n",
2059 status);
2060 error = 1;
2061 break;
2062 }
2063 if (gnttab[gnt_idx].dest.u.ref != last_gref) {
2064 n_responses++;
2065 last_gref = gnttab[gnt_idx].dest.u.ref;
2066 }
2067 }
2068
2069 if (error != 0) {
2070 uint16_t id;
2071 netif_rx_response_t *rsp;
2072
2073 id = RING_GET_REQUEST(ring, ring->rsp_prod_pvt)->id;
2074 rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
2075 rsp->id = id;
2076 rsp->status = NETIF_RSP_ERROR;
2077 n_responses = 1;
2078 } else {
2079 gnt_idx = 0;
2080 const int has_extra = pkt->flags & NETRXF_extra_info;
2081 if (has_extra != 0)
2082 n_responses++;
2083
2084 for (i = 0; i < n_responses; i++) {
2085 netif_rx_request_t rxq;
2086 netif_rx_response_t *rsp;
2087
2088 r_idx = ring->rsp_prod_pvt + i;
2089 /*
2090 * We copy the structure of rxq instead of making a
2091 * pointer because it shares the same memory as rsp.
2092 */
2093 rxq = *(RING_GET_REQUEST(ring, r_idx));
2094 rsp = RING_GET_RESPONSE(ring, r_idx);
2095 if (has_extra && (i == 1)) {
2096 netif_extra_info_t *ext =
2097 (netif_extra_info_t*)rsp;
2098 ext->type = XEN_NETIF_EXTRA_TYPE_GSO;
2099 ext->flags = 0;
2100 ext->u.gso.size = pkt->extra.u.gso.size;
2101 ext->u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
2102 ext->u.gso.pad = 0;
2103 ext->u.gso.features = 0;
2104 } else {
2105 rsp->id = rxq.id;
2106 rsp->status = GNTST_okay;
2107 rsp->offset = 0;
2108 rsp->flags = 0;
2109 if (i < pkt->list_len - 1)
2110 rsp->flags |= NETRXF_more_data;
2111 if ((i == 0) && has_extra)
2112 rsp->flags |= NETRXF_extra_info;
2113 if ((i == 0) &&
2114 (pkt->flags & NETRXF_data_validated)) {
2115 rsp->flags |= NETRXF_data_validated;
2116 rsp->flags |= NETRXF_csum_blank;
2117 }
2118 rsp->status = 0;
2119 for (; gnttab[gnt_idx].dest.u.ref == rxq.gref;
2120 gnt_idx++) {
2121 rsp->status += gnttab[gnt_idx].len;
2122 }
2123 }
2124 }
2125 }
2126
2127 ring->req_cons += n_responses;
2128 ring->rsp_prod_pvt += n_responses;
2129 return n_responses;
2130 }
2131
2132 #if defined(INET) || defined(INET6)
2133 /**
2134 * Add IP, TCP, and/or UDP checksums to every mbuf in a chain. The first mbuf
2135 * in the chain must start with a struct ether_header.
2136 *
2137 * XXX This function will perform incorrectly on UDP packets that are split up
2138 * into multiple ethernet frames.
2139 */
2140 static void
2141 xnb_add_mbuf_cksum(struct mbuf *mbufc)
2142 {
2143 struct ether_header *eh;
2144 struct ip *iph;
2145 uint16_t ether_type;
2146
2147 eh = mtod(mbufc, struct ether_header*);
2148 ether_type = ntohs(eh->ether_type);
2149 if (ether_type != ETHERTYPE_IP) {
2150 /* Nothing to calculate */
2151 return;
2152 }
2153
2154 iph = (struct ip*)(eh + 1);
2155 if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2156 iph->ip_sum = 0;
2157 iph->ip_sum = in_cksum_hdr(iph);
2158 }
2159
2160 switch (iph->ip_p) {
2161 case IPPROTO_TCP:
2162 if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2163 size_t tcplen = ntohs(iph->ip_len) - sizeof(struct ip);
2164 struct tcphdr *th = (struct tcphdr*)(iph + 1);
2165 th->th_sum = in_pseudo(iph->ip_src.s_addr,
2166 iph->ip_dst.s_addr, htons(IPPROTO_TCP + tcplen));
2167 th->th_sum = in_cksum_skip(mbufc,
2168 sizeof(struct ether_header) + ntohs(iph->ip_len),
2169 sizeof(struct ether_header) + (iph->ip_hl << 2));
2170 }
2171 break;
2172 case IPPROTO_UDP:
2173 if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2174 size_t udplen = ntohs(iph->ip_len) - sizeof(struct ip);
2175 struct udphdr *uh = (struct udphdr*)(iph + 1);
2176 uh->uh_sum = in_pseudo(iph->ip_src.s_addr,
2177 iph->ip_dst.s_addr, htons(IPPROTO_UDP + udplen));
2178 uh->uh_sum = in_cksum_skip(mbufc,
2179 sizeof(struct ether_header) + ntohs(iph->ip_len),
2180 sizeof(struct ether_header) + (iph->ip_hl << 2));
2181 }
2182 break;
2183 default:
2184 break;
2185 }
2186 }
2187 #endif /* INET || INET6 */
2188
2189 static void
2190 xnb_stop(struct xnb_softc *xnb)
2191 {
2192 struct ifnet *ifp;
2193
2194 mtx_assert(&xnb->sc_lock, MA_OWNED);
2195 ifp = xnb->xnb_ifp;
2196 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2197 if_link_state_change(ifp, LINK_STATE_DOWN);
2198 }
2199
2200 static int
2201 xnb_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2202 {
2203 struct xnb_softc *xnb = ifp->if_softc;
2204 struct ifreq *ifr = (struct ifreq*) data;
2205 #ifdef INET
2206 struct ifaddr *ifa = (struct ifaddr*)data;
2207 #endif
2208 int error = 0;
2209
2210 switch (cmd) {
2211 case SIOCSIFFLAGS:
2212 mtx_lock(&xnb->sc_lock);
2213 if (ifp->if_flags & IFF_UP) {
2214 xnb_ifinit_locked(xnb);
2215 } else {
2216 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2217 xnb_stop(xnb);
2218 }
2219 }
2220 /*
2221 * Note: netfront sets a variable named xn_if_flags
2222 * here, but that variable is never read
2223 */
2224 mtx_unlock(&xnb->sc_lock);
2225 break;
2226 case SIOCSIFADDR:
2227 #ifdef INET
2228 mtx_lock(&xnb->sc_lock);
2229 if (ifa->ifa_addr->sa_family == AF_INET) {
2230 ifp->if_flags |= IFF_UP;
2231 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2232 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING |
2233 IFF_DRV_OACTIVE);
2234 if_link_state_change(ifp,
2235 LINK_STATE_DOWN);
2236 ifp->if_drv_flags |= IFF_DRV_RUNNING;
2237 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2238 if_link_state_change(ifp,
2239 LINK_STATE_UP);
2240 }
2241 arp_ifinit(ifp, ifa);
2242 mtx_unlock(&xnb->sc_lock);
2243 } else {
2244 mtx_unlock(&xnb->sc_lock);
2245 #endif
2246 error = ether_ioctl(ifp, cmd, data);
2247 #ifdef INET
2248 }
2249 #endif
2250 break;
2251 case SIOCSIFCAP:
2252 mtx_lock(&xnb->sc_lock);
2253 if (ifr->ifr_reqcap & IFCAP_TXCSUM) {
2254 ifp->if_capenable |= IFCAP_TXCSUM;
2255 ifp->if_hwassist |= XNB_CSUM_FEATURES;
2256 } else {
2257 ifp->if_capenable &= ~(IFCAP_TXCSUM);
2258 ifp->if_hwassist &= ~(XNB_CSUM_FEATURES);
2259 }
2260 if ((ifr->ifr_reqcap & IFCAP_RXCSUM)) {
2261 ifp->if_capenable |= IFCAP_RXCSUM;
2262 } else {
2263 ifp->if_capenable &= ~(IFCAP_RXCSUM);
2264 }
2265 /*
2266 * TODO enable TSO4 and LRO once we no longer need
2267 * to calculate checksums in software
2268 */
2269 #if 0
2270 if (ifr->if_reqcap |= IFCAP_TSO4) {
2271 if (IFCAP_TXCSUM & ifp->if_capenable) {
2272 printf("xnb: Xen netif requires that "
2273 "TXCSUM be enabled in order "
2274 "to use TSO4\n");
2275 error = EINVAL;
2276 } else {
2277 ifp->if_capenable |= IFCAP_TSO4;
2278 ifp->if_hwassist |= CSUM_TSO;
2279 }
2280 } else {
2281 ifp->if_capenable &= ~(IFCAP_TSO4);
2282 ifp->if_hwassist &= ~(CSUM_TSO);
2283 }
2284 if (ifr->ifreqcap |= IFCAP_LRO) {
2285 ifp->if_capenable |= IFCAP_LRO;
2286 } else {
2287 ifp->if_capenable &= ~(IFCAP_LRO);
2288 }
2289 #endif
2290 mtx_unlock(&xnb->sc_lock);
2291 break;
2292 case SIOCSIFMTU:
2293 ifp->if_mtu = ifr->ifr_mtu;
2294 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2295 xnb_ifinit(xnb);
2296 break;
2297 case SIOCADDMULTI:
2298 case SIOCDELMULTI:
2299 break;
2300 case SIOCSIFMEDIA:
2301 case SIOCGIFMEDIA:
2302 error = ifmedia_ioctl(ifp, ifr, &xnb->sc_media, cmd);
2303 break;
2304 default:
2305 error = ether_ioctl(ifp, cmd, data);
2306 break;
2307 }
2308 return (error);
2309 }
2310
2311 static void
2312 xnb_start_locked(struct ifnet *ifp)
2313 {
2314 netif_rx_back_ring_t *rxb;
2315 struct xnb_softc *xnb;
2316 struct mbuf *mbufc;
2317 RING_IDX req_prod_local;
2318
2319 xnb = ifp->if_softc;
2320 rxb = &xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring;
2321
2322 if (!xnb->carrier)
2323 return;
2324
2325 do {
2326 int out_of_space = 0;
2327 int notify;
2328 req_prod_local = rxb->sring->req_prod;
2329 xen_rmb();
2330 for (;;) {
2331 int error;
2332
2333 IF_DEQUEUE(&ifp->if_snd, mbufc);
2334 if (mbufc == NULL)
2335 break;
2336 error = xnb_send(rxb, xnb->otherend_id, mbufc,
2337 xnb->rx_gnttab);
2338 switch (error) {
2339 case EAGAIN:
2340 /*
2341 * Insufficient space in the ring.
2342 * Requeue pkt and send when space is
2343 * available.
2344 */
2345 IF_PREPEND(&ifp->if_snd, mbufc);
2346 /*
2347 * Perhaps the frontend missed an IRQ
2348 * and went to sleep. Notify it to wake
2349 * it up.
2350 */
2351 out_of_space = 1;
2352 break;
2353
2354 case EINVAL:
2355 /* OS gave a corrupt packet. Drop it.*/
2356 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2357 /* FALLTHROUGH */
2358 default:
2359 /* Send succeeded, or packet had error.
2360 * Free the packet */
2361 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2362 if (mbufc)
2363 m_freem(mbufc);
2364 break;
2365 }
2366 if (out_of_space != 0)
2367 break;
2368 }
2369
2370 RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(rxb, notify);
2371 if ((notify != 0) || (out_of_space != 0))
2372 xen_intr_signal(xnb->xen_intr_handle);
2373 rxb->sring->req_event = req_prod_local + 1;
2374 xen_mb();
2375 } while (rxb->sring->req_prod != req_prod_local) ;
2376 }
2377
2378 /**
2379 * Sends one packet to the ring. Blocks until the packet is on the ring
2380 * \param[in] mbufc Contains one packet to send. Caller must free
2381 * \param[in,out] rxb The packet will be pushed onto this ring, but the
2382 * otherend will not be notified.
2383 * \param[in] otherend The domain ID of the other end of the connection
2384 * \retval EAGAIN The ring did not have enough space for the packet.
2385 * The ring has not been modified
2386 * \param[in,out] gnttab Pointer to enough memory for a grant table. We make
2387 * this a function parameter so that we will take less
2388 * stack space.
2389 * \retval EINVAL mbufc was corrupt or not convertible into a pkt
2390 */
2391 static int
2392 xnb_send(netif_rx_back_ring_t *ring, domid_t otherend, const struct mbuf *mbufc,
2393 gnttab_copy_table gnttab)
2394 {
2395 struct xnb_pkt pkt;
2396 int error, n_entries;
2397 RING_IDX space;
2398
2399 space = ring->sring->req_prod - ring->req_cons;
2400 error = xnb_mbufc2pkt(mbufc, &pkt, ring->rsp_prod_pvt, space);
2401 if (error != 0)
2402 return error;
2403 n_entries = xnb_rxpkt2gnttab(&pkt, mbufc, gnttab, ring, otherend);
2404 if (n_entries != 0) {
2405 int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy,
2406 gnttab, n_entries);
2407 KASSERT(hv_ret == 0, ("HYPERVISOR_grant_table_op returned %d\n",
2408 hv_ret));
2409 }
2410
2411 xnb_rxpkt2rsp(&pkt, gnttab, n_entries, ring);
2412
2413 return 0;
2414 }
2415
2416 static void
2417 xnb_start(struct ifnet *ifp)
2418 {
2419 struct xnb_softc *xnb;
2420
2421 xnb = ifp->if_softc;
2422 mtx_lock(&xnb->rx_lock);
2423 xnb_start_locked(ifp);
2424 mtx_unlock(&xnb->rx_lock);
2425 }
2426
2427 /* equivalent of network_open() in Linux */
2428 static void
2429 xnb_ifinit_locked(struct xnb_softc *xnb)
2430 {
2431 struct ifnet *ifp;
2432
2433 ifp = xnb->xnb_ifp;
2434
2435 mtx_assert(&xnb->sc_lock, MA_OWNED);
2436
2437 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2438 return;
2439
2440 xnb_stop(xnb);
2441
2442 ifp->if_drv_flags |= IFF_DRV_RUNNING;
2443 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2444 if_link_state_change(ifp, LINK_STATE_UP);
2445 }
2446
2447 static void
2448 xnb_ifinit(void *xsc)
2449 {
2450 struct xnb_softc *xnb = xsc;
2451
2452 mtx_lock(&xnb->sc_lock);
2453 xnb_ifinit_locked(xnb);
2454 mtx_unlock(&xnb->sc_lock);
2455 }
2456
2457 /**
2458 * Callback used by the generic networking code to tell us when our carrier
2459 * state has changed. Since we don't have a physical carrier, we don't care
2460 */
2461 static int
2462 xnb_ifmedia_upd(struct ifnet *ifp)
2463 {
2464 return (0);
2465 }
2466
2467 /**
2468 * Callback used by the generic networking code to ask us what our carrier
2469 * state is. Since we don't have a physical carrier, this is very simple
2470 */
2471 static void
2472 xnb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2473 {
2474 ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2475 ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2476 }
2477
2478 /*---------------------------- NewBus Registration ---------------------------*/
2479 static device_method_t xnb_methods[] = {
2480 /* Device interface */
2481 DEVMETHOD(device_probe, xnb_probe),
2482 DEVMETHOD(device_attach, xnb_attach),
2483 DEVMETHOD(device_detach, xnb_detach),
2484 DEVMETHOD(device_shutdown, bus_generic_shutdown),
2485 DEVMETHOD(device_suspend, xnb_suspend),
2486 DEVMETHOD(device_resume, xnb_resume),
2487
2488 /* Xenbus interface */
2489 DEVMETHOD(xenbus_otherend_changed, xnb_frontend_changed),
2490 { 0, 0 }
2491 };
2492
2493 static driver_t xnb_driver = {
2494 "xnb",
2495 xnb_methods,
2496 sizeof(struct xnb_softc),
2497 };
2498
2499 DRIVER_MODULE(xnb, xenbusb_back, xnb_driver, 0, 0);
2500
2501 /*-------------------------- Unit Tests -------------------------------------*/
2502 #ifdef XNB_DEBUG
2503 #include "netback_unit_tests.c"
2504 #endif
Cache object: aaa26c70dec357e98d3ffa69caa33f6a
|